WorldWideScience

Sample records for fluorescence microspectroscopy infrared

  1. Near Infrared Microspectroscopy, Fluorescence Microspectroscopy, Infrared Chemical Imaging and High Resolution Nuclear Magnetic Resonance Analysis of Soybean Seeds, Somatic Embryos and Single Cells

    CERN Document Server

    Baianu, I C; Hofmann, N E; Korban, S S; Lozano, P; You, T; AOCS 94th Meeting, Kansas

    2002-01-01

    Novel methodologies are currently being developed and established for the chemical analysis of soybean seeds, embryos and single cells by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR) Microspectroscopy, Fluorescence and High-Resolution NMR (HR-NMR). The first FT-NIR chemical images of biological systems approaching one micron resolution are presented here. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos are also presented here with nanoliter precision. Such 400 MHz 1H NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. ~20%) compared to non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monitored by FT-NIR with a precision ...

  2. Fourier Transform Near Infrared Microspectroscopy, Infrared Chemical Imaging, High-Resolution Nuclear Magnetic Resonance and Fluorescence Microspectroscopy Detection of Single Cancer Cells and Single Viral Particles

    CERN Document Server

    Baianu,I C; Hofmann, N E; Korban, S S; Lozano, P; You, T

    2004-01-01

    Single Cancer Cells from Human tumors are being detected and imaged by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR)Hyperspectral Imaging and Fluorescence Correlation Microspectroscopy. The first FT-NIR chemical, microscopic images of biological systems approaching one micron resolution are here reported. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are also presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos as well as 99% accurate calibrations are also presented here with nanoliter precision. Such high-resolution, 400 MHz H-1 NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. >~20%) compared to the average levels in non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monito...

  3. Histochemistry and infrared microspectroscopy of lignified tissue in young stems of Struthanthus vulgaris Mart.

    Directory of Open Access Journals (Sweden)

    Gisely de Lima Oliveira

    Full Text Available In this study, we aimed to determine lignified tissue in young stems of Struthanthus vulgaris Mart. by infrared microspectroscopy and histochemical methods as well as by fluorescence microscopy. Struthanthus vulgaris Mart. is a mistletoe species that belongs to the Loranthaceae family. A brief anatomical description was also carried out. The first procedure for analysis was to elaborate anatomical cross sections (20-30 µm from young stems before and after treatment with NaOH 1%. This procedure was applied to release possible low molecular mass phenolic compounds. Safranin-astra blue was used to distinguish anatomical tissues while Wiesner test enabled verification of lignified pericyclic fibers. Infrared microspectroscopy analysis confirmed the presence of lignin in this region according to the following spectral signals: 1600 (shoulder, 1511, 1453, 1338 and 1244 cm-1. Analyses of the cross section of young stems under fluorescence microscopy before and after treatment with NaOH 1% allowed us to confirm the presence of low mass phenolic compounds in the region of pericyclic fibers.

  4. Characterization of the new NSLS infrared microspectroscopy beamline U10B

    Energy Technology Data Exchange (ETDEWEB)

    Carr, G.L.

    1999-07-19

    The first of several new infrared beamlines, built on a modified bending magnet port of the NSLS VUV ring, is now operational for mid-infrared microspectroscopy. The port simultaneously delivers 40 mrad by 40 mrad to two separate beamlines and spectrometer endstations designated U10A and U10B. The latter is equipped with a scanning infrared microspectrometer. The combination of this instrument and high brightness synchrotron radiation makes diffraction-limited microspectroscopy practical. This paper describes the beamline's performance and presents quantitative information on the diffraction-limited resolution.

  5. Synchrotron radiation infrared microspectroscopy to assess the activity of vancomycin against endocarditis vegetation bacteria.

    Science.gov (United States)

    Batard, Eric; Jamme, Frédéric; Montassier, Emmanuel; Bertrand, Dominique; Caillon, Jocelyne; Potel, Gilles; Dumas, Paul

    2011-06-01

    Infrared microspectroscopy was used to show that vancomycin alters infrared spectra of endocarditis vegetation bacteria, and that vancomycin effects on bacterial biochemical contents are unevenly distributed between peripheral and central areas of bacterial masses. Infrared microspectroscopy is useful to study the activity of antibacterial agents against bacteria in tissues. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Microspectroscopy

    International Nuclear Information System (INIS)

    Hirschfeld, T.

    1982-01-01

    The boom in electron and ion microbeam methods, with its overwhelming proliferation of new methods (and acronyms) and eager exploitation of every available technological advance, has tended to obscure the very wide usage of the corresponding optical methods. These outgrowths of the enormous field of visual optical microscopy are, however, quite alive and kicking, and their unique capabilities are becoming more appreciated as more and more advanced optical technology is being applied to the field. This review of optical microprobe techniques includes uv-VIS absorption techniques, fluorescence microspectroscopy, Raman measurements, and other microprobes such as the infrared ones, scatter, and the various partially optical methods. Also discussed are technological advances that may impact these fields. The natural place of microspectroscopy is shown to be as a higher discrimination, lower resolution companion of electron and ion beam microprobes

  7. Theory of infrared microspectroscopy for intact fibers.

    Science.gov (United States)

    Davis, Brynmor J; Carney, P Scott; Bhargava, Rohit

    2011-01-15

    Infrared microspectroscopy is widely used for the chemical analysis of small samples. In particular, spectral properties of small cylindrical samples are important in forensic analysis, understanding relationships between microstructure and mechanical properties in fibers or fiber composites, and development of cosmetics and drugs for hair. The diameters of the constituent cylinders are typically of the order of the central wavelength of light used to probe the sample. Hence, structure and material spectral response are coupled and recorded spectra are usually distorted to the extent of becoming useless for molecular identification. In this paper, we apply rigorous optical theory to predict the spectral distortions observed in IR microspectroscopic data of fibers. The theory is used, first, to compute the changes that are observed for cylinders of various dimensions under different instrument configurations when compared to the bulk spectrum from the same material. We provide a method to recover intrinsic material spectral response from fibers by correcting for distortion introduced by the cylindrical structure. The theory reported here should enable the routine use of IR microspectroscopy and imaging for the molecular analysis of cylindrical domains in complex materials.

  8. Fourier transform infrared microspectroscopy for the analysis of the biochemical composition of C. elegans worms.

    Science.gov (United States)

    Sheng, Ming; Gorzsás, András; Tuck, Simon

    2016-01-01

    Changes in intermediary metabolism have profound effects on many aspects of C. elegans biology including growth, development and behavior. However, many traditional biochemical techniques for analyzing chemical composition require relatively large amounts of starting material precluding the analysis of mutants that cannot be grown in large amounts as homozygotes. Here we describe a technique for detecting changes in the chemical compositions of C. elegans worms by Fourier transform infrared microspectroscopy. We demonstrate that the technique can be used to detect changes in the relative levels of carbohydrates, proteins and lipids in one and the same worm. We suggest that Fourier transform infrared microspectroscopy represents a useful addition to the arsenal of techniques for metabolic studies of C. elegans worms.

  9. Infrared microspectroscopy with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Carr, G.L.; Williams, G.P. [Brookhaven National Lab., Upton, NY (United States). National Synchrotron Light Source

    1997-09-01

    Infrared microspectroscopy with a high brightness synchrotron source can achieve a spatial resolution approaching the diffraction limit. However, in order to realize this intrinsic source brightness at the specimen location, some care must be taken in designing the optical system. Also, when operating in diffraction limited conditions, the effective spatial resolution is no longer controlled by the apertures typically used for a conventional (geometrically defined) measurement. Instead, the spatial resolution depends on the wavelength of light and the effective apertures of the microscope`s Schwarzchild objectives. The authors have modeled the optical system from the synchrotron source up to the sample location and determined the diffraction-limited spatial distribution of light. Effects due to the dependence of the synchrotron source`s numerical aperture on wavelength, as well as the difference between transmission and reflection measurement modes, are also addressed. Lastly, they examine the benefits (when using a high brightness source) of an extrinsic germanium photoconductive detector with cone optics as a replacement for the standard MCT detector.

  10. Biological infrared microspectroscopy at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Miller, Lisa M.; Carr, G. Lawrence; Williams, Gwyn P.; Sullivan, Michael; Chance, Mark R.

    2000-01-01

    Beamline U2B at the National Synchrotron Light Source has been designed and built as an infrared beamline dedicated to the study of biomedical problems. In 1997, the horizontal and vertical acceptances of Beamline U2B were increased in order to increase the overall flux of the beamline. A wedged, CVD diamond window separates the UHV vacuum of the VUV ring from the rough vacuum of the beamline. The endstation consists of a Nicolet Magna 860 step-scan FTIR and a NicPlan infrared microscope. The spectrometer is equipped with beamsplitter/detector combinations that permit data collection in the mid-and far-infrared regions. We have also made provisions for mounting an external detector (e.g. bolometer) for far infrared microspectroscopy. Thus far, Beamline U2B has been used to (1) perform chemical imaging of bone tissue and brain cells to address issues related to bone disease and epilepsy, respectively, and (2) examine time-resolved protein structure in the sub-millisecond folding of cytochrome c

  11. Aleurone Cell Walls of Wheat Grain: High Spatial Resolution Investigation Using Synchrotron Infrared Microspectroscopy

    International Nuclear Information System (INIS)

    Jamme, F.; Robert, R.; Bouchet, B.; Saulnier, L.; Dumas, P.; Guillon, F.

    2008-01-01

    Infrared microspectroscopy and immunolabeling techniques were employed in order to obtain deeper insight into the biochemical nature of aleurone cell walls of wheat grain. The use of a synchrotron source, thanks to its intrinsic brightness, has provided unprecedented information at the level of a few micrometers and has allowed the discrimination of various polysaccharides in cell walls. The high spectral quality obtained in the small analyzed domain has been beneficial in estimating the relative proportions of Β-glucan and arabinoxylan, through the use of principal component analysis (PCA). The highest amount of Β-glucan is found in periclinal cell walls close to the starchy endosperm. The junction regions between aleurone cells are enriched in arabinoxylan. At the early stage of wheat grain development (271 degrees D), the chemical composition along the cell walls is more heterogeneous than at the mature stage. Both synchrotron infrared microspectroscopy and immunolabeling experiments made it possible to reveal the spatial heterogeneity of the various chemical compositions of aleurone cell walls.

  12. Development of microfluidic devices for biomedical applications of synchrotron radiation infrared microspectroscopy

    OpenAIRE

    Birarda, Giovanni

    2011-01-01

    2009/2010 ABSTRACT DEVELOPMENT OF MICROFLUIDIC DEVICES FOR BIOMEDICAL APPLICATIONS OF SYNCHROTRON RADIATION INFRARED MICROSPECTROSCOPY by Birarda Giovanni The detection and measurement of biological processes in a complex living system is a discipline at the edge of Physics, Biology, and Engineering, with major scientific challenges, new technological applications and a great potential impact on dissection of phenomena occurring at tissue, cell, and sub cellular level. The ...

  13. Cellular injury evidenced by impedance technology and infrared microspectroscopy

    Science.gov (United States)

    le Roux, K.; Prinsloo, L. C.; Meyer, D.

    2015-03-01

    Fourier Transform Infrared (FTIR) spectroscopy is finding increasing biological application, for example in the analysis of diseased tissues and cells, cell cycle studies and investigating the mechanisms of action of anticancer drugs. Cancer treatment studies routinely define the types of cell-drug responses as either total cell destruction by the drug (all cells die), moderate damage (cell deterioration where some cells survive) or reversible cell cycle arrest (cytostasis). In this study the loss of viability and related chemical stress experienced by cells treated with the medicinal plant, Plectranthus ciliatus, was investigated using real time cell electronic sensing (RT-CES) technology and FTIR microspectroscopy. The use of plants as medicines is well established and ethnobotany has proven that crude extracts can serve as treatments against various ailments. The aim of this study was to determine whether FTIR microspectroscopy would successfully distinguish between different types of cellular injury induced by a potentially anticancerous plant extract. Cervical adenocarcinoma (HeLa) cells were treated with a crude extract of Pciliatus and cells monitored using RT-CES to characterize the type of cellular responses induced. Cell populations were then investigated using FTIR microspectroscopy and statistically analysed using One-way Analysis of Variance (ANOVA) and Principal Component Analysis (PCA). The plant extract and a cancer drug control (actinomycin D) induced concentration dependent cellular responses ranging from nontoxic, cytostatic or cytotoxic. Thirteen spectral peaks (915 cm-1, 933 cm-1, 989 cm-1, 1192 cm-1, 1369 cm-1, 1437 cm-1, 1450 cm-1, 1546 cm-1, 1634 cm-1, 1679 cm-1 1772 cm-1, 2874 cm-1 and 2962 cm-1) associated with cytotoxicity were significantly (p value < 0.05, one way ANOVA, Tukey test, Bonferroni) altered, while two of the bands were also indicative of early stress related responses. In PCA, poor separation between nontoxic and cytostatic

  14. Design and implementation of a rapid-mixer flow cell for time-resolved infrared microspectroscopy

    International Nuclear Information System (INIS)

    Marinkovic, Nebojsa S.; Adzic, Aleksandar R.; Sullivan, Michael; Kovacs, Kevin; Miller, Lisa M.; Rousseau, Denis L.; Yeh, Syun-Ru; Chance, Mark R.

    2000-01-01

    A rapid mixer for the analysis of reactions in the millisecond and submillisecond time domains by Fourier-transform infrared microspectroscopy has been constructed. The cell was tested by examination of cytochrome-c folding kinetics. The device allows collection of full infrared spectral data on millisecond and faster time scales subsequent to chemical jump reaction initiation. The data quality is sufficiently good such that spectral fitting techniques could be applied to analysis of the data. Thus, this method provides an advantage over kinetic measurements at single wavelengths using infrared laser or diode sources, particularly where band overlap exists

  15. Structure and acidity of individual Fluid Catalytic Cracking catalyst particles studied by synchrotron-based infrared micro-spectroscopy

    NARCIS (Netherlands)

    Buurmans, I.L.C.; Soulimani, F.; Ruiz Martinez, J.; van der Bij, H.E.; Weckhuysen, B.M.

    2013-01-01

    A synchrotron-based infrared micro-spectroscopy study has been conducted to investigate the structure as well as the Brønsted and Lewis acidity of Fluid Catalytic Cracking (FCC) catalyst particles at the individual particle level. Both fresh and laboratory-deactivated catalyst particles have been

  16. Application of linear discriminant analysis and Attenuated Total Reflectance Fourier Transform Infrared microspectroscopy for diagnosis of colon cancer.

    Science.gov (United States)

    Khanmohammadi, Mohammadreza; Bagheri Garmarudi, Amir; Samani, Simin; Ghasemi, Keyvan; Ashuri, Ahmad

    2011-06-01

    Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) microspectroscopy was applied for detection of colon cancer according to the spectral features of colon tissues. Supervised classification models can be trained to identify the tissue type based on the spectroscopic fingerprint. A total of 78 colon tissues were used in spectroscopy studies. Major spectral differences were observed in 1,740-900 cm(-1) spectral region. Several chemometric methods such as analysis of variance (ANOVA), cluster analysis (CA) and linear discriminate analysis (LDA) were applied for classification of IR spectra. Utilizing the chemometric techniques, clear and reproducible differences were observed between the spectra of normal and cancer cases, suggesting that infrared microspectroscopy in conjunction with spectral data processing would be useful for diagnostic classification. Using LDA technique, the spectra were classified into cancer and normal tissue classes with an accuracy of 95.8%. The sensitivity and specificity was 100 and 93.1%, respectively.

  17. New insight in the template decomposition process of large zeolite ZSM-5 crystals: an in situ UV-Vis/fluorescence micro-spectroscopy study

    NARCIS (Netherlands)

    Karwacki, L.|info:eu-repo/dai/nl/304824283; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2011-01-01

    A combination of in situ UV-Vis and confocal fluorescence micro-spectroscopy was used to study the template decomposition process in large zeolite ZSM-5 crystals. Correlation of polarized light dependent UV-Vis absorption spectra with confocal fluorescence emission spectra in the 400–750 nm region

  18. Infrared microspectroscopy: a multiple-screening platform for investigating single-cell biochemical perturbations upon prion infection.

    Science.gov (United States)

    Didonna, Alessandro; Vaccari, Lisa; Bek, Alpan; Legname, Giuseppe

    2011-03-16

    Prion diseases are a group of fatal neurodegenerative disorders characterized by the accumulation of prions in the central nervous system. The pathogenic prion (PrP(Sc)) possesses the capability to convert the host-encoded cellular isoform of the prion protein, PrP(C), into nascent PrP(Sc). The present work aims at providing novel insight into cellular response upon prion infection evidenced by synchrotron radiation infrared microspectroscopy (SR-IRMS). This non-invasive, label-free analytical technique was employed to investigate the biochemical perturbations undergone by prion infected mouse hypothalamic GT1-1 cells at the cellular and subcellular level. A decrement in total cellular protein content upon prion infection was identified by infrared (IR) whole-cell spectra and validated by bicinchoninic acid assay and single-cell volume analysis by atomic force microscopy (AFM). Hierarchical cluster analysis (HCA) of IR data discriminated between infected and uninfected cells and allowed to deduce an increment of lysosomal bodies within the cytoplasm of infected GT1-1 cells, a hypothesis further confirmed by SR-IRMS at subcellular spatial resolution and fluorescent microscopy. The purpose of this work, therefore, consists of proposing IRMS as a powerful multiscreening platform, drawing on the synergy with conventional biological assays and microscopy techniques in order to increase the accuracy of investigations performed at the single-cell level.

  19. Infrared Microspectroscopy: A Multiple-Screening Platform for Investigating Single-Cell Biochemical Perturbations upon Prion Infection

    Science.gov (United States)

    2011-01-01

    Prion diseases are a group of fatal neurodegenerative disorders characterized by the accumulation of prions in the central nervous system. The pathogenic prion (PrPSc) possesses the capability to convert the host-encoded cellular isoform of the prion protein, PrPC, into nascent PrPSc. The present work aims at providing novel insight into cellular response upon prion infection evidenced by synchrotron radiation infrared microspectroscopy (SR-IRMS). This non-invasive, label-free analytical technique was employed to investigate the biochemical perturbations undergone by prion infected mouse hypothalamic GT1-1 cells at the cellular and subcellular level. A decrement in total cellular protein content upon prion infection was identified by infrared (IR) whole-cell spectra and validated by bicinchoninic acid assay and single-cell volume analysis by atomic force microscopy (AFM). Hierarchical cluster analysis (HCA) of IR data discriminated between infected and uninfected cells and allowed to deduce an increment of lysosomal bodies within the cytoplasm of infected GT1-1 cells, a hypothesis further confirmed by SR-IRMS at subcellular spatial resolution and fluorescent microscopy. The purpose of this work, therefore, consists of proposing IRMS as a powerful multiscreening platform, drawing on the synergy with conventional biological assays and microscopy techniques in order to increase the accuracy of investigations performed at the single-cell level. PMID:22778865

  20. Imaging Local Chemical Microstructure of Germinated Wheat with Synchrotron Infrared Microspectroscopy

    International Nuclear Information System (INIS)

    Koc, H.; Wetzel, D.

    2008-01-01

    The spatial resolution enabled by in situ Fourier-transform infrared (FT-IR) microspectroscopy as predicted from our earlier report in Spectroscopy (1) is applied to localized chemical analysis in this vital biological process of seed germination. Germination includes several different biochemical and structural processes. Ultimately, the entire seed is consumed in sustaining the new life that results after sprouting and growth (2-4). Alpha amylase production is the standard evidence for detection of sprouted (germinated) wheat at harvest. Moist preharvest conditions can cause devastating losses and render the harvested wheat unfit for flour production. Dormancy of dry seeds following harvest retards sprouting under proper storage.

  1. CHARACTERIZATION OF THE NEW NSLS INFARED MICROSPECTROSCOPY BEAMLINE U10B.

    Energy Technology Data Exchange (ETDEWEB)

    CARR,G.L.

    1999-07-19

    The first of several new infrared beamlines, built on a modified bending magnet port of the NSLS VUV ring, is now operational for mid-infrared microspectroscopy. The port simultaneously delivers 40 mrad by 40 mrad to two separate beamlines and spectrometer endstations designated U10A and U10B. The latter is equipped with a scanning infrared microspectrometer. The combination of this instrument and high brightness synchrotron radiation makes diffraction-limited microspectroscopy practical. This paper describes the beamline's performance and presents quantitative information on the diffraction-limited resolution.

  2. Determination of phosphorus fertilizer soil reactions by Raman and synchrotron infrared microspectroscopy.

    Science.gov (United States)

    Vogel, Christian; Adam, Christian; Sekine, Ryo; Schiller, Tara; Lipiec, Ewelina; McNaughton, Don

    2013-10-01

    The reaction mechanisms of phosphate-bearing mineral phases from sewage sludge ash-based fertilizers in soil were determined by Raman and synchrotron infrared microspectroscopy. Different reaction mechanisms in wet soil were found for calcium and magnesium (pyro-) phosphates. Calcium orthophosphates were converted over time to hydroxyapatite. Conversely, different magnesium phosphates were transformed to trimagnesium phosphate. Since the magnesium phosphates are unable to form an apatite structure, the plant-available phosphorus remains in the soil, leading to better growth results observed in agricultural pot experiments. The pyrophosphates also reacted very differently. Calcium pyrophosphate is unreactive in soil. In contrast, magnesium pyrophosphate quickly formed plant-available dimagnesium phosphate.

  3. Identification of Contaminated Cells with Viruses, Bacteria, or Fungi by Fourier Transform Infrared Microspectroscopy

    Directory of Open Access Journals (Sweden)

    V. Erukhimovitch

    2013-01-01

    Full Text Available Fourier transform infrared microspectroscopy (FTIR-M can detect small molecular changes in cells and therefore was previously applied for the identification of different biological samples. In the present study, FTIR spectroscopy was used for the identification and discrimination of Vero cells infected with herpes viruses or contaminated with bacteria or fungi in cell culture. Vero cells in culture were infected herpes simplex virus type 1 (HSV-1 or contaminated with E. coli bacteria or Candida albicans fungi and analyzed by FTIR microscopy at 24 h postinfection/contamination. Specific different spectral changes were observed according to the infecting or contaminating agent. For instance, both pure fungi and cell culture contaminated with this fungi showed specific peaks at 1030 cm−1 and at 1373 cm−1 regions, while pure E. coli and cell culture contaminated with this bacteria showed a specific and unique peak at 1657 cm−1. These results support the potential of developing FTIR microspectroscopy as a simple, reagent free method for identification and discrimination between different tissue infection or contamination with various pathogens.

  4. Pigmented Creatine Deposits in Amyotrophic Lateral Sclerosis Central Nervous System Tissues Identified by Synchrotron Fourier Transform Infrared Microspectroscopy and X-ray Fluorescence Spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kastyak, M.; Szczerbowska-Boruchowska, M; Adamek, D; Tomik, B; Lankosz, M; Gough, K

    2010-01-01

    Amyotrophic Lateral Sclerosis (ALS) is an untreatable, neurodegenerative disease of motor neurons characterized by progressive muscle atrophy, limb paralysis, dysarthria, dysphagia, dyspnae and finally death. Large motor neurons in ventral horns of spinal cord and motor nuclei in brainstem, large pyramidal neurons of motor cortex and/or large myelinated axons of corticospinal tracts are affected. In recent synchrotron Fourier Transform Infrared microspectroscopy (sFTIR) studies of ALS CNS autopsy tissue, we discovered a small deposit of crystalline creatine, which has a crucial role in energy metabolism. We have now examined unfixed, snap frozen, post-autopsy tissue sections of motor cortex, brain stem, spinal cord, hippocampus and substantia nigra from six ALS and three non-degenerated cases with FTIR and micro-X-ray fluorescence (XRF). Heterogeneous pigmented deposits were discovered in spinal cord, brain stem and motor neuron cortex of two ALS cases. The FTIR signature of creatine has been identified in these deposits and in numerous large, non-pigmented deposits in four of the ALS cases. Comparable pigmentation and creatine deposits were not found in controls or in ALS hippocampus and substantia nigra. Ca, K, Fe, Cu and Zn, as determined by XRF, were not correlated with the pigmented deposits; however, there was a higher incidence of hot spots (Ca, Zn, Fe and Cu) in the ALS cases. The identity of the pigmented deposits remains unknown, although the absence of Fe argues against both erythrocytes and neuromelanin. We conclude that elevated creatine deposits may be indicators of dysfunctional oxidative processes in some ALS cases.

  5. Microspectroscopy At Beamline 73 MAX-lab

    International Nuclear Information System (INIS)

    Engdahl, Anders

    2010-01-01

    Presentation of some projects at the infrared microspectroscopy experimental station at beamline 73 MAX-lab. Among the subjects are found identification of organic residues in fossil material and examination of the chemistry in an old oak wood wreck.

  6. Infrared micro-spectroscopy of human tissue: principles and future promises.

    Science.gov (United States)

    Diem, Max; Ergin, Ayşegül; Remiszewski, Stan; Mu, Xinying; Akalin, Ali; Raz, Dan

    2016-06-23

    This article summarizes the methods employed, and the progress achieved over the past two decades in applying vibrational (Raman and IR) micro-spectroscopy to problems of medical diagnostics and cellular biology. During this time, several research groups have verified the enormous information contained in vibrational spectra; in fact, information on protein, lipid and metabolic composition of cells and tissues can be deduced by decoding the observed vibrational spectra. This decoding process is aided by the availability of computer workstations and advanced algorithms for data analysis. Furthermore, commercial instrumentation for the fast collection of both Raman and infrared micro-spectral data has enabled the collection of images of cells and tissues based solely on vibrational spectroscopic data. The progress in the field has been manifested by a steady increase in the number and quality of publications submitted by established and new research groups in vibrational spectroscopy in the biological and biomedical arenas.

  7. Fluorescence, aggregation properties and FT-IR microspectroscopy of elastin and collagen fibers.

    Science.gov (United States)

    Vidal, Benedicto de Campos

    2014-10-01

    Histological and histochemical observations support the hypothesis that collagen fibers can link to elastic fibers. However, the resulting organization of elastin and collagen type complexes and differences between these materials in terms of macromolecular orientation and frequencies of their chemical vibrational groups have not yet been solved. This study aimed to investigate the macromolecular organization of pure elastin, collagen type I and elastin-collagen complexes using polarized light DIC-microscopy. Additionally, differences and similarities between pure elastin and collagen bundles (CB) were investigated by Fourier transform-infrared (FT-IR) microspectroscopy. Although elastin exhibited a faint birefringence, the elastin-collagen complex aggregates formed in solution exhibited a deep birefringence and formation of an ordered-supramolecular complex typical of collagen chiral structure. The FT-IR study revealed elastin and CB peptide NH groups involved in different types of H-bonding. More energy is absorbed in the vibrational transitions corresponding to CH, CH2 and CH3 groups (probably associated with the hydrophobicity demonstrated by 8-anilino-1-naphtalene sulfonic acid sodium salt [ANS] fluorescence), and to νCN, δNH and ωCH2 groups of elastin compared to CB. It is assumed that the α-helix contribution to the pure elastin amide I profile is 46.8%, whereas that of the B-sheet is 20% and that unordered structures contribute to the remaining percentage. An FT-IR profile library reveals that the elastin signature within the 1360-1189cm(-1) spectral range resembles that of Conex-Toray aramid fibers. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. The application of Fourier transform infrared microspectroscopy for the study of diseased central nervous system tissue.

    Science.gov (United States)

    Caine, Sally; Heraud, Philip; Tobin, Mark J; McNaughton, Donald; Bernard, Claude C A

    2012-02-15

    In the last two decades the field of infrared spectroscopy has seen enormous advances in both instrumentation and the development of bioinformatic methods for spectral analysis, allowing the examination of a large variety of healthy and diseased samples, including biological fluids, isolated cells, whole tissues, and tissue sections. The non-destructive nature of the technique, together with the ability to directly probe biochemical changes without the addition of stains or contrast agents, enables a range of complementary analyses. This review focuses on the application of Fourier transform infrared (FTIR) microspectroscopy to analyse central nervous system tissues, with the aim of understanding the biochemical and structural changes associated with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, transmissible spongiform encephalopathies, multiple sclerosis, as well as brain tumours. Modern biospectroscopic methods that combine FTIR microspectroscopy with bioinformatic analysis constitute a powerful new methodology that can discriminate pathology from normal healthy tissue in a rapid, unbiased fashion, with high sensitivity and specificity. Notably, the ability to detect protein secondary structural changes associated with Alzheimer's plaques, neurons in Parkinson's disease, and in some spectra from meningioma, as well as in the animal models of Alzheimer's disease, transmissible spongiform encephalopathies, and multiple sclerosis, illustrates the power of this technology. The capacity to offer insight into the biochemical and structural changes underpinning aetio-pathogenesis of diseases in tissues provides both a platform to investigate early pathologies occurring in a variety of experimentally induced and naturally occurring central nervous system diseases, and the potential to evaluate new therapeutic approaches. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization.

    Science.gov (United States)

    Ivleva, Natalia P; Kubryk, Patrick; Niessner, Reinhard

    2017-07-01

    Biofilms represent the predominant form of microbial life on our planet. These aggregates of microorganisms, which are embedded in a matrix formed by extracellular polymeric substances, may colonize nearly all interfaces. Detailed knowledge of microorganisms enclosed in biofilms as well as of the chemical composition, structure, and functions of the complex biofilm matrix and their changes at different stages of the biofilm formation and under various physical and chemical conditions is relevant in different fields. Important research topics include the development and improvement of antibiotics and medical devices and the optimization of biocides, antifouling strategies, and biological wastewater treatment. Raman microspectroscopy is a capable and nondestructive tool that can provide detailed two-dimensional and three-dimensional chemical information about biofilm constituents with the spatial resolution of an optical microscope and without interference from water. However, the sensitivity of Raman microspectroscopy is rather limited, which hampers the applicability of Raman microspectroscopy especially at low biomass concentrations. Fortunately, the resonance Raman effect as well as surface-enhanced Raman scattering can help to overcome this drawback. Furthermore, the combination of Raman microspectroscopy with other microscopic techniques, mass spectrometry techniques, or particularly with stable-isotope techniques can provide comprehensive information on monospecies and multispecies biofilms. Here, an overview of different Raman microspectroscopic techniques, including resonance Raman microspectroscopy and surface-enhanced Raman scattering microspectroscopy, for in situ detection, visualization, identification, and chemical characterization of biofilms is given, and the main feasibilities and limitations of these techniques in biofilm research are presented. Future possibilities of and challenges for Raman microspectroscopy alone and in combination with other

  10. The first synchrotron infrared beamlines at the Advanced Light Source: Microspectroscopy and fast timing

    International Nuclear Information System (INIS)

    Martin, M.C.; McKinney, W.R.

    1998-05-01

    A set of new infrared (IR) beamlines on the 1.4 bending magnet port at the Advanced Light Source, LBNL, are described. Using a synchrotron as an IR source provides considerable brightness advantages, which manifests itself most beneficially when performing spectroscopy on a microscopic length scale. Beamline (BL) 1.4.3 is a dedicated microspectroscopy beamline, where the much smaller focused spot size using the synchrotron source is utilized. This enables an entirely new set of experiments to be performed where spectroscopy on a truly microscopic scale is now possible. BL 1.4.2 consists of a vacuum FTIR bench with a wide spectral range and step-scan capabilities. The fast timing is demonstrated by observing the synchrotron electron storage pattern at the ALS

  11. Identification of Pulmonary Edema in Forensic Autopsy Cases of Sudden Cardiac Death Using Fourier Transform Infrared Microspectroscopy: A Pilot Study.

    Science.gov (United States)

    Lin, Hancheng; Luo, Yiwen; Sun, Qiran; Zhang, Ji; Tuo, Ya; Zhang, Zhong; Wang, Lei; Deng, Kaifei; Chen, Yijiu; Huang, Ping; Wang, Zhenyuan

    2018-02-20

    Many studies have proven the usefulness of biofluid-based infrared spectroscopy in the clinical domain for diagnosis and monitoring the progression of diseases. Here we present a state-of-the-art study in the forensic field that employed Fourier transform infrared microspectroscopy for postmortem diagnosis of sudden cardiac death (SCD) by in situ biochemical investigation of alveolar edema fluid in lung tissue sections. The results of amide-related spectral absorbance analysis demonstrated that the pulmonary edema fluid of the SCD group was richer in protein components than that of the neurologic catastrophe (NC) and lethal multiple injuries (LMI) groups. The complementary results of unsupervised principle component analysis (PCA) and genetic algorithm-guided partial least-squares discriminant analysis (GA-PLS-DA) further indicated different global spectral band patterns of pulmonary edema fluids between these three groups. Ultimately, a random forest (RF) classification model for postmortem diagnosis of SCD was built and achieved good sensitivity and specificity scores of 97.3% and 95.5%, respectively. Classification predictions of unknown pulmonary edema fluid collected from 16 cases were also performed by the model, resulting in 100% correct discrimination. This pilot study demonstrates that FTIR microspectroscopy in combination with chemometrics has the potential to be an effective aid for postmortem diagnosis of SCD.

  12. Analysis of thin-film polymers using attenuated total internal reflection-Raman microspectroscopy.

    Science.gov (United States)

    Tran, Willie; Tisinger, Louis G; Lavalle, Luis E; Sommer, André J

    2015-01-01

    Two methods commonly employed for molecular surface analysis and thin-film analysis of microscopic areas are attenuated total reflection infrared (ATR-IR) microspectroscopy and confocal Raman microspectroscopy. In the former method, the depth of the evanescent probe beam can be controlled by the wavelength of light, the angle of incidence, or the refractive index of the internal reflection element. Because the penetration depth is proportional to the wavelength of light, one could interrogate a smaller film thickness by moving from the mid-infrared region to the visible region employing Raman spectroscopy. The investigation of ATR Raman microspectroscopy, a largely unexplored technique available to Raman microspectroscopy, was carried out. A Renishaw inVia Raman microscope was externally modified and used in conjunction with a solid immersion lens (SIL) to perform ATR Raman experiments. Thin-film polymer samples were analyzed to explore the theoretical sampling depth for experiments conducted without the SIL, with the SIL, and with the SIL using evanescent excitation. The feasibility of micro-ATR Raman was examined by collecting ATR spectra from films whose thickness measured from 200 to 60 nm. Films of these thicknesses were present on a much thicker substrate, and features from the underlying substrate did not become visible until the thin film reached a thickness of 68 nm.

  13. Identification of pulmonary edema in forensic autopsy cases of fatal anaphylactic shock using Fourier transform infrared microspectroscopy.

    Science.gov (United States)

    Lin, Hancheng; Luo, Yiwen; Wang, Lei; Deng, Kaifei; Sun, Qiran; Fang, Ruoxi; Wei, Xin; Zha, Shuai; Wang, Zhenyuan; Huang, Ping

    2018-03-01

    Anaphylaxis is a rapid allergic reaction that may cause sudden death. Currently, postmortem diagnosis of anaphylactic shock is sometimes difficult and often achieved through exclusion. The aim of our study was to investigate whether Fourier transform infrared (FTIR) microspectroscopy combined with pattern recognition methods would be complementary to traditional methods and provide a more accurate postmortem diagnosis of fatal anaphylactic shock. First, the results of spectral peak area analysis showed that the pulmonary edema fluid of the fatal anaphylactic shock group was richer in protein components than the control group, which included mechanical asphyxia, brain injury, and acute cardiac death. Subsequently, principle component analysis (PCA) was performed and showed that the anaphylactic shock group contained more turn and α-helix protein structures as well as less tyrosine-rich proteins than the control group. Ultimately, a partial least-square discriminant analysis (PLS-DA) model combined with a variables selection method called the genetic algorithm (GA) was built and demonstrated good separation between these two groups. This pilot study demonstrates that FTIR microspectroscopy has the potential to be an effective aid for postmortem diagnosis of fatal anaphylactic shock.

  14. Biochemical profiling of rat embryonic stem cells grown on electrospun polyester fibers using synchrotron infrared microspectroscopy.

    Science.gov (United States)

    Doncel-Pérez, Ernesto; Ellis, Gary; Sandt, Christophe; Shuttleworth, Peter S; Bastida, Agatha; Revuelta, Julia; García-Junceda, Eduardo; Fernández-Mayoralas, Alfonso; Garrido, Leoncio

    2018-06-01

    Therapeutic options for spinal cord injuries are severely limited; current treatments only offer symptomatic relief and rehabilitation focused on educating the individual on how to adapt to their new situation to make best possible use of their remaining function. Thus, new approaches are needed, and interest in the development of effective strategies to promote the repair of neural tracts in the central nervous system inspired us to prepare functional and highly anisotropic polymer scaffolds. In this work, an initial assessment of the behavior of rat neural progenitor cells (NPCs) seeded on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber scaffolds using synchrotron-based infrared microspectroscopy (SIRMS) is described. Combined with a modified touch imprint cytology sample preparation method, this application of SIRMS enabled the biochemical profiles of NPCs on the coated polymer fibers to be determined. The results showed that changes in the lipid and amide I-II spectral regions are modulated by the type and coating of the substrate used and the culture time. SIRMS studies can provide valuable insight into the early-stage response of NPCs to the morphology and surface chemistry of a biomaterial, and could therefore be a useful tool in the preparation and optimization of cellular scaffolds. Graphical abstract Synchrotron IR microspectroscopy can provide insight into the response of neural progenitor cells to synthetic scaffolds.

  15. Molecular profiling of sepsis in mice using Fourier Transform Infrared Microspectroscopy.

    Science.gov (United States)

    Gautam, Rekha; Deobagkar-Lele, Mukta; Majumdar, Shamik; Chandrasekar, Bhagawat; Victor, Emmanuel; Ahmed, Syed Moiz; Wadhwa, Nitin; Verma, Taru; Kumar, Srividya; Sundaresan, Nagalingam Ravi; Umapathy, Siva; Nandi, Dipankar

    2016-01-01

    Sepsis is a life threatening condition resulting from a high burden of infection. It is a major health care problem and associated with inflammation, organ dysfunction and significant mortality. However, proper understanding and delineating the changes that occur during this complex condition remains a challenge. A comparative study involving intra-peritoneal injection of BALB/c mice with Salmonella Typhimurium (infection), lipopolysaccharide (endotoxic shock) or thioglycollate (sterile peritonitis) was performed. The changes in organs and sera were profiled using immunological assays and Fourier Transform Infrared (FTIR) micro-spectroscopy. There is a rapid rise in inflammatory cytokines accompanied with lowering of temperature, respiratory rate and glucose amounts in mice injected with S. Typhimurium or lipopolysaccharide. FTIR identifies distinct changes in liver and sera: decrease in glycogen and protein/lipid ratio and increase in DNA and cholesteryl esters. These changes were distinct from the pattern observed in mice treated with thioglycollate and the differences in the data obtained between the three models are discussed. The combination of FTIR spectroscopy and other biomarkers will be valuable in monitoring molecular changes during sepsis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Discrimination of handlebar grip samples by fourier transform infrared microspectroscopy analysis and statistics

    Directory of Open Access Journals (Sweden)

    Zeyu Lin

    2017-01-01

    Full Text Available In this paper, the authors presented a study on the discrimination of handlebar grip samples, to provide effective forensic science service for hit and run traffic cases. 50 bicycle handlebar grip samples, 49 electric bike handlebar grip samples, and 96 motorcycle handlebar grip samples have been randomly collected by the local police in Beijing (China. Fourier transform infrared microspectroscopy (FTIR was utilized as analytical technology. Then, target absorption selection, data pretreatment, and discrimination of linked samples and unlinked samples were chosen as three steps to improve the discrimination of FTIR spectrums collected from different handlebar grip samples. Principal component analysis and receiver operating characteristic curve were utilized to evaluate different data selection methods and different data pretreatment methods, respectively. It is possible to explore the evidential value of handlebar grip residue evidence through instrumental analysis and statistical treatments. It will provide a universal discrimination method for other forensic science samples as well.

  17. Study of cell-differentiation and assembly of photosynthetic proteins during greening of etiolated Zea mays leaves using confocal fluorescence microspectroscopy at liquid-nitrogen temperature.

    Science.gov (United States)

    Shibata, Yutaka; Katoh, Wataru; Tahara, Yukari

    2013-04-01

    Fluorescence microspectroscopy observations were used to study the processes of cell differentiation and assemblies of photosynthesis proteins in Zea mays leaves under the greening process. The observations were done at 78K by setting the sample in a cryostat to avoid any undesired progress of the greening process during the measurements. The lateral and axial spatial resolutions of the system were 0.64μm and 4.4μm, respectively. The study revealed the spatial distributions of protochlorophyllide (PChld) in both the 632-nm-emitting and 655-nm-emitting forms within etiolated Zea mays leaves. The sizes of the fluorescence spots attributed to the former were larger than those of the latter, validating the assignment of the former and latter to the prothylakoid and prolamellar bodies, respectively. In vivo microspectroscopy observations of mature Zea mays leaves confirmed the different photosystem II (PS I)/photosystem I (PS II) ratio between the bundle sheath (BS) and mesophyll (MS) cells, which is specific for C4-plants. The BS cells in Zea mays leaves 1h after the initiation of the greening process tended to show fluorescence spectra at shorter wavelength side (at around 679nm) than the MS cells (at around 682nm). The 679-nm-emitting chlorophyll-a form observed mainly in the BS cells was attributed to putative precursor complexes to PS I. The BS cells under 3-h greening showed higher relative intensities of the PS I fluorescence band at around 735nm, suggesting the reduced PS II amount in the BS cells in this greening stage. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. In-situ chemical analyses of trans-polyisoprene by histochemical staining and Fourier transform infrared microspectroscopy in a rubber-producing plant, Eucommia ulmoides Oliver.

    Science.gov (United States)

    Bamba, Takeshi; Fukusaki, Ei-Ichiro; Nakazawa, Yoshihisa; Kobayashi, Akio

    2002-10-01

    The localization of polyisoprene in young stem tissues of Eucommia ulmoides Oliver was investigated by histochemical staining and Fourier transform infrared (FT-IR) microspectroscopy. The fibrous structures were stained with Oil Red O. FT-IR microspectroscopic analysis proved that the fibrous structures were trans-polyisoprene. Granular structures stained with the dye, and characteristic absorptions at 2,960 cm(-1) and 1,430 cm(-1) in FT-IR suggested that trans-polyisoprene accumulated in the vicinity of the cambium layer. We have thus successfully shown for the first time the localization of trans-polyisoprene in plant tissues, and our histological investigation allowed us to presume the main sites of biosynthesis and accumulation of trans-rubber. Furthermore, a new technical approach, the preparation of sections using an electronic freezing unit and the in situ analysis of polyisoprene using FT-IR microspectroscopy, is demonstrated to be a promising method for determining the accumulation of polyisoprene as well as other metabolites.

  19. External and Intraparticle Diffusion of Coumarin 102 with Surfactant in the ODS-silica Gel/water System by Single Microparticle Injection and Confocal Fluorescence Microspectroscopy

    OpenAIRE

    NAKATANI, Kiyoharu; MATSUTA, Emi

    2015-01-01

    The release mechanism of coumarin 102 from a single ODS-silica gel microparticle into the water phase in the presence of Triton X-100 was investigated by confocal fluorescence microspectroscopy combined with the single microparticle injection technique. The release rate significantly depended on the Triton X-100 concentration in the water phase and was not limited by diffusion in the pores of the microparticle. The release rate constant was inversely proportional to the microparticle radius s...

  20. Microspectroscopy of spectral biomarkers associated with human corneal stem cells

    OpenAIRE

    Nakamura, Takahiro; Kelly, Jemma G.; Trevisan, J?lio; Cooper, Leanne J.; Bentley, Adam J.; Carmichael, Paul L.; Scott, Andrew D.; Cotte, Marine; Susini, Jean; Martin-Hirsch, Pierre L.; Kinoshita, Shigeru; Fullwood, Nigel J.; Martin, Francis L.

    2010-01-01

    Purpose Synchrotron-based radiation (SRS) Fourier-transform infrared (FTIR) microspectroscopy potentially provides novel biomarkers of the cell differentiation process. Because such imaging gives a ?biochemical-cell fingerprint? through a cell-sized aperture, we set out to determine whether distinguishing chemical entities associated with putative stem cells (SCs), transit-amplifying (TA) cells, or terminally-differentiated (TD) cells could be identified in human corneal epithelium. Methods D...

  1. External and Intraparticle Diffusion of Coumarin 102 with Surfactant in the ODS-silica Gel/water System by Single Microparticle Injection and Confocal Fluorescence Microspectroscopy.

    Science.gov (United States)

    Nakatani, Kiyoharu; Matsuta, Emi

    2015-01-01

    The release mechanism of coumarin 102 from a single ODS-silica gel microparticle into the water phase in the presence of Triton X-100 was investigated by confocal fluorescence microspectroscopy combined with the single microparticle injection technique. The release rate significantly depended on the Triton X-100 concentration in the water phase and was not limited by diffusion in the pores of the microparticle. The release rate constant was inversely proportional to the microparticle radius squared, indicating that the rate-determining step is the external diffusion between the microparticle and the water phase.

  2. External and intraparticle diffusion of coumarin 102 with surfactant in the ODS-silica gel/water system by single microparticle injection and confocal fluorescence microspectroscopy

    International Nuclear Information System (INIS)

    Nakatani, Kiyoharu; Matsuta, Emi

    2015-01-01

    The release mechanism of coumarin 102 from a single ODS-silica gel microparticle into the water phase in the presence of Triton X-100 was investigated by confocal fluorescence microspectroscopy combined with the single microparticle injection technique. The release rate significantly depended on the Triton X-100 concentration in the water phase and was not limited by diffusion in the pores of the microparticle. The release rate constant was inversely proportional to the microparticle radius squared, indicating that the rate-determining step is the external diffusion between the microparticle and the water phase. (author)

  3. Recent applications and current trends in Cultural Heritage Science using synchrotron-based Fourier transform infrared micro-spectroscopy

    Science.gov (United States)

    Cotte, Marine; Dumas, Paul; Taniguchi, Yoko; Checroun, Emilie; Walter, Philippe; Susini, Jean

    2009-09-01

    Synchrotron-based Fourier transform infrared micro-spectroscopy (SR-FTIR) is one of the emerging techniques increasingly employed for Cultural Heritage analytical science. Such a technique combines the assets of FTIR spectroscopy (namely, the identification of molecular groups in various environments: organic/inorganic, crystallized/amorphous, solid/liquid/gas), with the extra potential of chemical imaging (localization of components + easier data treatment thanks to geographical correlations) and the properties of the synchrotron source (namely, high brightness, offering high data quality even with reduced dwell time and reduced spot size). This technique can be applied to nearly all kind of materials found in museum objects, going from hard materials, like metals, to soft materials, like paper, and passing through hybrid materials such as paintings and bones. The purpose is usually the identification of complex compositions in tiny, heterogeneous samples. Recent applications are reviewed in this article, together with the fundamental aspects of the infrared synchrotron source which are leading to such improvements in analytical capabilities. A recent example from the ancient Buddhist paintings from Bamiyan is detailed. Emphasis is made on the true potential offered at such large scale facilities in combining SR-FTIR microscopy with other synchrotron-based micro-imaging techniques. To cite this article: M. Cotte et al., C. R. Physique 10 (2009).

  4. Determination of Endosperm Protein Secondary Structure in Hard Wheat Breeding Lines using Synchrotron Infrared Microspectroscopy

    International Nuclear Information System (INIS)

    Bonwell, E.; Fisher, T.; Fritz, A.; Wetzel, D.

    2008-01-01

    One molecular aspect of mature hard wheat protein quality for breadmaking is the relative amount of endosperm protein in the a-helix form compared with that in other secondary structure forms including β-sheet. Modeling of a-helix and β-sheet absorption bands that contribute to the amide I band at 1650 cm-1 was applied to more than 1500 spectra in this study. The microscopic view of wheat endosperm is dominated by many large starch granules with protein in between. The spectrum produced from in situ microspectroscopy of this mixture is dominated by carbohydrate bands from the large starch granules that fill up the field. The high spatial resolution achievable with synchrotron infrared microspectroscopy enables revealing good in situ spectra of the protein located interstitially. Synchrotron infrared microspectroscopic mapping of 4 μm thick frozen sections of endosperm in the subaleurone region provides spectra from a large number of pixels. Pixels with protein-dominated spectra are sorted out from among adjacent pixels to minimize the starch absorption and scattering contributions. Subsequent data treatment to extract information from the amide I band requires a high signal to noise ratio. Although spectral interference of the carbohydrate band on the amide band is not a problem, the scattering produced by the large starch granules diminishes the signal to noise ratio throughout the spectrum. High density mapping was done on beamlines U2B and U10B at the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, NY. Mapping with a single masked spot size of 5.5 μm diameter or confocal 5 μm x 5 μm spot size, respectively, on the two beamlines used produced spectra for new breeding lines under current consideration. Appropriate data treatment allows calculation of a numerical estimate of the a-helix population relative to other secondary protein structures from the position and shape of the amide I absorption band. Current breeding lines show a

  5. The Advantages of an Attenuated Total Internal Reflection Infrared Microspectroscopic Imaging Technique for the Analysis of Polymer Laminates.

    Science.gov (United States)

    Ling, Chen; Sommer, André J

    2015-06-01

    Until recently, the analysis of polymer laminates using infrared microspectroscopy involved the painstaking separation of individual layers by dissection or by obtaining micrometer thin cross-sections. The latter usually requires the expertise of an individual trained in microtomy and even then, the very structure of the laminate could affect the outcome of the spectral results. The recent development of attenuated total internal reflection (ATR) infrared microspectroscopy imaging has provided a new avenue for the analysis of these multilayer structures. This report compares ATR infrared microspectroscopy imaging with conventional transmission infrared microspectroscopy imaging. The results demonstrate that the ATR method offers improved spatial resolution, eliminates a variety of competing optical processes, and requires minimal sample preparation relative to transmission measurements. These advantages were illustrated using a polymer laminate consisting of 11 different layers whose thickness ranged in size from 4-20 μm. The spatial resolution achieved by using an ATR-FTIR (Fourier transform infrared spectroscopy) imaging technique was diffraction limited. Contrast in the ATR images was enhanced by principal component analysis.

  6. Near infrared fluorescent chlorophyll nanoscale liposomes for sentinel lymph node mapping

    Science.gov (United States)

    Fan, Lina; Wu, Qiang; Chu, Maoquan

    2012-01-01

    Background Sentinel lymph node (SLN) mapping using in vivo near infrared fluorescence imaging has attracted great attention during the past few years. Here we report on the early use of poorly water-soluble chlorophyll with near infrared fluorescence extracted from the leaf of Chimonanthus salicifolius, for mouse axillary SLN mapping. Methods and results To improve the water solubility and SLN targeting of the chlorophyll, we encapsulated the chlorophyll in nanoscale liposomes. The liposome-coated chlorophyll nanocomposites obtained were spherical in shape and had an average diameter of 21.7 ± 6.0 nm. The nanocomposites dispersed well in water, and in aqueous suspension they exhibited brighter near infrared fluorescence than chlorophyll alone. After incubation of the nanocomposites with normal liver cells (QSG-7701) and macrophage cells (Ana-1) for no more than 48 hours, there was no obvious reduction in cell viability. When the nanocomposites were injected intradermally into the paw of a mouse, the axillary SLN was found to be strongly fluorescent and was easily visualized in real time without a requirement for surgery. The intensity of the near infrared fluorescence emitted by the SLN was obviously brighter than that emitted by the SLN of another mouse that had been intradermally injected with chlorophyll alone. Conclusion Our data show that the liposome-coated chlorophyll nanocomposites could have great potential for clinical SLN mapping due to their lack of toxicity, bright near infrared fluorescence, and small diameter. PMID:22787402

  7. Vibrational Micro-Spectroscopy of Human Tissues Analysis: Review.

    Science.gov (United States)

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2017-05-04

    Vibrational spectroscopy (Infrared (IR) and Raman) and, in particular, micro-spectroscopy and micro-spectroscopic imaging have been used to characterize developmental changes in tissues, to monitor these changes in cell cultures and to detect disease and drug-induced modifications. The conventional methods for biochemical and histophatological tissue characterization necessitate complex and "time-consuming" sample manipulations and the results are rarely quantifiable. The spectroscopy of molecular vibrations using mid-IR or Raman techniques has been applied to samples of human tissue. This article reviews the application of these vibrational spectroscopic techniques for analysis of biological tissue published between 2005 and 2015.

  8. Vibrational microspectroscopic identification of powdered traditional medicines: Chemical micromorphology of Poria observed by infrared and Raman microspectroscopy

    Science.gov (United States)

    Chen, Jian-bo; Sun, Su-qin; Ma, Fang; Zhou, Qun

    2014-07-01

    Microscopic identification using optical microscopes is a simple and effective method to identify powdered traditional medicines made from plants, animals and fungi. Sometimes, the criteria based on physical properties of the microscopic characteristics of drug powder may be ambiguous, which makes the microscopic identification method subjective and empirical to some extent. In this research, the vibrational microspectroscopic identification method is proposed for more explicit discrimination of powdered traditional medicines. The chemical micromorphology, i.e., chemical compositions and related physical morphologies, of the drug powder can be profiled objectively and quantitatively by infrared and Raman microspectroscopy, leading to better understanding about the formation mechanisms of microscopic characteristics and more accurate identification criteria. As an example, the powder of Poria, which is one of the most used traditional Chinese medicines, is studied in this research. Three types of hyphae are classified according to their infrared spectral features in the region from 1200 to 900 cm-1. Different kinds of polysaccharides indicate that these hyphae may be in different stages of the growth. The granular and branched clumps observed by the optical microscope may be formed from the aggregation of the mature hyphae with β-D-glucan reserves. The newfound spherical particles may originate from the exuded droplets in the fresh Poria because they are both composed of α-D-glucan. The results are helpful to understand the development of the hyphae and the formation of active polysaccharides in Poria and to establish accurate microspectroscopic identification criteria.

  9. Image-guided cancer surgery using near-infrared fluorescence

    Science.gov (United States)

    Vahrmeijer, Alexander L.; Hutteman, Merlijn; van der Vorst, Joost R.; van de Velde, C.J.H.; Frangioni, John V.

    2013-01-01

    Paradigm shifts in surgery arise when surgeons are empowered to perform surgery faster, better, and/or less expensively. Optical imaging that exploits invisible near-infrared fluorescent light has the potential to improve cancer surgery outcomes while minimizing anesthesia time and lowering healthcare costs. Because of this, the last few years have witnessed an explosion of proof-of-concept clinical trials in the field. In this review, we introduce the concept of near-infrared fluorescence imaging for cancer surgery, review the clinical trial literature to date, outline the key issues pertaining to imaging system and contrast agent optimization, discuss limitations and leverage, and provide a framework for making the technology available for the routine care of cancer patients in the near future. PMID:23881033

  10. Vibrational microspectroscopic identification of powdered traditional medicines: chemical micromorphology of Poria observed by infrared and Raman microspectroscopy.

    Science.gov (United States)

    Chen, Jian-bo; Sun, Su-qin; Ma, Fang; Zhou, Qun

    2014-07-15

    Microscopic identification using optical microscopes is a simple and effective method to identify powdered traditional medicines made from plants, animals and fungi. Sometimes, the criteria based on physical properties of the microscopic characteristics of drug powder may be ambiguous, which makes the microscopic identification method subjective and empirical to some extent. In this research, the vibrational microspectroscopic identification method is proposed for more explicit discrimination of powdered traditional medicines. The chemical micromorphology, i.e., chemical compositions and related physical morphologies, of the drug powder can be profiled objectively and quantitatively by infrared and Raman microspectroscopy, leading to better understanding about the formation mechanisms of microscopic characteristics and more accurate identification criteria. As an example, the powder of Poria, which is one of the most used traditional Chinese medicines, is studied in this research. Three types of hyphae are classified according to their infrared spectral features in the region from 1200 to 900 cm(-1). Different kinds of polysaccharides indicate that these hyphae may be in different stages of the growth. The granular and branched clumps observed by the optical microscope may be formed from the aggregation of the mature hyphae with β-D-glucan reserves. The newfound spherical particles may originate from the exuded droplets in the fresh Poria because they are both composed of α-D-glucan. The results are helpful to understand the development of the hyphae and the formation of active polysaccharides in Poria and to establish accurate microspectroscopic identification criteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The Development of Novel Near-Infrared (NIR Tetraarylazadipyrromethene Fluorescent Dyes

    Directory of Open Access Journals (Sweden)

    Young-Tae Chang

    2013-05-01

    Full Text Available Novel structures of an near-infrared (NIR tetraarylazadipyrromethene (aza-BODIPY series have been prepared. We designed the core structure containing two amido groups at the para-position of the aromatic rings. The amido group was incorporated to secure insensitivity to pH and to ensure a bathochromic shift to the NIR region. Forty members of aza-BODIPY compounds were synthesized by substitution of the acetyl group with commercial amines on the alpha bromide. The physicochemical properties and photostability were investigated and the fluorescence emission maxima (745~755 nm were found to be in the near infrared (NIR range of fluorescence.

  12. Vibrational microspectroscopy of food. Raman vs. FT-IR

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Løkke, Mette Marie; Micklander, Elisabeth

    2003-01-01

    . The high spatial resolution makes it possible to study areas down to approximately 10x10 mum with FT-IR microspectroscopy and approximately 1 x 1 mum with Raman microspectroscopy. This presentation highlights the advantages and disadvantages of the two microspectroscopic techniques when applied...

  13. Microspectroscopic analysis of green fluorescent proteins infiltrated into mesoporous silica nanochannels

    NARCIS (Netherlands)

    Ma, Yujie; Rajendran, Prayanka; Blum, Christian; Cesa, Yanina; Gartmann, Nando; Brühwiler, Dominik; Subramaniam, Vinod

    2011-01-01

    The infiltration of enhanced green fluorescent protein (EGFP) into nanochannels of different diameters in mesoporous silica particles was studied in detail by fluorescence microspectroscopy at room temperature. Silica particles from the MCM-41, ASNCs and SBA-15 families possessing nanometer-sized

  14. Infrared microspectroscopy of live cells in microfluidic devices (MD-IRMS): toward a powerful label-free cell-based assay.

    Science.gov (United States)

    Vaccari, L; Birarda, G; Businaro, L; Pacor, S; Grenci, G

    2012-06-05

    Until nowadays most infrared microspectroscopy (IRMS) experiments on biological specimens (i.e., tissues or cells) have been routinely carried out on fixed or dried samples in order to circumvent water absorption problems. In this paper, we demonstrate the possibility to widen the range of in-vitro IRMS experiments to vibrational analysis of live cellular samples, thanks to the development of novel biocompatible IR-visible transparent microfluidic devices (MD). In order to highlight the biological relevance of IRMS in MD (MD-IRMS), we performed a systematic exploration of the biochemical alterations induced by different fixation protocols, ethanol 70% and formaldehyde solution 4%, as well as air-drying on U937 leukemic monocytes by comparing their IR vibrational features with the live U937 counterpart. Both fixation and air-drying procedures affected lipid composition and order as well as protein structure at a different extent while they both induced structural alterations in nucleic acids. Therefore, only IRMS of live cells can provide reliable information on both DNA and RNA structure and on their cellular dynamic. In summary, we show that MD-IRMS of live cells is feasible, reliable, and biologically relevant to be recognized as a label-free cell-based assay.

  15. A study of Ganoderma lucidum spores by FTIR microspectroscopy

    Science.gov (United States)

    Wang, Xin; Chen, Xianliang; Qi, Zeming; Liu, Xingcun; Li, Weizu; Wang, Shengyi

    2012-06-01

    In order to obtain unique information of Ganoderma lucidum spores, FTIR microspectroscopy was used to study G. lucidum spores from Anhui Province (A), Liaoning Province (B) and Shangdong Province (C) of China. IR micro-spectra were acquired with high-resolution and well-reproducibility. The IR spectra of G. lucidum spores from different areas were similar and mainly made up of the absorption bands of polysaccharide, sterols, proteins, fatty acids, etc. The results of curve fitting indicated the protein secondary structures were dissimilar among the above G. lucidum spores. To identify G. lucidum spores from different areas, the H1078/H1640 value might be a potentially useful factor, furthermore FTIR microspectroscopy could realize this identification efficiently with the help of hierarchical cluster analysis. The result indicates FTIR microspectroscopy is an efficient tool for identification of G. lucidum spores from different areas. The result also suggests FTIR microspectroscopy is a potentially useful tool for the study of TCM.

  16. Tolerance of a knotted near infrared fluorescent protein to random circular permutation

    Science.gov (United States)

    Pandey, Naresh; Kuypers, Brianna E.; Nassif, Barbara; Thomas, Emily E.; Alnahhas, Razan N.; Segatori, Laura; Silberg, Jonathan J.

    2016-01-01

    Bacteriophytochrome photoreceptors (BphP) are knotted proteins that have been developed as near-infrared fluorescent protein (iRFP) reporters of gene expression. To explore how rearrangements in the peptides that interlace into the knot within the BphP photosensory core affect folding, we subjected iRFP to random circular permutation using an improved transposase mutagenesis strategy and screened for variants that fluoresce. We identified twenty seven circularly permuted iRFP that display biliverdin-dependent fluorescence in Escherichia coli. The variants with the brightest whole cell fluorescence initiated translation at residues near the domain linker and knot tails, although fluorescent variants were discovered that initiated translation within the PAS and GAF domains. Circularly permuted iRFP retained sufficient cofactor affinity to fluoresce in tissue culture without the addition of biliverdin, and one variant displayed enhanced fluorescence when expressed in bacteria and tissue culture. This variant displayed a similar quantum yield as iRFP, but exhibited increased resistance to chemical denaturation, suggesting that the observed signal increase arose from more efficient protein maturation. These results show how the contact order of a knotted BphP can be altered without disrupting chromophore binding and fluorescence, an important step towards the creation of near-infrared biosensors with expanded chemical-sensing functions for in vivo imaging. PMID:27304983

  17. The application of anti-ESAT-6 monoclonal antibody fluorescent probe in ex vivo near-infrared fluorescence imaging in mice with pulmonary tuberculosis.

    Science.gov (United States)

    Feng, Feng; Zhang, Haoling; Zhu, Zhaoqin; Li, Cong; Shi, Yuxin; Zhang, Zhiyong

    2014-09-01

    Here, we aimed to assess the feasibility of anti-ESAT-6 monoclonal antibody (mAb) coupling with IR783 and rhodamine fluorescent probe in the detection of ESAT-6 expression in tuberculosis tissue of mice using near-infrared fluorescence imaging. IR783 and rhodamine were conjugated to the anti-ESAT-6 mAb or IgG. Mice in the experimental group were injected with fluorescence-labeled mAb probe, and mice in the control group were injected with fluorescence-labeled non-specific IgG antibody. Twenty-four hours later, the lung tissue of mice was examined using ex vivo near-infrared fluorescence imaging. In addition, the contrast-to-noise ratio (CNR) was calculated by measuring the signal intensities of the pulmonary lesions, normal lung tissue and background noise. The frozen lung tissue section was examined under fluorescence microscopy and compared with hemoxylin and eosin (HE) staining. The ex vivo near-infrared fluorescence imaging showed that the fluorescence signal in the lung tuberculosis lesions in the experimental group was significantly enhanced, whereas there was only a weak fluorescence signal or even no fluorescence signal in the control group. CNR values were 64.40 ± 7.02 (n = 6) and 8.75 ± 3.87 (n = 6), respectively (t = 17.01, p fluorescence accumulation distribution detected under fluorescence microscopy was consistent with HE staining of the tuberculosis region. In conclusion, anti-ESAT-6 mAb fluorescent probe could target and be applied in specific ex vivo imaging of mice tuberculosis, and may be of further use in tuberculosis in living mice. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Chemical changes demonstrated in cartilage by synchrotron infrared microspectroscopy in an antibody-induced murine model of rheumatoid arthritis

    Science.gov (United States)

    Croxford, Allyson M.; Selva Nandakumar, Kutty; Holmdahl, Rikard; Tobin, Mark J.; McNaughton, Don; Rowley, Merrill J.

    2011-06-01

    Collagen antibody-induced arthritis develops in mice following passive transfer of monoclonal antibodies (mAbs) to type II collagen (CII) and is attributed to effects of proinflammatory immune complexes, but transferred mAbs may react directly and damagingly with CII. To determine whether such mAbs cause cartilage damage in vivo in the absence of inflammation, mice lacking complement factor 5 that do not develop joint inflammation were injected intravenously with two arthritogenic mAbs to CII, M2139 and CIIC1. Paws were collected at day 3, decalcified, paraffin embedded, and 5-μm sections were examined using standard histology and synchrotron Fourier-transform infrared microspectroscopy (FTIRM). None of the mice injected with mAb showed visual or histological evidence of inflammation but there were histological changes in the articular cartilage including loss of proteoglycan and altered chondrocyte morphology. Findings using FTIRM at high lateral resolution revealed loss of collagen and the appearance of a new peak at 1635 cm-1 at the surface of the cartilage interpreted as cellular activation. Thus, we demonstrate the utility of synchrotron FTIRM for examining chemical changes in diseased cartilage at the microscopic level and establish that arthritogenic mAbs to CII do cause cartilage damage in vivo in the absence of inflammation.

  19. Tolerance of a Knotted Near-Infrared Fluorescent Protein to Random Circular Permutation.

    Science.gov (United States)

    Pandey, Naresh; Kuypers, Brianna E; Nassif, Barbara; Thomas, Emily E; Alnahhas, Razan N; Segatori, Laura; Silberg, Jonathan J

    2016-07-12

    Bacteriophytochrome photoreceptors (BphP) are knotted proteins that have been developed as near-infrared fluorescent protein (iRFP) reporters of gene expression. To explore how rearrangements in the peptides that interlace into the knot within the BphP photosensory core affect folding, we subjected iRFPs to random circular permutation using an improved transposase mutagenesis strategy and screened for variants that fluoresce. We identified 27 circularly permuted iRFPs that display biliverdin-dependent fluorescence in Escherichia coli. The variants with the brightest whole cell fluorescence initiated translation at residues near the domain linker and knot tails, although fluorescent variants that initiated translation within the PAS and GAF domains were discovered. Circularly permuted iRFPs retained sufficient cofactor affinity to fluoresce in tissue culture without the addition of biliverdin, and one variant displayed enhanced fluorescence when expressed in bacteria and tissue culture. This variant displayed a quantum yield similar to that of iRFPs but exhibited increased resistance to chemical denaturation, suggesting that the observed increase in the magnitude of the signal arose from more efficient protein maturation. These results show how the contact order of a knotted BphP can be altered without disrupting chromophore binding and fluorescence, an important step toward the creation of near-infrared biosensors with expanded chemical sensing functions for in vivo imaging.

  20. Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes

    KAUST Repository

    Xie, Fang; Pang, Jing S.; Centeno, Anthony; Ryan, Mary P.; Riley, D. Jason; Alford, Neil M.

    2013-01-01

    of increasing the sensitivity of protein detection in clinical applications. We report the use of tunable plasmonic silver nanostructures for the fluorescence enhancement of a near-infrared (NIR) dye (Alexa Fluor 790). Extensive fluorescence enhancement of ∼2

  1. Preliminary studies of the effects of psychological stress on circulating lymphocytes analyzed by synchrotron radiation based-Fourier transform infrared microspectroscopy

    Science.gov (United States)

    Vargas-Caraveo, Alejandra; Castillo-Michel, Hiram; Mejia-Carmona, Gloria Erika; Pérez-Ishiwara, David Guillermo; Cotte, Marine; Martínez-Martínez, Alejandro

    2014-07-01

    Psychological stress is a condition that not only generates behavioral disorders but also disrupts homeostasis and immune activity that can exacerbate or lead to inflammatory diseases. The aim of this work was to study biochemical changes in circulating immune cells from rats under psychological stress by using vibrational spectroscopy. A stress model was used, where exposure to a stressor was repeated for 5 days. Subsequently, circulating lymphocytes were examined for their biomolecular vibrational fingerprints with synchrotron radiation based-Fourier transform infrared microspectroscopy. The results showed an increased absorption at the ester lipid region (1720-1755 cm-1) in lymphocytes from stressed rats, suggesting lipid peroxidation. Statistical significant changes in wavenumber peak position and absorbance in the nucleic acid region were also observed (915-950 cm-1 Z-DNA, 1090-1150 cm-1 symmetric stretching of Psbnd Osbnd C, 1200-1260 cm-1 asymmetric PO2 and 1570-1510 cm-1 methylated nucleotides) which suggest a reduction of transcriptional activity in lymphocytes from stressed rat. These results unravel part of the mechanisms by which psychological stress may affect the immune system leading to systemic consequences.

  2. [Application of FTIR micro-spectroscopy in the tribology].

    Science.gov (United States)

    Hu, Zhi-meng

    2002-10-01

    The wave number of characteristic absorption peak nu asC-O-C of the polyester formed on the frictional process were determined by Fourier Transform Infrared (FTIR) Micro-spectroscopy, and the wave number displacement of characteristic absorption peak nu asC-O-C was analyzed based on the conversion mass of polyester formed. The internal relations between anti-wear order rule of hydroxyl fatty acids and vibration absorption peak nu asC-O-C of polyester formed by hydroxyl fatty acids was deduced according to these results, and the anti-wear order of hydroxyl fatty acids was reasonably explained, that is 13, 14-di-hydroxydocosanoic acid > 13 (14)-monohydroxydocosanoic acid = 9,10-dihydroxyoctadecanoic acid > 9,10,12-trihydroxyoctadecanoic acid > 9(10)-monohydroxyoctadecanoic acid. A net polyester film is formed by 13, 14-dihydroxydocosanoic acid and a linear polyester film is formed by 9, (10)-monohydroxyoctadecanoic acid and 13(14)-monohydroxydocosanoic acid.

  3. Cholesterol esters are detected by Raman microspectroscopy in HeLa cells

    NARCIS (Netherlands)

    van Manen, H.J.; Otto, Cornelis

    2009-01-01

    The detection of trans-unsaturated lipids in single HeLa cells by Raman microspectroscopy was recently reported in this journal by Onogi et al. Based on our previously published Raman microspectroscopy data of individual macrophage foam cells, a detailed comparison between our spectra and spectrum

  4. Smart optical probes for near-infrared fluorescence imaging of Alzheimer's disease pathology

    International Nuclear Information System (INIS)

    Raymond, Scott B.; Bacskai, Brian J.; Skoch, Jesse; Hills, Ivory D.; Swager, Timothy M.; Nesterov, Evgueni E.

    2008-01-01

    Near-infrared fluorescent probes for amyloid-beta (Aβ) are an exciting option for molecular imaging in Alzheimer's disease research and may translate to clinical diagnostics. However, Aβ-targeted optical probes often suffer from poor specificity and slow clearance from the brain. We are designing smart optical probes that emit characteristic fluorescence signal only when bound to Aβ. We synthesized a family of dyes and tested Aβ-binding sensitivity with fluorescence spectroscopy and tissue-staining. Select compounds exhibited Aβ-dependent changes in fluorescence quantum yield, lifetime, and emission spectra that may be imaged microscopically or in vivo using new lifetime and spectral fluorescence imaging techniques. Smart optical probes that turn on when bound to Aβ will improve amyloid detection and may enable quantitative molecular imaging in vivo. (orig.)

  5. The use of near-infrared fluorescence imaging in endocrine surgical procedures.

    Science.gov (United States)

    Kahramangil, Bora; Berber, Eren

    2017-06-01

    Near-infrared fluorescence imaging in endocrine surgery is a new, yet highly investigated area. It involves indocyanine green use as well as parathyroid autofluorescence. Several groups have described their technique and reported on the observed utility. However, there is no consensus on technical details. Furthermore, the correlation between intraoperative findings and postoperative outcomes is unclear. With this study, we aim to review the current literature on fluorescence imaging and share our insights on technical details. © 2017 Wiley Periodicals, Inc.

  6. Synchrotron-based FTIR microspectroscopy for the mapping of photo-oxidation and additives in acrylonitrile-butadiene-styrene model samples and historical objects.

    Science.gov (United States)

    Saviello, Daniela; Pouyet, Emeline; Toniolo, Lucia; Cotte, Marine; Nevin, Austin

    2014-09-16

    Synchrotron-based Fourier transform infrared micro-spectroscopy (SR-μFTIR) was used to map photo-oxidative degradation of acrylonitrile-butadiene-styrene (ABS) and to investigate the presence and the migration of additives in historical samples from important Italian design objects. High resolution (3×3 μm(2)) molecular maps were obtained by FTIR microspectroscopy in transmission mode, using a new method for the preparation of polymer thin sections. The depth of photo-oxidation in samples was evaluated and accompanied by the formation of ketones, aldehydes, esters, and unsaturated carbonyl compounds. This study demonstrates selective surface oxidation and a probable passivation of material against further degradation. In polymer fragments from design objects made of ABS from the 1960s, UV-stabilizers were detected and mapped, and microscopic inclusions of proteinaceous material were identified and mapped for the first time. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. On-Line Monitoring of Fermentation Processes by Near Infrared and Fluorescence Spectroscopy

    DEFF Research Database (Denmark)

    Svendsen, Carina

    Monitoring and control of fermentation processes is important to ensure high product yield, product quality and product consistency. More knowledge on on-line analytical techniques such as near infrared and fluorescence spectroscopy is desired in the fermentation industry to increase the efficiency...... of on-line monitoring systems. The primary aim of this thesis is to elucidate and explore the dynamics in fermentation processes by spectroscopy. Though a number of successful on-line lab-scale monitoring systems have been reported, it seems that several challenges are still met, which limits the number...... of full-scale systems implemented in industrial fermentation processes. This thesis seeks to achieve a better understanding of the techniques near infrared and fluorescence spectroscopy and thereby to solve some of the challenges that are encountered. The thesis shows the advantages of applying real...

  8. Fluorescence lifetime imaging microscopy using near-infrared contrast agents.

    Science.gov (United States)

    Nothdurft, R; Sarder, P; Bloch, S; Culver, J; Achilefu, S

    2012-08-01

    Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labelled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes' relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging. © 2012 The Author Journal of Microscopy © 2012 Royal Microscopical Society.

  9. Molecular Imaging of β-Amyloid Plaques with Near-Infrared Boron Dipyrromethane (BODIPY-Based Fluorescent Probes

    Directory of Open Access Journals (Sweden)

    Hiroyuki Watanabe

    2013-07-01

    Full Text Available The formation of β-amyloid (Aβ plaques is a critical neurodegenerative change in Alzheimer disease (AD. We designed and synthesized novel boron dipyrromethane (BODIPY-based Aβ probes (BAPs and evaluated their utility for near-infrared fluorescence imaging of Aβ plaques in the brain. In binding experiments in vitro, BAPs showed high affinity for synthetic Aβ aggregates (Kd = 18–149 nM. Furthermore, BAPs clearly stained Aβ plaques in sections of Tg2576 mice. In mouse brain tissue, BAPs showed sufficient uptake for optical imaging. In addition, ex vivo fluorescent staining of brain sections from Tg2576 mice after the injection of BAP-2 showed selective binding of Aβ plaques with little nonspecific binding. BAPs may be useful as a near-infrared fluorescent probe for imaging Aβ plaques.

  10. Liposomal encapsulation of a near-infrared fluorophore enhances fluorescence quenching and reliable whole body optical imaging upon activation in vivo.

    Science.gov (United States)

    Tansi, Felista L; Rüger, Ronny; Rabenhold, Markus; Steiniger, Frank; Fahr, Alfred; Kaiser, Werner A; Hilger, Ingrid

    2013-11-11

    In the past decade, there has been significant progress in the development of water soluble near-infrared fluorochromes for use in a wide range of imaging applications. Fluorochromes with high photo and thermal stability, sensitivity, adequate pharmacological properties and absorption/emission maxima within the near infrared window (650-900 nm) are highly desired for in vivo imaging, since biological tissues show very low absorption and auto-fluorescence at this spectrum window. Taking these properties into consideration, a myriad of promising near infrared fluorescent probes has been developed recently. However, a hallmark of most of these probes is a rapid clearance in vivo, which hampers their application. It is hypothesized that encapsulation of the near infrared fluorescent dye DY-676-COOH, which undergoes fluorescence quenching at high concentrations, in the aqueous interior of liposomes will result in protection and fluorescence quenching, which upon degradation by phagocytes in vivo will lead to fluorescence activation and enable imaging of inflammation. Liposomes prepared with high concentrations of DY-676-COOH reveal strong fluorescence quenching. It is demonstrated that the non-targeted PEGylated fluorescence-activatable liposomes are taken up predominantly by phagocytosis and degraded in lysosomes. Furthermore, in zymosan-induced edema models in mice, the liposomes are taken up by monocytes and macrophages which migrate to the sites of inflammation. Opposed to free DY-676-COOH, prolonged stability and retention of liposomal-DY-676-COOH is reflected in a significant increase in fluorescence intensity of edema. Thus, protected delivery and fluorescence quenching make the DY-676-COOH-loaded liposomes a highly promising contrast agent for in vivo optical imaging of inflammatory diseases. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Near Infrared Fluorescence Imaging in Nano-Therapeutics and Photo-Thermal Evaluation

    Science.gov (United States)

    Vats, Mukti; Mishra, Sumit Kumar; Baghini, Mahdieh Shojaei; Chauhan, Deepak S.; Srivastava, Rohit; De, Abhijit

    2017-01-01

    The unresolved and paramount challenge in bio-imaging and targeted therapy is to clearly define and demarcate the physical margins of tumor tissue. The ability to outline the healthy vital tissues to be carefully navigated with transection while an intraoperative surgery procedure is performed sets up a necessary and under-researched goal. To achieve the aforementioned objectives, there is a need to optimize design considerations in order to not only obtain an effective imaging agent but to also achieve attributes like favorable water solubility, biocompatibility, high molecular brightness, and a tissue specific targeting approach. The emergence of near infra-red fluorescence (NIRF) light for tissue scale imaging owes to the provision of highly specific images of the target organ. The special characteristics of near infra-red window such as minimal auto-fluorescence, low light scattering, and absorption of biomolecules in tissue converge to form an attractive modality for cancer imaging. Imparting molecular fluorescence as an exogenous contrast agent is the most beneficial attribute of NIRF light as a clinical imaging technology. Additionally, many such agents also display therapeutic potentials as photo-thermal agents, thus meeting the dual purpose of imaging and therapy. Here, we primarily discuss molecular imaging and therapeutic potentials of two such classes of materials, i.e., inorganic NIR dyes and metallic gold nanoparticle based materials. PMID:28452928

  12. Cold atmospheric-pressure plasma and bacteria: understanding the mode of action using vibrational microspectroscopy

    International Nuclear Information System (INIS)

    Kartaschew, Konstantin; Mischo, Meike; Bründermann, Erik; Havenith, Martina; Baldus, Sabrina; Awakowicz, Peter

    2016-01-01

    Cold atmospheric-pressure plasma show promising antimicrobial effects, however the detailed biochemical mechanism of the bacterial inactivation is still unknown. We investigated, for the first time, plasma-treated Gram-positive Bacillus subtilis and Gram-negative Escherichia coli bacteria with Raman and infrared microspectroscopy. A dielectric barrier discharge was used as a plasma source. We were able to detect several plasma-induced chemical modifications, which suggest a pronounced oxidative effect on the cell envelope, cellular proteins and nucleotides as well as a generation of organic nitrates in the treated bacteria. Vibrational microspectroscopy is used as a comprehensive and a powerful tool for the analysis of plasma interactions with whole organisms such as bacteria. Analysis of reaction kinetics of chemical modifications allow a time-dependent insight into the plasma-mediated impact. Investigating possible synergistic effects between the plasma-produced components, our observations strongly indicate that the detected plasma-mediated chemical alterations can be mainly explained by the particle effect of the generated reactive species. By changing the polarity of the applied voltage pulse, and hence the propagation mechanisms of streamers, no significant effect on the spectral results could be detected. This method allows the analysis of the individual impact of each plasma constituent for particular chemical modifications. Our approach shows great potential to contribute to a better understanding of plasma-cell interactions. (paper)

  13. Zinc Phthalocyanine Labelled Polyethylene Glycol: Preparation, Characterization, Interaction with Bovine Serum Albumin and Near Infrared Fluorescence Imaging in Vivo

    Directory of Open Access Journals (Sweden)

    Tianjun Liu

    2012-05-01

    Full Text Available Zinc phthalocyanine labelled polyethylene glycol was prepared to track and monitor the in vivo fate of polyethylene glycol. The chemical structures were characterized by nuclear magnetic resonance and infrared spectroscopy. Their light stability and fluorescence quantum yield were evaluated by UV-Visible and fluorescence spectroscopy methods. The interaction of zinc phthalocyanine labelled polyethylene glycol with bovine serum albumin was evaluated by fluorescence titration and isothermal titration calorimetry methods. Optical imaging in vivo, organ aggregation as well as distribution of fluorescence experiments for tracking polyethylene glycol were performed with zinc phthalocyanine labelled polyethylene glycol as fluorescent agent. Results show that zinc phthalocyanine labelled polyethylene glycol has good optical stability and high emission ability in the near infrared region. Imaging results demonstrate that zinc phthalocyanine labelled polyethylene glycol can track and monitor the in vivo process by near infrared fluorescence imaging, which implies its potential in biomaterials evaluation in vivo by a real-time noninvasive method.

  14. Intraoperative near-infrared fluorescent imaging during robotic operations.

    Science.gov (United States)

    Macedo, Antonio Luiz de Vasconcellos; Schraibman, Vladimir

    2016-01-01

    The intraoperative identification of certain anatomical structures because they are small or visually occult may be challenging. The development of minimally invasive surgery brought additional difficulties to identify these structures due to the lack of complete tactile sensitivity. A number of different forms of intraoperative mapping have been tried. Recently, the near-infrared fluorescence imaging technology with indocyanine green has been added to robotic platforms. In addition, this technology has been tested in several types of operations, and has advantages such as safety, low cost and good results. Disadvantages are linked to contrast distribution in certain clinical scenarios. The intraoperative near-infrared fluorescent imaging is new and promising addition to robotic surgery. Several reports show the utility of this technology in several different procedures. The ideal dose, time and site for dye injection are not well defined. No high quality evidence-based comparative studies and long-term follow-up outcomes have been published so far. Initial results, however, are good and safe. RESUMO A identificação intraoperatória de certas estruturas anatômicas, por seu tamanho ou por elas serem ocultas à visão, pode ser desafiadora. O desenvolvimento da cirurgia minimamente invasiva trouxe dificuldades adicionais, pela falta da sensibilidade tátil completa. Diversas formas de detecção intraoperatória destas estruturas têm sido tentadas. Recentemente, a tecnologia de fluorescência infravermelha com verde de indocianina foi associada às plataformas robóticas. Além disso, essa tecnologia tem sido testada em uma variedade de cirurgias, e suas vantagens parecem estar ligadas a baixo custo, segurança e bons resultados. As desvantagens estão associadas à má distribuição do contraste em determinados cenários. A imagem intraoperatória por fluorescência infravermelha é uma nova e promissora adição à cirurgia robótica. Diversas séries mostram

  15. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter

    Science.gov (United States)

    Kim, Dae-Hyeon; D'Aléo, Anthony; Chen, Xian-Kai; Sandanayaka, Atula D. S.; Yao, Dandan; Zhao, Li; Komino, Takeshi; Zaborova, Elena; Canard, Gabriel; Tsuchiya, Youichi; Choi, Eunyoung; Wu, Jeong Weon; Fages, Frédéric; Brédas, Jean-Luc; Ribierre, Jean-Charles; Adachi, Chihaya

    2018-02-01

    Near-infrared organic light-emitting diodes and semiconductor lasers could benefit a variety of applications including night-vision displays, sensors and information-secured displays. Organic dyes can generate electroluminescence efficiently at visible wavelengths, but organic light-emitting diodes are still underperforming in the near-infrared region. Here, we report thermally activated delayed fluorescent organic light-emitting diodes that operate at near-infrared wavelengths with a maximum external quantum efficiency of nearly 10% using a boron difluoride curcuminoid derivative. As well as an effective upconversion from triplet to singlet excited states due to the non-adiabatic coupling effect, this donor-acceptor-donor compound also exhibits efficient amplified spontaneous emission. By controlling the polarity of the active medium, the maximum emission wavelength of the electroluminescence spectrum can be tuned from 700 to 780 nm. This study represents an important advance in near-infrared organic light-emitting diodes and the design of alternative molecular architectures for photonic applications based on thermally activated delayed fluorescence.

  16. Non-isothermal dehydration kinetic study of aspartame hemihydrate using DSC, TGA and DSC-FTIR microspectroscopy

    Directory of Open Access Journals (Sweden)

    Wei-hsien Hsieh

    2018-05-01

    Full Text Available Three thermal analytical techniques such as differential scanning calorimetry (DSC, thermal gravimetric analysis (TGA using five heating rates, and DSC-Fourier Transform Infrared (DSC-FTIR microspectroscopy using one heating rate, were used to determine the thermal characteristics and the dehydration process of aspartame (APM hemihydrate in the solid state. The intramolecular cyclization process of APM anhydrate was also examined. One exothermic and four endothermic peaks were observed in the DSC thermogram of APM hemihydrate, in which the exothermic peak was due to the crystallization of some amorphous APM caused by dehydration process from hemihydrate to anhydride. While four endothermic peaks were corresponded to the evaporation of absorbed water, the dehydration of hemihydrate, the diketopiperazines (DKP formation via intramolecular cyclization, and the melting of DKP, respectively. The weight loss measured in TGA curve of APM hemihydrate was associated with these endothermic peaks in the DSC thermogram. According to the Flynn–Wall–Ozawa (FWO model, the activation energy of dehydration process within 100–150 °C was about 218 ± 11 kJ/mol determined by TGA technique. Both the dehydration and DKP formation processes for solid-state APM hemihydrate were markedly evidenced from the thermal-responsive changes in several specific FTIR bands by a single-step DSC-FTIR microspectroscopy. Keywords: Aspartame (APM hemihydrate, DSC/TGA, DSC-FTIR, Dehydration, Activation energy, DKP formation

  17. Raman Microspectroscopy of the Yeast Vacuoles

    Czech Academy of Sciences Publication Activity Database

    Bednárová, Lucie; Palacký, J.; Bauerová, Václava; Hrušková-Heidingsfeldová, Olga; Pichová, Iva; Mojzeš, P.

    2012-01-01

    Roč. 27, 5-6 (2012), s. 503-507 ISSN 0712-4813 R&D Projects: GA ČR GAP208/10/0376; GA ČR GA310/09/1945 Institutional research plan: CEZ:AV0Z40550506 Keywords : Raman microspectroscopy * living cell * yeast * vacuole * chemical composition * polyphospate * Candida albicans Subject RIV: CE - Biochemistry Impact factor: 0.530, year: 2012

  18. Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine.

    Science.gov (United States)

    Chen, Jin-Long; Yan, Xiu-Ping; Meng, Kang; Wang, Shu-Feng

    2011-11-15

    While the super fluorescence quenching capacity of graphene and graphene oxide (GO) has been extensively employed to develop fluorescent sensors, their own unique fluorescence and its potential for chemo-/biosensing have seldom been explored. Here we report a GO-based photoinduced charge transfer (PCT) label-free near-infrared (near-IR) fluorescent biosensor for dopamine (DA). The multiple noncovalent interactions between GO and DA and the ultrafast decay at the picosecond range of the near-IR fluorescence of GO resulted in effective self-assembly of DA molecules on the surface of GO, and significant fluorescence quenching, allowing development of a PCT-based biosensor with direct readout of the near-IR fluorescence of GO for selective and sensitive detection of DA. The developed method gave a detection limit of 94 nM and a relative standard deviation of 2.0% for 11 replicate detections of 2.0 μM DA and was successfully applied to the determination of DA in biological fluids with quantitative recovery (98-115%).

  19. Standard reference for instrument response function in fluorescence lifetime measurements in visible and near infrared

    International Nuclear Information System (INIS)

    Chib, Rahul; Shah, Sunil; Gryczynski, Zygmunt; Fudala, Rafal; Borejdo, Julian; Gryczynski, Ignacy; Zelent, Bogumil; Corradini, Maria G; Ludescher, Richard D

    2016-01-01

    Allura red (AR) fluorophore, a common dye in the food industry, displays a broad emission spectrum in water (visible-to-near infrared region of the electromagnetic spectrum) and has a remarkably short fluorescence lifetime of about 10 ps. This short lifetime does not depend on the emission (observation) wavelength. We examined time responses of AR fluorescence across emission wavelengths from 550 nm to 750 nm and found that it is an ideal candidate for impulse response functions in fluorescence lifetime measurements. (technical note)

  20. Unsupervised explorative data analysis of normal human leukocytes and BCR/ABL positive leukemic cells mid-infrared spectra

    NARCIS (Netherlands)

    Bellisola, G.; Bolomini-Vittori, M.; Cinque, G.; Dumas, P.; Fiorini, Z.; Laudanna, C.; Mirenda, M.; Sandt, C.; Silvestri, G.; Tomasello, L.; Vezzalini, M.; Wehbe, K.; Sorio, C.

    2015-01-01

    We proved the ability of Fourier Transform Infrared microspectroscopy (microFTIR) complemented by Principal Component Analysis (PCA) to detect protein phosphorylation/de-phosphorylation in mammalian cells. We analyzed by microFTIR human polymorphonuclear neutrophil (PMNs) leukocytes, mouse-derived

  1. Fourier Transform Infrared Imaging analysis of dental pulp inflammatory diseases.

    Science.gov (United States)

    Giorgini, E; Sabbatini, S; Conti, C; Rubini, C; Rocchetti, R; Fioroni, M; Memè, L; Orilisi, G

    2017-05-01

    Fourier Transform Infrared microspectroscopy let characterize the macromolecular composition and distribution of tissues and cells, by studying the interaction between infrared radiation and matter. Therefore, we hypothesize to exploit this analytical tool in the analysis of inflamed pulps, to detect the different biochemical features related to various degrees of inflammation. IR maps of 13 irreversible and 12 hyperplastic pulpitis, together with 10 normal pulps, were acquired, compared with histological findings and submitted to multivariate (HCA, PCA, SIMCA) and statistical (one-way ANOVA) analysis. The fit of convoluted bands let calculate meaningful band area ratios (means ± s.d., P < 0.05). The infrared imaging analysis pin-pointed higher amounts of water and lower quantities of type I collagen in all inflamed pulps. Specific vibrational markers were defined for irreversible pulpitis (Lipids/Total Biomass, PhII/Total Biomass, CH 2 /CH 3 , and Ty/AII) and hyperplastic ones (OH/Total Biomass, Collagen/Total Biomass, and CH 3 Collagen/Total Biomass). The study confirmed that FTIR microspectroscopy let discriminate tissues' biological features. The infrared imaging analysis evidenced, in inflamed pulps, alterations in tissues' structure and composition. Changes in lipid metabolism, increasing amounts of tyrosine, and the occurrence of phosphorylative processes were highlighted in irreversible pulpitis, while high amounts of water and low quantities of type I collagen were detected in hyperplastic samples. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy

    Science.gov (United States)

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm-1. For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification.

  3. Role of near-infrared fluorescence imaging in the resection of metastatic lymph nodes in an optimized orthotopic animal model of HNSCC.

    Science.gov (United States)

    Atallah, I; Milet, C; Quatre, R; Henry, M; Reyt, E; Coll, J-L; Hurbin, A; Righini, C A

    2015-12-01

    To study the role of near-infrared fluorescence imaging in the detection and resection of metastatic cervical lymph nodes in head and neck cancer. CAL33 head and neck cancer cells of human origin were implanted in the oral cavity of nude mice. The mice were followed up after tumor resection to detect the development of lymph node metastases. A specific fluorescent tracer for αvβ3 integrin expressed by CAL33 cells was injected intravenously in the surviving mice between the second and the fourth month following tumor resection. A near-infrared fluorescence-imaging camera was used to detect tracer uptake in metastatic cervical lymph nodes, to guide of lymph-node resection for histological analysis. Lymph node metastases were observed in 42.8% of surviving mice between the second and the fourth month following orthotopic tumor resection. Near-infrared fluorescence imaging provided real-time intraoperative detection of clinical and subclinical lymph node metastases. These results were confirmed histologically. Near infrared fluorescence imaging provides real-time contrast between normal and malignant tissue, allowing intraoperative detection of metastatic lymph nodes. This preclinical stage is essential before testing the technique in humans. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Near-Infrared Fluorescent Nanoprobes for Revealing the Role of Dopamine in Drug Addiction.

    Science.gov (United States)

    Feng, Peijian; Chen, Yulei; Zhang, Lei; Qian, Cheng-Gen; Xiao, Xuanzhong; Han, Xu; Shen, Qun-Dong

    2018-02-07

    Brain imaging techniques enable visualizing the activity of central nervous system without invasive neurosurgery. Dopamine is an important neurotransmitter. Its fluctuation in brain leads to a wide range of diseases and disorders, like drug addiction, depression, and Parkinson's disease. We designed near-infrared fluorescence dopamine-responsive nanoprobes (DRNs) for brain activity imaging during drug abuse and addiction process. On the basis of light-induced electron transfer between DRNs and dopamine and molecular wire effect of the DRNs, we can track the dynamical change of the neurotransmitter level in the physiological environment and the releasing of the neurotransmitter in living dopaminergic neurons in response to nicotine stimulation. The functional near-infrared fluorescence imaging can dynamically track the dopamine level in the mice midbrain under normal or drug-activated condition and evaluate the long-term effect of addictive substances to the brain. This strategy has the potential for studying neural activity under physiological condition.

  5. Optimal parameters for near infrared fluorescence imaging of amyloid plaques in Alzheimer's disease mouse models

    International Nuclear Information System (INIS)

    Raymond, S B; Kumar, A T N; Boas, D A; Bacskai, B J

    2009-01-01

    Amyloid-β plaques are an Alzheimer's disease biomarker which present unique challenges for near-infrared fluorescence tomography because of size (<50 μm diameter) and distribution. We used high-resolution simulations of fluorescence in a digital Alzheimer's disease mouse model to investigate the optimal fluorophore and imaging parameters for near-infrared fluorescence tomography of amyloid plaques. Fluorescence was simulated for amyloid-targeted probes with emission at 630 and 800 nm, plaque-to-background ratios from 1-1000, amyloid burden from 0-10%, and for transmission and reflection measurement geometries. Fluorophores with high plaque-to-background contrast ratios and 800 nm emission performed significantly better than current amyloid imaging probes. We tested idealized fluorophores in transmission and full-angle tomographic measurement schemes (900 source-detector pairs), with and without anatomical priors. Transmission reconstructions demonstrated strong linear correlation with increasing amyloid burden, but underestimated fluorescence yield and suffered from localization artifacts. Full-angle measurements did not improve upon the transmission reconstruction qualitatively or in semi-quantitative measures of accuracy; anatomical and initial-value priors did improve reconstruction localization and accuracy for both transmission and full-angle schemes. Region-based reconstructions, in which the unknowns were reduced to a few distinct anatomical regions, produced highly accurate yield estimates for cortex, hippocampus and brain regions, even with a reduced number of measurements (144 source-detector pairs).

  6. The ratio 1660/1690 cm(-1) measured by infrared microspectroscopy is not specific of enzymatic collagen cross-links in bone tissue.

    Science.gov (United States)

    Farlay, Delphine; Duclos, Marie-Eve; Gineyts, Evelyne; Bertholon, Cindy; Viguet-Carrin, Stéphanie; Nallala, Jayakrupakar; Sockalingum, Ganesh D; Bertrand, Dominique; Roger, Thierry; Hartmann, Daniel J; Chapurlat, Roland; Boivin, Georges

    2011-01-01

    In postmenopausal osteoporosis, an impairment in enzymatic cross-links (ECL) occurs, leading in part to a decline in bone biomechanical properties. Biochemical methods by high performance liquid chromatography (HPLC) are currently used to measure ECL. Another method has been proposed, by Fourier Transform InfraRed Imaging (FTIRI), to measure a mature PYD/immature DHLNL cross-links ratio, using the 1660/1690 cm(-1) area ratio in the amide I band. However, in bone, the amide I band composition is complex (collagens, non-collagenous proteins, water vibrations) and the 1660/1690 cm(-1) by FTIRI has never been directly correlated with the PYD/DHLNL by HPLC. A study design using lathyritic rats, characterized by a decrease in the formation of ECL due to the inhibition of lysyl oxidase, was used in order to determine the evolution of 1660/1690 cm(-1) by FTIR Microspectroscopy in bone tissue and compare to the ECL quantified by HPLC. The actual amount of ECL was quantified by HPLC on cortical bone from control and lathyritic rats. The lathyritic group exhibited a decrease of 78% of pyridinoline content compared to the control group. The 1660/1690 cm(-1) area ratio was increased within center bone compared to inner bone, and this was also correlated with an increase in both mineral maturity and mineralization index. However, no difference in the 1660/1690 cm(-1) ratio was found between control and lathyritic rats. Those results were confirmed by principal component analysis performed on multispectral infrared images. In bovine bone, in which PYD was physically destructed by UV-photolysis, the PYD/DHLNL (measured by HPLC) was strongly decreased, whereas the 1660/1690 cm(-1) was unmodified. In conclusion, the 1660/1690 cm(-1) is not related to the PYD/DHLNL ratio, but increased with age of bone mineral, suggesting that a modification of this ratio could be mainly due to a modification of the collagen secondary structure related to the mineralization process.

  7. The Ratio 1660/1690 cm−1 Measured by Infrared Microspectroscopy Is Not Specific of Enzymatic Collagen Cross-Links in Bone Tissue

    Science.gov (United States)

    Farlay, Delphine; Duclos, Marie-Eve; Gineyts, Evelyne; Bertholon, Cindy; Viguet-Carrin, Stéphanie; Nallala, Jayakrupakar; Sockalingum, Ganesh D.; Bertrand, Dominique; Roger, Thierry; Hartmann, Daniel J.; Chapurlat, Roland; Boivin, Georges

    2011-01-01

    In postmenopausal osteoporosis, an impairment in enzymatic cross-links (ECL) occurs, leading in part to a decline in bone biomechanical properties. Biochemical methods by high performance liquid chromatography (HPLC) are currently used to measure ECL. Another method has been proposed, by Fourier Transform InfraRed Imaging (FTIRI), to measure a mature PYD/immature DHLNL cross-links ratio, using the 1660/1690 cm−1 area ratio in the amide I band. However, in bone, the amide I band composition is complex (collagens, non-collagenous proteins, water vibrations) and the 1660/1690 cm−1 by FTIRI has never been directly correlated with the PYD/DHLNL by HPLC. A study design using lathyritic rats, characterized by a decrease in the formation of ECL due to the inhibition of lysyl oxidase, was used in order to determine the evolution of 1660/1690 cm−1 by FTIR Microspectroscopy in bone tissue and compare to the ECL quantified by HPLC. The actual amount of ECL was quantified by HPLC on cortical bone from control and lathyritic rats. The lathyritic group exhibited a decrease of 78% of pyridinoline content compared to the control group. The 1660/1690 cm−1 area ratio was increased within center bone compared to inner bone, and this was also correlated with an increase in both mineral maturity and mineralization index. However, no difference in the 1660/1690 cm−1 ratio was found between control and lathyritic rats. Those results were confirmed by principal component analysis performed on multispectral infrared images. In bovine bone, in which PYD was physically destructed by UV-photolysis, the PYD/DHLNL (measured by HPLC) was strongly decreased, whereas the 1660/1690 cm−1 was unmodified. In conclusion, the 1660/1690 cm−1 is not related to the PYD/DHLNL ratio, but increased with age of bone mineral, suggesting that a modification of this ratio could be mainly due to a modification of the collagen secondary structure related to the mineralization process. PMID:22194900

  8. Chemical fingerprinting of Arabidopsis using Fourier transform infrared (FT-IR) spectroscopic approaches.

    Science.gov (United States)

    Gorzsás, András; Sundberg, Björn

    2014-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a fast, sensitive, inexpensive, and nondestructive technique for chemical profiling of plant materials. In this chapter we discuss the instrumental setup, the basic principles of analysis, and the possibilities for and limitations of obtaining qualitative and semiquantitative information by FT-IR spectroscopy. We provide detailed protocols for four fully customizable techniques: (1) Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS): a sensitive and high-throughput technique for powders; (2) attenuated total reflectance (ATR) spectroscopy: a technique that requires no sample preparation and can be used for solid samples as well as for cell cultures; (3) microspectroscopy using a single element (SE) detector: a technique used for analyzing sections at low spatial resolution; and (4) microspectroscopy using a focal plane array (FPA) detector: a technique for rapid chemical profiling of plant sections at cellular resolution. Sample preparation, measurement, and data analysis steps are listed for each of the techniques to help the user collect the best quality spectra and prepare them for subsequent multivariate analysis.

  9. Recent advances in near-infrared fluorescence-guided imaging surgery using indocyanine green.

    Science.gov (United States)

    Namikawa, Tsutomu; Sato, Takayuki; Hanazaki, Kazuhiro

    2015-12-01

    Near-infrared (NIR) fluorescence imaging has better tissue penetration, allowing for the effective rejection of excitation light and detection deep inside organs. Indocyanine green (ICG) generates NIR fluorescence after illumination by an NIR ray, enabling real-time intraoperative visualization of superficial lymphatic channels and vessels transcutaneously. The HyperEye Medical System (HEMS) can simultaneously detect NIR rays under room light to provide color imaging, which enables visualization under bright light. Thus, NIR fluorescence imaging using ICG can provide for excellent diagnostic accuracy in detecting sentinel lymph nodes in cancer and microvascular circulation in various ischemic diseases, to assist us with intraoperative decision making. Including HEMS in this system could further improve the sentinel lymph node mapping and intraoperative identification of blood supply in reconstructive organs and ischemic diseases, making it more attractive than conventional imaging. Moreover, the development of new laparoscopic imaging systems equipped with NIR will allow fluorescence-guided surgery in a minimally invasive setting. Future directions, including the conjugation of NIR fluorophores to target specific cancer markers might be realistic technology with diagnostic and therapeutic benefits.

  10. Development of tumor-targeted near infrared probes for fluorescence guided surgery.

    Science.gov (United States)

    Kelderhouse, Lindsay E; Chelvam, Venkatesh; Wayua, Charity; Mahalingam, Sakkarapalayam; Poh, Scott; Kularatne, Sumith A; Low, Philip S

    2013-06-19

    Complete surgical resection of malignant disease is the only reliable method to cure cancer. Unfortunately, quantitative tumor resection is often limited by a surgeon's ability to locate all malignant disease and distinguish it from healthy tissue. Fluorescence-guided surgery has emerged as a tool to aid surgeons in the identification and removal of malignant lesions. While nontargeted fluorescent dyes have been shown to passively accumulate in some tumors, the resulting tumor-to-background ratios are often poor, and the boundaries between malignant and healthy tissues can be difficult to define. To circumvent these problems, our laboratory has developed high affinity tumor targeting ligands that bind to receptors that are overexpressed on cancer cells and deliver attached molecules selectively into these cells. In this study, we explore the use of two tumor-specific targeting ligands (i.e., folic acid that targets the folate receptor (FR) and DUPA that targets prostate specific membrane antigen (PSMA)) to deliver near-infrared (NIR) fluorescent dyes specifically to FR and PSMA expressing cancers, thereby rendering only the malignant cells highly fluorescent. We report here that all FR- and PSMA-targeted NIR probes examined bind cultured cancer cells in the low nanomolar range. Moreover, upon intravenous injection into tumor-bearing mice with metastatic disease, these same ligand-NIR dye conjugates render receptor-expressing tumor tissues fluorescent, enabling their facile resection with minimal contamination from healthy tissues.

  11. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy.

    Science.gov (United States)

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm(-1). For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Stabilization of structure in near-infrared fluorescent proteins by binding of biliverdin chromophore

    Science.gov (United States)

    Stepanenko, Olesya V.; Stepanenko, Olga V.; Bublikov, G. S.; Kuznetsova, I. M.; Verkhusha, V. V.; Turoverov, K. K.

    2017-07-01

    Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes and their mutants with different location of Cys residues, which able to bind a biliverdin chromophore, or without these Cys residues were studied using intrinsic tryptophan fluorescence, NIR fluorescence and circular dichroism. It was shown that a covalent binding of the biliverdin chromophore to a Cys residue via thioether group substantially stabilizes the spatial structure of NIR FPs. The stability of the protein structure and the chromophore association strength strongly depends on the location of Cys residues and decreases in the following order: a protein with Cys residues in both domains, a protein with Cys in PAS domains, and a protein with Cys in GAF domains. NIR FPs without Cys residues capable to covalently attach biliverdin have the lowest stability, comparable to NIR FP apoforms.

  13. Nanocolloidal albumin-IRDye 800CW: A near-infrared fluorescent tracer with optimal retention in the sentinel lymph node

    NARCIS (Netherlands)

    Heuveling, Derrek A.; Visser, Gerard W.M.; De Groot, Mattijs; De Boer, Johannes F.; Baclayon, Marian; Roos, Wouter H.; Wuite, Gijs J.L.; Leemans, C. René; De Bree, Remco; Van Dongen, Guus A.M.S.

    2012-01-01

    Purpose: At present, the only approved fluorescent tracer for clinical near-infrared fluorescence-guided sentinel node (SN) detection is indocyanine green (ICG), but the use of this tracer is limited due to its poor retention in the SN resulting in the detection of higher tier nodes. We describe the

  14. Nanocolloidal albumin-IRDye 800CW: a near-infrared fluorescent tracer with optimal retention in the sentinel lymph node

    NARCIS (Netherlands)

    Heuveling, D.A.; Visser, G.W.M.; de Groot, M.; de Boer, J.F.; Salumbides - Baclayon, M.; Roos, W.H.; Wuite, G.J.L.; Leemans, C.R.; de Bree, R.; van Dongen, G.A.M.S.

    2012-01-01

    Purpose: At present, the only approved fluorescent tracer for clinical near-infrared fluorescence-guided sentinel node (SN) detection is indocyanine green (ICG), but the use of this tracer is limited due to its poor retention in the SN resulting in the detection of higher tier nodes. We describe the

  15. Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging.

    Science.gov (United States)

    Li, Yuhao; Sun, Yun; Li, Jiachang; Su, Qianqian; Yuan, Wei; Dai, Yu; Han, Chunmiao; Wang, Qiuhong; Feng, Wei; Li, Fuyou

    2015-05-20

    Nitroreductase (NTR) can be overexpressed in hypoxic tumors, thus the selective and efficient detection of NTR is of great importance. To date, although a few optical methods have been reported for the detection of NTR in solution, an effective optical probe for NTR monitoring in vivo is still lacking. Therefore, it is necessary to develop a near-infrared (NIR) fluorescent detection probe for NTR. In this study, five NIR cyanine dyes with fluorescence reporting structure decorated with different nitro aromatic groups, Cy7-1-5, have been designed and explored for possible rapid detection of NTR. Our experimental results presented that only a para-nitro benzoate group modified cyanine probe (Cy7-1) could serve as a rapid NIR fluorescence-enhanced probe for monitoring and bioimaging of NTR. The structure-function relationship has been revealed by theoretical study. The linker connecting the detecting and fluorescence reporting groups and the nitro group position is a key factor for the formation of hydrogen bonds and spatial structure match, inducing the NTR catalytic ability enhancement. The in vitro response and mechanism of the enzyme-catalyzed reduction of Cy7-1 have been investigated through kinetic optical studies and other methods. The results have indicated that an electro-withdrawing group induced electron-transfer process becomes blocked when Cy7-1 is catalytically reduced to Cy7-NH2 by NTR, which is manifested in enhanced fluorescence intensity during the detection process. Confocal fluorescence imaging of hypoxic A549 cells has confirmed the NTR detection ability of Cy7-1 at the cellular level. Importantly, Cy7-1 can detect tumor hypoxia in a murine hypoxic tumor model, showing a rapid and significant enhancement of its NIR fluorescence characteristics suitable for fluorescence bioimaging. This method may potentially be used for tumor hypoxia diagnosis.

  16. Near-infrared II fluorescence for imaging hindlimb vessel regeneration with dynamic tissue perfusion measurement.

    Science.gov (United States)

    Hong, Guosong; Lee, Jerry C; Jha, Arshi; Diao, Shuo; Nakayama, Karina H; Hou, Luqia; Doyle, Timothy C; Robinson, Joshua T; Antaris, Alexander L; Dai, Hongjie; Cooke, John P; Huang, Ngan F

    2014-05-01

    Real-time vascular imaging that provides both anatomic and hemodynamic information could greatly facilitate the diagnosis of vascular diseases and provide accurate assessment of therapeutic effects. Here, we have developed a novel fluorescence-based all-optical method, named near-infrared II (NIR-II) fluorescence imaging, to image murine hindlimb vasculature and blood flow in an experimental model of peripheral arterial disease, by exploiting fluorescence in the NIR-II region (1000-1400 nm) of photon wavelengths. Because of the reduced photon scattering of NIR-II fluorescence compared with traditional NIR fluorescence imaging and thus much deeper penetration depth into the body, we demonstrated that the mouse hindlimb vasculature could be imaged with higher spatial resolution than in vivo microscopic computed tomography. Furthermore, imaging during 26 days revealed a significant increase in hindlimb microvascular density in response to experimentally induced ischemia within the first 8 days of the surgery (Pimaging make it a useful imaging tool for murine models of vascular disease. © 2014 American Heart Association, Inc.

  17. Biosorption of malachite green onto Haematococcus pluvialis observed through synchrotron-FTIR microspectroscopy.

    Science.gov (United States)

    Liu, J H; Zhang, L; Zha, D C; Chen, L Q; Chen, X X; Qi, Z M

    2018-06-28

    Microalgae have emerged as promising biosorbents for the treatment of malachite green in wastewater. However, the underlying mechanism for the biosorption of malachite green onto microalgae is still unclear and needs further intensive study. In this work, synchrotron Fourier-transform infrared (synchrotron-FTIR) microspectroscoy in combination with biochemical assay is employed to evaluate malachite green removal efficiency (95.2%, 75.6% and 66.5%) by three stages of Haematococcus pluvialis. Meanwhile, the various vital changes of algal cells including lipids, proteins, polysaccharides and carotenoids, is distinguished and quantified in situ. This study illustrates that synchrotron-FTIR microspectroscopy is an effective and powerful tool to scrutinize the mechanism for the interactions between the malachite green dye and microalgal cells and it even provides an effective and none-invasive new approach to screen potentially proper biosorbents for the removal of dyes from wastewater. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Heat stability of proteins in desiccation tolerant cattail pollen (Typha latifolia): A Fourier transform infrared spectroscopic study.

    NARCIS (Netherlands)

    Wolkers, W.F.; Hoekstra, F.A.

    1997-01-01

    Secondary structure and aggregation behavior of proteins, as determined in situ in Typha latifolia pollen, were studied by means of Fourier transform infrared microspectroscopy. The amide-I band, arising from the peptide backbone, was recorded over a temperature range from -50 to 120°C at different

  19. A novel duct-lobular segmentectomy for breast tumors with nipple discharge using near-infrared indocyanine green fluorescence imaging

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Ohno

    2013-10-01

    Full Text Available A 44-year-old woman was referred to our hospital with pathological nipple discharge from her left breast. Ultrasonography revealed a solid tumor beneath her left areola that measured 17 mm in diameter with a dilated mammary duct. Contrast-enhanced magnetic resonance imaging showed an early-enhanced cystic tumor and a dilated mammary duct. We performed a duct-lobular segmentectomy using near-infrared indocyanine green (ICG-fluorescence imaging. Under general anesthesia, a silicone tube was inserted into an orifice of a fluid-discharging mammary duct, and 1 mL dye-fluorescence liquid containing ICG and indigo carmine was injected into the mammary duct. A periareolar incision was made, and the fluorescence image of the demarcated mammary duct segment was obtained. The mammary duct segment was dissected, along with the demarcation line. The cystic lesion and dilated mammary duct were fully resected, and the pathological diagnosis was intraductal papilloma of the breast. We report that near-infrared ICG fluorescence could be applied for imaging of the mammary duct segment, and the fluorescence image allowed for easier duct-lobular segmentectomy for nipple discharge.

  20. IRDye78 Conjugates for Near-Infrared Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Atif Zaheer

    2002-10-01

    Full Text Available The detection of human malignancies by near-infrared (NIR fluorescence will require the conjugation of cancer-specific ligands to NIR fluorophores that have optimal photoproperties and pharmacokinetics. IRDye78, a tetra-sulfonated heptamethine indocyanine NIR fluorophore, meets most of the criteria for an in vivo imaging agent, and is available as an N-hydroxysuccinimide ester for conjugation to low-molecular-weight ligands. However, IRDye78 has a high charge-to-mass ratio, complicating purification of conjugates. It also has a potentially labile linkage between fluorophore and ligand. We have developed an ion-pairing purification strategy for IRDye78 that can be performed with a standard C18 column under neutral conditions, thus preserving the stability of fluorophore, ligand, and conjugate. By employing parallel evaporative light scatter and absorbance detectors, all reactants and products are identified, and conjugate purity is maximized. We describe reversible and irreversible conversions of IRDye78 that can occur during sample purification, and describe methods for preserving conjugate stability. Using seven ligands, spanning several classes of small molecules and peptides (neutral, charged, and/or hydrophobic, we illustrate the robustness of these methods, and confirm that IRDye78 conjugates so purified retain bioactivity and permit NIR fluorescence imaging of specific targets.

  1. Near-infrared-fluorescence imaging of lymph nodes by using liposomally formulated indocyanine green derivatives.

    Science.gov (United States)

    Toyota, Taro; Fujito, Hiromichi; Suganami, Akiko; Ouchi, Tomoki; Ooishi, Aki; Aoki, Akira; Onoue, Kazutaka; Muraki, Yutaka; Madono, Tomoyuki; Fujinami, Masanori; Tamura, Yutaka; Hayashi, Hideki

    2014-01-15

    Liposomally formulated indocyanine green (LP-ICG) has drawn much attention as a highly sensitive near-infrared (NIR)-fluorescence probe for tumors or lymph nodes in vivo. We synthesized ICG derivatives tagged with alkyl chains (ICG-Cn), and we examined NIR-fluorescence imaging for lymph nodes in the lower extremities of mice by using liposomally formulated ICG-Cn (LP-ICG-Cn) as well as conventional liposomally formulated ICG (LP-ICG) and ICG. Analysis with a noninvasive preclinical NIR-fluorescence imaging system revealed that LP-ICG-Cn accumulates in only the popliteal lymph node 1h after injection into the footpad, whereas LP-ICG and ICG accumulate in the popliteal lymph node and other organs like the liver. This result indicates that LP-ICG-Cn is a useful NIR-fluorescence probe for noninvasive in vivo bioimaging, especially for the sentinel lymph node. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes

    KAUST Repository

    Xie, Fang

    2013-05-23

    Potential utilization of proteins for early detection and diagnosis of various diseases has drawn considerable interest in the development of protein-based detection techniques. Metal induced fluorescence enhancement offers the possibility of increasing the sensitivity of protein detection in clinical applications. We report the use of tunable plasmonic silver nanostructures for the fluorescence enhancement of a near-infrared (NIR) dye (Alexa Fluor 790). Extensive fluorescence enhancement of ∼2 orders of magnitude is obtained by the nanoscale control of the Ag nanostructure dimensions and interparticle distance. These Ag nanostructures also enhanced fluorescence from a dye with very high quantum yield (7.8 fold for Alexa Fluor 488, quantum efficiency (Qy) = 0.92). A combination of greatly enhanced excitation and an increased radiative decay rate, leading to an associated enhancement of the quantum efficiency leads to the large enhancement. These results show the potential of Ag nanostructures as metal induced fluorescence enhancement (MIFE) substrates for dyes in the NIR "biological window" as well as the visible region. Ag nanostructured arrays fabricated by colloidal lithography thus show great potential for NIR dye-based biosensing applications. [Figure not available: see fulltext.] © 2013 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  3. Synthesis and characterization of monodisperse, mesoporous, and magnetic sub-micron particles doped with a near-infrared fluorescent dye

    International Nuclear Information System (INIS)

    Le Guevel, Xavier; Nooney, Robert; McDonagh, Colette; MacCraith, Brian D.

    2011-01-01

    Recently, multifunctional silica nanoparticles have been investigated extensively for their potential use in biomedical applications. We have prepared sub-micron monodisperse and stable multifunctional mesoporous silica particles with a high level of magnetization and fluorescence in the near infrared region using an one-pot synthesis technique. Commercial magnetite nanocrystals and a conjugated-NIR-dye were incorporated inside the particles during the silica condensation reaction. The particles were then coated with polyethyleneglycol to stop aggregation. X-ray diffraction, N 2 adsorption analysis, TEM, fluorescence and absorbance measurements were used to structurally characterize the particles. These mesoporous silica spheres have a large surface area (1978 m 2 /g) with 3.40 nm pore diameter and a high fluorescence in the near infrared region at λ=700 nm. To explore the potential of these particles for drug delivery applications, the pore accessibility to hydrophobic drugs was simulated by successfully trapping a hydrophobic ruthenium dye complex inside the particle with an estimated concentration of 3 wt%. Fluorescence imaging confirmed the presence of both NIR dye and the post-grafted ruthenium dye complex inside the particles. These particles moved at approximately 150 μm/s under the influence of a magnetic field, hence demonstrating the multifunctionality and potential for biomedical applications in targeting and imaging. - Graphical Abstract: Hydrophobic fluorescent Ruthenium complex has been loaded into the mesopores as a surrogate drug to simulate drug delivery and to enhance the multifunctionality of the magnetic NIR emitting particles. Highlights: → Monodisperse magnetic mesoporous silica particles emitting in the near infrared region are obtained in one-pot synthesis. → We prove the capacity of such particles to uptake hydrophobic dye to mimic drug loading. → Loaded fluorescent particles can be moved under a magnetic field in a microfluidic

  4. Bilayered near-infrared fluorescent nanoparticles based on low molecular weight PEI for tumor-targeted in vivo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao; Li, Ke [Xi’an Jiaotong University, Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology (China); Xu, Liang [The University of Kansas, Department of Molecular Biosciences (United States); Wu, Daocheng, E-mail: wudaocheng@mail.xjtu.edu.cn [Xi’an Jiaotong University, Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology (China)

    2014-12-15

    To improve the tumor fluorescent imaging results in vivo, bilayered nanoparticles encapsulating a lipophilic near-infrared (NIR) fluorescent dye 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotri-carbocyanine iodide (DiR) were prepared using low molecular weight stearic acid-grafted polyethyleneimine and hyaluronic acid (DiR-PgSHA nanoparticles), which were investigated as a novel NIR fluorescent nano-probe for in vivo tumor-targeted optical imaging. These nanoparticles were characterized by transmission electron microscopy (TEM), infrared (IR) spectra, UV-visual absorption, and fluorescent emission spectra. Their cytotoxicity in vitro and hepatotoxicity in vivo were tested by MTT assay and histological study, respectively. In vivo NIR fluorescence imaging of the DiR-PgSHA nanoparticles was performed using a Carestream imaging system. The DiR-PgSHA nanoparticles were sphere shaped with a diameter of approximately 50 nm according to the TEM images. The DiR-PgSHA nanoparticles had a low cytotoxicity in vitro according to the MTT assay and low hepatotoxicity in vivo as determined in histological studies. The fluorescent emission of DiR-PgSHA nanoparticles was stable in pH values of 5–9 in solution, with only slight blue-shifts of the emission maxima at the basic pH range. The DiR-PgSHA nanoparticles exhibited a substantial tumor-targeting ability in the optical imaging with the use of tumor-bearing mice. These results demonstrated that the DiR-PgSHA nanoparticle is an excellent biocompatible nano-probe for in vivo tumor-targeted NIR fluorescence imaging with a potential for clinical applications.

  5. Bilayered near-infrared fluorescent nanoparticles based on low molecular weight PEI for tumor-targeted in vivo imaging

    International Nuclear Information System (INIS)

    Liu, Hao; Li, Ke; Xu, Liang; Wu, Daocheng

    2014-01-01

    To improve the tumor fluorescent imaging results in vivo, bilayered nanoparticles encapsulating a lipophilic near-infrared (NIR) fluorescent dye 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotri-carbocyanine iodide (DiR) were prepared using low molecular weight stearic acid-grafted polyethyleneimine and hyaluronic acid (DiR-PgSHA nanoparticles), which were investigated as a novel NIR fluorescent nano-probe for in vivo tumor-targeted optical imaging. These nanoparticles were characterized by transmission electron microscopy (TEM), infrared (IR) spectra, UV-visual absorption, and fluorescent emission spectra. Their cytotoxicity in vitro and hepatotoxicity in vivo were tested by MTT assay and histological study, respectively. In vivo NIR fluorescence imaging of the DiR-PgSHA nanoparticles was performed using a Carestream imaging system. The DiR-PgSHA nanoparticles were sphere shaped with a diameter of approximately 50 nm according to the TEM images. The DiR-PgSHA nanoparticles had a low cytotoxicity in vitro according to the MTT assay and low hepatotoxicity in vivo as determined in histological studies. The fluorescent emission of DiR-PgSHA nanoparticles was stable in pH values of 5–9 in solution, with only slight blue-shifts of the emission maxima at the basic pH range. The DiR-PgSHA nanoparticles exhibited a substantial tumor-targeting ability in the optical imaging with the use of tumor-bearing mice. These results demonstrated that the DiR-PgSHA nanoparticle is an excellent biocompatible nano-probe for in vivo tumor-targeted NIR fluorescence imaging with a potential for clinical applications

  6. Preparation and Characterization of Highly Fluorescent, Glutathione-coated Near Infrared Quantum Dots for in Vivo Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Yoshichika Yoshioka

    2008-10-01

    Full Text Available Fluorescent probes that emit in the near-infrared (NIR, 700-1,300 nm region are suitable as optical contrast agents for in vivo fluorescence imaging because of low scattering and absorption of the NIR light in tissues. Recently, NIR quantum dots (QDs have become a new class of fluorescent materials that can be used for in vivo imaging. Compared with traditional organic fluorescent dyes, QDs have several unique advantages such as size- and composition-tunable emission, high brightness, narrow emission bands, large Stokes shifts, and high resistance to photobleaching. In this paper, we report a facile method for the preparation of highly fluorescent, water-soluble glutathione (GSH-coated NIR QDs for in vivo imaging. GSH-coated NIR QDs (GSH-QDs were prepared by surface modification of hydrophobic CdSeTe/CdS (core/shell QDs. The hydrophobic surface of the CdSeTe/CdS QDs was exchanged with GSH in tetrahydrofuran-water. The resulting GSH-QDs were monodisperse particles and stable in PBS (phosphate buffered saline, pH = 7.4. The GSH-QDs (800 nm emission were highly fluorescent in aqueous solutions (quantum yield = 22% in PBS buffer, and their hydrodynamic diameter was less than 10 nm, which is comparable to the size of proteins. The cellular uptake and viability for the GSH-QDs were examined using HeLa and HEK 293 cells. When the cells were incubated with aqueous solutions of the GSH-QDs (10 nM, the QDs were taken into the cells and distributed in the perinuclear region of both cells. After 12 hrs incubation of 4 nM of GSH-QDs, the viabilities of HeLa and HEK 293 cells were ca. 80 and 50%, respectively. As a biomedical utility of the GSH-QDs, in vivo NIRfluorescence imaging of a lymph node in a mouse is presented.

  7. Near-Infrared Squaraine Dye Encapsulated Micelles for in Vivo Fluorescence and Photoacoustic Bimodal Imaging.

    Science.gov (United States)

    Sreejith, Sivaramapanicker; Joseph, James; Lin, Manjing; Menon, Nishanth Venugopal; Borah, Parijat; Ng, Hao Jun; Loong, Yun Xian; Kang, Yuejun; Yu, Sidney Wing-Kwong; Zhao, Yanli

    2015-06-23

    Combined near-infrared (NIR) fluorescence and photoacoustic imaging techniques present promising capabilities for noninvasive visualization of biological structures. Development of bimodal noninvasive optical imaging approaches by combining NIR fluorescence and photoacoustic tomography demands suitable NIR-active exogenous contrast agents. If the aggregation and photobleaching are prevented, squaraine dyes are ideal candidates for fluorescence and photoacoustic imaging. Herein, we report rational selection, preparation, and micelle encapsulation of an NIR-absorbing squaraine dye (D1) for in vivo fluorescence and photoacoustic bimodal imaging. D1 was encapsulated inside micelles constructed from a biocompatible nonionic surfactant (Pluoronic F-127) to obtain D1-encapsulated micelles (D1(micelle)) in aqueous conditions. The micelle encapsulation retains both the photophysical features and chemical stability of D1. D1(micelle) exhibits high photostability and low cytotoxicity in biological conditions. Unique properties of D1(micelle) in the NIR window of 800-900 nm enable the development of a squaraine-based exogenous contrast agent for fluorescence and photoacoustic bimodal imaging above 820 nm. In vivo imaging using D1(micelle), as demonstrated by fluorescence and photoacoustic tomography experiments in live mice, shows contrast-enhanced deep tissue imaging capability. The usage of D1(micelle) proven by preclinical experiments in rodents reveals its excellent applicability for NIR fluorescence and photoacoustic bimodal imaging.

  8. Carotenoid levels in human lymphocytes, measured by Raman microspectroscopy

    NARCIS (Netherlands)

    Ramanauskaite, R B; SegersNolten, IGMJ; DeGrauw, K J; Sijtsema, N M; VanderMaas, L; Greve, J; Otto, C; Figdor, C G

    1997-01-01

    Carotenoid levels in lymphocytes obtained from peripheral blood of healthy people have been investigated by Raman microspectroscopy. We observed that carotenoids are concentrated in so-called ''Gall bodies''. The level of carotenoids in living human lymphocytes was found to be age-dependent and to

  9. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging

    International Nuclear Information System (INIS)

    Ntziachristos, Vasilis; Bremer, Christoph; Weissleder, Ralph

    2003-01-01

    A recent development in biomedical imaging is the non-invasive mapping of molecular events in intact tissues using fluorescence. Underpinning to this development is the discovery of bio-compatible, specific fluorescent probes and proteins and the development of highly sensitive imaging technologies for in vivo fluorescent detection. Of particular interest are fluorochromes that emit in the near infrared (NIR), a spectral window, whereas hemoglobin and water absorb minimally so as to allow photons to penetrate for several centimetres in tissue. In this review article we concentrate on optical imaging technologies used for non-invasive imaging of the distribution of such probes. We illuminate the advantages and limitations of simple photographic methods and turn our attention to fluorescence-mediated molecular tomography (FMT), a technique that can three-dimensionally image gene expression by resolving fluorescence activation in deep tissues. We describe theoretical specifics, and we provide insight into its in vivo capacity and the sensitivity achieved. Finally, we discuss its clinical feasibility. (orig.)

  10. Design of near-infrared fluorescent bioactive conjugated functional iron oxide nanoparticles for optical detection of colon cancer

    Directory of Open Access Journals (Sweden)

    Corem-Salkmon E

    2012-10-01

    Full Text Available Enav Corem-Salkmon, Benny Perlstein, Shlomo MargelThe Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan, IsraelBackground: Colon cancer is one of the major causes of death in the Western world. Early detection significantly improves long-term survival for patients with the disease. Near-infrared (NIR fluorescent nanoparticles hold great promise as contrast agents for tumor detection. NIR offers several advantages for bioimaging compared with fluorescence in the visible spectrum, ie, lower autofluorescence of biological tissues, lower absorbance, and consequently deeper penetration into biomatrices.Methods and results: NIR fluorescent iron oxide nanoparticles with a narrow size distribution were prepared by nucleation, followed by controlled growth of thin iron oxide films onto cyanine NIR dye conjugated gelatin-iron oxide nuclei. For functionalization, and in order to increase the NIR fluorescence intensity, the NIR fluorescent iron oxide nanoparticles obtained were coated with human serum albumin containing cyanine NIR dye. Leakage of the NIR dye from these nanoparticles into phosphate-buffered saline solution containing 4% albumin was not detected. The work presented here is a feasibility study to test the suitability of iron oxide-human serum albumin NIR fluorescent nanoparticles for optical detection of colon cancer. It demonstrates that encapsulation of NIR fluorescent dye within these nanoparticles significantly reduces photobleaching of the dye. Tumor-targeting ligands, peanut agglutinin and anticarcinoembryonic antigen antibodies (αCEA, were covalently conjugated with the NIR fluorescent iron oxide-human serum albumin nanoparticles via a poly(ethylene glycol spacer. Specific colon tumor detection was demonstrated in chicken embryo and mouse models for both nonconjugated and the peanut agglutinin-conjugated or αCEA-conjugated NIR fluorescent iron oxide-human serum albumin

  11. Near-infrared fluorescent aza-BODIPY dye-loaded biodegradable polymeric nanoparticles for optical cancer imaging

    International Nuclear Information System (INIS)

    Hamon, Casey L.; Dorsey, Christopher L.; Özel, Tuğba; Barnes, Eugenia M.; Hudnall, Todd W.; Betancourt, Tania

    2016-01-01

    Nanoparticles are being readily investigated as carriers for the delivery of imaging and therapeutic agents for the detection, monitoring, and treatment of cancer and other diseases. In the present work, the preparation of biodegradable polymeric nanoparticles loaded with a near-infrared fluorescent aza-boron dipyrromethene (NIR-BODIPY) derivative, and their use as contrast agents for optical imaging in cancer are described. Nanoparticles were prepared by nanoprecipitation of amphiphilic block copolymers of poly(lactic acid) and poly(ethylene glycol). The size, morphology, dye loading, spectral properties, quantum yield, cytocompatibility, and in vitro NIR imaging potential of the nanoparticles in breast and ovarian cancer cells were evaluated. Spherical nanoparticles of 30–70 nm in diameter were loaded with 0.73 w/w% BODIPY derivative. At this loading, the dye presented a fluorescence quantum yield in the same order of magnitude as in solution. Nanoparticle suspensions at concentrations up to 580 μg/mL were cytocompatible to breast (MDA-MB-231) and ovarian (SKOV-3 and Caov-3) cancer cells after a four-hour incubation period. Fluorescence microscopy images demonstrated the ability of the nanoparticles to act as imaging agents in all three cell lines in as little as 1 hour. The results shown indicate the potential of these NIR-BODIPY-loaded nanoparticles as contrast agents for near-infrared optical imaging in cancer.Graphical abstract

  12. Near-infrared fluorescent aza-BODIPY dye-loaded biodegradable polymeric nanoparticles for optical cancer imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hamon, Casey L.; Dorsey, Christopher L. [Texas State University, Department of Chemistry and Biochemistry (United States); Özel, Tuğba [Texas State University, Materials Science, Engineering, and Commercialization Program (United States); Barnes, Eugenia M.; Hudnall, Todd W.; Betancourt, Tania, E-mail: tb26@txstate.edu [Texas State University, Department of Chemistry and Biochemistry (United States)

    2016-07-15

    Nanoparticles are being readily investigated as carriers for the delivery of imaging and therapeutic agents for the detection, monitoring, and treatment of cancer and other diseases. In the present work, the preparation of biodegradable polymeric nanoparticles loaded with a near-infrared fluorescent aza-boron dipyrromethene (NIR-BODIPY) derivative, and their use as contrast agents for optical imaging in cancer are described. Nanoparticles were prepared by nanoprecipitation of amphiphilic block copolymers of poly(lactic acid) and poly(ethylene glycol). The size, morphology, dye loading, spectral properties, quantum yield, cytocompatibility, and in vitro NIR imaging potential of the nanoparticles in breast and ovarian cancer cells were evaluated. Spherical nanoparticles of 30–70 nm in diameter were loaded with 0.73 w/w% BODIPY derivative. At this loading, the dye presented a fluorescence quantum yield in the same order of magnitude as in solution. Nanoparticle suspensions at concentrations up to 580 μg/mL were cytocompatible to breast (MDA-MB-231) and ovarian (SKOV-3 and Caov-3) cancer cells after a four-hour incubation period. Fluorescence microscopy images demonstrated the ability of the nanoparticles to act as imaging agents in all three cell lines in as little as 1 hour. The results shown indicate the potential of these NIR-BODIPY-loaded nanoparticles as contrast agents for near-infrared optical imaging in cancer.Graphical abstract.

  13. NONINVASIVE OPTICAL IMAGING OF STAPHYLOCOCCUS AUREUS INFECTION IN VIVO USING AN ANTIMICROBIAL PEPTIDE FRAGMENT BASED NEAR-INFRARED FLUORESCENT PROBES

    Directory of Open Access Journals (Sweden)

    CUICUI LIU

    2013-07-01

    Full Text Available The diagnosis of bacterial infections remains a major challenge in medicine. Optical imaging of bacterial infection in living animals is usually conducted with genetic reporters such as light-emitting enzymes or fluorescent proteins. However, there are many circumstances where genetic reporters are not applicable, and there is an urgent need for exogenous synthetic probes that can selectively target bacteria. Optical imaging of bacteria in vivo is much less developed than methods such as radioimaging and MRI. Furthermore near-infrared (NIR dyes with emission wavelengths in the region of 650–900 nm can propagate through two or more centimeters of tissue and may enable deeper tissue imaging if sensitive detection techniques are employed. Here we constructed an antimicrobial peptide fragment UBI29-41-based near-infrared fluorescent imaging probe. The probe is composed of UBI29-41 conjugated to a near infrared dye ICG-Der-02. UBI29-41 is a cationic antimicrobial peptide that targets the anionic surfaces of bacterial cells. The probe allows detection of Staphylococcus aureus infection (5 × 107 cells in a mouse local infection model using whole animal near-infrared fluorescence imaging. Furthermore, we demonstrate that the UBI29-41-based imaging probe can selectively accumulate within bacteria. The significantly higher accumulation in bacterial infection suggests that UBI29-41-based imaging probe may be a promising imaging agent to detect bacterial infections.

  14. Portable X-ray Fluorescence and Infrared Fluorescence Imaging Studies of Cadmium Yellow Alteration in Paintings by Edward Munch and Henri matisse in Oslo, Copenhagen, and San Francisco

    DEFF Research Database (Denmark)

    Mass, Jennifer; Uffelman, Erich; Buckley, Barbara

    2016-01-01

    -induced visible fluorescence, ultraviolet-induced infrared fluorescence, multispectral imaging, and X-ray fluorescence. Questions addressed included the following: Is the imaging method being tested comprehensive? Is it efficient at surveying an entire painting? Does it reveal the state of preservation...... and the Statens Museum for Kunst, Copenhagen. They were also tested on Edvard Munch’s The Scream (ca. 1910?, Munch Museum, Oslo). It was found that ultraviolet-induced visible fluorescence has the best ability to discriminate between altered and unaltered cadmium yellow paints (even before alteration is visible...... to the unaided eye), whereas multispectral imaging allows for the most efficient and comprehensive localization of the cadmium pigments in a work....

  15. Removal of Chromophore-proximal Polar Atoms Decreases Water Content and Increases Fluorescence in a Near Infrared Phytofluor

    Directory of Open Access Journals (Sweden)

    Heli eLehtivuori

    2015-11-01

    Full Text Available Genetically encoded fluorescent markers have revolutionized cell and molecular biology due to their biological compatibility, controllable spatiotemporal expression, and photostability. To achieve in vivo imaging in whole animals, longer excitation wavelength probes are needed due to the superior ability of near infrared light to penetrate tissues unimpeded by absorbance from biomolecules or autofluorescence of water. Derived from near infrared-absorbing bacteriophytochromes, phytofluors are engineered to fluoresce in this region of the electromagnetic spectrum, although high quantum yield remains an elusive goal. An invariant aspartate residue is of utmost importance for photoconversion in native phytochromes, presumably due to the proximity of its backbone carbonyl to the pyrrole ring nitrogens of the biliverdin (BV chromophore as well as the size and charge of the side chain. We hypothesized that the polar interaction network formed by the charged side chain may contribute to the decay of the excited state via proton transfer. Thus, we chose to further probe the role of this amino acid by removing all possibility for polar interactions with its carboxylate side chain by incorporating leucine instead. The resultant fluorescent protein, WiPhy2, maintains BV binding, monomeric status, and long maximum excitation wavelength while minimizing undesirable protoporphyrin IXα binding in cells. A crystal structure and time-resolved fluorescence spectroscopy reveal that water near the BV chromophore is excluded and thus validate our hypothesis that removal of polar interactions leads to enhanced fluorescence by increasing the lifetime of the excited state. This new phytofluor maintains its fluorescent properties over a broad pH range and does not suffer from photobleaching. WiPhy2 achieves the best compromise to date between high fluorescence quantum yield and long illumination wavelength in this class of fluorescent proteins.

  16. The Catalytic Conversion of Thiophenes over Large H-ZSM-5 Crystals: An X-Ray, UV/Vis, and Fluorescence Microspectroscopic Study

    NARCIS (Netherlands)

    Kox, M.H.F.; Mijovilovich, A.E.; S ättler, J.J.H.B.; Stavitski, I.; Weckhuysen, B.M.

    2013-01-01

    X-ray absorption, UV/Vis, and fluorescence microspectroscopy have been used to characterize the catalytic conversion of thiophene derivatives within the micropores of an individual H-ZSM-5 zeolite crystal. Space-resolved information into the Si/ Al ratios and sulfur content was provided by X-ray

  17. Real-time endoscopic guidance using near-infrared fluorescent light for thoracic surgery

    Science.gov (United States)

    Venugopal, Vivek; Stockdale, Alan; Neacsu, Florin; Kettenring, Frank; Frangioni, John V.; Gangadharan, Sidharta P.; Gioux, Sylvain

    2013-03-01

    Lung cancer is the leading cause of cancer death in the United States, accounting for 28% of all cancer deaths. Standard of care for potentially curable lung cancer involves preoperative radiographic or invasive staging, followed by surgical resection. With recent adjuvant chemotherapy and radiation studies showing a survival advantage in nodepositive patients, it is crucial to accurately stage these patients surgically in order to identify those who may benefit. However, lymphadenectomy in lung cancer is currently performed without guidance, mainly due to the lack of tools permitting real-time, intraoperative identification of lymph nodes. In this study we report the design and validation of a novel, clinically compatible near-infrared (NIR) fluorescence thoracoscope for real-time intraoperative guidance during lymphadenectomy. A novel, NIR-compatible, clinical rigid endoscope has been designed and fabricated, and coupled to a custom source and a dual channel camera to provide simultaneous color and NIR fluorescence information to the surgeon. The device has been successfully used in conjunction with a safe, FDA-approved fluorescent tracer to detect and resect mediastinal lymph nodes during thoracic surgery on Yorkshire pigs. Taken together, this study lays the foundation for the clinical translation of endoscopic NIR fluorescence intraoperative guidance and has the potential to profoundly impact the management of lung cancer patients.

  18. Near infrared spatial frequency domain fluorescence imaging of tumor phantoms containing erythrocyte-derived optical nanoplatforms

    Science.gov (United States)

    Burns, Joshua M.; Schaefer, Elise; Anvari, Bahman

    2018-02-01

    Light-activated theranostic constructs provide a multi-functional platform for optical imaging and phototherapeutic applications. Our group has engineered nano-sized vesicles derived from erythrocytes that encapsulate the FDAapproved near infrared (NIR) absorber indocyanine green (ICG). We refer to these constructs as NIR erythrocytemimicking transducers (NETs). Once photo-excited by NIR light these constructs can transduce the photons energy to emit fluorescence, generate heat, or induce chemical reactions. In this study, we investigated fluorescence imaging of NETs embedded within tumor phantoms using spatial frequency domain imaging (SFDI). Using SFDI, we were able to fluorescently image simulated tumors doped with different concentration of NETs. These preliminary results suggest that NETs can be used in conjunction with SFDI for potential tumor imaging applications.

  19. Near infrared fluorescent biliproteins generated from bacteriophytochrome AphB of Nostoc sp. PCC 7120.

    Science.gov (United States)

    Yuan, Che; Li, Hui-Zhen; Tang, Kun; Gärtner, Wolfgang; Scheer, Hugo; Zhou, Ming; Zhao, Kai-Hong

    2016-04-01

    The genome of the cyanobacterium Nostoc sp. PCC 7120 encodes a large number of putative bacteriophytochrome and cyanobacteriochrome photoreceptors that, due to their long-wavelength absorption and fluorescence emission, might serve as fluorescent tags in intracellular investigations. We show that the PAS-GAF domain of the bacteriophytochrome, AphB, binds biliverdin covalently and exhibits, besides its reversible photochemistry, a moderate fluorescence in the near infrared (NIR) spectral region. It was selected for further increasing the brightness while retaining the NIR fluorescence. In the first step, amino acids assumed to improve fluorescence were selectively mutated. The resulting variants were then subjected to several rounds of random mutagenesis and screened for enhanced fluorescence in the NIR. The brightness of optimized PAS-GAF variants increased more than threefold compared to that of wt AphB(1-321), with only insignificant spectral shifts (Amax around 695 nm, and Fmax around 720 nm). In general, the brightness increases with decreasing wavelengths, which allows for a selection of the fluorophore depending on the optical properties of the tissue. A spectral heterogeneity was observed when residue His260, located in close proximity to the chromophore, was mutated to Tyr, emphasizing the strong effects of the environment on the electronic properties of the bound biliverdin chromophore.

  20. Infrared Spectroscopy as a Chemical Fingerprinting Tool

    Science.gov (United States)

    Huff, Timothy L.

    2003-01-01

    Infrared (IR) spectroscopy is a powerful analytical tool in the chemical fingerprinting of materials. Any sample material that will interact with infrared light produces a spectrum and, although normally associated with organic materials, inorganic compounds may also be infrared active. The technique is rapid, reproducible and usually non-invasive to the sample. That it is non-invasive allows for additional characterization of the original material using other analytical techniques including thermal analysis and RAMAN spectroscopic techniques. With the appropriate accessories, the technique can be used to examine samples in liquid, solid or gas phase. Both aqueous and non-aqueous free-flowing solutions can be analyzed, as can viscous liquids such as heavy oils and greases. Solid samples of varying sizes and shapes may also be examined and with the addition of microscopic IR (microspectroscopy) capabilities, minute materials such as single fibers and threads may be analyzed. With the addition of appropriate software, microspectroscopy can be used for automated discrete point or compositional surface area mapping, with the latter providing a means to record changes in the chemical composition of a material surface over a defined area. Due to the ability to characterize gaseous samples, IR spectroscopy can also be coupled with thermal processes such as thermogravimetric (TG) analyses to provide both thermal and chemical data in a single run. In this configuration, solids (or liquids) heated in a TG analyzer undergo decomposition, with the evolving gases directed into the IR spectrometer. Thus, information is provided on the thermal properties of a material and the order in which its chemical constituents are broken down during incremental heating. Specific examples of these varied applications will be cited, with data interpretation and method limitations further discussed.

  1. Near-Infrared Fluorescence Laparoscopy of the Cystic Duct and Artery in Pigs : Performance of a Preclinical Dye

    NARCIS (Netherlands)

    Schols, Rutger M.; Lodewick, Toine M.; Bouvy, Nicole D.; van Dam, Dieuwertje A.; Meijerink, Wilhelmus J. H. J.; van Dam, Gooitzen M.; Dejong, Cornelis H. C.; Stassen, Laurents P. S.

    2014-01-01

    Background: Near-infrared fluorescence laparoscopy after intravenous indocyanine green (ICG) administration has been proposed as a promising surgical imaging technique for real-time visualization of the extrahepatic bile ducts and arteries in clinical laparoscopic cholecystectomies. However,

  2. Identification of monoclinic calcium pyrophosphate dihydrate and hydroxyapatite in human sclera using Raman microspectroscopy

    DEFF Research Database (Denmark)

    Chen, Ko-Hua; Li, Mei-Jane; Cheng, Wen-Ting

    2009-01-01

    Raman microspectroscopy was first used to determine the composition of a calcified plaque located at the pterygium-excision site of a 51-year-old female patient's left nasal sclera after surgery. It was unexpectedly found that the Raman spectrum of the calcified sample at 1149, 1108, 1049, 756, 5...... to the characteristic peak at 958/cm of hydroxyapatite (HA). This is the first study to report the spectral biodiagnosis of both monoclinic CPPD and HA co-deposited in the calcified plaque of a patient with sclera dystrophic calcification using Raman microspectroscopy....

  3. Fourier transform infrared and fluorescence spectroscopy for analysis of vegetable oils

    Directory of Open Access Journals (Sweden)

    Nigri S.

    2013-09-01

    Full Text Available Fourier transform infrared (FTIR and fluorescence spectroscopy, combined with chemometric approaches have been developed to analysis of extra virgin olive oil adulterated with pomace olive oil. The measurements were made on pure vegetable oils: extra virgin oil, pomace olive oil and that adulterated with varying concentration of pomace olive oil. Today, the application of FTIR spectroscopy has increased in food studied, and particularly has become a powerful analytical tool in the study of edible oils and fats. The spectral regions where the variations were observed chosen for developing models and cross validation was used. The synchronous fluorescence spectrometry takes advantage of the hardware capability to vary both the excitation and emission wavelengths during the analysis with constant wavelength difference is maintained between the two. The region between 300 and 400 nm is attributed to the tocopherols and phenols, the derivatives of vitamin E are associated with the region 400–600 nm and the bands in the region of 600–700 nm are attributed to the chlorophyll and peophytin pigments. The results presented in this study suggest that FTIR and fluorescence may be a useful tool for analysis and detecting adulteration of extra virgin olive oil with pomace oil.

  4. Near-infrared fluorescence cholangiography with indocyanine green for biliary atresia. Real-time imaging during the Kasai procedure: a pilot study.

    Science.gov (United States)

    Hirayama, Yutaka; Iinuma, Yasushi; Yokoyama, Naoyuki; Otani, Tetsuya; Masui, Daisuke; Komatsuzaki, Naoko; Higashidate, Naruki; Tsuruhisa, Shiori; Iida, Hisataka; Nakaya, Kengo; Naito, Shinichi; Nitta, Koju; Yagi, Minoru

    2015-12-01

    Hepatoportoenterostomy (HPE) with the Kasai procedure is the treatment of choice for biliary atresia (BA) as the initial surgery. However, the appropriate level of dissection level of the fibrous cone (FC) of the porta hepatis (PH) is frequently unclear, and the procedure sometimes results in unsuccessful outcomes. Recently, indocyanine green near-infrared fluorescence imaging (ICG-FCG) has been developed as a form of real-time cholangiography. We applied this technique in five patients with BA to visualize the biliary flow at the PH intraoperatively. ICG was injected intravenously the day before surgery as the liver function test, and the liver was observed with a near-infrared camera system during the operation while the patient's feces was also observed. In all patients, the whole liver fluoresced diffusely with ICG-containing stagnant bile, whereas no extrahepatic structures fluoresced. The findings of the ICG fluorescence pattern of the PH after dissection of the FC were classified into three types: spotty fluorescence, one patient; diffuse weak fluorescence, three patients; and diffuse strong fluorescence, one patient. In all five patients, the feces evacuated after HPE showed distinct fluorescent spots, although that obtained before surgery showed no fluorescence. One patient with diffuse strong fluorescence who did not achieve JF underwent living related liver transplantation six months after the initial HPE procedure. Four patients, including three cases involving diffuse weak fluorescence and one case involving spotty fluorescence showed weak fluorescence compared to that of the surrounding liver surface. We were able to detect the presence of bile excretion at the time of HPE intraoperatively and successfully evaluated the extent of bile excretion using this new technique. Furthermore, the ICG-FCG findings may provide information leading to a new classification and potentially function as an indicator predicting the clinical outcomes after HPE.

  5. A matter of collection and detection for intraoperative and noninvasive near-infrared fluorescence molecular imaging: To see or not to see?

    Science.gov (United States)

    Zhu, Banghe; Rasmussen, John C.; Sevick-Muraca, Eva M.

    2014-01-01

    Purpose: Although fluorescence molecular imaging is rapidly evolving as a new combinational drug/device technology platform for molecularly guided surgery and noninvasive imaging, there remains no performance standards for efficient translation of “first-in-humans” fluorescent imaging agents using these devices. Methods: The authors employed a stable, solid phantom designed to exaggerate the confounding effects of tissue light scattering and to mimic low concentrations (nM–pM) of near-infrared fluorescent dyes expected clinically for molecular imaging in order to evaluate and compare the commonly used charge coupled device (CCD) camera systems employed in preclinical studies and in human investigational studies. Results: The results show that intensified CCD systems offer greater contrast with larger signal-to-noise ratios in comparison to their unintensified CCD systems operated at clinically reasonable, subsecond acquisition times. Conclusions: Camera imaging performance could impact the success of future “first-in-humans” near-infrared fluorescence imaging agent studies. PMID:24506637

  6. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone.

    Science.gov (United States)

    Turunen, Mikael J; Saarakkala, Simo; Rieppo, Lassi; Helminen, Heikki J; Jurvelin, Jukka S; Isaksson, Hanna

    2011-06-01

    The molecular composition of the organic and inorganic matrices of bone undergoes alterations during maturation. The aim of this study was to compare Fourier transform infrared (FT-IR) and near-infrared (NIR) Raman microspectroscopy techniques for characterization of the composition of growing and developing bone from young to skeletally mature rabbits. Moreover, the specificity and differences of the techniques for determining bone composition were clarified. The humeri of female New Zealand White rabbits, with age range from young to skeletally mature animals (four age groups, n = 7 per group), were studied. Spectral peak areas, intensities, and ratios related to organic and inorganic matrices of bone were analyzed and compared between the age groups and between FT-IR and Raman microspectroscopic techniques. Specifically, the degree of mineralization, type-B carbonate substitution, crystallinity of hydroxyapatite (HA), mineral content, and collagen maturity were examined. Significant changes during maturation were observed in various compositional parameters with one or both techniques. Overall, the compositional parameters calculated from the Raman spectra correlated with analogous parameters calculated from the IR spectra. Collagen cross-linking (XLR), as determined through peak fitting and directly from the IR spectra, were highly correlated. The mineral/matrix ratio in the Raman spectra was evaluated with multiple different peaks representing the organic matrix. The results showed high correlation with each other. After comparison with the bone mineral density (BMD) values from micro-computed tomography (micro-CT) imaging measurements and crystal size from XRD measurements, it is suggested that Raman microspectroscopy is more sensitive than FT-IR microspectroscopy for the inorganic matrix of the bone. In the literature, similar spectroscopic parameters obtained with FT-IR and NIR Raman microspectroscopic techniques are often compared. According to the present

  7. Clinical trials in near infrared fluorescence imaging with IRDye 800CW

    Science.gov (United States)

    Draney, Daniel R.

    2015-03-01

    A monofunctional, heptamethine dye, IRDye® 800CW, is being manufactured under GMP conditions for use in human clinical trials. When attached to a suitable targeting agent and paired with an appropriate camera system, the dye allows Near Infrared (NIR) fluorescence imaging of tumor tissue during surgery. The talk will describe the properties of the dye and give an overview of current and planned clinical trials in Europe and the USA. The dye is available in both the NHS ester and carboxylate forms for conjugation to targeting molecules. A GMP toxicology study of the dye was described in a previous publication.

  8. Raman microspectroscopy of algal lipid bodies: beta-carotene quantification

    Czech Academy of Sciences Publication Activity Database

    Pilát, Zdeněk; Bernatová, Silvie; Ježek, Jan; Šerý, Mojmír; Samek, Ota; Zemánek, Pavel; Nedbal, Ladislav; Trtílek, M.

    2012-01-01

    Roč. 24, č. 3 (2012), s. 541-546 ISSN 0921-8971 R&D Projects: GA MPO FR-TI1/433; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 ; RVO:67179843 Keywords : Raman microspectroscopy * Microalgae * Trachydiscus minutus * Biotechnology * Carotenoids Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.326, year: 2012

  9. Combining random gene fission and rational gene fusion to discover near-infrared fluorescent protein fragments that report on protein-protein interactions.

    Science.gov (United States)

    Pandey, Naresh; Nobles, Christopher L; Zechiedrich, Lynn; Maresso, Anthony W; Silberg, Jonathan J

    2015-05-15

    Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein-protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein-protein interactions within whole animals.

  10. The influence of high fat diets with different ketogenic ratios on the hippocampal accumulation of creatine - FTIR microspectroscopy study

    Science.gov (United States)

    Skoczen, A.; Setkowicz, Z.; Janeczko, K.; Sandt, Ch.; Borondics, F.; Chwiej, J.

    2017-09-01

    The main purpose of this study was the determination and comparison of anomalies in creatine (Cr) accumulation occurring within CA3 and DG areas of hippocampal formation as a result of two high-fat, carbohydrate-restricted ketogenic diets (KD) with different ketogenic ratio (KR). To reach this goal, Fourier transformed infrared microspectroscopy with synchrotron radiation source (SRFTIR microspectroscopy) was applied for chemical mapping of creatine absorption bands, occurring around 1304, 1398 and 2800 cm- 1. The samples were taken from three groups of experimental animals: control group (N) fed with standard laboratory diet, KD1 and KD2 groups fed with high-fat diets with KR 5:1 and 9:1 respectively. Additionally, the possible influence on the phosphocreatine (PhCr, the high energetic form of creatine) content was evaluated by comparative analysis of chemical maps obtained for creatine and for compounds containing phosphate groups which manifest in the spectra at the wavenumbers of around 1240 and 1080 cm- 1. Our results showed that KD2 strongly modifies the frequency of Cr inclusions in both analyzed hippocampal areas. Statistical analysis, performed with Mann-Whitney U test revealed increased accumulation of Cr within CA3 and DG areas of KD2 fed rats compared to both normal rats and KD1 experimental group. Moreover, KD2 diet may modify the frequency of PhCr deposits as well as the PhCr to Cr ratio.

  11. Organic Alternatives to Quantum Dots for Intraoperative Near-Infrared Fluorescent Sentinel Lymph Node Mapping

    Directory of Open Access Journals (Sweden)

    Shunsuke Ohnishi

    2005-07-01

    Full Text Available Intraoperative near-infrared (NIR fluorescence imaging provides the surgeon with real-time image guidance during cancer and other surgeries. We have previously reported the use of NIR fluorescent quantum dots (QDs for sentinel lymph node (SLN mapping. However, because of concerns over potential toxicity, organic alternatives to QDs will be required for initial clinical studies. We describe a family of 800 nm organic heptamethine indocyanine-based contrast agents for SLN mapping spanning a spectrum from 775 Da small molecules to 7 MDa nanocolloids. We provide a detailed characterization of the optical and physical properties of these contrast agents and discuss the advantages and disadvantages of each. We present robust methods for the covalent conjugation, purification, and characterization of proteins with tetra-sulfonated heptamethine indocyanines, including mass spectroscopic site mapping of highly substituted molecules. One contrast agent, NIR fluorescent human serum albumin (HSA800, emerged as the molecule with the best overall performance with respect to entry to lymphatics, flow to the SLN, retention in the SLN, fluorescence yield and reproducibility. This preclinical study, performed on large animals approaching the size of humans, should serve as a foundation for future clinical studies.

  12. [Rapid Identification of Epicarpium Citri Grandis via Infrared Spectroscopy and Fluorescence Spectrum Imaging Technology Combined with Neural Network].

    Science.gov (United States)

    Pan, Sha-sha; Huang, Fu-rong; Xiao, Chi; Xian, Rui-yi; Ma, Zhi-guo

    2015-10-01

    To explore rapid reliable methods for detection of Epicarpium citri grandis (ECG), the experiment using Fourier Transform Attenuated Total Reflection Infrared Spectroscopy (FTIR/ATR) and Fluorescence Spectrum Imaging Technology combined with Multilayer Perceptron (MLP) Neural Network pattern recognition, for the identification of ECG, and the two methods are compared. Infrared spectra and fluorescence spectral images of 118 samples, 81 ECG and 37 other kinds of ECG, are collected. According to the differences in tspectrum, the spectra data in the 550-1 800 cm(-1) wavenumber range and 400-720 nm wavelength are regarded as the study objects of discriminant analysis. Then principal component analysis (PCA) is applied to reduce the dimension of spectroscopic data of ECG and MLP Neural Network is used in combination to classify them. During the experiment were compared the effects of different methods of data preprocessing on the model: multiplicative scatter correction (MSC), standard normal variable correction (SNV), first-order derivative(FD), second-order derivative(SD) and Savitzky-Golay (SG). The results showed that: after the infrared spectra data via the Savitzky-Golay (SG) pretreatment through the MLP Neural Network with the hidden layer function as sigmoid, we can get the best discrimination of ECG, the correct percent of training set and testing set are both 100%. Using fluorescence spectral imaging technology, corrected by the multiple scattering (MSC) results in the pretreatment is the most ideal. After data preprocessing, the three layers of the MLP Neural Network of the hidden layer function as sigmoid function can get 100% correct percent of training set and 96.7% correct percent of testing set. It was shown that the FTIR/ATR and fluorescent spectral imaging technology combined with MLP Neural Network can be used for the identification study of ECG and has the advantages of rapid, reliable effect.

  13. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics.

    Science.gov (United States)

    Davis, Caitlin M; Reddish, Michael J; Dyer, R Brian

    2017-05-05

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of jump induced difference spectrum from 50ns to 0.5ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Gold nanodisc arrays as near infrared metal-enhanced fluorescence platforms with tuneable enhancement factors

    KAUST Repository

    Pang, J.; Theodorou, I. G.; Centeno, A.; Petrov, P. K.; Alford, N. M.; Ryan, M. P.; Xie, F.

    2016-01-01

    Metal enhanced fluorescence (MEF) is a physical effect through which the near-field interaction of fluorophores with metallic nanoparticles can lead to large fluorescence enhancement. MEF can be exploited in many fluorescence-based biomedical applications, with potentially significant improvement in detection sensitivity and contrast enhancement. Offering lower autofluorescence and minimal photoinduced damage, the development of effective and multifunctional MEF platforms in the near-infrared (NIR) region, is particularly desirable. In this work, the enhancement of NIR fluorescence caused by interaction with regular arrays of cylindrical gold (Au) nanoparticles (nanodiscs), fabricated through nanosphere lithography, is reported. Significant MEF of up to 235 times is obtained, with tuneable enhancement factors. The effect of array structure on fluorescence enhancement is investigated by semi-quantitatively de-convoluting excitation enhancement from emission enhancement, and modelling the local electric field enhancement. By considering arrays of Au nanodiscs with the same extinction maximum, it is shown that the excitation enhancement, due to increased electric field, is not significantly different for the particle sizes and separation distances considered. Rather, it is seen that the emission from the fluorophore is strongly enhanced, and is dependent on the topography, in particular particle size. The results show that the structural characteristics of Au nanodisc arrays can be manipulated to tune their enhancement factor, and hence their sensitivity.

  15. Gold nanodisc arrays as near infrared metal-enhanced fluorescence platforms with tuneable enhancement factors

    KAUST Repository

    Pang, J.

    2016-12-28

    Metal enhanced fluorescence (MEF) is a physical effect through which the near-field interaction of fluorophores with metallic nanoparticles can lead to large fluorescence enhancement. MEF can be exploited in many fluorescence-based biomedical applications, with potentially significant improvement in detection sensitivity and contrast enhancement. Offering lower autofluorescence and minimal photoinduced damage, the development of effective and multifunctional MEF platforms in the near-infrared (NIR) region, is particularly desirable. In this work, the enhancement of NIR fluorescence caused by interaction with regular arrays of cylindrical gold (Au) nanoparticles (nanodiscs), fabricated through nanosphere lithography, is reported. Significant MEF of up to 235 times is obtained, with tuneable enhancement factors. The effect of array structure on fluorescence enhancement is investigated by semi-quantitatively de-convoluting excitation enhancement from emission enhancement, and modelling the local electric field enhancement. By considering arrays of Au nanodiscs with the same extinction maximum, it is shown that the excitation enhancement, due to increased electric field, is not significantly different for the particle sizes and separation distances considered. Rather, it is seen that the emission from the fluorophore is strongly enhanced, and is dependent on the topography, in particular particle size. The results show that the structural characteristics of Au nanodisc arrays can be manipulated to tune their enhancement factor, and hence their sensitivity.

  16. First-in-human intraoperative near-infrared fluorescence imaging of glioblastoma using cetuximab-IRDye800.

    Science.gov (United States)

    Miller, Sarah E; Tummers, Willemieke S; Teraphongphom, Nutte; van den Berg, Nynke S; Hasan, Alifia; Ertsey, Robert D; Nagpal, Seema; Recht, Lawrence D; Plowey, Edward D; Vogel, Hannes; Harsh, Griffith R; Grant, Gerald A; Li, Gordon H; Rosenthal, Eben L

    2018-04-06

    Maximizing extent of surgical resection with the least morbidity remains critical for survival in glioblastoma patients, and we hypothesize that it can be improved by enhancements in intraoperative tumor detection. In a clinical study, we determined if therapeutic antibodies could be repurposed for intraoperative imaging during resection. Fluorescently labeled cetuximab-IRDye800 was systemically administered to three patients 2 days prior to surgery. Near-infrared fluorescence imaging of tumor and histologically negative peri-tumoral tissue was performed intraoperatively and ex vivo. Fluorescence was measured as mean fluorescence intensity (MFI), and tumor-to-background ratios (TBRs) were calculated by comparing MFIs of tumor and histologically uninvolved tissue. The mean TBR was significantly higher in tumor tissue of contrast-enhancing (CE) tumors on preoperative imaging (4.0 ± 0.5) compared to non-CE tumors (1.2 ± 0.3; p = 0.02). The TBR was higher at a 100 mg dose than at 50 mg (4.3 vs. 3.6). The smallest detectable tumor volume in a closed-field setting was 70 mg with 50 mg of dye and 10 mg with 100 mg. On sections of paraffin embedded tissues, fluorescence positively correlated with histological evidence of tumor. Sensitivity and specificity of tumor fluorescence for viable tumor detection was calculated and fluorescence was found to be highly sensitive (73.0% for 50 mg dose, 98.2% for 100 mg dose) and specific (66.3% for 50 mg dose, 69.8% for 100 mg dose) for viable tumor tissue in CE tumors while normal peri-tumoral tissue showed minimal fluorescence. This first-in-human study demonstrates the feasibility and safety of antibody based imaging for CE glioblastomas.

  17. Raman micro-spectroscopy analysis of different sperm regions: a species comparison.

    Science.gov (United States)

    Amaral, S; Da Costa, R; Wübbeling, F; Redmann, K; Schlatt, S

    2018-04-01

    Is Raman micro-spectroscopy a valid approach to assess the biochemical hallmarks of sperm regions (head, midpiece and tail) in four different species? Non-invasive Raman micro-spectroscopy provides spectral patterns enabling the biochemical characterization of the three sperm regions in the four species, revealing however high similarities for each region among species. Raman micro-spectroscopy has been described as an innovative method to assess sperm features having the potential to be used as a non-invasive selection tool. However, except for nuclear DNA, the identification and assignment of spectral bands in Raman-profiles to the different sperm regions is scarce and controversial. Raman spectra from head, midpiece and tail of four different species were obtained. Sperm samples were collected and smeared on microscope slides. Air dried samples were subjected to Raman analysis using previously standardized procedures. Sperm samples from (i) two donors attending the infertility clinic at the Centre of Reproductive Medicine and Andrology; (ii) two C57BL/6 -TgN (ACTbEGFP) 1Osb adult mice; (iii) two adult Cynomolgus monkeys (Macaca fascicularis) and (iv) two sea urchins (Arbacia punctulata) were used to characterize and compare their spectral profiles. Differences and similarities were confirmed by principal component analysis (PCA). Several novel region-specific peaks were identified. The three regions could be differentiated by distinctive Raman patterns irrespective of the species. However, regardless of the specie, their main spectral pattern remains mostly unchanged. These results were corroborated by the PCA analysis and suggest that the basic constituents of spermatozoa are biochemically similar among species. Further research should be performed in live sperm to validate the detected spectral bands and their use as markers of distinctive regions. Raman peaks that have never been described in the sperm cell were detected. Particularly important are those that

  18. A near-infrared fluorescent bioassay for thrombin using aptamer-modified CuInS2 quantum dots

    International Nuclear Information System (INIS)

    Lin, Zihan; Hu, Tianyu; Liu, Ziping; Su, Xingguang; Pan, Dong

    2015-01-01

    We describe a near-infrared (NIR) fluorescent thrombin assay using a thrombin-binding aptamer (TBA) and Zn(II)-activated CuInS 2 quantum dots (Q-dots). The fluorescence of Zn(II)-activated Q-dots is quenched by the TBA via photoinduced electron transfer, but if thrombin is added, it will bind to TBA to form G-quadruplexes and the Q-dots are released. As a result, the fluorescence intensity of the system is restored. This effect was exploited to design an assay for thrombin whose calibration plot, under optimum conditions, is linear in the 0.034 to 102 nmol L −1 concentration range, with a 12 pmol L −1 detection limit. The method is fairly simple, fast, and due to its picomolar detection limits holds great potential in the diagnosis of diseases associated with coagulation abnormalities and certain kinds of cancer. (author)

  19. A classification model for non-alcoholic steatohepatitis (NASH) using confocal Raman micro-spectroscopy

    Science.gov (United States)

    Yan, Jie; Yu, Yang; Kang, Jeon Woong; Tam, Zhi Yang; Xu, Shuoyu; Fong, Eliza Li Shan; Singh, Surya Pratap; Song, Ziwei; Tucker Kellogg, Lisa; So, Peter; Yu, Hanry

    2017-07-01

    We combined Raman micro-spectroscopy and machine learning techniques to develop a classification model based on a well-established non-alcoholic steatohepatitis (NASH) mouse model, using spectrum pre-processing, biochemical component analysis (BCA) and logistic regression.

  20. Alteration of the bone tissue material properties in type 1 diabetes mellitus: A Fourier transform infrared microspectroscopy study.

    Science.gov (United States)

    Mieczkowska, Aleksandra; Mansur, Sity Aishah; Irwin, Nigel; Flatt, Peter R; Chappard, Daniel; Mabilleau, Guillaume

    2015-07-01

    Type 1 diabetes mellitus (T1DM) is a severe disorder characterized by hyperglycemia and hypoinsulinemia. A higher occurrence of bone fractures has been reported in T1DM, and although bone mineral density is reduced in this disorder, it is also thought that bone quality may be altered in this chronic pathology. Vibrational microscopies such as Fourier transform infrared microspectroscopy (FTIRM) represent an interesting approach to study bone quality as they allow investigation of the collagen and mineral compartment of the extracellular matrix in a specific bone location. However, as spectral feature arising from the mineral may overlap with those of the organic component, the demineralization of bone sections should be performed for a full investigation of the organic matrix. The aims of the present study were to (i) develop a new approach, based on the demineralization of thin bone tissue section to allow a better characterization of the bone organic component by FTIRM, (ii) to validate collagen glycation and collagen integrity in bone tissue and (iii) to better understand what alterations of tissue material properties in newly forming bone occur in T1DM. The streptozotocin-injected mouse (150 mg/kg body weight, injected at 8 weeks old) was used as T1DM model. Animals were randomly allocated to control (n = 8) or diabetic (n = 10) groups and were sacrificed 4 weeks post-STZ injection. Bones were collected at necropsy, embedded in polymethylmethacrylate and sectioned prior to examination by FTIRM. FTIRM collagen parameters were collagen maturity (area ratio between 1660 and 1690 cm(-1) subbands), collagen glycation (area ratio between the 1032 cm(-1) subband and amide I) and collagen integrity (area ratio between the 1338 cm(-1) subband and amide II). No significant differences in the mineral compartment of the bone matrix could be observed between controls and STZ-injected animals. On the other hand, as compared with controls, STZ-injected animals presented with

  1. Development of a new detection device using a glass clip emitting infrared fluorescence for laparoscopic surgery of gastric cancer

    International Nuclear Information System (INIS)

    Inada, Shunko Albano; Mori, Kensaku; Fuchi, Shingo; Hasegawa, Junichi; Misawa, Kazunari; Nakanishi, Hayao

    2015-01-01

    In conventional method, to identify location of the tumor intraperitoneally for extirpation of the gastric cancer, charcoal ink is injected around the primary tumor. However, in the time of laparoscopic operation, it is difficult to estimate specific site of primary tumor. In this study we developed a glass phosphors was realized with Yb 3+ , Nd 3+ doped to Bi 2 O 3 -B 2 O 3 based glasses, which have central emission wavelength of 1020 nm and 100 nm of FWHM. Using this glass phosphor, we developed a fluorescent clip and the laparoscopic fluorescent detection system for clip-derived near-infrared light. To evaluated clinical performance of a fluorescent clip and the laparoscopic detection system, we used resected stomach from the patients. Fluorescent clip was fixed on the gastric mucosa, and an excitation light (wavelength: 808nm) was irradiated from outside of stomach for detection of fluorescent through stomach wall. As a result, fluorescent emission from the clip was successfully detected. These results indicate that the glass fluorescent clip in combination with laparoscopic detection system is a very useful method to identify the exact location of the primary gastric cancer. (paper)

  2. Synergy Effect of Combining Fluorescence and Mid Infrared Fiber Spectroscopy for Kidney Tumor Diagnostics

    Directory of Open Access Journals (Sweden)

    Andrey Bogomolov

    2017-11-01

    Full Text Available Matching pairs of tumor and non-tumor kidney tissue samples of four patients were investigated ex vivo using a combination of two methods, attenuated total reflection mid infrared spectroscopy and fluorescence spectroscopy, through respectively prepared and adjusted fiber probes. In order to increase the data information content, the measurements on tissue samples in both methods were performed in the same 31 preselected positions. Multivariate data analysis revealed a synergic effect of combining the two methods for the diagnostics of kidney tumor compared to individual techniques.

  3. Validation of ALFIA: a platform for quantifying near-infrared fluorescent images of lymphatic propulsion in humans

    Science.gov (United States)

    Rasmussen, John C.; Bautista, Merrick; Tan, I.-Chih; Adams, Kristen E.; Aldrich, Melissa; Marshall, Milton V.; Fife, Caroline E.; Maus, Erik A.; Smith, Latisha A.; Zhang, Jingdan; Xiang, Xiaoyan; Zhou, Shaohua Kevin; Sevick-Muraca, Eva M.

    2011-02-01

    Recently, we demonstrated near-infrared (NIR) fluorescence imaging for quantifying real-time lymphatic propulsion in humans following intradermal injections of microdose amounts of indocyanine green. However computational methods for image analysis are underdeveloped, hindering the translation and clinical adaptation of NIR fluorescent lymphatic imaging. In our initial work we used ImageJ and custom MatLab programs to manually identify lymphatic vessels and individual propulsion events using the temporal transit of the fluorescent dye. In addition, we extracted the apparent velocities of contractile propagation and time periods between propulsion events. Extensive time and effort were required to analyze the 6-8 gigabytes of NIR fluorescent images obtained for each subject. To alleviate this bottleneck, we commenced development of ALFIA, an integrated software platform which will permit automated, near real-time analysis of lymphatic function using NIR fluorescent imaging. However, prior to automation, the base algorithms calculating the apparent velocity and period must be validated to verify that they produce results consistent with the proof-of-concept programs. To do this, both methods were used to analyze NIR fluorescent images of two subjects and the number of propulsive events identified, the average apparent velocities, and the average periods for each subject were compared. Paired Student's t-tests indicate that the differences between their average results are not significant. With the base algorithms validated, further development and automation of ALFIA can be realized, significantly reducing the amount of user interaction required, and potentially enabling the near real-time, clinical evaluation of NIR fluorescent lymphatic imaging.

  4. Using a non-invasive technique in nutrition: synchrotron radiation infrared microspectroscopy spectroscopic characterization of oil seeds treated with different processing conditions on molecular spectral factors influencing nutrient delivery.

    Science.gov (United States)

    Zhang, Xuewei; Yu, Peiqiang

    2014-07-02

    Non-invasive techniques are a key to study nutrition and structure interaction. Fourier transform infrared microspectroscopy coupled with a synchrotron radiation source (SR-IMS) is a rapid, non-invasive, and non-destructive bioanalytical technique. To understand internal structure changes in relation to nutrient availability in oil seed processing is vital to find optimal processing conditions. The objective of this study was to use a synchrotron-based bioanalytical technique SR-IMS as a non-invasive and non-destructive tool to study the effects of heat-processing methods and oil seed canola type on modeled protein structure based on spectral data within intact tissue that were randomly selected and quantify the relationship between the modeled protein structure and protein nutrient supply to ruminants. The results showed that the moisture heat-related processing significantly changed (pprocessing by dry heating. The moisture heating increased (p0.05) in the protein spectral profile between the raw and dry-heated canola tissue and between yellow- and brown-type canola tissue. The results indicated that different heat processing methods have different impacts on the protein inherent structure. The protein intrinsic structure in canola seed tissue was more sensitive and more response to the moisture heating in comparison to the dry heating. These changes are expected to be related to the nutritive value. However, the current study is based on limited samples, and more large-scale studies are needed to confirm our findings.

  5. Engineering of near infrared fluorescent proteinoid-poly(L-lactic acid) particles for in vivo colon cancer detection.

    Science.gov (United States)

    Kolitz-Domb, Michal; Grinberg, Igor; Corem-Salkmon, Enav; Margel, Shlomo

    2014-08-12

    The use of near-infrared (NIR) fluorescence imaging techniques has gained great interest for early detection of cancer owing to the negligible absorption and autofluorescence of water and other intrinsic biomolecules in this region. The main aim of the present study is to synthesize and characterize novel NIR fluorescent nanoparticles based on proteinoid and PLLA for early detection of colon tumors. The present study describes the synthesis of new proteinoid-PLLA copolymer and the preparation of NIR fluorescent nanoparticles for use in diagnostic detection of colon cancer. These fluorescent nanoparticles were prepared by a self-assembly process in the presence of the NIR dye indocyanine green (ICG), a FDA-approved NIR fluorescent dye. Anti-carcinoembryonic antigen antibody (anti-CEA), a specific tumor targeting ligand, was covalently conjugated to the P(EF-PLLA) nanoparticles through the surface carboxylate groups using the carbodiimide activation method. The P(EF-PLLA) nanoparticles are stable in different conditions, no leakage of the encapsulated dye into PBS containing 4% HSA was detected. The encapsulation of the NIR fluorescent dye within the P(EF-PLLA) nanoparticles improves significantly the photostability of the dye. The fluorescent nanoparticles are non-toxic, and the biodistribution study in a mouse model showed they evacuate from the body over 24 h. Specific colon tumor detection in a chicken embryo model and a mouse model was demonstrated for anti-CEA-conjugated NIR fluorescent P(EF-PLLA) nanoparticles. The results of this study suggest a significant advantage of NIR fluorescence imaging using NIR fluorescent P(EF-PLLA) nanoparticles over colonoscopy. In future work we plan to broaden this study by encapsulating cancer drugs such as paclitaxel and/or doxorubicin, within these biodegradable NIR fluorescent P(EF-PLLA) nanoparticles, for both detection and therapy of colon cancer.

  6. A review of performance of near-infrared fluorescence imaging devices used in clinical studies

    Science.gov (United States)

    Zhu, B

    2015-01-01

    Near-infrared fluorescence (NIRF) molecular imaging holds great promise as a new “point-of-care” medical imaging modality that can potentially provide the sensitivity of nuclear medicine techniques, but without the radioactivity that can otherwise place limitations of usage. Recently, NIRF imaging devices of a variety of designs have emerged in the market and in investigational clinical studies using indocyanine green (ICG) as a non-targeting NIRF contrast agent to demark the blood and lymphatic vasculatures both non-invasively and intraoperatively. Approved in the USA since 1956 for intravenous administration, ICG has been more recently used off label in intradermal or subcutaneous administrations for fluorescence imaging of the lymphatic vasculature and lymph nodes. Herein, we summarize the devices of a variety of designs, summarize their performance in lymphatic imaging in a tabular format and comment on necessary efforts to develop standards for device performance to compare and use these emerging devices in future, NIRF molecular imaging studies. PMID:25410320

  7. Feasibility of Real-Time Near-Infrared Fluorescence Tracer Imaging in Sentinel Node Biopsy for Oral Cavity Cancer Patients

    DEFF Research Database (Denmark)

    Christensen, Anders; Juhl, Karina; Charabi, Birgitte

    2016-01-01

    BACKGROUND: Sentinel node biopsy (SNB) is an established method in oral squamous cell carcinoma (OSCC) for staging the cN0 neck and to select patients who will benefit from a neck dissection. Near-infrared fluorescence (NIRF) imaging has the potential to improve the SNB procedure by facilitating...... intraoperative visual identification of the sentinel lymph node (SN). The purpose of this study was to evaluate the feasibility of fluorescence tracer imaging for SN detection in conjunction with conventional radio-guided technique. METHODS: Prospective study of patients with primary OSCC planned for tumor...... be identified in vivo using NIRF imaging, and the majority of those were located in level 1 close to the primary tumor. CONCLUSIONS: A combined fluorescent and radioactive tracer for SNB is feasible, and the additional use of NIRF imaging may improve the accuracy of SN identification in oral cancer patients...

  8. Identification of monoclinic calcium pyrophosphate dihydrate and hydroxyapatite in human sclera using Raman microspectroscopy.

    Science.gov (United States)

    Chen, Ko-Hua; Li, Mei-Jane; Cheng, Wen-Ting; Balic-Zunic, Tonci; Lin, Shan-Yang

    2009-02-01

    Raman microspectroscopy was first used to determine the composition of a calcified plaque located at the pterygium-excision site of a 51-year-old female patient's left nasal sclera after surgery. It was unexpectedly found that the Raman spectrum of the calcified sample at 1149, 1108, 1049, 756, 517, 376 and 352/cm was similar to the Raman spectrum of monoclinic form of calcium pyrophosphate dihydrate (CPPD) crystal, but differed from the Raman spectrum of triclinic form of CPPD. An additional peak at 958/cm was also observed in the Raman spectrum of the calcified plaque, which was identical to the characteristic peak at 958/cm of hydroxyapatite (HA). This is the first study to report the spectral biodiagnosis of both monoclinic CPPD and HA co-deposited in the calcified plaque of a patient with sclera dystrophic calcification using Raman microspectroscopy.

  9. Mapping of redox state of mitochondrial cytochromes in live cardiomyocytes using Raman microspectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda A; Treiman, Marek; Brazhe, Alexey R

    2012-01-01

    This paper presents a nonivasive approach to study redox state of reduced cytochromes [Formula: see text], [Formula: see text] and [Formula: see text] of complexes II and III in mitochondria of live cardiomyocytes by means of Raman microspectroscopy. For the first time with the proposed approach ...

  10. Clinical use of organic near-infrared fluorescent contrast agents in image-guided oncologic procedures and its potential in veterinary oncology.

    Science.gov (United States)

    Favril, Sophie; Abma, Eline; Blasi, Francesco; Stock, Emmelie; Devriendt, Nausikaa; Vanderperren, Katrien; de Rooster, Hilde

    2018-04-28

    One of the major challenges in surgical oncology is the intraoperative discrimination of tumoural versus healthy tissue. Until today, surgeons rely on visual inspection and palpation to define the tumoural margins during surgery and, unfortunately, for various cancer types, the local recurrence rate thus remains unacceptably high. Near-infrared (NIR) fluorescence imaging is an optical imaging technique that can provide real-time preoperative and intraoperative information after administration of a fluorescent probe that emits NIR light once exposed to a NIR light source. This technique is safe, cost-effective and technically easy. Several NIR fluorescent probes are currently studied for their ability to highlight neoplastic cells. In addition, NIR fluorescence imaging holds great promise for sentinel lymph node mapping. The aim of this manuscript is to provide a literature review of the current organic NIR fluorescent probes tested in the light of human oncology and to introduce fluorescence imaging as a valuable asset in veterinary oncology. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Blue-green fluorescence and visible-infrared reflectance of corn (Zea mays L.) grain for in situ field detection of nitrogen supply

    International Nuclear Information System (INIS)

    McMurtrey, J.E. III; Chappelle, E.W.; Kim, M.S.; Corp, L.A.; Daughtry, C.S.T.

    1996-01-01

    The sensing of spectral attributes of corn (Zea mays L.) grain from site specific areas of the field during the harvest process may be useful in managing agronomic inputs and production practices on those areas of the field in subsequent growing seasons. Eight levels of nitrogen (N) fertilization were applied to field grown corn at Beltsville, Maryland. These N treatments produced a range of chlorophyll levels, biomass and physiological condition in the live plant canopies. After harvest, spectra were obtained in the laboratory on whole grain samples. Fluorescence emissions were acquired from 400 to 600 nm and percent reflectance were measured in the visible (VIS) near infrared (NIR) and mid-infrared (MIR) regions from 400 nm to 2400 nm. A ultraviolet (UV) excitation band centered at 385 nm was the most effective in producing fluorescence emission differences in the blue-green region of the fluorescence spectrum with maxima centered from 430-470nm in the blue and with an intense shoulder centered at around 530-560 nm in the green region. Reflectance showed the most spectral differences in the NIR and MIR (970-2330 nm) regions

  12. Noninvasive imaging of multiple myeloma using near infrared fluorescent molecular probe

    Science.gov (United States)

    Hathi, Deep; Zhou, Haiying; Bollerman-Nowlis, Alex; Shokeen, Monica; Akers, Walter J.

    2016-03-01

    Multiple myeloma is a plasma cell malignancy characterized by monoclonal gammopathy and osteolytic bone lesions. Multiple myeloma is most commonly diagnosed in late disease stages, presenting with pathologic fracture. Early diagnosis and monitoring of disease status may improve quality of life and long-term survival for multiple myeloma patients from what is now a devastating and fatal disease. We have developed a near-infrared targeted fluorescent molecular probe with high affinity to the α4β1 integrin receptor (VLA-4)overexpressed by a majority of multiple myeloma cells as a non-radioactive analog to PET/CT tracer currently being developed for human diagnostics. A near-infrared dye that emits about 700 nm was conjugated to a high affinity peptidomimmetic. Binding affinity and specificity for multiple myeloma cells was investigated in vitro by tissue staining and flow cytometry. After demonstration of sensitivity and specificity, preclinical optical imaging studies were performed to evaluate tumor specificity in murine subcutaneous and metastatic multiple myeloma models. The VLA-4-targeted molecular probe showed high affinity for subcutaneous MM tumor xenografts. Importantly, tumor cells specific accumulation in the bone marrow of metastatic multiple myeloma correlated with GFP signal from transfected cells. Ex vivo flow cytometry of tumor tissue and bone marrow further corroborated in vivo imaging data, demonstrating the specificity of the novel agent and potential for quantitative imaging of multiple myeloma burden in these models.

  13. Near-infrared fluorescence glucose sensing based on glucose/galactose-binding protein coupled to 651-Blue Oxazine

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Faaizah; Pickup, John C., E-mail: john.pickup@kcl.ac.uk

    2013-08-30

    Highlights: •We showed that the NIR fluorophore, 651-Blue Oxazine, is solvatochromic (polarity sensitive). •Blue Oxazine was covalently attached to mutants of glucose/galactose-binding protein (GBP). •Fluorescence intensity of GBP-Blue Oxazine increased with addition of glucose. •Fluorescence from bead-immobilised GBP-Blue Oxazine was detectable through skin in vitro. •This shows proof-of-concept for non-invasive glucose sensing using GBP-Blue Oxazine. -- Abstract: Near-infrared (NIR) fluorescent dyes that are environmentally sensitive or solvatochromic are useful tools for protein labelling in in vivo biosensor applications such as glucose monitoring in diabetes since their spectral properties are mostly independent of tissue autofluorescence and light scattering, and they offer potential for non-invasive analyte sensing. We showed that the fluorophore 651-Blue Oxazine is polarity-sensitive, with a marked reduction in NIR fluorescence on increasing solvent polarity. Mutants of glucose/galactose-binding protein (GBP) used as the glucose receptor were site-specifically and covalently labelled with Blue Oxazine using click chemistry. Mutants H152C/A213R and H152C/A213R/L238S showed fluorescence increases of 15% and 21% on addition of saturating glucose concentrations and binding constants of 6 and 25 mM respectively. Fluorescence responses to glucose were preserved when GBP-Blue Oxazine was immobilised to agarose beads, and the beads were excited by NIR light through a mouse skin preparation studied in vitro. We conclude GBP-Blue Oxazine shows proof-of-concept as a non-invasive continuous glucose sensing system.

  14. Fluorescence properties of novel near-infrared phosphor CaSc{sub 2}O{sub 4}:Ce{sup 3+}, Nd{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Meng, J.X., E-mail: tmjx@jnu.edu.c [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Zhang, F.J.; Peng, W.F.; Wan, W.J.; Xiao, Q.L.; Chen, Q.Q.; Cao, L.W. [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Wang, Z.L. [School of Chemistry and Biotechnology, Yunnan Nationalities University, Kunming 650031 (China)

    2010-10-15

    Research highlights: Novel near-infrared (NIR) phosphor, CaSc{sub 2}O{sub 4}:Ce{sup 3+}, Nd{sup 3+}, was synthesized. The phosphor gives strong Nd{sup 3+} characteristic NIR emissions in the range of 880-930 nm. The NIR emission intensity gets a 200 times enhancement benefited from the efficient energy transfer from a co-doped Ce{sup 3+}. The energy transfer mechanism was also briefly based on detailed investigation on spectrum and fluorescence lifetime. - Abstract: Novel near-infrared (NIR) phosphor, CaSc{sub 2}O{sub 4}:Ce{sup 3+}, Nd{sup 3+}, was synthesized by co-precipitation method followed by firing at 1300 {sup o}C in reduced atmosphere. When irradiated with blue light, the phosphor gives strong Nd{sup 3+} characteristic NIR emissions in the range of 880-930 nm. The NIR emission intensity gets a 200 times enhancement by co-doping of Ce{sup 3+}. Detailed investigation on spectrum and fluorescence lifetimes indicated the NIR luminescence enhancement is obtained from an energy transfer process. The process initiates with efficient absorption of blue light by Ce{sup 3+} ions via an allowed 4f-5d transition, follow by efficient energy transfer from Ce{sup 3+} to Nd{sup 3+}, and emitting strong Nd{sup 3+} characteristic fluorescence.

  15. A turn-on near-infrared fluorescent chemosensor for selective detection of lead ions based on a fluorophore-gold nanoparticle assembly.

    Science.gov (United States)

    Wang, Shaozhen; Sun, Junyong; Gao, Feng

    2015-06-21

    A turn-on fluorescent chemosensor of Pb(2+) in the near-infrared (NIR) region, which is based on the Pb(2+)-tuned restored fluorescence of a weakly fluorescent fluorophore-gold nanoparticle (AuNPs) assembly, has been reported. In this fluorophore-AuNP assembly, NIR fluorescent dye brilliant cresyl blue (BCB) molecules act as fluorophores and are used for signal transduction of fluorescence, while AuNPs act as quenchers to quench the nearby fluorescent BCB molecules via electron transfer. In the presence of Pb(2+), fluorescent BCB molecules detached from AuNPs and restored their fluorescence due to the formation of a chelating complex between Pb(2+) and glutathione confined on AuNPs. Under the optimal conditions, the present BCB-AuNP assembly is capable of detecting Pb(2+) with a concentration ranging from 7.5 × 10(-10) to 1 × 10(-8) mol L(-1) (0.16-2.1 ng mL(-1)) and a detection limit of 0.51 nM (0.11 ng mL(-1)). The present BCB-AuNP assembly can be used in aqueous media for the determination of Pb(2+) unlike common organic fluorescent reagents, and also shows advantages of NIR fluorescence spectrophotometry such as less interference, lower detection limit, and higher sensitivity. Moreover, the present method was successfully applied for the detection of Pb(2+) in water samples with satisfactory results.

  16. Near-infrared fluorescence imaging with a mobile phone (Conference Presentation)

    Science.gov (United States)

    Ghassemi, Pejhman; Wang, Bohan; Wang, Jianting; Wang, Quanzeng; Chen, Yu; Pfefer, T. Joshua

    2017-03-01

    Mobile phone cameras employ sensors with near-infrared (NIR) sensitivity, yet this capability has not been exploited for biomedical purposes. Removing the IR-blocking filter from a phone-based camera opens the door to a wide range of techniques and applications for inexpensive, point-of-care biophotonic imaging and sensing. This study provides proof of principle for one of these modalities - phone-based NIR fluorescence imaging. An imaging system was assembled using a 780 nm light source along with excitation and emission filters with 800 nm and 825 nm cut-off wavelengths, respectively. Indocyanine green (ICG) was used as an NIR fluorescence contrast agent in an ex vivo rodent model, a resolution test target and a 3D-printed, tissue-simulating vascular phantom. Raw and processed images for red, green and blue pixel channels were analyzed for quantitative evaluation of fundamental performance characteristics including spectral sensitivity, detection linearity and spatial resolution. Mobile phone results were compared with a scientific CCD. The spatial resolution of CCD system was consistently superior to the phone, and green phone camera pixels showed better resolution than blue or green channels. The CCD exhibited similar sensitivity as processed red and blue pixels channels, yet a greater degree of detection linearity. Raw phone pixel data showed lower sensitivity but greater linearity than processed data. Overall, both qualitative and quantitative results provided strong evidence of the potential of phone-based NIR imaging, which may lead to a wide range of applications from cancer detection to glucose sensing.

  17. Effects of Depilation-Induced Skin Pigmentation and Diet-Induced Fluorescence on In Vivo Fluorescence Imaging

    OpenAIRE

    Kwon, Sunkuk; Sevick-Muraca, Eva M.

    2017-01-01

    Near-infrared fluorescence imaging (NIRFI) and far-red fluorescence imaging (FRFI) were used to investigate effects of depilation-induced skin pigmentation and diet-induced background fluorescence on fluorescent signal amplitude and lymphatic contraction frequency in C57BL6 mice. Far-red fluorescent signal amplitude, but not frequency, was affected by diet-induced fluorescence, which was removed by feeding the mice an alfalfa-free diet, and skin pigmentation further impacted the amplitude mea...

  18. Fluorescence of the 'fire-chaser' beetle Melanophila acuminata

    International Nuclear Information System (INIS)

    Israelowitz, Meir; Rizvi, Syed H.W.; Schroeder, Herbert P. von

    2007-01-01

    Melanophila acuminata beetles are attracted to forest fires over long distances by a pair of specialized infrared sensory organs. To date, there is no knowledge of their ability to detect or emit fluorescent radiation. We studied the Melanophila acuminata infrared sensory organs histologically and by using fluorescent microscopy, acoustic-optic tunable filter microscopy, and two-photon microscopy to identify fluorescence. We found fluorescent absorption at radiation wavelengths of 480 nm and emission at 570 nm. The functional role of this novel fluorescence is, as of yet, unknown but may be applied to species classification, identification and behavioral studies

  19. A Conjugate of Pentamethine Cyanine and 18F as a Positron Emission Tomography/Near-Infrared Fluorescence Probe for Multimodality Tumor Imaging

    Directory of Open Access Journals (Sweden)

    Fei-Fei An

    2017-06-01

    Full Text Available The novel synthesis of a dual-modality, pentamethine cyanine (Cy5 fluorescent, 18F positron emission tomography (PET imaging probe is reported. The probe shows a large extinction coefficient and large quantum yield in the biologically transparent, near-infrared window (650–900 nm for in vivo fluorescent imaging. This fluorophore bears the isotope, 18F, giving a 18F-PET/near-infrared fluorescent (NIRF, bi-modal imaging probe, that combines the long-term stability of NIRF and the unlimited penetration depth of PET imaging. The bi-modal probe is labeled with 18F in a quick, one-step reaction, which is important in working with the rapid decay of 18F. The bi-modal probe bears a free carboxyl group, highlighting a PET/NIRF synthon that can be conjugated onto many advanced biomolecules for biomarker-specific in vivo dual-modal PET/NIR tumor imaging, confocal histology, and utility in multi-fluorophore, fluorescence-guided surgery. Its potential in vivo biocompatibility is explored in a quick proof-of-principal in vivo study. The dye is delivered to A549 xenograft flank-tumors to generate PET and NIRF signals at the tumor site. The tumor distribution is confirmed in ex vivo gamma counting and imaging. Pentamethine cyanine (Cy5 has the ability to preferentially accumulate in tumor xenografts. We substitute the PET/NIRF probe for Cy5, and explore this phenomenon.

  20. An image analysis system for near-infrared (NIR) fluorescence lymph imaging

    Science.gov (United States)

    Zhang, Jingdan; Zhou, Shaohua Kevin; Xiang, Xiaoyan; Rasmussen, John C.; Sevick-Muraca, Eva M.

    2011-03-01

    Quantitative analysis of lymphatic function is crucial for understanding the lymphatic system and diagnosing the associated diseases. Recently, a near-infrared (NIR) fluorescence imaging system is developed for real-time imaging lymphatic propulsion by intradermal injection of microdose of a NIR fluorophore distal to the lymphatics of interest. However, the previous analysis software3, 4 is underdeveloped, requiring extensive time and effort to analyze a NIR image sequence. In this paper, we develop a number of image processing techniques to automate the data analysis workflow, including an object tracking algorithm to stabilize the subject and remove the motion artifacts, an image representation named flow map to characterize lymphatic flow more reliably, and an automatic algorithm to compute lymph velocity and frequency of propulsion. By integrating all these techniques to a system, the analysis workflow significantly reduces the amount of required user interaction and improves the reliability of the measurement.

  1. Carotenoids located in human lymphocyte subpopulations and Natural Killer cells by Raman microspectroscopy

    NARCIS (Netherlands)

    Puppels, G.J.; Puppels, G.J.; Garritsen, H.S.P.; Garritsen, H.S.P.; Kummer, J.A.; Greve, Jan

    1993-01-01

    The presence and subcellular location of carotenoids in human lymphocyte sub-populations (CD4+, CD8+, T-cell receptor-γδ+, and CD19+ ) and natural killer cells (CD16+ ) were studied by means of Raman microspectroscopy. In CD4+ lymphocytes a high concentration (10-3M) of carotenoids was found in the

  2. Necrosis avid near infrared fluorescent cyanines for imaging cell death and their use to monitor therapeutic efficacy in mouse tumor models

    NARCIS (Netherlands)

    Xie, Bangwen; Stammes, Marieke A.; van Driel, Pieter B. A. A.; Cruz, Luis J.; Knol-Blankevoort, Vicky T.; Löwik, Martijn A. M.; Mezzanotte, Laura; Que, Ivo; Chan, Alan; van den Wijngaard, Jeroen P. H. M.; Siebes, Maria; Gottschalk, Sven; Razansky, Daniel; Ntziachristos, Vasilis; Keereweer, Stijn; Horobin, Richard W.; Hoehn, Mathias; Kaijzel, Eric L.; van Beek, Ermond R.; Snoeks, Thomas J. A.; Löwik, Clemens W. G. M.

    2015-01-01

    Quantification of tumor necrosis in cancer patients is of diagnostic value as the amount of necrosis is correlated with disease prognosis and it could also be used to predict early efficacy of anti-cancer treatments. In the present study, we identified two near infrared fluorescent (NIRF)

  3. Cellular organization and spectral diversity of GFP-like proteins in live coral cells studied by single and multiphoton imaging and microspectroscopy

    Science.gov (United States)

    Salih, Anya; Cox, Guy C.; Larkum, Anthony W.

    2003-07-01

    Tissues of many marine invertebrates of class Anthozoa contain intensely fluorescent or brightly coloured pigments. These pigments belong to a family of photoactive proteins closely related to Green Fluorescent Protein (GFP), and their emissions range from blue to red wavelengths. The great diversity of these pigments has only recently been realised. To investigate the role of these proteins in corals, we have performed an in vivo fluorescent pigment (FP) spectral and cellular distribution analyses in live coral cells using single and multi-photon laser scanning imaging and microspectroscopy. These analyses revealed that even single colour corals contain spectroscopically heterogeneous pigment mixtures, with 2-5 major colour types in the same area of tissue. They were typically arranged in step-wise light emission energy gradients (e.g. blue, green, yellow, red). The successive overlapping emission-excitation spectral profiles of differently coloured FPs suggested that they were suited for sequential energy coupling. Traces of red FPs (emission = 570-660 nm) were present, even in non-red corals. We confirmed that radiative energy transfer could occur between separate granules of blue and green FPs and that energy transfer was inversely proportional to the square of the distance between them. Multi-photon micro-spectrofluorometric analysis gave significantly improved spectral resolution by restricting FP excitation to a single point in the focal plane of the sample. Pigment heterogeneity at small scales within granules suggested that fluorescence resonance energy transfer (FRET) might be occurring, and we confirmed that this was the case. Thus, energy transfer can take place both radiatively and by FRET, probably functioning in photoprotection by dissipation of excessive solar radiation.

  4. Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Volkmer, Andreas

    2005-01-01

    For noninvasive characterization of chemical species or biological components within a complex heterogeneous system, their intrinsic molecular vibrational properties can be used in contrast mechanisms in optical microscopy. A series of recent advances have made coherent anti-Stokes Raman scattering (CARS) microscopy a powerful technique that allows vibrational imaging with high sensitivity, high spectral resolution and three-dimensional sectioning capability. In this review, we discuss theoretical and experimental aspects of CARS microscopy in a collinear excitation beam geometry. Particular attention is given to the underlying physical principles behind the new features of CARS signal generation under tight focusing conditions. We provide a brief overview of the instrumentation of CARS microscopy and its experimental characterization by means of imaging of model systems and live unstained cells. CARS microscopy offers the possibility of spatially resolved vibrational spectroscopy, providing chemical and physical structure information of molecular specimens on the sub-micrometre length scale. We review multiplex CARS microspectroscopy allowing fast acquisition of frequency-resolved CARS spectra, time-resolved CARS microspectroscopy recording ultrafast Raman free induction decays and CARS correlation spectroscopy probing dynamical processes with chemical selectivity. (topical review)

  5. Reversible and Dynamic Fluorescence Imaging of Cellular Redox Self-Regulation Using Fast-Responsive Near-Infrared Ge-Pyronines.

    Science.gov (United States)

    Nie, Hailiang; Jing, Jing; Tian, Yong; Yang, Wen; Zhang, Rubo; Zhang, Xiaoling

    2016-04-13

    Cellular self-regulation of reactive oxygen species (ROS) stress via glutathione (GSH) antioxidant repair plays a crucial role in maintaining redox balance, which affects various physiological and pathological pathways. In this work, we developed a simple yet effective strategy for reversible, dynamic, and real-time fluorescence imaging of ROS stress and GSH repair, based on novel Ge-pyronine dyes (GePs). Unlike the current O-pyronine (OP) dye, the fluorescence of GePs can be quenched in GSH reduction and then greatly restored by ROS (e.g., ClO(-), ONOO(-), and HO(•)) oxidation because of their unique affinity toward thiols. The "on-off" and "off-on" fluorescence switch can complete in 10 and 20 s, respectively, and exhibit excellent reversibility in vitro and in cells. GePs also show excitation in the long wavelength from the deep-red to near-infrared (NIR) (621-662 nm) region, high fluorescence quantum yield (Φ(fl) = 0.32-0.44) in aqueous media, and excellent cell permeability. Our results demonstrated that GePs can be used for real-time monitoring of the reversible and dynamic interconversion between ROS oxidation and GSH reduction in living cells. GePs might be a useful tool for investigating various redox-related physiological and pathological pathways.

  6. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Directory of Open Access Journals (Sweden)

    Benedicto de Campos Vidal

    Full Text Available Rat ear cartilage was studied using Fourier transform-infrared (FT-IR microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1 after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1 overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  7. Investigation of carbonates in the Sutter's Mill meteorite grains with hyperspectral infrared imaging micro-spectroscopy

    Science.gov (United States)

    Yesiltas, Mehmet

    2018-04-01

    Synchrotron-based high spatial resolution hyperspectral infrared imaging technique provides thousands of infrared spectra with high resolution, thus allowing us to acquire detailed spatial maps of chemical molecular structures for many grains in short times. Utilizing this technique, thousands of infrared spectra were analyzed at once instead of inspecting each spectrum separately. Sutter's Mill meteorite is a unique carbonaceous type meteorite with highly heterogeneous chemical composition. Multiple grains from the Sutter's Mill meteorite have been studied using this technique and the presence of both hydrous and anhydrous silicate minerals have been observed. It is observed that the carbonate mineralogy varies from simple to more complex carbonates even within a few microns in the meteorite grains. These variations, the type and distribution of calcite-like vs. dolomite-like carbonates are presented by means of hyperspectral FTIR imaging spectroscopy with high resolution. Various scenarios for the formation of different carbonate compositions in the Sutter's Mill parent body are discussed.

  8. Real-time intraoperative detection of breast cancer using near-infrared fluorescence imaging and Methylene Blue.

    Science.gov (United States)

    Tummers, Q R J G; Verbeek, F P R; Schaafsma, B E; Boonstra, M C; van der Vorst, J R; Liefers, G-J; van de Velde, C J H; Frangioni, J V; Vahrmeijer, A L

    2014-07-01

    Despite recent developments in preoperative breast cancer imaging, intraoperative localization of tumor tissue can be challenging, resulting in tumor-positive resection margins during breast conserving surgery. Based on certain physicochemical similarities between Technetium((99m)Tc)-sestamibi (MIBI), an SPECT radiodiagnostic with a sensitivity of 83-90% to detect breast cancer preoperatively, and the near-infrared (NIR) fluorophore Methylene Blue (MB), we hypothesized that MB might detect breast cancer intraoperatively using NIR fluorescence imaging. Twenty-four patients with breast cancer, planned for surgical resection, were included. Patients were divided in 2 administration groups, which differed with respect to the timing of MB administration. N = 12 patients per group were administered 1.0 mg/kg MB intravenously either immediately or 3 h before surgery. The mini-FLARE imaging system was used to identify the NIR fluorescent signal during surgery and on post-resected specimens transferred to the pathology department. Results were confirmed by NIR fluorescence microscopy. 20/24 (83%) of breast tumors (carcinoma in N = 21 and ductal carcinoma in situ in N = 3) were identified in the resected specimen using NIR fluorescence imaging. Patients with non-detectable tumors were significantly older. No significant relation to receptor status or tumor grade was seen. Overall tumor-to-background ratio (TBR) was 2.4 ± 0.8. There was no significant difference between TBR and background signal between administration groups. In 2/4 patients with positive resection margins, breast cancer tissue identified in the wound bed during surgery would have changed surgical management. Histology confirmed the concordance of fluorescence signal and tumor tissue. This feasibility study demonstrated an overall breast cancer identification rate using MB of 83%, with real-time intraoperative guidance having the potential to alter patient management. Copyright © 2014 Elsevier Ltd. All

  9. Potential applications of near infrared auto-fluorescence spectral polarized imaging for assessment of food quality

    Science.gov (United States)

    Zhou, Kenneth J.; Chen, Jun

    2016-03-01

    The current growing of food industry for low production costs and high efficiency needs for maintenance of high-quality standards and assurance of food safety while avoiding liability issues. Quality and safety of food depend on physical (texture, color, tenderness etc.), chemical (fat content, moisture, protein content, pH, etc.), and biological (total bacterial count etc.) features. There is a need for a rapid (less than a few minutes) and accurate detection system in order to optimize quality and assure safety of food. However, the fluorescence ranges for known fluorophores are limited to ultraviolet emission bands, which are not in the tissue near infrared (NIR) "optical window". Biological tissues excited by far-red or NIR light would exhibit strong emission in spectral range of 650-1,100 nm although no characteristic peaks show the emission from which known fluorophores. The characteristics of the auto-fluorescence emission of different types of tissues were found to be different between different tissue components such as fat, high quality muscle food. In this paper, NIR auto-fluorescence emission from different types of muscle food and fat was measured. The differences of fluorescence intensities of the different types of muscle food and fat emissions were observed. These can be explained by the change of the microscopic structure of physical, chemical, and biological features in meat. The difference of emission intensities of fat and lean meat tissues was applied to monitor food quality and safety using spectral polarized imaging, which can be detect deep depth fat under the muscle food up to several centimeter.

  10. Early tumor detection afforded by in vivo imaging of near-infrared II fluorescence.

    Science.gov (United States)

    Tao, Zhimin; Dang, Xiangnan; Huang, Xing; Muzumdar, Mandar D; Xu, Eric S; Bardhan, Neelkanth Manoj; Song, Haiqin; Qi, Ruogu; Yu, Yingjie; Li, Ting; Wei, Wei; Wyckoff, Jeffrey; Birrer, Michael J; Belcher, Angela M; Ghoroghchian, P Peter

    2017-07-01

    Cell-intrinsic reporters such as luciferase (LUC) and red fluorescent protein (RFP) have been commonly utilized in preclinical studies to image tumor growth and to monitor therapeutic responses. While extrinsic reporters that emit near infrared I (NIR-I: 650-950 nm) or near-infrared II (NIR-II: 1000-1700 nm) optical signals have enabled minimization of tissue autofluorescence and light scattering, it has remained unclear as to whether their use has afforded more accurate tumor imaging in small animals. Here, we developed a novel optical imaging construct comprised of rare earth lanthanide nanoparticles coated with biodegradable diblock copolymers and doped with organic fluorophores, generating NIR-I and NIR-II emissive bands upon optical excitation. Simultaneous injection of multiple spectrally-unique nanoparticles into mice bearing tumor implants established via intraperitoneal dissemination of LUC + /RFP + OVCAR-8 ovarian cancer cells enabled direct comparisons of imaging with extrinsic vs. intrinsic reporters, NIR-II vs. NIR-I signals, as well as targeted vs. untargeted exogenous contrast agents in the same animal and over time. We discovered that in vivo optical imaging at NIR-II wavelengths facilitates more accurate detection of smaller and earlier tumor deposits, offering enhanced sensitivity, improved spatial contrast, and increased depths of tissue penetration as compared to imaging with visible or NIR-I fluorescent agents. Our work further highlights the hitherto underappreciated enhancements in tumor accumulation that may be achieved with intraperitoneal as opposed to intravenous administration of nanoparticles. Lastly, we found discrepancies in the fidelity of tumor uptake that could be obtained by utilizing small molecules for in vivo as opposed to in vitro targeting of nanoparticles to disseminated tumors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Microprobing the Molecular Spatial Distribution and Structural Architecture of Feed-type Sorghum Seed Tissue (Sorghum Bicolor L.) using the Synchrotron Radiation Infrared Microspectroscopy Technique

    International Nuclear Information System (INIS)

    Yu, P.

    2011-01-01

    Sorghum seed (Sorghum bicolor L.) has unique degradation and fermentation behaviours compared with other cereal grains such as wheat, barley and corn. This may be related to its cell and cell-wall architecture. The advanced synchrotron radiation infrared microspectroscopy (SR-IMS) technique enables the study of cell or living cell biochemistry within cellular dimensions. The objective of this study was to use the SR-IMS imaging technique to microprobe molecular spatial distribution and cell architecture of the sorghum seed tissue comprehensively. High-density mapping was carried out using SR-IMS on beamline U2B at the National Synchrotron Light Source (Brookhaven National Laboratory, NY, USA). Molecular images were systematically recorded from the outside to the inside of the seed tissue under various chemical functional groups and their ratios [peaks at ∼1725 (carbonyl C=O ester), 1650 (amide I), 1657 (protein secondary structure α-helix), 1628 (protein secondary structure β-sheet), 1550 (amide II), 1515 (aromatic compounds of lignin), 1428, 1371, 1245 (cellulosic compounds in plant seed tissue), 1025 (non-structural CHO, starch granules), 1246 (cellulosic material), 1160 (CHO), 1150 (CHO), 1080 (CHO), 930 (CHO), 860 (CHO), 3350 (OH and NH stretching), 2960 (CH 3 anti-symmetric), 2929 (CH 2 anti-symmetric), 2877 (CH 3 symmetric) and 2848 cm -1 (CH 2 asymmetric)]. The relative protein secondary structure α-helix to β-sheet ratio image, protein amide I to starch granule ratio image, and anti-symmetric CH 3 to CH 2 ratio image were also investigated within the intact sorghum seed tissue. The results showed unique cell architecture, and the molecular spatial distribution and intensity in the sorghum seed tissue (which were analyzed through microprobe molecular imaging) were generated using SR-IMS. This imaging technique and methodology has high potential and could be used for scientists to develop specific cereal grain varieties with targeted food and feed

  12. Real-Time Tracking the Synthesis and Degradation of Albumin in Complex Biological Systems with a near-Infrared Fluorescent Probe.

    Science.gov (United States)

    Jin, Qiang; Feng, Lei; Zhang, Shui-Jun; Wang, Dan-Dan; Wang, Fang-Jun; Zhang, Yi; Cui, Jing-Nan; Guo, Wen-Zhi; Ge, Guang-Bo; Yang, Ling

    2017-09-19

    In this study, a novel fluorescent detection system for biological sensing of human albumin (HA) was developed on the basis of the pseudoesterase activity and substrate preference of HA. The designed near-infrared (NIR) fluorescent probe (DDAP) could be effectively hydrolyzed by HA, accompanied by significant changes in both color and fluorescence spectrum. The sensing mechanism was fully investigated by fluorescence spectroscopy, NMR, and mass spectra. DDAP exhibited excellent selectivity and sensitivity toward HA over a variety of human plasma proteins, hydrolases, and abundant biomolecules found in human body. The probe has been successfully applied to measure native HA in diluted plasma samples and the secreted HA in the hepatocyte culture supernatant. DDAP has also been used for fluorescence imaging of HA reabsorption in living renal cells, and the results show that the probe exhibits good cell permeability, low cytotoxicity and high imaging resolution. Furthermore, DDAP has been successfully used for real-time tracking the uptaking and degradation of albumin in ex vivo mouse kidney models for the first time. All these results clearly demonstrated that DDAP-based assay held great promise for real-time sensing and tracking HA in complex biological systems, which would be very useful for basic researches and clinical diagnosis of HA-associated diseases.

  13. Insights on diagnosis of oral cavity pathologies by infrared spectroscopy: A review

    Science.gov (United States)

    Giorgini, Elisabetta; Balercia, Paolo; Conti, Carla; Ferraris, Paolo; Sabbatini, Simona; Rubini, Corrado; Tosi, Giorgio

    2013-11-01

    Fourier-Transform Infrared microspectroscopy, a largely used spectroscopic technique in basic and industrial researches, offers the possibility to analyze the vibrational features of molecular groups within a variety of environments. In the bioclinical field, and, in particular, in the study of cells, tissues and biofluids, it could be considered a supporting objective technique able to characterize the biochemical processes involved in relevant pathologies, such as tumoral diseases, highlighting specific spectral markers associable with the principal biocomponents (proteins, lipids and carbohydrates). In this article, we review the applications of infrared spectroscopy to the study of tumoral diseases of oral cavity compartments with the aim to improve understanding of biological processes involved during the onset of these lesions and to afford to an early diagnosis. Spectral studies on mouth, salivary glands and oral cystic lesions, objectively discriminate normal from dysplastic and cancer states characterizing also the grading.

  14. First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Nynke S. van den [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands); Simon, Herve [Eurorad S.A., Eckbolsheim (France); Kleinjan, Gijs H. [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, Amsterdam (Netherlands); Engelen, Thijs [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Head and Neck Surgery and Oncology, Amsterdam (Netherlands); Bunschoten, Anton; Welling, Mick M. [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology (Netherlands); Tijink, Bernard M. [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Head and Neck Surgery and Oncology, Amsterdam (Netherlands); Horenblas, Simon [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands); Chambron, Jacques [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, Amsterdam (Netherlands); Leeuwen, Fijs W.B. van [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Head and Neck Surgery and Oncology, Amsterdam (Netherlands)

    2015-10-15

    The clinical introduction of the hybrid tracer indocyanine green (ICG)-{sup 99m}Tc-nanocolloid, composed of a radioactive and a near-infrared (NIR) fluorescence component, has created the need for surgical (imaging) modalities that allow for simultaneous detection of both signals. This study describes the first-in-human use of a prototype opto-nuclear probe during sentinel node (SN) biopsy using ICG-{sup 99m}Tc-nanocolloid. To allow for fluorescence tracing, a derivative of the conventional gamma probe technology was generated in which two optical fibers were integrated to allow for excitation (785 nm) and emission signal collection (> 810 nm). The ability of this opto-nuclear probe to detect the fluorescence signal of the hybrid tracer ICG-{sup 99m}Tc-nanocolloid was firstly determined ex vivo in (non)SNs samples obtained from 41 patients who underwent hybrid tracer-based SN biopsy in the head and neck or urogenital area. In an in vivo proof-of-concept study in nine of these 41 patients, SNs were localized using combined gamma and fluorescence tracing with the opto-nuclear probe. Fluorescence tracing was performed in a similar manner as gamma tracing and under ambient light conditions. Ex vivo, the gamma tracing option of the opto-nuclear probe correctly identified the SN in all 150 evaluated (non)SN samples. Ex vivo fluorescence tracing in the low-sensitivity mode correctly identified 71.7 % of the samples. This increased to 98.9 % when fluorescence tracing was performed in the high-sensitivity mode. In vivo fluorescence tracing (high-sensitivity mode) accurately identified the SNs in all nine patients (20 SNs evaluated; 100 %). This study demonstrates the first-in-human evaluation of a hybrid modality capable of detecting both gamma and fluorescence signals during a surgical procedure. Fluorescence tracing could be performed in ambient light. (orig.)

  15. Improved Debulking of Peritoneal Tumor Implants by Near-Infrared Fluorescent Nanobody Image Guidance in an Experimental Mouse Model.

    Science.gov (United States)

    Debie, Pieterjan; Vanhoeij, Marian; Poortmans, Natalie; Puttemans, Janik; Gillis, Kris; Devoogdt, Nick; Lahoutte, Tony; Hernot, Sophie

    2017-10-31

    Debulking followed by combination chemotherapy is currently regarded as the most effective treatment for advanced ovarian cancer. Prognosis depends drastically on the degree of debulking. Accordingly, near-infrared (NIR) fluorescence imaging has been proposed to revolutionize cancer surgery by acting as a sensitive, specific, and real-time tool enabling visualization of cancer lesions. We have previously developed a NIR-labeled nanobody that allows fast, specific, and high-contrast imaging of HER2-positive tumors. In this study, we applied this tracer during fluorescence-guided surgery in a mouse model and investigated the effect on surgical efficiency. 0.5 × 10 6 SKOV3.IP1-Luc+ cells were inoculated intraperitoneally in athymic mice and were allowed to grow for 30 days. Two nanomoles of IRDye800CW-anti-HER2 nanobody was injected intravenously. After 1h30, mice were killed, randomized in two groups, and subjected to surgery. In the first animal group (n = 7), lesions were removed by a conventional surgical protocol, followed by excision of remaining fluorescent tissue using a NIR camera. The second group of mice (n = 6) underwent directly fluorescence-guided surgery. Bioluminescence imaging was performed before and after surgery. Resected tissue was categorized as visualized during conventional surgery or not, fluorescent or not, and bioluminescent positive or negative. Fluorescence imaging allowed clear visualization of tumor nodules within the abdomen, up to submillimeter-sized lesions. Fluorescence guidance resulted in significantly reduced residual tumor as compared to conventional surgery. Moreover, sensitivity increased from 59.3 to 99.0 %, and the percentage of false positive lesions detected decreased from 19.6 to 7.1 %. This study demonstrates the advantage of intraoperative fluorescence imaging using nanobody-based tracers on the efficiency of debulking surgery.

  16. Using synchrotron-based FT-IR microspectroscopy to study erucamide migration in 50-micron-thick bilayer linear low-density polyethylene and polyolefin plastomer films.

    Science.gov (United States)

    Sankhe, Shilpa Y; Hirt, Douglas E

    2003-01-01

    The diffusion of additives in thick (approximately 500 microns) single layer and multilayer films has been characterized using FT-IR microspectroscopy. The objective of this research was to investigate additive migration and concentration profiles in coextruded multilayer films of industrially relevant thicknesses. In particular, the investigation focused on the migration of an erucamide slip agent in 50-micron-thick coextruded bilayer films of linear low-density polyethylene (LLDPE) and a polyolefin plastomer (POP). Erucamide concentration profiles were successfully mapped using synchrotron-based FT-IR microspectroscopy. The synchrotron radiation helped to achieve a higher spatial resolution for the thin films. Meticulous sample preparation was needed to map the thin film samples. Results with FT-IR microspectroscopy showed that the additive-concentration profiles were relatively uniform across the multilayer-film thickness irrespective of the intended initial additive distribution. For example, a bilayer planned for 1 wt % erucamide in an LLDPE layer and no erucamide in a POP layer showed significant additive migration into the POP layer at the extrusion rates used. FT-IR microspectroscopy results also showed that more erucamide migrated to the surface of a POP layer than an LLDPE layer. Attenuated total reflectance (ATR) FT-IR spectroscopy was used to confirm the time-dependent increase of erucamide surface concentration and that the increase was more pronounced at the surface of the POP layers.

  17. Virus-resembling nano-structures for near infrared fluorescence imaging of ovarian cancer HER2 receptors

    Science.gov (United States)

    Guerrero, Yadir A.; Bahmani, Baharak; Singh, Sheela P.; Vullev, Valentine I.; Kundra, Vikas; Anvari, Bahman

    2015-10-01

    Ovarian cancer remains the dominant cause of death due to malignancies of the female reproductive system. The capability to identify and remove all tumors during intraoperative procedures may ultimately reduce cancer recurrence, and lead to increased patient survival. The objective of this study is to investigate the effectiveness of an optical nano-structured system for targeted near infrared (NIR) imaging of ovarian cancer cells that over-express the human epidermal growth factor receptor 2 (HER2), an important biomarker associated with ovarian cancer. The nano-structured system is comprised of genome-depleted plant-infecting brome mosaic virus doped with NIR chromophore, indocyanine green, and functionalized at the surface by covalent attachment of monoclonal antibodies against the HER2 receptor. We use absorption and fluorescence spectroscopy, and dynamic light scattering to characterize the physical properties of the constructs. Using fluorescence imaging and flow cytometry, we demonstrate the effectiveness of these nano-structures for targeted NIR imaging of HER2 receptors in vitro. These functionalized nano-materials may provide a platform for NIR imaging of ovarian cancer.

  18. Virus-resembling nano-structures for near infrared fluorescence imaging of ovarian cancer HER2 receptors

    International Nuclear Information System (INIS)

    Guerrero, Yadir A; Bahmani, Baharak; Vullev, Valentine I; Anvari, Bahman; Singh, Sheela P; Kundra, Vikas

    2015-01-01

    Ovarian cancer remains the dominant cause of death due to malignancies of the female reproductive system. The capability to identify and remove all tumors during intraoperative procedures may ultimately reduce cancer recurrence, and lead to increased patient survival. The objective of this study is to investigate the effectiveness of an optical nano-structured system for targeted near infrared (NIR) imaging of ovarian cancer cells that over-express the human epidermal growth factor receptor 2 (HER2), an important biomarker associated with ovarian cancer. The nano-structured system is comprised of genome-depleted plant-infecting brome mosaic virus doped with NIR chromophore, indocyanine green, and functionalized at the surface by covalent attachment of monoclonal antibodies against the HER2 receptor. We use absorption and fluorescence spectroscopy, and dynamic light scattering to characterize the physical properties of the constructs. Using fluorescence imaging and flow cytometry, we demonstrate the effectiveness of these nano-structures for targeted NIR imaging of HER2 receptors in vitro. These functionalized nano-materials may provide a platform for NIR imaging of ovarian cancer. (paper)

  19. Infrared fluorescent protein 1.4 genetic labeling tracks engrafted cardiac progenitor cells in mouse ischemic hearts.

    Directory of Open Access Journals (Sweden)

    Lijuan Chen

    Full Text Available Stem cell therapy has a potential for regenerating damaged myocardium. However, a key obstacle to cell therapy's success is the loss of engrafted cells due to apoptosis or necrosis in the ischemic myocardium. While many strategies have been developed to improve engrafted cell survival, tools to evaluate cell efficacy within the body are limited. Traditional genetic labeling tools, such as GFP-like fluorescent proteins (eGFP, DsRed, mCherry, have limited penetration depths in vivo due to tissue scattering and absorption. To circumvent these limitations, a near-infrared fluorescent mutant of the DrBphP bacteriophytochrome from Deinococcus radiodurans, IFP1.4, was developed for in vivo imaging, but it has yet to be used for in vivo stem/progenitor cell tracking. In this study, we incorporated IFP1.4 into mouse cardiac progenitor cells (CPCs by a lentiviral vector. Live IFP1.4-labeled CPCs were imaged by their near-infrared fluorescence (NIRF using an Odyssey scanner following overnight incubation with biliverdin. A significant linear correlation was observed between the amount of cells and NIRF signal intensity in in vitro studies. Lentiviral mediated IFP1.4 gene labeling is stable, and does not impact the apoptosis and cardiac differentiation of CPC. To assess efficacy of our model for engrafted cells in vivo, IFP1.4-labeled CPCs were intramyocardially injected into infarcted hearts. NIRF signals were collected at 1-day, 7-days, and 14-days post-injection using the Kodak in vivo multispectral imaging system. Strong NIRF signals from engrafted cells were imaged 1 day after injection. At 1 week after injection, 70% of the NIRF signal was lost when compared to the intensity of the day 1 signal. The data collected 2 weeks following transplantation showed an 88% decrease when compared to day 1. Our studies have shown that IFP1.4 gene labeling can be used to track the viability of transplanted cells in vivo.

  20. In vivo imaging of membrane type-1 matrix metalloproteinase with a novel activatable near-infrared fluorescence probe.

    Science.gov (United States)

    Shimizu, Yoichi; Temma, Takashi; Hara, Isao; Makino, Akira; Kondo, Naoya; Ozeki, Ei-Ichi; Ono, Masahiro; Saji, Hideo

    2014-08-01

    Membrane type-1 matrix metalloproteinase (MT1-MMP) is a protease activating MMP-2 that mediates cleavage of extracellular matrix components and plays pivotal roles in tumor migration, invasion and metastasis. Because in vivo noninvasive imaging of MT1-MMP would be useful for tumor diagnosis, we developed a novel near-infrared (NIR) fluorescence probe that can be activated following interaction with MT1-MMP in vivo. MT1-hIC7L is an activatable fluorescence probe comprised of anti-MT1-MMP monoclonal antibodies conjugated to self-assembling polymer micelles that encapsulate NIR dyes (IC7-1, λem : 858 nm) at concentrations sufficient to cause fluorescence self-quenching. In aqueous buffer, MT1-hIC7L fluorescence was suppressed to background levels and increased approximately 35.5-fold in the presence of detergent. Cellular uptake experiments revealed that in MT1-MMP positive C6 glioma cells, MT1-hIC7L showed significantly higher fluorescence that increased with time as compared to hIC7L, a negative control probe lacking the anti-MT1-MMP monoclonal antibody. In MT1-MMP negative MCF-7 breast adenocarcinoma cells, both MT1-hIC7L and hIC7L showed no obvious fluorescence. In addition, the fluorescence intensity of C6 cells treated with MT1-hIC7L was suppressed by pre-treatment with an MT1-MMP endocytosis inhibitor (P imaging using probes intravenously administered to tumor-bearing mice showed that MT1-hIC7L specifically visualized C6 tumors (tumor-to-background ratios: 3.8 ± 0.3 [MT1-hIC7L] vs 3.1 ± 0.2 [hIC7L] 48 h after administration, P fluorescence in MCF-7 tumors. Together, these results show that MT1-hIC7L would be a potential activatable NIR probe for specifically detecting MT1-MMP-expressing tumors. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  1. Feasibility of Real-Time Near-Infrared Fluorescence Tracer Imaging in Sentinel Node Biopsy for Oral Cavity Cancer Patients.

    Science.gov (United States)

    Christensen, Anders; Juhl, Karina; Charabi, Birgitte; Mortensen, Jann; Kiss, Katalin; Kjær, Andreas; von Buchwald, Christian

    2016-02-01

    Sentinel node biopsy (SNB) is an established method in oral squamous cell carcinoma (OSCC) for staging the cN0 neck and to select patients who will benefit from a neck dissection. Near-infrared fluorescence (NIRF) imaging has the potential to improve the SNB procedure by facilitating intraoperative visual identification of the sentinel lymph node (SN). The purpose of this study was to evaluate the feasibility of fluorescence tracer imaging for SN detection in conjunction with conventional radio-guided technique. Prospective study of patients with primary OSCC planned for tumor resection and SNB. Thirty patients were injected peritumorally with a bimodal tracer (ICG-99mTc-Nanocoll) followed by lymphoscintigraphy and SPECT/CT to define the SNs and their anatomic allocation preoperatively. SNs were detected intraoperatively with a hand-held gamma-probe and a hand-held NIRF camera. In 29 of 30 subjects (97%), all preoperatively defined SNs could be identified intraoperatively using a combination of radioactive and fluorescence guidance. A total of 94 SNs (mean 3, range 1-5) that were both radioactive and fluorescent ex vivo were harvested. Eleven of 94 SNs (12%) could only be identified in vivo using NIRF imaging, and the majority of those were located in level 1 close to the primary tumor. A combined fluorescent and radioactive tracer for SNB is feasible, and the additional use of NIRF imaging may improve the accuracy of SN identification in oral cancer patients. Intraoperative fluorescence guidance seems of particular value when SNs are located in close proximity to the injection site.

  2. Following lipids in the food chain: determination of the iodine value using Raman micro-spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Samek, Ota; Zemánek, Pavel; Bernatová, Silvie; Pilát, Zdeněk; Telle, H.H.

    2012-01-01

    Roč. 24, č. 3 (2012), s. 18-21 ISSN 0966-0941 R&D Projects: GA ČR GAP205/11/1687; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Raman micro-spectroscopy * Raman laser excitation * lipids Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  3. Non-Invasive Detection of Lung Inflammation by Near-Infrared Fluorescence Imaging Using Bimodal Liposomes.

    Science.gov (United States)

    Desu, Hari R; Wood, George C; Thoma, Laura A

    2016-01-01

    Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome results in respiratory obstruction and severe lung inflammation. Critical characteristics of ALI are alveolar edema, infiltration of leukocytes (neutrophils and monocytes), release of pro-inflammatory cytokines and chemokines into broncho-alveolar lavage fluid, and activation of integrin receptors. The purpose of the study was to demonstrate non-invasive detection of lung inflammation using integrin receptor targeted fluorescence liposomes. An inflammation similar to that observed in ALI was elicited in rodents by intra-tracheal instillation of interleukin-1beta (IL-1beta). Cyclic arginine glycine-(D)-aspartic acid-peptide (cRGD-peptide) grafted fluorescence liposomes were administered to ALI induced male Sprague-Dawley rats for targeting lung integrin receptors. Near-infrared fluorescence imaging (NIRFI) was applied for visualization and quantitation of lung inflammation. NIRFI signals were correlated with inflammatory cellular and biochemical markers of lungs. A positive correlation was observed between NIRF signals and lung inflammation markers. Compared to control group, an intense NIRF signal was observed in ALI induced rats in the window 6-24 h post-IL-1beta instillation. Interaction of integrin receptors with targeted liposomes was assumed to contribute to intense NIRF signal. RT-PCR studies showed an elevated lung expression of alphavbeta5 integrin receptors, 12 h post-IL-1beta instillation. In vitro studies demonstrated integrin receptor specificity of targeted liposomes. These targeted liposomes showed binding to alphavbeta5 integrin receptors expressed on alveolar cells. Non-invasive detection of lung inflammation was demonstrated using a combination of integrin receptor targeting and NIRFI.

  4. Modifying infrared scattering effects of single yeast cells with plasmonic metal mesh

    Science.gov (United States)

    Malone, Marvin A.; Prakash, Suraj; Heer, Joseph M.; Corwin, Lloyd D.; Cilwa, Katherine E.; Coe, James V.

    2010-11-01

    The scattering effects in the infrared (IR) spectra of single, isolated bread yeast cells (Saccharomyces cerevisiae) on a ZnSe substrate and in metal microchannels have been probed by Fourier transform infrared imaging microspectroscopy. Absolute extinction [(3.4±0.6)×10-7 cm2 at 3178 cm-1], scattering, and absorption cross sections for a single yeast cell and a vibrational absorption spectrum have been determined by comparing it to the scattering properties of single, isolated, latex microspheres (polystyrene, 5.0 μm in diameter) on ZnSe, which are well modeled by the Mie scattering theory. Single yeast cells were then placed into the holes of the IR plasmonic mesh, i.e., metal films with arrays of subwavelength holes, yielding "scatter-free" IR absorption spectra, which have undistorted vibrational lineshapes and a rising generic IR absorption baseline. Absolute extinction, scattering, and absorption spectral profiles were determined for a single, ellipsoidal yeast cell to characterize the interplay of these effects.

  5. Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn-on near-infrared fluorescent bioimaging of cancer cells and small animals.

    Science.gov (United States)

    Wang, Yong; Chen, Jia-Tong; Yan, Xiu-Ping

    2013-02-19

    Transferrin (Tf)-functionalized gold nanoclusters (Tf-AuNCs)/graphene oxide (GO) nanocomposite (Tf-AuNCs/GO) was fabricated as a turn-on near-infrared (NIR) fluorescent probe for bioimaging cancer cells and small animals. A one-step approach was developed to prepare Tf-AuNCs via a biomineralization process with Tf as the template. Tf acted not only as a stabilizer and a reducer but also as a functional ligand for targeting the transferrin receptor (TfR). The prepared Tf-AuNCs gave intense NIR fluorescence that can avoid interference from biological media such as tissue autofluorescence and scattering light. The assembly of Tf-AuNCs and GO gave the Tf-AuNCs/GO nanocomposite, a turn-on NIR fluorescent probe with negligible background fluorescence due to the super fluorescence quenching property of GO. The NIR fluorescence of the Tf-AuNCs/GO nanocomposite was effectively restored in the presence of TfR, due to the specific interaction between Tf and TfR and the competition of TfR with the GO for the Tf in Tf-AuNCs/GO composite. The developed turn-on NIR fluorescence probe offered excellent water solubility, stability, and biocompatibility, and exhibited high specificity to TfR with negligible cytotoxicity. The probe was successfully applied for turn-on fluorescent bioimaging of cancer cells and small animals.

  6. DNA Methylation Changes in Valproic Acid-Treated HeLa Cells as Assessed by Image Analysis, Immunofluorescence and Vibrational Microspectroscopy.

    Directory of Open Access Journals (Sweden)

    Giovana M B Veronezi

    Full Text Available Valproic acid (VPA, a well-known histone deacetylase inhibitor, has been reported to affect the DNA methylation status in addition to inducing histone hyperacetylation in several cell types. In HeLa cells, VPA promotes histone acetylation and chromatin remodeling. However, DNA demethylation was not checked in this cell model for standing effects longer than those provided by histone acetylation, which is a rapid and transient phenomenon. Demonstration of VPA-induced DNA demethylation in HeLa cells would contribute to understanding the effect of VPA on an aggressive tumor cell line. In the present work, DNA demethylation in VPA-treated HeLa cells was assessed by image analysis of chromatin texture, the abundance of 5-methylcytosine (5mC immunofluorescence signals and Fourier transform-infrared (FT-IR microspectroscopy centered on spectral regions related to the vibration of-CH3 groups. Image analysis indicated that increased chromatin unpacking promoted by a 4-h-treatment with 1.0 mM VPA persisted for 24 h in the absence of the drug, suggesting the occurrence of DNA demethylation that was confirmed by decreased 5mC immunofluorescence signals. FT-IR spectra of DNA samples from 1 mM or 20 mM VPA-treated cells subjected to a peak fitting analysis of the spectral window for-CH3 stretching vibrations showed decreased vibrations and energy of these groups as a function of the decreased abundance of 5mC induced by increased VPA concentrations. Only the 20 mM-VPA treatment caused an increase in the ratio of -CH3 bending vibrations evaluated at 1375 cm-1 in relation to in-plane vibrations of overall cytosines evaluated at 1492 cm-1. CH3 stretching vibrations showed to be more sensitive than-CH3 bending vibrations, as detected with FT-IR microspectroscopy, for studies aiming to associate vibrational spectroscopy and changes in DNA 5mC abundance.

  7. Functional Near-Infrared Fluorescence Imaging for Cardiac Surgery and Targeted Gene Therapy

    Directory of Open Access Journals (Sweden)

    Akira Nakayama

    2002-10-01

    Full Text Available Cardiac revascularization is presently performed without realtime visual assessment of myocardial blood flow or perfusion. Moreover, gene therapy of the heart cannot, at present, be directed to specific territories at risk for myocardial infarction. We have developed a surgical imaging system that exploits the low autofluorescence, deep tissue penetration, low tissue scatter, and invisibility of near-infrared (NIR fluorescent light. By completely isolating visible and NIR light paths, one is able to visualize, simultaneously, the anatomy and/or function of the heart, or any desired tissue. In rat model systems, we demonstrate that the heptamethine indocyanine-type NIR fluorophores IR-786 and the carboxylic acid form of IRDye78 can be injected intravenously in the living animal to provide real-time visual assessment of myocardial blood flow or perfusion intraoperatively. This imaging system may prove useful for the refinement of revascularization techniques, and for the administration of cardiac gene therapy.

  8. Quantitation of Brown Adipose Tissue Perfusion in Transgenic Mice Using Near-Infrared Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Akira Nakayama

    2003-01-01

    Full Text Available Brown adipose tissue (BAT; brown fat is the principal site of adaptive thermogenesis in the human newborn and other small mammals. Of paramount importance for thermogenesis is vascular perfusion, which controls the flow of cool blood in, and warmed blood out, of BAT. We have developed an optical method for the quantitative imaging of BAT perfusion in the living, intact animal using the heptamethine indocyanine IR-786 and near-infrared (NIR fluorescent light. We present a detailed analysis of the physical, chemical, and cellular properties of IR-786, its biodistribution and pharmacokinetics, and its uptake into BAT. Using transgenic animals with homozygous deletion of Type II iodothyronine deiodinase, or homozygous deletion of uncoupling proteins (UCPs 1 and 2, we demonstrate that BAT perfusion can be measured noninvasively, accurately, and reproducibly. Using these techniques, we show that UCP 1/2 knockout animals, when compared to wild-type animals, have a higher baseline perfusion of BAT but a similar maximal response to β3-receptor agonist. These results suggest that compensation for UCP deletion is mediated, in part, by the control of BAT perfusion. Taken together, BAT perfusion can now be measured noninvasively using NIR fluorescent light, and pharmacological modulators of thermogenesis can be screened at relatively high throughput in living animals.

  9. Advantages of infrared transflection micro spectroscopy and paraffin-embedded sample preparation for biological studies

    Science.gov (United States)

    Yao, Jie; Li, Qian; Zhou, Bo; Wang, Dan; Wu, Rie

    2018-04-01

    Fourier-Transform Infrared micro-spectroscopy is an excellent method for biological analyses. In this paper, series metal coating films on ITO glass were prepared by the electrochemical method and the different thicknesses of paraffin embedding rat's brain tissue on the substrates were studied by IR micro-spetroscopy in attenuated total reflection (ATR) mode and transflection mode respectively. The Co-Ni-Cu alloy coating film with low cost is good reflection substrates for the IR analysis. The infrared microscopic transflection mode needs not to touch the sample at all and can get the IR spectra with higher signal to noise ratios. The Paraffin-embedding method allows tissues to be stored for a long time for re-analysis to ensure the traceability of the sample. Also it isolates the sample from the metal and avoids the interaction of biological tissue with the metals. The best thickness of the tissues is 4 μm.

  10. Near-infrared fluorescence imaging platform for quantifying in vivo nanoparticle diffusion from drug loaded implants.

    Science.gov (United States)

    Markovic, Stacey; Belz, Jodi; Kumar, Rajiv; Cormack, Robert A; Sridhar, Srinivas; Niedre, Mark

    2016-01-01

    Drug loaded implants are a new, versatile technology platform to deliver a localized payload of drugs for various disease models. One example is the implantable nanoplatform for chemo-radiation therapy where inert brachytherapy spacers are replaced by spacers doped with nanoparticles (NPs) loaded with chemotherapeutics and placed directly at the disease site for long-term localized drug delivery. However, it is difficult to directly validate and optimize the diffusion of these doped NPs in in vivo systems. To better study this drug release and diffusion, we developed a custom macroscopic fluorescence imaging system to visualize and quantify fluorescent NP diffusion from spacers in vivo. To validate the platform, we studied the release of free fluorophores, and 30 nm and 200 nm NPs conjugated with the same fluorophores as a model drug, in agar gel phantoms in vitro and in mice in vivo. Our data verified that the diffusion volume was NP size-dependent in all cases. Our near-infrared imaging system provides a method by which NP diffusion from implantable nanoplatform for chemo-radiation therapy spacers can be systematically optimized (eg, particle size or charge) thereby improving treatment efficacy of the platform.

  11. WW Domain Folding Complexity Revealed by Infrared Spectroscopy

    OpenAIRE

    Davis, Caitlin M.; Dyer, R. Brian

    2014-01-01

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescen...

  12. RGDS-conjugated CdSeTe/CdS quantum dots as near-infrared fluorescent probe: preparation, characterization and bioapplication

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhenzhen; Zhang, Qiyi; Huang, Huaying; Ren, Changjing; Pan, Yujin; Wang, Qing; Zhao, Qiang, E-mail: Zhaoqiang@scu.edu.cn [Sichuan University, School of Chemical Engineering (China)

    2016-12-15

    In the experiments, high-quality, water-soluble and near-infrared (NIR)-emitting CdSeTe and CdSeTe/CdS quantum dots (QDs) were successfully prepared. The average size of CdSeTe⁄CdS QDs was 7.68 nm and CdSeTe QDs was 4.33 nm. Arginine-glycine-aspartic-serine acid (RGDS) peptides were linked to CdSeTe/CdS QDs by N-(3-(dimethylamino)propyl)-N′-ehtylcarbodiimide hydrochloride (EDC) and N′-hydroxysuccinimide (NHS). The prepared RGDS-tagged NIR CdSeTe/CdS QDs (denoted as RGDS-CdSeTe/CdS) had an average diameter of 24.83 nm and were used for cancer cell immunofluorescence imaging. The characteristics of RGDS-conjugated CdSeTe/CdS such as morphology, structure, spectra, stability, cytotoxicity, and near-infrared microscopic imaging were investigated in detail. HepG2 cells were incubated with the novel fluorescent probe (RGDS-CdSeTe/CdS), which realized immunofluorescence targeting and imaging. The results reported here open up new perspectives for integrin-targeted near-infrared imaging and may aid in tumor detection including imaging-guided surgery.

  13. WW domain folding complexity revealed by infrared spectroscopy.

    Science.gov (United States)

    Davis, Caitlin M; Dyer, R Brian

    2014-09-02

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescence spectroscopy, to study the folding of the FBP28 WW domain. Laser-induced temperature jumps coupled with fluorescence or infrared spectroscopy have been used to probe changes in the peptide backbone on the submillisecond time scale. The relaxation dynamics of the β-sheets and β-turn were measured independently by probing the corresponding IR bands assigned in the amide I region. Using these wavelength-dependent measurements, we observe three kinetics phases, with the fastest process corresponding to the relaxation kinetics of the turns. In contrast, fluorescence measurements of the wild-type WW domain and tryptophan mutants exhibit single-exponential kinetics with a lifetime that corresponds to the slowest phase observed by infrared spectroscopy. Mutant sequences provide evidence of an intermediate dry molten globule state. The slowest step in the folding of this WW domain is the tight packing of the side chains in the transition from the dry molten globule intermediate to the native structure. This study demonstrates that using multiple complementary probes enhances the interpretation of protein folding dynamics.

  14. Laser-excited fluorescence for measuring atmospheric pollution

    Science.gov (United States)

    Menzies, R. T.

    1975-01-01

    System measures amount of given pollutant at specific location. Infrared laser aimed at location has wavelength that will cause molecules of pollutant to fluoresce. Detector separates fluorescence from other radiation and measures its intensity to indicate concentration of pollutant.

  15. Fluorescent SiC as a New Platform for Visible and Infrared Emitting Applications as Well as Prospective Photovoltaics

    DEFF Research Database (Denmark)

    Syvaejaervi, Mikael; Sun, Jianwu; Wellmann, Peter

    region from 700 to 900 nm with a peak at 830 nm. Further on, the boron is a deep level and replacing the boron with the aluminum, being a shallow acceptor, would open up further emissions in the visible and infrared regions that would allow tuning of emission for selected purposes. The combination......Fluorescent SiC is a novel materials system which may be a new platform for visible and infrared emitting applications. Although SiC is an indirect bandgap semiconductor, the donor acceptor pair emissions involving deep acceptors could become efficient if the acceptor envelope function...... efficient optoelectronic transistions. We have shown that 3C-SiC could be grown in a very high quality. Carrier lifetime is one of the key parameters governing the electronic and optoelectronic devices. Very recently we have synthesized high quality 3C-SiC by a PVT process on 6H-SiC and with a very high...

  16. Noninvasive Assessment of Gastric Emptying by Near-Infrared Fluorescence Reflectance Imaging in Mice: Pharmacological Validation with Tegaserod, Cisapride, and Clonidine

    Directory of Open Access Journals (Sweden)

    Hans-Ulrich Gremlich

    2004-10-01

    Full Text Available Noninvasive near-infrared fluorescence reflectance imaging (FRI is an in vivo technique to assess physiological and molecular processes in the intact organism. Here we describe a method to assess gastric emptying in mice. TentaGel™ beads with covalently bound cyanine dye (Cy5.5 conjugates as fluorescent probe were administered by oral gavage. The amount of intragastric beads/label was derived from the fluorescence signal intensity measured in a region of interest corresponding to the mouse stomach. The FRI signal intensity decreased as a function of time reflecting gastric emptying. In control mice, the gastric half-emptying time was in agreement with literature data. Pharmacological modulation of gastric motility allowed the evaluation of the sensitivity of the FRI-based method. Gastric emptying was either stimulated or inhibited by treatment with the 5-HT4 receptor agonists tegaserod (Zelnorm® and cisapride or the α2-receptor agonist clonidine, respectively. Tegaserod and cisapride dose-dependently accelerated gastric emptying. In contrast, clonidine dose-dependently delayed gastric emptying. In conclusion, FRI using fluorescently labeled beads allows the reliable determination of gastric emptying as well as the assessment of pharmacological interventions. The technique thus offers the potential to characterize molecular targets and pathways involved in physiological regulation and pharmacological modulation of gastric emptying.

  17. The X-Ray Microscopy And Micro-Spectroscopy Facility At The ESRF

    International Nuclear Information System (INIS)

    Susini, J.; Somogyi, A.; Barrett, R.; Salome, M.; Bohic, S.; Fayard, B.; Eichert, D.; Dhez, O.; Bleuet, P.; Martinez-Criado, G.; Tucoulou, R.

    2004-01-01

    Among the 40 beamlines in operation at the European Synchrotron Radiation Facility, three beamlines are fully dedicated to X-ray microscopy and micro-spectroscopy techniques in the multi-keV range. Offering a unique combination of non destructive analytical techniques which aim to satisfy the growing demand from experimental research fields such as medicine, geology, archaeology, earth, planetary and environmental sciences. Following a brief discussion on the strengths and weaknesses of X-ray microscopy and spectro-microscopy techniques in the 1-20keV range, characteristics of the beamlines are briefly described. Examples of applications are given in the reference list

  18. Construction of dual-functional polymer nanomaterials with near-infrared fluorescence imaging and polymer prodrug by RAFT-mediated aqueous dispersion polymerization.

    Science.gov (United States)

    Tian, Chun; Niu, Jinyun; Wei, Xuerui; Xu, Yujie; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2018-05-31

    The performance of functional polymer nanomaterials is a vigorously discussed topic in polymer science. We devoted ourselves to investigating polymer nanomaterials based on near-infrared (NIR) fluorescence imaging and polymer prodrug in this study. Aza-boron dipyrromethene (BODIPY) is an important organic dye, having characteristics such as environmental resistance, light resistance, high molar extinction coefficient, and fluorescence quantum yield. We incorporated it into our target monomer, which can be polymerized without changing its parent structure in a polar solvent and copolymerized with water-soluble monomer to improve the solubility of the dye in an aqueous solution. At the same time, the hydrophobic drug camptothecin (CPT) was designed as a prodrug monomer, and the polymeric nanoparticles (NPs) with NIR fluorescence imaging and prodrug were synthesized in situ in reversible addition-fragmentation chain transfer (RAFT)-mediated aqueous dispersion polymerization. The dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed the final uniform size of the dual-functional polymeric NPs morphology. The dual-functional polymeric NPs had a strong absorption and emission signal in the NIR region (>650 nm) based on the fluorescence tests. In consideration of the long-term biological toxicity, confocal laser scanning microscopy (CLSM) results indicated that the dual-functional NPs with controlled drug content exhibited effective capability of killing HeLa cells. In addition, in vivo imaging of the dual-functional NPs was observed in real time, and the fluorescent signals clearly demonstrated the dynamic process of prodrug transfer.

  19. Fluorescence Microspectroscopy for Testing the Dimerization Hypothesis of BACE1 Protein in Cultured HEK293 Cells

    Science.gov (United States)

    Gardeen, Spencer; Johnson, Joseph L.; Heikal, Ahmed A.

    2016-06-01

    Alzheimer's Disease (AD) is a neurodegenerative disorder that results from the formation of beta-amyloid plaques in the brain that trigger the known symptoms of memory loss in AD patients. The beta-amyloid plaques are formed by the proteolytic cleavage of the amyloid precursor protein (APP) by the proteases BACE1 and gamma-secretase. These enzyme-facilitated cleavages lead to the production of beta-amyloid fragments that aggregate to form plaques, which ultimately lead to neuronal cell death. Recent detergent protein extraction studies suggest that BACE1 protein forms a dimer that has significantly higher catalytic activity than its monomeric counterpart. In this contribution, we examine the dimerization hypothesis of BACE1 in cultured HEK293 cells using complementary fluorescence spectroscopy and microscopy methods. Cells were transfected with a BACE1-EGFP fusion protein construct and imaged using confocal, and differential interference contrast to monitor the localization and distribution of intracellular BACE1. Complementary fluorescence lifetime and anisotropy measurements enabled us to examine the conformational and environmental changes of BACE1 as a function of substrate binding. Using fluorescence correlation spectroscopy, we also quantified the diffusion coefficient of BACE1-EGFP on the plasma membrane as a means to test the dimerization hypothesis as a fucntion of substrate-analog inhibitition. Our results represent an important first towards examining the substrate-mediated dimerization hypothesis of BACE1 in live cells.

  20. Fluorescence tomographic imaging of sentinel lymph node using near-infrared emitting bioreducible dextran nanogels

    Directory of Open Access Journals (Sweden)

    Li J

    2014-12-01

    Full Text Available Jiejing Li,1* Beiqi Jiang,1* Chao Lin,2 Zhigang Zhuang1 1Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, 2The Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Tongji University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Sentinel lymph node (SLN mapping is a critical procedure for SLN biopsy and its diagnosis as tumor metastasis in clinical practice. However, SLN mapping agents used in the clinic frequently cause side effects and complications in the patients. Here, we report the development of a near-infrared (NIR emitting polymeric nanogel with hydrodynamic diameter of ~28 nm – which is the optimal size for SLN uptake – for noninvasive fluorescence mapping of SLN in a mouse. This polymeric nanogel was obtained by coupling Cy7, an NIR dye, to the self-assembled nanogel from disulfide-linked dextran-deoxycholic acid conjugate with the dextran of 10 kDa, denoted as Dex–Cy7. Fluorescence imaging analysis showed that Dex–Cy7 nanogels had an enhanced photostability when compared to Cy7 alone. After intradermal injection of Dex–Cy7 nanogel into the front paw of a mouse, the nanogels were able to migrate into the mouse’s axillary lymph node, exhibiting longer retention time and higher fluorescence intensity in the node when compared to Cy7 alone. An immunohistofluorescence assay revealed that the nanogels were localized in the central region of lymph node and that the uptake was largely by the macrophages. In vitro and in vivo toxicity results indicated that the dextran-based nanogels were of low cytotoxicity at a polymer concentration up to 1,000 µg/mL and harmless to normal liver and kidney organs in mice at an intravenous dose of 1.25 mg/kg. The results of this study suggest that NIR-emitting polymeric nanogels based on bioreducible dextran-deoxycholic acid conjugates show high potential as fluorescence

  1. Near-Infrared Fluorescence Detection of Acetylcholine in Aqueous Solution Using a Complex of Rhodamine 800 and p-Sulfonato-calix[8]arene

    Science.gov (United States)

    Jin, Takashi

    2010-01-01

    The complexing properties of p-sulfonatocalix[n]arenes (n = 4: S[4], n = 6: S[6], and n = 8: S[8]) for rhodamine 800 (Rh800) and indocyanine green (ICG) were examined to develop a near-infrared (NIR) fluorescence detection method for acetylcholine (ACh). We found that Rh800 (as a cation) forms an inclusion complex with S[n], while ICG (as a twitter ion) have no binding ability for S[n]. The binding ability of Rh800 to S[n] decreased in the order of S[8] > S[6] >> S[4]. By the formation of the complex between Rh800 and S[8], fluorescence intensity of the Rh800 was significantly decreased. From the fluorescence titration of Rh800 by S[8], stoichiometry of the Rh800-S[8] complex was determined to be 1:1 with a dissociation constant of 2.2 μM in PBS. The addition of ACh to the aqueous solution of the Rh800-S[8] complex caused a fluorescence increase of Rh800, resulting from a competitive replacement of Rh800 by ACh in the complex. From the fluorescence change by the competitive fluorophore replacement, stoichiometry of the Rh800-ACh complex was found to be 1:1 with a dissociation constant of 1.7 mM. The effects of other neurotransmitters on the fluorescence spectra of the Rh800-S[8] complex were examined for dopamine, GABA, glycine, and l-asparatic acid. Among the neurotransmitters examined, fluorescence response of the Rh800-S[8] complex was highly specific to ACh. Rh800-S[8] complexes can be used as a NIR fluorescent probe for the detection of ACh (5 × 10−4−10−3 M) in PBS buffer (pH = 7.2). PMID:22294934

  2. A photostable near-infrared fluorescent tracker with pH-independent specificity to lysosomes for long time and multicolor imaging.

    Science.gov (United States)

    Zhang, Xinfu; Wang, Chao; Han, Zhuo; Xiao, Yi

    2014-12-10

    A new boron-dipyrromethene-based lysosome tracker, Lyso-NIR, is facilely synthesized. Besides the intensive near-infrared (NIR) fluorescence and high photostability, Lyso-NIR shows the capability to stably localize in lysosomes, which is independent of the local pH. Lyso-NIR does not have the problematic alkalization effect suffered by the commonly used lysotrackers; thus, it shows ignorable cytotoxicity and slightly affects normal physiological functions of lysosomes. The above advantages of Lyso-NIR make it feasible to track lysosomes' dynamic changes in a relatively long time during the full cellular processes such as apoptosis, heavy metal stimulation, and endocytosis, as is demonstrated in this work. Moreover, Lyso-NIR's narrow NIR emission at 740 nm with a full width at half-maximum smaller than 50 nm makes it easy to avoid the crosstalk with the emissions from other common fluorescent probes, which strengthens Lyso-NIR's competitiveness as a standard lysosome tracker for multicolor bioimaging.

  3. Real-time visualization and quantification of retrograde cardioplegia delivery using near infrared fluorescent imaging.

    Science.gov (United States)

    Rangaraj, Aravind T; Ghanta, Ravi K; Umakanthan, Ramanan; Soltesz, Edward G; Laurence, Rita G; Fox, John; Cohn, Lawrence H; Bolman, R M; Frangioni, John V; Chen, Frederick Y

    2008-01-01

    Homogeneous delivery of cardioplegia is essential for myocardial protection during cardiac surgery. Presently, there exist no established methods to quantitatively assess cardioplegia distribution intraoperatively and determine when retrograde cardioplegia is required. In this study, we evaluate the feasibility of near infrared (NIR) imaging for real-time visualization of cardioplegia distribution in a porcine model. A portable, intraoperative, real-time NIR imaging system was utilized. NIR fluorescent cardioplegia solution was developed by incorporating indocyanine green (ICG) into crystalloid cardioplegia solution. Real-time NIR imaging was performed while the fluorescent cardioplegia solution was infused via the retrograde route in five ex vivo normal porcine hearts and in five ex vivo porcine hearts status post left anterior descending (LAD) coronary artery ligation. Horizontal cross-sections of the hearts were obtained at proximal, middle, and distal LAD levels. Videodensitometry was performed to quantify distribution of fluorophore content. The progressive distribution of cardioplegia was clearly visualized with NIR imaging. Complete visualization of retrograde distribution occurred within 4 minutes of infusion. Videodensitometry revealed retrograde cardioplegia, primarily distributed to the left ventricle (LV) and anterior septum. In hearts with LAD ligation, antegrade cardioplegia did not distribute to the anterior LV. This deficiency was compensated for with retrograde cardioplegia supplementation. Incorporation of ICG into cardioplegia allows real-time visualization of cardioplegia delivery via NIR imaging. This technology may prove useful in guiding intraoperative decisions pertaining to when retrograde cardioplegia is mandated.

  4. Catheter-based time-gated near-infrared fluorescence/OCT imaging system

    Science.gov (United States)

    Lu, Yuankang; Abran, Maxime; Cloutier, Guy; Lesage, Frédéric

    2018-02-01

    We developed a new dual-modality intravascular imaging system based on fast time-gated fluorescence intensity imaging and spectral domain optical coherence tomography (SD-OCT) for the purpose of interventional detection of atherosclerosis. A pulsed supercontinuum laser was used for fluorescence and OCT imaging. A double-clad fiber (DCF)- based side-firing catheter was designed and fabricated to have a 23 μm spot size at a 2.2 mm working distance for OCT imaging. Its single-mode core is used for OCT, while its inner cladding transports fluorescence excitation light and collects fluorescent photons. The combination of OCT and fluorescence imaging was achieved by using a DCF coupler. For fluorescence detection, we used a time-gated technique with a novel single-photon avalanche diode (SPAD) working in an ultra-fast gating mode. A custom-made delay chip was integrated in the system to adjust the delay between the excitation laser pulse and the SPAD gate-ON window. This technique allowed to detect fluorescent photons of interest while rejecting most of the background photons, thus leading to a significantly improved signal to noise ratio (SNR). Experiments were carried out in turbid media mimicking tissue with an indocyanine green (ICG) inclusion (1 mM and 100 μM) to compare the time-gated technique and the conventional continuous detection technique. The gating technique increased twofold depth sensitivity, and tenfold SNR at large distances. The dual-modality imaging capacity of our system was also validated with a silicone-based tissue-mimicking phantom.

  5. Fourier–transform infrared spectroscopic characterization of natu ...

    Indian Academy of Sciences (India)

    We present here the characterization of the fulgurites by Fourier transform infrared (FTIR) absorption, X-ray diffraction and X-ray fluorescence methods. The amorphous nature of the substance has been confirmed by Fourier transform infrared spectra of the fulgurites, which exhibit prominent absorption band in the region ...

  6. One-step simultaneous differential scanning calorimetry-FTIR microspectroscopy to quickly detect continuous pathways in the solid-state glucose/asparagine Maillard reaction.

    Science.gov (United States)

    Hwang, Deng-Fwu; Hsieh, Tzu-Feng; Lin, Shan-Yang

    2013-01-01

    The stepwise reaction pathway of the solid-state Maillard reaction between glucose (Glc) and asparagine (Asn) was investigated using simultaneous differential scanning calorimetry (DSC)-FTIR microspectroscopy. The color change and FTIR spectra of Glc-Asn physical mixtures (molar ratio = 1:1) preheated to different temperatures followed by cooling were also examined. The successive reaction products such as Schiff base intermediate, Amadori product, and decarboxylated Amadori product in the solid-state Glc-Asn Maillard reaction were first simultaneously evidenced by this unique DSC-FTIR microspectroscopy. The color changed from white to yellow-brown to dark brown, and appearance of new IR peaks confirmed the formation of Maillard reaction products. The present study clearly indicates that this unique DSC-FTIR technique not only accelerates but also detects precursors and products of the Maillard reaction in real time.

  7. A Real-Time Near-Infrared Fluorescence Imaging Method for the Detection of Oral Cancers in Mice Using an Indocyanine Green-Labeled Podoplanin Antibody.

    Science.gov (United States)

    Ito, Akihiro; Ohta, Mitsuhiko; Kato, Yukinari; Inada, Shunko; Kato, Toshio; Nakata, Susumu; Yatabe, Yasushi; Goto, Mitsuo; Kaneda, Norio; Kurita, Kenichi; Nakanishi, Hayao; Yoshida, Kenji

    2018-01-01

    Podoplanin is distinctively overexpressed in oral squamous cell carcinoma than oral benign neoplasms and plays a crucial role in the pathogenesis and metastasis of oral squamous cell carcinoma but its diagnostic application is quite limited. Here, we report a new near-infrared fluorescence imaging method using an indocyanine green (ICG)-labeled anti-podoplanin antibody and a desktop/a handheld ICG detection device for the visualization of oral squamous cell carcinoma-xenografted tumors in nude mice. Both near-infrared imaging methods using a desktop (in vivo imaging system: IVIS) and a handheld device (photodynamic eye: PDE) successfully detected oral squamous cell carcinoma tumors in nude mice in a podoplanin expression-dependent manner with comparable sensitivity. Of these 2 devices, only near-infrared imaging methods using a handheld device visualized oral squamous cell carcinoma xenografts in mice in real time. Furthermore, near-infrared imaging methods using the handheld device (PDE) could detect smaller podoplanin-positive oral squamous cell carcinoma tumors than a non-near-infrared, autofluorescence-based imaging method. Based on these results, a near-infrared imaging method using an ICG-labeled anti-podoplanin antibody and a handheld detection device (PDE) allows the sensitive, semiquantitative, and real-time imaging of oral squamous cell carcinoma tumors and therefore represents a useful tool for the detection and subsequent monitoring of malignant oral neoplasms in both preclinical and some clinical settings.

  8. Non-invasive In Vivo Fluorescence Optical Imaging of Inflammatory MMP Activity Using an Activatable Fluorescent Imaging Agent.

    Science.gov (United States)

    Schwenck, Johannes; Maier, Florian C; Kneilling, Manfred; Wiehr, Stefan; Fuchs, Kerstin

    2017-05-08

    This paper describes a non-invasive method for imaging matrix metalloproteinases (MMP)-activity by an activatable fluorescent probe, via in vivo fluorescence optical imaging (OI), in two different mouse models of inflammation: a rheumatoid arthritis (RA) and a contact hypersensitivity reaction (CHR) model. Light with a wavelength in the near infrared (NIR) window (650 - 950 nm) allows a deeper tissue penetration and minimal signal absorption compared to wavelengths below 650 nm. The major advantages using fluorescence OI is that it is cheap, fast and easy to implement in different animal models. Activatable fluorescent probes are optically silent in their inactivated states, but become highly fluorescent when activated by a protease. Activated MMPs lead to tissue destruction and play an important role for disease progression in delayed-type hypersensitivity reactions (DTHRs) such as RA and CHR. Furthermore, MMPs are the key proteases for cartilage and bone degradation and are induced by macrophages, fibroblasts and chondrocytes in response to pro-inflammatory cytokines. Here we use a probe that is activated by the key MMPs like MMP-2, -3, -9 and -13 and describe an imaging protocol for near infrared fluorescence OI of MMP activity in RA and control mice 6 days after disease induction as well as in mice with acute (1x challenge) and chronic (5x challenge) CHR on the right ear compared to healthy ears.

  9. Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis

    Directory of Open Access Journals (Sweden)

    Sara Mattana

    2017-11-01

    Full Text Available Amyloidopathy is one of the most prominent hallmarks of Alzheimer’s disease (AD, the leading cause of dementia worldwide, and is characterized by the accumulation of amyloid plaques in the brain parenchyma. The plaques consist of abnormal deposits mainly composed of an aggregation-prone protein fragment, β-amyloid 1-40/1-42, into the extracellular matrix. Brillouin microspectroscopy is an all-optical contactless technique that is based on the interaction between visible light and longitudinal acoustic waves or phonons, giving access to the viscoelasticity of a sample on a subcellular scale. Here, we describe the first application of micromechanical mapping based on Brillouin scattering spectroscopy to probe the stiffness of individual amyloid plaques in the hippocampal part of the brain of a β-amyloid overexpressing transgenic mouse. Correlative analysis based on Brillouin and Raman microspectroscopy showed that amyloid plaques have a complex structure with a rigid core of β-pleated sheet conformation (β-amyloid protein surrounded by a softer ring-shaped region richer in lipids and other protein conformations. These preliminary results give a new insight into the plaque biophysics and biomechanics, and a valuable contrast mechanism for the study and diagnosis of amyloidopathy.

  10. Three-dimensional fluorescence lifetime tomography

    International Nuclear Information System (INIS)

    Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J.

    2005-01-01

    Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores

  11. Near-infrared emitting fluorescent nanocrystals-labeled natural killer cells as a platform technology for the optical imaging of immunotherapeutic cells-based cancer therapy

    International Nuclear Information System (INIS)

    Lim, Yong Taik; Cho, Mi Young; Noh, Young-Woock; Chung, Bong Hyun; Chung, Jin Woong

    2009-01-01

    This study describes the development of near-infrared optical imaging technology for the monitoring of immunotherapeutic cell-based cancer therapy using natural killer (NK) cells labeled with fluorescent nanocrystals. Although NK cell-based immunotherapeutic strategies have drawn interest as potent preclinical or clinical methods of cancer therapy, there are few reports documenting the molecular imaging of NK cell-based cancer therapy, primarily due to the difficulty of labeling of NK cells with imaging probes. Human natural killer cells (NK92MI) were labeled with anti-human CD56 antibody-coated quantum dots (QD705) for fluorescence imaging. FACS analysis showed that the NK92MI cells labeled with anti-human CD56 antibody-coated QD705 have no effect on the cell viability. The effect of anti-human CD56 antibody-coated QD705 labeling on the NK92MI cell function was investigated by measuring interferon gamma (IFN- γ) production and cytolytic activity. Finally, the NK92MI cells labeled with anti-human CD56 antibody-coated QD705 showed a therapeutic effect similar to that of unlabeled NK92MI cells. Images of intratumorally injected NK92MI cells labeled with anti-human CD56 antibody-coated could be acquired using near-infrared optical imaging both in vivo and in vitro. This result demonstrates that the immunotherapeutic cells labeled with fluorescent nanocrystals can be a versatile platform for the effective tracking of injected therapeutic cells using optical imaging technology, which is very important in cell-based cancer therapies.

  12. Determination of phosphate phases in sewage sludge ash-based fertilizers by Raman microspectroscopy.

    Science.gov (United States)

    Vogel, Christian; Adam, Christian; McNaughton, Don

    2013-09-01

    The chemical form of phosphate phases in sewage sludge ash (SSA)-based fertilizers was determined by Raman microspectroscopy. Raman mapping with a lateral resolution of 5 × 5 μm(2) easily detected different compounds present in the fertilizers with the help of recorded reference spectra of pure substances. Quartz and aluminosilicates showed Raman bands in the range of 450-520 cm(-1). Phosphates with apatite structure and magnesium triphosphate were determined at around 960 and 980 cm(-1), respectively. Furthermore, calcium/magnesium pyrophosphates were detected in some samples.

  13. Imaging of solid tumor using near-infrared emitting purple bacteria

    International Nuclear Information System (INIS)

    Moon, Sung Min; Min, Jung Joon; Kim, Sun A; Choy, Hyon E.; Bom, Hee Seung

    2005-01-01

    Rhodobacter sphaeroides 2.4.1 is α-3 purple nonsulfur eubacterium with an extensive metabolism. Under anaerobic conditions, it is able to grow by photosynthesis, respiration and fermentation. When grown photosynthetically, it uses wavelengths of light in the near-infrared and contains a reaction center that is the peripheral light-harvesting (LH2) complex. These molecules absorb and emit near-infrared light. Using this near-infrared fluorescent bacterial we investigated its targeting capacity of solid tumor in small animals. R. sphaeroides 2.4.1 strains were cultured in sistrons minimal medium A (SIS) at 32 C. Xenograft tumor model has been established by subcutaneous injection of CT26 mouse colon cancer cell line. 1X10 8 Rhodobacter sphaeroides cells suspended in 100 ul of PBS were injected via tail vein with 1-cc insulin syringe into tumor bearing mouse. In vivo fluorescence imaging has been done after 20 min to 30 days of purple bacteria using indocyanine (ICG) emission filter (Em=810∼835 nm). Near-infrared imaging signal from Rhodobacter sphaeroides was initially detected at liver for 3 days but at the necrotic region of tumor mass thereafter. Total photon flux measured 5.5X10 8 (p/s/cm 2 /sr) at Day 1. Also it was increased to 7.8X10 8 (p/s/cm 2 /sr) at 12 day. One of important characteristic is that the signal appeared only at central necrosis area. It has been monitored for 36 day. We successfully imaged cancer with near-infrared fluorescence bacteria. Our result indicate that near-infrared fluorescence purple bacteria are able to be used to monitor bacterial trafficking in living tumor models

  14. FTIR microspectroscopy for rapid screening and monitoring of polyunsaturated fatty acid production in commercially valuable marine yeasts and protists.

    Science.gov (United States)

    Vongsvivut, Jitraporn; Heraud, Philip; Gupta, Adarsha; Puri, Munish; McNaughton, Don; Barrow, Colin J

    2013-10-21

    The increase in polyunsaturated fatty acid (PUFA) consumption has prompted research into alternative resources other than fish oil. In this study, a new approach based on focal-plane-array Fourier transform infrared (FPA-FTIR) microspectroscopy and multivariate data analysis was developed for the characterisation of some marine microorganisms. Cell and lipid compositions in lipid-rich marine yeasts collected from the Australian coast were characterised in comparison to a commercially available PUFA-producing marine fungoid protist, thraustochytrid. Multivariate classification methods provided good discriminative accuracy evidenced from (i) separation of the yeasts from thraustochytrids and distinct spectral clusters among the yeasts that conformed well to their biological identities, and (ii) correct classification of yeasts from a totally independent set using cross-validation testing. The findings further indicated additional capability of the developed FPA-FTIR methodology, when combined with partial least squares regression (PLSR) analysis, for rapid monitoring of lipid production in one of the yeasts during the growth period, which was achieved at a high accuracy compared to the results obtained from the traditional lipid analysis based on gas chromatography. The developed FTIR-based approach when coupled to programmable withdrawal devices and a cytocentrifugation module would have strong potential as a novel online monitoring technology suited for bioprocessing applications and large-scale production.

  15. Darkfield microspectroscopy of nanostructures on silver tip-enhanced Raman scattering probes

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Tamitake, E-mail: tamitake-itou@aist.go.jp [Nano-Bioanalysis Team, Health Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395 (Japan); Yamamoto, Yuko S., E-mail: yamayulab@gmail.com [Research Fellow of the Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-8472 (Japan); Department of Chemistry, School of Science and Technology, Kagawa University, Takamatsu, Kagawa 761-0396 (Japan); Suzuki, Toshiaki [UNISOKU Co. Ltd., 2-4-3 Kasugano, Hirakata, Osaka 573-0131 (Japan); Kitahama, Yasutaka; Ozaki, Yukihiro [Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337 (Japan)

    2016-01-11

    We report an evaluation method employing darkfield microspectroscopy for silver probes used in tip-enhanced Raman scattering (TERS). By adjusting the darkfield illumination, the diffracted light from the probe outlines disappears and the diffracted light from the surface nanostructures and tips of the probes appears as colorful spots. Scanning electron microscopy reveals that the spectral variations in these spots reflect the shapes of the surface nanostructures. The tip curvatures correlate to the spectral maxima of their spots. Temporal color changes in the spots indicate the deterioration due to the oxidation of the silver surfaces. These results show that the proposed method is useful for in situ evaluation of plasmonic properties of TERS probes.

  16. In Vivo Deep Tissue Fluorescence and Magnetic Imaging Employing Hybrid Nanostructures.

    Science.gov (United States)

    Ortgies, Dirk H; de la Cueva, Leonor; Del Rosal, Blanca; Sanz-Rodríguez, Francisco; Fernández, Nuria; Iglesias-de la Cruz, M Carmen; Salas, Gorka; Cabrera, David; Teran, Francisco J; Jaque, Daniel; Martín Rodríguez, Emma

    2016-01-20

    Breakthroughs in nanotechnology have made it possible to integrate different nanoparticles in one single hybrid nanostructure (HNS), constituting multifunctional nanosized sensors, carriers, and probes with great potential in the life sciences. In addition, such nanostructures could also offer therapeutic capabilities to achieve a wider variety of multifunctionalities. In this work, the encapsulation of both magnetic and infrared emitting nanoparticles into a polymeric matrix leads to a magnetic-fluorescent HNS with multimodal magnetic-fluorescent imaging abilities. The magnetic-fluorescent HNS are capable of simultaneous magnetic resonance imaging and deep tissue infrared fluorescence imaging, overcoming the tissue penetration limits of classical visible-light based optical imaging as reported here in living mice. Additionally, their applicability for magnetic heating in potential hyperthermia treatments is assessed.

  17. Deep-tissue reporter-gene imaging with fluorescence and optoacoustic tomography: a performance overview.

    Science.gov (United States)

    Deliolanis, Nikolaos C; Ale, Angelique; Morscher, Stefan; Burton, Neal C; Schaefer, Karin; Radrich, Karin; Razansky, Daniel; Ntziachristos, Vasilis

    2014-10-01

    A primary enabling feature of near-infrared fluorescent proteins (FPs) and fluorescent probes is the ability to visualize deeper in tissues than in the visible. The purpose of this work is to find which is the optimal visualization method that can exploit the advantages of this novel class of FPs in full-scale pre-clinical molecular imaging studies. Nude mice were stereotactically implanted with near-infrared FP expressing glioma cells to from brain tumors. The feasibility and performance metrics of FPs were compared between planar epi-illumination and trans-illumination fluorescence imaging, as well as to hybrid Fluorescence Molecular Tomography (FMT) system combined with X-ray CT and Multispectral Optoacoustic (or Photoacoustic) Tomography (MSOT). It is shown that deep-seated glioma brain tumors are possible to visualize both with fluorescence and optoacoustic imaging. Fluorescence imaging is straightforward and has good sensitivity; however, it lacks resolution. FMT-XCT can provide an improved rough resolution of ∼1 mm in deep tissue, while MSOT achieves 0.1 mm resolution in deep tissue and has comparable sensitivity. We show imaging capacity that can shift the visualization paradigm in biological discovery. The results are relevant not only to reporter gene imaging, but stand as cross-platform comparison for all methods imaging near infrared fluorescent contrast agents.

  18. Fluorescent microthermographic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barton, D.L.

    1993-09-01

    In the early days of microelectronics, design rules and feature sizes were large enough that sub-micron spatial resolution was not needed. Infrared or IR thermal techniques were available that calculated the object`s temperature from infrared emission. There is a fundamental spatial resolution limitation dependent on the wavelengths of light being used in the image formation process. As the integrated circuit feature sizes began to shrink toward the one micron level, the limitations imposed on IR thermal systems became more pronounced. Something else was needed to overcome this limitation. Liquid crystals have been used with great success, but they lack the temperature measurement capabilities of other techniques. The fluorescent microthermographic imaging technique (FMI) was developed to meet this need. This technique offers better than 0.01{degrees}C temperature resolution and is diffraction limited to 0.3 {mu}m spatial resolution. While the temperature resolution is comparable to that available on IR systems, the spatial resolution is much better. The FMI technique provides better spatial resolution by using a temperature dependent fluorescent film that emits light at 612 nm instead of the 1.5 {mu}m to 12 {mu}m range used by IR techniques. This tutorial starts with a review of blackbody radiation physics, the process by which all heated objects emit radiation to their surroundings, in order to understand the sources of information that are available to characterize an object`s surface temperature. The processes used in infrared thermal imaging are then detailed to point out the limitations of the technique but also to contrast it with the FMI process. The FMI technique is then described in detail, starting with the fluorescent film physics and ending with a series of examples of past applications of FMI.

  19. Using zone plates for X-ray microimaging and microspectroscopy in environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Kemner, K.M.; Yun, W.; Cai, Z. (and others)

    1999-01-01

    Understanding the transport and ultimate fate of environmental contaminants is of fundamental importance for developing effective remediation strategies and determining the risk associated with the contaminants. Focusing X-rays by using recently developed zone plates allows determination of the spatial distribution and chemical speciation of contaminants at the micron and submicron length scales. This ability is essential for studying the microscopic physical, geological, chemical, and biological interfaces that play a crucial role in determining contaminant fate and mobility. The following is an overview of some current problems in environmental science that are being addressed with synchrotron-based X-ray microimaging and microspectroscopy. (au) 7 refs.

  20. Using zone plates for X-ray microimaging and microspectroscopy in environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Kemner, K.M.; Yun, W.; Cai, Z. [and others

    1999-11-01

    Understanding the transport and ultimate fate of environmental contaminants is of fundamental importance for developing effective remediation strategies and determining the risk associated with the contaminants. Focusing X-rays by using recently developed zone plates allows determination of the spatial distribution and chemical speciation of contaminants at the micron and submicron length scales. This ability is essential for studying the microscopic physical, geological, chemical, and biological interfaces that play a crucial role in determining contaminant fate and mobility. The following is an overview of some current problems in environmental science that are being addressed with synchrotron-based X-ray microimaging and microspectroscopy. (au) 7 refs.

  1. ``Smart'' theranostic lanthanide nanoprobes with simultaneous up-conversion fluorescence and tunable T1-T2 magnetic resonance imaging contrast and near-infrared activated photodynamic therapy

    Science.gov (United States)

    Zhang, Yan; Das, Gautom Kumar; Vijayaragavan, Vimalan; Xu, Qing Chi; Padmanabhan, Parasuraman; Bhakoo, Kishore K.; Tamil Selvan, Subramanian; Tan, Timothy Thatt Yang

    2014-10-01

    The current work reports a type of ``smart'' lanthanide-based theranostic nanoprobe, NaDyF4:Yb3+/NaGdF4:Yb3+,Er3+, which is able to circumvent the up-converting poisoning effect of Dy3+ ions to give efficient near infrared (980 nm) triggered up-conversion fluorescence, and offers not only excellent dark T2-weighted MR contrast but also tunable bright and T1-weighted MR contrast properties. Due to the efficient up-converted energy transfer from the nanocrystals to chlorin e6 (Ce6) photosensitizers loaded onto the nanocrystals, cytotoxic singlet oxygen was generated and photodynamic therapy was demonstrated. Therefore, the current multifunctional nanocrystals could be potentially useful in various image-guided diagnoses where bright or dark MRI contrast could be selectively tuned to optimize image quality, but also as an efficient and more penetrative near-infrared activated photodynamic therapy agent.The current work reports a type of ``smart'' lanthanide-based theranostic nanoprobe, NaDyF4:Yb3+/NaGdF4:Yb3+,Er3+, which is able to circumvent the up-converting poisoning effect of Dy3+ ions to give efficient near infrared (980 nm) triggered up-conversion fluorescence, and offers not only excellent dark T2-weighted MR contrast but also tunable bright and T1-weighted MR contrast properties. Due to the efficient up-converted energy transfer from the nanocrystals to chlorin e6 (Ce6) photosensitizers loaded onto the nanocrystals, cytotoxic singlet oxygen was generated and photodynamic therapy was demonstrated. Therefore, the current multifunctional nanocrystals could be potentially useful in various image-guided diagnoses where bright or dark MRI contrast could be selectively tuned to optimize image quality, but also as an efficient and more penetrative near-infrared activated photodynamic therapy agent. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01717j

  2. A Technique to Define Extrahepatic Biliary Anatomy Using Robotic Near-Infrared Fluorescent Cholangiography.

    Science.gov (United States)

    Maker, Ajay V; Kunda, Nicholas

    2017-11-01

    Bile duct injury is a rare but serious complication of minimally invasive cholecystectomy. Traditionally, intraoperative cholangiogram has been used in difficult cases to help delineate anatomical structures, however, new imaging modalities are currently available to aid in the identification of extrahepatic biliary anatomy, including near-infrared fluorescent cholangiography (NIFC) using indocyanine green (ICG).1-5 The objective of the study was to evaluate if this technique may aid in safe dissection to obtain the critical view. Thirty-five consecutive multiport robotic cholecystectomies using NIFC with ICG were performed using the da Vinci Firefly Fluorescence Imaging System. All patients received 2.5 mg ICG intravenously at the time of intubation, followed by patient positioning, draping, and establishment of pneumoperitoneum. No structures were divided until the critical view of safety was achieved. Real-time toggling between NIFC and bright-light illumination was utilized throughout the case to define the extrahepatic biliary anatomy. ICG was successfully administered to all patients without complication, and in all cases the extrahepatic biliary anatomy was able to be identified in real-time 3D. All procedures were completed without biliary injury, conversion to an open procedure, or need for traditional cholangiography to obtain the critical view. Specific examples of cases where x-ray cholangiography or conversion to open was avoided and NIFC aided in safe dissection leading to the critical view are demonstrated, including (1) evaluation for aberrant biliary anatomy, (2) confirmation of non-biliary structures, and (3) use in cases where the infundibulum is fused to the common bile duct. NIFC using ICG is demonstrated as a useful technique to rapidly identify and aid in the visualization of extrahepatic biliary anatomy. Techniques that selectively utilize this technology specifically in difficult cases where the anatomy is unclear are demonstrated in order

  3. A novel CXCR4-targeted near-infrared (NIR) fluorescent probe (Peptide R-NIR750) specifically detects CXCR4 expressing tumors.

    Science.gov (United States)

    Santagata, Sara; Portella, Luigi; Napolitano, Maria; Greco, Adelaide; D'Alterio, Crescenzo; Barone, Maria Vittoria; Luciano, Antonio; Gramanzini, Matteo; Auletta, Luigi; Arra, Claudio; Zannetti, Antonella; Scala, Stefania

    2017-05-31

    C-X-C chemokine receptor 4 (CXCR4) is over-expressed in multiple human cancers and correlates with tumor aggressiveness, poor prognosis and increased risk for distant metastases. Imaging agents for CXCR4 are thus highly desirable. We developed a novel CXCR4-targeted near-infrared (NIR) fluorescent probe (Peptide R-NIR750) conjugating the new developed CXCR4 peptidic antagonist Peptide R with the NIR fluorescent dye VivoTag-S750. Specific CXCR4 binding was obtained in cells overexpressing human CXCR4 (B16-hCXCR4 and human melanoma cells PES43), but not in CXCR4 low expressing cells (FB-1). Ex vivo evaluation demonstrated that PepR-NIR750 specifically detects B16-hCXCR4-derived subcutaneous tumors and lung metastases. Fluorescence Molecular Tomography (FMT) in vivo imaging was performed on mice carrying subcutaneous CHO and CHO-CXCR4 tumors. PepR-NIR750 accumulates only in CXCR4-positive expressing subcutaneous tumors. Additionally, an intense NIR fluorescence signal was detected in PES43-derived lung metastases of nude mice injected with PepR-NIR750 versus mice injected with VivoTag-S750. With a therapeutic intent, mice bearing PES43-derived lung metastases were treated with Peptide R. A the dramatic reduction in PES43-derived lung metastases was detected through a decrease of the PepR-NIR750 signal. PepR-NIR750 is a specific probe for non-invasive detection of human high CXCR4-expressing tumors and metastatic lesion and thus a valuable tool for cancer molecular imaging.

  4. Smart near-infrared fluorescence probes with donor-acceptor structure for in vivo detection of β-amyloid deposits.

    Science.gov (United States)

    Cui, Mengchao; Ono, Masahiro; Watanabe, Hiroyuki; Kimura, Hiroyuki; Liu, Boli; Saji, Hideo

    2014-03-05

    The deposition of β-amyloid (Aβ) plaques in the parenchymal and cortical brain is accepted as the main pathological hallmark of Alzheimer's disease (AD); however, early detection of AD still presents a challenge. With the assistance of molecular imaging techniques, imaging agents specifically targeting Aβ plaques in the brain may lead to the early diagnosis of AD. Herein, we report the design, synthesis, and evaluation of a series of smart near-infrared fluorescence (NIRF) imaging probes with donor-acceptor architecture bridged by a conjugated π-electron chain for Aβ plaques. The chemical structure of these NIRF probes is completely different from Congo Red and Thioflavin-T. Probes with a longer conjugated π system (carbon-carbon double bond) displayed maximum emission in PBS (>650 nm), which falls in the best range for NIRF probes. These probes were proved to have affinity to Aβ plaques in fluorescent staining of brain sections from an AD patient and double transgenic mice, as well as in an in vitro binding assay using Aβ(1-42) aggregates. One probe with high affinity (K(i) = 37 nM, K(d) = 27 nM) was selected for in vivo imaging. It can penetrate the blood-brain barrier of nude mice efficiently and is quickly washed out of the normal brain. Moreover, after intravenous injection of this probe, 22-month-old APPswe/PSEN1 mice exhibited a higher relative signal than control mice over the same period of time, and ex vivo fluorescent observations confirmed the existence of Aβ plaques. In summary, this probe meets most of the requirements for a NIRF contrast agent for the detection of Aβ plaques both in vitro and in vivo.

  5. Raman microspectroscopy of nanodiamond-induced structural changes in albumin.

    Science.gov (United States)

    Svetlakova, Anastasiya S; Brandt, Nikolay N; Priezzhev, Alexander V; Chikishev, Andrey Yu

    2015-04-01

    Nanodiamonds (NDs) are promising agents for theranostic applications due to reported low toxicity and high biocompatibility, which is still being extensively tested on cellular, tissue, and organism levels. It is presumed that for experimental and future clinical applications, NDs will be administered into the organism via the blood circulation system. In this regard, the interaction of NDs with blood components needs to be thoroughly studied. We studied the interaction of carboxylated NDs (cNDs) with albumin, one of the major proteins of blood plasma. After 2-h long in vitro incubation in an aqueous solution of the protein, 100-nm cNDs were dried and the dry samples were studied with the aid of Raman microspectroscopy. The spectroscopic data indicate significant conformational changes that can be due to cND–protein interaction. A possible decrease in the functional activity of albumin related to the conformational changes must be taken into account in the in vivo applications.

  6. Raman microspectroscopy of nanodiamond-induced structural changes in albumin

    Science.gov (United States)

    Svetlakova, Anastasiya S.; Brandt, Nikolay N.; Priezzhev, Alexander V.; Chikishev, Andrey Yu.

    2015-04-01

    Nanodiamonds (NDs) are promising agents for theranostic applications due to reported low toxicity and high biocompatibility, which is still being extensively tested on cellular, tissue, and organism levels. It is presumed that for experimental and future clinical applications, NDs will be administered into the organism via the blood circulation system. In this regard, the interaction of NDs with blood components needs to be thoroughly studied. We studied the interaction of carboxylated NDs (cNDs) with albumin, one of the major proteins of blood plasma. After 2-h long in vitro incubation in an aqueous solution of the protein, 100-nm cNDs were dried and the dry samples were studied with the aid of Raman microspectroscopy. The spectroscopic data indicate significant conformational changes that can be due to cND-protein interaction. A possible decrease in the functional activity of albumin related to the conformational changes must be taken into account in the in vivo applications.

  7. Combined use of infrared and hard X-ray microprobes for spectroscopy-based neuroanatomy

    Science.gov (United States)

    Surowka, A. D.; Ziomber, A.; Czyzycki, M.; Migliori, A.; Pieklo, L.; Kasper, K.; Szczerbowska-Boruchowska, M.

    2018-05-01

    Understanding the pathological triggers that affect the structural and physiological integrity of biochemical milieu of neurons is crucial to extend our knowledge on brain disorders, that are in many circumstances hardly treatable. Over recently, by using sophisticated hyperspectral micro-imaging modalities, it has been placed within our reach to get an insight into high fidelity histological details along with corresponding biochemical information in a label-free fashion, without using any additional chemical fixatives. However, in order to push forwards extensive application of these methods in the clinical arena, it is viable to make further iterations in novel data analysis protocols in order to boost their sensitivity. Therefore, in our study we proposed a new combined approach utilizing both benchtop Fourier transform infrared (FTIR) and synchrotron X-ray fluorescence (SR-XRF) micro-spectroscopies coupled with multivariate data clustering using the K-means algorithm for combined molecular and elemental micro-imaging, so that these complimentary analytical tools could be used for delineating between various brain structures based on their biochemical composition. By utilizing mid-IR transmission FTIR experiments, the biochemical composition in terms of lipids, proteins and phosphodiesters became accessible. In turn, the SR-XRF experiment was carried out at the advanced IAEA X-ray spectrometry station at Elettra Sincrotrone Trieste. By measuring in vacuum and by using the primary exciting X-ray beam, monochromatized to 10.5 keV, we took advantage of accessing the characteristic X-ray lines of a variety of elements ranging from carbon to zinc. Herein, we can report that the developed methodology has high specificity for label-free discriminating between lipid- and protein-rich brain tissue areas.

  8. High-pressure synchrotron x-ray diffraction and infrared microspectroscopy: applications to dense hydrous phases

    CERN Document Server

    Liu, Z; Yang, H; Mao Ho Kwang; Hemley, R J

    2002-01-01

    Synchrotron x-ray diffraction (XRD) and infrared (IR) absorption spectra of hydrous and 'anhydrous' forms of phase X were measured to 30 GPa at room temperature. Three OH stretching modes were found in the hydrous phase, and surprisingly one sharp OH mode was observed in the previously characterized anhydrous phase. All OH stretching modes soften and broaden with increasing pressure and become very weak above approx 20 GPa. XRD indicates that the crystal structure remains stable up to 30 GPa. Combining IR absorption and XRD results, the behaviour is attributed to pressure-induced distortion of the Si sub 2 O sub 7 groups and disorder of the hydrogen atoms. The bulk moduli of the hydrous and 'anhydrous' phases are in the region of 74 GPa.

  9. Vascular thrombus imaging in vivo via near-infrared fluorescent nanodiamond particles bioengineered with the disintegrin bitistatin (Part II

    Directory of Open Access Journals (Sweden)

    Gerstenhaber JA

    2017-11-01

    Full Text Available Jonathan A Gerstenhaber,1,* Frank C Barone,2,* Cezary Marcinkiewicz,1,3 Jie Li,2 Aaron O Shiloh,4 Mark Sternberg,3 Peter I Lelkes,1,* Giora Feuerstein1,3,* 1Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, 2Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY, 3Debina Diagnostic Inc., Newtown Square, 4Diagnostic Imaging, Inc., Philadelphia, PA, USA *These authors contributed equally to this work Abstract: The aim of this feasibility study was to test the ability of fluorescent nanodiamond particles (F-NDP covalently conjugated with bitistatin (F-NDP-Bit to detect vascular blood clots in vivo using extracorporeal near-infrared (NIR imaging. Specifically, we compared NIR fluorescence properties of F-NDP with N-V (F-NDPNV and N-V-N color centers and sizes (100–10,000 nm. Optimal NIR fluorescence and tissue penetration across biological tissues (rat skin, porcine axillary veins, and skin was obtained for F-NDPNV with a mean diameter of 700 nm. Intravital imaging (using in vivo imaging system [IVIS] in vitro revealed that F-NDPNV-loaded glass capillaries could be detected across 6 mm of rat red-muscle barrier and 12 mm of porcine skin, which equals the average vertical distance of a human carotid artery bifurcation from the surface of the adjacent skin (14 mm. In vivo, feasibility was demonstrated in a rat model of occlusive blood clots generated using FeCl3 in the carotid artery bifurcation. Following systemic infusions of F-NDPNV-Bit (3 or 15 mg/kg via the external carotid artery or femoral vein (N=3, presence of the particles in the thrombi was confirmed both in situ via IVIS, and ex vivo via confocal imaging. The presence of F-NDPNV in the vascular clots was further confirmed by direct counting of fluorescent particles extracted from clots following tissue solubilization. Our data suggest that F-NDPNV-Bit associate with vascular blood clots, presumably by binding

  10. Electron detachment dissociation of fluorescently labeled sialylated oligosaccharides.

    Science.gov (United States)

    Zhou, Wen; Håkansson, Kristina

    2011-12-01

    We explored the application of electron detachment dissociation (EDD) and infrared multiphoton dissociation (IRMPD) tandem mass spectrometry to fluorescently labeled sialylated oligosaccharides. Standard sialylated oligosaccharides and a sialylated N-linked glycan released from human transferrin were investigated. EDD yielded extensive glycosidic cleavages and cross-ring cleavages in all cases studied, consistently providing complementary structural information compared with infrared multiphoton dissociation. Neutral losses and satellite ions such as C-2H ions were also observed following EDD. In addition, we examined the influence of different fluorescent labels. The acidic label 2-aminobenzoic acid (2-AA) enhanced signal abundance in negative-ion mode. However, few cross-ring fragments were observed for 2-AA-labeled oligosaccharides. The neutral label 2-aminobenzamide (2-AB) resulted in more cross-ring cleavages compared with 2-AA-labeled species, but not as extensive fragmentation as for native oligosaccharides, likely resulting from altered negative charge locations from introduction of the fluorescent tag. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Use of invisible near infrared light fluorescence with indocyanine green and methylene blue in urology. Part 2.

    Science.gov (United States)

    Polom, Wojciech; Markuszewski, Marcin; Rho, Young Soo; Matuszewski, Marcin

    2014-01-01

    In the second part of this paper, concerning the use of invisible near infrared light (NIR) fluorescence with indocyanine green (ICG) and methylene blue (MB) in urology, other possible uses of this new technique will be presented. In kidney transplantation, this concerns allograft perfusion and real time NIR-guided angiography; moreover, perfusion angiography of tissue flaps, NIRF visualization of ureters, NIR-guided visualization of urinary calcifications, NIRF in male infertility and semen quality assessment. In this part, we have also analysed cancer targeting and imaging fluorophores as well as cost benefits associated with the use of these new techniques. PubMed and Medline databases were searched for ICG and MB use in urological settings, along with data published in abstracts of urological conferences. Although NIR-guided ICG and MB are still in their initial phases, there have been significant developments in a few more major domains of urology, including 1) kidney transplantation: kidney allograft perfusion and vessel reconstruction; 2) angiography perfusion of tissue flaps; 3) visualization of ureters; 4) visualization of urinary calcifications; and 5) NIRF in male infertility and semen quality assessment. Near infrared technology in urology is at its early stages. More studies are needed to assess the true potential and limitations of the technology. Initial studies show that this pioneering tool may influence various aspects of urology.

  12. Mie-type scattering and non-Beer-Lambert absorption behavior of human cells in infrared microspectroscopy.

    Science.gov (United States)

    Mohlenhoff, Brian; Romeo, Melissa; Diem, Max; Wood, Bayden R

    2005-05-01

    We report infrared microspectral features of nuclei in a completely inactive and contracted (pyknotic) state, and of nuclei of actively dividing cells. For pyknotic nuclei, the very high local concentration of DNA leads to opaqueness of the chromatin and, consequently, the absence of DNA signals in the IR spectra of very small nuclei. However, these nuclei can be detected by their scattering properties, which can be described by the Mie theory of scattering from dielectric spheres. This scattering depends on the size of the nucleus; consequently, quite different scattering cross-sections are calculated and observed for pyknotic and mitotic nuclei.

  13. Preparation and Characterization of Fluorescent SiO2 Microspheres

    Science.gov (United States)

    Xu, Cui; Zhang, Hao; Guan, Ruifang

    2018-01-01

    Fluorescent compound without typical fluorophores was synthesized with citric acid (CA) and aminopropyltriethoxysilane (APTS) firstly, and then it was grafted to the surface of the prepared SiO2 microspheres by chemical reaction. The fluorescent SiO2 microspheres with good fluorescent properties were obtained by optimizing the reaction conditions. And the morphology and structure of the fluorescent SiO2 microspheres have been characterized by scanning electron microscopy (SEM) and fourier transform infrared (FTIR) spectroscopy. The results showed that the preparation of fluorescent SiO2 microspheres have good monodispersity and narrow particle size distribution. Moreover, the fluorescent SiO2 microspheres can be applied to detect Fe3+ in aqueous solution, prepare fluorescent SiO2 rubber, and have potential to be applied in the fluorescent labeling and fingerprint appearing technique fields.

  14. Raman microspectroscopy as a diagnostic tool for the non-invasive analysis of fibrillin-1 deficiency in the skin and in the in vitro skin models.

    Science.gov (United States)

    Brauchle, Eva; Bauer, Hannah; Fernes, Patrick; Zuk, Alexandra; Schenke-Layland, Katja; Sengle, Gerhard

    2017-04-01

    Fibrillin microfibrils and elastic fibers are critical determinants of elastic tissues where they define as tissue-specific architectures vital mechanical properties such as pliability and elastic recoil. Fibrillin microfibrils also facilitate elastic fiber formation and support the association of epithelial cells with the interstitial matrix. Mutations in fibrillin-1 (FBN1) are causative for the Marfan syndrome, a congenital multisystem disorder characterized by progressive deterioration of the fibrillin microfibril/ elastic fiber architecture in the cardiovascular, musculoskeletal, ocular, and dermal system. In this study, we utilized Raman microspectroscopy in combination with principal component analysis (PCA) to analyze the molecular consequences of fibrillin-1 deficiency in skin of a mouse model (GT8) of Marfan syndrome. In addition, full-thickness skin models incorporating murine wild-type and Fbn1 GT8/GT8 fibroblasts as well as human HaCaT keratinocytes were generated and analyzed. Skin models containing GT8 fibroblasts showed an altered epidermal morphology when compared to wild-type models indicating a new role for fibrillin-1 in dermal-epidermal crosstalk. Obtained Raman spectra together with PCA allowed to discriminate between healthy and deficient microfibrillar networks in murine dermis and skin models. Interestingly, results obtained from GT8 dermis and skin models showed similar alterations in molecular signatures triggered by fibrillin-1 deficiency such as amide III vibrations and decreased levels of glycan vibrations. Overall, this study indicates that Raman microspectroscopy has the potential to analyze subtle changes in fibrillin-1 microfibrils and elastic fiber networks. Therefore Raman microspectroscopy may be utilized as a non-invasive and sensitive diagnostic tool to identify connective tissue disorders and monitor their disease progression. Mutations in building blocks of the fibrillin microfibril/ elastic fiber network manifest in disease

  15. Synchrotron- and focal plane array-based Fourier-transform infrared spectroscopy differentiates the basalis and functionalis epithelial endometrial regions and identifies putative stem cell regions of human endometrial glands.

    Science.gov (United States)

    Theophilou, Georgios; Morais, Camilo L M; Halliwell, Diane E; Lima, Kássio M G; Drury, Josephine; Martin-Hirsch, Pierre L; Stringfellow, Helen F; Hapangama, Dharani K; Martin, Francis L

    2018-05-09

    The cyclical process of regeneration of the endometrium suggests that it may contain a cell population that can provide daughter cells with high proliferative potential. These cell lineages are clinically significant as they may represent clonogenic cells that may also be involved in tumourigenesis as well as endometriotic lesion development. To determine whether the putative stem cell location within human uterine tissue can be derived using vibrational spectroscopy techniques, normal endometrial tissue was interrogated by two spectroscopic techniques. Paraffin-embedded uterine tissues containing endometrial glands were sectioned to 10-μm-thick parallel tissue sections and were floated onto BaF 2 slides for synchrotron radiation-based Fourier-transform infrared (SR-FTIR) microspectroscopy and globar focal plane array-based FTIR spectroscopy. Different spectral characteristics were identified depending on the location of the glands examined. The resulting infrared spectra were subjected to multivariate analysis to determine associated biophysical differences along the length of longitudinal and crosscut gland sections. Comparison of the epithelial cellular layer of transverse gland sections revealed alterations indicating the presence of putative transient-amplifying-like cells in the basalis and mitotic cells in the functionalis. SR-FTIR microspectroscopy of the base of the endometrial glands identified the location where putative stem cells may reside at the same time pointing towards ν s PO 2 - in DNA and RNA, nucleic acids and amide I and II vibrations as major discriminating factors. This study supports the view that vibration spectroscopy technologies are a powerful adjunct to our understanding of the stem cell biology of endometrial tissue. Graphical abstract ᅟ.

  16. Quantitative Raman microspectroscopy for water permeability parameters at a droplet interface bilayer.

    Science.gov (United States)

    Braziel, S; Sullivan, K; Lee, S

    2018-01-29

    Using confocal Raman microspectroscopy, we derive parameters for bilayer water transport across an isolated nanoliter aqueous droplet pair. For a bilayer formed with two osmotically imbalanced and adherent nanoliter aqueous droplets in a surrounding oil solvent, a droplet interface bilayer (DIB), the water permeability coefficient across the lipid bilayer was determined from monitoring the Raman scattering from the C[triple bond, length as m-dash]N stretching mode of K 3 Fe(CN) 6 as a measure of water uptake into the swelling droplet of a DIB pair. We also derive passive diffusional permeability coefficient for D 2 O transport across a droplet bilayer using O-D Raman signal. This method provides a significant methodological advance in determining water permeability coefficients in a convenient and reliable way.

  17. Following Drug Uptake and Reactions inside Escherichia coli Cells by Raman Microspectroscopy

    Science.gov (United States)

    2015-01-01

    Raman microspectroscopy combined with Raman difference spectroscopy reveals the details of chemical reactions within bacterial cells. The method provides direct quantitative data on penetration of druglike molecules into Escherichia coli cells in situ along with the details of drug–target reactions. With this label-free technique, clavulanic acid and tazobactam can be observed as they penetrate into E. coli cells and subsequently inhibit β-lactamase enzymes produced within these cells. When E. coli cells contain a β-lactamase that forms a stable complex with an inhibitor, the Raman signature of the known enamine acyl–enzyme complex is detected. From Raman intensities it is facile to measure semiquantitatively the number of clavulanic acid molecules taken up by the lactamase-free cells during growth. PMID:24901294

  18. Fluorescent excitation of interstellar H2

    NARCIS (Netherlands)

    Black, J.H.; Dishoeck, van E.F.

    1987-01-01

    The infrared emission spectrum of H2 excited by ultraviolet absorption, followed by fluorescence, was investigated using comprehensive models of interstellar clouds for computing the spectrum and to assess the effects on the intensity to various cloud properties, such as density, size, temperature,

  19. Combined Partial Penectomy With Bilateral Robotic Inguinal Lymphadenectomy Using Near-infrared Fluorescence Guidance.

    Science.gov (United States)

    Sávio, Luís Felipe; Panizzutti Barboza, Marcelo; Alameddine, Mahmoud; Ahdoot, Michael; Alonzo, David; Ritch, Chad R

    2018-03-01

    To describe our novel technique for performing a combined partial penectomy and bilateral robotic inguinal lymphadenectomy using intraoperative near-infrared (NIR) fluorescence guidance with indocyanine green (ICG) and the DaVinci Firefly camera system. A 58-year-old man presented status post recent excisional biopsy of a 2-cm lesion on the left coronal aspect of the glans penis. Pathology revealed "invasive squamous cell carcinoma of the penis with multifocal positive margins." His examination was suspicious for cT2 primary and his inguinal nodes were cN0. He was counseled to undergo partial penectomy with possible combined vs staged bilateral robotic inguinal lymphadenectomy. Preoperative computed tomography scan was negative for pathologic lymphadenopathy. Before incision, 5 mL of ICG was injected subcutaneously beneath the tumor. Bilateral thigh pockets were then developed simultaneously and a right, then left robotic modified inguinal lymphadenectomy was performed using NIR fluorescence guidance via the DaVinci Firefly camera. A partial penectomy was then performed in the standard fashion. The combined procedure was performed successfully without complication. Total operative time was 379 minutes and total robotic console time was 95 minutes for the right and 58 minutes to the left. Estimated blood loss on the right and left were 15 and 25 mL, respectively. A total of 24 lymph nodes were retrieved. This video demonstrates a safe and feasible approach for combined partial penectomy and bilateral inguinal lymphadenectomy with NIR guidance using ICG and the DaVinci Firefly camera system. The combined robotic approach has minimal morbidity and avoids the need for a staged procedure. Furthermore, use of NIR guidance with ICG during robotic inguinal lymphadenectomy is feasible and may help identify sentinel lymph nodes and improve the quality of dissection. Further studies are needed to confirm the utility of NIR guidance for robotic sentinel lymph node

  20. Fluorenyl benzothiadiazole and benzoselenadiazole near-IR fluorescent probes for two-photon fluorescence imaging (Conference Presentation)

    Science.gov (United States)

    Belfield, Kevin D.; Yao, Sheng; Kim, Bosung; Yue, Xiling

    2016-03-01

    Imaging biological samples with two-photon fluorescence (2PF) microscopy has the unique advantage of resulting high contrast 3D resolution subcellular image that can reach up to several millimeters depth. 2PF probes that absorb and emit at near IR region need to be developed. Two-photon excitation (2PE) wavelengths are less concerned as 2PE uses wavelengths doubles the absorption wavelength of the probe, which means 2PE wavelengths for probes even with absorption at visible wavelength will fall into NIR region. Therefore, probes that fluoresce at near IR region with high quantum yields are needed. A series of dyes based on 5-thienyl-2, 1, 3-benzothiadiazole and 5-thienyl-2, 1, 3-benzoselenadiazole core were synthesized as near infrared two-photon fluorophores. Fluorescence maxima wavelengths as long as 714 nm and fluorescence quantum yields as high as 0.67 were achieved. The fluorescence quantum yields of the dyes were nearly constant, regardless of solvents polarity. These diazoles exhibited large Stokes shift (GM), and high two-photon fluorescence figure of merit (FM , 1.04×10-2 GM). Cells incubated on a 3D scaffold with one of the new probes (encapsulated in Pluronic micelles) exhibited bright fluorescence, enabling 3D two-photon fluorescence imaging to a depth of 100 µm.

  1. Advances in simultaneous DSC-FTIR microspectroscopy for rapid solid-state chemical stability studies: some dipeptide drugs as examples.

    Science.gov (United States)

    Lin, Shan-Yang; Wang, Shun-Li

    2012-04-01

    The solid-state chemistry of drugs has seen growing importance in the pharmaceutical industry for the development of useful API (active pharmaceutical ingredients) of drugs and stable dosage forms. The stability of drugs in various solid dosage forms is an important issue because solid dosage forms are the most common pharmaceutical formulation in clinical use. In solid-state stability studies of drugs, an ideal accelerated method must not only be selected by different complicated methods, but must also detect the formation of degraded product. In this review article, an analytical technique combining differential scanning calorimetry and Fourier-transform infrared (DSC-FTIR) microspectroscopy simulates the accelerated stability test, and simultaneously detects the decomposed products in real time. The pharmaceutical dipeptides aspartame hemihydrate, lisinopril dihydrate, and enalapril maleate either with or without Eudragit E were used as testing examples. This one-step simultaneous DSC-FTIR technique for real-time detection of diketopiperazine (DKP) directly evidenced the dehydration process and DKP formation as an impurity common in pharmaceutical dipeptides. DKP formation in various dipeptides determined by different analytical methods had been collected and compiled. Although many analytical methods have been applied, the combined DSC-FTIR technique is an easy and fast analytical method which not only can simulate the accelerated drug stability testing but also at the same time enable to explore phase transformation as well as degradation due to thermal-related reactions. This technique offers quick and proper interpretations. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids in vivo

    Directory of Open Access Journals (Sweden)

    Ladislav Nedbal

    2010-09-01

    Full Text Available Algae are becoming a strategic source of fuels, food, feedstocks, and biologically active compounds. This potential has stimulated the development of innovative analytical methods focused on these microorganisms. Algal lipids are among the most promising potential products for fuels as well as for nutrition. The crucial parameter characterizing the algal lipids is the degree of unsaturation of the constituent fatty acids quantified by the iodine value. Here we demonstrate the capacity of the spatially resolved Raman microspectroscopy to determine the effective iodine value in lipid storage bodies of individual living algal cells. The Raman spectra were collected from three selected algal species immobilized in an agarose gel. Prior to immobilization, the algae were cultivated in the stationary phase inducing an overproduction of lipids. We employed the characteristic peaks in the Raman scattering spectra at 1,656 cm−1 (cis C=C stretching mode and 1,445 cm−1 (CH2 scissoring mode as the markers defining the ratio of unsaturated-to-saturated carbon-carbon bonds of the fatty acids in the algal lipids. These spectral features were first quantified for pure fatty acids of known iodine value. The resultant calibration curve was then used to calculate the effective iodine value of storage lipids in the living algal cells from their Raman spectra. We demonstrated that the iodine value differs significantly for the three studied algal species. Our spectroscopic estimations of the iodine value were validated using GC-MS measurements and an excellent agreement was found for the Trachydiscus minutus species. A good agreement was also found with the earlier published data on Botryococcus braunii. Thus, we propose that Raman microspectroscopy can become technique of choice in the rapidly expanding field of algal biotechnology.

  3. Intraoperative fluorescence delineation of head and neck cancer with a fluorescent Anti-epidermal growth factor receptor nanobody

    NARCIS (Netherlands)

    Van Driel, P.B.A.A.; Van Der Vorst, J.R.; Verbeek, F.P.R.; Oliveira, S.|info:eu-repo/dai/nl/304841455; Snoeks, T.J.A.; Keereweer, S.; Chan, B.; Boonstra, M.C.; Frangioni, J.V.; Van Bergen En Henegouwen, P.M.P.|info:eu-repo/dai/nl/071919481; Vahrmeijer, A.L.; Lowik, C.W.G.M.

    2014-01-01

    Intraoperative near-infrared (NIR) fluorescence imaging is a technology with high potential to provide the surgeon with real-time visualization of tumors during surgery. Our study explores the feasibility for clinical translation of an epidermal growth factor receptor (EGFR)-targeting nanobody for

  4. Multimodal Imaging of Integrin Receptor-Positive Tumors by Bioluminescence, Fluorescence, Gamma Scintigraphy, and Single-Photon Emission Computed Tomography Using a Cyclic RGD Peptide Labeled with a Near-Infrared Fluorescent Dye and a Radionuclide

    Directory of Open Access Journals (Sweden)

    W. Barry Edwards

    2009-03-01

    Full Text Available Integrins, particularly the αvβ3 heterodimers, play important roles in tumor-induced angiogenesis and invasiveness. To image the expression pattern of the αvβ3 integrin in tumors through a multimodality imaging paradigm, we prepared a cyclic RGDyK peptide analogue (LS308 bearing a tetraazamacrocycle 1,4,7,10-tetraazacyclododecane-N, N′, N″, N‴-tetraacetic acid (DOTA and a lipophilic near-infrared (NIR fluorescent dye cypate. The αvβ3 integrin binding affinity and the internalization properties of LS308 mediated by the αvβ3 integrin in 4t1luc cells were investigated by receptor binding assay and fluorescence microscopy, respectively. The in vivo distribution of 111In-labeled LS308 in a 4t1luc tumor-bearing mouse model was studied by fluorescence, bioluminescence, planar gamma, and single-photon emission computed tomography (SPECT. The results show that LS308 has high affinity for αvβ3 integrin and internalized preferentially via the αvβ3 integrin-mediated endocytosis in 4t1luc cells. We also found that LS308 selectively accumulated in αvβ3-positve tumors in a receptor-specific manner and was visualized by the four imaging methods. Whereas the endogenous bioluminescence imaging identified the ensemble of the tumor tissue, the fluorescence and SPECT methods with the exogenous contrast agent LS308 reported the local expression of αvβ3 integrin. Thus, the multimodal imaging approach could provide important complementary diagnostic information for monitoring the efficacy of new antiangiogenic drugs.

  5. Synthesis and Sensing Applications of Fluorescent 3-Cinnamoyl Coumarins

    Directory of Open Access Journals (Sweden)

    Preeti Yadav

    2015-12-01

    Full Text Available We have synthesized two novel fluorescent 3-(4-diethylaminocinnamoyl coumarins that exhibit fluorescence quenching upon exposure to a nerve agent simulant, diethylchlorophosphate (DCP, providing a basis for rapid and sensitive DCP chemosensing. Furthermore, these coumarin derivatives display two-photon fluorescence upon illumination with near-infrared laser pulses and their two-photon (TP absorption cross-section was evaluated. The potential for TP bio-imaging of these compounds was investigated by their cellular uptake in HeLa cells by TP confocal microscopy.

  6. High temperature stress monitoring and detection using chlorophyll a fluorescence and infrared thermography in chrysanthemum (Dendranthema grandiflora)

    DEFF Research Database (Denmark)

    Wakjera, Eshetu Janka; Körner, Oliver; Rosenqvist, Eva

    2013-01-01

    Modern highly insulated greenhouses are more energy efficient than conventional types. Furthermore applying dynamic greenhouse climate control regimes will increase energy efficiency relatively more in modern structures. However, this combination may result in higher air and crop temperatures. Too...... high temperature affects the plant photosynthetic responses, resulting in a lower rate of photosynthesis. To predict and analyse physiological responses as stress indicators, two independent experiments were conducted, to detect the effect of high temperature on photosynthesis: analysing photosystem II...... (PSII) and stomatal conductance (gs). A combination of chlorophyll a fluorescence, gas exchange measurements and infrared thermography was applied using Chrysanthemum (Dendranthema grandiflora Tzvelev) ‘Coral Charm’ as a model species. Increasing temperature had a highly significant effect on PSII when...

  7. In vivo fluorescence imaging of an orthotopic rat bladder tumor model indicates differential uptake of intravesically instilled near-infrared labeled 2-deoxyglucose analog by neoplastic urinary bladder tissues

    Science.gov (United States)

    Piao, Daqing; Davis, Carole A.; Hurst, Robert E.; Slaton, Joel W.

    2017-02-01

    Bladder cancer is one of the most expensive cancers to manage due to frequent recurrences requiring life-long surveillance and treatment. A near-infrared labeled 2-deoxy-d-glucose probe IRDye800CW-DG targeting glucose metabolism pathway has shown to enhance the sensitivity of diagnosing several types of cancers as tested on tumor models not including bladder tumor. This pilot study has explored differential uptake of intravesically administered IRDye800CW-DG in an orthotopic rat bladder tumor model. Twenty-five female Fischer rats were randomly grouped to four conditions: no-tumor-control (n=3), no-tumor-control intravesically instilled with IRDye800CWDG (n=6), rats bearing GFP-labeled AY-27 rat bladder urothelial cell carcinoma cells and washed with saline (n=5), and rats bearing AY-27 tumors and intravesically instilled with IRDye800CW-DG (n=11). Near-infrared fluorescence was measured from the opened bladder wall of anesthetized rat at an excitation wavelength of 750nm and an emission wavelength of 776nm, by using an in-house fluorescence imaging system. There is no statistically significant difference of the peak fluorescence intensity among the no-tumor-control bladders (n=3), the no-tumorcontrol bladders instilled with IRDye800CW-DG (n=6), and the GFP-labeled AY-27 treated bladders washed by saline (n=5). When compared to that of the no-tumor-control bladders instilled with IRDye800CW-DG (n=6), the fluorescence intensity of GFP-labeled AY-27 treated bladders instilled with IRDye800CW-DG and with histology confirmed neoplastic bladder tissue (n=11) was remarkably more intense (3.34 fold of over the former) and was also statistically significant (pbladder tissues suggests the potential for cystoscopy-adaptation to enhance diagnosis and guiding surgical management of flat urinary bladder cancer.

  8. Confocal Raman Microspectroscopy: The Measurement of VX Depth Profiles in Hairless Guinea Pig Skin and the Evaluation of RSDL

    Science.gov (United States)

    2015-02-01

    USAMRICD-TR-15-01 Confocal Raman Microspectroscopy: The Measurement of VX Depth Profiles in Hairless Guinea Pig Skin and the Evaluation...5a. CONTRACT NUMBER guinea pig skin and the evaluation of RSDL 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Braue, EH...upper skin layers of hairless guinea pigs and to determine the ability of Reactive Skin Decontamination Lotion (RSDL) to remove or degrade VX from

  9. Fourier transform infrared microspectroscopy identifies early lineage commitment in differentiating human embryonic stem cells.

    Science.gov (United States)

    Heraud, Philip; Ng, Elizabeth S; Caine, Sally; Yu, Qing C; Hirst, Claire; Mayberry, Robyn; Bruce, Amanda; Wood, Bayden R; McNaughton, Don; Stanley, Edouard G; Elefanty, Andrew G

    2010-03-01

    Human ESCs (hESCs) are a valuable tool for the study of early human development and represent a source of normal differentiated cells for pharmaceutical and biotechnology applications and ultimately for cell replacement therapies. For all applications, it will be necessary to develop assays to validate the efficacy of hESC differentiation. We explored the capacity for FTIR spectroscopy, a technique that rapidly characterises cellular macromolecular composition, to discriminate mesendoderm or ectoderm committed cells from undifferentiated hESCs. Distinct infrared spectroscopic "signatures" readily distinguished hESCs from these early differentiated progeny, with bioinformatic models able to correctly classify over 97% of spectra. These data identify a role for FTIR spectroscopy as a new modality to complement conventional analyses of hESCs and their derivatives. FTIR spectroscopy has the potential to provide low-cost, automatable measurements for the quality control of stem and differentiated cells to be used in industry and regenerative medicine. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.

  10. Near-Infrared Spectroscopic Study of Chlorite Minerals

    OpenAIRE

    Min Yang; Meifang Ye; Haihui Han; Guangli Ren; Ling Han; Zhuan Zhang

    2018-01-01

    The mineral chemistry of twenty chlorite samples from the United States Geological Survey (USGS) spectral library and two other regions, having a wide range of Fe and Mg contents and relatively constant Al and Si contents, was studied via infrared (IR) spectroscopy, near-infrared (NIR) spectroscopy, and X-ray fluorescence (XRF) analysis. Five absorption features of the twenty samples near 4525, 4440, 4361, 4270, and 4182 cm−1 were observed, and two diagnostic features at 4440 and 4280 cm−1 we...

  11. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.

    Science.gov (United States)

    Jain, Astha; Homayoun, Aida; Bannister, Christopher W; Yum, Kyungsuk

    2015-03-01

    Single-walled carbon nanotubes that emit photostable near-infrared fluorescence have emerged as near-infrared optical biosensors for life sciences and biomedicine. Since the discovery of their near-infrared fluorescence, researchers have engineered single-walled carbon nanotubes to function as an optical biosensor that selectively modulates its fluorescence upon binding of target molecules. Here we review the recent advances in the single-walled carbon nanotube-based optical sensing technology for life sciences and biomedicine. We discuss the structure and optical properties of single-walled carbon nanotubes, the mechanisms for molecular recognition and signal transduction in single-walled carbon nanotube complexes, and the recent development of various single-walled carbon nanotube-based optical biosensors. We also discuss the opportunities and challenges to translate this emerging technology into biomedical research and clinical use, including the biological safety of single-walled carbon nanotubes. The advances in single-walled carbon nanotube-based near-infrared optical sensing technology open up a new avenue for in vitro and in vivo biosensing with high sensitivity and high spatial resolution, beneficial for many areas of life sciences and biomedicine. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The effect of near-infrared fluorescence conjugation on the anti-cancer potential of cetuximab.

    Science.gov (United States)

    Yun, Ji Young; Hyun, Byung-Hwa; Nam, Sang Yoon; Yun, Young Won; Lee, Hu-Jang; Lee, Beom-Jun

    2018-03-01

    This study investigated the anti-cancer potential of a near-infrared fluorescence (NIRF) molecule conjugated with Cetuximab (Cetuximab-NIRF) in six-week-old female BALB/c athymic (nu+/nu+) nude mice. A431 cells were cultured and injected into the animals to induce solid tumors. Paclitaxel (30 mg/kg body weight (BW)), Cetuximab (1 mg/kg BW), and Cetuximab-NIRF (0.25, 0.5 and 1.0 mg/kg BW) were intraperitoneally injected twice a week into the A431 cell xenografts of the nude mice. Changes in BW, tumor volume and weight, fat and lean mass, and diameter of the peri-tumoral blood vessel were determined after two weeks. Tumor volumes and weights were significantly decreased in the Cetuximab-NIRF (1 mg/kg BW) group compared with the control group ( P <0.001). Lean mass and total body water content were also conspicuously reduced in the Cetuximab-NIRF (1 mg/kg BW) group compared with the vehicle control group. Peri-tumoral blood vessel diameters were very thin in the Cetuximab-NIRF groups compared with those of the paclitaxel group. These results indicate that the conjugation of Cetuximab with NIRF does not affect the anti-cancer potential of Cetuximab and NIRF can be used for molecular imaging in cancer treatments.

  13. Synovitis in mice with inflammatory arthritis monitored with quantitative analysis of dynamic contrast-enhanced NIR fluorescence imaging using iRGD-targeted liposomes as fluorescence probes

    Directory of Open Access Journals (Sweden)

    Wu H

    2018-03-01

    Full Text Available Hao Wu,1,2,* Haohan Wu,1,2,* Yanni He,1 Zhen Gan,2 Zhili Xu,1,2 Meijun Zhou,1,2 Sai Liu,1,2 Hongmei Liu1 1Department of Ultrasonography, Guangdong Second Provincial General Hospital Affiliated to Southern Medical University, Guangzhou, China; 2Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China *These authors contributed equally to this work Background: Rheumatoid arthritis (RA is a common inflammatory disorder characterized primarily by synovitis and pannus formation in multiple joints, causing joints destruction and irreversible disability in most cases. Early diagnosis and effective therapy monitoring of RA are of importance for achieving the favorable prognosis. Methods: We first prepared the targeted fluorescence probes, and then explored the feasibility of near-infrared (NIR fluorescence molecular imaging to detect and evaluate the RA via the targeted fluorescence probes by quantitative analysis in this study. Results: The targeted fluorescence probes (indocyanine green-liposomes decorated with iRGD peptide [iLPs] was successfully prepared. The quantitative analysis found that strong fluorescence signal was detected in inflamed paws and the fluorescence signal in iLPs group was 3.03-fold higher than that in non-targeted (indocyanine green-liposomes decorated without iRGD peptide [LPs] group (P<0.01 at 15 min after injection, whereas the fluorescence signal from iLPs signal can almost not be observed in the non-inflamed paws, showing the high sensitivity and accuracy for arthritis by the NIR fluorescence imaging based on iLPs. Conclusion: The NIR fluorescence imaging by iLPs may facilitate improved arthritis diagnosis and early assessment of the disease progression by providing an in vivo characterization of angiogenesis in inflammatory joint diseases. Keywords: rheumatoid arthritis, synovitis, diagnosis, near-infrared fluorescence imaging, iRGD-targeted probes

  14. "Smart" theranostic lanthanide nanoprobes with simultaneous up-conversion fluorescence and tunable T1-T2 magnetic resonance imaging contrast and near-infrared activated photodynamic therapy.

    Science.gov (United States)

    Zhang, Yan; Das, Gautom Kumar; Vijayaragavan, Vimalan; Xu, Qing Chi; Padmanabhan, Parasuraman; Bhakoo, Kishore K; Selvan, Subramanian Tamil; Tan, Timothy Thatt Yang

    2014-11-07

    The current work reports a type of "smart" lanthanide-based theranostic nanoprobe, NaDyF4:Yb(3+)/NaGdF4:Yb(3+),Er(3+), which is able to circumvent the up-converting poisoning effect of Dy(3+) ions to give efficient near infrared (980 nm) triggered up-conversion fluorescence, and offers not only excellent dark T2-weighted MR contrast but also tunable bright and T1-weighted MR contrast properties. Due to the efficient up-converted energy transfer from the nanocrystals to chlorin e6 (Ce6) photosensitizers loaded onto the nanocrystals, cytotoxic singlet oxygen was generated and photodynamic therapy was demonstrated. Therefore, the current multifunctional nanocrystals could be potentially useful in various image-guided diagnoses where bright or dark MRI contrast could be selectively tuned to optimize image quality, but also as an efficient and more penetrative near-infrared activated photodynamic therapy agent.

  15. Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells.

    Science.gov (United States)

    Okuno, Masanari; Hamaguchi, Hiro-o

    2010-12-15

    We have developed a multifocus confocal Raman microspectroscopic system for the fast multimode vibrational imaging of living cells. It consists of an inverted microscope equipped with a microlens array, a pinhole array, a fiber bundle, and a multichannel Raman spectrometer. Forty-eight Raman spectra from 48 foci under the microscope are simultaneously obtained by using multifocus excitation and image-compression techniques. The multifocus confocal configuration suppresses the background generated from the cover glass and the cell culturing medium so that high-contrast images are obtainable with a short accumulation time. The system enables us to obtain multimode (10 different vibrational modes) vibrational images of living cells in tens of seconds with only 1 mW laser power at one focal point. This image acquisition time is more than 10 times faster than that in conventional single-focus Raman microspectroscopy.

  16. Fluorescence optical imaging in anticancer drug delivery.

    Science.gov (United States)

    Etrych, Tomáš; Lucas, Henrike; Janoušková, Olga; Chytil, Petr; Mueller, Thomas; Mäder, Karsten

    2016-03-28

    In the past several decades, nanosized drug delivery systems with various targeting functions and controlled drug release capabilities inside targeted tissues or cells have been intensively studied. Understanding their pharmacokinetic properties is crucial for the successful transition of this research into clinical practice. Among others, fluorescence imaging has become one of the most commonly used imaging tools in pre-clinical research. The development of increasing numbers of suitable fluorescent dyes excitable in the visible to near-infrared wavelengths of the spectrum has significantly expanded the applicability of fluorescence imaging. This paper focuses on the potential applications and limitations of non-invasive imaging techniques in the field of drug delivery, especially in anticancer therapy. Fluorescent imaging at both the cellular and systemic levels is discussed in detail. Additionally, we explore the possibility for simultaneous treatment and imaging using theranostics and combinations of different imaging techniques, e.g., fluorescence imaging with computed tomography. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Near-infrared fluorescence imaging and photodynamic therapy with indocyanine green lactosome has antineoplastic effects for hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Takumi Tsuda

    Full Text Available Anticancer agents and operating procedures have been developed for hepatocellular carcinoma (HCC patients, but their prognosis remains poor. It is necessary to develop novel diagnostic and therapeutic strategies for HCC to improve its prognosis. Lactosome is a core-shell-type polymeric micelle, and enclosing labeling or anticancer agents into this micelle enables drug delivery. In this study, we investigated the diagnostic and therapeutic efficacies of indocyanine green (ICG-loaded lactosome for near-infrared fluorescence (NIF imaging and photodynamic therapy (PDT for HCC.The human HCC cell line HuH-7 was treated with ICG or ICG-lactosome, followed by PDT, and the cell viabilities were measured (in vitro PDT efficiency. For NIF imaging, HuH-7 cells were subcutaneously transplanted into BALB/c nude mice, followed by intravenous administration of ICG or ICG-lactosome. The transplanted animals were treated with PDT, and the antineoplastic effects were analyzed (in vivo PDT efficiency.PDT had toxic effects on HuH-7 cells treated with ICG-lactosome, but not ICG alone. NIF imaging revealed that the fluorescence of tumor areas in ICG-lactosome-treated animals was higher than that of contralateral regions at 24 h after injection and thereafter. PDT exerted immediate and continuous phototoxic effects in the transplanted mice treated with ICG-lactosome.Our results demonstrate that ICG-lactosome accumulated in xenograft tumors, and that PDT had antineoplastic effects on these malignant implants. NIF imaging and PDT with ICG-lactosome could be useful diagnostic and/or therapeutic strategies for HCC.

  18. Fluorescence enhancement by Au nanostructures: nanoshells and nanorods.

    Science.gov (United States)

    Bardhan, Rizia; Grady, Nathaniel K; Cole, Joseph R; Joshi, Amit; Halas, Naomi J

    2009-03-24

    Metallic nanoparticles influence the quantum yield and lifetime of adjacent fluorophores in a manner dependent on the properties of the nanostructure. Here we directly compare the fluorescence enhancement of the near-infrared fluorophore IR800 by Au nanoshells (NSs) and Au nanorods (NRs), where human serum albumin (HSA) serves as a spacer layer between the nanoparticle and the fluorophore. Our measurements reveal that the quantum yield of IR800 is enhanced from approximately 7% as an isolated fluorophore to 86% in a NSs-HSA-IR800 complex and 74% in a NRs-HSA-IR800 complex. This dramatic increase in fluorescence shows tremendous potential for contrast enhancement in fluorescence-based bioimaging.

  19. Dual PET and Near-Infrared Fluorescence Imaging Probes as Tools for Imaging in Oncology

    Science.gov (United States)

    An, Fei-Fei; Chan, Mark; Kommidi, Harikrishna; Ting, Richard

    2016-01-01

    OBJECTIVE The purpose of this article is to summarize advances in PET fluorescence resolution, agent design, and preclinical imaging that make a growing case for clinical PET fluorescence imaging. CONCLUSION Existing SPECT, PET, fluorescence, and MRI contrast imaging techniques are already deeply integrated into the management of cancer, from initial diagnosis to the observation and management of metastases. Combined positron-emitting fluorescent contrast agents can convey new or substantial benefits that improve on these proven clinical contrast agents. PMID:27223168

  20. A fluorescence detection of D-penicillamine based on Cu(2+)-induced fluorescence quenching system of protein-stabilized gold nanoclusters.

    Science.gov (United States)

    Wang, Peng; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun

    2015-01-25

    In this contribution, a luminescent gold nanoclusters which were synthesized by bovine serum albumin as novel fluorescent probes were successfully utilized for the determination of D-penicillamine for the first time. Cupric ion was employed to quench the strong fluorescence of the gold nanoclusters, whereas the addition of D-penicillamine caused obvious restoration of fluorescence intensity of the Cu(2+)-gold nanoclusters system. Under optimum conditions, the increment in fluorescence intensity of Cu(2+)-gold nanoclusters system caused by D-penicillamine was linearly proportional to the concentration of D-penicillamine in the range of 2.0×10(-5)-2.39×10(-4) M. The detection limit for D-penicillamine was 5.4×10(-6) M. With the off-on fluorescence signal at 650 nm approaching the near-infrared region, the present sensor for D-penicillamine detection had high sensitivity and low spectral interference. Furthermore, the novel gold nanoclusters-based fluorescent sensor has been applied to the determination of D-penicillamine in real biological samples with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. CINE: Comet INfrared Excitation

    Science.gov (United States)

    de Val-Borro, Miguel; Cordiner, Martin A.; Milam, Stefanie N.; Charnley, Steven B.

    2017-08-01

    CINE calculates infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. One of the main mechanisms for molecular excitation in comets is the fluorescence by the solar radiation followed by radiative decay to the ground vibrational state. This command-line tool calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Fluorescence coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.

  2. Near-infrared image guidance in cancer surgery

    NARCIS (Netherlands)

    Schaafsma, B.E.

    2017-01-01

    Intraoperative imaging using near-infrared (NIR) fluorescence is a fast developing imaging modality as it provides real-time visual information during surgery (Chapter 1). The ability to detect lymph nodes and tumours that need to be resected can assist the surgeon to improve surgery by reducing

  3. Spectroscopic investigations of OH- influence on near-infrared fluorescence quenching of Yb3+/Tm3+ co-doped sodium-metaphosphate glasses

    International Nuclear Information System (INIS)

    Terra, I.A.A.; Camargo, A.S.S. de; Terrile, M.C.; Nunes, L.A.O.

    2008-01-01

    Energy transfer processes were studied in two sets of Yb 3+ and Tm 3+ co-doped sodium-metaphosphate glasses, prepared in air and nitrogen atmospheres. Using Foerster, Dexter, and Miyakawa theoretical models, the energy transfer parameters were calculated. The main ion-ion energy transfer processes analyzed were energy migration among Yb 3+ ions, cross-relaxations between Yb 3+ and Tm 3+ ions, and interactions with OH - radicals. The results indicated that Yb→Tm energy transfer favors 1.8 μm emissions, and there is no evidence of concentration quenching up to 2% Tm 2 O 3 doping. As expected, samples prepared in nitrogen atmosphere present higher fluorescence quantum efficiency than those prepared in air, and this feature is specially noted in the near-infrared region, where the interaction with the OH - radicals is more pronounced

  4. Quantification of fluorescence angiography in a porcine model

    DEFF Research Database (Denmark)

    Nerup, Nikolaj; Andersen, Helene Schou; Ambrus, Rikard

    2017-01-01

    PURPOSE: There is no consensus on how to quantify indocyanine green (ICG) fluorescence angiography. The aim of the present study was to establish and gather validity evidence for a method of quantifying fluorescence angiography, to assess organ perfusion. METHODS: Laparotomy was performed on seven...... pigs, with two regions of interest (ROIs) marked. ICG and neutron-activated microspheres were administered and the stomach was illuminated in the near-infrared range, parallel to continuous recording of fluorescence signal. Tissue samples from the ROIs were sent for quantification of microspheres...... to calculate the regional blood flow. A software system was developed to assess the fluorescent recordings quantitatively, and each quantitative parameter was compared with the regional blood flow. The parameter with the strongest correlation was then compared with results from an independently developed...

  5. Near-infrared branding efficiently correlates light and electron microscopy.

    Science.gov (United States)

    Bishop, Derron; Nikić, Ivana; Brinkoetter, Mary; Knecht, Sharmon; Potz, Stephanie; Kerschensteiner, Martin; Misgeld, Thomas

    2011-06-05

    The correlation of light and electron microscopy of complex tissues remains a major challenge. Here we report near-infrared branding (NIRB), which facilitates such correlation by using a pulsed, near-infrared laser to create defined fiducial marks in three dimensions in fixed tissue. As these marks are fluorescent and can be photo-oxidized to generate electron contrast, they can guide re-identification of previously imaged structures as small as dendritic spines by electron microscopy.

  6. Fourier transform infrared imaging and microscopy studies of Pinus radiata pulps regarding the simultaneous saccharification and fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Rosario del P., E-mail: rosariocastillo@udec.cl [Faculty of Pharmacy, University of Concepcion, Concepcion (Chile); Biotechnology Center, University of Concepcion, Concepcion (Chile); Araya, Juan [Faculty of Pharmacy, University of Concepcion, Concepcion (Chile); Biotechnology Center, University of Concepcion, Concepcion (Chile); Troncoso, Eduardo [Consorcio Bioenercel S.A, University of Concepcion, Concepcion (Chile); Vinet, Silenne; Freer, Juanita [Biotechnology Center, University of Concepcion, Concepcion (Chile); Faculty of Chemical Sciences, University of Concepcion, Concepcion (Chile)

    2015-03-25

    The distribution and chemical patterns of lignocellulosic components at microscopic scale and their effect on the simultaneous saccharification and fermentation process (SSF) in the production of bioethanol from Pinus radiata pulps were analyzed by the application of diverse microscopical techniques, including scanning electronic microscopy (SEM), confocal laser scanning microscopy (CLSM) and attenuated total reflectance (ATR) – Fourier transform infrared microspectroscopy. This last technique was accompanied with multivariate methods, including principal component analysis (PCA) and multivariate curve resolution with alternating least squares (MCR-ALS) to evaluate the distribution patterns and to generate pure spectra of the lignocellulosic components of fibers. The results indicate that the information obtained by the techniques is complementary (ultrastructure, confocality and chemical characterization) and that the distribution of components affects the SSF yield, identifying lignin coalescence droplets as a characteristic factor to increase the SSF yield. Therefore, multivariate analysis of the infrared spectra enabled the in situ identification of the cellulose, lignin and lignin-carbohydrates arrangements. These techniques could be used to investigate the lignocellulosic components distribution and consequently their recalcitrance in many applications where minimal sample manipulation and microscale chemical information is required.

  7. Fourier transform infrared imaging and microscopy studies of Pinus radiata pulps regarding the simultaneous saccharification and fermentation process

    International Nuclear Information System (INIS)

    Castillo, Rosario del P.; Araya, Juan; Troncoso, Eduardo; Vinet, Silenne; Freer, Juanita

    2015-01-01

    The distribution and chemical patterns of lignocellulosic components at microscopic scale and their effect on the simultaneous saccharification and fermentation process (SSF) in the production of bioethanol from Pinus radiata pulps were analyzed by the application of diverse microscopical techniques, including scanning electronic microscopy (SEM), confocal laser scanning microscopy (CLSM) and attenuated total reflectance (ATR) – Fourier transform infrared microspectroscopy. This last technique was accompanied with multivariate methods, including principal component analysis (PCA) and multivariate curve resolution with alternating least squares (MCR-ALS) to evaluate the distribution patterns and to generate pure spectra of the lignocellulosic components of fibers. The results indicate that the information obtained by the techniques is complementary (ultrastructure, confocality and chemical characterization) and that the distribution of components affects the SSF yield, identifying lignin coalescence droplets as a characteristic factor to increase the SSF yield. Therefore, multivariate analysis of the infrared spectra enabled the in situ identification of the cellulose, lignin and lignin-carbohydrates arrangements. These techniques could be used to investigate the lignocellulosic components distribution and consequently their recalcitrance in many applications where minimal sample manipulation and microscale chemical information is required

  8. In vivo type 2 cannabinoid receptor-targeted tumor optical imaging using a near infrared fluorescent probe.

    Science.gov (United States)

    Zhang, Shaojuan; Shao, Pin; Bai, Mingfeng

    2013-11-20

    The type 2 cannabinoid receptor (CB2R) plays a vital role in carcinogenesis and progression and is emerging as a therapeutic target for cancers. However, the exact role of CB2R in cancer progression and therapy remains unclear. This has driven the increasing efforts to study CB2R and cancers using molecular imaging tools. In addition, many types of cancers overexpress CB2R, and the expression levels of CB2R appear to be associated with tumor aggressiveness. Such upregulation of the receptor in cancer cells provides opportunities for CB2R-targeted imaging with high contrast and for therapy with low side effects. In the present study, we report the first in vivo tumor-targeted optical imaging using a novel CB2R-targeted near-infrared probe. In vitro cell fluorescent imaging and a competitive binding assay indicated specific binding of NIR760-mbc94 to CB2R in CB2-mid delayed brain tumor (DBT) cells. NIR760-mbc94 also preferentially labeled CB2-mid DBT tumors in vivo, with a 3.7-fold tumor-to-normal contrast enhancement at 72 h postinjection, whereas the fluorescence signal from the tumors of the mice treated with NIR760 free dye was nearly at the background level at the same time point. SR144528, a CB2R competitor, significantly inhibited tumor uptake of NIR760-mbc94, indicating that NIR760-mbc94 binds to CB2R specifically. In summary, NIR760-mbc94 specifically binds to CB2R in vitro and in vivo and appears to be a promising molecular tool that may have great potential for use in diagnostic imaging of CB2R-positive cancers and therapeutic monitoring as well as in elucidating the role of CB2R in cancer progression and therapy.

  9. Neodymium-doped nanoparticles for infrared fluorescence bioimaging: The role of the host

    Energy Technology Data Exchange (ETDEWEB)

    Rosal, Blanca del; Pérez-Delgado, Alberto; Rocha, Ueslen; Martín Rodríguez, Emma; Jaque, Daniel, E-mail: daniel.jaque@uam.es [Fluorescence Imaging Group, Dpto. de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049 (Spain); Misiak, Małgorzata; Bednarkiewicz, Artur [Wroclaw Research Centre EIT+, ul. Stabłowicka 147, 54-066 Wrocław (Poland); Institute of Physics, University of Tartu, 14c Ravila Str., 50411 Tartu (Estonia); Vanetsev, Alexander S. [Institute of Low Temperature and Structure Research, PAS, ul. Okólna 2, 50-422 Wrocław (Poland); Orlovskii, Yurii [Institute of Low Temperature and Structure Research, PAS, ul. Okólna 2, 50-422 Wrocław (Poland); Prokhorov General Physics Institute RAS, 38 Vavilov Str., 119991 Moscow (Russian Federation); Jovanović, Dragana J.; Dramićanin, Miroslav D. [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade 11001 (Serbia); Upendra Kumar, K.; Jacinto, Carlos [Grupo de Fotônica e Fluidos Complexos, Instituto de Física, Universidade Federal de Alagoas, 57072-900 Maceió-AL (Brazil); Navarro, Elizabeth [Depto. de Química, Eco Catálisis, UAM-Iztapalapa, Sn. Rafael Atlixco 186, México 09340, D.F (Mexico); and others

    2015-10-14

    The spectroscopic properties of different infrared-emitting neodymium-doped nanoparticles (LaF{sub 3}:Nd{sup 3+}, SrF{sub 2}:Nd{sup 3+}, NaGdF{sub 4}: Nd{sup 3+}, NaYF{sub 4}: Nd{sup 3+}, KYF{sub 4}: Nd{sup 3+}, GdVO{sub 4}: Nd{sup 3+}, and Nd:YAG) have been systematically analyzed. A comparison of the spectral shapes of both emission and absorption spectra is presented, from which the relevant role played by the host matrix is evidenced. The lack of a “universal” optimum system for infrared bioimaging is discussed, as the specific bioimaging application and the experimental setup for infrared imaging determine the neodymium-doped nanoparticle to be preferentially used in each case.

  10. Infrared, Raman and laser fluorescence studies on large molecules

    International Nuclear Information System (INIS)

    Venkateswaran, Sugandhi

    2000-01-01

    In the present thesis, infrared and Raman spectroscopic studies on large molecules, molecular assemblies and crystalline solids, as a function of temperature, pressure and added materials have been carried out. Spectral changes observed in our studies are interpreted in terms of intermolecular interaction, phase transition and conformational changes taking place in the molecules studied

  11. Extraction of information on macromolecular interactions from fluorescence micro-spectroscopy measurements in the presence and absence of FRET

    Science.gov (United States)

    Raicu, Valerică

    2018-06-01

    Investigations of static or dynamic interactions between proteins or other biological macromolecules in living cells often rely on the use of fluorescent tags with two different colors in conjunction with adequate theoretical descriptions of Förster Resonance Energy Transfer (FRET) and molecular-level micro-spectroscopic technology. One such method based on these general principles is FRET spectrometry, which allows determination of the quaternary structure of biomolecules from cell-level images of the distributions, or spectra of occurrence frequency of FRET efficiencies. Subsequent refinements allowed combining FRET frequency spectra with molecular concentration information, thereby providing the proportion of molecular complexes with various quaternary structures as well as their binding/dissociation energies. In this paper, we build on the mathematical principles underlying FRET spectrometry to propose two new spectrometric methods, which have distinct advantages compared to other methods. One of these methods relies on statistical analysis of color mixing in subpopulations of fluorescently tagged molecules to probe molecular association stoichiometry, while the other exploits the color shift induced by FRET to also derive geometric information in addition to stoichiometry. The appeal of the first method stems from its sheer simplicity, while the strength of the second consists in its ability to provide structural information.

  12. Time-resolved fluorescence analysis of the mobile flavin cofactor in ...

    Indian Academy of Sciences (India)

    TECS

    bMicrospectroscopy Centre, PO Box 8128, 6700 ET, Wageningen, The Netherlands ... addition, other potential quenching sites, including a tryptophan and two tyrosines involved in ...... belled with an Alexa dye indeed showed the pres-.

  13. Study of energetic-particle-irradiation induced biological effect on Rhizopus oryzae through synchrotron-FTIR micro-spectroscopy

    Science.gov (United States)

    Liu, Jinghua; Qi, Zeming; Huang, Qing; Wei, Xiaoli; Ke, Zhigang; Fang, Yusheng; Tian, Yangchao; Yu, Zengliang

    2013-01-01

    Energetic particles exist ubiquitously and cause varied biological effects such as DNA strand breaks, lipid peroxidation, protein modification, cell apoptosis or death. An emerging biotechnology based on ion-beam technique has been developed to serve as an effective tool for mutation breeding of crops and microbes. In order to improve the effectiveness of ion-beam biotechnology for mutation breeding, it is indispensible to gain a better understanding of the mechanism of the interactions between the energetic ions and biological systems which is still elusive. A new trend is to conduct more comprehensive research which is based on micro-scaled observation of the changes of the cellular structures and compositions under the interactions. For this purpose, advanced synchrotron FTIR (s-FTIR) microscopy was employed to monitor the cellular changes of single fungal hyphae under irradiation of α-particles from 241Am. Intracellular contents of ROS, MDA, GSSG/GSH and activities of CAT and SOD were measured via biochemical assay. Ion-irradiation on Rhizopus oryzae causes localized vacuolation, autolysis of cell wall and membrane, lipid peroxidation, DNA damage and conformational changes of proteins, which have been clearly revealed by the s-FTIR microspectroscopy. The different changes of cell viability, SOD and CAT activities can be explained by the ROS-involved chemical reactions. Evidently, the elevated level of ROS in hyphal cells upon irradiation plays the key role in the caused biological effect. This study demonstrates that s-FTIR microspectroscopy is an effective tool to study the damage of fungal hyphae caused by ionizing radiation and it facilitates the exploit of the mechanism for the interactions between the energetic ions and biological systems.

  14. Bright blue-shifted fluorescent proteins with Cys in the GAF domain engineered from bacterial phytochromes: fluorescence mechanisms and excited-state dynamics

    NARCIS (Netherlands)

    Hontani, Yusaku; Shcherbakova, Daria M.; Baloban, Mikhail; Zhu, Jingyi; Verkhusha, Vladislav V.; Kennis, John T. M.

    2016-01-01

    Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes (BphPs) are of great interest for in vivo imaging. They utilize biliverdin (BV) as a chromophore, which is a heme degradation product, and therefore they are straightforward to use in mammalian tissues. Here, we

  15. Design of peptide-conjugated glycol chitosan nanoparticles for near infrared fluorescent (NIRF) in vivo imaging of bladder tumors

    Science.gov (United States)

    Key, Jaehong; Dhawan, Deepika; Knapp, Deborah W.; Kim, Kwangmeyung; Kwon, Ick Chan; Choi, Kuiwon; Leary, James F.

    2012-03-01

    Enhanced permeability and retention (EPR) effects for tumor treatment have been utilized as a representative strategy to accumulate untargeted nanoparticles in the blood vessels around tumors. However, the EPR effect itself was not sufficient for the nanoparticles to penetrate into cancer cells. For the improvement of diagnosis and treatment of cancer using nanoparticles, many more nanoparticles need to specifically enter cancer cells. Otherwise, can leave the tumor area and not contribute to treatment. In order to enhance the internalization process, specific ligands on nanoparticles can help their specific internalization in cancer cells by receptor-mediated endocytosis. We previously developed glycol chitosan based nanoparticles that suggested a promising possibility for in vivo tumor imaging using the EPR effect. The glycol chitosan nanoparticles showed a long circulation time beyond 1 day and they were accumulated predominantly in tumor. In this study, we evaluated two peptides for specific targeting and better internalization into urinary bladder cancer cells. We conjugated the peptides on to the glycol chitosan nanoparticles; the peptide-conjugated nanoparticles were also labeling with near infrared fluorescent (NIRF) dye, Cy5.5, to visualize them by optical imaging in vivo. Importantly real-time NIRF imaging can also be used for fluorescence (NIRF)-guided surgery of tumors beyond normal optical penetration depths. The peptide conjugated glycol chitosan nanoparticles were characterized with respect to size, stability and zeta-potential and compared with previous nanoparticles without ligands in terms of their internalization into bladder cancer cells. This study demonstrated the possibility of our nanoparticles for tumor imaging and emphasized the importance of specific targeting peptides.

  16. Design and validation of a near-infrared fluorescence endoscope for detection of early esophageal malignancy using a targeted imaging probe

    Science.gov (United States)

    Waterhouse, Dale J.; Joseph, James; Neves, Andre A.; di Pietro, Massimiliano; Brindle, Kevin M.; Fitzgerald, Rebecca C.; Bohndiek, Sarah E.

    2016-03-01

    Barrett's esophagus is a condition that predisposes patients to esophageal cancer. Early detection of cancer in these patients can be curative, but is confounded by a lack of contrast in white light endoscopy (WLE). Application of fluorescently-labeled lectins to the esophagus during endoscopy can more accurately delineate dysplasia emerging within Barrett's than WLE1, but strong tissue autofluorescence has limited sensitivity and dynamic range of this approach. To overcome this challenge, we synthesized a near-infrared (NIR) fluorescent lectin and have constructed a clinically translatable endoscope for simultaneous WLE and NIR imaging. An imaging fiber bundle, shielded from patient contact using a disposable catheter, relays collected light into an optical path that splits the WL reflectance and NIR emission onto two cameras for simultaneous video-rate recording. The captured images are co-registered and the honeycomb artifact arising from the fiber bundle is removed using interpolation between image points derived from individual fibers. A minimum detectable concentration of 110 nM was determined using a dilution series of IRDye800CW-lectin in black well plates. We have demonstrated the ability to use our endoscope to distinguish between different tissue types in ex vivo mouse stomachs. Future work using human ex vivo tissue specimens will determine safe illumination limits and sensitivity for dysplasia and adenocarcinoma in Barrett's esophagus, prior to commencing clinical trials.

  17. Imaging lysosomal highly reactive oxygen species and lighting up cancer cells and tumors enabled by a Si-rhodamine-based near-infrared fluorescent probe.

    Science.gov (United States)

    Zhang, Hongxing; Liu, Jing; Liu, Chenlu; Yu, Pengcheng; Sun, Minjia; Yan, Xiaohan; Guo, Jian-Ping; Guo, Wei

    2017-07-01

    Lysosomes have recently been regarded as the attractive pharmacological targets for selectively killing of cancer cells via lysosomal cell death (LCD) pathway that is closely associated with reactive oxygen species (ROS). However, the details on the ROS-induced LCD of cancer cells are still poorly understood, partially due to the absence of a lysosome-targetable, robust, and biocompatible imaging tool for ROS. In this work, we brought forward a Si-rhodamine-based fluorescent probe, named PSiR, which could selectively and sensitively image the pathologically more relavent highly reactive oxygen species (hROS: HClO, HO, and ONOO - ) in lysosomes of cancer cells. Compared with many of the existing hROS fluorescent probes, its superiorities are mainly embodied in the high stability against autoxidation and photoxidation, near-infrared exitation and emission, fast fluorescence off-on response, and specific lysosomal localization. Its practicality has been demonstrated by the real-time imaging of hROS generation in lysosomes of human non-small-cell lung cancer cells stimulated by anticancer drug β-lapachone. Moreover, the probe was sensitive enough for basal hROS in cancer cells, allowing its further imaging applications to discriminate not only cancer cells from normal cells, but also tumors from healthy tissues. Overall, our results strongly indicated that PSiR is a very promising imaging tool for the studies of ROS-related LCD of cancer cells, screening of new anticancer drugs, and early diagnosis of cancers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Recent developments in multimodality fluorescence imaging probes

    Directory of Open Access Journals (Sweden)

    Jianhong Zhao

    2018-05-01

    Full Text Available Multimodality optical imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy, important in disease diagnosis and treatment. In this review, we focus on recent developments of optical fluorescence imaging (OFI probe integration with other imaging modalities such as X-ray computed tomography (CT, magnetic resonance imaging (MRI, positron emission tomography (PET, single-photon emission computed tomography (SPECT, and photoacoustic imaging (PAI. The imaging technologies are briefly described in order to introduce the strengths and limitations of each techniques and the need for further multimodality optical imaging probe development. The emphasis of this account is placed on how design strategies are currently implemented to afford physicochemically and biologically compatible multimodality optical fluorescence imaging probes. We also present studies that overcame intrinsic disadvantages of each imaging technique by multimodality approach with improved detection sensitivity and accuracy. KEY WORDS: Optical imaging, Fluorescence, Multimodality, Near-infrared fluorescence, Nanoprobe, Computed tomography, Magnetic resonance imaging, Positron emission tomography, Single-photon emission computed tomography, Photoacoustic imaging

  19. Infrared-laser-based fundus angiography

    Science.gov (United States)

    Klingbeil, Ulrich; Canter, Joseph M.; Lesiecki, Michael L.; Reichel, Elias

    1994-06-01

    Infrared fundus angiography, using the fluorescent dye indocyanine green (ICG), has shown great potential in delineating choroidal neovascularization (CNV) otherwise not detectable. A digital retinal imaging system containing a diode laser for illumination has been developed and optimized to perform high sensitivity ICG angiography. The system requires less power and generates less pseudo-fluorescence background than nonlaser devices. During clinical evaluation at three retinal centers more than 200 patients, the majority of which had age-related macular degeneration, were analyzed. Laser based ICG angiography was successful in outlining many of the ill-defined or obscure CNV as defined by fluorescein angiography. The procedure was not as successful with classic CNV. ICG angiograms were used to prepare and guide laser treatment.

  20. Fluorescent Reporters and Biosensors for Probing the Dynamic Behavior of Protein Kinases

    Directory of Open Access Journals (Sweden)

    Juan A. González-Vera

    2015-11-01

    Full Text Available Probing the dynamic activities of protein kinases in real-time in living cells constitutes a major challenge that requires specific and sensitive tools tailored to meet the particular demands associated with cellular imaging. The development of genetically-encoded and synthetic fluorescent biosensors has provided means of monitoring protein kinase activities in a non-invasive fashion in their native cellular environment with high spatial and temporal resolution. Here, we review existing technologies to probe different dynamic features of protein kinases and discuss limitations where new developments are required to implement more performant tools, in particular with respect to infrared and near-infrared fluorescent probes and strategies which enable improved signal-to-noise ratio and controlled activation of probes.

  1. Calibrating the photo-thermal response of magneto-fluorescent gold nanoshells.

    Science.gov (United States)

    Biswal, Nrusingh C; Ayala-Orzoco, Ciceron; Halas, Naomi J; Joshi, Amit

    2011-01-01

    We report the photothermal response and Near Infrared (NIR) imaging sensitivities of magneto-fluorescent silica core gold nanocomplexes designed for molecular image guided thermal therapy of cancer. Approximately 160 nm Silica core gold nanoshells were designed to provide NIR fluorescent and Magnetic Resonance (MR) contrast by incorporating FDA approved dye indocyanine green (ICG) and iron-oxide within an outer silica epilayer. The imaging and therapeutic sensitivity, and the stability of fluorescence contrast for 12 microliters of suspension (containing approximately 7.9 × 10(8) or 1.3 femtoMole nanoshells) buried at depths of 2-8 mm in tissue mimicking scattering media is reported.

  2. Selective labeling of a single organelle by using two-photon conversion of a photoconvertible fluorescent protein

    Science.gov (United States)

    Watanabe, Wataru; Shimada, Tomoko; Matsunaga, Sachihiro; Kurihara, Daisuke; Arimura, Shin-ichi; Tsutsumi, Nobuhiro; Fukui, Kiichi; Itoh, Kazuyoshi

    2008-02-01

    We present space-selective labeling of organelles by using two-photon conversion of a photoconvertible fluorescent protein with near-infrared femtosecond laser pulses. Two-photon excitation of photoconvertible fluorescent-protein, Kaede, enables space-selective labeling of organelles. We alter the fluorescence of target mitochondria in a tobacco BY-2 cell from green to red by focusing femtosecond laser pulses with a wavelength of 750 nm.

  3. Detection of peritoneal dissemination with near-infrared fluorescence laparoscopic imaging using a liposomal formulation of a synthesized indocyanine green liposomal derivative.

    Science.gov (United States)

    Hoshino, Isamu; Maruyama, Tetsuro; Fujito, Hiromichi; Tamura, Yutaka; Suganami, Akiko; Hayashi, Hideki; Toyota, Taro; Akutsu, Yasunori; Murakami, Kentaro; Isozaki, Yuka; Akanuma, Naoki; Takeshita, Nobuyoshi; Toyozumi, Takeshi; Komatsu, Aki; Matsubara, Hisahiro

    2015-03-01

    Although conventional staging laparoscopy (SL) has improved the diagnostic accuracy of peritoneal dissemination, novel technology is needed to increase the sensitivity of SL. We herein describe a new imaging method employing near-infrared (NIR) fluorescence imaging using a liposomal synthesized indocyanine green (ICG) liposomal derivative, LP-ICG-C18. LP-ICG-C18 is a NIR-photoactivating probe in which an ICG fluorophore is covalently conjugated with a phospholipid moiety. Nude mice were intraperitoneally injected with gastric cancer cells. Twelve days later, the mice were given intravenous injections of LP-ICG-C18 at a dose of 0.15 mg/kg. A NIR imaging system was used to identify the disseminated tumors. The disseminated nodules in mice were detected without any difficulties. Disseminated tumor nodules were collected from mice with or without injections of liposomal formulation and were transferred into the swine peritoneal cavity. The nodules in the swine peritoneal cavity were clearly and promptly defined by the NIR imaging system. NIR-fluorescing liposomal probes can effectively target peritoneal disseminated tumors and can be easily detected by a NIR imaging system. These results warrant future clinical trials of our imaging system and may contribute to a more precise diagnosis and therapeutic approach for gastric cancer patients. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  4. Fluorescence spectroscopy for neoplasms control

    Science.gov (United States)

    Bratchenko, I. A.; Kristoforova, Yu. A.; Myakinin, O. O.; Artemyev, D. N.; Kozlov, S. V.; Moryatov, A. A.; Zakharov, V. P.

    2016-04-01

    Investigation of malignant skin tumors diagnosis was performed involving two setups for native tissues fluorescence control in visible and near infrared regions. Combined fluorescence analysis for skin malignant melanomas and basal cell carcinomas was performed. Autofluorescence spectra of normal skin and oncological pathologies stimulated by 457 nm and 785 nm lasers were registered for 74 skin tissue samples. Spectra of 10 melanomas and 27 basal cell carcinomas were registered ex vivo. Skin tumors analysis was made on the basis of autofluorescence spectra intensity and curvature for analysis of porphyrins, lipo-pigments, flavins and melanin. Separation of melanomas and basal cell carcinomas was performed on the basis of discriminant analysis. Overall accuracy of basal cell carcinomas and malignant melanomas separation in current study reached 86.5% with 70% sensitivity and 92.6% specificity.

  5. Upconverting fluorescent nanoparticles for biodetection and photoactivation

    Science.gov (United States)

    Huang, Kai; Li, WenKai; Jayakumar, Muthu Kumara Gnanasammandhan; Zhang, Yong

    2013-03-01

    Fluorophores including fluorescent dyes/proteins and quantum dots (QDs) are used for fluorescence-based imaging and detection. These are based on `downconversion fluorescence' and have several drawbacks: photobleaching, autofluorescence, short tissue penetration depth and tissue photo-damage. Upconversion fluorescent nanoparticles (UCNs) emit detectable photons of higher energy in the short wavelength range upon irradiation with near-infrared (NIR) light based on a process termed `upconversion'. UCNs show absolute photostability, negligible autofluorescence, high penetration depth and minimum photodamage to biological tissues. Lanthanide doped nanocrystals with nearinfrared NIR-to-NIR and/or NIR-to-VIS and/or NIR-to-UV upconversion fluorescence emission have been synthesized. The nanocrystals with small size and tunable multi-color emission have been developed. The emission can be tuned by doping different upconverting lanthanide ions into the nanocrystals. The nanocrystals with core-shell structure have also been prepared to tune the emission color. The surfaces of these nanocrystals have been modified to render them water dispersible and biocompatible. They can be used for ultrasensitive interference-free biodetection because most biomolecules do not have upconversion properties. UCNs are also useful for light based therapy with enhanced efficiency, for example, photoactivation.

  6. Near infrared fluorescence and energy transfer in Ce/Nd Co-doped Ca{sub x}Sr{sub 1-x}S

    Energy Technology Data Exchange (ETDEWEB)

    Meng Jianxin, E-mail: tmjx@jnu.edu.c [Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Department of Chemistry, Jinan University, Guangzhou 510632 (China); Wan Wenjiao; Fan Lili; Yang Chuangtao; Chen Qingqing [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Cao Liwei; Man Shiqing [Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China)

    2011-01-15

    Novel near infrared (NIR) phosphors Ca{sub x}Sr{sub 1-x}S:Ce{sup 3+},Nd{sup 3+} were synthesized by a solid state reaction. The NIR emission was realized through an efficient absorption by the allowed 4f-5d transition of Ce{sup 3+} and efficient energy transfer to Nd{sup 3+} via well-matched energy levels. Ce{sup 3+} and Nd{sup 3+} content in CaS/SrS was optimized. It was found that CaS:Ce{sup 3+},Nd{sup 3+} gave much stronger NIR emission than that of SrS:Ce{sup 3+},Nd{sup 3+}. Further studies on Ca{sub x}Sr{sub 1-x}S:Ce{sup 3+},Nd{sup 3+} indicated that both visible emission of Ce{sup 3+} and NIR emission of Nd{sup 3+} were observably affected by Ca/Sr ratio. The energy transfer efficiency, which can be estimated from fluorescence lifetime of Ce{sup 3+}, increased from 52% to 74% for the Ca{sub x}Sr{sub 1-x}S:Ce{sup 3+},Nd{sup 3+} (x=0 to 1) series, accompanied with a shift of maximal emission wavelength of Ce{sup 3+} from 482 to 505 nm. The results showed that overlap between emission spectrum of Ce{sup 3+} and excitation spectrum of Nd{sup 3+} plays an important role in the energy transfer efficiency, and Ce{sup 3+} emitting in green or blue-greenish region sensitized the Nd{sup 3+} NIR fluorescence emission more efficiently than that in blue region.

  7. A study on a portable fluorescence imaging system

    Science.gov (United States)

    Chang, Han-Chao; Wu, Wen-Hong; Chang, Chun-Li; Huang, Kuo-Cheng; Chang, Chung-Hsing; Chiu, Shang-Chen

    2011-09-01

    The fluorescent reaction is that an organism or dye, excited by UV light (200-405 nm), emits a specific frequency of light; the light is usually a visible or near infrared light (405-900 nm). During the UV light irradiation, the photosensitive agent will be induced to start the photochemical reaction. In addition, the fluorescence image can be used for fluorescence diagnosis and then photodynamic therapy can be given to dental diseases and skin cancer, which has become a useful tool to provide scientific evidence in many biomedical researches. However, most of the methods on acquiring fluorescence biology traces are still stay in primitive stage, catching by naked eyes and researcher's subjective judgment. This article presents a portable camera to obtain the fluorescence image and to make up a deficit from observer competence and subjective judgment. Furthermore, the portable camera offers the 375nm UV-LED exciting light source for user to record fluorescence image and makes the recorded image become persuasive scientific evidence. In addition, when the raising the rate between signal and noise, the signal processing module will not only amplify the fluorescence signal up to 70 %, but also decrease the noise significantly from environmental light on bill and nude mouse testing.

  8. Imaging phospholipid conformational disorder and packing in giant multilamellar liposome by confocal Raman microspectroscopy

    Science.gov (United States)

    Noothalapati, Hemanth; Iwasaki, Keita; Yoshimoto, Chikako; Yoshikiyo, Keisuke; Nishikawa, Tomoe; Ando, Masahiro; Hamaguchi, Hiro-o.; Yamamoto, Tatsuyuki

    2017-12-01

    Liposomes are closed phospholipid bilayer systems that have profound applications in fundamental cell biology, pharmaceutics and medicine. Depending on the composition (pure or mixture of phospholipids, presence of cholesterol) and preparation protocol, intra- and inter-chain molecular interactions vary leading to changes in the quality (order and packing) of liposomes. So far it is not possible to image conformational disorders and packing densities within a liposome in a straightforward manner. In this study, we utilized confocal Raman microspectroscopy to visualize structural disorders and packing efficiency within a giant multilamellar liposome model by focusing mainly on three regions in the vibrational spectrum (Csbnd C stretching, Csbnd H deformation and Csbnd H stretching). We estimated properties such as trans/gauche isomers and lateral packing probability. Interestingly, our Raman imaging studies revealed gel phase rich domains and heterogeneous lateral packing within the giant multilamellar liposome.

  9. In situ FTIR assessment of desiccation-tolerant tissues

    NARCIS (Netherlands)

    Wolkers, W.F.; Hoekstra, F.A.

    2003-01-01

    This essay shows how Fourier transform infrared (FTIR) microspectroscopy can be applied to study thermodynamic parameters and conformation of endogenous biomolecules in desiccation-tolerant biological tissues. Desiccation tolerance is the remarkable ability of some organisms to survive complete

  10. The porosity, adicity, and reactivity of dealuminated zeolite ZSM-5 at the single partical level: The influence of the zeolite architecture

    NARCIS (Netherlands)

    Aramburo, L.R.; Karwacki, L.; Cubillas, P.; Asahina, S.; de Winter, D.A.M.; Drury, M.R.; Buurmans, I.L.C.; Stavitski, I.; Mores, D.; Daturi, M.; Bazin, P.; Dumas, P.; Thibault-Starzyk, F.; Post, J.A.; Anderson, M.W.; Terasaki, O.; Weckhuysen, B.M.

    2011-01-01

    A combination of atomic force microscopy (AFM), high-resolution scanning electron microscopy (HR-SEM), focused-ion-beam scanning electron microscopy (FIB-SEM), X-ray photoelectron spectroscopy (XPS), confocal fluorescence microscopy (CFM), and UV/Vis and synchrotronbased IR microspectroscopy was

  11. Recent research in flaxseed (oil seed) on molecular structure and metabolic characteristics of protein, heat processing-induced effect and nutrition with advanced synchrotron-based molecular techniques.

    Science.gov (United States)

    Doiron, Kevin J; Yu, Peiqiang

    2017-01-02

    Advanced synchrotron radiation-based infrared microspectroscopy is able to reveal feed and food structure feature at cellular and molecular levels and simultaneously provides composition, structure, environment, and chemistry within intact tissue. However, to date, this advanced synchrotron-based technique is still seldom known to food and feed scientists. This article aims to provide detailed background for flaxseed (oil seed) protein research and then review recent progress and development in flaxseed research in ruminant nutrition in the areas of (1) dietary inclusion of flaxseed in rations; (2) heat processing effect; (3) assessing dietary protein; (4) synchrotron-based Fourier transform infrared microspectroscopy as a tool of nutritive evaluation within cellular and subcellular dimensions; (5) recent synchrotron applications in flaxseed research on a molecular basis. The information described in this paper gives better insight in flaxseed research progress and update.

  12. High-pressure synchrotron infrared spectroscopy at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Hemley, R.J.; Goncharov, A.F.; Lu, R.; Struzhkin, V.V.; Li, M.; Mao, H.K.

    1998-01-01

    The paper describes a synchrotron infrared facility for high-pressure spectroscopy and microspectroscopy at the National Synchrotron Light-Source (NSLS). Located at beamline U2B on the VUV ring of the NSLS, the facility utilizes a commercial FT-IR together with custom-built microscope optics designed for a variety of diamond anvil cell experiments, including low- and high- temperature studies. The system contains an integrated laser optical/grating spectrometer for concurrent optical experiments. The facility has been used to characterize a growing number of materials to ultrahigh pressure and has been instrumental of new high-pressure phenomena. Experiments on dense hydrogen to >200 GPa have led to the discovery of numerous unexpected properties of this fundamental system. The theoretically predicted molecular-atomic transition of H 2 O ice to the symmetric hydrogen-bonded structure has been identified, and new classes of high-density clathrates and molecular compounds have been characterized. Experiments on natural and synthetic mineral samples have been performed to study hydrogen speciation, phase transformations, and microscopic inclusions in multiphase assemblages. Detailed information on the behavior of new materials, including novel high-pressure glasses and ceramics, has also been obtained

  13. EpCAM as multi-tumour target for near-infrared fluorescence guided surgery

    International Nuclear Information System (INIS)

    Driel, P. B. A. A. van; Boonstra, M. C.; Prevoo, H. A. J. M.; Giessen, M. van de; Snoeks, T. J. A.; Tummers, Q. R. J. G.; Keereweer, S.; Cordfunke, R. A.; Fish, A.; Eendenburg, J. D. H. van; Lelieveldt, B. P. F.; Dijkstra, J.; Velde, C. J. H. van de; Kuppen, P. J. K.; Vahrmeijer, A. L.; Löwik, C. W. G. M.; Sier, C. F. M.

    2016-01-01

    Evaluation of resection margins during cancer surgery can be challenging, often resulting in incomplete tumour removal. Fluorescence-guided surgery (FGS) aims to aid the surgeon to visualize tumours and resection margins during surgery. FGS relies on a clinically applicable imaging system in combination with a specific tumour-targeting contrast agent. In this study EpCAM (epithelial cell adhesion molecule) is evaluated as target for FGS in combination with the novel Artemis imaging system. The NIR fluorophore IRDye800CW was conjugated to the well-established EpCAM specific monoclonal antibody 323/A3 and an isotype IgG1 as control. The anti-EpCAM/800CW conjugate was stable in serum and showed preserved binding capacity as evaluated on EpCAM positive and negative cell lines, using flow cytometry and cell-based plate assays. Four clinically relevant orthotopic tumour models, i.e. colorectal cancer, breast cancer, head and neck cancer, and peritonitis carcinomatosa, were used to evaluate the performance of the anti-EpCAM agent with the clinically validated Artemis imaging system. The Pearl Impulse small animal imaging system was used as reference. The specificity of the NIRF signal was confirmed using bioluminescence imaging and green-fluorescent protein. All tumour types could clearly be delineated and resected 72 h after injection of the imaging agent. Using NIRF imaging millimetre sized tumour nodules were detected that were invisible for the naked eye. Fluorescence microscopy demonstrated the distribution and tumour specificity of the anti-EpCAM agent. This study shows the potential of an EpCAM specific NIR-fluorescent agent in combination with a clinically validated intraoperative imaging system to visualize various tumours during surgery

  14. Application of fluorescent and vibration spectroscopy for septic serum human albumin structure deformation during pathology

    Science.gov (United States)

    Zyubin, A.; Konstantinova, E.; Slezhkin, V.; Matveeva, K.; Samusev, I.; Bryukhanov, V.

    2017-12-01

    In this paper we perform results of conformational analysis of septic human serum albumin (HSA) carried out by Raman spectroscopy (RS), infrared (IR) spectroscopy and fluorescent spectroscopy. The main vibrational groups were identified and analyzed for septic HSA and its health control. Comparison between Raman and IR results were done. Fluorescent spectral changes of Trp-214 group were analyzed. Application of Raman, IR spectroscopy, fluorescent spectroscopy for conformational changes study of HSA during pathology were shown.

  15. Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation

    International Nuclear Information System (INIS)

    Churmakov, D Y; Meglinski, I V; Piletsky, S A; Greenhalgh, D A

    2003-01-01

    A novel Monte Carlo technique of simulation of spatial fluorescence distribution within the human skin is presented. The computational model of skin takes into account the spatial distribution of fluorophores, which would arise due to the structure of collagen fibres, compared to the epidermis and stratum corneum where the distribution of fluorophores is assumed to be homogeneous. The results of simulation suggest that distribution of auto-fluorescence is significantly suppressed in the near-infrared spectral region, whereas the spatial distribution of fluorescence sources within a sensor layer embedded in the epidermis is localized at an 'effective' depth

  16. Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Churmakov, D Y [School of Engineering, Cranfield University, Cranfield, MK43 0AL (United Kingdom); Meglinski, I V [School of Engineering, Cranfield University, Cranfield, MK43 0AL (United Kingdom); Piletsky, S A [Institute of BioScience and Technology, Cranfield University, Silsoe, MK45 4DT (United Kingdom); Greenhalgh, D A [School of Engineering, Cranfield University, Cranfield, MK43 0AL (United Kingdom)

    2003-07-21

    A novel Monte Carlo technique of simulation of spatial fluorescence distribution within the human skin is presented. The computational model of skin takes into account the spatial distribution of fluorophores, which would arise due to the structure of collagen fibres, compared to the epidermis and stratum corneum where the distribution of fluorophores is assumed to be homogeneous. The results of simulation suggest that distribution of auto-fluorescence is significantly suppressed in the near-infrared spectral region, whereas the spatial distribution of fluorescence sources within a sensor layer embedded in the epidermis is localized at an 'effective' depth.

  17. Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation

    Science.gov (United States)

    Y Churmakov, D.; Meglinski, I. V.; Piletsky, S. A.; Greenhalgh, D. A.

    2003-07-01

    A novel Monte Carlo technique of simulation of spatial fluorescence distribution within the human skin is presented. The computational model of skin takes into account the spatial distribution of fluorophores, which would arise due to the structure of collagen fibres, compared to the epidermis and stratum corneum where the distribution of fluorophores is assumed to be homogeneous. The results of simulation suggest that distribution of auto-fluorescence is significantly suppressed in the near-infrared spectral region, whereas the spatial distribution of fluorescence sources within a sensor layer embedded in the epidermis is localized at an `effective' depth.

  18. Investigation of Membrane Receptors' Oligomers Using Fluorescence Resonance Energy Transfer and Multiphoton Microscopy in Living Cells

    Science.gov (United States)

    Mishra, Ashish K.

    Investigating quaternary structure (oligomerization) of macromolecules (such as proteins and nucleic acids) in living systems (in vivo) has been a great challenge in biophysics, due to molecular diffusion, fluctuations in several biochemical parameters such as pH, quenching of fluorescence by oxygen (when fluorescence methods are used), etc. We studied oligomerization of membrane receptors in living cells by means of Fluorescence (Forster) Resonance Energy Transfer (FRET) using fluorescent markers and two photon excitation fluorescence micro-spectroscopy. Using suitable FRET models, we determined the stoichiometry and quaternary structure of various macromolecular complexes. The proteins of interest for this work are : (1) sigma-1 receptor and (2) rhodopsin, are described as below. (1) Sigma-1 receptors are molecular chaperone proteins, which also regulate ion channels. S1R seems to be involved in substance abuse, as well as several diseases such as Alzheimer's. We studied S1R in the presence and absence of its ligands haloperidol (an antagonist) and pentazocine +/- (an agonist), and found that at low concentration they reside as a mixture of monomers and dimers and that they may form higher order oligomers at higher concentrations. (2) Rhodopsin is a prototypical G protein coupled receptor (GPCR) and is directly involved in vision. GPCRs form a large family of receptors that participate in cell signaling by responding to external stimuli such as drugs, thus being a major drug target (more than 40% drugs target GPCRs). Their oligomerization has been largely controversial. Understanding this may help to understand the functional role of GPCRs oligomerization, and may lead to the discovery of more drugs targeting GPCR oligomers. It may also contribute toward finding a cure for Retinitis Pigmentosa, which is caused by a mutation (G188R) in rhodopsin, a disease which causes blindness and has no cure so far. Comparing healthy rhodopsin's oligomeric structure with that

  19. Molecular engineering of two-photon fluorescent probes for bioimaging applications

    Science.gov (United States)

    Liu, Hong-Wen; Liu, Yongchao; Wang, Peng; Zhang, Xiao-Bing

    2017-03-01

    During the past two decades, two-photon microscopy (TPM), which utilizes two near-infrared photons as the excitation source, has emerged as a novel, attractive imaging tool for biological research. Compared with one-photon microscopy, TPM offers several advantages, such as lowering background fluorescence in living cells and tissues, reducing photodamage to biosamples, and a photobleaching phenomenon, offering better 3D spatial localization, and increasing penetration depth. Small-molecule-based two-photon fluorescent probes have been well developed for the detection and imaging of various analytes in biological systems. In this review, we will give a general introduction of molecular engineering of two-photon fluorescent probes based on different fluorescence response mechanisms for bioimaging applications during the past decade. Inspired by the desired advantages of small-molecule two-photon fluorescent probes in biological imaging applications, we expect that more attention will be devoted to the development of new two-photon fluorophores and applications of TPM in areas of bioanalysis and disease diagnosis.

  20. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals

    Science.gov (United States)

    Sun, Qi; Mundoor, Haridas; Ribot, Josep; Singh, Vivek; Smalyukh, Ivan; Nagpal, Prashant

    2014-03-01

    Upconversion of infrared radiation into visible light has been investigated for applications in biological imaging and photovoltaics. However, low conversion efficiency due to small absorption cross-section for infrared light (Yb3+) , and slow rate of energy transfer (to Er3+ states) has prevented application of upconversion photoluminescence (UPL) for diffuse sunlight or imaging tissue samples. Here, we utilize resonant surface plasmon polaritons (SPP) waves to enhance UPL in doped-lanthanide nanocrystals. Our analysis indicates that SPP waves not only enhance the electromagnetic field, and hence weak Purcell effect, but also increases the rate of resonant energy transfer from Yb3+ to Er3+ ions by 6 fold. While we do observe strong metal mediated quenching (14 fold) of green fluorescence on flat metal surfaces, the nanostructured metal is resonant in the infrared, and hence enhances the nanocrystal UPL. This strong columbic effect on energy transfer can have important implications for other fluorescent and excitonic systems too.

  1. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals.

    Science.gov (United States)

    Sun, Qi-C; Mundoor, Haridas; Ribot, Josep C; Singh, Vivek; Smalyukh, Ivan I; Nagpal, Prashant

    2014-01-08

    Upconversion of infrared radiation into visible light has been investigated for applications in photovoltaics and biological imaging. However, low conversion efficiency due to small absorption cross-section for infrared light (Yb(3+)), and slow rate of energy transfer (to Er(3+) states) has prevented application of upconversion photoluminescence (UPL) for diffuse sunlight or imaging tissue samples. Here, we utilize resonant surface plasmon polaritons (SPP) waves to enhance UPL in doped-lanthanide nanocrystals. Our analysis indicates that SPP waves not only enhance the electromagnetic field, and hence weak Purcell effect, but also increase the rate of resonant energy transfer from Yb(3+) to Er(3+) ions by 6 fold. While we do observe strong metal mediated quenching (14-fold) of green fluorescence on flat metal surfaces, the nanostructured metal is resonant in the infrared and hence enhances the nanocrystal UPL. This strong Coulombic effect on energy transfer can have important implications for other fluorescent and excitonic systems too.

  2. Glycation and secondary conformational changes of human serum albumin: study of the FTIR spectroscopic curve-fitting technique

    Directory of Open Access Journals (Sweden)

    Yu-Ting Huang

    2016-05-01

    Full Text Available The aim of this study was attempted to investigate both the glycation kinetics and protein secondary conformational changes of human serum albumin (HSA after the reaction with ribose. The browning and fluorescence determinations as well as Fourier transform infrared (FTIR microspectroscopy with a curve-fitting technique were applied. Various concentrations of ribose were incubated over a 12-week period at 37 ± 0.5 oC under dark conditions. The results clearly shows that the glycation occurred in HSA-ribose reaction mixtures was markedly increased with the amount of ribose used and incubation time, leading to marked alterations of protein conformation of HSA after FTIR determination. In addition, the browning intensity of reaction solutions were colored from light to deep brown, as determined by optical observation. The increase in fluorescence intensity from HSA–ribose mixtures seemed to occur more quickly than browning, suggesting that the fluorescence products were produced earlier on in the process than compounds causing browning. Moreover, the predominant α-helical composition of HSA decreased with an increase in ribose concentration and incubation time, whereas total β-structure and random coil composition increased, as determined by curve-fitted FTIR microspectroscopy analysis. We also found that the peak intensity ratios at 1044 cm−1/1542 cm−1 markedly decreased prior to 4 weeks of incubation, then almost plateaued, implying that the consumption of ribose in the glycation reaction might have been accelerated over the first 4 weeks of incubation, and gradually decreased. This study first evidences that two unique IR peaks at 1710 cm−1 [carbonyl groups of irreversible products produced by the reaction and deposition of advanced glycation end products (AGEs] and 1621 cm−1 (aggregated HSA molecules were clearly observed from the curve-fitted FTIR spectra of HSA-ribose mixtures over the course of incubation time. This study

  3. Near-Infrared Confocal Laser Reflectance Cytoarchitectural Imaging of the Substantia Nigra and Cerebellum in the Fresh Human Cadaver.

    Science.gov (United States)

    Cheyuo, Cletus; Grand, Walter; Balos, Lucia L

    2017-01-01

    Cytoarchitectural neuroimaging remains critical for diagnosis of many brain diseases. Fluorescent dye-enhanced, near-infrared confocal in situ cellular imaging of the brain has been reported. However, impermeability of the blood-brain barrier to most fluorescent dyes limits clinical utility of this modality. The differential degree of reflectance from brain tissue with unenhanced near-infrared imaging may represent an alternative technique for in situ cytoarchitectural neuroimaging. We assessed the utility of unenhanced near-infrared confocal laser reflectance imaging of the cytoarchitecture of the cerebellum and substantia nigra in 2 fresh human cadaver brains using a confocal near-infrared laser probe. Cellular images based on near-infrared differential reflectance were captured at depths of 20-180 μm from the brain surface. Parts of the cerebellum and substantia nigra imaged using the probe were subsequently excised and stained with hematoxylin and eosin for histologic correlation. Near-infrared reflectance imaging revealed the 3-layered cytoarchitecture of the cerebellum, with Purkinje cells appearing hyperreflectant. In the substantia nigra, neurons appeared hyporeflectant with hyperreflectant neuromelanin cytoplasmic inclusions. Cytoarchitecture of the cerebellum and substantia nigra revealed on near-infrared imaging closely correlated with the histology on hematoxylin-eosin staining. We showed that unenhanced near-infrared reflectance imaging of fresh human cadaver brain can reliably identify and distinguish neurons and detailed cytoarchitecture of the cerebellum and substantia nigra. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Hyperspectral small animal fluorescence imaging: spectral selection imaging

    Science.gov (United States)

    Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Hall, Heidi; Vizard, Douglas; Robinson, J. Paul

    2008-02-01

    Molecular imaging is a rapidly growing area of research, fueled by needs in pharmaceutical drug-development for methods for high-throughput screening, pre-clinical and clinical screening for visualizing tumor growth and drug targeting, and a growing number of applications in the molecular biology fields. Small animal fluorescence imaging employs fluorescent probes to target molecular events in vivo, with a large number of molecular targeting probes readily available. The ease at which new targeting compounds can be developed, the short acquisition times, and the low cost (compared to microCT, MRI, or PET) makes fluorescence imaging attractive. However, small animal fluorescence imaging suffers from high optical scattering, absorption, and autofluorescence. Much of these problems can be overcome through multispectral imaging techniques, which collect images at different fluorescence emission wavelengths, followed by analysis, classification, and spectral deconvolution methods to isolate signals from fluorescence emission. We present an alternative to the current method, using hyperspectral excitation scanning (spectral selection imaging), a technique that allows excitation at any wavelength in the visible and near-infrared wavelength range. In many cases, excitation imaging may be more effective at identifying specific fluorescence signals because of the higher complexity of the fluorophore excitation spectrum. Because the excitation is filtered and not the emission, the resolution limit and image shift imposed by acousto-optic tunable filters have no effect on imager performance. We will discuss design of the imager, optimizing the imager for use in small animal fluorescence imaging, and application of spectral analysis and classification methods for identifying specific fluorescence signals.

  5. The role of macromolecular stability in desiccation tolerance

    NARCIS (Netherlands)

    Wolkers, W.F.

    1998-01-01

    The work presented in this thesis concerns a study on the molecular interactions that play a role in the macromolecular stability of desiccation-tolerant higher plant organs. Fourier transform infrared microspectroscopy was used as the main experimental technique to assess macromolecular

  6. Infrared emission from a polycyclic aromatic hydrocarbon (PAH) excited by ultraviolet laser

    International Nuclear Information System (INIS)

    Cherchneff, I.; Barker, J.R.

    1989-01-01

    The infrared fluorescence spectrum from the C-H stretch modes of vibrationally excited azulene (C10H8), a PAH was measured in the laboratory. PAHs are candidates as carriers of the unidentified infrared emission bands that are observed in many astronomical objects associated with dust and ultraviolet light. In the present experiment, gas phase azulene was excited with light from a 308 nm pulsed laser, and the infrared emission spectrum was time-resolved and wavelength-resolved. Moreover, the infrared absorption spectrum of gas phase azulene was obtained using an FTIR spectrometer. The laboratory emission spectrum resembles observed infrared emission spectra from the interstellar medium, providing support for the hypothesis that PAHs are the responsible carriers. The azulene C-H stretch emission spectrum is more asymmetric than the absorption spectrum, probably due to anharmonicity of levels higher than nu = 1. 36 refs

  7. Infrared spectroscopy and microscopy in cancer research and diagnosis

    Science.gov (United States)

    Bellisola, Giuseppe; Sorio, Claudio

    2012-01-01

    Since the middle of 20th century infrared (IR) spectroscopy coupled to microscopy (IR microspectroscopy) has been recognized as a non destructive, label free, highly sensitive and specific analytical method with many potential useful applications in different fields of biomedical research and in particular cancer research and diagnosis. Although many technological improvements have been made to facilitate biomedical applications of this powerful analytical technique, it has not yet properly come into the scientific background of many potential end users. Therefore, to achieve those fundamental objectives an interdisciplinary approach is needed with basic scientists, spectroscopists, biologists and clinicians who must effectively communicate and understand each other's requirements and challenges. In this review we aim at illustrating some principles of Fourier transform (FT) Infrared (IR) vibrational spectroscopy and microscopy (microFT-IR) as a useful method to interrogate molecules in specimen by mid-IR radiation. Penetrating into basics of molecular vibrations might help us to understand whether, when and how complementary information obtained by microFT-IR could become useful in our research and/or diagnostic activities. MicroFT-IR techniques allowing to acquire information about the molecular composition and structure of a sample within a micrometric scale in a matter of seconds will be illustrated as well as some limitations will be discussed. How biochemical, structural, and dynamical information about the systems can be obtained by bench top microFT-IR instrumentation will be also presented together with some methods to treat and interpret IR spectral data and applicative examples. The mid-IR absorbance spectrum is one of the most information-rich and concise way to represent the whole “… omics” of a cell and, as such, fits all the characteristics for the development of a clinically useful biomarker. PMID:22206042

  8. Fluorescent magnetic hybrid nanoprobe for multimodal bioimaging

    Energy Technology Data Exchange (ETDEWEB)

    Koktysh, Dmitry [Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235 (United States); Bright, Vanessa; Pham, Wellington, E-mail: dmitry.koktysh@vanderbilt.edu, E-mail: wellington.pham@vanderbilt.edu [Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South AA, 1105 MCN, Nashville, TN 37232 (United States)

    2011-07-08

    A fluorescent magnetic hybrid imaging nanoprobe (HINP) was fabricated by the conjugation of superparamagnetic Fe{sub 3}O{sub 4} nanoparticles and visible light emitting ({approx}600 nm) fluorescent CdTe/CdS quantum dots (QDs). The assembly strategy used the covalent linking of the oxidized dextran shell of magnetic particles to the glutathione ligands of QDs. The synthesized HINP formed stable water-soluble colloidal dispersions. The structure and properties of the particles were characterized by transmission electron and atomic force microscopy, energy dispersive x-ray analysis and inductively coupled plasma optical emission spectroscopy, dynamic light scattering analysis, optical absorption and photoluminescence spectroscopy, and fluorescent imaging. The luminescence imaging region of the nanoprobe was extended to the near-infrared (NIR) ({approx}800 nm) by conjugation of the superparamagnetic nanoparticles with synthesized CdHgTe/CdS QDs. Cadmium, mercury based QDs in HINP can be easily replaced by novel water-soluble glutathione stabilized AgInS{sub 2}/ZnS QDs to present a new class of cadmium-free multimodal imaging agents. The observed NIR photoluminescence of fluorescent magnetic nanocomposites supports their use for bioimaging. The developed HINP provides dual-imaging channels for simultaneous optical and magnetic resonance imaging.

  9. Effect of Surface Chemistry on the Fluorescence of Detonation Nanodiamonds.

    Science.gov (United States)

    Reineck, Philipp; Lau, Desmond W M; Wilson, Emma R; Fox, Kate; Field, Matthew R; Deeleepojananan, Cholaphan; Mochalin, Vadym N; Gibson, Brant C

    2017-11-28

    Detonation nanodiamonds (DNDs) have unique physical and chemical properties that make them invaluable in many applications. However, DNDs are generally assumed to show weak fluorescence, if any, unless chemically modified with organic molecules. We demonstrate that detonation nanodiamonds exhibit significant and excitation-wavelength-dependent fluorescence from the visible to the near-infrared spectral region above 800 nm, even without the engraftment of organic molecules to their surfaces. We show that this fluorescence depends on the surface functionality of the DND particles. The investigated functionalized DNDs, produced from the same purified DND as well as the as-received polyfunctional starting material, are hydrogen, hydroxyl, carboxyl, ethylenediamine, and octadecylamine-terminated. All DNDs are investigated in solution and on a silicon wafer substrate and compared to fluorescent high-pressure high-temperature nanodiamonds. The brightest fluorescence is observed from octadecylamine-functionalized particles and is more than 100 times brighter than the least fluorescent particles, carboxylated DNDs. The majority of photons emitted by all particle types likely originates from non-diamond carbon. However, we locally find bright and photostable fluorescence from nitrogen-vacancy centers in diamond in hydrogenated, hydroxylated, and carboxylated detonation nanodiamonds. Our results contribute to understanding the effects of surface chemistry on the fluorescence of DNDs and enable the exploration of the fluorescent properties of DNDs for applications in theranostics as nontoxic fluorescent labels, sensors, nanoscale tracers, and many others where chemically stable and brightly fluorescent nanoparticles with tailorable surface chemistry are needed.

  10. Scanless multitarget-matching multiphoton excitation fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Junpeng Qiu

    2018-03-01

    Full Text Available Using the combination of a reflective blazed grating and a reflective phase-only diffractive spatial light modulator (SLM, scanless multitarget-matching multiphoton excitation fluorescence microscopy (SMTM-MPM was achieved. The SLM shaped an incoming mode-locked, near-infrared Ti:sapphire laser beam into an excitation pattern with addressable shapes and sizes that matched the samples of interest in the field of view. Temporal and spatial focusing were simultaneously realized by combining an objective lens and a blazed grating. The fluorescence signal from illuminated areas was recorded by a two-dimensional sCMOS camera. Compared with a conventional temporal focusing multiphoton microscope, our microscope achieved effective use of the laser power and decreased photodamage with higher axial resolution.

  11. Large Ferrierite Crystals as Models for Catalyst Deactivation during Skeletal Isomerisation of Oleic Acid : Evidence for Pore Mouth Catalysis

    NARCIS (Netherlands)

    Wiedemann, Sophie C. C.; Ristanovic, Zoran; Whiting, Gareth T.; Marthala, V. R. Reddy; Kaerger, Joerg; Weitkamp, Jens; Wels, Bas; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.

    2016-01-01

    Large zeolite crystals of ferrierite have been used to study the deactivation, at the single particle level, of the alkyl isomerisation catalysis of oleic acid and elaidic acid by a combination of visible micro-spectroscopy and fluorescence microscopy (both polarised wide-field and confocal modes).

  12. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics

    Science.gov (United States)

    Wong, Min Hao; Giraldo, Juan P.; Kwak, Seon-Yeong; Koman, Volodymyr B.; Sinclair, Rosalie; Lew, Tedrick Thomas Salim; Bisker, Gili; Liu, Pingwei; Strano, Michael S.

    2017-02-01

    Plant nanobionics aims to embed non-native functions to plants by interfacing them with specifically designed nanoparticles. Here, we demonstrate that living spinach plants (Spinacia oleracea) can be engineered to serve as self-powered pre-concentrators and autosamplers of analytes in ambient groundwater and as infrared communication platforms that can send information to a smartphone. The plants employ a pair of near-infrared fluorescent nanosensors--single-walled carbon nanotubes (SWCNTs) conjugated to the peptide Bombolitin II to recognize nitroaromatics via infrared fluorescent emission, and polyvinyl-alcohol functionalized SWCNTs that act as an invariant reference signal--embedded within the plant leaf mesophyll. As contaminant nitroaromatics are transported up the roots and stem into leaf tissues, they accumulate in the mesophyll, resulting in relative changes in emission intensity. The real-time monitoring of embedded SWCNT sensors also allows residence times in the roots, stems and leaves to be estimated, calculated to be 8.3 min (combined residence times of root and stem) and 1.9 min mm-1 leaf, respectively. These results demonstrate the ability of living, wild-type plants to function as chemical monitors of groundwater and communication devices to external electronics at standoff distances.

  13. Visible to near-IR fluorescence from single-digit detonation nanodiamonds: excitation wavelength and pH dependence.

    Science.gov (United States)

    Reineck, Philipp; Lau, Desmond W M; Wilson, Emma R; Nunn, Nicholas; Shenderova, Olga A; Gibson, Brant C

    2018-02-06

    Detonation nanodiamonds are of vital significance to many areas of science and technology. However, their fluorescence properties have rarely been explored for applications and remain poorly understood. We demonstrate significant fluorescence from the visible to near-infrared spectral regions from deaggregated, single-digit detonation nanodiamonds dispersed in water produced via post-synthesis oxidation. The excitation wavelength dependence of this fluorescence is analyzed in the spectral region from 400 nm to 700 nm as well as the particles' absorption characteristics. We report a strong pH dependence of the fluorescence and compare our results to the pH dependent fluorescence of aromatic hydrocarbons. Our results significantly contribute to the current understanding of the fluorescence of carbon-based nanomaterials in general and detonation nanodiamonds in particular.

  14. Effects of near infrared laser radiation associated with photoabsorbing cream in preventing white spot lesions around orthodontic brackets: an in vitro study.

    Science.gov (United States)

    Lacerda, Ângela Sueli Soares Braga; Hanashiro, Fernando Seishim; de Sant'Anna, Giselle Rodrigues; Steagall Júnior, Washington; Barbosa, Patrícia Silva; de Souza-Zaroni, Wanessa Christine

    2014-12-01

    The present study aims to investigate the effect of a low-power infrared laser on the inhibition of bovine enamel demineralization around orthodontic brackets. Near infrared lasers have been suggested as alternative approaches because they may produce an increase in resistance to dental caries. Forty-eight blocks of enamel obtained from bovine incisor teeth were divided into six groups: Group 1 (control), without treatment; Group 2 (C), photoabsorbing cream; Group 3 (CF), photoabsorbing cream with fluoride; Group 4 (L), irradiation with low-level infrared laser (λ=830 nm) at an energy density of 4.47 J/cm2; Group 5 (L+C), photoabsorbing cream followed by low-level infrared laser irradiation; and Group 6 (L+CF), photoabsorbing cream with fluoride followed by low-level infrared laser irradiation. After these procedures, the enamel blocks received an assortment of orthodontic brackets and were then submitted to pH cycling to simulate a highly cariogenic challenge. The enamel surface demineralization around the orthodontic brackets, according to the different treatments, was quantified by fluorescence loss analysis by quantitative light-induced fluorescence (QLF). The fluorescence loss, expressed as ΔF (percentage of loss fluorescence), was statistically examined by analysis of variance and the Tukey test. The control group (-10.48±2.85) was statistically similar to Group C (-14.52±7.80), which presented the lowest values of ΔF when compared with Groups FC (-3.67±3.21), L (-2.79±1.68), CL (-1.05±0:50), and CFL (-0.60±0:43). However, Groups FC, L, CL, and CFL showed no statistically significant differences among them. It can be concluded that both the low-level infrared laser and photoabsorbing cream with fluoride were effective in inhibiting the development of caries in enamel around orthodontic brackets, even in situations of high cariogenic challenge.

  15. Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer’s disease

    Science.gov (United States)

    Zhang, Xueli; Tian, Yanli; Zhang, Can; Tian, Xiaoyu; Ross, Alana W.; Moir, Robert D.; Sun, Hongbin; Tanzi, Rudolph E.; Moore, Anna; Ran, Chongzhao

    2015-01-01

    Near-infrared fluorescence (NIRF) molecular imaging has been widely applied to monitoring therapy of cancer and other diseases in preclinical studies; however, this technology has not been applied successfully to monitoring therapy for Alzheimer’s disease (AD). Although several NIRF probes for detecting amyloid beta (Aβ) species of AD have been reported, none of these probes has been used to monitor changes of Aβs during therapy. In this article, we demonstrated that CRANAD-3, a curcumin analog, is capable of detecting both soluble and insoluble Aβ species. In vivo imaging showed that the NIRF signal of CRANAD-3 from 4-mo-old transgenic AD (APP/PS1) mice was 2.29-fold higher than that from age-matched wild-type mice, indicating that CRANAD-3 is capable of detecting early molecular pathology. To verify the feasibility of CRANAD-3 for monitoring therapy, we first used the fast Aβ-lowering drug LY2811376, a well-characterized beta-amyloid cleaving enzyme-1 inhibitor, to treat APP/PS1 mice. Imaging data suggested that CRANAD-3 could monitor the decrease in Aβs after drug treatment. To validate the imaging capacity of CRANAD-3 further, we used it to monitor the therapeutic effect of CRANAD-17, a curcumin analog for inhibition of Aβ cross-linking. The imaging data indicated that the fluorescence signal in the CRANAD-17–treated group was significantly lower than that in the control group, and the result correlated with ELISA analysis of brain extraction and Aβ plaque counting. It was the first time, to our knowledge, that NIRF was used to monitor AD therapy, and we believe that our imaging technology has the potential to have a high impact on AD drug development. PMID:26199414

  16. The reliability of Raman micro-spectroscopy in measuring the density of CO2 mantle fluids

    Science.gov (United States)

    Remigi, S.; Frezzotti, M. L.; Ferrando, S.; Villa, I. M.; Maffeis, A.

    2017-12-01

    Recent evaluations of carbon fluxes into and out the Earth's interior recognize that a significant part of the total outgassing of deep Earth carbon occurs in tectonically active areas (Kelemen and Manning, 2015). Potential tracers of carbon fluxes at mantle depths include CO2 fluid inclusions in peridotites. Raman micro-spectroscopy allows calculating the density of CO2 fluids based on the distance of the CO2 Fermi doublet, Δ, in cm-1 (Rosso and Bodnar, 1995). The aim of this work is to check the reliability of Raman densimeter equations (cf. Lamadrid et al., 2016) for high-density CO2 fluids originating at mantle depths. Forty pure CO2 inclusions in peridotites (El Hierro, Canary Islands) of known density (microthermometry) have been analyzed by Raman micro-spectroscopy. In order to evaluate the influence of contaminants on the reliability of equations, 22 CO2-rich inclusions containing subordinate amounts of N2, CO, SO2 have also been studied. Raman spectrometer analytical conditions are: 532 nm laser, 80 mW emission power, T 18°C, 1800 and 600 grating, 1 accumulation x 80 sec. Daily calibration included diamond and atmosphere N2. Results suggest that the "Raman densimeter" represents an accurate method to calculate the density of CO2 mantle fluids. Equations, however, must be applied only to pure CO2 fluids, since contaminants, even in trace amounts (0.39 mol%), affect the Δ resulting in density overestimation. Present study further highlights how analytical conditions and data processing, such as spectral resolution (i.e., grating), calibration linearity, and statistical treatment of spectra, influence the accuracy and the precision of Δ measurements. As a consequence, specific analytical protocols for single Raman spectrometers should be set up in order to get reliable CO2 density data. Kelemen, Peter B., & Craig E. Manning. PNAS, 112.30 (2015): E3997-E4006.Lamadrid, H. M., Moore, L. R., Moncada, D., Rimstidt, J. D., Burruss, R. C., & Bodnar, R. J. Chem

  17. Detecting viability transitions of umbilical cord mesenchymal stem cells by Raman micro-spectroscopy

    International Nuclear Information System (INIS)

    Bai, H; Chen, P; Fang, H; Lin, L; Tang, G Q; Mu, G G; Gong, W; Liu, Z P; Wu, H; Zhao, H; Han, Z C

    2011-01-01

    Recent research suggests that human umbilical cord derived mesenchymal stem cells (hUC-MSCs) can be promising candidates for cell-based therapy. Since large population and high viability are generally required, detecting viability transitions of these cells is crucial for their population expansion and quality control. Here, as a non-invasive method, Raman micro-spectroscopy is applied to examine hUC-MSCs with different viability. Using peak fitting and statistic t-test, the Raman peaks with obvious differences between the cells with high viability (> 90%) and low viability ( -1 , symmetric stretching of C–C in lipids at 877 cm -1 and CH deformation in proteins at 1342 cm -1 show the most significant changes (p < 0.001). When the cell viability decreases, the intensities of the former two peaks are both about doubled while that of the latter peak reduces by about 30%. Based on these results, we propose that the viability of hUC-MSCs can be characterized by these three peaks. And their intensity changes can be understood from the model of excessive reactive oxygen species interacting with the bio-macromolecules

  18. Development of new devices for detection of gastric cancer on laparoscopic surgery using near-infrared light

    Science.gov (United States)

    Inada, Shunko A.; Fuchi, Shingo; Mori, Kensaku; Hasegawa, Junichi; Misawa, Kazunari; Nakanishi, Hayao

    2015-03-01

    In recent year, for the treatment of gastric cancer the laparoscopic surgery is performed, which has good benefits, such as low-burden, low-invasive and the efficacy is equivalent to the open surgery. For identify location of the tumor intraperitoneally for extirpation of the gastric cancer, several points of charcoal ink is injected around the primary tumor. However, in the time of laparoscopic operation, it is difficult to estimate specific site of primary tumor, because the injected charcoal ink diffusely spread to the area distant from the tumor in the stomach. Therefore, a broad area should be resected which results in a great stress for the patients. To overcome this problem, we focused in the near-infrared wavelength of 1000nm band which have high biological transmission. In this study, we developed a fluorescent clip which was realized with glass phosphor (Yb3+, Nd3+ doped to Bi2O3-B2O3 based glasses. λp: 976 nm, FWHM: 100 nm, size: 2x1x3 mm) and the laparoscopic fluorescent detection system for clip-derived near-infrared light. To evaluate clinical performance of a fluorescent clip and the laparoscopic fluorescent detection system, we used resected stomach (thickness: 13 mm) from the patients. Fluorescent clip was fixed on the gastric mucosa, and an excitation light (λ: 808 nm) was irradiated from outside of stomach for detection of fluorescence through stomach wall. As a result, fluorescence emission from the clip was successfully detected. Furthermore, we confirmed that detection sensitivity of the emission of fluorescence from the clip depends on the output power of the excitation light. We conformed that the fluorescent clip in combination with laparoscopic fluorescent detection system is very useful method to identify the exact location of the primary gastric cancer.

  19. Near-infrared quantum dots for HER2 localization and imaging of cancer cells.

    Science.gov (United States)

    Rizvi, Sarwat B; Rouhi, Sepideh; Taniguchi, Shohei; Yang, Shi Yu; Green, Mark; Keshtgar, Mo; Seifalian, Alexander M

    2014-01-01

    Quantum dots are fluorescent nanoparticles with unique photophysical properties that allow them to be used as diagnostic, therapeutic, and theranostic agents, particularly in medical and surgical oncology. Near-infrared-emitting quantum dots can be visualized in deep tissues because the biological window is transparent to these wavelengths. Their small sizes and free surface reactive groups that can be conjugated to biomolecules make them ideal probes for in vivo cancer localization, targeted chemotherapy, and image-guided cancer surgery. The human epidermal growth factor receptor 2 gene (HER2/neu) is overexpressed in 25%-30% of breast cancers. The current methods of detection for HER2 status, including immunohistochemistry and fluorescence in situ hybridization, are used ex vivo and cannot be used in vivo. In this paper, we demonstrate the application of near-infrared-emitting quantum dots for HER2 localization in fixed and live cancer cells as a first step prior to their in vivo application. Near-infrared-emitting quantum dots were characterized and their in vitro toxicity was established using three cancer cell lines, ie, HepG2, SK-BR-3 (HER2-overexpressing), and MCF7 (HER2-underexpressing). Mouse antihuman anti-HER2 monoclonal antibody was conjugated to the near-infrared-emitting quantum dots. In vitro toxicity studies showed biocompatibility of SK-BR-3 and MCF7 cell lines with near-infrared-emitting quantum dots at a concentration of 60 μg/mL after one hour and 24 hours of exposure. Near-infrared-emitting quantum dot antiHER2-antibody bioconjugates successfully localized HER2 receptors on SK-BR-3 cells. Near-infrared-emitting quantum dot bioconjugates can be used for rapid localization of HER2 receptors and can potentially be used for targeted therapy as well as image-guided surgery.

  20. In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract

    Science.gov (United States)

    Piyawattanametha, Wibool; Ra, Hyejun; Qiu, Zhen; Friedland, Shai; Liu, Jonathan T. C.; Loewke, Kevin; Kino, Gordon S.; Solgaard, Olav; Wang, Thomas D.; Mandella, Michael J.; Contag, Christopher H.

    2012-02-01

    Near-infrared confocal microendoscopy is a promising technique for deep in vivo imaging of tissues and can generate high-resolution cross-sectional images at the micron-scale. We demonstrate the use of a dual-axis confocal (DAC) near-infrared fluorescence microendoscope with a 5.5-mm outer diameter for obtaining clinical images of human colorectal mucosa. High-speed two-dimensional en face scanning was achieved through a microelectromechanical systems (MEMS) scanner while a micromotor was used for adjusting the axial focus. In vivo images of human patients are collected at 5 frames/sec with a field of view of 362×212 μm2 and a maximum imaging depth of 140 μm. During routine endoscopy, indocyanine green (ICG) was topically applied a nonspecific optical contrasting agent to regions of the human colon. The DAC microendoscope was then used to obtain microanatomic images of the mucosa by detecting near-infrared fluorescence from ICG. These results suggest that DAC microendoscopy may have utility for visualizing the anatomical and, perhaps, functional changes associated with colorectal pathology for the early detection of colorectal cancer.

  1. Applications of two-photon fluorescence microscopy in deep-tissue imaging

    Science.gov (United States)

    Dong, Chen-Yuan; Yu, Betty; Hsu, Lily L.; Kaplan, Peter D.; Blankschstein, D.; Langer, Robert; So, Peter T. C.

    2000-07-01

    Based on the non-linear excitation of fluorescence molecules, two-photon fluorescence microscopy has become a significant new tool for biological imaging. The point-like excitation characteristic of this technique enhances image quality by the virtual elimination of off-focal fluorescence. Furthermore, sample photodamage is greatly reduced because fluorescence excitation is limited to the focal region. For deep tissue imaging, two-photon microscopy has the additional benefit in the greatly improved imaging depth penetration. Since the near- infrared laser sources used in two-photon microscopy scatter less than their UV/glue-green counterparts, in-depth imaging of highly scattering specimen can be greatly improved. In this work, we will present data characterizing both the imaging characteristics (point-spread-functions) and tissue samples (skin) images using this novel technology. In particular, we will demonstrate how blind deconvolution can be used further improve two-photon image quality and how this technique can be used to study mechanisms of chemically-enhanced, transdermal drug delivery.

  2. Ultratrace analysis of actinides via coprecipitation/laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Miller, S.M.

    1982-01-01

    Actinides were selectively preconcentrated by coprecipitating each out of solution with a fluoride matrix and calcining each sample at 800 0 C. The fluorescence spectrum of each sample was recorded by illuminating the sample with laser light and detecting fluorescence with either a fluorescence/Raman spectrometer, an infrared spectrometer or in certain cases a filter fluorimeter. Three previously unobserved actinide spectra were recorded. Narrow lines at 546.9 nm, 564.6 nm, and 569.6 nm were found for CaF 2 :PuO 2++ at 10K. CaF 2 :Am + 3 displayed two broadband fluorescent peaks at 625 nm and 746 nm at room temperature and CaF 2 :Pu + 3 possessed a fluorescent peak at 1.22 microns at 10K. Energy transfer was observed in the form of Tb fluorescence quenching in TbF 3 :Pu + 3 when Pu was present in quantities of 10 ppM or more and in the form of Tb fluorescence enhancement in TbF 3 :Am + 3 when 1 ppM or more of Am was present. Careful sample preparation and the use of temporal as well as a spectral discrimination system extended the detection limit of U from 1 ml samples to the subfemtogram level. The fluorescence detection limits for Pu and Am were extended to 0.48 and 0.032 pg/ml. 39 figures, 9 tables

  3. Quantitative frequency-domain fluorescence spectroscopy in tissues and tissue-like media

    Science.gov (United States)

    Cerussi, Albert Edward

    1999-09-01

    In the never-ending quest for improved medical technology at lower cost, modern near-infrared optical spectroscopy offers the possibility of inexpensive technology for quantitative and non-invasive diagnoses. Hemoglobin is the dominant chromophore in the 700-900 nm spectral region and as such it allows for the optical assessment of hemoglobin concentration and tissue oxygenation by absorption spectroscopy. However, there are many other important physiologically relevant compounds or physiological states that cannot be effectively sensed via optical methods because of poor optical contrast. In such cases, contrast enhancements are required. Fluorescence spectroscopy is an attractive component of optical tissue spectroscopy. Exogenous fluorophores, as well as some endogenous ones, may furnish the desperately needed sensitivity and specificity that is lacking in near-infrared optical tissue spectroscopy. The main focus of this thesis was to investigate the generation and propagation of fluorescence photons inside tissues and tissue-like media (i.e., scattering dominated media). The standard concepts of fluorescence spectroscopy have been incorporated into a diffusion-based picture that is sometimes referred to as photon migration. The novelty of this work lies in the successful quantitative recovery of fluorescence lifetimes, absolute fluorescence quantum yields, fluorophore concentrations, emission spectra, and both scattering and absorption coefficients at the emission wavelength from a tissue-like medium. All of these parameters are sensitive to the fluorophore local environment and hence are indicators of the tissue's physiological state. One application demonstrating the capabilities of frequency-domain lifetime spectroscopy in tissue-like media is a study of the binding of ethidium bromide to bovine leukocytes in fresh milk. Ethidium bromide is a fluorescent dye that is commonly used to label DNA, and hence visualize chromosomes in cells. The lifetime of

  4. Cy5.5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas.

    Science.gov (United States)

    Chen, Ning; Shao, Chen; Li, Shuai; Wang, Zihao; Qu, Yanming; Gu, Wei; Yu, Chunjiang; Ye, Ling

    2015-11-01

    The fusion of molecular and anatomical modalities facilitates more reliable and accurate detection of tumors. Herein, we prepared the PEG-Cy5.5 conjugated MnO nanoparticles (MnO-PEG-Cy5.5 NPs) with magnetic resonance (MR) and near-infrared fluorescence (NIRF) imaging modalities. The applicability of MnO-PEG-Cy5.5 NPs as a dual-modal (MR/NIRF) imaging nanoprobe for the detection of brain gliomas was investigated. In vivo MR contrast enhancement of the MnO-PEG-Cy5.5 nanoprobe in the tumor region was demonstrated. Meanwhile, whole-body NIRF imaging of glioma bearing nude mouse exhibited distinct tumor localization upon injection of MnO-PEG-Cy5.5 NPs. Moreover, ex vivo CLSM imaging of the brain slice hosting glioma indicated the preferential accumulation of MnO-PEG-Cy5.5 NPs in the glioma region. Our results therefore demonstrated the potential of MnO-PEG-Cy5.5 NPs as a dual-modal (MR/NIRF) imaging nanoprobe in improving the diagnostic efficacy by simultaneously providing anatomical information from deep inside the body and more sensitive information at the cellular level. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Iron variation within a granitic pluton as determined by near-infrared reflectance

    Science.gov (United States)

    Baird, A. K.

    1984-01-01

    One-hundred fifty-one previously chemically analyzed samples of tonalite from the Lakeview Mountains pluton, southern California batholith, were analyzed for their iron content using near-infrared spectrophotometry. Compared to the earlier analyses of the same sample set by X-ray fluorescence spectrography, the infrared data have higher analytical variance but clearly define patterns of compositional zonation in the pluton which are closely similar to those patterns obtained from X-ray data; petrogenetic interpretations for the pluton would be the same from either data set. Infrared spectral data can be obtained directly in the field with relatively simple instruments and field measurements can be made to average local heterogeneities that often mask significant plutonic variations.

  6. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics.

    Science.gov (United States)

    Wong, Min Hao; Giraldo, Juan P; Kwak, Seon-Yeong; Koman, Volodymyr B; Sinclair, Rosalie; Lew, Tedrick Thomas Salim; Bisker, Gili; Liu, Pingwei; Strano, Michael S

    2017-02-01

    Plant nanobionics aims to embed non-native functions to plants by interfacing them with specifically designed nanoparticles. Here, we demonstrate that living spinach plants (Spinacia oleracea) can be engineered to serve as self-powered pre-concentrators and autosamplers of analytes in ambient groundwater and as infrared communication platforms that can send information to a smartphone. The plants employ a pair of near-infrared fluorescent nanosensors-single-walled carbon nanotubes (SWCNTs) conjugated to the peptide Bombolitin II to recognize nitroaromatics via infrared fluorescent emission, and polyvinyl-alcohol functionalized SWCNTs that act as an invariant reference signal-embedded within the plant leaf mesophyll. As contaminant nitroaromatics are transported up the roots and stem into leaf tissues, they accumulate in the mesophyll, resulting in relative changes in emission intensity. The real-time monitoring of embedded SWCNT sensors also allows residence times in the roots, stems and leaves to be estimated, calculated to be 8.3 min (combined residence times of root and stem) and 1.9 min mm -1 leaf, respectively. These results demonstrate the ability of living, wild-type plants to function as chemical monitors of groundwater and communication devices to external electronics at standoff distances.

  7. Spectroscopic investigations of OH{sup -} influence on near-infrared fluorescence quenching of Yb{sup 3+}/Tm{sup 3+} co-doped sodium-metaphosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Terra, I.A.A. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Av. Trabalhador Saocarlense 400, CEP 13566-590, USP-Sao Carlos, SP (Brazil)], E-mail: idelma@ifsc.usp.br; Camargo, A.S.S. de; Terrile, M.C.; Nunes, L.A.O. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Av. Trabalhador Saocarlense 400, CEP 13566-590, USP-Sao Carlos, SP (Brazil)

    2008-05-15

    Energy transfer processes were studied in two sets of Yb{sup 3+} and Tm{sup 3+} co-doped sodium-metaphosphate glasses, prepared in air and nitrogen atmospheres. Using Foerster, Dexter, and Miyakawa theoretical models, the energy transfer parameters were calculated. The main ion-ion energy transfer processes analyzed were energy migration among Yb{sup 3+} ions, cross-relaxations between Yb{sup 3+} and Tm{sup 3+} ions, and interactions with OH{sup -} radicals. The results indicated that Yb{yields}Tm energy transfer favors 1.8 {mu}m emissions, and there is no evidence of concentration quenching up to 2% Tm{sub 2}O{sub 3} doping. As expected, samples prepared in nitrogen atmosphere present higher fluorescence quantum efficiency than those prepared in air, and this feature is specially noted in the near-infrared region, where the interaction with the OH{sup -} radicals is more pronounced.

  8. Microbubble embedded with upconversion nanoparticles as a bimodal contrast agent for fluorescence and ultrasound imaging

    International Nuclear Information System (INIS)

    Jin, Birui; Lin, Min; You, Minli; Xu, Feng; Lu, Tianjian; Zong, Yujin; Wan, Mingxi; Duan, Zhenfeng

    2015-01-01

    Bimodal imaging offers additional imaging signal thus finds wide spread application in clinical diagnostic imaging. Fluorescence/ultrasound bimodal imaging contrast agent using fluorescent dyes or quantum dots for fluorescence signal has emerged as a promising method, which however requires visible light or UV irradiation resulting in photobleaching, photoblinking, auto-fluorescence and limited tissue penetration depth. To surmount these problems, we developed a novel bimodal contrast agent using layer-by-layer assembly of upconversion nanoparticles onto the surface of microbubbles. The resulting microbubbles with average size of 2 μm provide enhanced ultrasound echo for ultrasound imaging and upconversion emission upon near infrared irradiation for fluorescence imaging. The developed bimodal contrast agent holds great potential to be applied in ultrasound target technique for targeted diseases diagnostics and therapy. (paper)

  9. Plant-based food and feed protein structure changes induced by gene-transformation, heating and bio-ethanol processing: a synchrotron-based molecular structure and nutrition research program.

    Science.gov (United States)

    Yu, Peiqiang

    2010-11-01

    Unlike traditional "wet" analytical methods which during processing for analysis often result in destruction or alteration of the intrinsic protein structures, advanced synchrotron radiation-based Fourier transform infrared microspectroscopy has been developed as a rapid and nondestructive and bioanalytical technique. This cutting-edge synchrotron-based bioanalytical technology, taking advantages of synchrotron light brightness (million times brighter than sun), is capable of exploring the molecular chemistry or structure of a biological tissue without destruction inherent structures at ultra-spatial resolutions. In this article, a novel approach is introduced to show the potential of the advanced synchrotron-based analytical technology, which can be used to study plant-based food or feed protein molecular structure in relation to nutrient utilization and availability. Recent progress was reported on using synchrotron-based bioanalytical technique synchrotron radiation-based Fourier transform infrared microspectroscopy and diffused reflectance infrared Fourier transform spectroscopy to detect the effects of gene-transformation (Application 1), autoclaving (Application 2), and bio-ethanol processing (Application 3) on plant-based food and feed protein structure changes on a molecular basis. The synchrotron-based technology provides a new approach for plant-based protein structure research at ultra-spatial resolutions at cellular and molecular levels.

  10. A QUANTUM BAND MODEL OF THE ν3 FUNDAMENTAL OF METHANOL (CH3OH) AND ITS APPLICATION TO FLUORESCENCE SPECTRA OF COMETS

    International Nuclear Information System (INIS)

    Villanueva, G. L.; DiSanti, M. A.; Mumma, M. J.; Xu, L.-H.

    2012-01-01

    Methanol (CH 3 OH) radiates efficiently at infrared wavelengths, dominating the C-H stretching region in comets, yet inadequate quantum-mechanical models have imposed limits on the practical use of its emission spectra. Accordingly, we constructed a new line-by-line model for the ν 3 fundamental band of methanol at 2844 cm –1 (3.52 μm) and applied it to interpret cometary fluorescence spectra. The new model permits accurate synthesis of line-by-line spectra for a wide range of rotational temperatures, ranging from 10 K to more than 400 K. We validated the model by comparing simulations of CH 3 OH fluorescent emission with measured spectra of three comets (C/2001 A2 LINEAR, C/2004 Q2 Machholz and 8P/Tuttle) acquired with high-resolution infrared spectrometers at high-altitude sites. The new model accurately describes the complex emission spectrum of the ν 3 band, providing distinct rotational temperatures and production rates at greatly improved confidence levels compared with results derived from earlier fluorescence models. The new model reconciles production rates measured at infrared and radio wavelengths in C/2001 A2 (LINEAR). Methanol can now be quantified with unprecedented precision and accuracy in astrophysical sources through high-dispersion spectroscopy at infrared wavelengths.

  11. Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence-emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels.

    Science.gov (United States)

    Lee, Sunki; Lee, Min Woo; Cho, Han Saem; Song, Joon Woo; Nam, Hyeong Soo; Oh, Dong Joo; Park, Kyeongsoon; Oh, Wang-Yuhl; Yoo, Hongki; Kim, Jin Won

    2014-08-01

    Lipid-rich inflamed coronary plaques are prone to rupture. The purpose of this study was to assess lipid-rich inflamed plaques in vivo using fully integrated high-speed optical coherence tomography (OCT)/near-infrared fluorescence (NIRF) molecular imaging with a Food and Drug Administration-approved indocyanine green (ICG). An integrated high-speed intravascular OCT/NIRF imaging catheter and a dual-modal OCT/NIRF system were constructed based on a clinical OCT platform. For imaging lipid-rich inflamed plaques, the Food and Drug Administration-approved NIRF-emitting ICG (2.25 mg/kg) or saline was injected intravenously into rabbit models with experimental atheromata induced by balloon injury and 12- to 14-week high-cholesterol diets. Twenty minutes after injection, in vivo OCT/NIRF imaging of the infrarenal aorta and iliac arteries was acquired only under contrast flushing through catheter (pullback speed up to ≤20 mm/s). NIRF signals were strongly detected in the OCT-visualized atheromata of the ICG-injected rabbits. The in vivo NIRF target-to-background ratio was significantly larger in the ICG-injected rabbits than in the saline-injected controls (Pfluorescence reflectance imaging, which correlated well with the in vivo target-to-background ratios (Pfluorescence microscopy, and histopathology also corroborated the in vivo imaging findings. Integrated OCT/NIRF structural/molecular imaging with a Food and Drug Administration -approved ICG accurately identified lipid-rich inflamed atheromata in coronary-sized vessels. This highly translatable dual-modal imaging approach could enhance our capabilities to detect high-risk coronary plaques. © 2014 American Heart Association, Inc.

  12. Imaging C. elegans with thiolated tryptophan-based NIR fluorescent gold nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Barman, Apurba Kr. [Indian Institute of Technology Kanpur, Department of Chemistry (India); Chaturbedi, Amaresh; Subramaniam, K. [Indian Institute of Technology Kanpur, Department of Biological Sciences and Bioengineering (India); Verma, Sandeep, E-mail: sverma@iitk.ac.in [Indian Institute of Technology Kanpur, Department of Chemistry (India)

    2013-11-15

    Multidentate, thiolated, tryptophan-containing peptide conjugates were synthesized for the preparation of gold nanoclusters (AuNCs). Precursor Au{sub 11}(PPh{sub 3}){sub 8}Cl{sub 3} was prepared by the reduction of HAuCl{sub 4}, followed by the use of tryptophan-containing peptide conjugates in ligand displacement reactions, to afford near-infrared fluorescent AuNCs. The emission maxima for these newly synthesized AuNCs were ∼715 nm. AuNCs were characterized with the help of UV–Vis, FTIR, fluorescence and MALDI analysis. FTIR spectra showed that the ligands bind to Au atoms through Au–S bonds, while MALDI mass spectra revealed that the clusters consisted of 20–23 Au atoms. Introduction of hydrophilic –COOH groups engendered water solubility to these AuNCs, enabling bioimaging applications. We demonstrate fluorescence imaging of the nematode C. elegans and confirm distribution of these AuNCs in nematode gut with the help of green fluorescent protein co-localization experiments.

  13. Preparation of Rhodamine B Fluorescent Poly(methacrylic acid Coated Gelatin Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhenhai Gan

    2011-01-01

    Full Text Available Poly(methacrylic acid (PMAA-coated gelatin nanoparticles encapsulated with fluorescent dye rhodamine B were prepared by the coacervation method with the aim to retard the release of rhodamine B from the gelatin matrix. With sodium sulfate as coacervation reagent for gelatin, a kind of biopolymer with excellent biocompatibility, the formed gelatin nanoparticles were cross-linked by formaldehyde followed by the polymerization of methacrylic acid coating. The fluorescent poly(methacrylic acid coated gelatin (FPMAAG nanoparticles had a uniform spherical shape and a size distribution of 60±5 nm. Infrared spectral analysis confirmed the formation of PMAA coating on the gelatin nanoparticles. Based on UV-Vis spectra, the loading efficiency of rhodamine B for the FPMAAG nanoparticles was 0.26 μg per mg nanoparticles. The encapsulated rhodamine B could sustain for two weeks. Favorable fluorescence property and fluorescence imaging of cells confirmed that the FPMAAG nanoparticles have promising biochemical, bioanalytical, and biomedical applications.

  14. Origins of fluorescence in evolved bacteriophytochromes.

    Science.gov (United States)

    Bhattacharya, Shyamosree; Auldridge, Michele E; Lehtivuori, Heli; Ihalainen, Janne A; Forest, Katrina T

    2014-11-14

    Use of fluorescent proteins to study in vivo processes in mammals requires near-infrared (NIR) biomarkers that exploit the ability of light in this range to penetrate tissue. Bacteriophytochromes (BphPs) are photoreceptors that couple absorbance of NIR light to photoisomerization, protein conformational changes, and signal transduction. BphPs have been engineered to form NIR fluorophores, including IFP1.4, Wi-Phy, and the iRFP series, initially by replacement of Asp-207 by His. This position was suggestive because its main chain carbonyl is within hydrogen-bonding distance to pyrrole ring nitrogens of the biliverdin chromophore, thus potentially functioning as a crucial transient proton sink during photoconversion. To explain the origin of fluorescence in these phytofluors, we solved the crystal structures of IFP1.4 and a comparison non-fluorescent monomeric phytochrome DrCBDmon. Met-186 and Val-288 in IFP1.4 are responsible for the formation of a tightly packed hydrophobic hub around the biliverdin D ring. Met-186 is also largely responsible for the blue-shifted IFP1.4 excitation maximum relative to the parent BphP. The structure of IFP1.4 revealed decreased structural heterogeneity and a contraction of two surface regions as direct consequences of side chain substitutions. Unexpectedly, IFP1.4 with Asp-207 reinstalled (IFPrev) has a higher fluorescence quantum yield (∼9%) than most NIR phytofluors published to date. In agreement, fluorescence lifetime measurements confirm the exceptionally long excited state lifetimes, up to 815 ps, in IFP1.4 and IFPrev. Our research helps delineate the origin of fluorescence in engineered BphPs and will facilitate the wide-spread adoption of phytofluors as biomarkers. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Intradermal indocyanine green for in vivo fluorescence laser scanning microscopy of human skin: a pilot study.

    Directory of Open Access Journals (Sweden)

    Constanze Jonak

    Full Text Available BACKGROUND: In clinical diagnostics, as well as in routine dermatology, the increased need for non-invasive diagnosis is currently satisfied by reflectance laser scanning microscopy. However, this technique has some limitations as it relies solely on differences in the reflection properties of epidermal and dermal structures. To date, the superior method of fluorescence laser scanning microscopy is not generally applied in dermatology and predominantly restricted to fluorescein as fluorescent tracer, which has a number of limitations. Therefore, we searched for an alternative fluorophore matching a novel skin imaging device to advance this promising diagnostic approach. METHODOLOGY/PRINCIPAL FINDINGS: Using a Vivascope®-1500 Multilaser microscope, we found that the fluorophore Indocyanine-Green (ICG is well suited as a fluorescent marker for skin imaging in vivo after intradermal injection. ICG is one of few fluorescent dyes approved for use in humans. Its fluorescence properties are compatible with the application of a near-infrared laser, which penetrates deeper into the tissue than the standard 488 nm laser for fluorescein. ICG-fluorescence turned out to be much more stable than fluorescein in vivo, persisting for more than 48 hours without significant photobleaching whereas fluorescein fades within 2 hours. The well-defined intercellular staining pattern of ICG allows automated cell-recognition algorithms, which we accomplished with the free software CellProfiler, providing the possibility of quantitative high-content imaging. Furthermore, we demonstrate the superiority of ICG-based fluorescence microscopy for selected skin pathologies, including dermal nevi, irritant contact dermatitis and necrotic skin. CONCLUSIONS/SIGNIFICANCE: Our results introduce a novel in vivo skin imaging technique using ICG, which delivers a stable intercellular fluorescence signal ideal for morphological assessment down to sub-cellular detail. The application of

  16. Quantification and Identification of Microplastics in Marine Samples from 5 µm to 5 mm by FTIR and Raman Microspectroscopy and Imaging

    Science.gov (United States)

    Fischer, D.

    2016-12-01

    Several million tons of plastic debris enter the oceans every year caused by industry, inappropriate disposal of waste, waste from fishing activities and waste from ships. Macro plastic parts in the ocean are degraded to secondary microplastics (MP), mostly in the range from 1 µm to 5 mm. Primary MP on the other hand, are microbeads in cosmetic products, cleaning agents and industrial incorrect disposed raw materials. The impacts of MP on marine ecosystems can cause many problems for animals, birds and humans, like the absorption of toxic contaminants by MP, the potential association of MP with pathogenic microorganism, the mistake with food and that MP itself can contain toxic additives. We show the first results, achieved with samples collected from different sites in the Baltic Sea and adjacent river systems, gathered from the water surface, from the water column and from sea sediments and beaches to get knowledge of the composition, size and distribution of MP in the oceans. After preparation we get cleaned samples on a silicon filter [1]. On this filter we identify MP by FTIR and Raman microspectroscopy. All particles > 500 µm are separately measured. The particles additionally FTIR and Raman Imaging. These and further topics, like the comparison of different sampling sites will be discussed in the talk. It can be summarized that Raman microspectroscopy is an outstanding method to detect MP in aquatic systems down to 1 µm. Detailed results are described in [1, 2]. [1] Käppler A., Fischer D., Eichhorn K.-J. et. al. Anal. Bioanal. Chem. 2015; 407: 6791 [2] Fischer D., Käppler A., Eichhorn K.-J. American Laboratory 2015; 47: 32

  17. Electron Detachment Dissociation (EDD) of Fluorescently Labeled Sialylated Oligosaccharides

    Science.gov (United States)

    Zhou, Wen; Håkansson, Kristina

    2012-01-01

    We explored the application of electron detachment dissociation (EDD) and infrared multiphoton dissociation (IRMPD) tandem mass spectrometry to fluorescently labeled sialylated oligosaccharides. Standard sialylated oligosaccharides and a sialylated N-linked glycan released from human transferrin were investigated. EDD yielded extensive glycosidic cleavages and cross-ring cleavages in all cases studied, consistently providing complementary structural information compared to IRMPD. Neutral losses and satellite ions such as C – 2H ions were also observed following EDD. In addition, we examined the influence of different fluorescent labels. The acidic label 2-aminobenzoic acid (2-AA) enhanced signal abundance in negative-ion mode. However, few cross-ring fragments were observed for 2-AA labeled oligosaccharides. The neutral label 2-aminobenzamide (2-AB) resulted in more cross-ring cleavages compared to 2-AA labeled species, but not as extensive fragmentation as for native oligosaccharides, likely resulting from altered negative charge locations from introduction of the fluorescent tag. PMID:22120881

  18. Mid-infrared emissions of Pr{sup 3+}-doped GeS{sub 2}–Ga{sub 2}S{sub 3}–CdI{sub 2} chalcohalide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chunfeng [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi 710119 (China); Guo, Haitao, E-mail: guoht_001@opt.ac.cn [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi 710119 (China); Xu, Yantao; Hou, Chaoqi; Lu, Min [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi 710119 (China); He, Xin [School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020 (China); Wang, Pengfei; Li, Weinan [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi 710119 (China); Peng, Bo, E-mail: bpeng@opt.ac.cn [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi 710119 (China)

    2014-12-15

    Graphical abstract: ∼4.6 μm mid-infrared fluorescence emission from Pr{sup 3+} in the sulfide glass is successfully observed at room temperature excited by a 2.01 μm Tm{sup 3+}:YAG ceramic laser system. - Highlights: • Serial Pr{sup 3+}-doped GeS{sub 2}–Ga{sub 2}S{sub 3}–CdI{sub 2} chalcohalide glasses were synthesized. • ∼4.6 μm mid-infrared fluorescence from Pr{sup 3+} was observed at room temperature. • The compositional dependence of luminescence properties was studied. • Radiative properties have been determined using the Judd–Ofelt theory. - Abstract: For elucidation of the glass composition’s influence on the spectroscopic properties in the chalcohalide system and the discovery of a new material for applications in mid-infrared fiber-lasers, a serial Pr{sup 3+}-doped (100 − x)(0.8GeS{sub 2}·0.2Ga{sub 2}S{sub 3})xCdI{sub 2} (x = 5, 10, 15 and 20) chalcohalide glasses were prepared. ∼4.6 μm mid-infrared fluorescence emission from Pr{sup 3+} in the sulfide glass is successfully observed at room temperature excited by a 2.01 μm Tm{sup 3+}:YAG ceramic laser system, and the effective line-width of fluorescence band is 106–227 nm. Intense compositional dependence of mid-infrared emissions is found. The radiative rates of Pr{sup 3+} ions in these glasses were calculated by using the Judd–Ofelt theory.

  19. An instrument for small-animal imaging using time-resolved diffuse and fluorescence optical methods

    International Nuclear Information System (INIS)

    Montcel, Bruno; Poulet, Patrick

    2006-01-01

    We describe time-resolved optical methods that use diffuse near-infrared photons to image the optical properties of tissues and their inner fluorescent probe distribution. The assembled scanner uses picosecond laser diodes at 4 wavelengths, an 8-anode photo-multiplier tube and time-correlated single photon counting. Optical absorption and reduced scattering images as well as fluorescence emission images are computed from temporal profiles of diffuse photons. This method should improve the spatial resolution and the quantification of fluorescence signals. We used the diffusion approximation of the radiation transport equation and the finite element method to solve the forward problem. The inverse problem is solved with an optimization algorithm such as ART or conjugate gradient. The scanner and its performances are presented, together with absorption, scattering and fluorescent images obtained with it

  20. Vibrational relaxation of CDCl3 induced by infrared laser radiation

    International Nuclear Information System (INIS)

    Alvarez, R.F.; Azcarate, M.L.; Alonso, E.M.; Dangelo, R.J.; Quel, E.J.

    1990-01-01

    A CO 2 TEA laser was used to excite mode ν 4 of CDCl 3 (914cm- 1 ). The laser was constructed at the laboratory, tuned in line 10P(48), (10.91 μm). Infrared fluorescence technique was used to determine V-T/R relaxation times for CDCl 3 both pure and in Ar mixtures. (Author). 9 refs., 3 figs

  1. Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma

    Science.gov (United States)

    Larraona-Puy, Marta; Ghita, Adrian; Zoladek, Alina; Perkins, William; Varma, Sandeep; Leach, Iain H.; Koloydenko, Alexey A.; Williams, Hywel; Notingher, Ioan

    2009-09-01

    We investigate the potential of Raman microspectroscopy (RMS) for automated evaluation of excised skin tissue during Mohs micrographic surgery (MMS). The main aim is to develop an automated method for imaging and diagnosis of basal cell carcinoma (BCC) regions. Selected Raman bands responsible for the largest spectral differences between BCC and normal skin regions and linear discriminant analysis (LDA) are used to build a multivariate supervised classification model. The model is based on 329 Raman spectra measured on skin tissue obtained from 20 patients. BCC is discriminated from healthy tissue with 90+/-9% sensitivity and 85+/-9% specificity in a 70% to 30% split cross-validation algorithm. This multivariate model is then applied on tissue sections from new patients to image tumor regions. The RMS images show excellent correlation with the gold standard of histopathology sections, BCC being detected in all positive sections. We demonstrate the potential of RMS as an automated objective method for tumor evaluation during MMS. The replacement of current histopathology during MMS by a ``generalization'' of the proposed technique may improve the feasibility and efficacy of MMS, leading to a wider use according to clinical need.

  2. CdSe/AsS core-shell quantum dots: preparation and two-photon fluorescence.

    Science.gov (United States)

    Wang, Junzhong; Lin, Ming; Yan, Yongli; Wang, Zhe; Ho, Paul C; Loh, Kian Ping

    2009-08-19

    Arsenic(II) sulfide (AsS)-coated CdSe core-shell nanocrystals can be prepared by a cluster-complex deposition approach under mild conditions. At 60 degrees C, growth of an AsS shell onto a CdSe nanocrystal can be realized through the crystallization of a cluster complex of AsS/butylamine in a mixed solvent of isopropanol/chloroform. The new, type I core-shell nanocrystal exhibits markedly enhanced one-photon fluorescence as well two-photon upconversion fluorescence. The nanocrystals can be used for infrared-excited upconversion cellular labeling.

  3. Fluorescent Bisphosphonate and Carboxyphosphonate Probes: A Versatile Imaging Toolkit for Applications in Bone Biology and Biomedicine.

    Science.gov (United States)

    Sun, Shuting; Błażewska, Katarzyna M; Kadina, Anastasia P; Kashemirov, Boris A; Duan, Xuchen; Triffitt, James T; Dunford, James E; Russell, R Graham G; Ebetino, Frank H; Roelofs, Anke J; Coxon, Fraser P; Lundy, Mark W; McKenna, Charles E

    2016-02-17

    A bone imaging toolkit of 21 fluorescent probes with variable spectroscopic properties, bone mineral binding affinities, and antiprenylation activities has been created, including a novel linking strategy. The linking chemistry allows attachment of a diverse selection of dyes fluorescent in the visible to near-infrared range to any of the three clinically important heterocyclic bisphosphonate bone drugs (risedronate, zoledronate, and minodronate or their analogues). The resultant suite of conjugates offers multiple options to "mix and match" parent drug structure, fluorescence emission wavelength, relative bone affinity, and presence or absence of antiprenylation activity, for bone-related imaging applications.

  4. FT-IR microscopical analysis with synchrotron radiation: The microscope optics and system performance

    International Nuclear Information System (INIS)

    Reffner, J.A.; Martoglio, P.A.; Williams, G.P.

    1995-01-01

    When a Fourier transform infrared (FT-IR) microspectrometer was first interfaced with the National Synchrotron Light Source (NSLS) in September 1993, there was an instant realization that the performance at the diffraction limit had increased 40-100 times. The synchrotron source transformed the IR microspectrometer into a true IR microprobe, providing high-quality IR spectra for probe diameters at the diffraction limit. The combination of IR microspectroscopy and synchrotron radiation provides a powerful new tool for molecular spectroscopy. The ability to perform IR microspectroscopy with synchrotron radiation is still under development at Brookhaven National Laboratory, but several initial studies have been completed that demonstrate the broad-ranging applications of this technology and its potential for materials characterization

  5. FT-IR microscopical analysis with synchrotron radiation: The microscope optics and system performance

    Energy Technology Data Exchange (ETDEWEB)

    Reffner, J.A.; Martoglio, P.A. [Spectra-Tech, Inc., Shelton, CT (United States); Williams, G.P. [Brookhaven National Lab., Upton, NY (United States)

    1995-01-01

    When a Fourier transform infrared (FT-IR) microspectrometer was first interfaced with the National Synchrotron Light Source (NSLS) in September 1993, there was an instant realization that the performance at the diffraction limit had increased 40-100 times. The synchrotron source transformed the IR microspectrometer into a true IR microprobe, providing high-quality IR spectra for probe diameters at the diffraction limit. The combination of IR microspectroscopy and synchrotron radiation provides a powerful new tool for molecular spectroscopy. The ability to perform IR microspectroscopy with synchrotron radiation is still under development at Brookhaven National Laboratory, but several initial studies have been completed that demonstrate the broad-ranging applications of this technology and its potential for materials characterization.

  6. Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer.

    Science.gov (United States)

    Koide, Yuichiro; Urano, Yasuteru; Hanaoka, Kenjiro; Terai, Takuya; Nagano, Tetsuo

    2011-06-17

    The absorption and emission wavelengths of group 14 pyronines and rhodamines, which contain silicon, germanium, or tin at the 10 position of the xanthene chromophore, showed large bathochromic shifts compared to the original rhodamines, owing to stabilization of the LUMO energy levels by σ*-π* conjugation between group 14 atom-C (methyl) σ* orbitals and a π* orbital of the fluorophore. These group 14 pyronines and rhodamines retain the advantages of the original rhodamines, including high quantum efficiency in aqueous media (Φ(fl) = 0.3-0.45), tolerance to photobleaching, and high water solubility. Group 14 rhodamines have higher values of reduction potential than other NIR light-emitting original rhodamines, and therefore, we speculated their NIR fluorescence could be controlled through the photoinduced electron transfer (PeT) mechanism. Indeed, we found that the fluorescence quantum yield (Φ(fl)) of Si-rhodamine (SiR) and Ge-rhodamine (GeR) could be made nearly equal to zero, and the threshold level for fluorescence on/off switching lies at around 1.3-1.5 V for the SiRs. This is about 0.1 V lower than in the case of TokyoGreens, in which the fluorophore is well established to be effective for PeT-based probes. That is to say, the fluorescence of SiR and GeR can be drastically activated by more than 100-fold through a PeT strategy. To confirm the validity of this strategy for developing NIR fluorescence probes, we employed this approach to design two kinds of novel fluorescence probes emitting in the far-red to NIR region, i.e., a series of pH-sensors for use in acidic environments and a Zn(2+) sensor. We synthesized these probes and confirmed that they work well.

  7. Microdose fluorescence imaging of ABY-029 on an operating microscope adapted by custom illumination and imaging modules

    OpenAIRE

    Elliott, Jonathan T.; Dsouza, Alisha V.; Marra, Kayla; Pogue, Brian W.; Roberts, David W.; Paulsen, Keith D.

    2016-01-01

    Fluorescence guided surgery has the potential to positively impact surgical oncology; current operating microscopes and stand-alone imaging systems are too insensitive or too cumbersome to maximally take advantage of new tumor-specific agents developed through the microdose pathway. To this end, a custom-built illumination and imaging module enabling picomolar-sensitive near-infrared fluorescence imaging on a commercial operating microscope is described. The limits of detection and system spe...

  8. An easily Prepared Fluorescent pH Probe Based on Dansyl.

    Science.gov (United States)

    Sha, Chunming; Chen, Yuhua; Chen, Yufen; Xu, Dongmei

    2016-09-01

    A novel fluorescent pH probe from dansyl chloride and thiosemicarbazide was easily prepared and fully characterized by (1)H NMR, (13)C NMR, LC-MS, Infrared spectra and elemental analysis. The probe exhibited high selectivity and sensitivity to H(+) with a pK a value of 4.98. The fluorescence intensity at 510 nm quenched 99.5 % when the pH dropped from 10.88 to 1.98. In addition, the dansyl-based probe could respond quickly and reversibly to the pH variation and various common metal ions showed negligible interference. The recognition could be ascribed to the intramolecular charge transfer caused by the protonation of the nitrogen in the dimethylamino group.

  9. Molecular identification of polymers and anthropogenic particles extracted from oceanic water and fish stomach - A Raman micro-spectroscopy study.

    Science.gov (United States)

    Ghosal, Sutapa; Chen, Michael; Wagner, Jeff; Wang, Zhong-Min; Wall, Stephen

    2018-02-01

    Pacific Ocean trawl samples, stomach contents of laboratory-raised fish as well as fish from the subtropical gyres were analyzed by Raman micro-spectroscopy (RMS) to identify polymer residues and any detectable persistent organic pollutants (POP). The goal was to access specific molecular information at the individual particle level in order to identify polymer debris in the natural environment. The identification process was aided by a laboratory generated automated fluorescence removal algorithm. Pacific Ocean trawl samples of plastic debris associated with fish collection sites were analyzed to determine the types of polymers commonly present. Subsequently, stomach contents of fish from these locations were analyzed for ingested polymer debris. Extraction of polymer debris from fish stomach using KOH versus ultrapure water were evaluated to determine the optimal method of extraction. Pulsed ultrasonic extraction in ultrapure water was determined to be the method of choice for extraction with minimal chemical intrusion. The Pacific Ocean trawl samples yielded primarily polyethylene (PE) and polypropylene (PP) particles >1 mm, PE being the most prevalent type. Additional microplastic residues (1 mm - 10 μm) extracted by filtration, included a polystyrene (PS) particle in addition to PE and PP. Flame retardant, deca-BDE was tentatively identified on some of the PP trawl particles. Polymer residues were also extracted from the stomachs of Atlantic and Pacific Ocean fish. Two types of polymer related debris were identified in the Atlantic Ocean fish: (1) polymer fragments and (2) fragments with combined polymer and fatty acid signatures. In terms of polymer fragments, only PE and PP were detected in the fish stomachs from both locations. A variety of particles were extracted from oceanic fish as potential plastic pieces based on optical examination. However, subsequent RMS examination identified them as various non-plastic fragments, highlighting the importance

  10. Photocured thiol-ene based optical fluorescence sensor for determination of gold(III)

    Energy Technology Data Exchange (ETDEWEB)

    Çubuk, Soner, E-mail: sonercubuk@marmara.edu.tr; Kahraman, Memet Vezir; Yetimoğlu, Ece Kök; Kenan, Sibel

    2014-02-17

    Graphical abstract: -- Highlights: •Photopolymerized fluorescence sensor for Au(III) analysis has been developed. •Preparation of polymeric sensor is simple and quick. •Fluorescence sensor used for analysis of Au(III) in real samples. -- Abstract: This study describes the preparation and the characterization of a new thiol-ene based polymeric fluorescence sensor by photo initiated polymerization of trimethylolpropane tris(3-mercaptopropionate), 2-hydroxyethylacrylate, and 2,4,6-triallyloxy-1,3,5-triazine which are used as monomers and also a photo initiator (2,2-dimethoxy-2-phenylacetophenone) for its usage as optical sensor for gold ions. The thiol-ene based polymeric membrane sensor was characterized by using attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM). The response characteristics of the sensors including dynamic range, pH effect, response time, and the effect of foreign ions were investigated. Fluorescence spectra showed that the excitation/emission maxima of the membrane were at 379/425 nm, respectively.

  11. Photocured thiol-ene based optical fluorescence sensor for determination of gold(III)

    International Nuclear Information System (INIS)

    Çubuk, Soner; Kahraman, Memet Vezir; Yetimoğlu, Ece Kök; Kenan, Sibel

    2014-01-01

    Graphical abstract: -- Highlights: •Photopolymerized fluorescence sensor for Au(III) analysis has been developed. •Preparation of polymeric sensor is simple and quick. •Fluorescence sensor used for analysis of Au(III) in real samples. -- Abstract: This study describes the preparation and the characterization of a new thiol-ene based polymeric fluorescence sensor by photo initiated polymerization of trimethylolpropane tris(3-mercaptopropionate), 2-hydroxyethylacrylate, and 2,4,6-triallyloxy-1,3,5-triazine which are used as monomers and also a photo initiator (2,2-dimethoxy-2-phenylacetophenone) for its usage as optical sensor for gold ions. The thiol-ene based polymeric membrane sensor was characterized by using attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM). The response characteristics of the sensors including dynamic range, pH effect, response time, and the effect of foreign ions were investigated. Fluorescence spectra showed that the excitation/emission maxima of the membrane were at 379/425 nm, respectively

  12. Clinical application of photodynamic medicine technology using light-emitting fluorescence imaging based on a specialized luminous source.

    Science.gov (United States)

    Namikawa, Tsutomu; Fujisawa, Kazune; Munekage, Eri; Iwabu, Jun; Uemura, Sunao; Tsujii, Shigehiro; Maeda, Hiromichi; Kitagawa, Hiroyuki; Fukuhara, Hideo; Inoue, Keiji; Sato, Takayuki; Kobayashi, Michiya; Hanazaki, Kazuhiro

    2018-04-04

    The natural amino acid 5-aminolevulinic acid (ALA) is a protoporphyrin IX (PpIX) precursor and a new-generation photosensitive substance that accumulates specifically in cancer cells. When indocyanine green (ICG) is irradiated with near-infrared (NIR) light, it shifts to a higher energy state and emits infrared light with a longer wavelength than the irradiated NIR light. Photodynamic diagnosis (PDD) using ALA and ICG-based NIR fluorescence imaging has emerged as a new diagnostic technique. Specifically, in laparoscopic examinations for serosa-invading advanced gastric cancer, peritoneal metastases could be detected by ALA-PDD, but not by conventional visible-light imaging. The HyperEye Medical System (HEMS) can visualize ICG fluorescence as color images simultaneously projected with visible light in real time. This ICG fluorescence method is widely applicable, including for intraoperative identification of sentinel lymph nodes, visualization of blood vessels in organ resection, and blood flow evaluation during surgery. Fluorescence navigation by ALA-PDD and NIR using ICG imaging provides good visualization and detection of the target lesions that is not possible with the naked eye. We propose that this technique should be used in fundamental research on the relationship among cellular dynamics, metabolic enzymes, and tumor tissues, and to evaluate clinical efficacy and safety in multicenter cooperative clinical trials.

  13. In vivo near-infrared fluorescence imaging of amyloid-β plaques with a dicyanoisophorone-based probe

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jia-ying; Zhou, Lin-fu; Li, Yu-kun [School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 (China); Chen, Shuo-bin [School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006 (China); Yan, Jin-wu, E-mail: yjw@scut.edu.cn [School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 (China); Zhang, Lei, E-mail: lzhangce@scut.edu.cn [School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 (China)

    2017-04-08

    A dicyanoisophorone-based probe with two-photon absorption and NIR emission was developed for the in vivo fluorescence imaging of amyloid-β plaques, which exhibited high selectivity toward Aβ aggregates over other intracellular proteins. The detection limit was calculated to be as low as 109 nM. In vivo imaging studies indicated that the probe could penetrate the blood–brain barrier and label Aβ plaques in the living transgenic mice, and its specific binding to cerebral Aβ plaques was further confirmed by one- and two-photon ex vivo fluorescence imaging. All these results featured its promising application prospects for amyloid-β sensing in basic research and biomedical research. - Highlights: • A two-photon probe (DCIP-1) with NIR emission based on dicyanoisophorone group, for the in vivo fluorescence imaging of amyloid-β plaques, was reported. • The probe showed turn-on fluorescence (13-fold) with a large Stokes shift upon inserting into the hydrophobic pockets of Aβ aggregates. • The in vivo imaging studies indicated that the probe can penetrate the blood–brain barrier efficiently and discriminate APP/PS1 transgenic mice from WT controls.

  14. In vivo near-infrared fluorescence imaging of amyloid-β plaques with a dicyanoisophorone-based probe

    International Nuclear Information System (INIS)

    Zhu, Jia-ying; Zhou, Lin-fu; Li, Yu-kun; Chen, Shuo-bin; Yan, Jin-wu; Zhang, Lei

    2017-01-01

    A dicyanoisophorone-based probe with two-photon absorption and NIR emission was developed for the in vivo fluorescence imaging of amyloid-β plaques, which exhibited high selectivity toward Aβ aggregates over other intracellular proteins. The detection limit was calculated to be as low as 109 nM. In vivo imaging studies indicated that the probe could penetrate the blood–brain barrier and label Aβ plaques in the living transgenic mice, and its specific binding to cerebral Aβ plaques was further confirmed by one- and two-photon ex vivo fluorescence imaging. All these results featured its promising application prospects for amyloid-β sensing in basic research and biomedical research. - Highlights: • A two-photon probe (DCIP-1) with NIR emission based on dicyanoisophorone group, for the in vivo fluorescence imaging of amyloid-β plaques, was reported. • The probe showed turn-on fluorescence (13-fold) with a large Stokes shift upon inserting into the hydrophobic pockets of Aβ aggregates. • The in vivo imaging studies indicated that the probe can penetrate the blood–brain barrier efficiently and discriminate APP/PS1 transgenic mice from WT controls.

  15. Implications of recent research on microstructure modifications, through heat-related processing and trait alteration to bio-functions, molecular thermal stability and mobility, metabolic characteristics and nutrition in cool-climate cereal grains and other types of seeds with advanced molecular techniques.

    Science.gov (United States)

    Ying, Yuguang; Zhang, Huihua; Yu, Peiqiang

    2018-02-16

    The cutting-edge synchrotron radiation based and globar-sourced vibrational infrared microspectroscopy have recently been developed. These novel techniques are able to reveal structure features at cellular and molecular levels with the tested tissues being intact. However, to date, the advanced techniques are unfamiliar or unknown to food and feed scientists and have not been used to study the molecular structure changes in cool-climate cereal grain seeds and other types of bio-oil and bioenergy seeds. This article aims to provide some recent research in cool-climate cereal grains and other types of seeds on molecular structures and metabolic characteristics of carbohydrate and protein, and implication of microstructure modification through heat-related processing and trait alteration to bio-functions, molecular thermal stability and mobility, and nutrition with advanced molecular techniques- synchrotron radiation based and globar-sourced vibrational infrared microspectroscopy in the areas of (1) Inherent microstructure of cereal grain seeds; (2) The nutritional values of cereal grains; (3) Impact and modification of heat-related processing to cereal grain; (4) Conventional nutrition evaluation methodology; (5) Synchrotron radiation-based and globar-sourced vibrational (micro)-spectroscopy for molecular structure study and molecular thermal stability and mobility, and (6) Recent molecular spectroscopic technique applications in research on raw, traits altered and processed cool-climate cereal grains and other types of seeds. The information described in this article gives better insights of research progress and update in cool-climate cereal grains and other seeds with advanced molecular techniques.

  16. Laser Induced Fluorescence of Helium Ions in a Helicon Plasma

    Science.gov (United States)

    Compton, C. S.; Biloui, C.; Hardin, R. A.; Keesee, A. M.; Scime, E. E.; Boivin, R.

    2003-10-01

    The lack of a suitable Laser Induced Fluorescence (LIF) scheme for helium ions at visible wavelengths has prevented LIF from being employed in helium plasmas for measurements of ion temperature and bulk ion flow speeds. In this work, we will discuss our attempts to perform LIF of helium ions in a helicon source plasma using an infrared, tunable diode laser operating at 1012.36 nm. The infrared transition corresponds to excitation from the n = 4 level (4f ^2F) to the n = 5 (5g ^2G) level of singly ionized helium and therefore requires substantial electron temperatures (> 10 eV) to maintain an adequate ion population in the n = 4 state. Calculations using a steady state coronal model predict that the n = 4 state population will be 25% larger than the n = 5 population for our experimental conditions. The fluorescence decay from the n = 5 (5f ^2F) level of singly ionized helium level to the n = 3 (3d ^2D) level at 320.31 nm is monitored as the diode laser is swept through 10 GHz around the 1012.36 nm line. Note that the fluorescence emission requires a collisionally coupled transition between two different n = 5 quantum states. We will also present measurements of the emission intensities of both the 1012.36 nm and the 320.31 nm lines as a function of source neutral pressure, rf power, and plasma density. This work supported by the U.S. DoE EPSCoR Lab Partnership Program.

  17. Make Caffeine Visible: a Fluorescent Caffeine “Traffic Light” Detector

    Science.gov (United States)

    Xu, Wang; Kim, Tae-Hyeong; Zhai, Duanting; Er, Jun Cheng; Zhang, Liyun; Kale, Anup Atul; Agrawalla, Bikram Keshari; Cho, Yoon-Kyoung; Chang, Young-Tae

    2013-07-01

    Caffeine has attracted abundant attention due to its extensive existence in beverages and medicines. However, to detect it sensitively and conveniently remains a challenge, especially in resource-limited regions. Here we report a novel aqueous phase fluorescent caffeine sensor named Caffeine Orange which exhibits 250-fold fluorescence enhancement upon caffeine activation and high selectivity. Nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy indicate that π-stacking and hydrogen-bonding contribute to their interactions while dynamic light scattering and transmission electron microscopy experiments demonstrate the change of Caffeine Orange ambient environment induces its fluorescence emission. To utilize this probe in real life, we developed a non-toxic caffeine detection kit and tested it for caffeine quantification in various beverages. Naked-eye sensing of various caffeine concentrations was possible based on color changes upon irradiation with a laser pointer. Lastly, we performed the whole system on a microfluidic device to make caffeine detection quick, sensitive and automated.

  18. Residualization Rates of Near Infrared Dyes for the Rational Design of Molecular Imaging Agents

    Science.gov (United States)

    Cilliers, Cornelius; Liao, Jianshan; Atangcho, Lydia; Thurber, Greg M.

    2016-01-01

    Purpose Near infrared (NIR) fluorescence imaging is widely used for tracking antibodies and biomolecules in vivo. Clinical and preclinical applications include intraoperative imaging, tracking therapeutics, and fluorescent labeling as a surrogate for subsequent radiolabeling. Despite their extensive use, one of the fundamental properties of NIR dyes, the residualization rate within cells following internalization, has not been systematically studied. This rate is required for the rational design of probes and proper interpretation of in vivo results. Procedures In this brief report, we measure the cellular residualization rate of eight commonly used dyes encompassing three core structures (cyanine, BODIPY, and oxazine/thiazine/carbopyronin). Results We identify residualizing (half-life > 24 hrs) and non-residualizing dyes (half-life < 24 hrs) in both the far red (~650-680 nm) and near infrared (~740-800 nm) regions. Conclusions This data will allow researchers to independently and rationally select the wavelength and residualizing nature of dyes for molecular imaging agent design. PMID:25869081

  19. Residualization Rates of Near-Infrared Dyes for the Rational Design of Molecular Imaging Agents.

    Science.gov (United States)

    Cilliers, Cornelius; Liao, Jianshan; Atangcho, Lydia; Thurber, Greg M

    2015-12-01

    Near-infrared (NIR) fluorescence imaging is widely used for tracking antibodies and biomolecules in vivo. Clinical and preclinical applications include intraoperative imaging, tracking therapeutics, and fluorescent labeling as a surrogate for subsequent radiolabeling. Despite their extensive use, one of the fundamental properties of NIR dyes, the residualization rate within cells following internalization, has not been systematically studied. This rate is required for the rational design of probes and proper interpretation of in vivo results. In this brief report, we measure the cellular residualization rate of eight commonly used dyes encompassing three core structures (cyanine, boron-dipyrromethene (BODIPY), and oxazine/thiazine/carbopyronin). We identify residualizing (half-life >24 h) and non-residualizing (half-life <24 h) dyes in both the far-red (~650-680 nm) and near-infrared (~740-800 nm) regions. This data will allow researchers to independently and rationally select the wavelength and residualizing nature of dyes for molecular imaging agent design.

  20. Using Synchrotron X-ray Fluorescence Microprobes in the Study of Metal Homeostasis in Plants

    International Nuclear Information System (INIS)

    Punshon, T.; Guerinot, M.; Lanzirotti, A.

    2009-01-01

    Background and Aims: This Botanical Briefing reviews the application of synchrotron X-ray fluorescence (SXRF) microprobes to the plant sciences; how the technique has expanded our knowledge of metal(loid) homeostasis, and how it can be used in the future. Scope: The use of SXRF microspectroscopy and microtomography in research on metal homeostasis in plants is reviewed. The potential use of SXRF as part of the ionomics toolbox, where it is able to provide fundamental information on the way that plants control metal homeostasis, is recommended. Conclusions: SXRF is one of the few techniques capable of providing spatially resolved in-vivo metal abundance data on a sub-micrometre scale, without the need for chemical fixation, coating, drying or even sectioning of samples. This gives researchers the ability to uncover mechanisms of plant metal homeostasis that can potentially be obscured by the artefacts of sample preparation. Further, new generation synchrotrons with smaller beam sizes and more sensitive detection systems will allow for the imaging of metal distribution within single living plant cells. Even greater advances in our understanding of metal homeostasis in plants can be gained by overcoming some of the practical boundaries that exist in the use of SXRF analysis.

  1. Cine: Line excitation by infrared fluorescence in cometary atmospheres

    Science.gov (United States)

    de Val-Borro, Miguel; Cordiner, Martin A.; Milam, Stefanie N.; Charnley, Steven B.

    2017-03-01

    CINE is a Python module for calculating infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. Excitation by solar radiation of vibrational bands followed by radiative decay to the ground vibrational state is one of the main mechanisms for molecular excitation in comets. This code calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Line transitions are queried from the latest version of the HITRAN spectroscopic repository using the astroquery affiliated package of astropy. Molecular data are obtained from the LAMDA database. These coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.

  2. Reliable Assessment and Quantification of the Fluorescence-Labeled Antisense Oligonucleotides In Vivo

    Directory of Open Access Journals (Sweden)

    Maria Chiara Munisso

    2014-01-01

    Full Text Available The availability of fluorescent dyes and the advances in the optical systems for in vivo imaging have stimulated an increasing interest in developing new methodologies to study and quantify the biodistribution of labeled agents. However, despite these great achievements, we are facing significant challenges in determining if the observed fluorescence does correspond to the quantity of the dye in the tissues. In fact, although the far-red and near-infrared lights can propagate through several centimetres of tissue, they diffuse within a few millimetres as consequence of the elastic scattering of photons. In addition, when dye-labeled oligonucleotides form stable complex with cationic carriers, a large change in the fluorescence intensity of the dye is observed. Therefore, the measured fluorescence intensity is altered by the tissue heterogeneity and by the fluctuation of dye intensity. Hence, in this study a quantification strategy for fluorescence-labeled oligonucleotides was developed to solve these disadvantageous effects. Our results proved that upon efficient homogenization and dilution with chaotropic agents, such as guanidinium thiocyanate, it is possible to achieve a complete fluorescence intensity recovery. Furthermore, we demonstrated that this method has the advantage of good sensitivity and reproducibility, as well as easy handling of the tissue samples.

  3. Infrared spectroscopy reveals both qualitative and quantitative differences in equine subchondral bone during maturation

    Science.gov (United States)

    Kobrina, Yevgeniya; Isaksson, Hanna; Sinisaari, Miikka; Rieppo, Lassi; Brama, Pieter A.; van Weeren, René; Helminen, Heikki J.; Jurvelin, Jukka S.; Saarakkala, Simo

    2010-11-01

    The collagen phase in bone is known to undergo major changes during growth and maturation. The objective of this study is to clarify whether Fourier transform infrared (FTIR) microspectroscopy, coupled with cluster analysis, can detect quantitative and qualitative changes in the collagen matrix of subchondral bone in horses during maturation and growth. Equine subchondral bone samples (n = 29) from the proximal joint surface of the first phalanx are prepared from two sites subjected to different loading conditions. Three age groups are studied: newborn (0 days old), immature (5 to 11 months old), and adult (6 to 10 years old) horses. Spatial collagen content and collagen cross-link ratio are quantified from the spectra. Additionally, normalized second derivative spectra of samples are clustered using the k-means clustering algorithm. In quantitative analysis, collagen content in the subchondral bone increases rapidly between the newborn and immature horses. The collagen cross-link ratio increases significantly with age. In qualitative analysis, clustering is able to separate newborn and adult samples into two different groups. The immature samples display some nonhomogeneity. In conclusion, this is the first study showing that FTIR spectral imaging combined with clustering techniques can detect quantitative and qualitative changes in the collagen matrix of subchondral bone during growth and maturation.

  4. Identification of Uranium Minerals in Natural U-Bearing Rocks Using Infrared Reflectance Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beiswenger, Toya N. [Pacific Northwest National Laboratory, Richland, WA, USA; Gallagher, Neal B. [Eigenvector Research, Inc., Manson, WA, USA; Myers, Tanya L. [Pacific Northwest National Laboratory, Richland, WA, USA; Szecsody, James E. [Pacific Northwest National Laboratory, Richland, WA, USA; Tonkyn, Russell G. [Pacific Northwest National Laboratory, Richland, WA, USA; Su, Yin-Fong [Pacific Northwest National Laboratory, Richland, WA, USA; Sweet, Lucas E. [Pacific Northwest National Laboratory, Richland, WA, USA; Lewallen, Tricia A. [Pacific Northwest National Laboratory, Richland, WA, USA; Johnson, Timothy J. [Pacific Northwest National Laboratory, Richland, WA, USA

    2017-10-24

    The identification of minerals, including uranium-bearing minerals, is traditionally a labor-intensive-process using x-ray diffraction (XRD), fluorescence, or other solid-phase and wet chemical techniques. While handheld XRD and fluorescence instruments can aid in field identification, handheld infrared reflectance spectrometers can also be used in industrial or field environments, with rapid, non-destructive identification possible via spectral analysis of the solid’s reflectance spectrum. We have recently developed standard laboratory measurement methods for the infrared (IR) reflectance of solids and have investigated using these techniques for the identification of uranium-bearing minerals, using XRD methods for ground-truth. Due to the rich colors of such species, including distinctive spectroscopic signatures in the infrared, identification is facile and specific, both for samples that are pure or are partially composed of uranium (e.g. boltwoodite, schoepite, tyuyamunite, carnotite, etc.) or non-uranium minerals. The method can be used to detect not only pure and partial minerals, but is quite sensitive to chemical change such as hydration (e.g. schoepite). We have further applied statistical methods, in particular classical least squares (CLS) and multivariate curve resolution (MCR) for discrimination of such uranium minerals and two uranium pure chemicals (U3O8 and UO2) against common background materials (e.g. silica sand, asphalt, calcite, K-feldspar) with good success. Each mineral contains unique infrared spectral features; some of the IR features are similar or common to entire classes of minerals, typically arising from similar chemical moieties or functional groups in the minerals: phosphates, sulfates, carbonates, etc. These characteristic 2 infrared bands generate the unique (or class-specific) bands that distinguish the mineral from the interferents or backgrounds. We have observed several cases where the chemical moieties that provide the

  5. Dynamic fluorescence imaging with molecular agents for cancer detection

    Science.gov (United States)

    Kwon, Sun Kuk

    Non-invasive dynamic optical imaging of small animals requires the development of a novel fluorescence imaging modality. Herein, fluorescence imaging is demonstrated with sub-second camera integration times using agents specifically targeted to disease markers, enabling rapid detection of cancerous regions. The continuous-wave fluorescence imaging acquires data with an intensified or an electron-multiplying charge-coupled device. The work presented in this dissertation (i) assessed dose-dependent uptake using dynamic fluorescence imaging and pharmacokinetic (PK) models, (ii) evaluated disease marker availability in two different xenograft tumors, (iii) compared the impact of autofluorescence in fluorescence imaging of near-infrared (NIR) vs. red light excitable fluorescent contrast agents, (iv) demonstrated dual-wavelength fluorescence imaging of angiogenic vessels and lymphatics associated with a xenograft tumor model, and (v) examined dynamic multi-wavelength, whole-body fluorescence imaging with two different fluorescent contrast agents. PK analysis showed that the uptake of Cy5.5-c(KRGDf) in xenograft tumor regions linearly increased with doses of Cy5.5-c(KRGDf) up to 1.5 nmol/mouse. Above 1.5 nmol/mouse, the uptake did not increase with doses, suggesting receptor saturation. Target to background ratio (TBR) and PK analysis for two different tumor cell lines showed that while Kaposi's sarcoma (KS1767) exhibited early and rapid uptake of Cy5.5-c(KRGDf), human melanoma tumors (M21) had non-significant TBR differences and early uptake rates similar to the contralateral normal tissue regions. The differences may be due to different compartment location of the target. A comparison of fluorescence imaging with NIR vs. red light excitable fluorescent dyes demonstrates that NIR dyes are associated with less background signal, enabling rapid tumor detection. In contrast, animals injected with red light excitable fluorescent dyes showed high autofluorescence. Dual

  6. Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma.

    Science.gov (United States)

    Ishizawa, Takeaki; Masuda, Koichi; Urano, Yasuteru; Kawaguchi, Yoshikuni; Satou, Shouichi; Kaneko, Junichi; Hasegawa, Kiyoshi; Shibahara, Junji; Fukayama, Masashi; Tsuji, Shingo; Midorikawa, Yutaka; Aburatani, Hiroyuki; Kokudo, Norihiro

    2014-02-01

    Although clinical applications of intraoperative fluorescence imaging of liver cancer using indocyanine green (ICG) have begun, the mechanistic background of ICG accumulation in the cancerous tissues remains unclear. In 170 patients with hepatocellular carcinoma cells (HCC), the liver surfaces and resected specimens were intraoperatively examined by using a near-infrared fluorescence imaging system after preoperative administration of ICG (0.5 mg/kg i.v.). Microscopic examinations, gene expression profile analysis, and immunohistochemical staining were performed for HCCs, which showed ICG fluorescence in the cancerous tissues (cancerous-type fluorescence), and HCCs showed fluorescence only in the surrounding non-cancerous liver parenchyma (rim-type fluorescence). ICG fluorescence imaging enabled identification of 273 of 276 (99%) HCCs in the resected specimens. HCCs showed that cancerous-type fluorescence was associated with higher cancer cell differentiation as compared with rim-type HCCs (P Fluorescence microscopy identified the presence of ICG in the canalicular side of the cancer cell cytoplasm, and pseudoglands of the HCCs showed a cancerous-type fluorescence pattern. The ratio of the gene and protein expression levels in the cancerous to non-cancerous tissues for Na(+)/taurocholate cotransporting polypeptide (NTCP) and organic anion-transporting polypeptide 8 (OATP8), which are associated with portal uptake of ICG by hepatocytes that tended to be higher in the HCCs that showed cancerous-type fluorescence than in those that showed rim-type fluorescence. Preserved portal uptake of ICG in differentiated HCC cells by NTCP and OATP8 with concomitant biliary excretion disorders causes accumulation of ICG in the cancerous tissues after preoperative intravenous administration. This enables highly sensitive identification of HCC by intraoperative ICG fluorescence imaging.

  7. Properties and Applications of High Emissivity Composite Films Based on Far-Infrared Ceramic Powder.

    Science.gov (United States)

    Xiong, Yabo; Huang, Shaoyun; Wang, Wenqi; Liu, Xinghai; Li, Houbin

    2017-11-29

    Polymer matrix composite materials that can emit radiation in the far-infrared region of the spectrum are receiving increasing attention due to their ability to significantly influence biological processes. This study reports on the far-infrared emissivity property of composite films based on far-infrared ceramic powder. X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray powder diffractometry were used to evaluate the physical properties of the ceramic powder. The ceramic powder was found to be rich in aluminum oxide, titanium oxide, and silicon oxide, which demonstrate high far-infrared emissivity. In addition, the micromorphology, mechanical performance, dynamic mechanical properties, and far-infrared emissivity of the composite were analyzed to evaluate their suitability for strawberry storage. The mechanical properties of the far-infrared radiation ceramic (cFIR) composite films were not significantly influenced ( p ≥ 0.05) by the addition of the ceramic powder. However, the dynamic mechanical analysis (DMA) properties of the cFIR composite films, including a reduction in damping and shock absorption performance, were significant influenced by the addition of the ceramic powder. Moreover, the cFIR composite films showed high far-infrared emissivity, which has the capability of prolonging the storage life of strawberries. This research demonstrates that cFIR composite films are promising for future applications.

  8. Preparation of fluorescent polyaniline nanoparticles in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Kleber G. B. [Universidade Federal de Pernambuco, Departamento de Engenharia Mecanica (Brazil); Melo, Etelino F. de [Universidade Federal de Pernambuco, Departamento de Quimica Fundamental (Brazil); Andrade, Cesar A. S. [Universidade Federal de Pernambuco, Departamento de Bioquimica (Brazil); Melo, Celso P. de, E-mail: celso@df.ufpe.br [Universidade Federal de Pernambuco, Departamento de Fisica (Brazil)

    2013-01-15

    We report the synthesis of stable polyaniline nanoparticles (PANI{sub N}Ps) based on the chemical oxidative polymerization of aniline in aqueous solutions of surfactants. Surfactants of three different types-cationic (dodecyltrimethylammonium bromide-DTAB), anionic (sodium dodecyl sulfate-SDS), and non-ionic (Triton X-405-TX-405)-were used. The resulting PANI{sub N}Ps{sub s}urfactant samples were characterized through UV-Vis, fluorescence and Fourier transform infrared spectroscopies, and scanning electronic microscopy (SEM). We have verified that the color of the PANI{sub N}Ps{sub s}urfactant dispersions is affected by a change in the pH of the solution. The PANI-NPs{sub s}urfactant colloidal suspensions in aqueous solution present a surprising high fluorescence quantum yield value (ranging from 1.9 Multiplication-Sign 10{sup -3} to 6.9 Multiplication-Sign 10{sup -3}) that can be controlled as a function of the pH, a fact that we associate to the corresponding protonation degree of the PANI polymeric chains. We suggest that these fluorescent nanocomposites can find important technological applications in different areas such as organic light emitting devices, biosensors, and pigments for coatings.

  9. Preparation of fluorescent polyaniline nanoparticles in aqueous solutions

    International Nuclear Information System (INIS)

    Alves, Kleber G. B.; Melo, Etelino F. de; Andrade, César A. S.; Melo, Celso P. de

    2013-01-01

    We report the synthesis of stable polyaniline nanoparticles (PANI N Ps) based on the chemical oxidative polymerization of aniline in aqueous solutions of surfactants. Surfactants of three different types—cationic (dodecyltrimethylammonium bromide—DTAB), anionic (sodium dodecyl sulfate—SDS), and non-ionic (Triton X-405–TX-405)—were used. The resulting PANI N Ps s urfactant samples were characterized through UV–Vis, fluorescence and Fourier transform infrared spectroscopies, and scanning electronic microscopy (SEM). We have verified that the color of the PANI N Ps s urfactant dispersions is affected by a change in the pH of the solution. The PANI-NPs s urfactant colloidal suspensions in aqueous solution present a surprising high fluorescence quantum yield value (ranging from 1.9 × 10 −3 to 6.9 × 10 −3 ) that can be controlled as a function of the pH, a fact that we associate to the corresponding protonation degree of the PANI polymeric chains. We suggest that these fluorescent nanocomposites can find important technological applications in different areas such as organic light emitting devices, biosensors, and pigments for coatings.

  10. Comparison between the indocyanine green fluorescence and blue dye methods for sentinel lymph node biopsy using novel fluorescence image-guided resection equipment in different types of hospitals.

    Science.gov (United States)

    He, Kunshan; Chi, Chongwei; Kou, Deqiang; Huang, Wenhe; Wu, Jundong; Wang, Yabing; He, Lifang; Ye, Jinzuo; Mao, Yamin; Zhang, Guo-Jun; Wang, Jiandong; Tian, Jie

    2016-12-01

    Sentinel lymph node biopsy (SLNB) has become a standard of care to detect axillary lymph metastasis in early-stage breast cancer patients with clinically negative axillary lymph nodes. Current SLNB detection modalities comprising a blue dye, a radioactive tracer, or a combination of both have advantages as well as disadvantages. Thus, near-infrared fluorescence imaging using indocyanine green (ICG) has recently been regarded as a novel method that has generated interest for SLNB around the world. However, the lack of appropriate fluorescence imaging systems has hindered further research and wide application of this method. Therefore, we developed novel fluorescence image-guided resection equipment (FIRE) to detect sentinel lymph nodes (SLNs). Moreover, to compare the ICG fluorescence imaging method with the blue dye method and to explore the universal feasibility of the former, a different type of hospital study was conducted. Ninety-nine eligible patients participated in the study at 3 different types of hospitals. After subcutaneous ICG allergy testing, all the patients were subcutaneously injected with methylene blue and ICG into the subareolar area. Consequently, 276 SLNs (range 1-7) were identified in 98 subjects (detection rate: 99%) by using the ICG fluorescence imaging method. In contrast, the blue dye method only identified 202 SLNs (range 1-7) in 91 subjects (detection rate: 91.92%). Besides, the results of the fluorescence imaging method were similar in the 3 hospitals. Our findings indicate the universal feasibility of the ICG fluorescence imaging method for SLNB using the fluorescence image-guided resection equipment in early breast cancer detection. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. An Overview of the Evolution of Infrared Spectroscopy Applied to Bacterial Typing.

    Science.gov (United States)

    Quintelas, Cristina; Ferreira, Eugénio C; Lopes, João A; Sousa, Clara

    2018-01-01

    The sustained emergence of new declared bacterial species makes typing a continuous challenge for microbiologists. Molecular biology techniques have a very significant role in the context of bacterial typing, but they are often very laborious, time consuming, and eventually fail when dealing with very closely related species. Spectroscopic-based techniques appear in some situations as a viable alternative to molecular methods with advantages in terms of analysis time and cost. Infrared and mass spectrometry are among the most exploited techniques in this context: particularly, infrared spectroscopy emerged as a very promising method with multiple reported successful applications. This article presents a systematic review on infrared spectroscopy applications for bacterial typing, highlighting fundamental aspects of infrared spectroscopy, a detailed literature review (covering different taxonomic levels and bacterial species), advantages, and limitations of the technique over molecular biology methods and a comparison with other competing spectroscopic techniques such as MALDI-TOF MS, Raman, and intrinsic fluorescence. Infrared spectroscopy possesses a high potential for bacterial typing at distinct taxonomic levels and worthy of further developments and systematization. The development of databases appears fundamental toward the establishment of infrared spectroscopy as a viable method for bacterial typing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Quantitative fluorescence angiography for neurosurgical interventions.

    Science.gov (United States)

    Weichelt, Claudia; Duscha, Philipp; Steinmeier, Ralf; Meyer, Tobias; Kuß, Julia; Cimalla, Peter; Kirsch, Matthias; Sobottka, Stephan B; Koch, Edmund; Schackert, Gabriele; Morgenstern, Ute

    2013-06-01

    Present methods for quantitative measurement of cerebral perfusion during neurosurgical operations require additional technology for measurement, data acquisition, and processing. This study used conventional fluorescence video angiography--as an established method to visualize blood flow in brain vessels--enhanced by a quantifying perfusion software tool. For these purposes, the fluorescence dye indocyanine green is given intravenously, and after activation by a near-infrared light source the fluorescence signal is recorded. Video data are analyzed by software algorithms to allow quantification of the blood flow. Additionally, perfusion is measured intraoperatively by a reference system. Furthermore, comparing reference measurements using a flow phantom were performed to verify the quantitative blood flow results of the software and to validate the software algorithm. Analysis of intraoperative video data provides characteristic biological parameters. These parameters were implemented in the special flow phantom for experimental validation of the developed software algorithms. Furthermore, various factors that influence the determination of perfusion parameters were analyzed by means of mathematical simulation. Comparing patient measurement, phantom experiment, and computer simulation under certain conditions (variable frame rate, vessel diameter, etc.), the results of the software algorithms are within the range of parameter accuracy of the reference methods. Therefore, the software algorithm for calculating cortical perfusion parameters from video data presents a helpful intraoperative tool without complex additional measurement technology.

  13. A near-infrared fluorescent sensor for H+ in aqueous solution and living cells

    OpenAIRE

    WU, Aibin; DUAN, Liping

    2014-01-01

    A heptamethine cyanine-based sensor (1) was designed and synthesized by incorporating heptamethine cyanine fluorophore and methylpiperazine. Sensor 1 exhibited good response to the change of pH levels, and a large Stokes shift (>100 nm) was obtained. Fluorescent image experiments in living cells further demonstrated its potential applications in biological systems.

  14. Analytical methods for the characterization of surface finishing in bricks

    International Nuclear Information System (INIS)

    Nardini, I.; Zendri, E.; Biscontin, G.; Brunetin, A.

    2006-01-01

    The recent restoration works of Santo Stefano Church Facade (XV century) in Venice have shown traces variously saved of different kind of surface finishes. These finishes were found on the brick's surface both in the masonry and in the decorative elements. Different brick's surface and decorative tile samples were investigated using several techniques: optical microscopy, scanning electron-microscopy, thermal analysis, infrared spectroscopy and reflectance Fourier transform infrared microspectroscopy. The evaluation of the reached results was used to understand the decorative techniques and to recognize the material employed

  15. Plasmonic enhancement of ultraviolet fluorescence

    Science.gov (United States)

    Jiao, Xiaojin

    Plasmonics relates to the interaction between electromagnetic radiation and conduction electrons at metallic interfaces or in metallic nanostructures. Surface plasmons are collective electron oscillations at a metal surface, which can be manipulated by shape, texture and material composition. Plasmonic applications cover a broad spectrum from visible to near infrared, including biosensing, nanolithography, spectroscopy, optoelectronics, photovoltaics and so on. However, there remains a gap in this activity in the ultraviolet (UV, research. Motivating factors in the study of UV Plasmonics are the direct access to biomolecular resonances and native fluorescence, resonant Raman scattering interactions, and the potential for exerting control over photochemical reactions. This dissertation aims to fill in the gap of Plasmonics in the UV with efforts of design, fabrication and characterization of aluminium (Al) and magnesium (Mg) nanostructures for the application of label-free bimolecular detection via native UV fluorescence. The first contribution of this dissertation addresses the design of Al nanostructures in the context of UV fluorescence enhancement. A design method that combines analytical analysis with numerical simulation has been developed. Performance of three canonical plasmonic structures---the dipole antenna, bullseye nanoaperture and nanoaperture array---has been compared. The optimal geometrical parameters have been determined. A novel design of a compound bullseye structure has been proposed and numerically analyzed for the purpose of compensating for the large Stokes shift typical of UV fluorescence. Second, UV lifetime modification of diffusing molecules by Al nanoapertures has been experimentally demonstrated for the first time. Lifetime reductions of ~3.5x have been observed for the high quantum yield (QY) laser dye p-terphenyl in a 60 nm diameter aperture with 50 nm undercut. Furthermore, quantum-yield-dependence of lifetime reduction has been

  16. vuv fluorescence from selective high-order multiphoton excitation of N2

    International Nuclear Information System (INIS)

    Coffee, Ryan N.; Gibson, George N.

    2004-01-01

    Recent fluorescence studies suggest that ultrashort pulse laser excitation may be highly selective. Selective high-intensity laser excitation holds important consequences for the physics of multiphoton processes. To establish the extent of this selectivity, we performed a detailed comparative study of the vacuum ultraviolet fluorescence resulting from the interaction of N 2 and Ar with high-intensity infrared ultrashort laser pulses. Both N 2 and Ar reveal two classes of transitions, inner-valence ns ' l ' . From their pressure dependence, we associate each transition with either plasma or direct laser excitation. Furthermore, we qualitatively confirm such associations with the time dependence of the fluorescence signal. Remarkably, only N 2 presents evidence of direct laser excitation. This direct excitation produces ionic nitrogen fragments with inner-valence (2s) holes, two unidentified transitions, and one molecular transition, the N 2 + :X 2 Σ g + 2 Σ u + . We discuss these results in the light of a recently proposed model for multiphoton excitation

  17. Cutaneous porphyrins exhibit anti-stokes fluorescence that is detectable in sebum (Conference Presentation)

    Science.gov (United States)

    Tian, Giselle; Zeng, Haishan; Zhao, Jianhua; Wu, Zhenguo; Al Jasser, Mohammed; Lui, Harvey; Mclean, David I.

    2016-02-01

    Porphyrins produced by Propionibacterium acnes represent the principal fluorophore associated with acne, and appear as orange-red luminescence under the Wood's lamp. Assessment of acne based on Wood's lamp (UV) or visible light illumination is limited by photon penetration depth and has limited sensitivity for earlier stage lesions. Inducing fluorescence with near infrared (NIR) excitation may provide an alternative way to assess porphyrin-related skin disorders. We discovered that under 785 nm CW laser excitation PpIX powder exhibits fluorescence emission in the shorter wavelength range of 600-715 nm with an intensity that is linearly dependent on the excitation power. We attribute this shorter wavelength emission to anti-Stokes fluorescence. Similar anti-Stokes fluorescence was also detected focally in all skin-derived samples containing porphyrins. Regular (Stokes) fluorescence was present under UV and visible light excitation on ex vivo nasal skin and sebum from uninflamed acne, but not on nose surface smears or sebum from inflamed acne. Co-registered CW laser-excited anti-Stokes fluorescence and fs laser-excited multi-photon fluorescence images of PpIX powder showed similar features. In the skin samples because of the anti-Stokes effect, the NIR-induced fluorescence was presumably specific for porphyrins since there appeared to be no anti-Stokes emission signals from other typical skin fluorophores such as lipids, keratins and collagen. Anti-Stokes fluorescence under NIR CW excitation is more sensitive and specific for porphyrin detection than UV- or visible light-excited regular fluorescence and fs laser-excited multi-photon fluorescence. This approach also has higher image contrast compared to NIR fs laser-based multi-photon fluorescence imaging. The anti-Stokes fluorescence of porphyrins within sebum could potentially be applied to detecting and targeting acne lesions for treatment via fluorescence image guidance.

  18. Probing nod factor perception in legumes by fluorescence microspectroscopy

    NARCIS (Netherlands)

    Goedhart, J.

    2001-01-01

    Plants of the family of legumes are capable of forming a symbiosis with Rhizobium bacteria. These Gram-negative bacteria invade the root system of a host legume and fix nitrogen in a specialized organ, the so-called root nodule. In exchange for sugars, the bacteria convert atmospheric

  19. Innovative molecular-based fluorescent nanoparticles for multicolor single particle tracking in cells

    International Nuclear Information System (INIS)

    Daniel, Jonathan; Blanchard-Desce, Mireille; Godin, Antoine G; Palayret, Matthieu; Lounis, Brahim; Cognet, Laurent

    2016-01-01

    Based on an original molecular-based design, we present bright and photostable fluorescent organic nanoparticles (FONs) showing excellent colloidal stability in various aqueous environments. Complementary near-infrared emitting and green emitting FONs were prepared using a simple, fast and robust protocol. Both types of FONs could be simultaneously imaged at the single-particle level in solution as well as in biological environments using a monochromatic excitation and a dual-color fluorescence microscope. No evidence of acute cytotoxicity was found upon incubation of live cells with mixed solutions of FONs, and both types of nanoparticles were found internalized in the cells where their motion could be simultaneously tracked at video-rate up to minutes. These fluorescent organic nanoparticles open a novel non-toxic alternative to existing nanoparticles for imaging biological structures, compatible with live-cell experiments and specially fitted for multicolor single particle tracking. (paper)

  20. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red

    Science.gov (United States)

    Maes, Thomas; Jessop, Rebecca; Wellner, Nikolaus; Haupt, Karsten; Mayes, Andrew G.

    2017-03-01

    A new approach is presented for analysis of microplastics in environmental samples, based on selective fluorescent staining using Nile Red (NR), followed by density-based extraction and filtration. The dye adsorbs onto plastic surfaces and renders them fluorescent when irradiated with blue light. Fluorescence emission is detected using simple photography through an orange filter. Image-analysis allows fluorescent particles to be identified and counted. Magnified images can be recorded and tiled to cover the whole filter area, allowing particles down to a few micrometres to be detected. The solvatochromic nature of Nile Red also offers the possibility of plastic categorisation based on surface polarity characteristics of identified particles. This article details the development of this staining method and its initial cross-validation by comparison with infrared (IR) microscopy. Microplastics of different sizes could be detected and counted in marine sediment samples. The fluorescence staining identified the same particles as those found by scanning a filter area with IR-microscopy.

  1. Fourier transform infrared microspectroscopy as a diagnostic tool for ...

    Indian Academy of Sciences (India)

    The major goal of this work was to present the feasibility of spectroscopy to directly measure ..... is a computer-operated system, which helps standardize interpretation of results. ... for automation to suit the demands of the medical community.

  2. Effectiveness of near-infrared transillumination in early caries diagnosis

    Directory of Open Access Journals (Sweden)

    Mirela Marinova-Takorova

    2016-11-01

    Full Text Available Early caries detection is essential for minimal intervention dentistry, since it could give the opportunity to reverse the process and eliminate or at least postpone the surgical treatment. The aim of the present study was to evaluate the effectiveness of near-infrared transillumination in early caries diagnosis for both occlusal and proximal lesions. Thirty-eight adult patients were included in the study. The results from the visual, radiological and near-infrared transillumination examination for proximal caries lesions were compared. The diagnostic abilities of these methods for occlusal lesions were assayed on 60 teeth. The three methods showed a very high level of correlation when there were caries lesions involving the enamel and dentin. Concerning proximal caries involving only the enamel, the visual--tactile diagnosis proved to be insufficiently sensitive even with the use of magnification. Radiographic examination and near-infrared transillumination correlated significantly, but the latter was more sensitive. Radiographic examination proved to be insufficiently sensitive for occlusal lesions. The results obtained with the near-infrared fluorescence correlated most with the visual–tactile examination. These results suggest that near-infrared transillumination is an effective method for diagnosis of lesions both involving only the enamel and involving the enamel and dentin. It could be used for both occlusal and proximal caries lesions and it could eventually substitute radiographic bitewings, especially in children and pregnant women, due to its efficiency as a diagnostic tool and the absence of radiation.

  3. A Solar-Pumped Fluorescence Model for Line-By-Line Emission Intensities in the B-X, A-X, and X-X Band Systems of 12C14N

    Science.gov (United States)

    Paganini, L.; Mumma, M. J.

    2016-01-01

    We present a new quantitative model for detailed solar-pumped fluorescent emission of the main isotopologue of CN. The derived fluorescence efficiencies permit estimation and interpretation of ro-vibrational infrared line intensities of CN in exospheres exposed to solar (or stellar) radiation. Our g-factors are applicable to astronomical observations of CN extending from infrared to optical wavelengths, and we compare them with previous calculations in the literature. The new model enables extraction of rotational temperature, column abundance, and production rate from astronomical observations of CN in the inner coma of comets. Our model accounts for excitation and de-excitation of rotational levels in the ground vibrational state by collisions, solar excitation to the A(sup 2)Pi(sub I) and B(sup 2)Sum(sup +) electronically excited states followed by cascade to ro-vibrational levels of X(sup 2)Sum(sup +), and direct solar infrared pumping of ro-vibrational levels in the X(sup 2)Sum(sup +) state. The model uses advanced solar spectra acquired at high spectral resolution at the relevant infrared and optical wavelengths and considers the heliocentric radial velocity of the comet (the Swings effect) when assessing the exciting solar flux for a given transition. We present model predictions for the variation of fluorescence rates with rotational temperature and heliocentric radial velocity. Furthermore, we test our fluorescence model by comparing predicted and measured line-by-line intensities for X(sup 2)Sum(sup +) (1-0) in comet C/2014 Q2 (Lovejoy), thereby identifying multiple emission lines observed at IR wavelengths.

  4. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA

    International Nuclear Information System (INIS)

    Jiang Shan; Zhang Yong; Lim, Kian Meng; Sim, Eugene K W; Ye Lei

    2009-01-01

    Near-infrared (NIR)-to-visible upconversion fluorescent nanoparticles were synthesized and used for imaging and targeted delivery of small interfering RNA (siRNA) to cancer cells. Silica-coated NaYF 4 upconversion nanoparticles (UCNs) co-doped with lanthanide ions (Yb/Er) were synthesized. Folic acid and anti-Her2 antibody conjugated UCNs were used to fluorescently label the folate receptors of HT-29 cells and Her2 receptors of SK-BR-3 cells, respectively. The intracellular uptake of the folic acid and antibody conjugated UCNs was visualized using a confocal fluorescence microscope equipped with an NIR laser. siRNA was attached to anti-Her2 antibody conjugated UCNs and the delivery of these nanoparticles to SK-BR-3 cells was studied. Meanwhile, a luciferase assay was established to confirm the gene silencing effect of siRNA. Upconversion nanoparticles can serve as a fluorescent probe and delivery system for simultaneous imaging and delivery of biological molecules.

  5. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA

    Science.gov (United States)

    Jiang, Shan; Zhang, Yong; Lim, Kian Meng; Sim, Eugene K. W.; Ye, Lei

    2009-04-01

    Near-infrared (NIR)-to-visible upconversion fluorescent nanoparticles were synthesized and used for imaging and targeted delivery of small interfering RNA (siRNA) to cancer cells. Silica-coated NaYF4 upconversion nanoparticles (UCNs) co-doped with lanthanide ions (Yb/Er) were synthesized. Folic acid and anti-Her2 antibody conjugated UCNs were used to fluorescently label the folate receptors of HT-29 cells and Her2 receptors of SK-BR-3 cells, respectively. The intracellular uptake of the folic acid and antibody conjugated UCNs was visualized using a confocal fluorescence microscope equipped with an NIR laser. siRNA was attached to anti-Her2 antibody conjugated UCNs and the delivery of these nanoparticles to SK-BR-3 cells was studied. Meanwhile, a luciferase assay was established to confirm the gene silencing effect of siRNA. Upconversion nanoparticles can serve as a fluorescent probe and delivery system for simultaneous imaging and delivery of biological molecules.

  6. Phenylboronic acid functionalized reduced graphene oxide based fluorescence nano sensor for glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Basiruddin, SK; Swain, Sarat K., E-mail: swainsk2@yahoo.co.in

    2016-01-01

    Reduced graphene has emerged as promising tools for detection based application of biomolecules as it has high surface area with strong fluorescence quenching property. We have used the concept of fluorescent quenching property of reduced graphene oxide to the fluorescent probes which are close vicinity of its surface. In present work, we have synthesized fluorescent based nano-sensor consist of phenylboronic acid functionalized reduced graphene oxide (rGO–PBA) and di-ol modified fluorescent probe for detection of biologically important glucose molecules. This fluorescent graphene based nano-probe has been characterized by high resolution transmission electron microscope (HRTEM), Atomic force microscope (AFM), UV–visible, Photo-luminescence (PL) and Fourier transformed infrared (FT-IR) spectroscopy. Finally, using this PBA functionalized reduced GO based nano-sensor, we were able to detect glucose molecule in the range of 2 mg/mL to 75 mg/mL in aqueous solution of pH 7.4. - Highlights: • Easy and simple synthesis of PBA functionalized reduced GO based nano probe. • PBA functionalized reduced GO graphene based nano-probes are characterized. • PBA functionalized reduced GO nano probe is used to detect glucose molecules. • It is very cost-effective and enzyme-free detection of glucose in solution.

  7. Quantitative analysis of phosphosilicate glass films on silicon wafers for calibration of x-ray fluorescence spectrometry standards

    International Nuclear Information System (INIS)

    Weissman, S.H.

    1983-01-01

    The phosphorus and silicon contents of phosphosilicate glass films deposited by chemical vapor deposition (CVD) on silicon wafers were determined. These films were prepared for use as x-ray fluorescence (XRF) spectrometry standards. The thin films were removed from the wafer by etching with dilute hydrofluoric acid, and the P and Si concentrations in solution were determined by inductively coupled plasma atomic emission spectroscopy (ICP). The calculated phosphorus concentration ranged from 2.2 to 12 wt %, with an uncertainty of 2.73 to 10.1 relative percent. Variation between the calculated weight loss (summation of P 2 O 5 and SiO 2 amounts as determined by ICP) and the measured weight loss (determined gravimetrically) averaged 4.9%. Results from the ICP method, Fourier transform-infrared spectroscopy (FT-IR), dispersive infrared spectroscopy, electron microprobe, and x-ray fluorescence spectroscopy for the same samples are compared

  8. Methotrexate-Induced Accumulation of Fluorescent Annexin V in Collagen-Induced Arthritis

    Directory of Open Access Journals (Sweden)

    Andreas Wunder

    2005-01-01

    Full Text Available We examined the accumulation of Cy5.5-labeled annexin V in the paws of mice with and without collagen-induced arthritis, with and without methotrexate (MTX treatment, by near-infrared fluorescence imaging. Fluorescence reflectance imaging (FRI of paws was performed 48 hr after MTX injection and at 10 min and 3 hr after the injection of Cy5.5-annexin V (1 nmol dye per mouse. With arthritic paws, MTX treatment caused a 7-fold increase in fluorescence intensity compared with the paws of untreated mice and a 4-fold increase compared to nonarthritic paws of MTX-treated mice (p < .001 each. Tissue samples of paws were examined histologically for Cy5.5 fluorescence and by TUNEL staining for apoptosis. Cy5.5-annexin V was seen in the hyperplastic synovia of MTX-treated mice, and TUNEL staining for apoptosis showed apoptotic cells in the hyperplastic synovia. Monitoring the uptake of Cy5.5-annexin V in arthritic paws by FRI provided a method of assessing a response to MTX, a response that was readily quantitated with simple instrumentation and that occurred before conventional measurements of treatment response.

  9. Fluorescent bovine serum albumin interacting with the antitussive quencher dextromethorphan: a spectroscopic insight.

    Science.gov (United States)

    Durgannavar, Amar K; Patgar, Manjanath B; Nandibewoor, Sharanappa T; Chimatadar, Shivamurti A

    2016-05-01

    The interaction of dextromethorphan hydrobromide (DXM) with bovine serum albumin (BSA) is studied by using fluorescence spectra, UV-vis absorption, synchronous fluorescence spectra (SFS), 3D fluorescence spectra, Fourier transform infrared (FTIR) spectroscopy and circular dichroism under simulated physiological conditions. DXM effectively quenched the intrinsic fluorescence of BSA. Values of the binding constant, K(A), are 7.159 × 10(3), 9.398 × 10(3) and 16.101 × 10(3)  L/mol; the number of binding sites, n, and the corresponding thermodynamic parameters ΔG°, ΔH° and ΔS° between DXM and BSA were calculated at different temperatures. The interaction between DXM and BSA occurs through dynamic quenching and the effect of DXM on the conformation of BSA was analyzed using SFS. The average binding distance, r, between the donor (BSA) and acceptor (DXM) was determined based on Förster's theory. The results of fluorescence spectra, UV-vis absorption spectra and SFS show that the secondary structure of the protein has been changed in the presence of DXM. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Identification of copper-based green pigments in Jaume Huguet's Gothic altarpieces by Fourier transform infrared microspectroscopy and synchrotron radiation X-ray diffraction.

    Science.gov (United States)

    Salvadó, N; Pradell, T; Pantos, E; Papiz, M Z; Molera, J; Seco, M; Vendrell-Saz, M

    2002-07-01

    The scientific investigation of ancient paintings gives a unique insight into ancient painting techniques and their evolution through time and geographic location. This study deals with the identification of the green pigments used by one of the most important Catalan masters in Gothic times, Jaume Huguet. Other pigments and materials have also been characterized by means of conventional techniques such as optical microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. Synchrotron radiation X-ray diffraction has been used to produce maps of phases at a spatial resolution of 100 microm across chromatic layers.

  11. Near-Infrared Optical Imaging of Integrin αvβ3 in Human Tumor Xenografts

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2004-10-01

    Full Text Available In vivo optical imaging is potentially useful for evaluating the presence of tumor markers that are targets of molecular medicine. Here we report the synthesis and characterization of integrin αvβ3-targeted peptide cyclo(Lys–Arg–Gly–Asp–Phe [c(KRGDf] labeled with fluorescence dyes with wavelength spanning from the visible/near infrared (Cy5.5 to the true near infrared (IRDye800 for optical imaging. In vitro, the peptide–dye conjugates bound specifically to tumor cells expressing αvβ3. When administered intravenously into mice at a dose of 6 nmol/mouse, the conjugates accumulated in tumors expressing αvβ3. The tumor-to-background ratios for human KS1767 Kaposi's sarcoma in mice injected with Cy5.5–c(KRGDf and Cy5.5 were 5.5 and 1.5, respectively. Preinjection of c(KRGDf blocked the uptake of Cy5.5–c(KRGDf in tumors by 89%. In αvβ3-positive M21 and αvβ3-negative M21-L human melanoma, fluorescence intensity in the tumor of mice injected with IRDye800–c(KRGDf was 2.3 and 1.3 times that in normal tissue, respectively. Dynamic imaging revealed that Cy5.5–c(KRGDf was rapidly taken up by KS1767 tumor immediately after bolus injection. The rate of its uptake in the tumor was reduced by preinjection of c(KRGDf in an interval time-dependent manner. Our data suggest that near-infrared fluorescence imaging may be applied to the detection of tumors expressing integrin αvβ3 and to the assessment of the optimal biological dose and schedule of targeted therapies.

  12. Infrared images of reflection nebulae and Orion's bar: Fluorescent molecular hydrogen and the 3.3 micron feature

    International Nuclear Information System (INIS)

    Burton, M.G.; Moorhouse, A.; Brand, P.W.J.L.; Roche, P.F.; Geballe, T.R.

    1989-01-01

    Images were obtained of the (fluorescent) molecular hydrogen 1-0 S(1) line, and of the 3.3 micron emission feature, in Orion's Bar and three reflection nebulae. The emission from these species appears to come from the same spatial locations in all sources observed. This suggests that the 3.3 micron feature is excited by the same energetic UV-photons which cause the molecular hydrogen to fluoresce

  13. Nanostructures Derived from Starch and Chitosan for Fluorescence Bio-Imaging

    Science.gov (United States)

    Zu, Yinxue; Bi, Jingran; Yan, Huiping; Wang, Haitao; Song, Yukun; Zhu, Bei-Wei; Tan, Mingqian

    2016-01-01

    Fluorescent nanostructures (NSs) derived from polysaccharides have drawn great attention as novel fluorescent probes for potential bio-imaging applications. Herein, we reported a facile alkali-assisted hydrothermal method to fabricate polysaccharide NSs using starch and chitosan as raw materials. Transmission electron microscopy (TEM) demonstrated that the average particle sizes are 14 nm and 75 nm for starch and chitosan NSs, respectively. Fourier transform infrared (FT-IR) spectroscopy analysis showed that there are a large number of hydroxyl or amino groups on the surface of these polysaccharide-based NSs. Strong fluorescence with an excitation-dependent emission behaviour was observed under ultraviolet excitation. Interestingly, the photostability of the NSs was found to be superior to fluorescein and rhodamine B. The quantum yield of starch NSs could reach 11.12% under the excitation of 360 nm. The oxidative metal ions including Cu(II), Hg(II)and Fe(III) exhibited a quench effect on the fluorescence intensity of the prepared NSs. Both of the two kinds of the multicoloured NSs showed a maximum fluorescence intensity at pH 7, while the fluorescence intensity decreased dramatically when they were put in an either acidic or basic environment (at pH 3 or 11). The cytotoxicity study of starch NSs showed that low cell cytotoxicity and 80% viability was found after 24 h incubation, when their concentration was less than 10 mg/mL. The study also showed the possibility of using the multicoloured starch NSs for mouse melanoma cells and guppy fish imaging. PMID:28335258

  14. Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells.

    Science.gov (United States)

    Slegerova, Jitka; Hajek, Miroslav; Rehor, Ivan; Sedlak, Frantisek; Stursa, Jan; Hruby, Martin; Cigler, Petr

    2015-01-14

    Core-shell nanoparticles based on fluorescent nanodiamonds coated with a biocompatible N-(2-hydroxypropyl)methacrylamide copolymer shell were developed for background-free near-infrared imaging of cancer cells. The particles showed excellent colloidal stability in buffers and culture media. After conjugation with a cyclic RGD peptide they selectively targeted integrin αvβ3 receptors on glioblastoma cells with high internalization efficacy.

  15. Characterization of swiftlet edible bird nest, a mucin glycoprotein, and its adulterants by Raman microspectroscopy.

    Science.gov (United States)

    Shim, Eric K S; Chandra, Gleen F; Pedireddy, S; Lee, Soo-Y

    2016-09-01

    Edible bird's nest (EBN) is made from the glutinous salivary secretion of highly concentrated mucin glycoprotein by swiftlets (genus Aerodramus or Collocalia ) native to the Indo-Pacific region. The unique Raman spectrum of EBN has vibrational lines that can be assigned to peptides and saccharides in the glycoprotein, and it can be used to screen for adulteration. The common edible adulterants classified into two types. Type I adulterants, such as fish bladder, pork skin, karaya gum, coralline seaweed, agar strips, and tremella fungus, were solids which adhered externally on the surface of the EBN cement. They can usually be detected with a microscope based on differences in the surface structure. Type II adulterants were water soluble substances such as saccharides (e.g., glucose, sucrose), polypeptides (e.g., hydrolyzed collagen) and salts (e.g. monosodium glutamate) which can be readily soaked up by the EBN hydrogel when moist and adsorbed internally in the EBN cement matrix forming a composite upon drying, making them difficult to detect visually. The present study showed that Raman microspectroscopy offers a rapid, non-invasive, and label free technique to detect both Type I and II adulterants in EBN.

  16. Combining mid infrared and total X-ray fluorescence spectroscopy for prediction of soil properties

    Science.gov (United States)

    Towett, Erick; Shepherd, Keith; Sila, Andrew; Aynekulu, Ermias; Cadisch, Georg

    2015-04-01

    Mid-infrared diffuse reflectance spectroscopy (MIR) can predict many soil properties but extractable nutrients are often predicted poorly. We evaluated the potential of MIR and total elemental analysis using total X-ray fluorescence spectroscopy (TXRF), both individually and combined, to predict results of conventional soil tests. Total multi-elemental analysis provides a fingerprint of soil mineralogy and could predict some soil properties and help improve MIR predictions. A set of 700 georeferenced soil samples associated with the Africa Soil Information Service (AfSIS) (www.africasoils.net) from 44 stratified randomly-located 100-km2 sentinel sites distributed across sub-Saharan Africa were analysed for physico-chemical composition using conventional reference methods, and compared to MIR and TXRF spectra using the Random Forests regression algorithm and an internal out-of-bag validation. MIR spectra resulted in good prediction models (R2 >0.80) for organic C and total N, Mehlich-3 Ca and Al, and pH. To test the combined spectroscopic approach, TXRF element concentration data was included as a property predictor along with the first derivative of MIR spectral data using the RF algorithm. Including TXRF did not improve prediction of these properties. TXRF was poorer (R2 0.86) as these elements are not directly determined with TXRF, however the variance explained is still quite high and may be attributable to TXRF signatures relating to mineralogy correlated with protection of soil organic matter. TXRF model for Mehlich-3 Al had excellent prediction capability explaining 81% of the observed variation in extractable Al content and was comparable to that of MIR (R2 = 0.86). However, models for pH and Mehlich-3 exchangeable Ca exhibited R2 values of 0.74 and 0.79 respectively and thus had moderate predictive accuracy, compared to MIR alone with R2 values of 0.82 and 0.84 respectively. Both MIR and TXRF methods predicted soil properties that relate to nutrient

  17. In-situ spectroscopic investigation of transmissible spongiform encephalopathies: application of Fourier-transform infrared spectroscopy to a scrapie-hamster model

    Science.gov (United States)

    Kneipp, Janina; Lasch, Peter; Beekes, Michael; Naumann, Dieter

    2002-03-01

    Transmissible spongiform encephalopathies (TSE), such as BSE in cattle, scrapie in sheep and goats, and Creutzfeldt-Jakob disease in man are a group of fatal infectious diseases of the central nervous system that are far from being fully understood. Presuming the pathological changes to originate from small disease-specific compositional and structural modifications at the molecular level, Fourier-transform infrared (FTIR) spectroscopy can be used to achieve insight into biochemical parameters underlying pathogenesis. We have developed an FTIR microspectroscopy-based strategy which, as a combination of image reconstruction and multivariate pattern recognition methods, permitted the comparison of identical substructures in the cerebellum of healthy and TSE-infected Syrian hamsters in the terminal stage of the disease. Here we present FTIR data about the pathological changes of scrapie-infected and normal tissue of the gray matter structures stratum granulosum and stratum moleculare. IR spectroscopy was also applied to tissue pieces of the medulla oblongata of infected and control Syrian hamsters. Mapping data were analyzed with cluster analysis and imaging methods. We found variations in the spectra of the infected tissue, which are due to changes in carbohydrates, nucleic acids, phospholipids, and proteins.

  18. Analysis of energy transfer process based emission spectra of erbium doped germanate glasses for mid-infrared laser materials

    International Nuclear Information System (INIS)

    Cai, Muzhi; Wei, Tao; Zhou, Beier; Tian, Ying; Zhou, Jiajia; Xu, Shiqing; Zhang, Junjie

    2015-01-01

    Highlights: • Er 3+ doped germanate glass with good thermal stability were prepared. • Ionic boding nature was proved by bonding parameter calculation. • Mid-infrared fluorescent behaviors and energy transfer were investigated. • Rate equation and Dexter’s theory were utilized to elucidate 2.7 μm emission. - Abstract: Er 3+ activated germanate glass with good thermal stability was prepared. Bonding parameters have been calculated and the nature of ionic bonding of the germanate glass has been determined. Mid-infrared fluorescence was observed and corresponding radiative properties were investigated. For Er 3+ : 4 I 11/2 → 4 I 13/2 transition, high spontaneous radiative transition probability (30.09 s −1 ), large emission cross section ((14.84 ± 0.10) × 10 −21 cm 2 ) and superior gain performance were obtained from the prepared glass. Besides, energy transfer processes concerning the 2.7 μm emission were also discussed in detail. According to simplified rate equation and Dexter’s theory, energy transfer microscopic parameters were computed to elucidate observed 2.7 μm emissions. Results demonstrate that the prepared germanate glass possessing excellent spectroscopic properties might be an attractive candidate for mid-infrared laser or amplifier

  19. Modification of fluorescence and optical properties of Rhodamine B dye doped PVA/Chitosan polymer blend films

    Science.gov (United States)

    Padmakumari, R.; Ravindrachary, V.; Mahantesha, B. K.; Sagar, Rohan N.; Sahanakumari, R.; Bhajantri, R. F.

    2018-05-01

    Pure and Rhodamine B doped Poly (vinyl alcohol)/Chitosan composite films are prepared using solution casting method. Fourier transforms infrared spectra (FTIR), Ultraviolet-Visible (UV-Vis), fluorescence studies were used to characterize the prepared polymer films. The FT-IR results show that the appearance of new peaks along with shift in peak positions indicates the interaction of Rhodamine B with PVA-CS blend. Optical absorption edge, band gap and activation energy were determined from UV-Visible studies. The optical absorption edge increases, band gap decreases and activation energy increases with dopant concentration respectively. The corresponding emission spectra were studied using fluorescence spectroscopy. From the fluorescence study the quenching phenomena are observed in emission wavelength range of 607nm-613nm upon excitation with absorption maxima 443nm.

  20. The Role of Osteoblast-Derived Cytokines in Bone Metastatic Breast Cancer

    Science.gov (United States)

    2009-01-01

    transform infrared microspectroscopy [34]. The MC3T3-E1 cultures, however, contained material of an unknown origin that represented dystrophic...x- ray densitometer (GE Medical Systems, Fitchburg, WI) and scanned via a Dual Energy X- ray Absorptiometry (DEXA) scan. Company-provided software...including osteoporosis, rheumatoid arthritis , and skeletal metastases, resulting in osteoclast activity in excess of bone deposition by osteoblasts with

  1. Dual fluorescent molecular substrates selectively report the activation, sustainability and reversibility of cellular PKB/Akt activity.

    Science.gov (United States)

    Shen, Duanwen; Bai, Mingfeng; Tang, Rui; Xu, Baogang; Ju, Xiaoming; Pestell, Richard G; Achilefu, Samuel

    2013-01-01

    Using a newly developed near-infrared (NIR) dye that fluoresces at two different wavelengths (dichromic fluorescence, DCF), we discovered a new fluorescent substrate for Akt, also known as protein kinase B, and a method to quantitatively report this enzyme's activity in real time. Upon insulin activation of cellular Akt, the enzyme multi-phosphorylated a single serine residue of a diserine DCF substrate in a time-dependent manner, culminating in monophospho- to triphospho-serine products. The NIR DCF probe was highly selective for the Akt1 isoform, which was demonstrated using Akt1 knockout cells derived from MMTV-ErbB2 transgenic mice. The DCF mechanism provides unparalleled potential to assess the stimulation, sustainability, and reversibility of Akt activation longitudinally. Importantly, NIR fluorescence provides a pathway to translate findings from cells to living organisms, a condition that could eventually facilitate the use of these probes in humans.

  2. Raman spectroscopic analysis of gunshot residue offering great potential for caliber differentiation.

    Science.gov (United States)

    Bueno, Justin; Sikirzhytski, Vitali; Lednev, Igor K

    2012-05-15

    Near-infrared (NIR) Raman microspectroscopy combined with advanced statistics was used to differentiate gunshot residue (GSR) particles originating from different caliber ammunition. The firearm discharge process is analogous to a complex chemical reaction. The reagents of this process are represented by the chemical composition of the ammunition, firearm, and cartridge case. The specific firearm parameters determine the conditions of the reaction and thus the subsequent product, GSR. We found that Raman spectra collected from these products are characteristic for different caliber ammunition. GSR particles from 9 mm and 0.38 caliber ammunition, collected under identical discharge conditions, were used to demonstrate the capability of confocal Raman microspectroscopy for the discrimination and identification of GSR particles. The caliber differentiation algorithm is based on support vector machines (SVM) and partial least squares (PLS) discriminant analyses, validated by a leave-one-out cross-validation method. This study demonstrates for the first time that NIR Raman microspectroscopy has the potential for the reagentless differentiation of GSR based upon forensically relevant parameters, such as caliber size. When fully developed, this method should have a significant impact on the efficiency of crime scene investigations.

  3. Infrared spectroscopy of fluid lipid bilayers.

    Science.gov (United States)

    Hull, Marshall C; Cambrea, Lee R; Hovis, Jennifer S

    2005-09-15

    Infrared spectroscopy is a powerful technique for examining lipid bilayers; however, it says little about the fluidity of the bilayer-a key physical aspect. It is shown here that it is possible to both acquire spectroscopic data of supported lipid bilayer samples and make measurements of the membrane fluidity. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FT-IR) is used to obtain the spectroscopic information and fluorescence recovery after photobleaching (FRAP) is used to determine the fluidity of the samples. In the infrared spectra of lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, the following major peaks were observed; nu(as)(CH3) 2954 cm(-1), nu(s)(CH3) 2870 cm(-1), nu(as)(CH2) 2924 cm(-1), nu(s)(CH2) 2852 cm(-1), nu(C=O) 1734 cm(-1), delta(CH2) 1463-1473 cm(-1), nu(as)(PO2-) 1226 cm(-1), nu(s)(PO2-) 1084 cm(-1), and nu(as)(N+(CH3)3) 973 cm(-1). The diffusion coefficient of the same lipid bilayer was measured to be 3.5 +/- 0.5 micom(2)/s with visual recovery also noted through use of epifluorescence microscopy. FRAP and visual data confirm the formation of a uniform, mobile supported lipid bilayer. The combination of ATR-FT-IR and FRAP provides complementary data giving a more complete picture of fully hydrated model membrane systems.

  4. Frequency domain fluorescent diffuse tomography of small animals with DsRed2-expressed tumors

    Science.gov (United States)

    Turchin, Ilya V.; Savitsky, Alexander P.; Kamensky, Vladislav A.; Plehanov, Vladimir I.; Orlova, Anna G.; Sergeeva, Ekaterina A.; Kleshnin, Mikhail S.; Shirmanova, Marina V.

    2006-02-01

    The main applications of fluorescent proteins (FPs) are monitoring tumor growth, angiogenesis, metastases formation and effects of new classes of drugs. Different types of tomography allow fluorescence imaging of tumors located deep in human or animal tissue. These techniques were used for investigation of the distribution of near-infrared fluorescent probes, but only a few works are devoted to fluorescence tomography in visible light. In this work, preliminary results of the frequency domain fluorescent diffuse tomography (FD FDT) method in application to DsRed2 protein as a fluorescent agent are presented. For the first step of our experiments we utilized second harmonic generation of Nd:YAG laser (532 nm) modulated by low frequency (1 kHz) in the experimental setup. The transilluminative planar configuration was used in the setup. A series of model experiments has been conducted and show good agreement between theoretical and experimental fluorescence intensity. Post mortem experiments with capsules containing DsRed2 and scattering solution introduced into esophagus of rats to simulate tumor formation have been conducted. The results of these experiments show that sensitivity of the setup is sufficient to detect DsRed2 in concentrations similar to those in FP-expressed tumor, but the contrast is not enough high to separate fluorescence of DsRed2 and surrounding tissues. The setup can be significantly improved by utilizing high-frequency modulation (110 MHz using acousto-optical modulator) of the excitation light and precise phase measurements due to difference in fluorescence life-time of FPs and surrounding tissues. An algorithm of processing a fluorescent image based on calculating zero of maximum curvature was employed for detection of fluorescent inclusions boundaries in the image.

  5. Fluorescence guided lymph node biopsy in large animals using direct image projection device

    Science.gov (United States)

    Ringhausen, Elizabeth; Wang, Tylon; Pitts, Jonathan; Akers, Walter J.

    2016-03-01

    The use of fluorescence imaging for aiding oncologic surgery is a fast growing field in biomedical imaging, revolutionizing open and minimally invasive surgery practices. We have designed, constructed, and tested a system for fluorescence image acquisition and direct display on the surgical field for fluorescence guided surgery. The system uses a near-infrared sensitive CMOS camera for image acquisition, a near-infra LED light source for excitation, and DLP digital projector for projection of fluorescence image data onto the operating field in real time. Instrument control was implemented in Matlab for image capture, processing of acquired data and alignment of image parameters with the projected pattern. Accuracy of alignment was evaluated statistically to demonstrate sensitivity to small objects and alignment throughout the imaging field. After verification of accurate alignment, feasibility for clinical application was demonstrated in large animal models of sentinel lymph node biopsy. Indocyanine green was injected subcutaneously in Yorkshire pigs at various locations to model sentinel lymph node biopsy in gynecologic cancers, head and neck cancer, and melanoma. Fluorescence was detected by the camera system during operations and projected onto the imaging field, accurately identifying tissues containing the fluorescent tracer at up to 15 frames per second. Fluorescence information was projected as binary green regions after thresholding and denoising raw intensity data. Promising results with this initial clinical scale prototype provided encouraging results for the feasibility of optical projection of acquired luminescence during open oncologic surgeries.

  6. Phase transformations in a human tooth tissue at the initial stage of caries.

    Directory of Open Access Journals (Sweden)

    Pavel Seredin

    Full Text Available The aim of the paper is to study phase transformations in solid tissues of the human teeth during the development of fissure caries by Raman and fluorescence microspectroscopy. The study of the areas with fissure caries confirmed the assumption of the formation of a weak interaction between phosphate apatite enamel and organic acids (products of microorganisms. The experimental results obtained with by Raman microspectroscopy showed the formation of dicalcium phosphate dihydrate - CaHPO4-2H2O in the area of mural demineralization of carious fissure. A comparative analysis of structural and spectroscopic data for the intact and carious enamel shows that emergence of a more soluble phase - carbonate-substituted hydroxyapatite - is typical for the initial stage of caries. It is shown that microareas of dental hard tissues in the carious fissure due to an emerging misorientation of apatite crystals have a higher fluorescence yield than the area of the intact enamel. These areas can be easily detected even prior to a deep demineralization (white spot stage for the case of irreversibly changed organomineral complex and intensive removal of the mineral component.

  7. Phase Transformations in a Human Tooth Tissue at the Initial Stage of Caries

    Science.gov (United States)

    Prutskij, Tatiana; Ippolitov, Yury

    2015-01-01

    The aim of the paper is to study phase transformations in solid tissues of the human teeth during the development of fissure caries by Raman and fluorescence microspectroscopy. The study of the areas with fissure caries confirmed the assumption of the formation of a weak interaction between phosphate apatite enamel and organic acids (products of microorganisms). The experimental results obtained with by Raman microspectroscopy showed the formation of dicalcium phosphate dihydrate - CaHPO4-2H2O in the area of mural demineralization of carious fissure. A comparative analysis of structural and spectroscopic data for the intact and carious enamel shows that emergence of a more soluble phase - carbonate-substituted hydroxyapatite - is typical for the initial stage of caries. It is shown that microareas of dental hard tissues in the carious fissure due to an emerging misorientation of apatite crystals have a higher fluorescence yield than the area of the intact enamel. These areas can be easily detected even prior to a deep demineralization (white spot stage) for the case of irreversibly changed organomineral complex and intensive removal of the mineral component. PMID:25901743

  8. Near-infrared optical imaging of nucleic acid nanocarriers in vivo.

    Science.gov (United States)

    Rome, Claire; Gravier, Julien; Morille, Marie; Divita, Gilles; Bolcato-Bellemin, Anne-Laure; Josserand, Véronique; Coll, Jean-Luc

    2013-01-01

    Noninvasive, real-time optical imaging methods are well suited to follow the in vivo distribution of nucleic acid nanocarriers, their dissociation, and the resulting gene expression or inhibition. Indeed, most small animal imaging devices perform bioluminescence and fluorescence measurements without moving the animal, allowing a simple, rapid, and cost-effective method of investigation of several parameters at a time, in longitudinal experiments that can last for days or weeks.Here we help the reader in choosing adapted near-infrared (NIR) fluorophores or pairs of fluorophores for Förster resonance energy transfer assays, imaging of reporter genes, as well as nanocarriers for in vivo gene and siRNA delivery. In addition, we present the labeling methods of these macromolecules and of their payload and the protocols to detect them using bioluminescence and NIR fluorescence imaging in mice.

  9. Intravascular near-infrared fluorescence molecular imaging of atherosclerosis: toward coronary arterial visualization of biologically high-risk plaques

    Science.gov (United States)

    Calfon, Marcella A.; Vinegoni, Claudio; Ntziachristos, Vasilis; Jaffer, Farouc A.

    2010-01-01

    New imaging methods are urgently needed to identify high-risk atherosclerotic lesions prior to the onset of myocardial infarction, stroke, and ischemic limbs. Molecular imaging offers a new approach to visualize key biological features that characterize high-risk plaques associated with cardiovascular events. While substantial progress has been realized in clinical molecular imaging of plaques in larger arterial vessels (carotid, aorta, iliac), there remains a compelling, unmet need to develop molecular imaging strategies targeted to high-risk plaques in human coronary arteries. We present recent developments in intravascular near-IR fluorescence catheter-based strategies for in vivo detection of plaque inflammation in coronary-sized arteries. In particular, the biological, light transmission, imaging agent, and engineering principles that underlie a new intravascular near-IR fluorescence sensing method are discussed. Intravascular near-IR fluorescence catheters appear highly translatable to the cardiac catheterization laboratory, and thus may offer a new in vivo method to detect high-risk coronary plaques and to assess novel atherosclerosis biologics.

  10. Mineralogical composition of the meteorite El Pozo (Mexico): a Raman, infrared and XRD study.

    Science.gov (United States)

    Ostrooumov, Mikhail; Hernández-Bernal, Maria del Sol

    2011-12-01

    The Raman (RMP), infrared (IR) and XRD analysis have been applied to the examination of mineralogical composition of El Pozo meteorite (an ordinary chondrite L5 type; village Valle of Allende, founded in State of Chihuahua, Mexico: 26°56'N and 105°24'W, 1998). RMP measurements in the range of 100-3500 cm(-1) revealed principal characteristic bands of the major minerals: olivine, two polymorph modifications of pyroxene (OPx and CPx) and plagioclase. Some bands of the minor minerals (hematite and goethite) were also identified. All these minerals were clearly distinguished using IR and XRD techniques. XRD technique has shown the presence of some metallic phases such as kamacite and taenite as well as troilite and chromite. These minerals do not have characteristic Raman spectra because Fe-Ni metals have no active modes for Raman spectroscopy and troilite is a weak Raman scatterer. Raman mapping microspectroscopy was a key part in the investigation of El Pozo meteorite's spatial distribution of the main minerals because these samples are structurally and chemically complex and heterogeneous. The mineral mapping by Raman spectroscopy has provided information for a certain spatial region on which a spatial distribution coexists of the three typical mineral assemblages: olivine; olivine+orthopyroxene; and orthopyroxene. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Near-infrared intraoperative imaging during resection of an anterior mediastinal soft tissue sarcoma.

    Science.gov (United States)

    Predina, Jarrod D; Newton, Andrew D; Desphande, Charuhas; Singhal, Sunil

    2018-01-01

    Sarcomas are rare malignancies that are generally treated with multimodal therapy protocols incorporating complete local resection, chemotherapy and radiation. Unfortunately, even with this aggressive approach, local recurrences are common. Near-infrared intraoperative imaging is a novel technology that provides real-time visual feedback that can improve identification of disease during resection. The presented study describes utilization of a near-infrared agent (indocyanine green) during resection of an anterior mediastinal sarcoma. Real-time fluorescent feedback provided visual information that helped the surgeon during tumor localization, margin assessment and dissection from mediastinal structures. This rapidly evolving technology may prove useful in patients with primary sarcomas arising from other locations or with other mediastinal neoplasms.

  12. Fluorescence Imaging Assisted Photodynamic Therapy Using Photosensitizer-Linked Gold Quantum Clusters.

    Science.gov (United States)

    Nair, Lakshmi V; Nazeer, Shaiju S; Jayasree, Ramapurath S; Ajayaghosh, Ayyappanpillai

    2015-06-23

    Fluorescence imaging assisted photodynamic therapy (PDT) is a viable two-in-one clinical tool for cancer treatment and follow-up. While the surface plasmon effect of gold nanorods and nanoparticles has been effective for cancer therapy, their emission properties when compared to gold nanoclusters are weak for fluorescence imaging guided PDT. In order to address the above issues, we have synthesized a near-infrared-emitting gold quantum cluster capped with lipoic acid (L-AuC with (Au)18(L)14) based nanoplatform with excellent tumor reduction property by incorporating a tumor-targeting agent (folic acid) and a photosensitizer (protoporphyrin IX), for selective PDT. The synthesized quantum cluster based photosensitizer PFL-AuC showed 80% triplet quantum yield when compared to that of the photosensitizer alone (63%). PFL-AuC having 60 μg (0.136 mM) of protoporphyrin IX was sufficient to kill 50% of the tumor cell population. Effective destruction of tumor cells was evident from the histopathology and fluorescence imaging, which confirm the in vivo PDT efficacy of PFL-AuC.

  13. N-doped carbon dots derived from bovine serum albumin and formic acid with one- and two-photon fluorescence for live cell nuclear imaging.

    Science.gov (United States)

    Tan, Mingqian; Li, Xintong; Wu, Hao; Wang, Beibei; Wu, Jing

    2015-12-01

    Carbon dots with both one- and two-photon fluorescence have drawn great attention for biomedical imaging. Herein, nitrogen-doped carbon dots were facilely developed by one-pot hydrothermal method using bovine serum albumin and formic acid as carbon sources. They are highly water-soluble with strong fluorescence when excited with ultraviolet or near infrared light. The carbon dots have a diameter of ~8.32 nm and can emit strong two-photon induced fluorescence upon excitation at 750 nm with a femtosecond laser. X-ray photoelectron spectrometer analysis revealed that the carbon dots contained three components, C, N and O, corresponding to the peak at 285, 398 and 532 eV, respectively. The Fourier-transform infrared spectroscopy analysis revealed that there are carboxyl and carboxylic groups on the surface, which allowed further linking of functional molecules. pH stability study demonstrated that the carbon dots are able to be used in a wide range of pH values. The fluorescence mechanism is also discussed in this study. Importantly, these carbon dots are biocompatible and highly photostable, which can be directly applied for both one- and two-photon living cell imaging. After proper surface functionalization with TAT peptide, they can be used as fluorescent probes for live cell nuclear-targeted imaging. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Near-infrared Fluorescence Optical Imaging in Early Rheumatoid Arthritis: A Comparison to Magnetic Resonance Imaging and Ultrasonography.

    Science.gov (United States)

    Krohn, Michaela; Ohrndorf, Sarah; Werner, Stephanie G; Schicke, Bernd; Burmester, Gerd-Rüdiger; Hamm, Bernd; Backhaus, Marina; Hermann, Kay-Geert A

    2015-07-01

    Near-infrared fluorescence optical imaging (FOI) is a novel imaging technology in the detection and evaluation of different arthritides. FOI was validated in comparison to magnetic resonance imaging (MRI), greyscale ultrasonography (GSUS), and power Doppler ultrasonography (PDUS) in patients with early rheumatoid arthritis (RA). Hands of 31 patients with early RA were examined by FOI, MRI, and US. In each modality, synovitis of the wrist, metacarpophalangeal joints (MCP) 2-5, and proximal interphalangeal joints (PIP) 2-5 were scored on a 4-point scale (0-3). Sensitivity and specificity of FOI were analyzed in comparison to MRI and US as reference methods, differentiating between 3 phases of FOI enhancement (P1-3). Intraclass correlation coefficients (ICC) were calculated to evaluate the agreement of FOI with MRI and US. A total of 279 joints (31 wrists, 124 MCP and 124 PIP joints) were evaluated. With MRI as the reference method, overall sensitivity/specificity of FOI was 0.81/0.00, 0.49/0.84, and 0.86/0.38 for wrist, MCP, and PIP joints, respectively. Under application of PDUS as reference, sensitivity was even higher, while specificity turned out to be low, except for MCP joints (0.88/0.15, 0.81/0.76, and 1.00/0.27, respectively). P2 appears to be the most sensitive FOI phase, while P1 showed the highest specificity. The best agreement of FOI was shown for PDUS, especially with regard to MCP and PIP joints (ICC of 0.57 and 0.53, respectively), while correlation with MRI was slightly lower. FOI remains an interesting diagnostic tool for patients with early RA, although this study revealed limitations concerning the detection of synovitis. Further research is needed to evaluate its full diagnostic potential in rheumatic diseases.

  15. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-spectral-resolution Near-infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2

    Science.gov (United States)

    Joiner, J.; Gaunter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.

    2013-01-01

    Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 deg × 0.5 deg

  16. Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera

    International Nuclear Information System (INIS)

    Godavarty, Anuradha; Eppstein, Margaret J; Zhang, Chaoyang; Theru, Sangeeta; Thompson, Alan B; Gurfinkel, Michael; Sevick-Muraca, Eva M

    2003-01-01

    A novel image-intensified charge-coupled device (ICCD) imaging system has been developed to perform 3D fluorescence tomographic imaging in the frequency-domain using near-infrared contrast agents. The imager is unique since it (i) employs a large tissue-mimicking phantom, which is shaped and sized to resemble a female breast and part of the extended chest-wall region, and (ii) enables rapid data acquisition in the frequency-domain by using a gain-modulated ICCD camera. Diffusion model predictions are compared to experimental measurements using two different referencing schemes under two different experimental conditions of perfect and imperfect uptake of fluorescent agent into a target. From these experimental measurements, three-dimensional images of fluorescent absorption were reconstructed using a computationally efficient variant of the approximate extended Kalman filter algorithm. The current work represents the first time that 3D fluorescence-enhanced optical tomographic reconstructions have been achieved from experimental measurements of the time-dependent light propagation on a clinically relevant breast-shaped tissue phantom using a gain-modulated ICCD camera

  17. Concept of a selective tumour therapy and its evaluation by near-infrared fluorescence imaging and flat-panel volume computed tomography in mice.

    Science.gov (United States)

    Alves, Frauke; Dullin, Christian; Napp, Joanna; Missbach-Guentner, Jeannine; Jannasch, Katharina; Mathejczyk, Julia; Pardo, Luis A; Stühmer, Walter; Tietze, Lutz-F

    2009-05-01

    Conventional chemotherapy of cancer has its limitations, especially in advanced and disseminated disease and suffers from lack of specificity. This results in a poor therapeutic index and considerable toxicity to normal organs. Therefore, many efforts are made to develop novel therapeutic tools against cancer with the aim of selectively targeting the drug to the tumour site. Drug delivery strategies fundamentally rely on the identification of good-quality biomarkers, allowing unequivocal discrimination between cancer and healthy tissue. At present, antibodies or antibody fragments have clearly proven their value as carrier molecules specific for a tumour-associated molecular marker. This present review draws attention to the use of near-infrared fluorescence (NIRF) imaging to investigate binding specificity and kinetics of carrier molecules such as monoclonal antibodies. In addition, flat-panel volume computed tomography (fpVCT) will be presented to monitor anatomical structures in tumour mouse models over time in a non-invasive manner. Each imaging device sheds light on a different aspect; functional imaging is applied to optimise the dose schedule and the concept of selective tumour therapies, whereas anatomical imaging assesses preclinically the efficacy of novel tumour therapies. Both imaging techniques in combination allow the visualisation of functional information obtained by NIRF imaging within an adequate anatomic framework.

  18. Optical trapping of microalgae at 735-1064 nm: Photodamage assessment

    Czech Academy of Sciences Publication Activity Database

    Pilát, Zdeněk; Ježek, Jan; Šerý, Mojmír; Trtílek, Martin; Nedbal, Ladislav; Zemánek, Pavel

    2013-01-01

    Roč. 121, 5 April (2013), s. 27-31 ISSN 1011-1344 R&D Projects: GA MŠk ED0017/01/01; GA MPO FR-TI1/433; GA MŠk ED1.1.00/02.0073 Institutional support: RVO:68081731 ; RVO:67179843 Keywords : optical trapping * photodamage * microalgae * PAM fluorescence microspectroscopy Subject RIV: BH - Optics, Masers, Lasers; BO - Biophysics (UEK-B) Impact factor: 2.803, year: 2013

  19. Fluorescence brightness and photostability of individual copper (I) oxide nanocubes.

    Science.gov (United States)

    Zohora, Nafisa; Kandjani, Ahmad Esmaielzadeh; Orth, Antony; Brown, Hannah M; Hutchinson, Mark R; Gibson, Brant C

    2017-12-04

    Conventional organic fluorophores lose their ability to fluoresce after repeated exposure to excitation light due to photobleaching. Therefore, research into emerging bright and photostable nanomaterials has become of great interest for a range of applications such as bio-imaging and tracking. Among these emerging fluorophores, metal oxide-based nanomaterials have attracted significant attention as a potential multifunctional material with photocatalytic and angeogenisis abilities in addition to fluorescnce applications. However, most of these applications are highly dependent on size, morphology, and chemo-physical properties of individual particles. In this manuscript, we present a method to study the intrinsic optical characteristics of individual copper (I) oxide (Cu 2 O) nanocubes. When excited at 520 nm using only 11 µW excitation power (1.7 W/cm2), individual nanocubes were observed to emit light with peak wavelengths ~760 nm which is conveniently within the near-infrared 1 (NIR1) biological window where tissue autofluorescence is minimal. Bright and photostable fluorescence was observed with intensities up to 487 K counts/s under constant illumination for at least 2 minutes with a brightness approximately four times higher than the autofluorescence from a fixed cumulus-oocyte complex. With near-IR emission, high fluorescence brightness, and outstanding photostability, Cu 2 O nanocubes are attractive candidates for long-term fluorescent bioimaging applications.

  20. Synthesis, characterization and fluorescence performance of a waterborne polyurethane-based polymeric dye

    Energy Technology Data Exchange (ETDEWEB)

    Xianhai, Hu, E-mail: hxyh@aiai.edu.cn [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); School of Materials and Chemical Engineering, Building Energy Efficiency Research Institute, Anhui University of Architecture, Hefei 230022 (China); Zhang, Xingyuan, E-mail: zxym@ustc.edu.cn [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Liu, Jin [School of Materials and Chemical Engineering, Building Energy Efficiency Research Institute, Anhui University of Architecture, Hefei 230022 (China); Dai, Jiabing [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026 (China)

    2013-10-15

    A novel anionic waterborne polyurethane-based fluorescent dye WPU-DV26 was synthesized by incorporating the molecular structure of disperse violet 26 (DV26) into the polyurethane chain. The structure of WPU-DV26 was confirmed by means of Fourier transform infrared spectroscopy and UV–vis absorption analysis. Comparing to the UV–vis spectrum of DV26, WPU-DV26 showed a hypsochromic shift from the absorption maxima of 518, 558, 609 nm to 510, 548, 586 nm, respectively. WPU-DV26 can form stable latex in water. The number average molecular weight and its distribution index, and average latex particle size for WPU-DV26 were determined to be 2.33×10{sup 4}, 1.36 and 80 nm, respectively. The improved thermal stability of WPU-DV26 can be attributed to the embedded anthraquinone unit of DV26. It was found that both the intensity and stability of the fluorescence of WPU-DV26 latex were improved significantly compared with those of DV26. -- Highlights: ► A waterborne polyurethane-based polymeric dye was synthesized. ► The fluorescence intensity of WPU-DV26 emulsion was enhanced greatly compared with that of DV26. ► The fluorescence stability of WPU-DV26 emulsion was fine not only for long term storage but also for fluorescence quencher.

  1. Targeting pancreatic cancer with magneto-fluorescent theranostic gold nanoshells.

    Science.gov (United States)

    Chen, Wenxue; Ayala-Orozco, Ciceron; Biswal, Nrusingh C; Perez-Torres, Carlos; Bartels, Marc; Bardhan, Rizia; Stinnet, Gary; Liu, Xian-De; Ji, Baoan; Deorukhkar, Amit; Brown, Lisa V; Guha, Sushovan; Pautler, Robia G; Krishnan, Sunil; Halas, Naomi J; Joshi, Amit

    2014-01-01

    We report a magneto-fluorescent theranostic nanocomplex targeted to neutrophil gelatinase-associated lipocalin (NGAL) for imaging and therapy of pancreatic cancer. Gold nanoshells resonant at 810 nm were encapsulated in silica epilayers doped with iron oxide and the near-infrared (NIR) dye indocyanine green, resulting in theranostic gold nanoshells (TGNS), which were subsequently conjugated with antibodies targeting NGAL in AsPC-1-derived xenografts in nude mice. Anti-NGAL-conjugated TGNS specifically targeted pancreatic cancer cells in vitro and in vivo providing contrast for both NIR fluorescence and T2-weighted MRI with higher tumor contrast than can be obtained using long-circulating, but nontargeted, PEGylated nanoparticles. The nanocomplexes also enabled highly specific cancer cell death via NIR photothermal therapy in vitro. TGNS with embedded NIR and magnetic resonance contrasts can be specifically targeted to pancreatic cancer cells with expression of early disease marker NGAL, and enable molecularly targeted imaging and photothermal therapy.

  2. Spectroscopic investigations on the interaction of thioacetamide with ZnO quantum dots and application for its fluorescence sensing

    Science.gov (United States)

    Saha, Dipika; Negi, Devendra P. S.

    2018-01-01

    The purpose of the present work was to develop a method for the sensing of thioacetamide by using spectroscopic techniques. Thioacetamide is a carcinogen and it is important to detect its presence in food-stuffs. Semiconductor quantum dots are frequently employed as sensing probes since their absorption and fluorescence properties are highly sensitive to the interaction with substrates present in the solution. In the present work, the interaction between thioacetamide and ZnO quantum dots has been investigated by using UV-visible, fluorescence and infrared spectroscopy. Besides, dynamic light scattering (DLS) has also been utilized for the interaction studies. UV-visible absorption studies indicated the bonding of the lone pair of sulphur atom of thioacetamide with the surface of the semiconductor. The fluorescence band of the ZnO quantum dots was found to be quenched in the presence of micromolar concentrations of thioacetamide. The quenching was found to follow the Stern-Volmer relationship. The Stern-Volmer constant was evaluated to be 1.20 × 105 M- 1. Infrared spectroscopic measurements indicated the participation of the sbnd NH2 group and the sulphur atom of thioacetamide in bonding with the surface of the ZnO quantum dots. DLS measurements indicated that the surface charge of the semiconductor was shielded by the thioacetamide molecules.

  3. Evidence concerning oxidation as a surface reaction in Baltic amber

    DEFF Research Database (Denmark)

    Shashoua, Yvonne

    2012-01-01

    , obtained from pressed amber powder, were subjected to accelerated thermal ageing. Cross-sections of the pellets were analyzed by infrared micro-spectroscopy, in order to identify and quantify changes in chemical properties. The experimental results showed strong oxidation exclusively at the exterior part...... of cross-sections from samples subjected to long-term thermal ageing, confirming that oxidation of Baltic amber starts from the surface....

  4. Near-infrared luminescent cubic silicon carbide nanocrystals for in vivo biomarker applications: an ab initio Study

    Science.gov (United States)

    Gali, Adam; Zólyomi, Viktor; Somogyi, Bálint

    2013-03-01

    Small molecule-sized fluorescent emitters are needed as probes to image and track the locations of targeted nano-sized objects with minimal perturbation, and are much sought-after to probe biomolecules in living cells. For in vivo biological imaging, fluorescent biomarkers have to meet the following stringent requirements: (i) they should be non-toxic and bioinert, (ii) their hydrodynamical size should be sufficiently small for clearance, (iii) they should be photo-stable. Furthermore, it is highly desirable that (iv) they have intense, stable emission in the near-infrared range, and (v) they can be produced in relatively large amount for biological studies. Here we report time-density functional calculations on SiC-based QDs in the aspect of in vivo biological imaging applications. We find that Si-vacancy, divacancy, as well as single metal dopants such as Vanadium (V), Molybdenum (Mo) and Tungsten (W) in molecule-sized (1-2 nm) SiC QDs emit light efficiently in the near-infrared range. Furthermore, their emission wavelength varies on the size of host SiC QDs at less extent than that of pristine SiC QDs, thus sharper emission spectrum is expected even in a disperse size distribution of these QDs. These fluorescent SiC QDs are paramagnetic in the ground state. EU FP7 DIAMANT (Grant No. 270197)

  5. Molecular imaging of atherosclerosis in mice with MRI and near-infrared fluorescence imaging

    International Nuclear Information System (INIS)

    Lu Tong; Wen Song; Zhou Guanhui; Ju Shenghong; Teng Gaojun

    2012-01-01

    Objective: To explore the feasibility of detecting atherosclerotic plaques with 7.0 T MRI and near-infrared fluorescence imaging (NIRF) using molecular imaging probes. Methods: Atherosclerotic plaques were established in male atherosclerotic apolipoprotein E knockout (ApoE-/-) mice fed with high-cholesterol diet for 20 weeks. Wild-type C57BL/6 mice were used as negative controls. 7.0 T MRI was performed before and 36 h after intravenously administration of ultrasmall superparamagnetic particle of iron oxide (USPIO). NIR 797 was conjugated with anti-mouse-oxidized modified low density lipoprotein (oxLDL) antibodies to construct an anti-oxLDL-Ab-NIR 797 probe while non-specific IgG-NIR 797 and PBS used as controls. NIRF was performed 24 h after tail vein injection of the probe. Independent sample t-test and one-way analysis of variance were used to analyze the data by SPSS 17.0. Results: In APOE-/-mice, in vivo 36 h post-USPIO T 2 WI images revealed strong focal signal loss in the abdominal aorta than that of pre-USPIO, with relative signal intensity 0.70 ± 0.04 and 1.28 ± 0.06, respectively (t=3.376, P<0.05). The percent of signal reduced was (-56.58 ± 4.25)%. The Prussian blue staining confirmed the depositions of iron particles in the plaque lesions. Significant fluorochrome accumulation in atherosclerotic plaques was demonstrated in aortic root, aortic arch and the starting of descending aorta 24 h after injection of the anti-oxLDL-Ab-NIR 797 probe. Minimal antibody uptake was observed in normal vessels from wild-type mice receiving the anti-oxLDL-Ab-NIR 797 (SNR: 2.29 ± 1.11) and in atherosclerotic vessels from ApoE-/- mice receiving the non-specific IgG-NIR 797 (19.58 ±3.06) or PBS (4.19 ±0.82), which was significantly different from the uptake of anti-oxLDL-Ab-NIR 797 group (42.51 ±5.24, F=25.104, P<0.05). Comparison between oil red O staining and NIRF 24 h after injection of NIR 797 labeled oxLDL-antibody revealed a significant correlation (r=0.738, P

  6. Superselective intra-arterial hepatic injection of indocyanine green (ICG) for fluorescence image-guided segmental positive staining: experimental proof of the concept.

    Science.gov (United States)

    Diana, Michele; Liu, Yu-Yin; Pop, Raoul; Kong, Seong-Ho; Legnèr, Andras; Beaujeux, Remy; Pessaux, Patrick; Soler, Luc; Mutter, Didier; Dallemagne, Bernard; Marescaux, Jacques

    2017-03-01

    Intraoperative liver segmentation can be obtained by means of percutaneous intra-portal injection of a fluorophore and illumination with a near-infrared light source. However, the percutaneous approach is challenging in the minimally invasive setting. We aimed to evaluate the feasibility of fluorescence liver segmentation by superselective intra-hepatic arterial injection of indocyanine green (ICG). Eight pigs (mean weight: 26.01 ± 5.21 kg) were involved. Procedures were performed in a hybrid experimental operative suite equipped with the Artis Zeego ® , multiaxis robotic angiography system. A pneumoperitoneum was established and four laparoscopic ports were introduced. The celiac trunk was catheterized, and a microcatheter was advanced into different segmental hepatic artery branches. A near-infrared laparoscope (D-Light P, Karl Storz) was used to detect the fluorescent signal. To assess the correspondence between arterial-based fluorescence demarcation and liver volume, metallic markers were placed along the fluorescent border, followed by a 3D CT-scanning, after injecting intra-arterial radiological contrast (n = 3). To assess the correspondence between arterial and portal supplies, percutaneous intra-portal angiography and intra-arterial angiography were performed simultaneously (n = 1). Bright fluorescence signal enhancing the demarcation of target segments was obtained from 0.1 mg/mL, in matter of seconds. Correspondence between the volume of hepatic segments and arterial territories was confirmed by CT angiography. Higher background fluorescence noise was found after positive staining by intra-portal ICG injection, due to parenchymal accumulation and porto-systemic shunting. Intra-hepatic arterial ICG injection, rapidly highlights hepatic target segment borders, with a better signal-to-background ratio as compared to portal vein injection, in the experimental setting.

  7. Protein folding and misfolding shining light by infrared spectroscopy

    CERN Document Server

    Fabian, Heinz

    2012-01-01

    Infrared spectroscopy is a new and innovative technology to study protein folding/misfolding events in the broad arsenal of techniques conventionally used in this field. The progress in understanding protein folding and misfolding is primarily due to the development of biophysical methods which permit to probe conformational changes with high kinetic and structural resolution. The most commonly used approaches rely on rapid mixing methods to initiate the folding event via a sudden change in solvent conditions. Traditionally, techniques such as fluorescence, circular dichroism or visible absorption are applied to probe the process. In contrast to these techniques, infrared spectroscopy came into play only very recently, and the progress made in this field up to date which now permits to probe folding events over the time scale from picoseconds to minutes has not yet been discussed in a book. The aim of this book is to provide an overview of the developments as seen by some of the main contributors to the field...

  8. Analysis of energy transfer process based emission spectra of erbium doped germanate glasses for mid-infrared laser materials

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Muzhi; Wei, Tao; Zhou, Beier; Tian, Ying; Zhou, Jiajia; Xu, Shiqing, E-mail: shiqingxu@cjlu.edu.cn; Zhang, Junjie, E-mail: jjzhang@cjlu.edu.cn

    2015-03-25

    Highlights: • Er{sup 3+} doped germanate glass with good thermal stability were prepared. • Ionic boding nature was proved by bonding parameter calculation. • Mid-infrared fluorescent behaviors and energy transfer were investigated. • Rate equation and Dexter’s theory were utilized to elucidate 2.7 μm emission. - Abstract: Er{sup 3+} activated germanate glass with good thermal stability was prepared. Bonding parameters have been calculated and the nature of ionic bonding of the germanate glass has been determined. Mid-infrared fluorescence was observed and corresponding radiative properties were investigated. For Er{sup 3+}:{sup 4}I{sub 11/2}→{sup 4}I{sub 13/2} transition, high spontaneous radiative transition probability (30.09 s{sup −1}), large emission cross section ((14.84 ± 0.10) × 10{sup −21} cm{sup 2}) and superior gain performance were obtained from the prepared glass. Besides, energy transfer processes concerning the 2.7 μm emission were also discussed in detail. According to simplified rate equation and Dexter’s theory, energy transfer microscopic parameters were computed to elucidate observed 2.7 μm emissions. Results demonstrate that the prepared germanate glass possessing excellent spectroscopic properties might be an attractive candidate for mid-infrared laser or amplifier.

  9. In Vivo Dual Fluorescence Imaging to Detect Joint Destruction.

    Science.gov (United States)

    Cho, Hongsik; Bhatti, Fazal-Ur-Rehman; Lee, Sangmin; Brand, David D; Yi, Ae-Kyung; Hasty, Karen A

    2016-10-01

    Diagnosis of cartilage damage in early stages of arthritis is vital to impede the progression of disease. In this regard, considerable progress has been made in near-infrared fluorescence (NIRF) optical imaging technique. Arthritis can develop due to various mechanisms but one of the main contributors is the production of matrix metalloproteinases (MMPs), enzymes that can degrade components of the extracellular matrix. Especially, MMP-1 and MMP-13 have main roles in rheumatoid arthritis and osteoarthritis because they enhance collagen degradation in the process of arthritis. We present here a novel NIRF imaging strategy that can be used to determine the activity of MMPs and cartilage damage simultaneously by detection of exposed type II collagen in cartilage tissue. In this study, retro-orbital injection of mixed fluorescent dyes, MMPSense 750 FAST (MMP750) dye and Alexa Fluor 680 conjugated monoclonal mouse antibody immune-reactive to type II collagen, was administered in the arthritic mice. Both dyes were detected with different intensity according to degree of joint destruction in the animal. Thus, our dual fluorescence imaging method can be used to detect cartilage damage as well as MMP activity simultaneously in early stage arthritis. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  10. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2

    Directory of Open Access Journals (Sweden)

    J. Joiner

    2013-10-01

    Full Text Available Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2. The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT. GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0

  11. pXRF and IR Fluorescence Imaging Studies of CdS Alteration in Paintings by Edvard Munch and Henri Matisse in Oslo, Copenhagen, and San Francisco

    DEFF Research Database (Denmark)

    Vila, Anna; Wadum, Jørgen; Mass, Jennifer

    2014-01-01

    -induced visible fluorescence; ultraviolet-induced infrared fluorescence; multispectral imaging; and x-ray fluorescence. Questions addressed included: is the imaging method being tested comprehensive? Is it efficient at surveying an entire painting? Does it reveal the state of preservation of the pigment? Does...... for Kunst, Copenhagen. They were also tested on Edvard Munch’s The Scream (c. 1910, Munch Museum, Oslo). It was found that ultraviolet-induced visible fluorescence has the best ability to discriminate between altered and unaltered cadmium yellow paints (even before alteration is visible to the unaided eye......), while multispectral imaging allows for the most efficient and comprehensive localization of the cadmium pigments in a work....

  12. Far infrared supplement: Catalog of infrared observations, second edition

    International Nuclear Information System (INIS)

    Gezari, D.Y.; Schmitz, M.; Mead, J.M.

    1988-08-01

    The Far Infrared Supplement: Catalog of Infrared Observations summarizes all infrared astronomical observations at far infrared wavelengths (5 to 1000 microns) published in the scientific literature from 1965 through 1986. The Supplement list contain 25 percent of the observations in the full Catalog of Infrared Observations (CIO), and essentially eliminates most visible stars from the listings. The Supplement is thus more compact than the main catalog, and is intended for easy reference during astronomical observations. The Far Infrared Supplement (2nd Edition) includes the Index of Infrared Source Positions and the Bibliography of Infrared Astronomy for the subset of far infrared observations listed

  13. Fibre-optic laser-assisted infrared tumour diagnostics (FLAIR)

    Science.gov (United States)

    Bindig, U.; Müller, G.

    2005-08-01

    Laser based fibre-optic surgery procedures are commonly used in minimal invasive surgery. Despite the development of precise and efficient laser systems there are also innovative attempts in the field of bio-medical diagnostics. As a direct result of the tissue's optical properties most applications are focused on the visible wavelength range of the spectrum. The extension of the spectrum up to the mid-infrared (IR) region will offer a broad range of possibilities for novel strategies with a view to non-invasive diagnostics in medicine. We describe a method to detect differences between diseased and normal tissues, which involve Fourier transform IR microspectroscopy and fibre-optics methods. Regions of interest on 10 µm thin tissue sections were mapped using an IR microscope in transmission mode. After IR-mapping, the samples were analysed using standard pathological techniques. Quadratic discriminant and correlation analyses were applied to the IR maps obtained allowing differentiation between cancerous and normal tissue. The use of optical fibres, transparent in the mid-IR, allowed measurements to be made in the attenuated total reflectance (ATR)-mode at a remote location. The IR sensor is in contact with the sample that shows characteristic absorption lines. The total transmission of the fibre and the sample will decrease at these lines. This method can be used to determine the absorption of a sample in a non-destructive manner. In this paper we report on our efforts to develop an IR fibre-optic sensor for tissue identification as well as to differentiate between malignant and healthy tissue in vivo. We also describe the technical design of the laboratory set-up and the results of developments made. Silver halide fibres and a special sensor tip were used for the ATR measurements on tissue specimens. The results indicate that fibre-optic IR spectrometry will be a useful tool for bio-diagnostics.

  14. Fibre-optic laser-assisted infrared tumour diagnostics (FLAIR)

    International Nuclear Information System (INIS)

    Bindig, U; Mueller, G

    2005-01-01

    Laser based fibre-optic surgery procedures are commonly used in minimal invasive surgery. Despite the development of precise and efficient laser systems there are also innovative attempts in the field of bio-medical diagnostics. As a direct result of the tissue's optical properties most applications are focused on the visible wavelength range of the spectrum. The extension of the spectrum up to the mid-infrared (IR) region will offer a broad range of possibilities for novel strategies with a view to non-invasive diagnostics in medicine. We describe a method to detect differences between diseased and normal tissues, which involve Fourier transform IR microspectroscopy and fibre-optics methods. Regions of interest on 10 μm thin tissue sections were mapped using an IR microscope in transmission mode. After IR-mapping, the samples were analysed using standard pathological techniques. Quadratic discriminant and correlation analyses were applied to the IR maps obtained allowing differentiation between cancerous and normal tissue. The use of optical fibres, transparent in the mid-IR, allowed measurements to be made in the attenuated total reflectance (ATR)-mode at a remote location. The IR sensor is in contact with the sample that shows characteristic absorption lines. The total transmission of the fibre and the sample will decrease at these lines. This method can be used to determine the absorption of a sample in a non-destructive manner. In this paper we report on our efforts to develop an IR fibre-optic sensor for tissue identification as well as to differentiate between malignant and healthy tissue in vivo. We also describe the technical design of the laboratory set-up and the results of developments made. Silver halide fibres and a special sensor tip were used for the ATR measurements on tissue specimens. The results indicate that fibre-optic IR spectrometry will be a useful tool for bio-diagnostics

  15. Engineering of near IR fluorescent albumin nanoparticles for in vivo detection of colon cancer

    Directory of Open Access Journals (Sweden)

    Cohen Sarit

    2012-08-01

    Full Text Available Abstract Background The use of near-infrared (NIR fluorescence imaging techniques has gained great interest for early detection of cancer because water and other intrinsic biomolecules display negligible absorption or autofluorescence in this region. Novel fluorescent nanoparticles with potential to improve neoplasm detection sensitivity may prove to be a valuable tool in early detection of colon tumors. Methods The present study describes the synthesis and use of NIR fluorescent albumin nanoparticles as a diagnostic tool for detection of colon cancer. These fluorescent nanoparticles were prepared by a precipitation process of human serum albumin (HSA in aqueous solution in the presence of a carboxylic acid derivative of the NIR dye IR-783 (CANIR. Tumor-targeting ligands such as peanut agglutinin (PNA, anti-carcinoembryonic antigen antibodies (anti-CEA and tumor associated glycoprotein-72 monoclonal antibodies (anti-TAG-72 were covalently conjugated to the albumin nanoparticles via the surface carboxylate groups by using the carbodiimide activation method. Results and discussion Leakage of the encapsulated dye into PBS containing 4% HSA or human bowel juice was not detected. This study also demonstrates that the encapsulation of the NIR fluorescent dye within the HSA nanoparticles reduces the photobleaching of the dye significantly. Specific colon tumor detection in a mouse model was demonstrated for PNA, anti-CEA and anti-TAG-72 conjugated NIR fluorescent HSA nanoparticles. These bioactive NIR fluorescent albumin nanoparticles also detected invisible tumors that were revealed as pathological only subsequent to histological analysis. Conclusions These results may suggest a significant advantage of NIR fluorescence imaging using NIR fluorescent nanoparticles over regular colonoscopy. In future work we plan to broaden this study by encapsulating cancer drugs, such as paclitaxel and doxorubicin, within these biodegradable NIR fluorescent HSA

  16. Engineering of near IR fluorescent albumin nanoparticles for in vivo detection of colon cancer.

    Science.gov (United States)

    Cohen, Sarit; Margel, Shlomo

    2012-08-14

    The use of near-infrared (NIR) fluorescence imaging techniques has gained great interest for early detection of cancer because water and other intrinsic biomolecules display negligible absorption or autofluorescence in this region. Novel fluorescent nanoparticles with potential to improve neoplasm detection sensitivity may prove to be a valuable tool in early detection of colon tumors. The present study describes the synthesis and use of NIR fluorescent albumin nanoparticles as a diagnostic tool for detection of colon cancer. These fluorescent nanoparticles were prepared by a precipitation process of human serum albumin (HSA) in aqueous solution in the presence of a carboxylic acid derivative of the NIR dye IR-783 (CANIR). Tumor-targeting ligands such as peanut agglutinin (PNA), anti-carcinoembryonic antigen antibodies (anti-CEA) and tumor associated glycoprotein-72 monoclonal antibodies (anti-TAG-72) were covalently conjugated to the albumin nanoparticles via the surface carboxylate groups by using the carbodiimide activation method. Leakage of the encapsulated dye into PBS containing 4% HSA or human bowel juice was not detected. This study also demonstrates that the encapsulation of the NIR fluorescent dye within the HSA nanoparticles reduces the photobleaching of the dye significantly. Specific colon tumor detection in a mouse model was demonstrated for PNA, anti-CEA and anti-TAG-72 conjugated NIR fluorescent HSA nanoparticles. These bioactive NIR fluorescent albumin nanoparticles also detected invisible tumors that were revealed as pathological only subsequent to histological analysis. These results may suggest a significant advantage of NIR fluorescence imaging using NIR fluorescent nanoparticles over regular colonoscopy. In future work we plan to broaden this study by encapsulating cancer drugs, such as paclitaxel and doxorubicin, within these biodegradable NIR fluorescent HSA nanoparticles, in order to use them for both detection as well as therapy of colon

  17. Fluorescence Determination of Warfarin Using TGA-capped CdTe Quantum Dots in Human Plasma Samples.

    Science.gov (United States)

    Dehbozorgi, A; Tashkhourian, J; Zare, S

    2015-11-01

    In this study, some effort has been performed to provide low temperature, less time consuming and facile routes for the synthesis of CdTe quantum dots using ultrasound and water soluble capping agent thioglycolic acid. TGA-capped CdTe quantum dots were characterized through x-ray diffraction, transmission electron microscopy, Fourier transform infrared, ultraviolet-visible and fluorescence spectroscopy. The prepared quantum dots were used for warfarin determination based on the quenching of the fluorescence intensity in aqueous solution. Under the optimized conditions, the linear range of quantum dots fluorescence intensity versus the concentration of warfarin was 0.1-160.0 μM, with the correlation coefficient of 0.9996 and a limit of detection of 77.5 nM. There was no interference to coexisting foreign substances. The selectivity of the sensor was also tested and the results show that the developed method possesses a high selectivity for warfarin.

  18. Spectral characterization of crude oil using fluorescence (synchronous and time-resolved) and NIR (Near Infrared Spectroscopy); Caracterizacao espectral do petroleo utilizando fluorescencia (sincronizada e resolvida no tempo) e NIR (Near Infrared Spectroscopy)

    Energy Technology Data Exchange (ETDEWEB)

    Falla Sotelo, F.; Araujo Pantoja, P.; Lopez-Gejo, J.; Le Roux, G.A.C.; Nascimento, C.A.O. [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Quimica. Lab. de Simulacao e Controle de Processos; Quina, F.H. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Centro de Capacitacao e Pesquisa em Meio Ambiente (CEPEMA)

    2008-07-01

    The objective of the present work is to evaluate the performance of two spectroscopic techniques employed in the crude oil characterization: NIR spectroscopy and fluorescence spectroscopy (Synchronous fluorescence - SF and Time Resolved Fluorescence - TRF) for the development of correlation models between spectral profiles of crude oil samples and both physical properties (viscosity and API density) and physico-chemical properties (SARA analysis: Saturated, Aromatic, Resins and Asphaltenes). The better results for viscosity and density were obtained using NIR whose prediction capacity was good (1.5 cP and 0.5 deg API, respectively). For SARA analysis, fluorescence spectroscopy revealed its potential in the model calibration showing good results (R2 coefficients greater than 0.85). TRF spectroscopy had better performance than SF spectroscopy. (author)

  19. Highly Fluorescent Ribonuclease-A-Encapsulated Lead Sulfide Quantum Dots for Ultrasensitive Fluorescence in Vivo Imaging in the Second Near-Infrared Window

    OpenAIRE

    Kong, Yifei; Chen, Jun; Fang, Hongwei; Heath, George; Wo, Yan; Wang, Weili; Li, Yunxia; Guo, Yuan; Evans, Stephen D.; Chen, Shiyi; Zhou, Dejian

    2016-01-01

    Ribonuclease-A (RNase-A) encapsulated PbS quantum dots (RNase-A@PbS Qdots) which emit in the second near-infrared biological window (NIR-II, ca. 1000?1400 nm) are rapidly synthesized under microwave heating. Photoluminescence (PL) spectra of the Qdots can be tuned across the entire NIR-II range by simply controlling synthesis temperature. The size and morphology of the Qdots are examined by transmission electron microscopy (TEM), atomic force microscopy (AFM), and dynamic light scattering (DL...

  20. Non-invasive imaging of tumors by monitoring autotaxin activity using an enzyme-activated near-infrared fluorogenic substrate.

    Directory of Open Access Journals (Sweden)

    Damian Madan

    Full Text Available Autotaxin (ATX, an autocrine motility factor that is highly upregulated in metastatic cancer, is a lysophospholipase D enzyme that produces the lipid second messenger lysophosphatidic acid (LPA from lysophosphatidylcholine (LPC. Dysregulation of the lysolipid signaling pathway is central to the pathophysiology of numerous cancers, idiopathic pulmonary fibrosis, rheumatoid arthritis, and other inflammatory diseases. Consequently, the ATX/LPA pathway has emerged as an important source of biomarkers and therapeutic targets. Herein we describe development and validation of a fluorogenic analog of LPC (AR-2 that enables visualization of ATX activity in vivo. AR-2 exhibits minimal fluorescence until it is activated by ATX, which substantially increases fluorescence in the near-infrared (NIR region, the optimal spectral window for in vivo imaging. In mice with orthotopic ATX-expressing breast cancer tumors, ATX activated AR-2 fluorescence. Administration of AR-2 to tumor-bearing mice showed high fluorescence in the tumor and low fluorescence in most healthy tissues with tumor fluorescence correlated with ATX levels. Pretreatment of mice with an ATX inhibitor selectively decreased fluorescence in the tumor. Together these data suggest that fluorescence directly correlates with ATX activity and its tissue expression. The data show that AR-2 is a non-invasive and selective tool that enables visualization and quantitation of ATX-expressing tumors and monitoring ATX activity in vivo.

  1. Ultraviolet and Infrared Correlation Studies in Orion

    Directory of Open Access Journals (Sweden)

    Bose Lakshmi S.

    2015-09-01

    Full Text Available We have studied the variation of diffuse ultraviolet (UV radiation in the northern part of the Orion constellation using a set of eight areas of the GALEX All-Sky Imaging Survey in the far and near UV. Different components of diffuse UV radiation, like dust scattered emission and H2 fluorescence, were quantified and separated after removing the point sources and the foreground emission in each of the fields. Then the dependence of the individual UV components on the infrared 100 μm dust emission was studied. We did not find any positive correlation between the diffuse-UV and IR-100 micron intensities, probably due to the high optical depth of the region or the entire dust column not contributing to the diffuse UV radiation. However, in the far UV we noticed the presence of an excess emission in addition to the dust scattered radiation, which is clearly absent in the near UV. This excess emission, identified as the H2 fluorescence, is produced by the Trapezium stars in the surrounding molecular clouds. We also compare our results with those of previous studies in the region, based on Far Ultraviolet Spectroscopic Explorer (FUSE observations.

  2. Confocal Raman Microspectroscopy of Oral Streptococci

    Science.gov (United States)

    Beier, Brooke D.

    Raman spectroscopy has been used in a variety of applications throughout the field of biomedical optics. It has the ability to acquire chemically-specific information in a non-invasive manner, without the need for exogenous markers. This makes it useful in the identification of bacterial species, as well as in the study of tissues and other cells. In this work, a species identification model has been created in order to discriminate between the oral bacterial species Streptococcus sanguinis and Streptococcus mutans. These are two of the most prevalent species within the human mouth and their relative concentrations can be an indicator of a patient's oral health and risk of tooth decay. They are predominantly found within plaque on the tooth's surface. To study a simplified model for dental plaque, we have examined S. sanguinis and S. mutans grown in biofilm forms. Raman spectroscopy has been implemented here through a confocal microscope. The optical system has been equipped with computationally controlled stages to allow for automated scanning, including autofocusing to probe a consistent depth within a sample. A spectrum has been acquired from each position within a scan and sent for spectral preprocessing before being submitted for species identification. This preprocessing includes an algorithm that has been developed to remove fluorescence features from known contaminants within the confocal volume, to include signal from a fluorescent substrate. Species classification has been accomplished using a principal component score-fed logistic regression model constructed from a variety of biofilm samples that have been transferred and allowed to dry, as might occur with the study of plaque samples. This binary classification model has been validated on other samples with identical preparations. The model has also been transferred to determine the species of hydrated biofilms studied in situ. Artificially mixed biofilms have been examined to test the spatial

  3. Design of a New Near-Infrared Ratiometric Fluorescent Nanoprobe for Real-Time Imaging of Superoxide Anions and Hydroxyl Radicals in Live Cells and in Situ Tracing of the Inflammation Process in Vivo.

    Science.gov (United States)

    Liu, Rongjun; Zhang, Liangliang; Chen, Yunyun; Huang, Zirong; Huang, Yong; Zhao, Shulin

    2018-04-03

    The superoxide anion (O 2 •- ) and hydroxyl radical ( • OH) are important reactive oxygen species (ROS) used as biomarkers in physiological and pathological processes. ROS generation is closely related to the development of a variety of inflammatory diseases. However, the changes of ROS are difficult to ascertain with in situ tracing of the inflammation process by real-time monitoring, owing to the short half-lives of ROS and high tissue autofluorescence in vivo. Here we developed a new near-infrared (NIR) ratiometric fluorescence imaging approach by using a Förster resonance energy transfer (FRET)-based ratiometric fluorescent nanoprobe for real-time monitoring of O 2 •- and • OH generation and also by using in situ tracing of the inflammation process in vivo. The proposed nanoprobe was composed of PEG functionalized GQDs as the energy donor connecting to hydroIR783, serving as both the O 2 •- / • OH recognizing ligand and the energy acceptor. The nanoprobe not only exhibited a fast response to O 2 •- and • OH but also presented good biocomapatibility as well as a high photostability and signal-to-noise ratio. We have demonstrated that the proposed NIR ratiometric fluorescent nanoprobe can monitor the changes of O 2 •- and • OH in living RAW 264.7 cells via a drug mediating inflammation model and further realized visual monitoring of the change of O 2 •- and • OH in mice for in situ tracing of the inflammation process. Our design may provide a new paradigm for long-term and real-time imaging applications for in vivo tracing of the pathological process related to the inflammatory diseases.

  4. Fluorescence Imaging In Vivo at Wavelengths beyond 1500 nm.

    Science.gov (United States)

    Diao, Shuo; Blackburn, Jeffrey L; Hong, Guosong; Antaris, Alexander L; Chang, Junlei; Wu, Justin Z; Zhang, Bo; Cheng, Kai; Kuo, Calvin J; Dai, Hongjie

    2015-12-01

    Compared to imaging in the visible and near-infrared regions below 900 nm, imaging in the second near-infrared window (NIR-II, 1000-1700 nm) is a promising method for deep-tissue high-resolution optical imaging in vivo mainly owing to the reduced scattering of photons traversing through biological tissues. Herein, semiconducting single-walled carbon nanotubes with large diameters were used for in vivo fluorescence imaging in the long-wavelength NIR region (1500-1700 nm, NIR-IIb). With this imaging agent, 3-4 μm wide capillary blood vessels at a depth of about 3 mm could be resolved. Meanwhile, the blood-flow speeds in multiple individual vessels could be mapped simultaneously. Furthermore, NIR-IIb tumor imaging of a live mouse was explored. NIR-IIb imaging can be generalized to a wide range of fluorophores emitting at up to 1700 nm for high-performance in vivo optical imaging. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis and Fluorescence Spectra of Triazolylcoumarin Fluorescent Dyes

    Institute of Scientific and Technical Information of China (English)

    PENG Xian-fu; LI Hong-qi

    2009-01-01

    Much attention is devoted to fluorescent dyes especially those with potential in versatile applications. Reactions under "click" conditions between nonfluorescent 3 - azidocoumarins and terminal alkynes produced 3 -(1, 2, 3- triazol- 1 - yl)cournarins, a novel type of fluorescent dyes with intense fluorescence. The structures of the new coumarins were characterized by 1H NMR, MS, and IR spectra. Fluorescence spectra measurement demonstrated excellent fluorescence performance of the triazolylcoumarins and this click reaction is a promising candidate for bioconjugation and bioimaging applications since both azide and alkynes are quite inert to biological systems.

  6. Synthesis and Properties of Sulfhydryl-Reactive Near-Infrared Cyanine Fluorochromes for Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Yuhui Lin

    2003-04-01

    Full Text Available Near-infrared fluorochromes (NIRF are useful compounds for diverse biotechnology applications and for in vivo biomedical imaging. Such NIRF must have high quantum yield, be biocompatible, and be conjugatable to a wide variety of proteins, peptides, and other affinity ligands. Here, we describe the synthesis of four new nonsymmetrical sulfhydryl-reactive cyanine NIRF with excellent optical and chemical properties. Each fluorochrome was designed to contain an iodoacetamido group that reacts specifically with sulfhydryl-containing molecules. The synthesized fluorochromes were used to label model peptides and sulfhydryl-containing biomolecules.

  7. Application of confocal Raman micro-spectroscopy for label-free monitoring of oxidative stress in living bronchial cells

    Science.gov (United States)

    Surmacki, Jakub M.; Quirós Gonzalez, Isabel; Bohndiek, Sarah E.

    2018-02-01

    Oxidative stress in cancer is implicated in tumor progression, being associated with increased therapy resistance and metastasis. Conventional approaches for monitoring oxidative stress in tissue such as high-performance liquid chromatography and immunohistochemistry are bulk measurements and destroy the sample, meaning that longitudinal monitoring of cancer cell heterogeneity remains elusive. Raman spectroscopy has the potential to overcome this challenge, providing a chemically specific, label free readout from single living cells. Here, we applied a standardized protocol for label-free confocal Raman micro-spectroscopy in living cells to monitor oxidative stress in bronchial cells. We used a quartz substrate in a commercial cell chamber contained within a microscope incubator providing culture media for cell maintenance. We studied the effect of a potent reactive oxygen species inducer, tert-butyl hydroperoxide (TBHP), and antioxidant, N-acetyl-L-cysteine (NAC) on living cells from a human bronchial epithelial cells (HBEC). We found that the Raman bands corresponding to nucleic acids, proteins and lipids were significantly different (pmicro-spectroscopy may be able to monitor the biological impact of oxidative and reductive processes in cells, hence enabling longitudinal studies of oxidative stress in therapy resistance and metastasis at the single cell level.

  8. Characterization of Archaeological Sediments Using Fourier Transform Infrared (FT-IR) and Portable X-ray Fluorescence (pXRF): An Application to Formative Period Pyro-Industrial Sites in Pacific Coastal Southern Chiapas, Mexico.

    Science.gov (United States)

    Neff, Hector; Bigney, Scott J; Sakai, Sachiko; Burger, Paul R; Garfin, Timothy; George, Richard G; Culleton, Brendan J; Kennett, Douglas J

    2016-01-01

    Archaeological sediments from mounds within the mangrove zone of far-southern Pacific coastal Chiapas, Mexico, are characterized in order to test the hypothesis that specialized pyro-technological activities of the region's prehistoric inhabitants (salt and ceramic production) created the accumulations visible today. Fourier transform infrared spectroscopy (FT-IR) is used to characterize sediment mineralogy, while portable X-ray fluorescence (pXRF) is used to determine elemental concentrations. Elemental characterization of natural sediments by both instrumental neutron activation analysis (INAA) and pXRF also contribute to understanding of processes that created the archaeological deposits. Radiocarbon dates combined with typological analysis of ceramics indicate that pyro-industrial activity in the mangrove zone peaked during the Late Formative and Terminal Formative periods, when population and monumental activity on the coastal plain and piedmont were also at their peaks. © The Author(s) 2015.

  9. pH-stimuli-responsive near-infrared optical imaging nanoprobe based on poly(γ-glutamic acid)/poly(β-amino ester) nanoparticles

    International Nuclear Information System (INIS)

    Park, Hye Sun; Lee, Jung Eun; Cho, Mi Young; Noh, Young-Woock; Lim, Yong Taik; Sung, Moon Hee; Poo, Haryoung; Hong, Kwan Soo

    2011-01-01

    pH-stimuli-responsive near-infrared optical imaging nanoprobes are designed and synthesized in this study in a facile one-step synthesis process based on the use of the biocompatible and biodegradable polymer poly(γ-glutamic acid) (γ-PGA)/poly(β-amino ester) (PBAE). PBAE has good transfection efficiency and promotes degradation properties under acidic conditions. This pH-responsive degradability can be used for the effective release of encapsulating materials after cellular uptake. As an optical imaging probe, indocyanine green (ICG) is an FDA-approved near-infrared fluorescent dye with a quenching property at a high concentration. In this regard, we focus here on the rapid degradation of PBAE in an acidic environment, in which the nanoparticles are disassembled. This allows the ICG dyes to show enhanced fluorescence signals after being releasing from the particles. We demonstrated this principle in cellular uptake experiments. We expect that the developed pH-stimuli-responsive smart nanoprobes can be applied in intracellular delivery signaling applications.

  10. Novel dual ligand co-functionalized fluorescent gold nanoclusters as a versatile probe for sensitive analysis of Hg(2+) and oxytetracycline.

    Science.gov (United States)

    Xu, Shenghao; Li, Xiaolin; Mao, Yaning; Gao, Teng; Feng, Xiuying; Luo, Xiliang

    2016-04-01

    In this work, we present a direct one-step strategy for rapidly preparing dual ligand co-functionalized fluorescent Au nanoclusters (NCs) by using threonine (Thr) and 11-mercaptoundecanoic acid (MUA) as assorted reductants and capping agents in aqueous solution at room temperature. Fluorescence spectra, high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and infrared (IR) spectroscopy were performed to demonstrate the optical properties and chemical composition of the as-prepared AuNCs. They possess many attractive features such as near-infrared emission (λem = 606 nm), a large Stoke's shift (>300 nm), high colloidal stability (pH, temperature, salt, and time stability), and water dispersibility. Subsequently, the as-prepared AuNCs were used as a versatile probe for "turn off" sensing of Hg(2+) based on aggregation-induced fluorescence quenching and for "turn-on" sensing of oxytetracycline (OTC). This assay provided good linearity ranging from 37.5 to 3750 nM for Hg(2+) and from 0.375 to 12.5 μM for OTC, with detection limits of 8.6 nM and 0.15 μM, respectively. Moreover, the practical application of this assay was further validated by detecting OTC in human serum samples.

  11. Quantitative Fluorescence Sensing Through Highly Autofluorescent, Scattering, and Absorbing Media Using Mobile Microscopy

    KAUST Repository

    Gö rö cs, Zoltá n; Rivenson, Yair; Ceylan Koydemir, Hatice; Tseng, Derek; Troy, Tamara L.; Demas, Vasiliki; Ozcan, Aydogan

    2016-01-01

    Compact and cost-effective systems for in vivo fluorescence and near-infrared imaging in combination with activatable reporters embedded inside the skin to sample interstitial fluid or blood can enable a variety of biomedical applications. However, the strong autofluorescence of human skin creates an obstacle for fluorescence-based sensing. Here we introduce a method for quantitative fluorescence sensing through highly autofluorescent, scattering, and absorbing media. For this, we created a compact and cost-effective fluorescence microscope weighing <40 g and used it to measure various concentrations of a fluorescent dye embedded inside a tissue phantom, which was designed to mimic the optical characteristics of human skin. We used an elliptical Gaussian beam excitation to digitally separate tissue autofluorescence from target fluorescence, although they severely overlap in both space and optical spectrum. Using ∼10-fold less excitation intensity than the safety limit for skin radiation exposure, we successfully quantified the density of the embedded fluorophores by imaging the skin phantom surface and achieved a detection limit of ∼5 × 105 and ∼2.5 × 107 fluorophores within ∼0.01 μL sample volume that is positioned 0.5 and 2 mm below the phantom surface, corresponding to a concentration of 105.9 pg/mL and 5.3 ng/mL, respectively. We also confirmed that this approach can track the spatial misalignments of the mobile microscope with respect to the embedded target fluorescent volume. This wearable microscopy platform might be useful for designing implantable biochemical sensors with the capability of spatial multiplexing to continuously monitor a panel of biomarkers and chronic conditions even at patients’ home.

  12. Quantitative Fluorescence Sensing Through Highly Autofluorescent, Scattering, and Absorbing Media Using Mobile Microscopy

    KAUST Repository

    Göröcs, Zoltán

    2016-09-13

    Compact and cost-effective systems for in vivo fluorescence and near-infrared imaging in combination with activatable reporters embedded inside the skin to sample interstitial fluid or blood can enable a variety of biomedical applications. However, the strong autofluorescence of human skin creates an obstacle for fluorescence-based sensing. Here we introduce a method for quantitative fluorescence sensing through highly autofluorescent, scattering, and absorbing media. For this, we created a compact and cost-effective fluorescence microscope weighing <40 g and used it to measure various concentrations of a fluorescent dye embedded inside a tissue phantom, which was designed to mimic the optical characteristics of human skin. We used an elliptical Gaussian beam excitation to digitally separate tissue autofluorescence from target fluorescence, although they severely overlap in both space and optical spectrum. Using ∼10-fold less excitation intensity than the safety limit for skin radiation exposure, we successfully quantified the density of the embedded fluorophores by imaging the skin phantom surface and achieved a detection limit of ∼5 × 105 and ∼2.5 × 107 fluorophores within ∼0.01 μL sample volume that is positioned 0.5 and 2 mm below the phantom surface, corresponding to a concentration of 105.9 pg/mL and 5.3 ng/mL, respectively. We also confirmed that this approach can track the spatial misalignments of the mobile microscope with respect to the embedded target fluorescent volume. This wearable microscopy platform might be useful for designing implantable biochemical sensors with the capability of spatial multiplexing to continuously monitor a panel of biomarkers and chronic conditions even at patients’ home.

  13. Spectroscopic investigations on the interaction of thioacetamide with ZnO quantum dots and application for its fluorescence sensing.

    Science.gov (United States)

    Saha, Dipika; Negi, Devendra P S

    2018-01-15

    The purpose of the present work was to develop a method for the sensing of thioacetamide by using spectroscopic techniques. Thioacetamide is a carcinogen and it is important to detect its presence in food-stuffs. Semiconductor quantum dots are frequently employed as sensing probes since their absorption and fluorescence properties are highly sensitive to the interaction with substrates present in the solution. In the present work, the interaction between thioacetamide and ZnO quantum dots has been investigated by using UV-visible, fluorescence and infrared spectroscopy. Besides, dynamic light scattering (DLS) has also been utilized for the interaction studies. UV-visible absorption studies indicated the bonding of the lone pair of sulphur atom of thioacetamide with the surface of the semiconductor. The fluorescence band of the ZnO quantum dots was found to be quenched in the presence of micromolar concentrations of thioacetamide. The quenching was found to follow the Stern-Volmer relationship. The Stern-Volmer constant was evaluated to be 1.20×10 5 M -1 . Infrared spectroscopic measurements indicated the participation of the NH 2 group and the sulphur atom of thioacetamide in bonding with the surface of the ZnO quantum dots. DLS measurements indicated that the surface charge of the semiconductor was shielded by the thioacetamide molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Green Synthesis of Fluorescent Carbon Dots for Selective Detection of Tartrazine in Food Samples.

    Science.gov (United States)

    Xu, Hua; Yang, Xiupei; Li, Gu; Zhao, Chuan; Liao, Xiangjun

    2015-08-05

    A simple, economical, and green method for the preparation of water-soluble, high-fluorescent carbon quantum dots (C-dots) has been developed via hydrothermal process using aloe as a carbon source. The synthesized C-dots were characterized by atomic force microscope (AFM), transmission electron microscopy (TEM), fluorescence spectrophotometer, UV-vis absorption spectra as well as Fourier transform infrared spectroscopy (FTIR). The results reveal that the as-prepared C-dots were spherical shape with an average diameter of 5 nm and emit bright yellow photoluminescence (PL) with a quantum yield of approximately 10.37%. The surface of the C-dots was rich in hydroxyl groups and presented various merits including high fluorescent quantum yield, excellent photostability, low toxicity and satisfactory solubility. Additionally, we found that one of the widely used synthetic food colorants, tartrazine, could result in a strong fluorescence quenching of the C-dots through a static quenching process. The decrease of fluorescence intensity made it possible to determine tartrazine in the linear range extending from 0.25 to 32.50 μM, This observation was further successfully applied for the determination of tartrazine in food samples collected from local markets, suggesting its great potential toward food routine analysis. Results from our study may shed light on the production of fluorescent and biocompatible nanocarbons due to our simple and environmental benign strategy to synthesize C-dots in which aloe was used as a carbon source.

  15. Microdose fluorescence imaging of ABY-029 on an operating microscope adapted by custom illumination and imaging modules.

    Science.gov (United States)

    Elliott, Jonathan T; Dsouza, Alisha V; Marra, Kayla; Pogue, Brian W; Roberts, David W; Paulsen, Keith D

    2016-09-01

    Fluorescence guided surgery has the potential to positively impact surgical oncology; current operating microscopes and stand-alone imaging systems are too insensitive or too cumbersome to maximally take advantage of new tumor-specific agents developed through the microdose pathway. To this end, a custom-built illumination and imaging module enabling picomolar-sensitive near-infrared fluorescence imaging on a commercial operating microscope is described. The limits of detection and system specifications are characterized, and in vivo efficacy of the system in detecting ABY-029 is evaluated in a rat orthotopic glioma model following microdose injections, showing the suitability of the device for microdose phase 0 clinical trials.

  16. Magnetite/CdTe magnetic-fluorescent composite nanosystem for magnetic separation and bio-imaging

    International Nuclear Information System (INIS)

    Kale, Anup; Yadav, Prasad; Gholap, Haribhau; Jog, J P; Ogale, Satishchandra; Kale, Sonia; Shastry, Padma; Pasricha, Renu; Lefez, Benoit; Hannoyer, Beatrice

    2011-01-01

    A new synthesis protocol is described to obtain a CdTe decorated magnetite bifunctional nanosystem via dodecylamine (DDA) as cross linker. High resolution transmission electron microscopy (HRTEM), energy-dispersive x-ray spectroscopy (EDAX), vibrating sample magnetometry (VSM), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS) and fluorescence microscopy are used to characterize the constitution, size, composition and physical properties of these superparamagnetic-fluorescent nanoparticles. These CdTe decorated magnetite nanoparticles were then functionalized with anti-epidermal growth factor receptor (EGFR) antibody to specifically target cells expressing this receptor. The EGFR is a transmembrane glycoprotein and is expressed on tumor cells from different tissue origins including human leukemic cell line Molt-4 cells. The magnetite-CdTe composite nanosystem is shown to perform excellently for specific selection, magnetic separation and fluorescent detection of EGFR positive Molt-4 cells from a mixed population. Flow cytometry and confocal laser scanning microscopy results show that this composite nanosystem has great potential in antibody functionalized magnetic separation and imaging of cells using cell surface receptor antibody.

  17. Analysis of albumin Raman scattering in visible and near-infrared ranges

    Science.gov (United States)

    Lykina, Anastasia A.; Artemyev, Dmitry N.

    2018-04-01

    In this work the analysis of the shape and intensity of albumin Raman signals in visible and near-IR ranges was carried out. The experimental setup using lasers from the visible region first of all excites the fluorescence of the albumin solution, the main contribution to which is produced by sodium chloride, which is a component of the tested sample. At the same time, lasers from the near-infrared range excited the Raman signal of albumin most effectively. It was found that the highest ratio of Raman scattering to autofluorescence intensities in the detected signal was obtained using a laser with a wavelength of 1064 nm. To determine the albumin solution concentration by type of spectrum, a regression approach with the projection to latent structures method was applied. The lowest predicted error of albumin concentration of 2-3 g/l was obtained by using the near-infrared range lasers.

  18. Direct noninvasive observation of near infrared photobleaching of autofluorescence in human volar side fingertips in vivo

    Science.gov (United States)

    Deng, Bin; Wright, Colin; Lewis-Clark, Eric; Shaheen, G.; Geier, Roman; Chaiken, J.

    2010-02-01

    Human transdermal in vivo spectroscopic applications for tissue analysis involving near infrared (NIR) light often must contend with broadband NIR fluorescence that, depending on what kind of spectroscopy is being employed, can degrade signal to noise ratios and dynamic range. Such NIR fluorescence, i.e. "autofluorescence" is well known to originate in blood tissues and various other endogenous materials associated with the static tissues. Results of recent experiments on human volar side fingertips in vivo are beginning to provide a relative ordering of the contributions from various sources. Preliminary results involving the variation in the bleaching effect across different individuals suggest that for 830 nm excitation well over half of the total fluorescence comes from the static tissues and remainder originates with the blood tissues, i.e. the plasma and the hematocrit. Of the NIR fluorescence associated with the static tissue, over half originates with products of well-known post-enzymatic glycation reactions, i.e. Maillard chemistry, in the skin involving glucose and other carbohydrates and skin proteins like collagen and cytosol proteins.

  19. Lipid nanoparticle vectorization of indocyanine green improves fluorescence imaging for tumor diagnosis and lymph node resection.

    Science.gov (United States)

    Navarro, Fabrice P; Berger, Michel; Guillermet, Stéphanie; Josserand, Véronique; Guyon, Laurent; Neumann, Emmanuelle; Vinet, Françoise; Texier, Isabelle

    2012-10-01

    Fluorescence imaging is opening a new era in image-guided surgery and other medical applications. The only FDA approved contrast agent in the near infrared is IndoCyanine Green (ICG), which despites its low toxicity, displays poor chemical and optical properties for long-term and sensitive imaging applications in human. Lipid nanoparticles are investigated for improving ICG optical properties and in vivo fluorescence imaging sensitivity. 30 nm diameter lipid nanoparticles (LNP) are loaded with ICG. Their characterization and use for tumor and lymph node imaging are described. Nano-formulation benefits dye optical properties (6 times improved brightness) and chemical stability (>6 months at 4 degrees C in aqueous buffer). More importantly, LNP vectorization allows never reported sensitive and prolonged (>1 day) labeling of tumors and lymph nodes. Composed of human-use approved ingredients, this novel ICG nanometric formulation is foreseen to expand rapidly the field of clinical fluorescence imaging applications.

  20. Development and validation of a custom made indocyanine green fluorescence lymphatic vessel imager

    Science.gov (United States)

    Pallotta, Olivia J.; van Zanten, Malou; McEwen, Mark; Burrow, Lynne; Beesley, Jack; Piller, Neil

    2015-06-01

    Lymphoedema is a chronic progressive condition often producing significant morbidity. An in-depth understanding of an individual's lymphatic architecture is valuable both in the understanding of underlying pathology and for targeting and tailoring treatment. Severe lower limb injuries resulting in extensive loss of soft tissue require transposition of a flap consisting of muscle and/or soft tissue to close the defect. These patients are at risk of lymphoedema and little is known about lymphatic regeneration within the flap. Indocyanine green (ICG), a water-soluble dye, has proven useful for the imaging of lymphatic vessels. When injected into superficial tissues it binds to plasma proteins in lymph. By exposing the dye to specific wavelengths of light, ICG fluoresces with near-infrared light. Skin is relatively transparent to ICG fluorescence, enabling the visualization and characterization of superficial lymphatic vessels. An ICG fluorescence lymphatic vessel imager was manufactured to excite ICG and visualize real-time fluorescence as it travels through the lymphatic vessels. Animal studies showed successful ICG excitation and detection using this imager. Clinically, the imager has assisted researchers to visualize otherwise hidden superficial lymphatic pathways in patients postflap surgery. Preliminary results suggest superficial lymphatic vessels do not redevelop in muscle flaps.

  1. Fluorescent nanodiamonds engage innate immune effector cells: A potential vehicle for targeted anti-tumor immunotherapy.

    Science.gov (United States)

    Suarez-Kelly, Lorena P; Campbell, Amanda R; Rampersaud, Isaac V; Bumb, Ambika; Wang, Min S; Butchar, Jonathan P; Tridandapani, Susheela; Yu, Lianbo; Rampersaud, Arfaan A; Carson, William E

    2017-04-01

    Fluorescent nanodiamonds (FNDs) are nontoxic, infinitely photostable, and emit fluorescence in the near infrared region. Natural killer (NK) cells and monocytes are part of the innate immune system and are crucial to the control of carcinogenesis. FND-mediated stimulation of these cells may serve as a strategy to enhance anti-tumor activity. FNDs were fabricated with a diameter of 70±28 nm. Innate immune cell FND uptake, viability, surface marker expression, and cytokine production were evaluated in vitro. Evaluation of fluorescence emission from the FNDs was conducted in an animal model. In vitro results demonstrated that treatment of immune cells with FNDs resulted in significant dose-dependent FND uptake, no compromise in cell viability, and immune cell activation. FNDs were visualized in an animal model. Hence, FNDs may serve as novel agents with "track and trace" capabilities to stimulate innate immune cell anti-tumor responses, especially as FNDs are amenable to surface-conjugation with immunomodulatory molecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Synthesis of fluorescent metal nanoparticles in aqueous solution by photochemical reduction

    KAUST Repository

    Kshirsagar, Prakash

    2014-01-06

    A facile green chemistry approach for the synthesis of sub-5 nm silver and gold nanoparticles is reported. The synthesis was achieved by a photochemical method using tyrosine as the photoreducing agent. The size of the gold and silver nanoparticles was about 3 and 4 nm, respectively. The nanoparticles were characterized using x-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy and photoluminescence spectroscopy. Both silver and gold nanoparticles synthesized by this method exhibited fluorescence properties and their use for cell imaging applications has been demonstrated. © 2014 IOP Publishing Ltd.

  3. Fabrication and testing of an electrochemical microcell for in situ soft X-ray microspectroscopy measurements

    Science.gov (United States)

    Gianoncelli, A.; Kaulich, B.; Kiskinova, M.; Mele, C.; Prasciolu, M.; Sgura, I.; Bozzini, B.

    2013-03-01

    In this paper we report on the fabrication and testing of a novel concept of electrochemical microcell for in-situ soft X-ray microspectroscopy in transmission. The microcell, fabricated by electron-beam lithography, implements an improved electrode design, with optimal current density distribution and minimised ohmic drop, allowing the same three-electrode electrochemical control achievable with traditional cells. Moreover standard electroanalytical measurements, such as cyclic voltammetry, can be routinely performed. As far as the electrolyte is concerned, we selected a room-temperature ionic-liquid. Some of the materials belonging to this class, in addition to a broad range of outstanding electrochemical properties, feature two highlights that are crucial for in situ, soft X-ray transmission work: spinnability, enabling accurate thickness control, and stability to UHV, allowing operation of an open cell in the analysis chamber vacuum (10-6 mbar). The cell can, of course, be used also with non-vacuum stable electrolytes in the sealed version developed in previous work in our group. In this study, the microcell designed, fabricated and tested in situ by applying an anodic polarisation to a Au electrode and following the formation of a distribution of corrosion features. This specific material combination presented in this work does not limit the cell concept, that can implement any electrodic material grown by lithography, any liquid electrolyte and any spinnable solid electrolyte.

  4. Attenuated total internal reflection infrared microspectroscopic imaging using a large-radius germanium internal reflection element and a linear array detector.

    Science.gov (United States)

    Patterson, Brian M; Havrilla, George J

    2006-11-01

    The number of techniques and instruments available for Fourier transform infrared (FT-IR) microspectroscopic imaging has grown significantly over the past few years. Attenuated total internal reflectance (ATR) FT-IR microspectroscopy reduces sample preparation time and has simplified the analysis of many difficult samples. FT-IR imaging has become a powerful analytical tool using either a focal plane array or a linear array detector, especially when coupled with a chemometric analysis package. The field of view of the ATR-IR microspectroscopic imaging area can be greatly increased from 300 x 300 microm to 2500 x 2500 microm using a larger internal reflection element of 12.5 mm radius instead of the typical 1.5 mm radius. This gives an area increase of 70x before aberrant effects become too great. Parameters evaluated include the change in penetration depth as a function of beam displacement, measurements of the active area, magnification factor, and change in spatial resolution over the imaging area. Drawbacks such as large file size will also be discussed. This technique has been successfully applied to the FT-IR imaging of polydimethylsiloxane foam cross-sections, latent human fingerprints, and a model inorganic mixture, which demonstrates the usefulness of the method for pharmaceuticals.

  5. Fluorescence Image Segmentation by using Digitally Reconstructed Fluorescence Images

    OpenAIRE

    Blumer, Clemens; Vivien, Cyprien; Oertner, Thomas G; Vetter, Thomas

    2011-01-01

    In biological experiments fluorescence imaging is used to image living and stimulated neurons. But the analysis of fluorescence images is a difficult task. It is not possible to conclude the shape of an object from fluorescence images alone. Therefore, it is not feasible to get good manual segmented nor ground truth data from fluorescence images. Supervised learning approaches are not possible without training data. To overcome this issues we propose to synthesize fluorescence images and call...

  6. Fluorescence properties of valence-controlled Eu2+ and Mn2+ ions in aluminosilicate glasses

    International Nuclear Information System (INIS)

    Van Tuyen, Ho; Nonaka, Takamasa; Yamanaka, Ken-ichi; Chau, Pham Minh; Quy Hai, Nguyen Thi; Quang, Vu Xuan; Nogami, Masayuki

    2017-01-01

    Controlling of valence states of metal ions doped in glasses has attracted considerable interest due to the possibility of looking toward optical applications. In this study, new Na 2 O-Al 2 O 3 -SiO 2 glasses were developed to dope Eu 2+ and Mn 2+ with well controlled valence states by heating in H 2 gas atmosphere, and the changes in the valence state of doped-ions and their fluorescence properties were investigated using visible and infrared optical absorption spectroscopies, X-ray absorption fine structure spectroscopy, and fluorescence spectroscopy. Among Eu 3+ , Mn 3+ and Mn 2+ ions incorporated in the as-prepared glasses, the Eu 3+ and Mn 3+ ions were reduced to Eu 2+ and Mn 2+ ions, respectively, by heating in H 2 gas and OH bonds were concurrently formed. The fluorescence spectra of glasses heated in H 2 exhibited broad emission bands at 450 and 630 nm wavelength, assigned to the Eu 2+ and Mn 2+ , respectively, ions, in which the fluorescence intensity at 450 nm was observed to decrease with increasing Mn 2+ ion content. The increased fluorescence intensities were analyzed as the energy transfer from Eu 2+ to Mn 2+ ions and the energy transfer efficiency was estimated with a concentration of Eu 2+ and Mn 2+ ions.

  7. Comparison of Near-Infrared Imaging Camera Systems for Intracranial Tumor Detection.

    Science.gov (United States)

    Cho, Steve S; Zeh, Ryan; Pierce, John T; Salinas, Ryan; Singhal, Sunil; Lee, John Y K

    2018-04-01

    Distinguishing neoplasm from normal brain parenchyma intraoperatively is critical for the neurosurgeon. 5-Aminolevulinic acid (5-ALA) has been shown to improve gross total resection and progression-free survival but has limited availability in the USA. Near-infrared (NIR) fluorescence has advantages over visible light fluorescence with greater tissue penetration and reduced background fluorescence. In order to prepare for the increasing number of NIR fluorophores that may be used in molecular imaging trials, we chose to compare a state-of-the-art, neurosurgical microscope (System 1) to one of the commercially available NIR visualization platforms (System 2). Serial dilutions of indocyanine green (ICG) were imaged with both systems in the same environment. Each system's sensitivity and dynamic range for NIR fluorescence were documented and analyzed. In addition, brain tumors from six patients were imaged with both systems and analyzed. In vitro, System 2 demonstrated greater ICG sensitivity and detection range (System 1 1.5-251 μg/l versus System 2 0.99-503 μg/l). Similarly, in vivo, System 2 demonstrated signal-to-background ratio (SBR) of 2.6 ± 0.63 before dura opening, 5.0 ± 1.7 after dura opening, and 6.1 ± 1.9 after tumor exposure. In contrast, System 1 could not easily detect ICG fluorescence prior to dura opening with SBR of 1.2 ± 0.15. After the dura was reflected, SBR increased to 1.4 ± 0.19 and upon exposure of the tumor SBR increased to 1.8 ± 0.26. Dedicated NIR imaging platforms can outperform conventional microscopes in intraoperative NIR detection. Future microscopes with improved NIR detection capabilities could enhance the use of NIR fluorescence to detect neoplasm and improve patient outcome.

  8. Ultrasmall visible-to-near-infrared emitting silver-sulfide quantum dots for cancer detection and imaging

    Science.gov (United States)

    Tang, Rui; Xu, Baogang; Shen, Duanwen; Sudlow, Gail; Achilefu, Samuel

    2018-02-01

    The large size of many near infrared (NIR) fluorescent nanoparticles prevents rapid extravasation from blood vessels and subsequent diffusion to tumors. This confines in vivo uptake to the peritumoral space and results in high liver retention. We developed a viscosity modulated approach to synthesize ultrasmall silver sulfide quantum dots (QDs) with distinct tunable light emission from visible to near-infrared in spectrum and a QD core diameter between less than 5 nm. Further functionalization of these Ag2S QDs with different type of molecules such as targeting peptides, retains monodisperse, relatively small water soluble QDs without loss of the functionality of the peptide's high binding affinity to cancerous tumor. Fluorescence and electron microscopy showed that selective integrin-mediated internalization was observed only in cancer cells treated with the peptide-labeled QDs, demonstrating that the unlabeled hydrophilic nanoparticles exhibit characteristics of negatively charged fluorescent dye molecules, which typically do not internalize in cells. The biodistribution profiles of intravenously administered QDs in different mouse models of cancer reveal an exceptionally high tumor-to-liver uptake ratio, suggesting that the small sized QDs evaded conventional opsonization and subsequent high uptake in the liver and spleen. The seamless tunability of the QDs over a wide spectral range with only a small increase in size, as well as the ease of labeling the bright and non-cytotoxic QDs with biomolecules, provides a platform for multiplexing information, tracking the trafficking of single molecules in cells, and selectively targeting disease biomarkers in living organisms without premature QD opsonization in circulating blood.

  9. A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra

    International Nuclear Information System (INIS)

    Chen LiMei; Carpita, N.C.; Reiter, W.D.; Wilson, R.H.; Jeffries, C.; McCann, M.C.

    1998-01-01

    We have developed a rapid method to screen large numbers of mutant plants for a broad range of cell wall phenotypes using Fourier transform infrared (FTIR) microspectroscopy of leaves. We established and validated a model that can discriminate between the leaves of wild-type and a previously defined set of cell-wall mutants of Arabidopsis. Exploratory principal component analysis indicated that mutants deficient in different cell-wall sugars can be distinguished from each other. Discrimination of cell-wall mutants from wild-type was independent of variability in starch content or additional unrelated mutations that might be present in a heavily mutagenised population. We then developed an analysis of FTIR spectra of leaves obtained from over 1000 mutagenised flax plants, and selected 59 plants whose spectral variation from wild-type was significantly out of the range of a wild-type population, determined by Mahalanobis distance. Cell wall sugars from the leaves of selected putative mutants were assayed by gas chromatography-mass spectrometry and 42 showed significant differences in neutral sugar composition. The FTIR spectra indicated that six of the remaining 17 plants have altered ester or protein content. We conclude that linear discriminant analysis of FTIR spectra is a robust method to identify a broad range of structural and architectural alterations in cell walls, appearing as a consequence of developmental regulation, environmental adaptation or genetic modification. (author)

  10. Single Cell Synchrotron FT-IR Microspectroscopy Reveals a Link between Neutral Lipid and Storage Carbohydrate Fluxes in S. cerevisiae

    Science.gov (United States)

    Jamme, Frédéric; Vindigni, Jean-David; Méchin, Valérie; Cherifi, Tamazight; Chardot, Thierry; Froissard, Marine

    2013-01-01

    In most organisms, storage lipids are packaged into specialized structures called lipid droplets. These contain a core of neutral lipids surrounded by a monolayer of phospholipids, and various proteins which vary depending on the species. Hydrophobic structural proteins stabilize the interface between the lipid core and aqueous cellular environment (perilipin family of proteins, apolipoproteins, oleosins). We developed a genetic approach using heterologous expression in Saccharomyces cerevisiae of the Arabidopsis thaliana lipid droplet oleosin and caleosin proteins AtOle1 and AtClo1. These transformed yeasts overaccumulate lipid droplets, leading to a specific increase in storage lipids. The phenotype of these cells was explored using synchrotron FT-IR microspectroscopy to investigate the dynamics of lipid storage and cellular carbon fluxes reflected as changes in spectral fingerprints. Multivariate statistical analysis of the data showed a clear effect on storage carbohydrates and more specifically, a decrease in glycogen in our modified strains. These observations were confirmed by biochemical quantification of the storage carbohydrates glycogen and trehalose. Our results demonstrate that neutral lipid and storage carbohydrate fluxes are tightly connected and co-regulated. PMID:24040242

  11. Single cell synchrotron FT-IR microspectroscopy reveals a link between neutral lipid and storage carbohydrate fluxes in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Frédéric Jamme

    Full Text Available In most organisms, storage lipids are packaged into specialized structures called lipid droplets. These contain a core of neutral lipids surrounded by a monolayer of phospholipids, and various proteins which vary depending on the species. Hydrophobic structural proteins stabilize the interface between the lipid core and aqueous cellular environment (perilipin family of proteins, apolipoproteins, oleosins. We developed a genetic approach using heterologous expression in Saccharomyces cerevisiae of the Arabidopsis thaliana lipid droplet oleosin and caleosin proteins AtOle1 and AtClo1. These transformed yeasts overaccumulate lipid droplets, leading to a specific increase in storage lipids. The phenotype of these cells was explored using synchrotron FT-IR microspectroscopy to investigate the dynamics of lipid storage and cellular carbon fluxes reflected as changes in spectral fingerprints. Multivariate statistical analysis of the data showed a clear effect on storage carbohydrates and more specifically, a decrease in glycogen in our modified strains. These observations were confirmed by biochemical quantification of the storage carbohydrates glycogen and trehalose. Our results demonstrate that neutral lipid and storage carbohydrate fluxes are tightly connected and co-regulated.

  12. One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Vaibhavkumar N. [Applied Chemistry Department, S. V. National Institute of Technology, Surat, 395 007 (India); Jha, Sanjay [Gujarat Agricultural Biotechnology Institute, Navsari Agricultural University, Surat, 395007 (India); Kailasa, Suresh Kumar, E-mail: sureshkumarchem@gmail.com [Applied Chemistry Department, S. V. National Institute of Technology, Surat, 395 007 (India)

    2014-05-01

    We are reporting highly economical plant-based hydrothermal method for one-pot green synthesis of water-dispersible fluorescent carbon dots (CDs) by using Saccharum officinarum juice as precursor. The synthesized CDs were characterized by UV-visible, fluorescence, Fourier transform infrared (FT-IR), dynamic light scattering (DLS), high-resolution transmission electron microscopic (HR-TEM), and laser scanning confocal microscopic techniques. The CDs are well dispersed in water with an average size of ∼ 3 nm and showed bright blue fluorescence under UV-light (λ{sub ex} = 365 nm). These CDs acted as excellent fluorescent probes in cellular imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae). - Highlights: • One-pot green synthesis was used for fluorescent CDs. • FT-IR, DLS, and TEM were used for the characterization of CDs. • The CDs are well dispersed in water with an average size of ∼ 3 nm. • The CDs acted as fluorescent probes for imaging of bacteria and yeast cells.

  13. Stability of some Cactaceae proteins based on fluorescence, circular dichroism, and differential scanning calorimetry measurements.

    Science.gov (United States)

    Gorinstein, S; Zemser, M; Vargas-Albores, F; Ochoa, J L; Paredes-Lopez, O; Scheler, C; Aksu, S; Salnikow, J

    1999-02-01

    Characterization of three cactus proteins (native and denatured) from Machaerocereus gummosus (Pitahaya agria), Lophocereu schottii (Garambullo), and Cholla opuntia (Cholla), was based on electrophoretic, fluorescence, CD (circular dichroism), DSC (differential scanning calorimetry), and FT-IR (Fourier transform infrared) measurements. The obtained results of intrinsic fluorescence, DSC, and CD were dissimilar for the three species of cactus, providing evidence of differences in secondary and tertiary structures. Cactus proteins may be situated in the following order corresponding to their relative stability: Machaerocereus gummosus (Pitahaya agria) > Cholla opuntia (Cholla) > Lophocereu schottii (Garambullo). Thermodynamic properties of proteins and their changes upon denaturation (temperature of denaturation, enthalphy, and the number of ruptured hydrogen bonds) were correlated with the secondary structure of proteins and disappearance of alpha-helix.

  14. meso-Substituted bisanthenes as soluble and stable near-infrared dyes

    KAUST Repository

    Li, Jinling

    2010-02-05

    (Chemical Equation Presented) Three meso-substituted bisanthenes, 4-6, were prepared in a short synthetic route from the bisanthenequinone. They exhibit largely improved stability and solubility in comparison to the parent bisanthene. All of these compounds also show near-infrared (NIR) absorption and emission with high to moderate fluorescence quantum yields. Amphoteric redox behavior was observed for 4-6 by cyclic voltammetry, and these compounds can be reversibly oxidized and reduced into respective cationic and anionic species by both electrochemical and chemical processes. In addition, compound 5 adopts a herringbone π-stacking motif in the single crystal. © 2010 American Chemical Society.

  15. Large Ferrierite Crystals as Models for Catalyst Deactivation during Skeletal Isomerisation of Oleic Acid : Evidence for Pore Mouth Catalysis

    OpenAIRE

    Wiedemann, Sophie C. C.; Ristanovic, Zoran; Whiting, Gareth T.; Marthala, V. R. Reddy; Kaerger, Joerg; Weitkamp, Jens; Wels, Bas; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.

    2016-01-01

    Large zeolite crystals of ferrierite have been used to study the deactivation, at the single particle level, of the alkyl isomerisation catalysis of oleic acid and elaidic acid by a combination of visible micro-spectroscopy and fluorescence microscopy (both polarised wide-field and confocal modes). The large crystals did show the desired activity, albeit only traces of the isomerisation product were obtained and low conversions were achieved compared to commercial ferrierite powders. This lim...

  16. Vibration and Fluorescence Spectra of Porphyrin- CoredBis(methylol-propionic Acid Dendrimers

    Directory of Open Access Journals (Sweden)

    Boris Minaev

    2009-03-01

    Full Text Available Bis-MPA dendron-coated free-base tetraphenylporphyrin and zinc-tetraphenyl-porphyrin (TPPH2 and TPPZn were studied in comparison with simple porphyrins (H2P, ZnP by theoretical simulation of their infrared, Raman and electronic absorption spectra, as well as fluorescense emission. Infrared and fluorescence spectra of the dendrimers were measured and interpreted along with time-resolved measurements of the fluorescence. The 0-1 emission band of the dendron substituted TPPZn was found to experience a "heavy substitution"-effect. The 0-1 vibronic emission signal is associated with a longer decay time (approx. 7 - 8 ns than the 0-0 emission (approx. 1 - 1.5 ns. The former contributed with more relative emission yield for larger dendron substituents, in agreement with the appearance of steady-state emission spectra showing increased contribution from the 0-1 vibronic fluorescence band at 650 nm. No such substitution effect was observed in the electronic or vibrational spectra of the substituted free-base variant, TPPH2. Vibration spectra of the parent porphyrins (H2P, ZnP, TPPH2 and TPPZn were calculated by density functional theory (DFT using the B3LYP/6-31G** approximation and a detailed analysis of the most active vibration modes was made based on both literature and our own experimental data. Based on the results of theoretical calculations the wide vibronic bands in the visible region were assigned. The vibronic structure also gave a qualitative interpretation of bands in the electronic absorption spectra as well as in fluorescence emission depending on the size of dendrimer substitution. From the results of time-dependent DFT calculations it is suggested that the TPPZn-cored dendrimers indicate strong vibronic interaction and increased Jahn-Teller distortion of the prophyrin core for larger dendrimer generations. Specifically, this leads to the entirely different behaviour of the emission spectra upon substitution of the TPPH2 and TPPZn

  17. Stepwise multiphoton activation fluorescence reveals a new method of melanin detection

    Science.gov (United States)

    Lai, Zhenhua; Kerimo, Josef; Mega, Yair; DiMarzio, Charles A.

    2013-06-01

    The stepwise multiphoton activated fluorescence (SMPAF) of melanin, activated by a continuous-wave mode near infrared (NIR) laser, reveals a broad spectrum extending from the visible spectra to the NIR and has potential application for a low-cost, reliable method of detecting melanin. SMPAF images of melanin in mouse hair and skin are compared with conventional multiphoton fluorescence microscopy and confocal reflectance microscopy (CRM). By combining CRM with SMPAF, we can locate melanin reliably. However, we have the added benefit of eliminating background interference from other components inside mouse hair and skin. The melanin SMPAF signal from the mouse hair is a mixture of a two-photon process and a third-order process. The melanin SMPAF emission spectrum is activated by a 1505.9-nm laser light, and the resulting spectrum has a peak at 960 nm. The discovery of the emission peak may lead to a more energy-efficient method of background-free melanin detection with less photo-bleaching.

  18. Organic liquids-responsive β-cyclodextrin-functionalized graphene-based fluorescence probe: label-free selective detection of tetrahydrofuran.

    Science.gov (United States)

    Hu, Huawen; Xin, John H; Hu, Hong; Wang, Xiaowen; Lu, Xinkun

    2014-06-06

    In this study, a label-free graphene-based fluorescence probe used for detection of volatile organic liquids was fabricated by a simple, efficient and low-cost method. To fabricate the probe, a bio-based β-cyclodextrin (β-CD) was firstly grafted on reduced graphene surfaces effectively and uniformly, as evidenced by various characterization techniques such as Ultraviolet/Visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. The subsequent inclusion of Rhodamine B (RhB) into the inner cavities of the β-CD grafted on the graphene surfaces was achieved easily by a solution mixing method, which yielded the graphene-based fluorescent switch-on probe. In addition, the gradual and controllable quenching of RhB by Fluorescence Resonance Energy Transfer from RhB to graphene during the process of stepwise accommodation of the RhB molecules into the β-CD-functionalized graphene was investigated in depth. A wide range of organic solvents was examined using the as-fabricated fluorescence probe, which revealed the highest sensitivity to tetrahydrofuran with the detection limit of about 1.7 μg/mL. Some insight into the mechanism of the different responsive behaviors of the fluorescence sensor to the examined targets was also described.

  19. Organic Liquids-Responsive β-Cyclodextrin-Functionalized Graphene-Based Fluorescence Probe: Label-Free Selective Detection of Tetrahydrofuran

    Directory of Open Access Journals (Sweden)

    Huawen Hu

    2014-06-01

    Full Text Available In this study, a label-free graphene-based fluorescence probe used for detection of volatile organic liquids was fabricated by a simple, efficient and low-cost method. To fabricate the probe, a bio-based β-cyclodextrin (β-CD was firstly grafted on reduced graphene surfaces effectively and uniformly, as evidenced by various characterization techniques such as Ultraviolet/Visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. The subsequent inclusion of Rhodamine B (RhB into the inner cavities of the β-CD grafted on the graphene surfaces was achieved easily by a solution mixing method, which yielded the graphene-based fluorescent switch-on probe. In addition, the gradual and controllable quenching of RhB by Fluorescence Resonance Energy Transfer from RhB to graphene during the process of stepwise accommodation of the RhB molecules into the β-CD-functionalized graphene was investigated in depth. A wide range of organic solvents was examined using the as-fabricated fluorescence probe, which revealed the highest sensitivity to tetrahydrofuran with the detection limit of about 1.7 μg/mL. Some insight into the mechanism of the different responsive behaviors of the fluorescence sensor to the examined targets was also described.

  20. Application of fluorescence in robotic general surgery: review of the literature and state of the art.

    Science.gov (United States)

    Marano, Alessandra; Priora, Fabio; Lenti, Luca Matteo; Ravazzoni, Ferruccio; Quarati, Raoul; Spinoglio, Giuseppe

    2013-12-01

    The initial use of the indocyanine green fluorescence imaging system was for sentinel lymph node biopsy in patients with breast or colorectal cancer. Since then, application of this method has received wide acceptance in various fields of surgical oncology, and it has become a valid diagnostic tool for guiding cancer treatment. It has also been employed in numerous conventional surgical procedures with much success and benefit to the patient. The advent of minimally invasive surgery brought with it a new use for fluorescence in helping to improve the safety of these procedures, particularly for single-site procedures. In 2010, a near-infrared camera was integrated into the da Vinci Si System, creating a combination of technical and minimally invasive advantages that have been embraced by several experienced surgeons. The use of fluorescence, although useful, is considered challenging. Only a few studies are currently available on the use of fluorescence in robotic general surgery, whereas many articles have focused on its application in open and laparoscopic surgery. Many of these reports describe promising and satisfactory results, although with some shortcomings. The purpose of this article is to review the current status of the use of fluorescence in general surgery and particularly its role in robotic surgery. We also review potential uses in the future.

  1. A bispecific peptide based near-infrared probe for in vivo tumor diagnosis

    Science.gov (United States)

    Ding, Li; Chen, Wei R.; Gu, Yueqing

    2013-02-01

    The epidermal growth factor receptor EGFR and HER2 are members of recepeter tyrosine kinase family. Overexpression of EGFR and HER2 has been observed in a variety of human tumors, making these receptors promising targets for tumor diagnosis. An affibody targeting HER2 and a nanobody targeting EGFR were reported before. In this Manuscript, we described an bispecific peptide combined with an affibody and a nanonbody through a linker―(G4S)3 . And the bispecific peptide was labeled with near-infrared (NIR) fluorochrome ICG-Der-02 for in vivo tumor EGFR and HER2 targeting. Afterwards, the EGFR and HER2 specificity of the fluorescent probe was tested in vitro for receptor binding assay and fluorescence microscopy and in vivo for subcutaneous MDA-MB-231 tumor targeting. The results indicated that the bispecific peptide had a high affinity to EGFR and HER2. Besides, in vitro and in vivo tumor targeting experiment indicated that the ICG-Der-02-( bispecific peptide) showed excellent tumor activity accumulation. Noninvasive NIR fluorescence imaging is able to detect tumor EGFR and HER2 expression based upon the highly potent bispecific peptide probe.

  2. Fluorescent Angiography Used to Evaluate the Perfusion Status of Anastomosis in Laparoscopic Anterior Resection.

    Science.gov (United States)

    Koh, Frederick H; Tan, Ker-Kan

    2016-12-01

    Anastomotic leakage after gastrointestinal surgery is associated with significant morbidity and mortality.1 Insufficient vascular supply is one cause.2 Recent reports of using intraoperative indocyanine green (ICG) fluorescent angiography to evaluate whether perfusion of the anastomosis is adequate has yielded positive outcomes.3 - 6 The authors describe their use of ICG-enhanced fluorescence angiography in a laparoscopic anterior resection. The patient was an 80-year-old with an upper rectal adenocarcinoma and significant cardiovascular risk factors. Fluorescence angiography with 0.4 mg/kg of ICG was administered intravenously just before the colorectal anastomosis was fashioned. A near-infrared (NIR) laparoscopic camera (KARLSTORZ, GmbH & Co. KG, Tuttlingen, Germany) was used to inspect the anastomosis. For this video, 0.4 mg/kg of ICG also was injected after ligation of the inferior mesenteric artery to demonstrate the appearance of a poorly perfused sigmoid bowel. Just before the staple was fired to fashion the colorectal anastomosis, an intravenous bolus of ICG was administered. Within seconds, vessels on both ends of the anastomosis turned fluorescent blue, indicating adequacy of perfusion. The use of ICG did not significantly lengthen the operative time (285 min) because its effect appeared within seconds after its administration. The patient recovered well and was discharged on postoperative day 5. Another four patients who also underwent intraoperative fluorescent angiography for left-sided colorectal lesions did not experience anastomotic leakage. The study showed that ICG fluorescent angiography is a simple and quick intraoperative tool for evaluating the perfusion of the anastomosis. The authors' experience with ICG fluorescent angiography has shown promising results, with a 0 % anastomotic leak rate.

  3. Fluorescent cellulose nanocrystals via supramolecular assembly of terpyridine-modified cellulose nanocrystals and terpyridine-modified perylene

    International Nuclear Information System (INIS)

    Hassan, Mohammad L.; Moorefield, Charles M.; Elbatal, Hany S.; Newkome, George R.; Modarelli, David A.; Romano, Natalie C.

    2012-01-01

    Highlights: ► Surfaces of cellulose nanocrystals were modified with terpyridine ligands. ► Fluorescent nanocrystals could be obtained via self-assembly of terpyridine-modified perylene dye onto the terpyridine-modified cellulose nanocrystals. ► Further self-assembly of azide-functionalized terpyridine onto the fluorescent cellulose nanocrystals was possible to obtain nanocellulosic material with expected use in bioimaging. - Abstract: Due to their natural origin, biocompatibility, and non-toxicity, cellulose nanocrystals are promising candidates for applications in nanomedicine. Highly fluorescent nanocellulosic material was prepared via surface modification of cellulose nanocrystals with 2,2′:6′,2″-terpyridine side chains followed by supramolecular assembly of terpyridine-modified perylene dye onto the terpyridine-modified cellulose nanocrystals (CTP) via Ru III /Ru II reduction. The prepared terpyridine-modified cellulose-Ru II -terpyridine-modified perylene (CTP-Ru II -PeryTP) fluorescent nanocrystals were characterized using cross-polarized/magic angle spin 13 C nuclear magnetic resonance (CP/MAS 13 C NMR), Fourier transform infrared (FTIR), UV–visible, and fluorescence spectroscopy. In addition, further self-assembly of terpyridine units with azide functional groups onto CTP-Ru II -PeryTP was possible via repeating the Ru III /Ru II reduction protocol to prepare supramolecular fluorescent nanocrystals with azide functionality (CTP-Ru II -PeryTP-Ru II -AZTP). The prepared derivative may have potential application in bio-imaging since the terminal azide groups can be easily reacted with antigens via “Click” chemistry reaction.

  4. Direct Measurement of pH in Individual Particles via Raman Microspectroscopy and Variation in Acidity with Relative Humidity.

    Science.gov (United States)

    Rindelaub, Joel D; Craig, Rebecca L; Nandy, Lucy; Bondy, Amy L; Dutcher, Cari S; Shepson, Paul B; Ault, Andrew P

    2016-02-18

    Atmospheric aerosol acidity is an important characteristic of aqueous particles, which has been linked to the formation of secondary organic aerosol by catalyzing reactions of oxidized organic compounds that have partitioned to the particle phase. However, aerosol acidity is difficult to measure and traditionally estimated using indirect methods or assumptions based on composition. Ongoing disagreements between experiments and thermodynamic models of particle acidity necessitate improved fundamental understanding of pH and ion behavior in high ionic strength atmospheric particles. Herein, Raman microspectroscopy was used to determine the pH of individual particles (H2SO4+MgSO4) based on sulfate and bisulfate concentrations determined from νs(SO4(2-)) and νs(HSO4(-)), the acid dissociation constant, and activity coefficients from extended Debye-Hückel calculations. Shifts in pH and peak positions of νs(SO4(2-)) and νs(HSO4(-)) were observed as a function of relative humidity. These results indicate the potential for direct spectroscopic determination of pH in individual particles and the need to improve fundamental understanding of ion behavior in atmospheric particles.

  5. Near-Infrared Resonance Energy Transfer Glucose Biosensors in Hybrid Microcapsule Carriers

    Directory of Open Access Journals (Sweden)

    Mike McShane

    2008-09-01

    Full Text Available Fluorescence-based sensing systems offer potential for noninvasive monitoring with implantable devices, but require carrier technologies that provide suitable immobilization, accessibility, and biocompatibility. Recent developments towards this goal include a competitive binding assay for glucose that has been encapsulated in semipermeable microcapsule carriers. This paper describes an extension of this work to increase the applicability to in vivo monitoring, wherein two significant developments are described: (1 a near-infrared resonance energy transfer system for transducing glucose concentration, and (2 novel hybrid organic-inorganic crosslinked microcapsules as carriers. The quenching-based assay is a competitive binding (CB system based on apo-glucose oxidase (AG as the receptor and dextran as the competitive ligand. The encapsulated quencher-labeled dextran and near infrared donor-labeled glucose receptor showed a stable and reversible response with tunable sensitivity of 1–5%/mM over the physiological range, making these transducers attractive for continuous monitoring for biomedical applications.

  6. A Cu2+-selective fluorescent chemosensor based on BODIPY with two pyridine ligands and logic gate

    Science.gov (United States)

    Huang, Liuqian; Zhang, Jing; Yu, Xiaoxiu; Ma, Yifan; Huang, Tianjiao; Shen, Xi; Qiu, Huayu; He, Xingxing; Yin, Shouchun

    2015-06-01

    A novel near-infrared fluorescent chemosensor based on BODIPY (Py-1) has been synthesized and characterized. Py-1 displays high selectivity and sensitivity for sensing Cu2+ over other metal ions in acetonitrile. Upon addition of Cu2+ ions, the maximum absorption band of Py-1 in CH3CN displays a red shift from 603 to 608 nm, which results in a visual color change from pink to blue. When Py-1 is excited at 600 nm in the presence of Cu2+, the fluorescent emission intensity of Py-1 at 617 nm is quenched over 86%. Notably, the complex of Py-1-Cu2+ can be restored with the introduction of EDTA or S2-. Consequently, an IMPLICATION logic gate at molecular level operating in fluorescence mode with Cu2+ and S2- as chemical inputs can be constructed. Finally, based on the reversible and reproducible system, a nanoscale sequential memory unit displaying "Writing-Reading-Erasing-Reading" functions can be integrated.

  7. Insights into Insulin Fibril Assembly at Physiological and Acidic pH and Related Amyloid Intrinsic Fluorescence

    Directory of Open Access Journals (Sweden)

    Clara Iannuzzi

    2017-11-01

    Full Text Available Human insulin is a widely used model protein for the study of amyloid formation as both associated to insulin injection amyloidosis in type II diabetes and highly prone to form amyloid fibrils in vitro. In this study, we aim to gain new structural insights into insulin fibril formation under two different aggregating conditions at neutral and acidic pH, using a combination of fluorescence, circular dichroism, Fourier-transform infrared spectroscopy, and transmission electron miscroscopy. We reveal that fibrils formed at neutral pH are morphologically different from those obtained at lower pH. Moreover, differences in FTIR spectra were also detected. In addition, only insulin fibrils formed at neutral pH showed the characteristic blue-green fluorescence generally associated to amyloid fibrils. So far, the molecular origin of this fluorescence phenomenon has not been clarified and different hypotheses have been proposed. In this respect, our data provide experimental evidence that allow identifying the molecular origin of such intrinsic property.

  8. Automated Cart with VIS/NIR Hyperspectral Reflectance and Fluorescence Imaging Capabilities

    Directory of Open Access Journals (Sweden)

    Alan M. Lefcourt

    2016-12-01

    Full Text Available A system to take high-resolution Visible/Near Infra-Red (VIS/NIR hyperspectral reflectance and fluorescence images in outdoor fields using ambient lighting or a pulsed laser (355 nm, respectively, for illumination purposes was designed, built, and tested. Components of the system include a semi-autonomous cart, a gated-intensified camera, a spectral adapter, a frequency-triple Nd:YAG (Neodymium-doped Yttrium Aluminium Garnet laser, and optics to convert the Gaussian laser beam into a line-illumination source. The front wheels of the cart are independently powered by stepper motors that support stepping or continuous motion. When stepping, a spreadsheet is used to program parameters of image sets to be acquired at each step. For example, the spreadsheet can be used to set delays before the start of image acquisitions, acquisition times, and laser attenuation. One possible use of this functionality would be to establish acquisition parameters to facilitate the measurement of fluorescence decay-curve characteristics. The laser and camera are mounted on an aluminum plate that allows the optics to be calibrated in a laboratory setting and then moved to the cart. The system was validated by acquiring images of fluorescence responses of spinach leaves and dairy manure.

  9. Fluorescent humanized anti-CEA antibody specifically labels metastatic pancreatic cancer in a patient-derived orthotopic xenograft (PDOX) mouse model

    Science.gov (United States)

    Lwin, Thinzar M.; Miyake, Kentaro; Murakami, Takashi; DeLong, Jonathan C.; Yazaki, Paul J.; Shivley, John E.; Clary, Bryan; Hoffman, Robert M.; Bouvet, Michael

    2018-03-01

    Specific tumor targeting can result in selective labeling of cancer in vivo for surgical navigation. In the present study, we show that the use of an anti-CEA antibody conjugated to the near-infrared (NIR) fluorescent dye, IRDye800CW, can selectively target and label pancreatic cancer and its metastases in a clinically relevant patient derived xenograft mouse model.

  10. Near-Infrared Spectroscopic Study of Chlorite Minerals

    Directory of Open Access Journals (Sweden)

    Min Yang

    2018-01-01

    Full Text Available The mineral chemistry of twenty chlorite samples from the United States Geological Survey (USGS spectral library and two other regions, having a wide range of Fe and Mg contents and relatively constant Al and Si contents, was studied via infrared (IR spectroscopy, near-infrared (NIR spectroscopy, and X-ray fluorescence (XRF analysis. Five absorption features of the twenty samples near 4525, 4440, 4361, 4270, and 4182 cm−1 were observed, and two diagnostic features at 4440 and 4280 cm−1 were recognized. Assignments of the two diagnostic features were made for two combination bands (ν+δAlAlO−OH and ν+δSiAlO−OH by regression with IR fundamental absorptions. Furthermore, the determinant factors of the NIR band position were found by comparing the band positions with relative components. The results showed that Fe/(Fe + Mg values are negatively correlated with the two NIR combination bands. The findings provide an interpretation of the NIR band formation and demonstrate a simple way to use NIR spectroscopy to discriminate between chlorites with different components. More importantly, spectroscopic detection of mineral chemical variations in chlorites provides geologists with a tool with which to collect information on hydrothermal alteration zones from hyperspectral-resolution remote sensing data.

  11. A theranostic nanoplatform: magneto-gold@fluorescence polymer nanoparticles for tumor targeting T1&T2-MRI/CT/NIR fluorescence imaging and induction of genuine autophagy mediated chemotherapy.

    Science.gov (United States)

    Wang, Guannan; Qian, Kun; Mei, Xifan

    2018-06-14

    Multifunctional nanoparticles, bearing low toxicity and tumor-targeting properties, coupled with multifunctional diagnostic imaging and enhanced treatment efficacy, have drawn tremendous attention due to their enormous potential for medical applications. Herein, we report a new kind of biocompatible and tumor-targeting magneto-gold@fluorescent polymer nanoparticle (MGFs-LyP-1), which is based on ultra-small magneto-gold (Fe 3 O 4 -Au) nanoparticles and NIR emissive fluorescent polymers by a solvent-mediated method. This kind of nanoparticle could be taken up efficiently and simultaneously serve for in vivo tumor targeting T 1 &T 2 -MRI/CT/near infrared (NIR) fluorescence bioimaging. Furthermore, the nanoparticles exhibit small size, higher tumor targeting accumulation, excellent cytocompatibility for long-term tracking, and no disturbing cell proliferation and differentiation. Moreover, clear and convincing evidence proves that as-synthesized MGFs-LyP-1 could elicit genuine autophagy via inducing autophagosome formation, which offers a definite synergistic effect to enhance cancer therapy with doxorubicin (DOX) at a nontoxic concentration through enhancement of the autophagy flux. Meanwhile, the as-prepared nanoparticles could be rapidly cleared from mice without any obvious organ impairment. The results indeed reveal a promising prospect of an MGFs-LyP-1 contrast agent with low toxicity and high efficiency for promising application in biomedicine.

  12. Exciton-controlled fluorescence: application to hybridization-sensitive fluorescent DNA probe.

    Science.gov (United States)

    Okamoto, Akimitsu; Ikeda, Shuji; Kubota, Takeshi; Yuki, Mizue; Yanagisawa, Hiroyuki

    2009-01-01

    A hybridization-sensitive fluorescent probe has been designed for nucleic acid detection, using the concept of fluorescence quenching caused by the intramolecular excitonic interaction of fluorescence dyes. We synthesized a doubly thiazole orange-labeled nucleotide showing high fluorescence intensity for a hybrid with the target nucleic acid and effective quenching for the single-stranded state. This exciton-controlled fluorescent probe was applied to living HeLa cells using microinjection to visualize intracellular mRNA localization. Immediately after injection of the probe into the cell, fluorescence was observed from the probe hybridizing with the target RNA. This fluorescence rapidly decreased upon addition of a competitor DNA. Multicoloring of this probe resulted in the simple simultaneous detection of plural target nucleic acid sequences. This probe realized a large, rapid, reversible change in fluorescence intensity in sensitive response to the amount of target nucleic acid, and facilitated spatiotemporal monitoring of the behavior of intracellular RNA.

  13. Synthesis of fluorescent metal nanoparticles in aqueous solution by photochemical reduction

    International Nuclear Information System (INIS)

    Kshirsagar, Prakash; Brunetti, Virgilio; Malvindi, Maria Ada; Pompa, Pier Paolo; Sangaru, Shiv Shankar

    2014-01-01

    A facile green chemistry approach for the synthesis of sub-5 nm silver and gold nanoparticles is reported. The synthesis was achieved by a photochemical method using tyrosine as the photoreducing agent. The size of the gold and silver nanoparticles was about 3 and 4 nm, respectively. The nanoparticles were characterized using x-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy and photoluminescence spectroscopy. Both silver and gold nanoparticles synthesized by this method exhibited fluorescence properties and their use for cell imaging applications has been demonstrated. (paper)

  14. Molecular Chemical Structure of Barley Proteins Revealed by Ultra-Spatially Resolved Synchrotron Light Sourced FTIR Microspectroscopy: Comparison of Barley Varieties

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    Barley protein structure affects the barley quality, fermentation, and degradation behavior in both humans and animals among other factors such as protein matrix. Publications show various biological differences among barley varieties such as Valier and Harrington, which have significantly different degradation behaviors. The objectives of this study were to reveal the molecular structure of barley protein, comparing various varieties (Dolly, Valier, Harrington, LP955, AC Metcalfe, and Sisler), and quantify protein structure profiles using Gaussian and Lorentzian methods of multi-component peak modeling by using the ultra-spatially resolved synchrotron light sourced Fourier transform infrared microspectroscopy (SFTIRM). The items of the protein molecular structure revealed included protein structure α-helices, β-sheets, and others such as β-turns and random coils. The experiment was performed at the National Synchrotron Light Source in Brookhaven National Laboratory (BNL, US Department of Energy, NY). The results showed that with the SFTIRM, the molecular structure of barley protein could be revealed. Barley protein structures exhibited significant differences among the varieties in terms of proportion and ratio of model-fitted α-helices, β-sheets, and others. By using multi-component peaks modeling at protein amide I region of 1710-1576 cm -1 , the results show that barley protein consisted of approximately 18-34% of α-helices, 14-25% of β-sheets, and 44-69% others. AC Metcalfe, Sisler, and LP955 consisted of higher (P 0.05). The ratio of α-helices to others (0.3 to 1.0, P < 0.05) and that of β-sheets to others (0.2 to 0.8, P < 0.05) were different among the barley varieties. It needs to be pointed out that using a multi-peak modeling for protein structure analysis is only for making relative estimates and not exact determinations and only for the comparison purpose between varieties. The principal component analysis showed that protein amide I Fourier

  15. Fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2016-01-01

    Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses the foundati......Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses...

  16. Highly Oriented Growth of Catalytically Active Zeolite ZSM-5 Films with a Broad Range of Si/Al Ratios.

    Science.gov (United States)

    Fu, Donglong; Schmidt, Joel E; Ristanović, Zoran; Chowdhury, Abhishek Dutta; Meirer, Florian; Weckhuysen, Bert M

    2017-09-04

    Highly b-oriented zeolite ZSM-5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al 3+ usually disrupts the orientation of zeolite films. Herein, using structure-directing agents with hydroxy groups, we demonstrate a new method to prepare highly b-oriented zeolite ZSM-5 films with a broad range of Si/Al ratios (Si/Al=45 to ∞). Fluorescence micro-(spectro)scopy was used to monitor misoriented microstructures, which are invisible to X-ray diffraction, and show Al 3+ framework incorporation and illustrate the differences between misoriented and b-oriented films. The methanol-to-hydrocarbons process was studied by operando UV/Vis diffuse reflectance micro-spectroscopy with on-line mass spectrometry, showing that the b-oriented zeolite ZSM-5 films are active and stable under realistic process conditions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  17. In vivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2013-12-01

    Full Text Available Yue Zhang,1 Bin Zhang,1 Fei Liu,1,2 Jianwen Luo,1,3 Jing Bai1 1Department of Biomedical Engineering, School of Medicine, 2Tsinghua-Peking Center for Life Sciences, 3Center for Biomedical Imaging Research, Tsinghua University, Beijing, People's Republic of China Abstract: Dual-modality imaging combines the complementary advantages of different modalities, and offers the prospect of improved preclinical research. The combination of fluorescence imaging and magnetic resonance imaging (MRI provides cross-validated information and direct comparison between these modalities. Here, we report on the application of a novel tumor-targeted, dual-labeled nanoparticle (NP, utilizing iron oxide as the MRI contrast agent and near infrared (NIR dye Cy5.5 as the fluorescent agent. Results of in vitro experiments verified the specificity of the NP to tumor cells. In vivo tumor targeting and uptake of the NPs in a mouse model were visualized by fluorescence and MR imaging collected at different time points. Quantitative analysis was carried out to evaluate the efficacy of MRI contrast enhancement. Furthermore, tomographic images were also acquired using both imaging modalities and cross-validated information of tumor location and size between these two modalities was revealed. The results demonstrate that the use of dual-labeled NPs can facilitate the dual-modal detection of tumors, information cross-validation, and direct comparison by combing fluorescence molecular tomography (FMT and MRI. Keywords: dual-modality, fluorescence molecular tomography (FMT, magnetic resonance imaging (MRI, nanoparticle

  18. Comparison of a chimeric anti-carcinoembryonic antigen antibody conjugated with visible or near-infrared fluorescent dyes for imaging pancreatic cancer in orthotopic nude mouse models

    Science.gov (United States)

    Maawy, Ali A.; Hiroshima, Yukihiko; Kaushal, Sharmeela; Luiken, George A.; Hoffman, Robert M.; Bouvet, Michael

    2013-12-01

    The aim of this study was to evaluate a set of visible and near-infrared dyes conjugated to a tumor-specific chimeric antibody for high-resolution tumor imaging in orthotopic models of pancreatic cancer. BxPC-3 human pancreatic cancer was orthotopically implanted into pancreata of nude mice. Mice received a single intravenous injection of a chimeric anti-carcinoembryonic antigen antibody conjugated to one of the following fluorophores: 488-nm group (Alexa Fluor 488 or DyLight 488); 550-nm group (Alexa Fluor 555 or DyLight 550); 650-nm group (Alexa Fluor 660 or DyLight 650), or the 750-nm group (Alexa Fluor 750 or DyLight 755). After 24 h, the Olympus OV100 small-animal imaging system was used for noninvasive and intravital fluorescence imaging of mice. Dyes were compared with respect to depth of imaging, resolution, tumor-to-background ratio (TBR), photobleaching, and hemoglobin quenching. The longer wavelength dyes had increased depth of penetration and ability to detect the smallest tumor deposits and provided the highest TBRs, resistance to hemoglobin quenching, and specificity. The shorter wavelength dyes were more photostable. This study showed unique advantages of each dye for specific cancer imaging in a clinically relevant orthotopic model.

  19. Assessment of the Inhibitory Effect of Rifampicin on Amyloid Formation of Hen Egg White Lysozyme: Thioflavin T Fluorescence Assay versus FTIR Difference Spectroscopy

    Directory of Open Access Journals (Sweden)

    Gang Ma

    2014-01-01

    Full Text Available The inhibitory effect of rifampicin on the amyloid formation of hen egg white lysozyme was assessed with both Thioflavin T (ThT fluorescence assay and Fourier transform infrared (FTIR difference spectroscopy. We reveal that ThT fluorescence assay gives a false positive result due to rifampicin interference, while FTIR difference spectroscopy provides a reliable assessment. With FTIR, we show that rifampicin only has marginally inhibitory effect. We then propose that FTIR difference spectroscopy can potentially be a convenient method for inhibitor screening in amyloid study.

  20. Photosynthesis-related infrared light transmission changes in spinach leaf segments

    International Nuclear Information System (INIS)

    Akimoto, T.

    1985-01-01

    The time courses of infrared light transmission changes and fluorescence induced by light in spinach leaf segments were measured. The illumination by red light exhibited a complex wave pattern. The transmission approached the baseline after repeating decreases and increases. Illumination by far-red light decreased the transmission. One of the differences between the two responses was the difference between the two amplitudes of the first increasing component. The component in the red light response was larger than the component in the far-red light response. The transmission decrease by far-red light is supposed to correspond to ''red drop.'' The transmission decrease by far-red light was suppressed by red light. This is due to an activation of a transmission-increasing component. This probably corresponds to ''enhancement.'' A proportional correlation existed between the intensity of far-red light and the minimum intensity of red light that suppressed the transmission decrease induced by far-red light. The component which made Peak D in the time course of fluorescence yield and the first increasing component in the transmission changes were suppressed by intense light