WorldWideScience

Sample records for fluid merging viscosity

  1. Fluid viscosity under confined conditions

    Science.gov (United States)

    Rudyak, V. Ya.; Belkin, A. A.

    2014-12-01

    Closed equations of fluid transfer in confined conditions are constructed in this study using ab initio methods of nonequilibrium statistical mechanics. It is shown that the fluid viscosity is not determined by the fluid properties alone, but becomes a property of the "fluid-nanochannel walls" system as a whole. Relations for the tensor of stresses and the interphase force, which specifies the exchange by momentum of fluid molecules with the channel-wall molecules, are derived. It is shown that the coefficient of viscosity is now determined by the sum of three contributions. The first contribution coincides with the expression for the coefficient of the viscosity of fluid in the bulk being specified by the interaction of fluid molecules with each other. The second contribution has the same structure as the first one but is determined by the interaction of fluid molecules with the channel-wall molecules. Finally, the third contribution has no analog in the usual statistical mechanics of transport processes of a simple fluid. It is associated with the correlation of intermolecular forces of the fluid and the channel walls. Thus, it is established that the coefficient of viscosity of fluid in sufficiently small channels will substantially differ from its bulk value.

  2. Viscosity of a nucleonic fluid

    CERN Document Server

    Mekjian, Aram Z

    2012-01-01

    The viscosity of nucleonic matter is studied both classically and in a quantum mechanical description. The collisions between particles are modeled as hard sphere scattering as a baseline for comparison and as scattering from an attractive square well potential. Properties associated with the unitary limit are developed which are shown to be approximately realized for a system of neutrons. The issue of near perfect fluid behavior of neutron matter is remarked on. Using some results from hard sphere molecular dynamics studies near perfect fluid behavior is discussed further.

  3. Ion-viscosity effects on plasma-liner formation and implosion via merging supersonic plasma jets

    Science.gov (United States)

    Schillo, Kevin; Cassibry, Jason; Samulyak, Roman; Shih, Wen; Hsu, Scott; PLX-Alpha Team

    2016-10-01

    The PLX- α project endeavors to study plasma-liner formation and implosion by merging a spherical array of plasma jets as a candidate standoff driver for MIF. Smoothed particle hydrodynamics is used to model the liner formation and implosion processes. SPH is a meshless Lagrangian method to simulate fluid flows by dividing a fluid into a set of particles and using a summation interpolant function to calculate the properties and gradients for each of these particles. Ion viscosity is anticipated to be an important mechanism for momentum transport during liner formation, implosion, and stagnation. To study this, ion viscosity was incorporated into the code. To provide confidence in the numerical output and to help identify the difference between numerical and physical diffusion, a series of test cases were performed, consisting of Couette flow, Gresho vortex, and a Taylor-Green vortex. An L2-norm analysis was performed to measure the error and convergence. Simulations of conical (6 jets) and 4 π (60 jets) liners with and without ion viscosity reveal potential effects of viscosity on ram pressure, Mach-number degradation, and evolution of liner perturbations during jet merging and liner implosion.

  4. Viscosity kernel of molecular fluids

    DEFF Research Database (Denmark)

    Puscasu, Ruslan; Todd, Billy; Daivis, Peter

    2010-01-01

    , temperature, and chain length dependencies of the reciprocal and real-space viscosity kernels are presented. We find that the density has a major effect on the shape of the kernel. The temperature range and chain lengths considered here have by contrast less impact on the overall normalized shape. Functional...... forms that fit the wave-vector-dependent kernel data over a large density and wave-vector range have also been tested. Finally, a structural normalization of the kernels in physical space is considered. Overall, the real-space viscosity kernel has a width of roughly 3–6 atomic diameters, which means...

  5. The Viscosity of Polymeric Fluids.

    Science.gov (United States)

    Perrin, J. E.; Martin, G. C.

    1983-01-01

    To illustrate the behavior of polymeric fluids and in what respects they differ from Newtonian liquids, an experiment was developed to account for the shear-rate dependence of non-Newtonian fluids. Background information, procedures, and results are provided for the experiment. Useful in transport processes, fluid mechanics, or physical chemistry…

  6. Viscosity of confined inhomogeneous nonequilibrium fluids.

    Science.gov (United States)

    Zhang, Junfang; Todd, B D; Travis, Karl P

    2004-12-01

    We use the nonlocal linear hydrodynamic constitutive model, proposed by Evans and Morriss [Statistical Mechanics of Nonequilibrium Liquids (Academic, London, 1990)], for computing an effective spatially dependent shear viscosity of inhomogeneous nonequilibrium fluids. The model is applied to a simple atomic fluid undergoing planar Poiseuille flow in a confined channel of several atomic diameters width. We compare the spatially dependent viscosity with a local generalization of Newton's law of viscosity and the Navier-Stokes viscosity, both of which are known to suffer extreme inaccuracies for highly inhomogeneous systems. The nonlocal constitutive model calculates effective position dependent viscosities that are free from the notorious singularities experienced by applying the commonly used local constitutive model. It is simple, general, and has widespread applicability in nanofluidics where experimental measurement of position dependent transport coefficients is currently inaccessible. In principle the method can be used to predict approximate flow profiles of any arbitrary inhomogeneous system. We demonstrate this by predicting the flow profile for a simple fluid undergoing planar Couette flow in a confined channel of several atomic diameters width.

  7. Quartz resonator fluid density and viscosity monitor

    Science.gov (United States)

    Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.

    1998-01-01

    A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.

  8. Bulk and shear viscosity in Hagedorn fluid

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, A.; Wahba, M. [Egyptian Center for Theoretical Physics (ECTP), MTI University, Faculty of Engineering, Cairo (Egypt)

    2010-11-15

    Assuming that the Hagedorn fluid composed of known particles and resonances with masses m <2 GeV obeys the first-order theory (Eckart) of relativistic fluid, we discuss the transport properties of QCD confined phase. Based on the relativistic kinetic theory formulated under the relaxation time approximation, expressions for bulk and shear viscosity in thermal medium of hadron resonances are derived. The relaxation time in the Hagedorn dynamical fluid exclusively takes into account the decay and eventually van der Waals processes. We comment on the in-medium thermal effects on bulk and shear viscosity and averaged relaxation time with and without the excluded-volume approach. As an application of these results, we suggest the dynamics of heavy-ion collisions, non-equilibrium thermodynamics and the cosmological models, which require thermo- and hydro-dynamics equations of state. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. Bulk and Shear Viscosity in Hagedorn Fluid

    CERN Document Server

    Tawfik, A

    2010-01-01

    Assuming that the Hagedorn fluid composed of known particles and resonances with masses $m<2\\,$GeV obeys the {\\it first-order} theory (Eckart) of relativistic fluid, we discuss the transport properties of QCD confined phase. Based on the relativistic kinetic theory formulated under the relaxation time approximation, expressions for bulk and shear viscosity in thermal medium are derived. The relaxation time in the Hagedorn dynamical fluid exclusively takes into account the decay and eventually van der Waals processes. We comment on the {\\it in-medium} thermal effects on bulk and shear viscosities and averaged relaxation time with and without the excluded-volume approach. As an application of these results, we suggest the dynamics of heavy-ion collisions, non-equlibrium thermodynamics and the cosmological models, which require thermo and hydrodynamics equations of state.

  10. Fluid Dynamics and Viscosity in Strongly Correlated Fluids

    CERN Document Server

    Schaefer, Thomas

    2014-01-01

    We review the modern view of fluid dynamics as an effective low energy, long wavelength theory of many body systems at finite temperature. We introduce the notion of a nearly perfect fluid, defined by a ratio $\\eta/s$ of shear viscosity to entropy density of order $\\hbar/k_B$ or less. Nearly perfect fluids exhibit hydrodynamic behavior at all distances down to the microscopic length scale of the fluid. We summarize arguments that suggest that there is fundamental limit to fluidity, and review the current experimental situation with regard to measurements of $\\eta/s$ in strongly coupled quantum fluids.

  11. Improved acoustic viscosimeter technique. [for determining fluid shear viscosity

    Science.gov (United States)

    Fisch, M. R.; Moeller, R. P.; Carome, E. F.

    1976-01-01

    An improved technique has been developed for studies of the shear viscosity of fluids. It utilizes an acoustic resonator as a four-terminal electrical device; the resonator's amplitude response may be determined directly and simply related to the fluid's viscosity. The use of this technique is discussed briefly and data obtained in several fluids is presented.

  12. Effect of Fluid Viscosity on Centrifugal Pump Performance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nohhyeong [GS Caltex Corporation, Daejeon (Korea, Republic of)

    2013-06-15

    The characteristics of centrifugal pump performance according to fluid viscosity change were studied experimentally. A small volute pump with low specific speed was tested by changing the viscosity of an aqueous solution of sugar and glycerin, which is considered a Newtonian fluid. After finishing the test, the total head, shaft horsepower, and pump efficiency were compared with those of a water pump. The results are summarized as follows: when the fluid viscosity is increased, the shut-off head shows very little change but the total head decreases gradually as the flow increases, and this makes the H-Q curve leaning rapidly, and when the fluid viscosity is increased, the shaft horsepower shows very little change at the shutoff condition; however, the shaft horsepower increases more rapidly with an increase in the flow and viscosity.

  13. Heat Transfer Analysis for Peristaltic Mechanism in Variable Viscosity Fluid

    Institute of Scientific and Technical Information of China (English)

    T.Hayat; F.M.Abbasi; Awatif A.Hendi

    2011-01-01

    An analysis is carried out for a peristaltic flow of a third-order fluid with heat transfer and variable viscosity when no-slip condition does not hold. Perturbation solution is discussed and a comparative study between the cases of constant and variable viscosities is presented and analyzed.%@@ An analysis is carried out for a peristaltic flow of a third-order fluid with heat transfer and variable viscosity when no-slip condition does not hold.Perturbation solution is discussed and a comparative stuity between the cases of constant and variable viscosities is presented and analyzed.

  14. Non-invasive fluid density and viscosity measurement

    Science.gov (United States)

    Sinha, Dipen N.

    2012-05-01

    The noninvasively measurement of the density and viscosity of static or flowing fluids in a section of pipe such that the pipe performs as the sensing apparatus, is described. Measurement of a suitable structural vibration resonance frequency of the pipe and the width of this resonance permits the density and viscosity to be determined, respectively. The viscosity may also be measured by monitoring the decay in time of a vibration resonance in the pipe.

  15. Bistability in a simple fluid network due to viscosity contrast

    CERN Document Server

    Geddes, John B; Gardner, David; Carr, Russell T

    2009-01-01

    We study the existence of multiple equilibrium states in a simple fluid network using Newtonian fluids and laminar flow. We demonstrate theoretically the presence of hysteresis and bistability, and we confirm these predictions in an experiment using two miscible fluids of different viscosity--sucrose solution and water. Possible applications include bloodflow, microfluidics, and other network flows governed by similar principles.

  16. Numerical solutions of Williamson fluid with pressure dependent viscosity

    Science.gov (United States)

    Zehra, Iffat; Yousaf, Malik Muhammad; Nadeem, Sohail

    In the present paper, we have examined the flow of Williamson fluid in an inclined channel with pressure dependent viscosity. The governing equations of motion for Williamson fluid model under the effects of pressure dependent viscosity and pressure dependent porosity are modeled and then solved numerically by the shooting method with Runge Kutta Fehlberg for two types of geometries i.e., (i) Poiseuille flow and (ii) Couette flow. Four different cases for pressure dependent viscosity and pressure dependent porosity are assumed and the physical features of pertinent parameters are discussed through graphs.

  17. Numerical solutions of Williamson fluid with pressure dependent viscosity

    Directory of Open Access Journals (Sweden)

    Iffat Zehra

    2015-01-01

    Full Text Available In the present paper, we have examined the flow of Williamson fluid in an inclined channel with pressure dependent viscosity. The governing equations of motion for Williamson fluid model under the effects of pressure dependent viscosity and pressure dependent porosity are modeled and then solved numerically by the shooting method with Runge Kutta Fehlberg for two types of geometries i.e., (i Poiseuille flow and (ii Couette flow. Four different cases for pressure dependent viscosity and pressure dependent porosity are assumed and the physical features of pertinent parameters are discussed through graphs.

  18. Effect of Fluid Dynamic Viscosity on the Strength of Chalk

    DEFF Research Database (Denmark)

    Hedegaard, K.; Fabricius, Ida Lykke

    The mechanical strength of high porosity and weakly cemented chalk is affected by the fluid in the pores. In this study, the effect of the dynamic viscosity of non-polar fluids has been measured on outcrop chalk from Sigerslev Quarry, Stevns, Denmark. The outcome is that the measured strength...

  19. Effect of viscosity on harmonic signals from magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Takashi, E-mail: t_yoshi@ees.kyushu-u.ac.jp; Bai, Shi; Hirokawa, Aiki; Tanabe, Kazuhiro; Enpuku, Keiji

    2015-04-15

    We explored the effect of viscosity on harmonic signals from a magnetic fluid. Using a numerical simulation that accounts for both the Brownian and Néel processes, we clarified how the magnetization mechanism is affected by viscosity. When the excitation field varies much slower than the Brownian relaxation time, magnetization can be described by the Langevin function. On the other hand, for the case when the excitation field varies much faster than the Brownian relaxation time, but much slower than the Néel relaxation time, the easy axes of the magnetic nanoparticles (MNPs) turn to some extent toward the direction of the excitation field in an equilibrium state. This alignment of the easy axes of MNPs caused by the AC field becomes more significant with the increase of the AC field strength. Consequently, the magnetization is different from the Langevin function even though Néel relaxation time is faster than time period of the external frequency. It is necessary to consider these results when we use harmonic signals from a magnetic fluid in a high-viscosity medium. - Highlights: • We explore the effect of viscosity on harmonic signals from a magnetic fluid. • We clarify how the magnetization mechanism is affected by the viscosity of the fluid. • The magnetization in a high-viscosity medium is different from a Langevin function. • We empirically express the alignment of easy axes of the MNPs caused by an AC field.

  20. Viscosity of magnetorheological fluids using Iron-silicon nanoparticles.

    Science.gov (United States)

    Kim, Jong Hee; Kim, CheolGi; Lee, Seung Goo; Hong, Tae Min; Choi, Joon Hong

    2013-09-01

    Fe-6.5Si fine particles were mechanically fabricated by a milling method for use in magnetorheological fluids. Oleic acid was used as a surfactant for the dispersed substance for preparing the hydrophobic fluid with silicon oil as a dispersing medium. Further, oleic acid and sodium dodecyl benzene sulfonate were used as surfactants, forming a bilayer structure, for preparing the hydrophilic fluid with polyethylene glycol as a dispersing medium. The adsorption of oleic acid onto the Fe-Si particles was achieved by oxidizing the particle surface with trimethylamine N-oxide dihydrate. In order to make a comparative examination of the fluid properties, ferromagnetic nanoparticles were synthesized by chemical precipitation and the subsequent process was accompanied under the same conditions as applied for the magnetorheological fluid. The fluid particles were characterized by magnetization measurements. The viscosity of the fluids was obtained at various concentrations under an external field. The viscosity values of the magnetorheological fluid were higher than those of the ferromagnetic fluid. Moreover, they increased considerably by using silicon oil as the dispersing medium as well as under an applied magnetic field and at higher fluid concentrations. The magnetorheological fluids may be effectively resistant to a strong impact from outside when the appropriate fluid concentration is used and a magnetic field is applied for increasing the shear strength of the fluids.

  1. The Effects of Fluid Viscosity on the Orifice Rotameter

    Directory of Open Access Journals (Sweden)

    Jiang Wei

    2016-04-01

    Full Text Available Due to the viscous shear stress, there is an obvious error between the real flow rate and the rotameter indication for measuring viscous fluid medium. At 50 cSt the maximum error of DN40 orifice rotameter is up to 35 %. The fluid viscosity effects on the orifice rotameter are investigated using experimental and theoretical models. Wall jet and concentric annulus laminar theories were adapted to study the influence of viscosity. And a new formula is obtained for calculating the flow rate of viscous fluid. The experimental data were analyzed and compared with the calculated results. At high viscosity the maximum theoretical results error is 6.3 %, indicating that the proposed measurement model has very good applicability.

  2. Prediction of the viscosity of supercritical fluid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Vesovic, V. [Imperial Coll., London (United Kingdom). T.H. Huxley School of Environment, Earth Sciences and Engineering; Assael, M.J.; Gallis, Z.A. [Aristotle Univ., Thessaloniki (Greece). Faculty of Chemical Engineering

    1998-09-01

    A method for predicting the viscosity of supercritical, multicomponent fluid mixtures, at any density, from the zero-density viscosity of pure components is presented. The method is based upon the results for a rigid-sphere model, suitably interpreted to apply to real fluids, and on the finding that the excess viscosity of pure supercritical fluids can be adequately described by a density function independent of temperature. The density range of the method extends to twice the critical density of the pure component with the smallest critical density. The only exception is for the methane-rich mixtures where the mixture density should not exceed 12000 mol{center_dot}m{sup {minus}3}. The uncertainty ascribed to the predictions made by this method is of the order of {+-}5%.

  3. Integrated Optofluidic Chip for Low-Volume Fluid Viscosity Measurement

    Directory of Open Access Journals (Sweden)

    Tie Yang

    2017-02-01

    Full Text Available In the present work, an integrated optofluidic chip for fluid viscosity measurements in the range from 1 mPa·s to 100 mPa·s is proposed. The device allows the use of small sample volumes (<1 µL and the measurement of viscosity as a function of temperature. Thanks to the precise control of the force exerted on dielectric spheres by optical beams, the viscosity of fluids is assessed by comparing the experimentally observed movement of dielectric beads produced by the optical forces with that expected by numerical calculations. The chip and the developed technique are validated by analyzing several fluids, such as Milli-Q water, ethanol and water–glycerol mixtures. The results show a good agreement between the experimental values and those reported in the literature. The extremely reduced volume of the sample required and the high flexibility of this technique make it a good candidate for measuring a wide range of viscosity values as well as for the analysis of nonlinear viscosity in complex fluids.

  4. The role of fluid viscosity in an immersed granular collapse

    Directory of Open Access Journals (Sweden)

    Yang Geng Chao

    2017-01-01

    Full Text Available Instabilities of immersed slopes and cliffs can lead to catastrophic events that involve a sudden release of huge soil mass. The scaled deposit height and runout distance are found to follow simple power laws when a granular column collapses on a horizontal plane. However, if the granular column is submerged in a fluid, the mobility of the granular collapse due to high inertia effects will be reduced by fluid-particle interactions. In this study, the effects of fluid viscosity on granular collapse is investigated qualitatively by adopting a numerical approach based on the coupled lattice Boltzmann method (LBM and discrete element method (DEM. It is found that the granular collapse can be dramatically slowed down due to the presence of viscous fluids. For the considered granular configuration, when the fluid viscosity increases. the runout distance decreases and the final deposition shows a larger deposit angle.

  5. Low viscosity automatic transmission fluids with enhanced friction durability

    Institute of Scientific and Technical Information of China (English)

    Kenji Yatsunami; Samuel H. Tersigni; TANG Hong- zhi; Lee D. Saathoff; Christopher S. Cleveland; Mark Jones

    2009-01-01

    This study focused on the development of a new low viscosity automatic transmission fluid (ATF) with enhanced friction durability to meet the needs of new step type automatic transmissions. Recent high fuel prices encourage increased efficiency in the driveline, including the transmission. Reduction in fluid viscosity and wider use of slip control in torque con-verter clutches are two ways to practically improve fuel efficiency. Increased torque and more shifting is seen with a variety of new transmission hardware platforms, such as wet starting clutches, dual clutches and seven - or eight - speed ATs.This suggests the need for enhanced levels of friction durability from the ATF. The new challenge from this hardware for the ATF formulator lies in the need to simultaneously meet the wear, friction durability and torque capacity requirements at low viscosity in a cost- effective manner. This report introduced a new low viscosity fluid that represents a different commercial ATF formulation style. The new chemistry employs a low viscosity for increased fuel economy, while easily doubling the friction durability of current conven-tional ATFs and offering higher torque and better EP.

  6. Odd viscosity in two-dimensional incompressible fluids

    Science.gov (United States)

    Ganeshan, Sriram; Abanov, Alexander G.

    2017-09-01

    In this work, we present observable consequences of a parity-violating odd-viscosity term in incompressible 2+1D hydrodynamics. For boundary conditions depending on the velocity field (flow) alone we show that (i) the fluid flow quantified by the velocity field is independent of odd viscosity, (ii) the force acting on a closed contour is independent of odd viscosity, and (iii) the odd-viscosity part of torque on a closed contour is proportional to the rate of change of area enclosed by the contour with the proportionality constant being twice the odd viscosity. The last statement allows us to define a measurement protocol of odd viscostance in analogy to Hall resistance measurements. We also consider no-stress boundary conditions that explicitly depend on odd viscosity. A classic hydrodynamics problem with no-stress boundary conditions is that of a bubble in a planar Stokes flow. We solve this problem exactly for shear and hyperbolic flows and show that the steady-state shape of the bubble in the shear flow depends explicitly on the value of odd viscosity.

  7. Peristalsis of nonconstant viscosity Jeffrey fluid with nanoparticles

    Science.gov (United States)

    Alvi, N.; Latif, T.; Hussain, Q.; Asghar, S.

    Mixed convective peristaltic activity of variable viscosity nanofluids is addressed. Unlike the conventional consideration of constant viscosity; the viscosity is taken as temperature dependent. Constitutive relations for linear viscoelastic Jeffrey fluid are employed and uniform magnetic field is applied in the transverse direction. For nanofluids, the formulation is completed in presence of Brownian motion, thermophoresis, viscous dissipation and Joule heating. Consideration of temperature dependence of viscosity is not a choice but the realistic requirement of the wall temperature and the heat generated due to the viscous dissipation. Well established large wavelength and small Reynolds number approximations are invoked. Non-linear coupled system is analytically solved for the convergent series solutions identifying the interval of convergence explicitly. A comparative study between analytical and numerical solution is made for certainty. Influence of the parameters undertaken for the description of the problem is pointed out and its physics explained.

  8. Geometry-dependent viscosity reduction in sheared active fluids

    CERN Document Server

    Słomka, Jonasz

    2016-01-01

    We investigate flow pattern formation and viscosity reduction mechanisms in active fluids by studying a generalized Navier-Stokes model that captures the experimentally observed bulk vortex dynamics in microbial suspensions. We present exact analytical solutions including stress-free vortex lattices and introduce a computational framework that allows the efficient treatment of previously intractable higher-order shear boundary conditions. Large-scale parameter scans identify the conditions for spontaneous flow symmetry breaking, geometry-dependent viscosity reduction and negative-viscosity states amenable to energy harvesting in confined suspensions. The theory uses only generic assumptions about the symmetries and long-wavelength structure of active stress tensors, suggesting that inviscid phases may be achievable in a broad class of non-equilibrium fluids by tuning confinement geometry and pattern scale selection.

  9. High-viscosity fluid threads in weakly diffusive microfluidic systems

    Science.gov (United States)

    Cubaud, T.; Mason, T. G.

    2009-07-01

    We provide an overview of the flow dynamics of highly viscous miscible liquids in microfluidic geometries. We focus on the lubricated transport of high-viscosity fluids interacting with less viscous fluids, and we review methods for producing and manipulating single and multiple core-annular flows, i.e. viscous threads, in compact and plane microgeometries. In diverging slit microchannels, a thread's buckling instabilities can be employed for generating ordered and disordered miscible microstructures, as well as for partially blending low- and high-viscosity materials. The shear-induced destabilization of a thread that flows off-center in a square microchannel is examined as a means for continuously producing miscible dispersions. We show original compound threads and viscous dendrites that are generated using three fluids, each of which has a large viscosity contrast with the others. Thread motions in zones of microchannel extensions are examined in both miscible and immiscible environments. We demonstrate that high-viscosity fluid threads in weakly diffusive microfluidic systems correspond to the viscous primary flow and can be used as a starting point for studying and understanding the destabilizing effects of interfacial tension as well as diffusion. Characteristic of lubricated transport, threads facilitate the transport of very viscous materials in small fluidic passages, while mitigating dissipation. Threads are also potentially promising for soft material synthesis and diagnostics with independent control of the thread specific surface and residence time in micro-flow reactors.

  10. Effect of temperature on rotational viscosity in magnetic nano fluids.

    Science.gov (United States)

    Patel, R

    2012-10-01

    Flow behavior of magnetic nano fluids with simultaneous effect of magnetic field and temperature is important for its application for cooling devices such as transformer, loud speakers, electronic cooling and for its efficiency in targeted drug delivery and hyperthermia treatment. Using a specially designed horizontal capillary viscometer, temperature-sensitive and non-temperature-sensitive magnetic nano fluids are studied. In both these case the temperature-dependent rotational viscosity decreases, but follows a quite different mechanism. For temperature-sensitive magnetic nano fluids, the reduction in rotational viscosity is due to the temperature dependence of magnetization. Curie temperature ((T)(c)) and pyromagnetic coefficient are extracted from the study. A fluid with low T(c) and high pyromagnetic coefficient is useful for thermo-sensitive cooling devices and magnetic hyperthermia. For non-temperature-sensitive magnetic nano fluids, reduction in rotational viscosity is due to removal of physisorbed secondary surfactant on the particle because of thermal and frictional effects. This can be a good analogy for removal of drug from the magnetic particles in the case of targeted drug delivery.

  11. Quantifying the Efficiency Advantages of High Viscosity Index Hydraulic Fluids

    Institute of Scientific and Technical Information of China (English)

    Christian D. Neveu; Michael D. Zink; Alex Tsay

    2006-01-01

    By providing higher in- use viscosity at elevated operating temperatures, hydraulic fluids with high viscosity index improve the efficiency of the hydraulic system. For mobile hydraulic equipment this efficiency can be quantified as an increase in fuel economy. This paper reviews the research that demonstrates these efficiency advantages in gear, vane and piston pumps and presents a method for predicting the overall fuel economy for a fleet of hydraulic equipment in opquipment operator to easily improve the performance of the system and reduce fuel consumption.

  12. "Hall viscosity" and intrinsic metric of incompressible fractional Hall fluids

    OpenAIRE

    Haldane, F. D. M.

    2009-01-01

    The (guiding-center) "Hall viscosity" is a fundamental tensor property of incompressible ``Hall fluids'' exhibiting the fractional quantum Hall effect; it determines the stress induced by a non-uniform electric field, and the intrinsic dipole moment on (unreconstructed) edges. It is characterized by a rational number and an intrinsic metric tensor that defines distances on an ``incompressibility lengthscale''. These properties do not require rotational invariance in the 2D plane. The sign of ...

  13. Merging of aircraft vortex trails - Similarities to magnetic field merging

    Science.gov (United States)

    Gurnett, Donald A.

    1989-01-01

    This paper discusses the phenomenological and formal similarities between the merging of aircraft vortex trails and the merging of magnetic field lines in a plasma. High-resolution photographs are shown of smoke trails from the wing tips of an airplane. These photographs show that the two vortex trails merge together downstream of the aircraft in a way similar to the merging of oppositely directed magnetic field lines in a plasma. Although there are some differences, this correspondence is apparently related to the fact that the vorticity equation in a fluid has the same mathematical form as the magnetic field equation in an MHD plasma. In both cases the merging proceeds at a rate considerably faster than would be predicted from classical estimates of the viscosity and resistivity. The enhanced merging rate in the fluid case appears to result from turbulence that increases the diffusion rate in the merging region.

  14. Dual Role of Viscosity During Start-Up of a Maxwell Fluid in a Pipe

    Institute of Scientific and Technical Information of China (English)

    任玲; 朱克勤

    2004-01-01

    Based on the exact solution of start-up flow of Maxwell fluids in a long circular straight pipe, the effect of viscosity on the time of flow establishment is analysed. It is found that the viscosity of Maxwell fluids plays a dual role.A key parameter is the dimensionless relaxation time λ-. For 0 <λ-< 0.0432, the viscosity mainly plays the same role as in Newtonian fluids, and the time of flow establishment decreases with the increasing viscosity; for λ- > 0.0432, the viscosity mainly plays a role of strengthening the oscillation, and the time of flow establishment increases with the incremental viscosity.

  15. High viscosity fluid simulation using particle-based method

    KAUST Repository

    Chang, Yuanzhang

    2011-03-01

    We present a new particle-based method for high viscosity fluid simulation. In the method, a new elastic stress term, which is derived from a modified form of the Hooke\\'s law, is included in the traditional Navier-Stokes equation to simulate the movements of the high viscosity fluids. Benefiting from the Lagrangian nature of Smoothed Particle Hydrodynamics method, large flow deformation can be well handled easily and naturally. In addition, in order to eliminate the particle deficiency problem near the boundary, ghost particles are employed to enforce the solid boundary condition. Compared with Finite Element Methods with complicated and time-consuming remeshing operations, our method is much more straightforward to implement. Moreover, our method doesn\\'t need to store and compare to an initial rest state. The experimental results show that the proposed method is effective and efficient to handle the movements of highly viscous flows, and a large variety of different kinds of fluid behaviors can be well simulated by adjusting just one parameter. © 2011 IEEE.

  16. Estimate of the Bulk Viscosity in the Cosmic Fluid

    CERN Document Server

    Normann, Ben David

    2016-01-01

    We first give a review of recent works on bulk viscous cosmology. Then, we derive general solutions of the Friedmann equations when bulk viscosity is included in the energy-momentum tensor, both for a single-component and a multicomponent fluid, showing that these general solutions reduce to those found in the literature in special cases. We solve the energy conservation equation for the three cases $\\zeta$=const., $\\zeta\\propto \\sqrt{\\rho}$, and $\\zeta\\propto \\rho$, often studied in previous investigations, and find the best-fit values for the present day viscosity $\\zeta_0$ in each of the three cases. Taking into account constraints from thermodynamics we find, in agreement with previous works, that the present day viscosity is less than about $ 10^7~$Pa s. In fact the best fit values suggest $\\zeta_0\\sim 10^6$Pa s. We point out that this magnitude is acceptable from a hydrodynamic point of view. Altogether, we give preference to the model $\\zeta\\propto \\sqrt{\\rho}$, which by now seems to be widely accepted...

  17. Mixing high-viscosity fluids via acoustically driven bubbles

    Science.gov (United States)

    Orbay, Sinem; Ozcelik, Adem; Lata, James; Kaynak, Murat; Wu, Mengxi; Huang, Tony Jun

    2017-01-01

    We present an acoustofluidic micromixer which can perform rapid and homogeneous mixing of highly viscous fluids in the presence of an acoustic field. In this device, two high-viscosity polyethylene glycol (PEG) solutions were co-injected into a three-inlet PDMS microchannel with the center inlet containing a constant stream of nitrogen flow which forms bubbles in the device. When these bubbles were excited by an acoustic field generated via a piezoelectric transducer, the two solutions mixed homogenously due to the combination of acoustic streaming, droplet ejection, and bubble eruption effects. The mixing efficiency of this acoustofluidic device was evaluated using PEG-700 solutions which are ~106 times more viscous than deionized (DI) water. Our results indicate homogenous mixing of the PEG-700 solutions with a ~0.93 mixing index. The acoustofluidic micromixer is compact, inexpensive, easy to operate, and has the capacity to mix highly viscous fluids within 50 ms.

  18. Surface Effect on Vibration of Y-SWCNTs Embedded on Pasternak Foundation Conveying Viscose Fluid

    Directory of Open Access Journals (Sweden)

    A. Ghorbanpour-Arani

    2015-01-01

    Full Text Available Surface and small scale effects on free transverse vibration of a single-walled carbon nanotube (SWCNT fitted with Y-junction at downstream end conveying viscose fluid is investigated in this article based on Euler-Bernoulli beam (EBB model. Nonlocal elasticity theory is employed to consider small scale effects due to its simplicity and efficiency. The energy method and Hamilton’s principle are used to establish the corresponding motion equation. To discretize and solve the governing equation of motion the Galerkin method is applied. Moreover, the small-size effect, angle of Y-junction, surface layer and Pasternak elastic foundation are studied in detail. Regarding fluid flow effects, it has been concluded that the fluid flow is an effective factor on increasing the instability of Y-SWCNT. Results show that increasing the angle of Y-junction enhances the flutter fluid velocity where the first and second modes are merged. This work could be used in medical application and design of nano-electromechanical devices such as measuring the density of blood flowing through such nanotubes.

  19. Viscosity, pressure and support of the gas in simulations of merging cool-core clusters

    Science.gov (United States)

    Schmidt, W.; Byrohl, C.; Engels, J. F.; Behrens, C.; Niemeyer, J. C.

    2017-09-01

    Major mergers are considered to be a significant source of turbulence in clusters. We performed a numerical simulation of a major merger event using nested-grid initial conditions, adaptive mesh refinement, radiative cooling of primordial gas and a homogeneous ultraviolet background. By calculating the microscopic viscosity on the basis of various theoretical assumptions and estimating the Kolmogorov length from the turbulent dissipation rate computed with a subgrid-scale model, we are able to demonstrate that most of the warm-hot intergalactic mediums can sustain a fully turbulent state only if the magnetic suppression of the viscosity is considerable. Accepting this as premise, it turns out that ratios of turbulent and thermal quantities change only little in the course of the merger. This confirms the tight correlations between the mean thermal and non-thermal energy content for large samples of clusters in earlier studies, which can be interpreted as second self-similarity on top of the self-similarity for different halo masses. Another long-standing question is how and to which extent turbulence contributes to the support of the gas against gravity. From a global perspective, the ratio of turbulent and thermal pressures is significant for the clusters in our simulation. On the other hand, a local measure is provided by the compression rate, i.e. the growth rate of the divergence of the flow. Particularly for the intracluster medium, we find that the dominant contribution against gravity comes from thermal pressure, while compressible turbulence effectively counteracts the support. For this reason, it appears to be too simplistic to consider turbulence merely as an effective enhancement of thermal energy.

  20. Dilatational viscosity of dilute particle-laden fluid interface at different contact angles

    Science.gov (United States)

    Lishchuk, Sergey V.

    2016-12-01

    We consider a solid spherical particle adsorbed at a flat interface between two immiscible fluids and having arbitrary contact angle at the triple contact line. We derive analytically the flow field corresponding to dilatational surface flow in the case of a large ratio of dynamic shear viscosities of two fluids. Considering a dilute assembly of such particles we calculate numerically the dependence on the contact angle of the effective surface dilatational viscosity particle-laden fluid interface. The effective surface dilatational viscosity is proportional to the size and surface concentration of particles and monotonically increases with the increase in protrusion of particles into the fluid with larger shear viscosity.

  1. Black strings, low viscosity fluids, and violation of cosmic censorship.

    Science.gov (United States)

    Lehner, Luis; Pretorius, Frans

    2010-09-03

    We describe the behavior of 5-dimensional black strings, subject to the Gregory-Laflamme instability. Beyond the linear level, the evolving strings exhibit a rich dynamics, where at intermediate stages the horizon can be described as a sequence of 3-dimensional spherical black holes joined by black string segments. These segments are themselves subject to a Gregory-Laflamme instability, resulting in a self-similar cascade, where ever-smaller satellite black holes form connected by ever-thinner string segments. This behavior is akin to satellite formation in low-viscosity fluid streams subject to the Rayleigh-Plateau instability. The simulation results imply that the string segments will reach zero radius in finite asymptotic time, whence the classical space-time terminates in a naked singularity. Since no fine-tuning is required to excite the instability, this constitutes a generic violation of cosmic censorship.

  2. Viscosity behavior of magnetic suspensions in fluid-assisted finishing

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Magnetic fluid-assisted finishing has been verified both theoretically and experimentally as an effective fabrication technology for optical mirrors and lenses. The purpose of this paper is to introduce a novel design of polishing tool and demonstrate the possible applications of this technology. The work includes studying the viscosity of the magnetic suspensions of micrometer-sized Carbonyl iron particles under the influence of a magnetic field. Both the cases of magnetizable suspension with and without abrasive cerium oxide particles are studied for their ensuing polishing effectiveness. Determination of material removal function is conducted using a Wyko Nat1100 interferometer. Experiments to reduce surface roughness with the proposed tool are also performed using a K9 mirror as the work-piece. Results show that the surface accuracy is improved over three times to less than 0.5 nm after two cycles of polishing.

  3. Isomorphic Viscosity Equation of State for Binary Fluid Mixtures.

    Science.gov (United States)

    Behnejad, Hassan; Cheshmpak, Hashem; Jamali, Asma

    2015-01-01

    The thermodynamic behavior of the simple binary mixtures in the vicinity of critical line has a universal character and can be mapped from pure components using the isomorphism hypothesis. Consequently, based upon the principle of isomorphism, critical phenomena and similarity between P-ρ-T and T-η-(viscosity)-P relationships, the viscosity model has been developed adopting two cubic, Soave-Redlich-Kwong (SRK) and Peng-Robinson (PR), equations of state (EsoS) for predicting the viscosity of the binary mixtures. This procedure has been applied to the methane-butane mixture and predicted its viscosity data. Reasonable agreement with the experimental data has been observed. In conclusion, we have shown that the isomorphism principle in conjunction with the mapped viscosity EoS suggests a reliable model for calculating the viscosity of mixture of hydrocarbons over a wide pressure range up to 35 MPa within the stated experimental errors.

  4. On the viscosity of magnetic fluid with low and moderate solid fraction

    Institute of Scientific and Technical Information of China (English)

    Zhiqiang Ren; Yanping Han; Ruoyu Hong; Jianmin Ding; Hongzhong Li

    2008-01-01

    The design of a pressurized capillary rheometer operating at prescribed temperature is described to measure the viscosity of magnetic fluids (MFs) containing Fe3O4 magnetic nanoparticles (MNPs). The equipment constant of the rheometer was obtained using liquids with predetermined viscosities. Experimentally measured viscosities were used to evaluate different equations for suspension viscosities. Deviation of measured suspension viscosities from the Einstein equation was found to be basically due to the influence of spatial distribution and aggregation of Fe3O4 MNPs. By taking account of the coating layer on MNPs and the aggregation of MNPs in MFs, a modified Einstein equation was proposed to fit the experimental data. Moreover, the influence of external magnetic field on viscosity was also taken into account. Viscosities thus predicted are in good agreement with experimental data. Temperature effect on suspension viscosity was shown experimentally to be due to the shear-thinning behavior of the MFs.

  5. Blood viscosity monitoring during cardiopulmonary bypass based on pressure-flow characteristics of a Newtonian fluid.

    Science.gov (United States)

    Okahara, Shigeyuki; Zu Soh; Takahashi, Shinya; Sueda, Taijiro; Tsuji, Toshio

    2016-08-01

    We proposed a blood viscosity estimation method based on pressure-flow characteristics of oxygenators used during cardiopulmonary bypass (CPB) in a previous study that showed the estimated viscosity to correlate well with the measured viscosity. However, the determination of the parameters included in the method required the use of blood, thereby leading to high cost of calibration. Therefore, in this study we propose a new method to monitor blood viscosity, which approximates the pressure-flow characteristics of blood considered as a non-Newtonian fluid with characteristics of a Newtonian fluid by using the parameters derived from glycerin solution to enable ease of acquisition. Because parameters used in the estimation method are based on fluid types, bovine blood parameters were used to calculate estimated viscosity (ηe), and glycerin parameters were used to estimate deemed viscosity (ηdeem). Three samples of whole bovine blood with different hematocrit levels (21.8%, 31.0%, and 39.8%) were prepared and perfused into the oxygenator. As the temperature changed from 37 °C to 27 °C, the oxygenator mean inlet pressure and outlet pressure were recorded for flows of 2 L/min and 4 L/min, and the viscosity was estimated. The value of deemed viscosity calculated with the glycerin parameters was lower than estimated viscosity calculated with bovine blood parameters by 20-33% at 21.8% hematocrit, 12-27% at 31.0% hematocrit, and 10-15% at 39.8% hematocrit. Furthermore, deemed viscosity was lower than estimated viscosity by 10-30% at 2 L/min and 30-40% at 4 L/min. Nevertheless, estimated and deemed viscosities varied with a similar slope. Therefore, this shows that deemed viscosity achieved using glycerin parameters may be capable of successfully monitoring relative viscosity changes of blood in a perfusing oxygenator.

  6. Rapid determination of fluid viscosity using low-field two-dimensional NMR.

    Science.gov (United States)

    Deng, Feng; Xiao, Lizhi; Chen, Weiliang; Liu, Huabing; Liao, Guangzhi; Wang, Mengying; Xie, Qingming

    2014-10-01

    The rapid prediction of fluid viscosity, especially the fluid in heavy-oil petroleum reservoirs, is of great importance for oil exploration and transportation. We suggest a new method for rapid prediction of fluid viscosity using two-dimensional (2D) NMR relaxation time distributions. DEFIR, Driven-Equilibrium Fast-Inversion Recovery, a new pulse sequence for rapid measurement of 2D relaxation times, is proposed. The 2D relation between the ratio of transverse relaxation time to longitudinal relaxation time (T1/T2) and T1 distribution of fluid are obtained by means of DEFIR with only two one-dimensional measurements. The measurement speed of DEFIR pulse sequence over 2 times as fast as that of the traditional 2D method. Using Bloembergen theory, the relation between the distributions and fluid viscosity is found. Precise method for viscosity prediction is then established. Finally, we apply this method to a down-hole NMR fluid analysis system and realized on-site and on-line prediction of viscosity for formation fluids. The results demonstrated that the new method for viscosity prediction is efficient and accurate. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. MODELING A SOLID BOUNDARY AS A FLUID OF INFINITE VISCOSITY

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new approach to model viscosity in the conservation of momentum equations is presented and discussed. Coefficient of viscosity is modeled in such a way that it reaches asymptotically to infinity at the solid boundary but still yields a finite value for the shear stress at the solid wall. Basic objective of this research is to show that certain combinations of higher order normal velocity gradients become zero at the solid boundary.Modified solutions for the Couette flow and Poiseuille flow between two parallel plates are obtained by modeling the coefficient of viscosity in a novel way. Also,viscous drag computed by our model is expected to yield higher values than the values predicted by the existing models, which matches closely to the experimental data.

  8. Fluid friction and wall viscosity of the 1D blood flow model

    CERN Document Server

    Wang, Xiao-Fei; Matsukawa, Mami; Ghigo, Arthur; Lagrée, Pierre-Yves; Fullana, Jose-Maria

    2015-01-01

    We study the behavior of the pulse waves of water into a flexible tube for application to blood flow simulations. In pulse waves both fluid friction and wall viscosity are damping factors, and difficult to evaluate separately. In this paper, the coefficients of fluid friction and wall viscosity are estimated by fitting a nonlinear 1D flow model to experimental data. In the experimental setup, a distensible tube is connected to a piston pump at one end and closed at another end. The pressure and wall displacements are measured simultaneously. A good agreement between model predictions and experiments was achieved. For amplitude decrease, the effect of wall viscosity on the pulse wave has been shown as important as that of fluid viscosity.

  9. Correlation between retention force of experimental plates and viscosity of experimental fluids

    Directory of Open Access Journals (Sweden)

    Mladenović Dragan

    2011-01-01

    Full Text Available Introduction. Saliva viscosity plays a significant role in the biophysical segment of the total retention potential of total dentures. Objective. The aim of the paper was to establish the dependence of dynamic retention force of experimental plates on experimental fluid viscosity and especially time dependence of these parameters, following at the same time relative changes of the distance between the experimental plate and dentures support established by the dislocation of the experimental plate in both directions. Methods. For experimental verification we used an original device with the aim to enable in vivo simulation on the phantom made of the upper total denture prosthesis support and experimental plate. The experiment consisted of two parts. In the first part we determined the value of the dynamic retention force with plates without and with achieved ventilation effect. In the second part we determined time dependence of the dynamic retention force of experimental plates on the viscosity of experimental fluids that had been priorly determined on identical samples (8 ml of experimental fluid samples using a rotational viscometer (Haake RV-12 with a sensor (MV, Germany. Results Under the conditions of variable viscosity rates of seven experimental fluids (from 0.02 to 1309.04 mPa•s, we registered the time dependence of dynamic retention force of the experimental plate related to fluid viscosity during the action of the continual dislocating force of the separating directions. In addition, the maximal height of the dislocation of the experimental plate was registered. The dynamic retention force, manifested by the separating direction of the experimental plate dislocation, was increased concurrently with increased viscosity. Conclusion. The increase of dynamic retention force depends directly on medium viscosity. Close border values of fluid viscosity above the investigated ones, the impossibility of experimental layer thinning and the

  10. Effects of powdered versus liquid barium on the viscosity of fluids used in modified swallow studies

    Energy Technology Data Exchange (ETDEWEB)

    Baron, J.; Alexander, T. [Univ. of Alberta, Dept. of Radiology, Edmonton, Alberta (Canada)

    2003-06-01

    To determine if the viscosity of thickened juice mixtures used in modified barium swallow studies significantly changes with the addition of powdered barium. We also describe a test formulation created using liquid barium, which has a negligible effect on juice viscosity. The viscosities of water and standardized honey- and nectar-consistency juices mixed with different amounts of powdered barium were measured by timing the laminar flow of a given initial hydrostatic head of fluid under gravity though an orifice of fixed diameter. Standardized juices were then mixed with a liquid formulation of barium and with measured quantities of water to produce viscosities that more closely equated with those of the standardized juices. With the addition of powdered barium, viscosity increased in all fluids, most markedly with the nectar-consistency juice. Liquid barium formulations maintained the viscosities of the original thickened juices. Rendering juices radio-opaque with barium powder results in dramatic increases in the viscosity of the resulting mixture and compromises diagnostic accuracy. Liquid barium preparations have the advantage that they can be rapidly and accurately dispensed by syringe, and their use does not significantly increase the viscosity of the preparation. (author)

  11. Measurement of fluid viscosity at microliter volumes using quartz impedance analysis.

    Science.gov (United States)

    Saluja, Atul; Kalonia, Devendra S

    2004-08-05

    The purpose of this work was to measure viscosity of fluids at low microliter volumes by means of quartz crystal impedance analysis. To achieve this, a novel setup was designed that allowed for measurement of viscosity at volumes of 8 to 10 microL. The technique was based on the principle of electromechanical coupling of piezoelectric quartz crystals. The arrangement was simple with measurement times ranging from 2 to 3 minutes. The crystal setup assembly did not impose any unwanted initial stress on the unloaded quartz crystal. Quartz crystals of 5- and 10-MHz fundamental frequency were calibrated with glycerol-water mixtures of known density and viscosity prior to viscosity measurements. True frequency shifts, for the purpose of this work, were determined followed by viscosity measurement of aqueous solutions of sucrose, urea, PEG-400, glucose, and ethylene glycol at 25 degrees C +/- 0.5 degrees C. The measured viscosities were found to be reproducible and consistent with the values reported in the literature. Minor inconsistencies in the measured resistance and frequency shifts did not affect the results significantly, and were found to be experimental in origin rather than due to electrode surface roughness. Besides, as expected for a viscoelastic fluid, PEG 8000 solutions, the calculated viscosities were found to be less than the reported values due to frequency dependence of storage and loss modulus components of complex viscosity. From the results, it can be concluded that the present setup can provide accurate assessment of viscosity of Newtonian fluids and also shows potential for analyzing non-Newtonian fluids at low microliter volumes.

  12. Influence of viscosity contrast on buoyantly unstable miscible fluids in porous media

    CERN Document Server

    Pramanik, Satyajit; Mishra, Manoranjan

    2015-01-01

    The influence of viscosity contrast on buoyantly unstable miscible fluids in a porous medium is investigated through a linear stability analysis (LSA) as well as direct numerical simulations (DNS). The linear stability method implemented in this paper is based on an initial value approach, which helps to capture the onset of instability more accurately than the quasi-steady state analysis. In the absence of displacement, we show that viscosity contrast delays the onset of instability in buoyantly unstable miscible fluids. Further, it is observed that suitably choosing the viscosity contrast and injection velocity a gravitationally unstable miscible interface can be stabilized completely. Through LSA we draw a phase diagram, which shows three distinct stability regions in a parameter space spanned by the displacement velocity and the viscosity contrast. DNS are performed corresponding to parameters from each regime and the results obtained are in accordance with the linear stability results. Moreover, the conv...

  13. Measurements of viscosity and permeability of two phase miscible fluid flow in rock cores.

    Science.gov (United States)

    Williams, J L; Taylor, D G

    1994-01-01

    This paper describes the application of 1H magnetic resonance imaging (MRI) to the measurement of fluid viscosity and rock core plug permeability during two phase miscible displacements in certain rock types. The core plug permeability was determined by monitoring glycerol solutions displacing D2O. Simple physical principles were used to calculate the core permeability from the measured displacement angle for a set of Lochaline sandstone core plugs. In a further experiment the viscosity of polyacrylamide solution 1500 ppm was determined in the core plug. The permeability and viscosity results compared well to conventional core analysis methods.

  14. Entropy Generation for Nonisothermal Fluid Flow: Variable Thermal Conductivity and Viscosity Case

    Directory of Open Access Journals (Sweden)

    Coskun Ozalp

    2013-01-01

    Full Text Available This paper investigates the entropy generation of a nonisothermal, incompressible Newtonian fluid flowing under the effect of a constant pressure gradient in plane Poiseuille flow. The effects of variable viscosity and thermal conductivity are also included. The viscosity and thermal conductivity of the fluid exhibit linear temperature dependence and the effect of viscous heating is included in the analysis. Channel walls are kept at constant temperatures. Velocity, temperature, and entropy generation profiles due to heat transfer and fluid friction are plotted. The effects of Brinkman number, Peclet number, pressure gradient, viscosity, and thermal conductivity constant on velocity, temperature, and entropy generation number are discussed. Discretization is performed using a pseudospectral technique based on Chebyshev polynomial expansions. The resulting nonlinear, coupled boundary value problem is solved iteratively using Chebyshev-pseudospectral method.

  15. Ultrasonic Measurement of Fluid Viscosity for Blood Characterization

    Science.gov (United States)

    Nitta, Naotaka; Homma, Kazuhiro

    2005-06-01

    Although plaque rupture in arteriosclerosis is affected by not only its strength but also by hemodynamic factors, such as blood pressure and shear stress, in particular, the viscous coefficient which directly controls the magnitude of shear stress might be a risk factor in plaque rupture. Therefore, if the viscous coefficient can be assessed noninvasively, it can be a useful index for prediction of a plaque rupture and assessment of various diseases. In this work, an ultrasonic methodology to estimate the viscous coefficient was investigated by numerical simulation and flow-phantom experiment as the fundamental investigation for noninvasively assessing the viscous characteristics of blood. These results show that the proposed method is useful for estimating the kinematic viscosity coefficient in the viscous evaluation of blood.

  16. On Regularity of Incompressible Fluid with Shear Dependent Viscosity

    Institute of Scientific and Technical Information of China (English)

    Hongjun YUAN; Qiu MENG

    2012-01-01

    The authors consider a non-Newtonian fluid governed by equations with p-structure in a cubic domain.A fluid is said to be shear thinning (or pseudo-plastic) if 1 <p < 2,and shear thickening (or dilatant) if p > 2.The case p > 2 is considered in this paper.To improve the regularity results obtained by Crispo,it is shown that the second-order derivatives of the velocity and the first-order derivative of the pressure belong to suitable spaces,by appealing to anisotropic Sobolev embeddings.

  17. Sensing fluid viscosity and density through mechanical impedance measurement using a whisker transducer

    Science.gov (United States)

    Ju, Feng; Ling, Shih-Fu

    2013-05-01

    This paper presents a new technique for fluid viscosity and density sensing through measuring the mechanical impedance of the fluid load applied on a sphere. A piezoelectric whisker transducer (WT) is proposed which acts simultaneously as both the actuator to excite the sphere tip to oscillate in the fluid and the sensor to measure the force, velocity and mechanical impedance. The relationship between mechanical impedance of the fluid load and electrical impedance of the WT is derived based on a transduction matrix model which characterizes the electro-mechanical transduction process of the WT in both directions. The mechanical impedance is further related to the fluid viscosity and density using a theoretical model. The establishment of this fluid-mechanical-electrical relationship allows the WT to extract the fluid viscosity and density conveniently and accurately just from its electrical impedance. Experimental studies are carried out to calibrate the WT and test its performance using glycerol-water mixtures. It is concluded that the WT is capable of providing results comparable to those of standard viscometers within a wide measurement range due to its low working frequency and large vibration amplitude. Its unique self-actuation-and-sensing feature makes it a suitable solution for online fluid sensing.

  18. Flow of an Eyring-Powell Model Fluid between Coaxial Cylinders with Variable Viscosity

    Directory of Open Access Journals (Sweden)

    Azad Hussain

    2013-01-01

    Full Text Available We consider the flow of Eyring-Powell model fluid in the annulus between two cylinders whose viscosity depends upon the temperature. We consider the steady flow in the annulus due to the motion of inner cylinder and constant pressure gradient. In the problem considered the flow is found to be remarkedly different from that for the incompressible Navier-Stokes fluid with constant viscosity. An analytical solution of the nonlinear problem is obtained using homotopy analysis method. The behavior of pertinent parameters is analyzed and depicted through graphs.

  19. Cosmology with bulk viscosity and the gravitino problem. Consequences of imperfect fluids on gravitino production

    Energy Technology Data Exchange (ETDEWEB)

    Buoninfante, L.; Lambiase, G. [Dipartimento di Fisica ' ' E.R. Caianiello' ' Universita di Salerno, Fisciano (Italy); INFN-Gruppo Collegato di Salerno, Fisciano (Italy)

    2017-05-15

    The gravitino problem is revisited in the framework of cosmological models in which the primordial cosmic matter is described by a relativistic imperfect fluid. Dissipative effects (or bulk viscosity effects) arise owing to the different cooling rates of the fluid components. We show that the effects of the bulk viscosity allow one to avoid the late abundance of gravitinos. In particular, for particular values of the parameters characterizing the cosmological model, the gravitino abundance turns out to be weakly depending on the reheating temperature. (orig.)

  20. Bulk Viscosity of dual Fluid at Finite Cutoff Surface via Gravity/Fluid correspondence in Einstein-Maxwell Gravity

    CERN Document Server

    Hu, Ya-Peng; Wu, Xiao-Ning

    2014-01-01

    Basing the previous paper arXiv:1207.5309, we investigate the probability to find out the bulk viscosity of dual fluid at the finite cutoff surface via gravity/fluid correspondence in Einstein-Maxwell Gravity. We find that if we adopt new conditions to fix the undetermined parameters contained in the stress tensor and charged current of the dual fluid, two new terms could appear in the stress tensor of the dual fluid. One new term is related to the bulk viscosity term, while the other could be related to the perturbation of energy density. In addition, since the parameters contained in the charged current are the same, the charged current is not changed.

  1. Shear time dependent viscosity of polystyrene-ethylacrylate based shear thickening fluid

    Science.gov (United States)

    Chen, Qian; Xuan, Shouhu; Jiang, Wanquan; Cao, Saisai; Gong, Xinglong

    2016-04-01

    In this study, the influence of the shear rate and shear time on the transient viscosity of polystyrene-ethylacrylate based shear thickening fluid (STF) is investigated. If the shear rate is stepwise changed, it is found that both the viscosity and critical shear rate are affected by the shear time. Above the critical shear rate, the viscosity of the STF with larger power law exponent (n) increases faster. However, the viscosity tends to decrease when the shear time is long enough. This phenomenon can be responsible for the reversible structure buildup and the break-down process. An effective volume fraction (EVF) mechanism is proposed to analyze the shear time dependent viscosity and it is found that viscosity changes in proportion to EVF. To further clarify the structure evolution, a structural kinetic model is studied because the structural kinetic parameter (λ) could describe the variation in the effective volume fraction. The theoretical results of the structural kinetic model agree well with the experimental results. With this model, the change in viscosity and EVF can be speculated from the variation of λ and then the structure evolution can be better illustrated.

  2. Computing bulk and shear viscosities from simulations of fluids with dissipative and stochastic interactions.

    Science.gov (United States)

    Jung, Gerhard; Schmid, Friederike

    2016-05-28

    Exact values for bulk and shear viscosity are important to characterize a fluid, and they are a necessary input for a continuum description. Here we present two novel methods to compute bulk viscosities by non-equilibrium molecular dynamics simulations of steady-state systems with periodic boundary conditions - one based on frequent particle displacements and one based on the application of external bulk forces with an inhomogeneous force profile. In equilibrium simulations, viscosities can be determined from the stress tensor fluctuations via Green-Kubo relations; however, the correct incorporation of random and dissipative forces is not obvious. We discuss different expressions proposed in the literature and test them at the example of a dissipative particle dynamics fluid.

  3. The Effect Of A Magnetic Field Dependent Viscosity On The Thermal Convection In A Ferromagnetic Fluid In A Porous Medium

    National Research Council Canada - National Science Library

    Sunil; Pavan Kumar Bharti; Divya Sharma; R. C. Sharma

    2004-01-01

    The effect of the magnetic field dependent (MFD) viscosity on the thermal convection in a ferromagnetic fluid in the presence of a uniform vertical magnetic field is considered for a fluid layer in a porous medium, heated from below...

  4. Analytical Treatment of an Oldroyd 8-constant Fluid Between Coaxial Cylinders with Variable Viscosity

    Institute of Scientific and Technical Information of China (English)

    Muhammad Yousaf Malik; Azad Hussain; Sohail Nadeem

    2011-01-01

    The flow of an Oldroyd 8-constant fluid between coaxial cylinders with variable viscosity is considered. The heat transfer analysis is also taken into account. An analytical solution of the non-linear problem is obtained using homotopy analysis method. The behavior of pertinent parameters is analyzed and depicted through graphs.

  5. Thermodynamic scaling of the shear viscosity of Mie n-6 fluids and their binary mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Delage-Santacreu, Stephanie [Laboratoire de Mathématiques et leurs Applications (UMR-5142 with CNRS), Université de Pau et des Pays de l’Adour, BP 1155, F-64013 PAU Cedex (France); Galliero, Guillaume, E-mail: guillaume.galliero@univ-pau.fr; Hoang, Hai; Bazile, Jean-Patrick; Boned, Christian [Laboratoire des Fluides Complexes et leurs Reservoirs (UMR-5150 with CNRS and TOTAL), Université de Pau et des Pays de l’Adour, BP 1155, F-64013 PAU Cedex (France); Fernandez, Josefa [Laboratorio de Propiedades Termofisicas, Universidade Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela (Spain)

    2015-05-07

    In this work, we have evaluated the applicability of the so-called thermodynamic scaling and the isomorph frame to describe the shear viscosity of Mie n-6 fluids of varying repulsive exponents (n = 8, 12, 18, 24, and 36). Furthermore, the effectiveness of the thermodynamic scaling to deal with binary mixtures of Mie n-6 fluids has been explored as well. To generate the viscosity database of these fluids, extensive non-equilibrium molecular dynamics simulations have been performed for various thermodynamic conditions. Then, a systematic approach has been used to determine the gamma exponent value (γ) characteristic of the thermodynamic scaling approach for each system. In addition, the applicability of the isomorph theory with a density dependent gamma has been confirmed in pure fluids. In both pure fluids and mixtures, it has been found that the thermodynamic scaling with a constant gamma is sufficient to correlate the viscosity data on a large range of thermodynamic conditions covering liquid and supercritical states as long as the density is not too high. Interestingly, it has been obtained that, in pure fluids, the value of γ is directly proportional to the repulsive exponent of the Mie potential. Finally, it has been found that the value of γ in mixtures can be deduced from those of the pure component using a simple logarithmic mixing rule.

  6. Laboratory study of fluid viscosity induced ultrasonic velocity dispersion in reservoir sandstones

    Science.gov (United States)

    He, Tao; Zou, Chang-Chun; Pei, Fa-Gen; Ren, Ke-Ying; Kong, Fan-Da; Shi, Ge

    2010-06-01

    Ultrasonic velocities of a set of saturated sandstone samples were measured at simulated in-situ pressures in the laboratory. The samples were obtained from the W formation of the WXS Depression and covered low to nearly high porosity and permeability ranges. The brine and four different density oils were used as pore fluids, which provided a good chance to investigate fluid viscosity-induced velocity dispersion. The analysis of experimental observations of velocity dispersion indicates that (1) the Biot model can explain most of the small discrepancy (about 2-3%) between ultrasonic measurements and zero frequency Gassmann predictions for high porosity and permeability samples saturated by all the fluids used in this experiment and is also valid for medium porosity and permeability samples saturated with low viscosity fluids (less than approximately 3 mP·S) and (2) the squirt flow mechanism dominates the low to medium porosity and permeability samples when fluid viscosity increases and produces large velocity dispersions as high as about 8%. The microfracture aspect ratios were also estimated for the reservoir sandstones and applied to calculate the characteristic frequency of the squirt flow model, above which the Gassmann’ s assumptions are violated and the measured high frequency velocities cannot be directly used for Gassmann’s fluid replacement at the exploration seismic frequency band for W formation sandstones.

  7. Local shear viscosity of strongly inhomogeneous dense fluids: from the hard-sphere to the Lennard-Jones fluids.

    Science.gov (United States)

    Hoang, Hai; Galliero, Guillaume

    2013-12-04

    This work aims at providing a tractable approach to model the local shear viscosity of strongly inhomogeneous dense fluids composed of spherical molecules, in which the density variations occur on molecular distance. The proposed scheme, which relies on the local density average model, has been applied to the quasi-hard-sphere, the Week-Chandler-Andersen and the Lennard-Jones fluids. A weight function has been developed to deal with the hard-sphere fluid given the specificities of momentum exchange. To extend the approach to the smoothly repulsive potential, we have taken into account that the non-local contributions to the viscosity due to the interactions of particles separated by a given distance are temperature dependent. Then, using a simple perturbation scheme, the approach is extended to the Lennard-Jones fluids. It is shown that the viscosity profiles of inhomogeneous dense fluids deduced from this approach are consistent with those directly computed by non-equilibrium molecular dynamics simulations.

  8. Miscible viscous fingering involving viscosity changes of the displacing fluid by chemical reactions

    Science.gov (United States)

    Nagatsu, Yuichiro; Iguchi, Chika; Matsuda, Kenji; Kato, Yoshihito; Tada, Yutaka

    2010-02-01

    In our previous study, we experimentally studied the effects of changes in the viscosity of the displaced more-viscous liquid by instantaneous reactions on miscible viscous fingering pattern [Y. Nagatsu, K. Matsuda, Y. Kato, and Y. Tada, "Experimental study on miscible viscous fingering involving viscosity changes induced by variations in chemical species concentrations due to chemical reactions," J. Fluid Mech. 571, 475 (2007)]. In the present study, experiments have been performed on the miscible viscous fingering involving changes in the viscosity of the displacing less-viscous liquid by instantaneous reactions in a radial Hele-Shaw cell. We have found that the shielding effect is suppressed and the fingers are widened when the viscosity is increased. As a result, the reaction makes the fingering pattern denser. In contrast, the shielding effect is enhanced, and the fingers are narrowed when the viscosity is decreased. As a result, the reaction makes the fingering pattern less dense. These results are essentially same as those obtained by the above-mentioned previous study. This shows that the effects of changes in the viscosity due to the instantaneous reactions are independent of whether the changes occur in the displaced liquid or in the displacing liquid. A mechanism for the independence is discussed.

  9. Enhanced Remedial Amendment Delivery through Fluid Viscosity Modifications: Experiments and numerical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Lirong; Oostrom, Martinus; Wietsma, Thomas W.; Covert, Matthew A.

    2008-07-29

    Abstract Heterogeneity is often encountered in subsurface contamination characterization and remediation. Low-permeability zones are typically bypassed when remedial fluids are injected into subsurface heterogeneous aquifer systems. Therefore, contaminants in the bypassed areas may not be contacted by the amendments in the remedial fluid, which may significantly prolong the remediation operations. Laboratory experiments and numerical studies have been conducted to develop the Mobility-Controlled Flood (MCF) technology for subsurface remediation and to demonstrate the capability of this technology in enhancing the remedial amendments delivery to the lower permeability zones in heterogeneous systems. Xanthan gum, a bio-polymer, was used to modify the viscosity of the amendment-containing remedial solutions. Sodium mono-phosphate and surfactant were the remedial amendment used in this work. The enhanced delivery of the amendments was demonstrated in two-dimensional (2-D) flow cell experiments, packed with heterogeneous systems. The impact of polymer concentration, fluid injection rate, and permeability contract in the heterogeneous systems has been studied. The Subsurface Transport over Multiple Phases (STOMP) simulator was modified to include polymer-induced shear thinning effects. Shear rates of polymer solutions were computed from pore-water velocities using a relationship proposed in the literature. Viscosity data were subsequently obtained from empirical viscosity-shear rate relationships derived from laboratory data. The experimental and simulation results clearly show that the MCF technology is capable of enhancing the delivery of remedial amendments to subsurface lower permeability zones. The enhanced delivery significantly improved the NAPL removal from these zones and the sweeping efficiency on a heterogeneous system was remarkably increased when a polymer fluid was applied. MCF technology is also able to stabilize the fluid displacing front when there is a

  10. Flow-induced agitations create a granular fluid: Effective viscosity and fluctuations

    Science.gov (United States)

    Nichol, Kiri; van Hecke, Martin

    2012-06-01

    We fluidize a granular medium with localized stirring in a split-bottom shear cell. We probe the mechanical response of quiescent regions far from the main flow by observing the vertical motion of cylindrical probes rising, sinking, and floating in the grains. First, we find that the probe motion suggests that the granular material behaves in a liquid-like manner: high-density probes sink and low-density probes float at the depth given by Archimedes’ law. Second, we observe that the drag force on moving probes scales linearly with their velocity, which allows us to define an effective viscosity for the system. This effective viscosity is inversely proportional to the rotation rate of the disk which drives the split bottom flow. Moreover, the apparent viscosity depends on radius and mass of the probe: despite the linear dependence of the drag forces on sinking speed of the probe, the granular medium is not simply Newtonian, but exhibits a more complex rheology. The decrease of viscosity with filling height of the cell, combined with the poor correlation between local strain rate and viscosity, suggests that the fluid-like character of the material is set by agitations generated in the stirred region: the relation between applied stress and observed strain rate in one location depends on the strain rate in another location. We probe the nature of the granular fluctuations that we believe mediates these nonlocal interactions by characterizing the small and random up and down motion that the probe experiences. These Gaussian fluctuations exhibit a mix of diffusive and subdiffusive behavior at short times and saturate at a value of roughly 1/10th of a grain diameter longer times, consistent with the picture of a random walker in a potential well. The product of crossover time and effective viscosity is constant, evidencing a direct link between fluctuations and viscosity.

  11. Comparative study of the fluid viscosity in tarsal hairy attachment systems of flies and beetles.

    Science.gov (United States)

    Peisker, Henrik; Heepe, Lars; Kovalev, Alexander E; Gorb, Stanislav N

    2014-10-06

    Wet adhesive systems of insects strongly rely for their function on the formation of capillary bridges with the substrate. Studies on the chemical composition and evaporation dynamics of tarsal secretions strongly suggest a difference in chemistry of secretion in beetles and flies, both possessing hairy attachment devices. This difference is assumed to influence the viscosity of the secretion. Here, we applied a microrheological technique, based on the immersion of nanometric beads in the collected tarsal footprints, to estimate secretion viscosity in a beetle (Coccinella septempunctata) and a fly (Calliphora vicina). Both species studied possess distinct differences in viscosity, the median of which was calculated as 21.8 and 10.9 mPa s, respectively. We further present an approximate theoretical model to calculate the contact formation time of spatula-like terminal contact elements using the viscosity data of the covering fluid. The estimated contact formation time is proportional to the tarsal secretion viscosity and to the square of the contact radius of the contact element. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Viscosity of net-baryon fluid near the QCD critical point

    CERN Document Server

    Antoniou, N G; Kapoyannis, A S

    2016-01-01

    In the dynamics of the QCD critical point, the net-baryon fluid, linked to the slow component of the order parameter, relaxes to a 3d Ising system in equilibrium. The transport coefficients develop power-law singularities in the limit $T \\rightarrow T_c$, $\\mu_b=\\mu_c$, associated with the critical exponents of the 3d Ising universality class. An analytical study of shear and bulk viscosity, with constraints imposed by universality and the requirements of a class of strong coupling theories, is performed in the neighbourhood of the critical point. It is found that the shear viscosity of the net-baryon fluid is restricted in the domain $1.6\\leq 4\\pi\\frac{\\eta}{s}\\leq 3.7$ for $T_c 1.23 T_c$) but rising towards the singularity at $T=T_c$.

  13. Viscosity-Induced Crossing of the Phantom Divide in the Dark Cosmic Fluid

    CERN Document Server

    Brevik, Iver

    2013-01-01

    Choosing various natural forms for the equation-of-state parameter w and the bulk viscosity \\zeta, we discuss how it is possible for a dark energy fluid to slide from the quintessence region across the divide w=-1 into the phantom region, and thus into a Big Rip future singularity. Different analytic forms for \\zeta, as powers of the scalar expansion, are suggested and compared with experiments.

  14. Determination of fluid viscosity and femto Newton forces of Leishmania amazonensis using optical tweezers

    Science.gov (United States)

    Fontes, Adriana; Giorgio, Selma; de Castro, Archimedes, Jr.; Neto, Vivaldo M.; de Y. Pozzo, Liliana; de Thomaz, Andre A.; Barbosa, Luiz C.; Cesar, Carlos L.

    2005-08-01

    The displacements of a polystyrene microsphere trapped by an optical tweezers (OT) can be used as a force transducer for mechanical measurements in life sciences such as the measurement of forces of living microorganisms or the viscosity of local fluids. The technique we used allowed us to measure forces on the 200 femto Newtons to 4 pico Newtons range of the protozoa Leishmania amazonensis, responsible for a serious tropical disease. These observations can be used to understand the infection mechanism and chemotaxis of these parasites. The same technique was used to measure viscosities of few microliters sample with agreement with known samples better than 5%. To calibrate the force as a function of the microsphere displacement we first dragged the microsphere in a fluid at known velocity for a broad range of different optical and hydrodynamical parameters. The hydrodynamical model took into account the presence of two walls and the force depends on drag velocity, fluid viscosity and walls proximities, while the optical model in the geometric optics regime depends on the particle and fluid refractive indexes and laser power. To measure the high numerical (NA) aperture laser beam power after the objective we used an integration sphere to avoid the systematic errors of usual power meters for high NA beams. After this careful laser power measurement we obtained an almost 45 degrees straight line for the plot of the optical force (calculated by the particle horizontal displacement) versus hydrodynamic force (calculated by the drag velocity) under variation of all the parameters described below. This means that hydrodynamic models can be used to calibrate optical forces, as we have done for the parasite force measurement, or vice-versa, as we did for the viscosity measurements.

  15. A review on rising bubble dynamics in viscosity-stratified fluids

    Indian Academy of Sciences (India)

    KIRTI CHANDRA SAHU

    2017-04-01

    Systems with a bubble rising in a fluid, which has a variation of viscosity in space and time can be found in various natural phenomena and industrial applications, including food processing, oil extraction, waste processing and biochemical reactors, to name a few. A review of the aspects studied in the literature on thisphenomenon, the gaps that exist and the direction for further numerical and experimental studies to address these gaps is presented.

  16. Thermal conductivity and viscosity of self-assembled alcohol/polyalphaolefin nanoemulsion fluids

    Directory of Open Access Journals (Sweden)

    Hammouda Boualem

    2011-01-01

    Full Text Available Abstract Very large thermal conductivity enhancement had been reported earlier in colloidal suspensions of solid nanoparticles (i.e., nanofluids and more recently also in oil-in-water emulsions. In this study, nanoemulsions of alcohol and polyalphaolefin (PAO are spontaneously generated by self-assembly, and their thermal conductivity and viscosity are investigated experimentally. Alcohol and PAO have similar thermal conductivity values, so that the abnormal effects, such as particle Brownian motion, on thermal transport could be deducted in these alcohol/PAO nanoemulsion fluids. Small angle neutron-scattering measurement shows that the alcohol droplets are spheres of 0.8-nm radius in these nanoemulsion fluids. Both thermal conductivity and dynamic viscosity of the fluids are found to increase with alcohol droplet loading, as expected from classical theories. However, the measured conductivity increase is very moderate, e.g., a 2.3% increase for 9 vol%, in these fluids. This suggests that no anomalous enhancement of thermal conductivity is observed in the alcohol/PAO nanoemulsion fluids tested in this study.

  17. A microfluidic mixer with self-excited 'turbulent' fluid motion for wide viscosity ratio applications.

    Science.gov (United States)

    Xia, H M; Wang, Z P; Koh, Y X; May, K T

    2010-07-07

    In micromixer studies, compared with the design, modeling and characterization, the influence of the fluid properties on mixing has been less discussed. This topic is of practical significance as the properties of diverse biological and chemical liquids to be mixed have large variations. Here, we report a microfluidic mixer for mixing fluids with widely different viscosities. It contains an interconnected multi-channel network through which the bulk fluid volumes are divided into smaller ones and chaotically reorganized. Then, the multiple fluid streams are driven into an expansion chamber which triggers viscous flow instabilities. Experiments with the co-flow of glycerol and aqueous solutions show an automatic transition of the flow from a steady state to a 'turbulent' state, significantly enhancing the mixing. This observation is rather interesting considering that it occurs in a passive flow and the average Reynolds number involved is small. Further testing indicates that this mixer works well at viscosity ratio (chi) up to the order of 10(4).

  18. Shear viscosity of hard chain fluids through molecular dynamics simulation techniques

    Directory of Open Access Journals (Sweden)

    Ratanapisit, J.

    2005-07-01

    Full Text Available In this paper, we represent the viscosity of hard chain fluids. This study was initiated with an investigation of the equilibrium molecular dynamic simulations of pure hard-sphere molecules. The natural extension of that work was to hard chain fluids. The hard chain model is one in which each molecule is represented as a chain of freely jointed hard spheres that interact on a site-site basis. The major use of the results from this study lie in the future development of a transport perturbation theory in which the hard chain serves as the reference. Our results show agreement to within the combined uncertainties with the previous studies. Comparisons have also been made to a modified Enskog theory. Results show the failure of the Enskog theory to predict the high density viscosity and that the theory fails more rapidly with density as the chain length increases. We attribute this to a failure of the molecular chaos assumption used in the Enskog theory. Further comparisons are made to real fluids using the SAFT-MET and TRAPP approaches. As expected, the hard sphere model is not appropriate to estimate properties of real fluids. However, the hard sphere model provides the good starting point to serve as the reference basis to study chain molecule systems.

  19. Laboratory Experiments on Wave Emissions Generated by the Variable Viscosity of Fracturing Fluids

    Science.gov (United States)

    Dahi Taleghani, A.; Lorenzo, J. M.

    2014-12-01

    Microseismic analysis is recognized as the main method for estimating hydraulic fracture geometry. However, because of limited access to the subsurface and usually high levels of environmental noise it becomes crucial to verify assumed fracture propagation models under more controlled laboratory conditions. Considering the fact that fluid driven fractures may grow under different regimes i.e., toughness-dominated or viscous-dominated, scaling is necessary to reproduce the corresponding fracture growth regime. Scaling is achieved by constraining material deformational parameters, fluid flow rates, and fracturing-fluid viscosity for the appropriate value of the non-dimensional toughness. Hence, we implemented hydraulic fracturing tests on translucent plexiglass samples, at room temperature with contrasting fracturing fluid viscosities. A modest, biaxial loading frame creates relatively low directed principal stresses (positive displacement pump. We record microseismic events on the upper and lower faces of a thermally annealed, sample block (13 cm x 13 cm x 10 cm) with 3-component, broadband sensors (101-106). Preliminary results indicate that the dominant frequency band of the microseismic events appears similar for both toughness-dominated and viscous-dominated regimes (101-102 Hz). The experiments in both regimes show rippled crack surfaces although in the toughness-dominated regime, 'ripples' are more closely spaced (mm cf. cm). The fracture surfaces show bifurcating, "wish-bone" structures only in the viscous regime.

  20. The effects of fluid viscosity on the kinematics and material properties of C. elegans swimming at low Reynolds number

    CERN Document Server

    Sznitman, Josue; Purohit, Prashant K; Arratia, Paulo E

    2009-01-01

    The effects of fluid viscosity on the kinematics of a small swimmer at low Reynolds number are investigated in both experiments and in a simple model. The swimmer is the nematode Caenorhabditis elegans, which is an undulating roundworm approximately 1 mm long. Experiments show that the nematode maintains a highly periodic swimming behavior as the fluid viscosity is varied from 1.0 mPa-s to 12 mPa-s. Surprisingly, the nematode's swimming speed (~0.35 mm/s) is nearly insensitive to the range of fluid viscosities investigated here. However, the nematode's beating frequency decreases to an asymptotic value (~1.7 Hz) with increasing fluid viscosity. A simple model is used to estimate the nematode's Young's modulus and tissue viscosity. Both material properties increase with increasing fluid viscosity. It is proposed that the increase in Young's modulus may be associated with muscle contraction in response to larger mechanical loading while the increase in effective tissue viscosity may be associated with the energ...

  1. New correlations between viscosity and surface tension for saturated normal fluids

    CERN Document Server

    Zheng, Mengmeng; Mulero, A

    2016-01-01

    New correlations between viscosity and surface tension are proposed and checked for saturated normal fluids. The proposed correlations contain three or four adjustable coefficients for every fluid. They were obtained by fitting 200 data points, ranging from the triple point to a point very near to the critical one. Forty substances were considered, including simple fluids (such as rare gases), simple hydrocarbons, refrigerants, and some other substances such as carbon dioxide and water. Two correlation models with three adjustable coefficients were checked, and the results showed that the one based on the modified Pelofsky expression gives the better overall results. A new 4-coefficient correlation is then proposed which clearly improves the results, giving the lowest overall deviations for 32 out of the 40 substances considered and absolute average deviations below 10% for all of them.

  2. Improved Correlation for Viscosity from Surface Tension Data for Saturated Normal Fluids

    CERN Document Server

    Tian, Jianxiang

    2016-01-01

    Several correlations between viscosity and surface tension for saturated normal fluids have been proposed in the literature. Usually, they include three or four adjustable coefficients for every fluid and give generally good results. In this paper we propose a new and improved four-coefficient correlation which was obtained by fitting data ranging from the triple point to a point very near to the critical one. Fifty four substances were considered, including simple fluids (such as rare gases), simple hydrocarbons, refrigerants, and some other substances such as carbon dioxide, water or ethanol. The new correlation clearly improves the results obtained with those previously available since it gives absolute average deviations below1% for 40 substances and below 2.1% for 10 substances more.

  3. Viscosity spectral function of a scale invariant non-relativistic fluid from holography

    CERN Document Server

    Schaefer, Thomas

    2014-01-01

    We study the viscosity spectral function of a holographic 2+1 dimensional fluid with Schroedinger symmetry. The model is based on a twisted compactification of $Ads_5\\times S_5$. We numerically compute the spectral function of the stress tensor correlator for all frequencies, and analytically study the limits of high and low frequency. We compute the shear viscosity, the viscous relaxation time, and the quasi-normal mode spectrum in the shear channel. We find a number of unexpected results: The high frequency behavior is governed by a fractional 1/3 power law, the viscous relaxation time is negative, and the quasi-normal mode spectrum in the shear channel is not doubled.

  4. Dynamic analysis of polymeric fluid in shear flow for dumbbell model with internal viscosity

    Institute of Scientific and Technical Information of China (English)

    杨晓东; R.V.N.MELNIK

    2008-01-01

    The dynamic analysis of semi-flexible polymers,such as DNA molecules,is an important multiscale problem with a wide range of applications in science and bioengineering.In this contribution,a dumbbell model with internal viscosity was studied in steady shear flows of polymeric fluid.The tensors with moments other than second moment were approximated in the terms of second moment tensor.Then,the nonlinear algebraic equation of the second moment conformation tensor was calculated in closed form.Finally,substituting the resulting conformation tensor into the Kramers equation of Hookean spring force,the constitutive equations were obtained.The shear material properties were discussed for different internal viscosities and compared with the results of Brownian dynamics simulation.

  5. Plate-like convection induced by symmetries in fluids with temperature-dependent viscosity

    CERN Document Server

    Curbelo, Jezabel

    2014-01-01

    The study of instabilities in fluids in which viscosity experiences a transition at a certain temperature range is of great interest for the understanding of planetary interiors, since this phenomena models the melting and solidification of a magma ocean and thus is suitable for representing a lithosphere over a convecting mantle. To this end, we study a 2D convection problem in which viscosity depends on temperature by abruptly changing its value by a factor 400 within a narrow temperature gap at which magma melts. We perform a study which combines bifurcation analysis and time dependent simulations. Solutions such as limit cycles are found that are fundamentally related to the presence of symmetry. Sporadically during these cycles, through abrupt bursts, spontaneous plate-like behaviors that rapidly evolve towards a stagnant lid regime emerge. The plate-like evolution alternates motions towards either right or left, introducing temporary asymmetries on the convecting styles. Further time dependent regimes w...

  6. Experimental study on high viscosity fluid micro-droplet jetting system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Fluid dispensing is a method by which fluid materials(such as epoxy,adhesive,and encapsulant) are delivered in a controlled manner in electronics packaging.Fluid jetting,derived from inkjet technology,is a noncontact,data-driven fluid dispensing technology.But ideal fluid materials for packaging are usually high viscous,which is difficult to realize by traditional inkjet technology.In this paper,a mechanical micro-droplet jetting system for high viscosity fluid was proposed.It consists of dispensing valve,motion stage,temperature control subsystem,pneumatic subsystem,driving circuit for solenoid valve,and system control software.Performance of this system under various circumstances was studied by changing several parameters,including working temperature,stroke length,back pressure and drive pulse width.Tiny droplets of 0.35 mm in diameter were produced by stainless steel nozzle of 0.2 mm in diameter in the experimental study.

  7. Thin film flow in MHD third grade fluid on a vertical belt with temperature dependent viscosity.

    Directory of Open Access Journals (Sweden)

    Taza Gul

    Full Text Available In this work, we have carried out the influence of temperature dependent viscosity on thin film flow of a magnetohydrodynamic (MHD third grade fluid past a vertical belt. The governing coupled non-linear differential equations with appropriate boundary conditions are solved analytically by using Adomian Decomposition Method (ADM. In order to make comparison, the governing problem has also been solved by using Optimal Homotopy Asymptotic Method (OHAM. The physical characteristics of the problem have been well discussed in graphs for several parameter of interest.

  8. Temperature Dependent Viscosity of a Third Order Thin Film Fluid Layer on a Lubricating Vertical Belt

    Directory of Open Access Journals (Sweden)

    T. Gul

    2015-01-01

    Full Text Available This paper aims to study the influence of heat transfer on thin film flow of a reactive third order fluid with variable viscosity and slip boundary condition. The problem is formulated in the form of coupled nonlinear equations governing the flow together with appropriate boundary conditions. Approximate analytical solutions for velocity and temperature are obtained using Adomian Decomposition Method (ADM. Such solutions are also obtained by using Optimal Homotopy Asymptotic Method (OHAM and are compared with ADM solutions. Both of these solutions are found identical as shown in graphs and tables. The graphical results for embedded flow parameters are also shown.

  9. Thin film flow in MHD third grade fluid on a vertical belt with temperature dependent viscosity.

    Science.gov (United States)

    Gul, Taza; Islam, Saed; Shah, Rehan Ali; Khan, Ilyas; Shafie, Sharidan

    2014-01-01

    In this work, we have carried out the influence of temperature dependent viscosity on thin film flow of a magnetohydrodynamic (MHD) third grade fluid past a vertical belt. The governing coupled non-linear differential equations with appropriate boundary conditions are solved analytically by using Adomian Decomposition Method (ADM). In order to make comparison, the governing problem has also been solved by using Optimal Homotopy Asymptotic Method (OHAM). The physical characteristics of the problem have been well discussed in graphs for several parameter of interest.

  10. Holographic fluid with bulk viscosity, perturbation of pressure and energy density at finite cutoff surface in the Einstein gravity

    CERN Document Server

    Hu, Ya-Peng; Wu, Xiao-Ning

    2014-01-01

    Using the gravity/fluid correspondence in our paper, we investigate the holographic fluid at finite cutoff surface in the Einstein gravity. After constructing the first order perturbative solution of the Schwarzschild-AdS black brane solution in the Einstein gravity, we focus on the stress-energy tensor of the dual fluid with transport coefficients at the finite cutoff surface. Besides the pressure and energy density of dual fluid are obtained, the shear viscosity is also obtained. The most important results are that we find that if we adopt different conditions to fix the undetermined parameters contained in the stress-energy tensor of the dual fluid, the pressure and energy density of the dual fluid can be perturbed. Particularly, the bulk viscosity of the dual fluid can also be given in this case.

  11. Contribution to modeling the viscosity Arrhenius-type equation for saturated pure fluids

    Science.gov (United States)

    Tian, Jianxiang; Zhang, Laibin

    2016-09-01

    Recently, Haj-Kacem et al. proposed an equation modeling the relationship between the two parameters of viscosity Arrhenius-type equations [Fluid Phase Equilibria 383, 11 (2014)]. The authors found that the two parameters are dependent upon each other in an exponential function form. In this paper, we reconsidered their ideas and calculated the two parameter values for 49 saturated pure fluids by using the experimental data in the NIST WebBook. Our conclusion is different with the ones of Haj-Kacem et al. We found that (the linearity shown by) the Arrhenius equation stands strongly only in low temperature range and that the two parameters of the Arrhenius equation are independent upon each other in the whole temperature range from the triple point to the critical point.

  12. Experimental model for non-Newtonian fluid viscosity estimation: Fit to mathematical expressions

    Directory of Open Access Journals (Sweden)

    Guillem Masoliver i Marcos

    2017-01-01

    Full Text Available The  construction  process  of  a  viscometer,  developed  in  collaboration  with  a  final  project  student,  is  here  presented.  It  is  intended  to  be  used  by   first  year's  students  to  know  the  viscosity  as  a  fluid  property, for  both  Newtonian  and  non-Newtonian  flows.  Viscosity  determination  is  crucial  for  the  fluids  behaviour knowledge  related  to  their  reologic  and  physical  properties.  These  have  great  implications  in  engineering aspects  such  as  friction  or  lubrication.  With  the  present  experimental  model  device  three  different fluids are  analyzed  (water,  kétchup  and  a  mixture  with  cornstarch  and  water.  Tangential stress is measured versus velocity in order to characterize all the fluids in different thermal conditions. A mathematical fit process is proposed to be done in order to adjust the results to expected analytical expressions, obtaining good results for these fittings, with R2 greater than 0.88 in any case.

  13. Aqueous ammonium thiocyanate solutions as refractive index-matching fluids with low density and viscosity

    Science.gov (United States)

    Morrison, Benjamin C.; Borrero-Echeverry, Daniel

    2015-11-01

    Index-matching fluids play an important role in many fluid dynamics experiments, particularly those involving particle tracking, as they can be used to minimize errors due to distortion from the refraction of light across interfaces of the apparatus. Common index-matching fluids, such as sodium iodide solutions or mineral oils, often have densities or viscosities very different from those of water. This can make them undesirable for use as a working fluid when using commercially available tracer particles or at high Reynolds numbers. A solution of ammonium thiocyanate (NH4SCN) can be used for index-matching common materials such as borosilicate glass and acrylic, and has material properties similar to those of water (ν ~ 1 . 6 cSt and ρ ~ 1 . 1 g/cc). We present an empirical model for predicting the refractive index of aqueous NH4SCN solutions as a function of temperature and NH4SCN concentration that allows experimenters to develop refractive index matching solutions for various common materials. This work was supported by the National Science Foundation (CBET-0853691) and by the James Borders Physics Student Fellowship at Reed College.

  14. Effect of non-Newtonian viscosity on the fluid-dynamic characteristics in stenotic vessels

    Science.gov (United States)

    Huh, Hyung Kyu; Ha, Hojin; Lee, Sang Joon

    2015-08-01

    Although blood is known to have shear-thinning and viscoelastic properties, the effects of such properties on the hemodynamic characteristics in various vascular environments are not fully understood yet. For a quantitative hemodynamic analysis, the refractive index of a transparent blood analogue needs to be matched with that of the flowing conduit in order to minimize the errors according to the distortion of the light. In this study, three refractive index-matched blood analogue fluids with different viscosities are prepared—one Newtonian and two non-Newtonian analogues—which correspond to healthy blood with 45 % hematocrit (i.e., normal non-Newtonian) and obese blood with higher viscosity (i.e., abnormal non-Newtonian). The effects of the non-Newtonian rheological properties of the blood analogues on the hemodynamic characteristics in the post-stenosis region of an axisymmetric stenosis model are experimentally investigated using particle image velocimetry velocity field measurement technique and pathline flow visualization. As a result, the centerline jet flow from the stenosis apex is suppressed by the shear-thinning feature of the blood analogues when the Reynolds number is smaller than 500. The lengths of the recirculation zone for abnormal and normal non-Newtonian blood analogues are 3.67 and 1.72 times shorter than that for the Newtonian analogue at Reynolds numbers smaller than 200. The Reynolds number of the transition from laminar to turbulent flow for all blood analogues increases as the shear-thinning feature increases, and the maximum wall shear stresses in non-Newtonian fluids are five times greater than those in Newtonian fluids. However, the shear-thinning effect on the hemodynamic characteristics is not significant at Reynolds numbers higher than 1000. The findings of this study on refractive index-matched non-Newtonian blood analogues can be utilized in other in vitro experiments, where non-Newtonian features dominantly affect the flow

  15. Flows of Carreau fluid with pressure dependent viscosity in a variable porous medium: Application of polymer melt

    Directory of Open Access Journals (Sweden)

    M.Y. Malik

    2014-06-01

    Full Text Available The present work concerns the pressure dependent viscosity in Carreau fluid through porous medium. Four different combinations of pressure dependent viscosity and pressure dependent porous medium parameters are considered for two types of flow situations namely (i Poiseuille flow and (ii Couette flow. The solutions of non-linear equations have been evaluated numerically by Shooting method along with Runge-Kutta Fehlberg method. The physical features of pertinent parameters have been discussed through graphs.

  16. Decoupling mass adsorption from fluid viscosity and density in quartz crystal microbalance measurements using normalized conductance modeling

    Science.gov (United States)

    Parlak, Z.; Biet, C.; Zauscher, S.

    2013-08-01

    We describe the physical understanding of a method which differentiates between the frequency shift caused by fluid viscosity and density from that caused by mass adsorption in the resonance of a quartz crystal resonator. This method uses the normalized conductance of the crystal to determine a critical frequency at which the fluid mass and fluid loss compensate each other. Tracking the shift in this critical frequency allows us to determine purely mass adsorption on the crystal. We extended this method to Maxwellian fluids for understanding the mass adsorption in non-Newtonian fluids. We validate our approach by real-time mass adsorption measurements using glycerol and albumin solutions.

  17. Effect of variable viscosity on laminar convection flow of an electrically conducting fluid in uniform magnetic field

    Directory of Open Access Journals (Sweden)

    Chakraborty S.

    2002-01-01

    Full Text Available The flow of a viscous incompressible electrically conducting fluid on a continuous moving flat plate in presence of uniform transverse magnetic field, is studied. The flat plate which is continuously moving in its own plane with a constant speed is considered to be isothermally heated. Assuming the fluid viscosity as an inverse linear function of temperature, the nature of fluid velocity and temperature in presence of uniform magnetic field are shown for changing viscosity parameter at different layers of the medium. Numerical solutions are obtained by using Runge-Kutta and Shooting method. The coefficient of skin friction and the rate of heat transfer are calculated at different viscosity parameter and Prandt l number. .

  18. Extensional flow of low-viscosity fluids in capillary bridges formed by pulsed surface acoustic wave jetting

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, P K; McDonnell, A G; Prabhakar, R; Yeo, L Y; Friend, J, E-mail: james.friend@monash.edu.au [MicroNanophysics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800 (Australia); Melbourne Centre for Nanofabrication, Melbourne, VIC 3800 (Australia)

    2011-02-15

    Forming capillary bridges of low-viscosity ({approx}<10 mPa s) fluids is difficult, making the study of their capillary-thinning behavior and the measurement of the fluid's extensional viscosity difficult as well. Current techniques require some time to form a liquid bridge from the stretching of a droplet. Rapidly stretching a liquid bridge using these methods can cause its breakup if the viscosity is too low. Stretching more slowly allows the bridge to thin and break up before a suitable bridge geometry can be established to provide reliable and accurate rheological data. Using a pulsed surface acoustic wave to eject a jet from a sessile droplet, a capillary bridge may be formed in about 7.5 ms, about seven times quicker than current methods. With this approach, capillary bridges may be formed from Newtonian and non-Newtonian fluids having much lower viscosities-water, 0.04% by weight solution of high-molecular-weight (7 MDa) polystyrene in dioctyl phthalate and 0.25% fibrinogen solution in demineralized water, for example. Details of the relatively simple system used to achieve these results are provided, as are experimental results indicating deviations from a Newtonian response by the low-viscosity non-Newtonian fluids used in our study.

  19. Atomization of High-Viscosity Fluids for Aromatherapy Using Micro-heaters for Heterogeneous Bubble Nucleation

    Science.gov (United States)

    Law, Junhui; Kong, Ka Wai; Chan, Ho-Yin; Sun, Winston; Li, Wen Jung; Chau, Eric Boa Fung; Chan, George Kak Man

    2017-01-01

    The development of a novel lead-free microelectromechanical-system (MEMS)-based atomizer using the principle of thermal bubble actuation is presented. It is a low-cost, lead-free design that is environmentally friendly and harmless to humans. It has been tested to be applicable over a wide range of fluid viscosities, ranging from 1 cP (e.g., water) to 200 cP (e.g., oil-like fluid) at room temperature, a range that is difficult to achieve using ordinary atomizers. The results demonstrate that the average power consumption of the atomizer is approximately 1 W with an atomization rate of 0.1 to 0.3 mg of deionized (DI) water per cycle. The relationships between the micro-heater track width and the track gap, the size of the micro-cavities and the nucleation energy were studied to obtain an optimal atomizer design. The particle image velocimetry (PIV) results indicate that the diameter of the ejected droplets ranges from 30 to 90 μm with a speed of 20 to 340 mm/s. In addition, different modes of spraying are reported for the first time. It is envisioned that the successful development of this MEMS-based atomizing technology will revolutionize the existing market for atomizers and could also benefit different industries, particularly in applications involving viscous fluids. PMID:28074925

  20. Atomization of High-Viscosity Fluids for Aromatherapy Using Micro-heaters for Heterogeneous Bubble Nucleation.

    Science.gov (United States)

    Law, Junhui; Kong, Ka Wai; Chan, Ho-Yin; Sun, Winston; Li, Wen Jung; Chau, Eric Boa Fung; Chan, George Kak Man

    2017-01-11

    The development of a novel lead-free microelectromechanical-system (MEMS)-based atomizer using the principle of thermal bubble actuation is presented. It is a low-cost, lead-free design that is environmentally friendly and harmless to humans. It has been tested to be applicable over a wide range of fluid viscosities, ranging from 1 cP (e.g., water) to 200 cP (e.g., oil-like fluid) at room temperature, a range that is difficult to achieve using ordinary atomizers. The results demonstrate that the average power consumption of the atomizer is approximately 1 W with an atomization rate of 0.1 to 0.3 mg of deionized (DI) water per cycle. The relationships between the micro-heater track width and the track gap, the size of the micro-cavities and the nucleation energy were studied to obtain an optimal atomizer design. The particle image velocimetry (PIV) results indicate that the diameter of the ejected droplets ranges from 30 to 90 μm with a speed of 20 to 340 mm/s. In addition, different modes of spraying are reported for the first time. It is envisioned that the successful development of this MEMS-based atomizing technology will revolutionize the existing market for atomizers and could also benefit different industries, particularly in applications involving viscous fluids.

  1. Atomization of High-Viscosity Fluids for Aromatherapy Using Micro-heaters for Heterogeneous Bubble Nucleation

    Science.gov (United States)

    Law, Junhui; Kong, Ka Wai; Chan, Ho-Yin; Sun, Winston; Li, Wen Jung; Chau, Eric Boa Fung; Chan, George Kak Man

    2017-01-01

    The development of a novel lead-free microelectromechanical-system (MEMS)-based atomizer using the principle of thermal bubble actuation is presented. It is a low-cost, lead-free design that is environmentally friendly and harmless to humans. It has been tested to be applicable over a wide range of fluid viscosities, ranging from 1 cP (e.g., water) to 200 cP (e.g., oil-like fluid) at room temperature, a range that is difficult to achieve using ordinary atomizers. The results demonstrate that the average power consumption of the atomizer is approximately 1 W with an atomization rate of 0.1 to 0.3 mg of deionized (DI) water per cycle. The relationships between the micro-heater track width and the track gap, the size of the micro-cavities and the nucleation energy were studied to obtain an optimal atomizer design. The particle image velocimetry (PIV) results indicate that the diameter of the ejected droplets ranges from 30 to 90 μm with a speed of 20 to 340 mm/s. In addition, different modes of spraying are reported for the first time. It is envisioned that the successful development of this MEMS-based atomizing technology will revolutionize the existing market for atomizers and could also benefit different industries, particularly in applications involving viscous fluids.

  2. The viscosity and density of sour gas fluids at high temperatures and high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Giri, B.R.; Marriott, R.A.; Blais, P.; Clark, P.D. [Alberta Sulphur Research Ltd., Calgary, AB (Canada); Calgary Univ., AB (Canada). Dept. of Chemistry

    2010-01-15

    This poster session discussed an experiment designed to measure the viscosity and density of sour gas fluids at high temperatures and pressures. An option for disposing acid gases while enhancing the production of oil and gas fields is the re-injection of gases rich in hydrogen sulphide/carbon dioxide (H{sub 2}S/CO{sub 2}) into reservoirs up to very high pressures, but issues with respect to corrosion, compression, pumping, and transport need addressing, and the reliable high-density/high-pressure data needed to arrive at an optimum process concept and the design of pumps, compressors, and transport lines had up to this point been lacking. The experimental set up involved the use of a Vibrating Tube Densimeter and a Cambridge Viscometer. Working with toxic gases at very high pressures and obtaining highly accurate data in a wide range of conditions were two of the challenges faced during the experiment. The experiment resulted in physical property measurement systems being recalibrated and a new daily calibration routine being adopted for accuracy. The densities and viscosities of pure CO{sub 2} and sulphur dioxide (SO{sub 2}) in a wide pressure and temperature range were determined. 1 tab., 9 figs.

  3. Determination of femto Newton forces and fluid viscosity using optical tweezers: application to Leishmania amazonensis

    Science.gov (United States)

    Fontes, Adriana; Giorgio, Selma; de Castro, Archimedes B., Jr.; Neto, Vivaldo M.; Pozzo, Liliana d. Y.; Marques, Gustavo P.; Barbosa, Luiz C.; Cesar, Carlos L.

    2005-03-01

    The objective of this research is to use the displacements of a polystyrene microsphere trapped by an optical tweezers (OT) as a force transducer in mechanical measurements in life sciences. To do this we compared the theoretical optical and hydrodynamic models with experimental data under a broad variation of parameters such as fluid viscosity, refractive index, drag velocity and wall proximities. The laser power was measured after the objective with an integration sphere because normal power meters do not provide an accurate measurement for beam with high numerical apertures. With this careful laser power determination the plot of the optical force (calculated by the particle displacement) versus hydrodynamic force (calculated by the drag velocity) under very different conditions shows an almost 45 degrees straight line. This means that hydrodynamic models can be used to calibrate optical forces and vice-versa. With this calibration we observed the forces of polystyrene bead attached to the protozoa Leishmania amazonensis, responsible for a serious tropical disease. The force range is from 200 femto Newtons to 4 pico Newtons and these experiments shows that OT can be used for infection mechanism and chemotaxis studies in parasites. The other application was to use the optical force to measure viscosities of few microliters sample. Our result shows 5% accuracy measurements.

  4. Simulation of Variable Viscosity and Jeffrey Fluid Model for Blood Flow Through a Tapered Artery with a Stenosis

    Institute of Scientific and Technical Information of China (English)

    Noreen Sher Akbar; S. Nadeem

    2012-01-01

    Non-Newtonian fluid model for blood flow through a tapered artery with a stenosis and variable viscosity by modeling blood as Jeffrey fluid has been studied in this paper. The Jeffrey fluid has two parameters, the relaxation time A1 and retardation time A2. The governing equations are simplified using the case of mild stenosis. Perturbation method is used to solve the resulting equations. The effects of non-Newtonian nature of blood on velocity profile, temperature profile, wall shear stress, shearing stress at the stenotsis throat and impedance of the artery are discussed. The results for Newtonian fluid are obtained as special case from this model.

  5. Study of thermal conductivity of magnetorheological fluids using the thermal-wave resonant cavity and its relationship with the viscosity

    Science.gov (United States)

    Forero-Sandoval, I. Y.; Vega-Flick, A.; Alvarado-Gil, J. J.; Medina-Esquivel, R. A.

    2017-02-01

    The thermal conductivity and viscosity of a magnetorheological suspension composed of carbonyl iron particles immerse in silicone oil were studied. Thermal wave resonant cavity was employed to measure the thermal diffusivity of the magnetorheological fluid as a function of an externally applied magnetic field. The dynamic viscosity was also measured and its relationship with the concentration of the particles and the magnetic field strength was investigated. The results show that higher concentrations of carbonyl iron particles as well as higher magnetic field intensities lead to a significant increase in thermal conductivity. The relationship between the thermal conductivity and the dynamic viscosity was explored. Our measurements were examined using an analytical relation between the thermal conductivity and the dynamic viscosity. The results show that by using highly viscous materials, the order induced in the micro particles can be kept for a relatively long time and therefore the increase in thermal conductivity can also be maintained.

  6. Squeeze film problems of long partial journal bearings for non-Newtonian couple stress fluids with pressure-dependent viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jaw-Ren; Hung, Chi-Ren; Lu, Rong-Fang [Nanya Institute of Technology, Jhongli, Taiwan (China). Dept. of Mechanical Engineering; Chu, Li-Ming [I-Shou Univ., Kaohsiung, Taiwan (China). Dept. of Mechanical and Automation Engineering

    2011-08-15

    According to the experimental work of C. Barus in Am. J. Sci. 45, 87 (1893), the dependency of liquid viscosity on pressure is exponential. Therefore, we extend the study of squeeze film problems of long partial journal bearings for Stokes non-Newtonian couple stress fluids by considering the pressure-dependent viscosity in the present paper. Through a small perturbation technique, we derive a first-order closed-form solution for the film pressure, the load capacity, and the response time of partial-bearing squeeze films. It is also found that the non-Newtonian couple-stress partial bearings with pressure-dependent viscosity provide better squeeze-film characteristics than those of the bearing with constant-viscosity situation. (orig.)

  7. Squeeze Film Problems of Long Partial Journal Bearings for Non-Newtonian Couple Stress Fluids with Pressure-Dependent Viscosity

    Science.gov (United States)

    Lin, Jaw-Ren; Chu, Li-Ming; Hung, Chi-Ren; Lu, Rong-Fang

    2011-09-01

    According to the experimental work of C. Barus in Am. J. Sci. 45, 87 (1893) [1], the dependency of liquid viscosity on pressure is exponential. Therefore, we extend the study of squeeze film problems of long partial journal bearings for Stokes non-Newtonian couple stress fluids by considering the pressure-dependent viscosity in the present paper. Through a small perturbation technique, we derive a first-order closed-form solution for the film pressure, the load capacity, and the response time of partial-bearing squeeze films. It is also found that the non-Newtonian couple-stress partial bearings with pressure-dependent viscosity provide better squeeze-film characteristics than those of the bearing with constant-viscosity situation.

  8. Merging drops in a Teflon tube, and transferring fluid between them, illustrated by protein crystallization and drug screening.

    Science.gov (United States)

    Feuerborn, A; Prastowo, A; Cook, P R; Walsh, E

    2015-01-01

    The ability to manipulate drops with small volumes has many practical applications. Current microfluidic devices generally exploit channel geometry and/or active external equipment to control drops. Here we use a Teflon tube attached to a syringe pump and exploit the properties of interfaces between three immiscible liquids to create particular fluidic architectures. We then go on to merge any number of drops (with volumes of micro- to nano-liters) at predefined points in time and space in the tube; for example, 51 drops were merged in a defined order to yield one large drop. Using a different architecture, specified amounts of fluid were transferred between 2 nl drops at specified rates; for example, 2.5 pl aliquots were transferred (at rates of ~500 fl s(-1)) between two drops through inter-connecting nano-channels (width ~40 nm). One proof-of-principle experiment involved screening conditions required to crystallize a protein (using a concentration gradient created using such nano-channels). Another demonstrated biocompatibility; drugs were mixed with human cells grown in suspension or on surfaces, and the treated cells responded like those grown conventionally. Although most experiments were performed manually, moderate high-throughput potential was demonstrated by mixing ~1000 different pairs of 50 nl drops in ~15 min using a robot. We suggest this reusable, low-cost, and versatile methodology could facilitate the introduction of microfluidics into workflows of many experimental laboratories.

  9. Extensional flow of low-viscosity fluids in capillary bridges formed by pulsed surface acoustic wave jetting

    Science.gov (United States)

    Bhattacharjee, P. K.; McDonnell, A. G.; Prabhakar, R.; Yeo, L. Y.; Friend, J.

    2011-02-01

    Forming capillary bridges of low-viscosity (lsim10 mPa s) fluids is difficult, making the study of their capillary-thinning behavior and the measurement of the fluid's extensional viscosity difficult as well. Current techniques require some time to form a liquid bridge from the stretching of a droplet. Rapidly stretching a liquid bridge using these methods can cause its breakup if the viscosity is too low. Stretching more slowly allows the bridge to thin and break up before a suitable bridge geometry can be established to provide reliable and accurate rheological data. Using a pulsed surface acoustic wave to eject a jet from a sessile droplet, a capillary bridge may be formed in about 7.5 ms, about seven times quicker than current methods. With this approach, capillary bridges may be formed from Newtonian and non-Newtonian fluids having much lower viscosities—water, 0.04% by weight solution of high-molecular-weight (7 MDa) polystyrene in dioctyl phthalate and 0.25% fibrinogen solution in demineralized water, for example. Details of the relatively simple system used to achieve these results are provided, as are experimental results indicating deviations from a Newtonian response by the low-viscosity non-Newtonian fluids used in our study.

  10. Scaling of the viscosity of the Lennard-Jones chain fluid model, argon, and some normal alkanes.

    Science.gov (United States)

    Galliero, Guillaume; Boned, Christian; Fernández, Josefa

    2011-02-14

    In this work, we have tested the efficiency of two scaling approaches aiming at relating shear viscosity to a single thermodynamic quantity in dense fluids, namely the excess entropy and the thermodynamic scaling methods. Using accurate databases, we have applied these approaches first to a model fluid, the flexible Lennard-Jones chain fluid (from the monomer to the hexadecamer), then to real fluids, such as argon and normal alkanes. To enlarge noticeably the range of thermodynamics conditions for which these scaling methods are applicable, we have shown that the use of the residual viscosity instead of the total viscosity is preferable in the scaling procedures. It has been found that both approaches, using the adequate scaling, are suitable for the Lennard-Jones chain fluid model for a wide range of thermodynamic conditions whatever the chain length when scaling law exponents and prefactors are adjusted for each chain length. Furthermore, these results were found to be well respected by the corresponding real fluids.

  11. Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-06-10

    We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are

  12. Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach

    KAUST Repository

    Chertock, A.

    2012-02-02

    Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim up an oxygen gradient and concentrate in a layer below the water surface, which will undergo Rayleigh-Taylor-type instabilities for sufficiently high concentrations. In the literature, a simplified chemotaxis-fluid system has been proposed as a model for bio-convection in modestly diluted cell suspensions. It couples a convective chemotaxis system for the oxygen-consuming and oxytactic bacteria with the incompressible Navier-Stokes equations subject to a gravitational force proportional to the relative surplus of the cell density compared to the water density. In this paper, we derive a high-resolution vorticity-based hybrid finite-volume finite-difference scheme, which allows us to investigate the nonlinear dynamics of a two-dimensional chemotaxis-fluid system with boundary conditions matching an experiment of Hillesdon et al. (Bull. Math. Biol., vol. 57, 1995, pp. 299-344). We present selected numerical examples, which illustrate (i) the formation of sinking plumes, (ii) the possible merging of neighbouring plumes and (iii) the convergence towards numerically stable stationary plumes. The examples with stable stationary plumes show how the surface-directed oxytaxis continuously feeds cells into a high-concentration layer near the surface, from where the fluid flow (recurring upwards in the space between the plumes) transports the cells into the plumes, where then gravity makes the cells sink and constitutes the driving force in maintaining the fluid convection and, thus, in shaping the plumes into (numerically) stable stationary states. Our numerical method is fully capable of solving the coupled chemotaxis-fluid system and enabling a full exploration of its dynamics, which cannot be done in a linearised framework. © 2012 Cambridge University Press.

  13. Stochastic analysis of the effects of fluid density and viscosity variability on macrodispersion in heterogeneous porous media

    Energy Technology Data Exchange (ETDEWEB)

    Welty, C. (Drexel Univ., Philadelphia, PA (United States)); Gelhar, L.W. (Massachusetts Inst. of Tech., Cambridge (United States))

    1991-08-01

    Both porous medium heterogeneities and fluid density and viscosity contrasts affect solute transport in miscible fluid displacement. The effect of interaction of these processes on large-scale mixing are evaluated using spectral-based perturbation theory. A three-dimensional, statistically isotropic, exponential log permeability autocovariance is used to represent the spatial variability of the porous medium. State equations linearly relating log density and log viscosity perturbations to concentration perturbations represent the density and viscosity variability and strongly couple the flow and solute transport perturbation equations. Analytical expressions for longitudinal macrodispersivity, derived for one-dimensional mean solute transport, are functionally dependent on mean displacement distance, mean concentration and concentration gradient, density and viscosity differences, mean velocity, gravity, and correlation scale and variance of the log permeability process. Transient analysis shows that longitudinal macrodispersivity grows exponentially in time (or mean displacement distance) without bound for the case where instabilities due to viscous or gravity fingering arise (the unstable or fingering case) and that it grows at early time then decreases exponentially to an asymptotic value close to that of local dispersivity for the case where density or viscosity contrasts produce a stabilizing effect (the stable case).

  14. Experimental Measurements of Longitudinal and Transverse Dispersion in Miscible Fluids with a High Viscosity and Density Contrast

    Science.gov (United States)

    Alkindi, A.; Bijeljic, B.; Muggeridge, A.

    2008-12-01

    Diffusion and advective dispersion may have a significant influence on the mixing between miscible fluids during displacement processes in porous media. This is particularly important when intimate mixing may result in important changes to the fluid behaviour. For example in oil recovery, mixing between injected and connate water will tend to reduce the efficiency of low salinity water injection. On the other hand recovery may be increased if injected gas mixes with high viscosity oil increasing its mobility. Most experimental data for longitudinal and transverse dispersion have been obtained using fluid pairs with very similar viscosities and densities. The traditional description (Perkins and Johnston, 1963) suggests that longitudinal dispersion decreases as mobility ratio increases. It also suggests that gravity will tend to reduce transverse dispersion. We provide experimental measurements of longitudinal (KL) and transverse (KT) dispersion at low Reynolds number as a function of Peclet number for the first contact miscible ethanol- glycerol fluid system flowing in a porous media formed from glass beads. These fluids have a high viscosity ratio of over 1000 and a significant density difference of 470 kg m-3. We show that both KL and KT are similar to values measured for a water-brine system but that KT is reduced when the less dense ethanol is flowing above the denser glycerol.

  15. Unaxisymmetric stagnation-point flow and heat transfer of a viscous fluid with variable viscosity on a cylinder

    Directory of Open Access Journals (Sweden)

    Rasool Alizadeh

    2016-06-01

    Full Text Available Existing solutions of the problem of axisymmetric stagnation-point flow and heat transfer on either a cylinder or a flat plate are for incompressible fluid. Here, fluid with viscosity proportional to a linear function of temperature is considered in the problem of an unaxisymmetric stagnation-point flow and heat transfer of an infinite stationary cylinder with non-uniform normal transpiration U0(φ and constant heat flux. The impinging free-stream is steady and with a constant strain rate k¯. A reduction of Navier–Stokes and energy equations is obtained by use of appropriate similarity transformations. The semi-similar solution of the Navier–Stokes equations and energy equation has been obtained numerically using an implicit finite-difference scheme. All the solutions aforesaid are presented for Reynolds numbers, Re=k¯a2/2υ∞, ranging from 0.01 to 100 for different values of Prandtl number and viscosity-variation parameter and for selected values of transpiration rate function, S(φ=U0(φ/k¯a, where a is cylinder radius and υ∞ is the reference kinematic viscosity of the fluid. Dimensionless shear-stresses corresponding to all the cases increase with the increase in Reynolds number and transpiration rate function while dimensionless shear stresses decrease with the increase in viscosity-variation parameter. The local coefficient of heat transfer (Nusselt number increases with increasing the transpiration rate function and Prandtl number.

  16. Three-dimensional natural convection of a fluid with temperature-dependent viscosity in an enclosure with localized heating

    Science.gov (United States)

    Torczynski, J. R.; Henderson, J. A.; Ohern, T. J.; Chu, T. Y.; Blanchat, T. K.

    Three-dimensional natural convection of a fluid in an enclosure is examined. The geometry is motivated by a possible magmaenergy extraction system, and the fluid is a magma simulant and has a highly temperature-dependent viscosity. Flow simulations are performed for enclosures with and without a cylinder, which represents the extractor, using the finite-element code FIDAP (Fluid Dynamics International). The presence of the cylinder completely alters the flow pattern. Flow-visualization and PIV experiments are in qualitative agreement with the simulations.

  17. Spectroscopy of cyanine dyes in fluid solution at atmospheric and high pressure: The effect of viscosity on nonradiative processes

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, S.; Sauerwein, B.; Drickamer, H.G.; Schuster, G.B. (Univ. of Illinois, Urbana, IL (United States))

    1994-12-22

    The spectroscopy of cyanine dyes was examined at atmospheric pressure and at high pressure in a series of alcohols and other solvents. Variation of external pressure provides the means to control viscosity over a wide range in one solvent at constant temperature. The findings reveal that the nonradiative relaxation of cyanines in fluid solution can occur when the motion leading to the formation of the cis isomer is stopped completely. Analysis of the viscosity dependence of the nonradiative relaxation rate constant reveals consistent deviation from the Kramers-DSE relation. 33 refs., 5 figs., 2 tabs.

  18. Online measurement of mass density and viscosity of pL fluid samples with suspended microchannel resonator

    DEFF Research Database (Denmark)

    Khan, Faheem; Schmid, Silvan; Larsen, Peter Emil

    2013-01-01

    Physical characterization of viscous samples is crucial in chemical, pharma and petroleum industry. For example, in the refining industry of petroleum, water percentage is verified by measuring the density of a sample. In this article we present a suspended microchannel resonator (SMR) which uses 5...... pL of a fluid sample and measures its density with a resolution of 0.01 kg/m 3 and a sensitivity of 16 Hz/kg/m3. The resonator can also simultaneously measure viscosity of the solutions with an accuracy of 0.025 mPa s. The SMR is part of a system which contains packaging and tubing to deliver...... samples to the resonator. The system can easily handle multiple viscous fluids to measure their densities and viscosities. The SMR is transparent, facilitating visual inspection of the microchannel content. © 2013 Elsevier B.V....

  19. Effects of radiation and variable viscosity on unsteady MHD flow of a rotating fluid from stretching surface in porous medium

    Directory of Open Access Journals (Sweden)

    A.M. Rashad

    2014-04-01

    Full Text Available This work is focused on the study of unsteady magnetohydrodynamics boundary-layer flow and heat transfer for a viscous laminar incompressible electrically conducting and rotating fluid due to a stretching surface embedded in a saturated porous medium with a temperature-dependent viscosity in the presence of a magnetic field and thermal radiation effects. The fluid viscosity is assumed to vary as an inverse linear function of temperature. The Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. With appropriate transformations, the unsteady MHD boundary layer equations are reduced to local nonsimilarity equations. Numerical solutions of these equations are obtained by using the Runge–Kutta integration scheme as well as the local nonsimilarity method with second order truncation. Comparisons with previously published work have been conducted and the results are found to be in excellent agreement. A parametric study of the physical parameters is conducted and a representative set of numerical results for the velocity in primary and secondary flows as well as the local skin-friction coefficients and the local Nusselt number are illustrated graphically to show interesting features of Darcy number, viscosity-variation, magnetic field, rotation of the fluid, and conduction radiation parameters.

  20. Effects of 6-h exposure to low relative humidity and low air pressure on body fluid loss and blood viscosity.

    Science.gov (United States)

    Hashiguchi, N; Takeda, A; Yasuyama, Y; Chishaki, A; Tochihara, Y

    2013-10-01

    The purpose of this study was to investigate the effects of 6-h exposure to low relative humidity (RH) and low air pressure in a simulated air cabin environment on body fluid loss (BFL) and blood viscosity. Fourteen young healthy male subjects were exposed to four conditions, which combined RH (10% RH or 60% RH) and air pressure (NP: sea level or LP: equivalent to an altitude of 2000 m). Subjects remained seated on a chair in the chamber for 6 h. Their diet and water intake were restricted before and during the experiment. Insensible water loss (IWL) in LP10% condition was significantly greater than in NP60% condition; thus, combined 10%RH and LP conditions promoted a greater amount of IWL. The BFL under the LP condition was significantly greater than that under the NP condition. Blood viscosity significantly increased under LP conditions. Increases in red blood cell counts (RBCs) and BFL likely contributed to the increased blood viscosity. These findings suggest that hypobaric-induced hypoxia, similar to the conditions in the air cabin environment, may cause increased blood viscosity and that the combined low humidity and hypobaric hypoxia conditions increase IWL. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Volume-of-fluid simulations in microfluidic T-junction devices: Influence of viscosity ratio on droplet size

    Science.gov (United States)

    Nekouei, Mehdi; Vanapalli, Siva A.

    2017-03-01

    We used volume-of-fluid (VOF) method to perform three-dimensional numerical simulations of droplet formation of Newtonian fluids in microfluidic T-junction devices. To evaluate the performance of the VOF method we examined the regimes of drop formation and determined droplet size as a function of system parameters. Comparison of the simulation results with four sets of experimental data from the literature showed good agreement, validating the VOF method. Motivated by the lack of adequate studies investigating the influence of viscosity ratio (λ) on the generated droplet size, we mapped the dependence of drop volume on capillary number (0.001 1. In addition, we find that at a given capillary number, the size of droplets does not vary appreciably when λ 1. We develop an analytical model for predicting the droplet size that includes a viscosity-dependent breakup time for the dispersed phase. This improved model successfully predicts the effects of the viscosity ratio observed in simulations. Results from this study are useful for the design of lab-on-chip technologies and manufacture of microfluidic emulsions, where there is a need to know how system parameters influence the droplet size.

  2. Effects of temperature-dependent viscosity on fluid flow and heat transfer in a helical rectangular duct with a finite pitch

    Directory of Open Access Journals (Sweden)

    Cuihua Wang

    2014-09-01

    Full Text Available An incompressible fully developed laminar flow in a helical rectangular duct having finite pitch and curvature with temperature-dependent viscosity under heating condition is studied in this work. Both the cases of one wall heated and four walls heated are studied. The cross-sectional dimensions of the rectangular duct are 2a and 2b. The aspect ratio n=2b/2a is 0.5. Water is used as the fluid and Reynolds number (Re is varied in the range of 100 to 400. The secondary flow with temperature-dependent viscosity is enhanced markedly as compared to constant viscosity. An additional pair of vortices is obtained near the center of the outer wall at Re=400 for the model of four walls heated with temperature-dependent viscosity, y, while for constant viscosity, the appearance of two additional vortices near the outer wall cannot be found. Besides, the axial velocity decreases and the temperature increases at the central region of the rectangular duct when the temperature-dependent viscosity is considered. Due to the decrease of the viscosity near the walls, the friction factor obtained with temperature-dependent viscosity is lower than that of constant viscosity, while the convective heat transfer for temperature-dependent viscosity is significantly enhanced owing to the strengthened secondary flow. Especially for four heated walls, the effects of viscosity variation on the flow resistance and heat transfer are more significant.

  3. Variable Viscosity on Magnetohydrodynamic Fluid Flow and Heat Transfer over an Unsteady Stretching Surface with Hall Effect

    Directory of Open Access Journals (Sweden)

    Motsa SS

    2010-01-01

    Full Text Available The problem of magnetohydrodynamic flow and heat transfer of a viscous, incompressible, and electrically conducting fluid past a semi-infinite unsteady stretching sheet is analyzed numerically. The problem was studied under the effects of Hall currents, variable viscosity, and variable thermal diffusivity. Using a similarity transformation, the governing fundamental equations are approximated by a system of nonlinear ordinary differential equations. The resultant system of ordinary differential equations is then solved numerically by the successive linearization method together with the Chebyshev pseudospectral method. Details of the velocity and temperature fields as well as the local skin friction and the local Nusselt number for various values of the parameters of the problem are presented. It is noted that the axial velocity decreases with increasing the values of the unsteadiness parameter, variable viscosity parameter, or the Hartmann number, while the transverse velocity increases as the Hartmann number increases. Due to increases in thermal diffusivity parameter, temperature is found to increase.

  4. Heat transfer analysis on peristaltically induced motion of particle-fluid suspension with variable viscosity: Clot blood model.

    Science.gov (United States)

    Bhatti, M M; Zeeshan, A; Ellahi, R

    2016-12-01

    In this article, heat transfer analysis on clot blood model of the particle-fluid suspension through a non-uniform annulus has been investigated. The blood propagating along the whole length of the annulus was induced by peristaltic motion. The effects of variable viscosity and slip condition are also taken into account. The governing flow problem is modeled using lubrication approach by taking the assumption of long wavelength and creeping flow regime. The resulting equation for fluid phase and particle phase is solved analytically and closed form solutions are obtained. The physical impact of all the emerging parameters is discussed mathematically and graphically. Particularly, we considered the effects of particle volume fraction, slip parameter, the maximum height of clot, viscosity parameter, average volume flow rate, Prandtl number, Eckert number and fluid parameter on temperature profile, pressure rise and friction forces for outer and inner tube. Numerical computations have been used to determine the behavior of pressure rise and friction along the whole length of the annulus. The present study is also presented for an endoscope as a special case of our study. It is observed that greater influence of clot tends to rise the pressure rise significantly. It is also found that temperature profile increases due to the enhancement in Prandtl number, Eckert number, and fluid parameter. The present study reveals that friction forces for outer tube have higher magnitude as compared to the friction forces for an inner tube. In fact, the results for present study can also be reduced to the Newtonian fluid by taking ζ → ∞.

  5. Effect of fluid viscosity on wave propagation in a cylindrical bore in micropolar elastic medium

    Indian Academy of Sciences (India)

    Sunita Deswal; Sushil K Tomar; Rajneesh Kumar

    2000-10-01

    Wave propagation in a cylindrical bore filled with viscous liquid and situated in a micropolar elastic medium of infinite extent is studied. Frequency equation for surface wave propagation near the surface of the cylindrical bore is obtained and the effect of viscosity and micropolarity on dispersion curves is observed. The earlier problems of Biot and of Banerji and Sengupta have been reduced as a special case of our problem.

  6. Effects of transverse magnetic field with variable thermal conductivity on tangent hyperbolic fluid with exponentially varying viscosity

    Directory of Open Access Journals (Sweden)

    T. Salahuddin

    2015-12-01

    Full Text Available The purpose of present analysis is to examine the effects of temperature dependent viscosity and thermal conductivity on MHD stagnation point flow over a stretching cylinder. The momentum and the temperature equations are modeled by using tangent hyperbolic fluid and the effect of viscous dissipation is also considered. The requisite partial differential equations are metamorphosed into ordinary differential equations by using similarity transformations. The succeeding ordinary differential equations are solved by using shooting method. The physical behavior of non-dimensional parameters for momentum and temperature profiles is deliberated through graphs. The numerical values of skin friction coefficient and local Nusselt number are calculated in order to recognize the behavior of fluid near the surface. The comparison with previous literature is completed in order to check the accuracy of the present work. It is found the velocity reduces with increasing power law index, Weissenberg number, Hartmann number and variable viscosity parameter. With the increasing values of curvature parameter, velocity is found to increase. Variable thermal conductivity parameter and Prandtl number shows opposite behavior for temperature profile.

  7. Coefficients of viscosity for a fluid in a magnetic field or in a rotating system

    NARCIS (Netherlands)

    Hooyman, G.J.; Mazur, P.; Groot, S.R. de

    1954-01-01

    The linear equations between the elements of the viscous pressure tensor and the rates of deformation are investigated for the case of an isotropic fluid in an external magnetic field or for the equivalent case of a rotating fluid. Since these equations can be incorporated within the thermodynamics

  8. Application of the DTM to Nonlinear Cases Arising in Fluid Flows with Variable Viscosity

    DEFF Research Database (Denmark)

    Barari, Amin; Rahimi, M; Hosseini, M.J;

    2012-01-01

    This paper employs the differential transformation method to investigate two nonlinear ordinary differential systems for plane coquette flow having variable viscosity and thermal conductivity. The concept of differential transformation is briefly introduced, and then differential transformation...... method is employed to derive solutions of nonlinear equation systems. The results of differential transformation method are compared with those ones obtained by Adomian decomposition method to verify the accuracy of proposed method. The results reveal that the differential transformation method can...... achieve suitable results in predicting the solution of such problems....

  9. Computational Fluid Dynamics Analysis of Viscosity Influence on Thermal In-Package Liquid Food Process

    OpenAIRE

    Augusto, PED; Cristianini, M

    2010-01-01

    Food processes must ensure safety and high-quality products for a growing demand consumer creating needs for its better unit operations knowledge. Computational fluid dynamics (CFD) have been widely used to better understand food thermal processes, one of the safest and most frequently used methods for food preservation. Fluid heating in enclosures is a complex phenomenon, which must be better understood. Although the relative convection importance at thermal liquid food process was recently ...

  10. Natural convection in Bingham plastic fluids from an isothermal spheroid: Effects of fluid yield stress, viscous dissipation and temperature-dependent viscosity

    Science.gov (United States)

    Gupta, Anoop Kumar; Gupta, Sanjay; Chhabra, Rajendra Prasad

    2017-08-01

    In this work, the buoyancy-induced convection from an isothermal spheroid is studied in a Bingham plastic fluid. Extensive results on the morphology of approximate yield surfaces, temperature profiles, and the local and average Nusselt numbers are reported to elucidate the effects of the pertinent dimensionless parameters: Rayleigh number, 102 ≤ Ra ≤ 106; Prandtl number, 20 ≤ Pr ≤ 100; Bingham number, 0 ≤ Bn ≤ 103, and aspect ratio, 0.2 ≤ e ≤ 5. Due to the fluid yield stress, fluid-like (yielded) and solid-like (unyielded) regions coexist in the flow domain depending upon the prevailing stress levels vis-a-vis the value of the fluid yield stress. The yielded parts progressively grow in size with the rising Rayleigh number while this tendency is countered by the increasing Bingham and Prandtl numbers. Due to these two competing effects, a limiting value of the Bingham number ( Bn max) is observed beyond which heat transfer occurs solely by conduction due to the solid-like behaviour of the fluid everywhere in the domain. Such limiting values bear a positive dependence on the Rayleigh number ( Ra) and aspect ratio ( e). In addition to this, oblate shapes ( e 1) impede it. Finally, simple predictive expressions for the maximum Bingham number and the average Nusselt number are developed which can be used to predict a priori the overall heat transfer coefficient in a new application. Also, a criterion is developed in terms of the composite parameter Bn• Gr-1/2 which predicts the onset of convection in such fluids. Similarly, another criterion is developed which delineates the conditions for the onset of settling due to buoyancy effects. The paper is concluded by presenting limited results to delineate the effects of viscous dissipation and the temperature-dependent viscosity on the Nusselt number. Both these effects are seen to be rather small in Bingham plastic fluids.

  11. Estimation of Rate of Strain Magnitude and Average Viscosity in Turbulent Flow of Shear Thinning and Yield Stress Fluids

    Science.gov (United States)

    Sawko, Robert; Thompson, Chris P.

    2010-09-01

    This paper presents a series of numerical simulations of non-Newtonian fluids in high Reynolds number flows in circular pipes. The fluids studied in the computations have shear-thinning and yield stress properties. Turbulence is described using the Reynolds-Averaged Navier-Stokes (RANS) equations with the Boussinesq eddy viscosity hypothesis. The evaluation of standard, two-equation models led to some observations regarding the order of magnitude as well as probabilistic information about the rate of strain. We argue that an accurate estimate of the rate of strain tensor is essential in capturing important flow features. It is first recognised that an apparent viscosity comprises two flow dependant components: one originating from rheology and the other from the turbulence model. To establish the relative significance of the terms involved, an order of magnitude analysis has been performed. The main observation supporting further discussion is that in high Reynolds number regimes the magnitudes of fluctuating rates of strain and fluctuating vorticity dominate the magnitudes of their respective averages. Since these quantities are included in the rheological law, the values of viscosity obtained from the fluctuating and mean velocity fields are different. Validation against Direct Numerical Simulation data shows at least an order of magnitude discrepancy in some regions of the flow. Moreover, the predictions of the probabilistic analysis show a favourable agreement with statistics computed from DNS data. A variety of experimental, as well as computational data has been collected. Data come from the latest experiments by Escudier et al. [1], DNS from Rudman et al. [2] and zeroth-order turbulence models of Pinho [3]. The fluid rheologies are described by standard power-law and Herschel-Bulkley models which make them suitable for steady state calculations of shear flows. Suitable regularisations are utilised to secure numerical stability. Two new models have been

  12. Modeling of Surface Tension and Viscosity for Non-electrolyte Systems by Means of the Equation of State for Square-well Chain Fluids with Variable Interaction Range

    Institute of Scientific and Technical Information of China (English)

    LI Jinlong; HE Changchun; MA Jun; PENG Changjun; LIU Honglai; HU Ying

    2011-01-01

    The equation of state(EOS)for square-well chain fluid with variable range(SWCF-VR) developed in our previous work based on statistical mechanical theory for chemical association is employed for the correlations of surface tension and viscosity of common fluids and ionic liquids(ILs).A model of surface tension for multi-component mixtures is presented by combining the SWCF-VR EOS and the scaled particle theory and used to produce the surface tension of binary and ternary mixtures.The predicted surface tensions are in excellent agreement with the experimental data with an overall average absolute relative deviation(AAD)of 0.36%.A method for the calculation of dynamic viscosity of common fluids and ILs at high pressure is presented by combining Eyring’s rate theory of viscosity and the SWCF-VR EOS.The calculated viscosities are in good agreement with the experimental data with the overall AAD of 1.44% for 14 fluids in 84 cases.The salient feature is that the molecular parameters used in these models are self-consistent and can be applied to calculate different thermodynamic properties such as pVT,vapor-liquid equilibrium,caloric properties,surface tension,and viscosity.

  13. Characterization of immiscible fluid displacement processes with various capillary numbers and viscosity ratios in 3D natural sandstone

    Science.gov (United States)

    Tsuji, Takeshi; Jiang, Fei; Christensen, Kenneth T.

    2016-09-01

    To characterize the influence of reservoir conditions upon multiphase flow, we calculated fluid displacements (drainage processes) in 3D pore spaces of Berea sandstone using two-phase lattice Boltzmann (LB) simulations. The results of simulations under various conditions were used to classify the resulting two-phase flow behavior into three typical fluid displacement patterns on the diagram of capillary number (Ca) and viscosity ratio of the two fluids (M). In addition, the saturation of the nonwetting phase was calculated and mapped on the Ca-M diagram. We then characterized dynamic pore-filling events (i.e., Haines jumps) from the pressure variation of the nonwetting phase, and linked this behavior to the occurrence of capillary fingering. The results revealed the onset of capillary fingering in 3D natural rock at a higher Ca than in 2D homogeneous granular models, with the crossover region between typical displacement patterns broader than in the homogeneous granular model. Furthermore, saturation of the nonwetting phase mapped on the Ca-M diagram significantly depends on the rock models. These important differences between two-phase flow in 3D natural rock and in 2D homogeneous models could be due to the heterogeneity of pore geometry in the natural rock and differences in pore connectivity. By quantifying two-phase fluid behavior in the target reservoir rock under various conditions (e.g., saturation mapping on the Ca-M diagram), our approach could provide useful information for investigating suitable reservoir conditions for geo-fluid management (e.g., high CO2 saturation in CO2 storage).

  14. Viscosity bio reducer Influence in a non-Newtonian fluid horizontal pipeline pressure gradient

    Directory of Open Access Journals (Sweden)

    Edgardo Jonathan Suarez-Dominguez

    2014-03-01

    Full Text Available Due to increased production of heavy and extra heavy crude in Mexico, it has led to the necessity touse chemicals to facilitate the transport in the pipe of our country. Experimental study was conductedto analyze the influence of a viscosity reducer of biological origin (BRV, on the rheological behaviorof heavy oil in the northern region of Mexico, finding that it exhibits a non-Newtonian viscoelasticbehavior, where a concentration increase of BRV leads to a consistency decrease and an increasedflow order, where dilatant behavior was observed in high temperatures. From these results it wasestimated the pressure losses by friction in a horizontal pipe for single phase and two phase flow. Wefound that in all cases the increase in the concentration of BRV reduces these losses.

  15. Symmetric flows for compressible heat-conducting fluids with temperature dependent viscosity coefficients

    Science.gov (United States)

    Wan, Ling; Wang, Tao

    2017-06-01

    We consider the Navier-Stokes equations for compressible heat-conducting ideal polytropic gases in a bounded annular domain when the viscosity and thermal conductivity coefficients are general smooth functions of temperature. A global-in-time, spherically or cylindrically symmetric, classical solution to the initial boundary value problem is shown to exist uniquely and converge exponentially to the constant state as the time tends to infinity under certain assumptions on the initial data and the adiabatic exponent γ. The initial data can be large if γ is sufficiently close to 1. These results are of Nishida-Smoller type and extend the work (Liu et al. (2014) [16]) restricted to the one-dimensional flows.

  16. A numerical study of fluids with pressure dependent viscosity flowing through a rigid porous media

    CERN Document Server

    Nakshatrala, K B

    2009-01-01

    In this paper we consider modifications to Darcy's equation wherein the drag coefficient is a function of pressure, which is a realistic model for technological applications like enhanced oil recovery and geological carbon sequestration. We first outline the approximations behind Darcy's equation and the modifications that we propose to Darcy's equation, and derive the governing equations through a systematic approach using mixture theory. We then propose a stabilized mixed finite element formulation for the modified Darcy's equation. To solve the resulting nonlinear equations we present a solution procedure based on the consistent Newton-Raphson method. We solve representative test problems to illustrate the performance of the proposed stabilized formulation. One of the objectives of this paper is also to show that the dependence of viscosity on the pressure can have a significant effect both on the qualitative and quantitative nature of the solution.

  17. Second-order transport, quasinormal modes and zero-viscosity limit in the Gauss-Bonnet holographic fluid

    CERN Document Server

    Grozdanov, Sašo

    2016-01-01

    Gauss-Bonnet holographic fluid is a useful theoretical laboratory to study the effects of curvature-squared terms in the dual gravity action on transport coefficients, quasinormal spectra and the analytic structure of thermal correlators at strong coupling. To understand the behavior and possible pathologies of the Gauss-Bonnet fluid in $3+1$ dimensions, we compute (analytically and non-perturbatively in the Gauss-Bonnet coupling) its second-order transport coefficients, the retarded two- and three-point correlation functions of the energy-momentum tensor in the hydrodynamic regime as well as the relevant quasinormal spectrum. The Haack-Yarom universal relation among the second-order transport coefficients is violated at second order in the Gauss-Bonnet coupling. In the zero-viscosity limit, the holographic fluid still produces entropy, while the momentum diffusion and the sound attenuation are suppressed at all orders in the hydrodynamic expansion. By adding higher-derivative electromagnetic field terms to t...

  18. Semiclassical law for the apparent viscosity of non-Newtonian fluids: An analogy between thixotropy of fluids and sintering of solids

    Science.gov (United States)

    Mezzasalma, Stefano A.

    2000-08-01

    A theory is presented to describe the apparent viscosity of thixotropic fluids as a function of the rate of shear. It represents the extension of a semiclassical approach that was previously formulated to deal with matter densification phenomena in solids starting from the state equation of the medium. In this context, the Debye expression for the Helmholtz free energy has been provided with a density of vibrational modes that accounts for atomic and microstructural changes occurring at the frequency scale of momentum transport (see diffusion). Working out the steady-state condition with respect to time gives an equation relating reduced apparent viscosity (η˜) and shear rate (γ˜) through the temperature value (θ*) that is energetically equivalent to the medium vibrations implied. Viscosity also turns out to depend on the Debye temperature θD (see φ˜θ*/θD) and an equivalent Gruneisen parameter (μ), defined with respect to viscosity variations. Increasing φ in pseudoplastic and dilatant media, respectively, increases and decreases η˜, which always increases with increasing μ. The analogy between dilatancy/sintering and pseudoplasticity/desintering is suggested, and a correspondence between matter and momentum transports is traced on the basis of the phononic spectrum properties. Application to experimental measurements are presented and discussed for aqueous monodispersions of polystyrene (PS) latex particles, aqueous glycerol solutions of partially hydrolyzed polyacrylamide (PHPAA) at different sodium chloride (NaCl) concentrations, polymethylmethacrylate (PMMA) suspensions in dioctylphthalate (DOP), and for a molecularly thin liquid film of octamethylciclotetrasiloxane (OMCTS). Best fit coefficients for φ and μ have been constrained to the Debye temperature and the effective low-shear viscosity (η0) according to their dependences upon the suspended volume fraction (φ), θD=θD(φ), and η0=η0(φ), and the agreement with experimental data is

  19. Nonequilibrium temperature and bulk viscosity for a dense fluid of square-well molecules

    NARCIS (Netherlands)

    Beijeren, H. van; Karkheck, J.; Sengers, J.V.

    1988-01-01

    A recently proposed nonlinear kinetic theory for a dense fluid of square-well molecules reveals the existence of two temperature scales, one associated with kinetic energy and the other with potential energy. The scales are coupled through conservation of energy and, for nonequilibrium states, the

  20. Variable viscosity on unsteady dissipative Carreau fluid over a truncated cone filled with titanium alloy nanoparticles

    Science.gov (United States)

    Raju, C. S. K.; Sekhar, K. R.; Ibrahim, S. M.; Lorenzini, G.; Viswanatha Reddy, G.; Lorenzini, E.

    2017-01-01

    In this study, we proposed a theoretical investigation on the temperature-dependent viscosity effect on magnetohydrodynamic dissipative nanofluid over a truncated cone with heat source/sink. The involving set of nonlinear partial differential equations is transforming to set of nonlinear ordinary differential equations by using self-similarity solutions. The transformed governing equations are solved numerically using Runge-Kutta-based Newton's technique. The effects of various dimensionless parameters on the skin friction coefficient and the local Nusselt number profiles are discussed and presented with the support of graphs. We also obtained the validation of the current solutions with existing solution under some special cases. The water-based titanium alloy has a lesser friction factor coefficient as compared with kerosene-based titanium alloy, whereas the rate of heat transfer is higher in water-based titanium alloy compared with kerosene-based titanium alloy. From this we can highlight that depending on the industrial needs cooling/heating chooses the water- or kerosene-based titanium alloys.

  1. Variable viscosity on unsteady dissipative Carreau fluid over a truncated cone filled with titanium alloy nanoparticles

    Science.gov (United States)

    Raju, C. S. K.; Sekhar, K. R.; Ibrahim, S. M.; Lorenzini, G.; Viswanatha Reddy, G.; Lorenzini, E.

    2017-05-01

    In this study, we proposed a theoretical investigation on the temperature-dependent viscosity effect on magnetohydrodynamic dissipative nanofluid over a truncated cone with heat source/sink. The involving set of nonlinear partial differential equations is transforming to set of nonlinear ordinary differential equations by using self-similarity solutions. The transformed governing equations are solved numerically using Runge-Kutta-based Newton's technique. The effects of various dimensionless parameters on the skin friction coefficient and the local Nusselt number profiles are discussed and presented with the support of graphs. We also obtained the validation of the current solutions with existing solution under some special cases. The water-based titanium alloy has a lesser friction factor coefficient as compared with kerosene-based titanium alloy, whereas the rate of heat transfer is higher in water-based titanium alloy compared with kerosene-based titanium alloy. From this we can highlight that depending on the industrial needs cooling/heating chooses the water- or kerosene-based titanium alloys.

  2. Numerical Investigation of Influence of In-Situ Stress Ratio, Injection Rate and Fluid Viscosity on Hydraulic Fracture Propagation Using a Distinct Element Approach

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2016-02-01

    Full Text Available Numerical simulation is very useful for understanding the hydraulic fracturing mechanism. In this paper, we simulate the hydraulic fracturing using the distinct element approach, to investigate the effect of some critical parameters on hydraulic fracturing characteristics. The breakdown pressure obtained by the distinct element approach is consistent with the analytical solution. This indicates that the distinct element approach is feasible on modeling the hydraulic fracturing. We independently examine the influence of in-situ stress ratio, injection rate and fluid viscosity on hydraulic fracturing. We further emphasize the relationship between these three factors and their contributions to the hydraulic fracturing. With the increase of stress ratio, the fracture aperture increases almost linearly; with the increase of injection rate and fluid viscosity, the fracture aperture and breakdown pressure increase obviously. A low value of product of injection rate and fluid viscosity (i.e., Qμ will lead to narrow fracture aperture, low breakdown pressure, and complex or dispersional hydraulic fractures. A high value of Qμ would lead wide fracture aperture, high breakdown pressure, and simple hydraulic fractures (e.g., straight or wing shape. With low viscosity fluid, the hydraulic fracture geometry is not sensitive to stress ratio, and thus becomes a complex fracture network.

  3. Contribution of pitcher fragrance and fluid viscosity to high prey diversity in a Nepenthes carnivorous plant from Borneo

    Indian Academy of Sciences (India)

    Bruno Di Giusto; Vladimir Grosbois; Elodie Fargeas; David J Marshall; Laurence Gaume

    2008-03-01

    Mechanisms that improve prey richness in carnivorous plants may involve three crucial phases of trapping: attraction, capture and retention. Nepenthes rafflesiana var. typica is an insectivorous pitcher plant that is widespread in northern Borneo. It exhibits ontogenetic pitcher dimorphism with the upper pitchers trapping more flying prey than the lower pitchers. While this difference in prey composition has been ascribed to differences in attraction, the contribution of capture and retention has been overlooked. This study focused on distinguishing between the prey trapping mechanisms, and assessing their relative contribution to prey diversity. Arthropod richness and diversity of both visitors and prey in the two types of pitchers were analysed to quantify the relative contribution of attraction to prey trapping. Rate of insect visits to the different pitcher parts and the presence or absence of a sweet fragrance was recorded to clarify the origin and mechanism of attraction. The mechanism of retention was studied by insect bioassays and measurements of fluid viscosity. Nepenthes rafflesiana was found to trap a broader prey spectrum than that previously described for any Nepenthes species, with the upper pitchers attracting and trapping a greater quantity and diversity of prey items than the lower pitchers. Capture efficiency was low compared with attraction or retention efficiency. Fragrance of the peristome, or nectar rim, accounted mainly for the observed non-specific, better prey attraction by the upper pitchers, while the retentive properties of the viscous fluid in these upper pitchers arguably explains the species richness of their flying prey. The pitchers of N. rafflesiana are therefore more than simple pitfall traps and the digestive fluid plays an important yet unsuspected role in the ecological success of the species.

  4. Flow, thermal criticality and transition of a reactive third-grade fluid in a pipe with Reynoldsʼ model viscosity

    Institute of Scientific and Technical Information of China (English)

    Samuel S.OKOYA

    2016-01-01

    Neglecting the consumption of the material, a steady incompressible flow of an exothermic reacting third-grade fluid with viscous heating in a circular cylindrical pipe is numerically studied for both cases of constant viscosity and Reynolds’ viscosity model. The coupled ordinary differential equations governing the flow in cylindrical coordinates, are transformed into dimensionless forms using appropriate transformations, and then solved numerically. Solutions using Maple are presented in tabular form and given in terms of dimensionless central fluid velocity and temperature, skin friction and heat transfer rate for three parametric values in the Reynoldsʼ case. The numerical results for the velocity and temperature fields are also presented through graphs. Bifurcationsare discussed using shooting method. Comparisons are also made between the present results and those of previous work, and thus verify the validity of the provided numerical solutions. Important properties of thermal criticality are provided for variable viscosity para- meter and reaction order. Further numerical results are presented in the form of tables and graphs for transition of physical parame- ters, while varying certain flow and fluid material parameters. Also, the flow behaviour of the reactive fluid of third-grade is com- pared with those of the Newtonian reactive fluid.

  5. Effects of temperature-dependent viscosity variation on entropy generation, heat and fluid flow through a porous-saturated duct of rectangular cross-section

    Institute of Scientific and Technical Information of China (English)

    K. Hooman; H. Gurgenci

    2007-01-01

    Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is applied and the viscosity-temperature relation is assumed to be an inverse-linear one. The case of uniform heat flux on the walls,i.e. the H boundary condition in the terminology of Kays and Crawford [12], is treated.For the case of a fluid whose viscosity decreases with temperature, it is found that the effect of the variation is to increase the Nusselt number for heated wails. Having found the velocity and the temperature distribution, the second law of thermodynamics is invoked to find the local and average entropy generation rate. Expressions for the entropy generation rate, the Bejan number, the heat transfer irreversibility, and the fluid flow viscosity variation number, the dimensionless wall heat flux, and the aspect ratio (width to height ratio). These expressions let a parametric study of the problem based on which it is observed that the entropy generated due to flow in a duct of square cross-section is more than those of rectangular counterparts while increasing the aspect ratio decreases the entropy generation rate similar to what previously reported for the clear flow case by Ratts and Raut [14].

  6. Design of instantaneous liquid film thickness measurement system for conductive or non-conductive fluid with high viscosity

    Directory of Open Access Journals (Sweden)

    Yongxin Yu

    2017-06-01

    Full Text Available In the paper, a new capacitive sensor with a dielectric film coating was designed to measure the thickness of the liquid film on a flat surface. The measured medium can be conductive or non-conductive fluid with high viscosity such as silicone oil, syrup, CMC solution and melt. With the dielectric film coating, the defects caused by the humidity in a capacitor can be avoided completely. With a excitation frequency 0-20kHz, the static permittivity of capacitive sensor is obtained and stable when small thicknesses are monitored within the frequency of 0-3kHz. Based on the measurement principle, an experimental system was designed and verified including calibration and actual measurement for different liquid film thickness. Experimental results showed that the sensitivity, the resolution, repeatability and linear range of the capacitive sensor are satisfied to the liquid film thickness measurement. Finally, the capacitive measuring system was successfully applied to the water, silicone oil and syrup film thickness measurement.

  7. Evaluation of polymers of different degrees viscosities as additives for drilling fluids for oil well; Avaliacao de polimeros de diferentes graus de viscosidades como aditivos para fluidos de perfuracao de pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Farias, K.V.; Amorim, L.V.; Silva, A.V. [Universidade Federal de Campina Grande (DEMa/UFCG), PB (Brazil); Lira, H.L. [Universidade Federal de Campina Grande (CCT/UFCG), PB (Brazil). Centro de Ciencias e Tecnologia. Unidade Academica de Engenharia de Materiais], e-mail: kassiefarias@gmail.com

    2008-07-01

    The objective of this work is to study the polymers influence of different degrees of viscosity, used as viscositying and filtered reducer additives, in the rheological, filtration and lubricity properties of drilling fluids for oil wells. Were determined the rheological behavior, the apparent and plastic viscosities, the yield limit and gel force, the filtered volume and the lubricity coefficient in accordance with API standard. The fluids showed pseudoplastic behavior with properties close to the standard fluid; the increase of viscositying and filtered reducer concentrations lead to the increase of rheological properties and the filtered reducer values, from the concentration of 3,5g/350mL of water it acted as viscositying, increasing the values of apparent and plastic viscosities, yield limit and gel force, being 3,0g/350mL of water the adequate concentration of this additive, promoting better results of rheological and filtration properties. (author)

  8. Correlation of fluid properties and geochemical parameters with heavy oil viscosity and density on trans-regional scale

    Energy Technology Data Exchange (ETDEWEB)

    Lehne, E.; Rojas, K.; McCarthy, K.; Taylor, S.D. [Schlumberger (Canada)

    2011-07-01

    Heavy oils around the world are characterized by high specific gravity and high contents of heavy components but their viscosity differs from one reservoir to another. This research aimed at finding correlations of geochemical characteristics with oil viscosity for heavy oil from different basins. This study was conducted on 15 heavy oil samples from northern and southern America and from Asia; the samples were characterized using gas chromatography, capillarity viscometer, data from stable carbon isotopes, SARA analysis, GC-FID and freezing point depression. Results showed that the degradation-viscosity correlation observed on a regional scale cannot be applied to the worldwide scale, and determined that, at that scale, oil viscosity depends on the original oil maturity and organofacies characteristics. In addition, biomarkers were found to help limit potential oil viscosity although they did not show a direct correlation. This study showed that original oil maturity and organofacies characteristics have to be taken into account in predictive models of oil viscosity.

  9. Nonequilibrium Brownian dynamics analysis of negative viscosity induced in a magnetic fluid subjected to both ac magnetic and shear flow fields.

    Science.gov (United States)

    Morimoto, Hisao; Maekawa, Toru; Matsumoto, Yoichiro

    2002-06-01

    We study the rheological and magnetic characteristics of a magnetic fluid. The system, which we investigate, is as follows. Ferromagnetic particles are dispersed in a solvent, which is subjected to both ac magnetic and shear flow fields. The translational and rotational motions of particles are calculated by the Brownian dynamics method based on Langevin equations and the rheological and magnetic characteristics of the magnetic fluid system are estimated. First, we investigate the rheological and magnetic characteristics of the system in a dc magnetic field and then we analyze the effect of an ac magnetic field on those characteristics. We find that the negative viscosity effect is induced at a certain frequency range of the ac magnetic field. We also find that there are two main mechanisms responsible for the occurrence of negative viscosity. (1) Resonance between the rotational motions of the dipoles of particles and the fluctuation of ac magnetic fields occurs when applied magnetic fields are weak compared to the shear rate, in which case particles can still rotate in magnetic fields. Beyond this resonance frequency, negative viscosity appears. (2) The magnetic dipole moments of particles are forced to stay in the direction of the magnetic field when strong magnetic fields are applied in relatively low shear flow fields. However, negative viscosity occurs when the frequency of external magnetic fields exceeds a critical value, in which case the dipoles rotate continuously in a shear flow without stopping. In both cases, the mean angular velocity of the particles becomes higher than that of the solvent.

  10. 不同黏度钻井液脱气效率实验%Experiment of Degassing Efficiency for Different Viscosity Drilling Fluids

    Institute of Scientific and Technical Information of China (English)

    杨明清

    2011-01-01

    Accurate detection of gaseous hydrocarbon content of drilling fluid is one of means for discovering and evaluating the shows of oil and gas.However,the viscosity of drilling fluid greatly affects the detection result.With the help of high-temperature and high-pressure rotary simulator for drilling fluid,the degassing experiments of different viscosity drilling fluid are conducted,regressing the degassing efficiency chart and equations of the different viscosity drilling fluid,including establishing the coefficient-corrected chart and equations.By them,the real-time calibration of the volume fraction of the gaseous hydrocarbon in drilling fluid can be made at the well site,being good for timely discovery and exact evaluation of the shows of oil and gas.%准确检测钻井液内烃类气体含量是发现和评价油气显示的重要方式之一,然而钻井液黏度对检测结果存在很大影响。借助钻井液高温高压旋转模拟装置,进行了不同黏度钻井液的脱气实验,回归了不同黏度钻井液脱气效率图版及方程,建立了不同黏度钻井液校正系数图版及方程,可对现场测取的钻井液内烃类气体体积分数进行实时校正,有利于油气显示的及时发现和准确评价。

  11. Effects of real viscosity on plasma liner formation and implosion from supersonic plasma jets

    Science.gov (United States)

    Schillo, Kevin; Cassibry, Jason; Hsu, Scott; PLX-Alpha Team

    2015-11-01

    The PLX- α project endeavors to study plasma liner formation and implosion by merging of a spherical array of plasma jets as a candidate standoff driver for magneto-inertial fusion (MIF). Smoothed particle hydrodynamics (SPH) is being used to model the liner formation and implosion processes. SPH is a meshless Lagrangian method to simulate fluid flows by dividing a fluid into a set of particles and using a summation interpolant function to calculate the properties and gradients for each of these particles. The SPH code was used to simulate test cases in which the number of plasma guns and initial conditions for the plasma were varied. Linear stabilizations were observed, but the possibility exists that this stabilization was due to the implementation of artificial viscosity in the code. A real viscosity model was added to our SPHC model using the Braginskii ion viscosity. Preliminary results for test cases that incorporate real viscosity are presented.

  12. A revised model to calculate the dynamic viscosity of H2O-NaCl fluids at elevated temperatures and pressures (≤1000 °C, ≤500 MPa, 0-100 wt. % NaCl)

    Science.gov (United States)

    Klyukin, Y.; Lowell, R. P.; Bodnar, R. J.

    2016-12-01

    In order to develop realistic fluid flow models for crustal fluids, the physical and thermodynamic properties of the fluid, including the viscosity, must be known over the range of temperature, pressure and composition (PTx) conditions of interest. Many crustal fluids are reasonably well approximated by the system H2O-NaCl, and the model that is most often used to estimate viscosities of hydrothermal fluids is that of Palliser and McKibbin 1998 (P&M). Examination of the P&M model shows regions of PTx space in which calculated values are inconsistent with experimental data, and predicts trends in viscosity that are unexpected and inconsistent with known fluid behavior. The P&M model is especially unreliable at pressures greater than those on the liquid-vapor-halite coexistence curve and less than that along the liquid-vapor curve for pure H2O and the pure H2O critical isochore. We developed a model to calculate viscosity of H2O-NaCl fluids that shows good correlation with experimental values and predicts trends that are consistent with known or expected behavior outside of the region where experimental data are available. The revised model determines the viscosity of H2O-NaCl at PTx of interest based on the viscosity of H2O (estimated by IAPWS 2008 Viscosity Formulation) at T* and P, where T* is a polynomial function of x and T. The revised model can be used to estimate the viscosity over the range 0-1000 °C, ≤500 MPa and 0-100 wt. % NaCl. Viscosities predicted by the revised model agree with experimental values mostly within ±10%, whereas differences between experimental values and those predicted by the P&M model extend from -40% to >20%, especially for higher salinity fluids. The revised model shows smooth trends in viscosity versus temperature or salinity without discontinuities, unlike the P&M model. As expected, an increase in temperature at constant Px (decrease in density) results in a decrease in viscosity, while an increase in salinity at constant PT

  13. Experimental contribution to the understanding of the dynamics of spreading of Newtonian fluids: effect of volume, viscosity and surfactant.

    Science.gov (United States)

    Roques-Carmes, Thibault; Mathieu, Vincent; Gigante, Alexandra

    2010-04-01

    The dynamics of drop spreading of glycerol-water mixtures with and without surfactant on hydrophilic glass surfaces has been investigated. The influence of different factors, such as viscosity, drop volume and non-ionic alkyl (8-16) glucoside (Plantacare) surfactant concentration on the number and the nature of the spreading regimes is systematically investigated. More than 25 spreading experiments have been performed in order to obtain clear trends. The results confirm the existence of several spreading regimes for the duration of an experiment (200 s). For each regime, the radius can be expressed by a power law of the form R=Kt(n). Both n and K are necessary to identify the regime. The experimental data are compared with the analytical predictions of the combined theory of spreading. One of the main results of this study is that the nature of the regimes is strongly affected by the drop volume, the viscosity and the surfactant concentration. This behavior is not predicted by the theory. For drop volume less than or equal to 15 microL, a succession of two different regimes which depend on the viscosity and surfactant concentration are observed in the following order: a molecular-kinetic regime followed by a hydrodynamic regime (for high viscosity in the presence of surfactant) or a hydrodynamic regime and lastly a final asymptotic regime corresponding to a long relaxation time to equilibrium (for high viscosity in absence of surfactant and for low viscosity regardless of the presence of surfactant). The spreading follows quantitatively the predictions of the theory. Our results demonstrate that the theory is still valid for low viscosity liquids and in the presence of surfactant. The contact angle for which the crossover between molecular-kinetic regime and hydrodynamic regime occurs is thoroughly estimated since the theories do not allow the exact calculation of this value. Here for the first time, an empirical power law exponent (n=0.08+/-0.05) is proposed for

  14. Effects of Slip Condition, Variable Viscosity and Inclined Magnetic Field on the Peristaltic Motion of a Non-Newtonian Fluid in an Inclined Asymmetric Channel

    Directory of Open Access Journals (Sweden)

    A. Afsar Khan

    2016-01-01

    Full Text Available The peristaltic motion of a third order fluid due to asymmetric waves propagating on the sidewalls of a inclined asymmetric channel is discussed. The key features of the problem includes longwavelength and low-Reynolds number assumptions. A mathematical analysis has been carried out to investigate the effect of slip condition, variable viscosity and magnetohydrodynamics (MHD. Followed by the nondimensionalization of the nonlinear governing equations along with the nonlinear boundary conditions, a perturbation analysis is made. For the validity of the approximate solution, a numerical solution is obtained using the iterative collocation technique.

  15. The effect of shear and extensional viscosities on atomization of Newtonian and non-Newtonian fluids in ultrasonic inhaler.

    Science.gov (United States)

    Broniarz-Press, L; Sosnowski, T R; Matuszak, M; Ochowiak, M; Jabłczyńska, K

    2015-05-15

    The paper contains results of the experimental study on atomization process of aqueous solutions of glycerol and aqueous solutions of glycerol-polyacrylamide (Rokrysol WF1) in an ultrasonic inhaler. In experiments the different concentration aqueous solutions of glycerol and glycerol-polyacrylamide have been tested. The results have been obtained by the use of laser diffraction technique. The differences between characteristics of ultrasonic atomization for test liquids have been observed. The analysis of drop size histograms shows that the different sizes of drops have been formed during atomization process. The present study confirmed the previous reports which suggested that the drops size changes with the increase in viscosity of solution changes in spray characteristics were also observed. It has been shown that the shear and extensional viscosities affect the process of atomization.

  16. An energy stable algorithm for a quasi-incompressible hydrodynamic phase-field model of viscous fluid mixtures with variable densities and viscosities

    Science.gov (United States)

    Gong, Yuezheng; Zhao, Jia; Wang, Qi

    2017-10-01

    A quasi-incompressible hydrodynamic phase field model for flows of fluid mixtures of two incompressible viscous fluids of distinct densities and viscosities is derived by using the generalized Onsager principle, which warrants the variational structure, the mass conservation and energy dissipation law. We recast the model in an equivalent form and discretize the equivalent system in space firstly to arrive at a time-dependent ordinary differential and algebraic equation (DAE) system, which preserves the mass conservation and energy dissipation law at the semi-discrete level. Then, we develop a temporal discretization scheme for the DAE system, where the mass conservation and the energy dissipation law are once again preserved at the fully discretized level. We prove that the fully discretized algorithm is unconditionally energy stable. Several numerical examples, including drop dynamics of viscous fluid drops immersed in another viscous fluid matrix and mixing dynamics of binary polymeric solutions, are presented to show the convergence property as well as the accuracy and efficiency of the new scheme.

  17. Coalescence of bubbles and drops in an outer fluid

    CERN Document Server

    Paulsen, Joseph D; Kannan, Anerudh; Burton, Justin C; Nagel, Sidney R

    2014-01-01

    When two liquid drops touch, a microscopic connecting liquid bridge forms and rapidly grows as the two drops merge into one. Whereas coalescence has been thoroughly studied when drops coalesce in vacuum or air, many important situations involve coalescence in a dense surrounding fluid, such as oil coalescence in brine. Here we study the merging of gas bubbles and liquid drops in an external fluid. Our data indicate that the flows occur over much larger length scales in the outer fluid than inside the drops themselves. Thus we find that the asymptotic early regime is always dominated by the viscosity of the drops, independent of the external fluid. A phase diagram showing the crossovers into the different possible late-time dynamics identifies a dimensionless number that signifies when the external viscosity can be important.

  18. An approximate solution for a penny-shaped hydraulic fracture that accounts for fracture toughness, fluid viscosity and leak-off

    Science.gov (United States)

    Dontsov, E. V.

    2016-12-01

    This paper develops a closed-form approximate solution for a penny-shaped hydraulic fracture whose behaviour is determined by an interplay of three competing physical processes that are associated with fluid viscosity, fracture toughness and fluid leak-off. The primary assumption that permits one to construct the solution is that the fracture behaviour is mainly determined by the three-process multiscale tip asymptotics and the global fluid volume balance. First, the developed approximation is compared with the existing solutions for all limiting regimes of propagation. Then, a solution map, which indicates applicability regions of the limiting solutions, is constructed. It is also shown that the constructed approximation accurately captures the scaling that is associated with the transition from any one limiting solution to another. The developed approximation is tested against a reference numerical solution, showing that accuracy of the fracture width and radius predictions lie within a fraction of a per cent for a wide range of parameters. As a result, the constructed approximation provides a rapid solution for a penny-shaped hydraulic fracture, which can be used for quick fracture design calculations or as a reference solution to evaluate accuracy of various hydraulic fracture simulators.

  19. Effects of Navier slip on unsteady flow of a reactive variable viscosity non- Newtonian fluid through a porous saturated medium with asymmetric convecti- ve boundary conditions

    Institute of Scientific and Technical Information of China (English)

    RUNDORA Lazarus; MAKINDE Oluwole Daniel

    2015-01-01

    A study on the effects of Navier slip, in conjunction with other flow parameters, on unsteady flow of reactive variable viscosity third-grade fluid through a porous saturated medium with asymmetric convective boundary conditions is presented. The channel walls are assumed to be subjected to asymmetric convective heat exchange with the ambient, and exothermic chemical reactions take place within the flow system. The heat exchange with the ambient obeys Newton’s law of cooling. The coupled equations, arising from the law of conservation of momentum and the first law of thermodynamics, then the derived system are non- dimensionalised and solved using a semi-implicit finite difference scheme. The lower wall slip parameter is observed to increase the fluid velocity profiles, whereas the upper wall slip parameter retards them because of backflow at the upper channel wall. Heat pro- duction in the fluid is seen to increase with the slip parameters. The wall shear stress increases with the slip parameters while the wall heat transfer rate is largely unaltered by the lower wall slip parameter but marginally increased by the upper wall slip parameter.

  20. Rotation of Magnetization Derived from Brownian Relaxation in Magnetic Fluids of Different Viscosity Evaluated by Dynamic Hysteresis Measurements over a Wide Frequency Range.

    Science.gov (United States)

    Ota, Satoshi; Kitaguchi, Ryoichi; Takeda, Ryoji; Yamada, Tsutomu; Takemura, Yasushi

    2016-09-10

    The dependence of magnetic relaxation on particle parameters, such as the size and anisotropy, has been conventionally discussed. In addition, the influences of external conditions, such as the intensity and frequency of the applied field, the surrounding viscosity, and the temperature on the magnetic relaxation have been researched. According to one of the basic theories regarding magnetic relaxation, the faster type of relaxation dominates the process. However, in this study, we reveal that Brownian and Néel relaxations coexist and that Brownian relaxation can occur after Néel relaxation despite having a longer relaxation time. To understand the mechanisms of Brownian rotation, alternating current (AC) hysteresis loops were measured in magnetic fluids of different viscosities. These loops conveyed the amplitude and phase delay of the magnetization. In addition, the intrinsic loss power (ILP) was calculated using the area of the AC hysteresis loops. The ILP also showed the magnetization response regarding the magnetic relaxation over a wide frequency range. To develop biomedical applications of magnetic nanoparticles, such as hyperthermia and magnetic particle imaging, it is necessary to understand the mechanisms of magnetic relaxation.

  1. Rotation of Magnetization Derived from Brownian Relaxation in Magnetic Fluids of Different Viscosity Evaluated by Dynamic Hysteresis Measurements over a Wide Frequency Range

    Directory of Open Access Journals (Sweden)

    Satoshi Ota

    2016-09-01

    Full Text Available The dependence of magnetic relaxation on particle parameters, such as the size and anisotropy, has been conventionally discussed. In addition, the influences of external conditions, such as the intensity and frequency of the applied field, the surrounding viscosity, and the temperature on the magnetic relaxation have been researched. According to one of the basic theories regarding magnetic relaxation, the faster type of relaxation dominates the process. However, in this study, we reveal that Brownian and Néel relaxations coexist and that Brownian relaxation can occur after Néel relaxation despite having a longer relaxation time. To understand the mechanisms of Brownian rotation, alternating current (AC hysteresis loops were measured in magnetic fluids of different viscosities. These loops conveyed the amplitude and phase delay of the magnetization. In addition, the intrinsic loss power (ILP was calculated using the area of the AC hysteresis loops. The ILP also showed the magnetization response regarding the magnetic relaxation over a wide frequency range. To develop biomedical applications of magnetic nanoparticles, such as hyperthermia and magnetic particle imaging, it is necessary to understand the mechanisms of magnetic relaxation.

  2. Boundary-layer phenomena for the cylindrically symmetric Navier-Stokes equations of compressible heat-conducting fluids with large data at vanishing shear viscosity

    Science.gov (United States)

    Ye, Xia; Zhang, Jianwen

    2016-08-01

    This paper concerns the asymptotic behavior of the solution to an initial-boundary value problem of the cylindrically symmetric Navier-Stokes equations with large data for compressible heat-conducting ideal fluids, as the shear viscosity μ goes to zero. A suitable corrector function (the so-called boundary-layer type function) is constructed to eliminate the disparity of boundary values. As by-products, the convergence rates of the derivatives in L 2 are obtained and the boundary-layer thickness (BL-thickness) of the value O≤ft({μα}\\right) with α \\in ≤ft(0,1/2\\right) is shown by an alternative method, compared with the results proved in Jiang and Zhang (2009 SIAM J. Math. Anal. 41 237-68) and Qin et al (2015 Arch. Ration. Mech. Anal. 216 1049-86).

  3. Numerical simulation of peristaltic flow of a biorheological fluid with shear-dependent viscosity in a curved channel.

    Science.gov (United States)

    Ali, N; Javid, K; Sajid, M; Anwar Bég, O

    2016-01-01

    Peristaltic motion of a non-Newtonian Carreau fluid is analyzed in a curved channel under the long wavelength and low Reynolds number assumptions, as a simulation of digestive transport. The flow regime is shown to be governed by a dimensionless fourth-order, nonlinear, ordinary differential equation subject to no-slip wall boundary conditions. A well-tested finite difference method based on an iterative scheme is employed for the solution of the boundary value problem. The important phenomena of pumping and trapping associated with the peristaltic motion are investigated for various values of rheological parameters of Carreau fluid and curvature of the channel. An increase in Weissenberg number is found to generate a small eddy in the vicinity of the lower wall of the channel, which is enhanced with further increase in Weissenberg number. For shear-thinning bio-fluids (power-law rheological index, n Weissenberg number displaces the maximum velocity toward the upper wall. For shear-thickening bio-fluids, the velocity amplitude is enhanced markedly with increasing Weissenberg number.

  4. Viscosity of colloidal suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, E.G.D. [Rockefeller Univ., New York, NY (United States); Schepper, I.M. de [Delft Univ. of Technology (Netherlands)

    1995-12-31

    Simple expressions are given for the effective Newtonian viscosity as a function of concentration as well as for the effective visco-elastic response as a function of concentration and imposed frequency, of monodisperse neutral colloidal suspensions over the entire fluid range. The basic physical mechanisms underlying these formulae are discussed. The agreement with existing experiments is very good.

  5. The study of plasma's modification effects in viscose used as an absorbent for wound-relevant fluids.

    Science.gov (United States)

    Peršin, Zdenka; Devetak, Miha; Drevenšek-Olenik, Irena; Vesel, Alenka; Mozetič, Miran; Stana-Kleinschek, Karin

    2013-08-14

    Extreme non-equilibrium oxygen plasma was used for the deep functionalisation of viscose materials used for the healing of chronic wounds. Those thermal effects, which usually appear during plasma treatment due to the influence of charged particles, were avoided effectively by using electrode-less discharge at a very low power density of 25 W/l volume. A huge flux of neutrally reactive atoms at room temperature of 3x10(23)m(-2)s(-1), allowed for the effective diffusion of O-atoms into inter-fibril space and thus the activation of fibrils throughout the non-woven materials. Apart from the standard Wilhelmy balance and pedant drop method for determining the absorption dynamics on a macroscopic scale, optical polarisation microscopy was applied for studying the microscopic effects. The sorption characteristics were determined for saline solution, exudate, and blood and the results showed a dramatic improvement. Focusing on hydrophobic recovery prevention, the modified samples were stored for 10 days in air, nitrogen, and argon atmospheres. Some ageing effects occurred, whilst the absorption properties were independent of the storage atmosphere.

  6. Two-fluid sub-grid-scale viscosity in nonlinear simulation of ballooning modes in a heliotron device

    Science.gov (United States)

    Miura, H.; Hamba, F.; Ito, A.

    2017-07-01

    A large eddy simulation (LES) approach is introduced to enable the study of the nonlinear growth of ballooning modes in a heliotron-type device, by solving fully 3D two-fluid magnetohydrodynamic (MHD) equations numerically over a wide range of parameter space, keeping computational costs as low as possible. A model to substitute the influence of scales smaller than the grid size, at sub-grid scale (SGS), and at the scales larger than it—grid scale (GS)—has been developed for LES. The LESs of two-fluid MHD equations with SGS models have successfully reproduced the growth of the ballooning modes in the GS and nonlinear saturation. The numerical results show the importance of SGS effects on the GS components, or the effects of turbulent fluctuation at small scales in low-wavenumber unstable modes, over the course of the nonlinear saturation process. The results also show the usefulness of the LES approach in studying instability in a heliotron device. It is shown through a parameter survey over many SGS model coefficients that turbulent small-scale components in experiments can contribute to keeping the plasma core pressure from totally collapsing.

  7. Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source

    Directory of Open Access Journals (Sweden)

    B.S. Bhadauria

    2014-12-01

    Full Text Available In this paper, a theoretical investigation has been carried out to study the combined effect of rotation speed modulation and internal heating on thermal instability in a temperature dependent viscous horizontal fluid layer. Rayleigh–Bénard momentum equation with Coriolis term has been considered to describe the convective flow. The system is rotating about it is own axis with non-uniform rotational speed. In particular, a time-periodic and sinusoidally varying rotational speed has been considered. A weak nonlinear stability analysis is performed to find the effect of modulation on heat transport. Nusselt number is obtained in terms of amplitude of convection and internal Rayleigh number, and depicted graphically for showing the effects of various parameters of the system. The effect of modulated rotation speed is found to have a stabilizing effect for different values of modulation frequency. Further, internal heating and thermo-rheological parameters are found to destabilize the system.

  8. Effects of variable viscosity and thermal conductivity on unsteady MHD flow of non-Newtonian fluid over a stretching porous sheet

    Directory of Open Access Journals (Sweden)

    Rahman Abdel-Gamal M.

    2013-01-01

    Full Text Available The unsteady flow and heat transfer in an incompressible laminar, electrically conducting and non-Newtonian fluid over a non-isothermal stretching sheet with the variation in the viscosity and thermal conductivity in a porous medium by the influence of an external transverse magnetic field have been obtained and studied numerically. By using similarity analysis the governing differential equations are transformed into a set of non-linear coupled ordinary differential equations which are solved numerically. Numerical results were presented for velocity and temperature profiles for different parameters of the problem as power law parameter, unsteadiness parameter, radiation parameter, magnetic field parameter, porous medium parameter, temperature buoyancy parameter, Prandtl parameter, modified Eckert parameter, Joule heating parameter , heat source/sink parameter and others. A comparison with previously published work has been carried out and the results are found to be in good agreement. Also the effects of the pertinent parameters on the skin friction and the rate of heat transfer are obtained and discussed numerically and illustrated graphically.

  9. Merge of terminological resources

    DEFF Research Database (Denmark)

    Henriksen, Lina; Braasch, Anna

    2012-01-01

    In our globalized world, the amount of cross-national communication increases rapidly, which also calls for easy access to multi-lingual high quality terminological resources. Sharing of terminology resources is currently becoming common practice, and efficient strategies for integration...... – or merging – of terminology resources are strongly needed. This paper discusses prerequisites for successful merging with the focus on identification of candidate duplicates of a subject domain found in the resources to be merged, and it describes automatic merging strategies to be applied to such duplicates...... in electronic terminology resources. Further, some perspectives of manual, supplementary assessment methods supporting the automatic procedures are sketched. Our considerations are primarily based on experience gained in the IATE and EuroTermBank projects, as merging was a much discussed issue in both projects....

  10. Effect of viscosity on droplet-droplet collision outcome: Experimental study and numerical comparison

    Science.gov (United States)

    Gotaas, Cecilie; Havelka, Pavel; Jakobsen, Hugo A.; Svendsen, Hallvard F.; Hase, Matthias; Roth, Norbert; Weigand, Bernhard

    2007-10-01

    The influence of viscosity on droplet-droplet collision behavior at ambient conditions was studied experimentally and numerically. N-decane, monoethyleneglycol (MEG), diethyleneglycol (DEG), and triethyleneglycol were used as liquid phase providing viscosities in the range from 0.9to48mPas. Collision Weber numbers ranged approximately from 10 to 420. A direct numerical simulation code, based on the volume-of-fluid concept, was used for the simulations. Experimentally, observations of two droplet streams using a modified stroboscopic technique (aliasing method) were used to investigate the whole range of impact parameters during one experimental run. The experimental method has previously been verified for the water/air system [C. Gotaas et al., Phys. Fluids 19, 102105 (2007)]. In the present work, it was tested and validated for the n-decane/air system. Measured data agree well with those published in the literature. Well-defined regions of stretching separation and coalescence were identified, while reflexive separation regions were not found by using a single sinusoidal disturbance. However, the onset of reflexive separation was identified for MEG and DEG using an amplitude modulation technique. The results show that the criteria for onset of reflexive separation for viscous fluids provided by Y. I. Jiang et al. [J. Fluid Mech. 234, 177 (1992)] are not valid. This is consistent with the results given by K. D. Willis and M. Orme [Exp. Fluids 34, 28 (2003)]. A new empirical correlation for the onset of reflexive separation for high viscosity fluids is presented. The borders between coalescing and stretching separation were shifted toward higher Weber numbers with increasing viscosity. The lack of occurrence of reflexive separation for the single sinusoidal disturbance (small droplets), as well as the stretching separation boundary shift, can be explained by dissipation of collision kinetic energy in viscous flows inside the merged droplet after collision. Results

  11. Merging {DBMs} Efficiently

    DEFF Research Database (Denmark)

    David, Alexandre

    2005-01-01

    In this paper we present different algorithms to reduce the number of DBMs in federations by merging them. Federations are unions of DBMs and are used to represent non-convex zones. Inclusion checking between DBMs is a limited technique to reduce the size of federations and how to choose some DBM...... to merge them into a larger one is a combi-natorial problem. We present a number of simple but efficient techniques to avoid searching the combinations while still being able to merge any number of DBMs...

  12. Merging into platoons

    Science.gov (United States)

    Modi, A.

    2016-09-01

    Series of vehicles interacting with each other while driving in a straight line or while maneuvering is termed as a platoon of vehicles and known as platooning. This paper describes platooning and merging into platoons in general. The first part of this paper focuses on developing control strategies for automated driving. In this part a controller for longitudinal driving is designed and analysed. The second part of the paper focuses on the analysis of merging into a platoon on highways. This is done by validating experimental results by integrating a driver model with a single track bicycle model resulting in the calculation of merging path.

  13. Basic study on a simulation model for the traffic stream on urban expressway merging area

    Energy Technology Data Exchange (ETDEWEB)

    Makigami, Y. [Ritsumeikan Univ., Kyoto (Japan). Faculty of Science and Engineering; Sakai, T. [Ritsumeikan Univ., Kusatsu, Shiga (Japan). Civil and Environmental SystemsJP; Ishizuka, T.

    2000-07-01

    In this study a merging traffic simulation model was developed on the results of a traffic survey covering a merging section which is located on the Central Loop of the Hanshin Expressway and often causes congestion during heavy traffic period. The merging traffic simulation model is a kind of microscopic model treating the merging model flow as compressible fluid. The merging simulation model gives very appropriate and reliable results indicating the effect of improvement plan for reducing traffic congestion. (orig.)

  14. Bouncing and Merging of Liquid Jets

    Science.gov (United States)

    Saha, Abhishek; Li, Minglei; Law, Chung K.

    2014-11-01

    Collision of two fluid jets is a technique that is utilized in many industrial applications, such as in rocket engines, to achieve controlled mixing, atomization and sometimes liquid phase reactions. Thus, the dynamics of colliding jets have direct impact on the performance, efficiency and reliability of such applications. In analogy with the dynamics of droplet-droplet collision, in this work we have experimentally demonstrated, for n-alkane hydrocarbons as well as water, that with increasing impact inertia obliquely colliding jets also exhibit the same nonmonotonic responses of merging, bouncing, merging again, and merging followed by disintegration; and that the continuous entrainment of the boundary layer air over the jet surface into the colliding interfacial region leads to two distinguishing features of jet collision, namely: there exists a maximum impact angle beyond which merging is always possible, and that merging is inhibited and then promoted with increasing pressure. These distinct response regimes were mapped and explained on the bases of impact inertia, deformation of the jet surface, viscous loss within the jet interior, and the thickness and pressure build-up within the interfacial region in order to activate the attractive surface van der Waals force to effect merging.

  15. Viscosity of oil and water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Corlett, A.E.; Hall, A.R.W. [National Engineering Laboratory, Glasgow (United Kingdom)

    1999-07-01

    A study was performed to investigate the apparent viscosity of oil and water mixtures using the pressure loss along a horizontal pipe. Water fractions between 100% to 5% were examined at three flow velocities and three temperatures. Four combinations of crude oil and saline solution were used. Tests found that the mixture viscosity exhibited a peak at the position of phase inversion. The value of this maximum viscosity depended upon the temperature and fluid combination used, but not the velocity. Physical properties of the fluids were important factors in the viscosity/water fraction behaviour. (author)

  16. Viscosity of particle laden films

    Science.gov (United States)

    Timounay, Yousra; Rouyer, Florence

    2017-06-01

    We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational) of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.

  17. Merged neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Osterwalder, Andreas [Ecole Polytechnique Federale de Lausanne (EPFL), Institute for Chemical Sciences and Engineering, Lausanne (Switzerland)

    2015-12-15

    A detailed description of a merged beam apparatus for the study of low energy molecular scattering is given. This review is intended to guide any scientist who plans to construct a similar experiment, and to provide some inspiration in describing the approach we chose to our goal. In our experiment a supersonic expansion of paramagnetic particles is merged with one of polar molecules. A magnetic and an electric multipole guide are used to bend the two beams onto the same axis. We here describe in detail how the apparatus is designed, characterised, and operated. (orig.)

  18. Viscosity in Modified Gravity 

    Directory of Open Access Journals (Sweden)

    Iver Brevik

    2012-11-01

    Full Text Available A bulk viscosity is introduced in the formalism of modified gravity. It is shownthat, based on a natural scaling law for the viscosity, a simple solution can be found forquantities such as the Hubble parameter and the energy density. These solutions mayincorporate a viscosity-induced Big Rip singularity. By introducing a phase transition inthe cosmic fluid, the future singularity can nevertheless in principle be avoided. 

  19. Merging of plasma currents

    NARCIS (Netherlands)

    Bergmans, J.; Schep, T. J.

    2001-01-01

    The merging process of current filaments in a strongly magnetized plasma is described. The evolution is calculated using a contour dynamics method, which accurately tracks piecewise constant distributions of the conserved quantities. In the interaction of two screened currents, both develop dipolar

  20. Plan Merging: Experimental results

    NARCIS (Netherlands)

    De Weerdt, M.M.; Van der Krogt, R.P.J.; Zutt, J.

    2003-01-01

    In this paper we discuss the results of a plan merging algorithm. This algorithm coordinates the plans of multiple, autonomous agents, each able to independently find a plan. This algorithm is evaluated using realistic data from a taxi company. We show that when we allow passengers to be a few minut

  1. Investigation of the effects of baffle orientation, baffle cut and fluid viscosity on shell side pressure drop and heat transfer coefficient in an e-type shell and tube heat exchanger

    OpenAIRE

    Mohammadi, Koorosh

    2011-01-01

    The commercial CFD code FLUENT is used to determine the effect of baffle orientation and baffle cut as well as viscosity of the working fluid on the shell-side heat transfer and pressure drop of a shell and tube heat exchanger. The shell and tube heat exchangers considered follow the TEMA standards. The investigation has been completed in three stages: 1. The shell and tube heat exchanger consists of 660 plain tubes with fixed outside diameter which are arranged in a triangular layout. Hor...

  2. Shear viscosity of liquid mixtures Mass dependence

    CERN Document Server

    Kaushal, R

    2002-01-01

    Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model.

  3. Heat transfer in MHD flow of dusty viscoelastic (Walters’ liquid model-B) stratified fluid in porous medium under variable viscosity

    Indian Academy of Sciences (India)

    Om Prakash; Devendra Kumar; Y K Dwivedi

    2012-12-01

    The paper investigates the effects of heat transfer in MHD flow of viscoelastic stratified fluid in porous medium on a parallel plate channel inclined at an angle . A laminar convection flow for incompressible conducting fluid is considered. It is assumed that the plates are kept at different temperatures which decay with time. The partial differential equations governing the flow are solved by perturbation technique. Expressions for the velocity of fluid and particle phases, temperature field, Nusselt number, skin friction and flow flux are obtained within the channel. The effects of various parameters like stratification factor, magnetic field parameter, Prandtl number on temperature field, heat transfer, skin friction, flow flux, velocity for both the fluid and particle phases are displayed through graphs and discussed numerically.

  4. 流体黏度对固液界面滑移的影响%Influence of Fluid Viscosity on Boundary Slip between Solid and Liquid

    Institute of Scientific and Technical Information of China (English)

    王小云; 吴利华; 唐艳芳

    2012-01-01

    The primary investigations on the slippage effect are based on the slip length model and shearing stress model, but they did not include the influence of viscosity. Based on the slip length model in this paper, a formula on the relations between the slip length and the viscosity of liquid or the thickness of film is obtained, and the hydrodynamic resistance force and the pressure are modified, the influence of boundary slip on the stability of thin film is analyzed. Our results will play a guiding role in the experiments of boundary slip between solid and liquid.%最初的滑移效应研究基于滑移长度模型和剪切应力模型,但都未涉及流体黏度变化条件下的滑移情况.本文基于滑移长度模型,理论推导出滑移长度随流体黏度及薄膜厚度的变化关系,并对滑移长度模型的流体阻力和压力进行修正,分析流体的滑移对其稳定性的影响.理论研究结果对固.液界面相关实验具有指导作用.

  5. Research progress of gas dispersion in stirred vessel with medium or high viscosity fluids%搅拌槽内中高黏物系的气液分散特性研究进展

    Institute of Scientific and Technical Information of China (English)

    李红星; 王嘉骏; 冯连芳; 金志江

    2012-01-01

    从实验和数值模拟两方面对搅拌槽内中高黏物系条件下的气含率、气泡尺寸大小和传质特性等进行综述。讨论了搅拌桨型、操作条件、黏度或非牛顿性对气液分散特性的影响。阐明了径流式搅拌桨和上翻式轴流桨的组合能减小气穴,更适合中低黏物系的搅拌;搅拌转速比通气量的影响效果更明显,转速增加使气泡的分布均匀性变好,而提高通气速度会产生大气泡,使气泡分布不均匀程度增加;黏度或非牛顿性的增加可以改变气泡的碰撞频率,气泡平均尺寸减小。最后讨论了针对中高黏物系的计算流体力学模型的修正方法,并且展望了此领域的研究发展方向。%Research progress of air hold-up,bubble size distribution and gas-liquid mass transfer in stirred vessel with viscous fluid were summarized from the perspective of experiment and simulation.The influences of impeller,operating conditions,viscosity or non-Newtonian characteristics on gas dispersion were discussed.The combination of radical-flow impellers and up-pumping axial impellers could decrease the scale of air cavitation,and was suitable for low viscosity and moderately viscous fluids.The influence of agitation speed was more significant than air inflation rate.With increasing agitation speed,uniformity of bubble distribution became better.Increasing air inflation rate enhanced air hold-up occupied by big bubbles.The non-uniformity of air distribution became worse.Increasing viscosity or non-Newtonian capacity changed the rate of collision of bubbles,making mean bubble size smaller.Correction of computational model for viscous fluids was presented and the direction of future research was prospected.

  6. Modeling of the merging, liner formation, implosion of hypervelocity plasma jets for the PLX- α project

    Science.gov (United States)

    Cassibry, Jason; Hsu, Scott; Schillo, Kevin; Samulyak, Roman; Stoltz, Peter; Beckwith, Kris

    2015-11-01

    A suite of numerical tools will support the conical and 4 π plasma-liner-formation experiments for the PLX- α project. A new Lagrangian particles (LP) method will provide detailed studies of the merging of plasma jets and plasma-liner formation/convergence. A 3d smooth particle hydrodynamic (SPH) code will simulate conical (up to 9 jets) and 4 π spherical (up to 60 jets) liner formation and implosion. Both LP and SPH will use the same tabular EOS generated by Propaceos, thermal conductivity, optically thin radiation and physical viscosity models. With LP and SPH,the major objectives are to study Mach-number degradation during jet merging, provide RMS amplitude and wave number of the liner nonuniformity at the leading edge, and develop scaling laws for ram pressure and liner uniformity as a function of jet parameters. USIM, a 3D multi-fluid plasma code, will be used to perform 1D and 2D simulations of plasma-jet-driven magneto-inertial fusion (PJMIF) to identify initial conditions in which the ``liner gain'' exceeds unity. A brief overview of the modeling program will be provided. Results from SPH modeling to support the PLX- α experimental design will also be presented, including preliminary ram-pressure scaling and non-uniformity characterization.

  7. The Effects of Variable Viscosity, Viscous Dissipation and Chemical Reaction on Heat and Mass Transfer Flow of MHD Micropolar Fluid along a Permeable Stretching Sheet in a Non-Darcian Porous Medium

    Directory of Open Access Journals (Sweden)

    A. M. Salem

    2013-01-01

    Full Text Available A numerical model is developed to study the effects of temperature-dependent viscosity on heat and mass transfer flow of magnetohydrodynamic(MHD micropolar fluids with medium molecular weight along a permeable stretching surface embedded in a non-Darcian porous medium in the presence of viscous dissipation and chemical reaction. The governing boundary equations for momentum, angular momentum (microrotation, and energy and mass transfer are transformed to a set of nonlinear ordinary differential equations by using similarity solutions which are then solved numerically by shooting technique. A comparison between the analytical and the numerical solutions has been included. The effects of the various physical parameters entering into the problem on velocity, microrotation, temperature and concentration profiles are presented graphically. Finally, the effects of pertinent parameters on local skin-friction coefficient, local Nusselt number and local Sherwood number are also presented graphically. One important observation is that for some kinds of mixtures (e.g., H2, air with light and medium molecular weight, the magnetic field and temperature-dependent viscosity effects play a significant role and should be taken into consideration as well.

  8. Bacterial accumulation in viscosity gradients

    Science.gov (United States)

    Waisbord, Nicolas; Guasto, Jeffrey

    2016-11-01

    Cell motility is greatly modified by fluid rheology. In particular, the physical environments in which cells function, are often characterized by gradients of viscous biopolymers, such as mucus and extracellular matrix, which impact processes ranging from reproduction to digestion to biofilm formation. To understand how spatial heterogeneity of fluid rheology affects the motility and transport of swimming cells, we use hydrogel microfluidic devices to generate viscosity gradients in a simple, polymeric, Newtonian fluid. Using video microscopy, we characterize the random walk motility patterns of model bacteria (Bacillus subtilis), showing that both wild-type ('run-and-tumble') cells and smooth-swimming mutants accumulate in the viscous region of the fluid. Through statistical analysis of individual cell trajectories and body kinematics in both homogeneous and heterogeneous viscous environments, we discriminate passive, physical effects from active sensing processes to explain the observed cell accumulation at the ensemble level.

  9. The Friction Theory for Viscosity Modeling

    DEFF Research Database (Denmark)

    Cisneros, Sergio; Zeberg-Mikkelsen, Claus Kjær; Stenby, Erling Halfdan

    2001-01-01

    In this work the one-parameter friction theory (f-theory) general models have been extended to the viscosity prediction and modeling of characterized oils. It is demonstrated that these simple models, which take advantage of the repulsive and attractive pressure terms of cubic equations of state...... such as the SRK, PR and PRSV, can provide accurate viscosity prediction and modeling of characterized oils. In the case of light reservoir oils, whose properties are close to those of normal alkanes, the one-parameter f-theory general models can predict the viscosity of these fluids with good accuracy. Yet......, in the case when experimental information is available a more accurate modeling can be obtained by means of a simple tuning procedure. A tuned f-theory general model can deliver highly accurate viscosity modeling above the saturation pressure and good prediction of the liquid-phase viscosity at pressures...

  10. Distributed Merge Trees

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Dmitriy; Weber, Gunther

    2013-01-08

    Improved simulations and sensors are producing datasets whose increasing complexity exhausts our ability to visualize and comprehend them directly. To cope with this problem, we can detect and extract significant features in the data and use them as the basis for subsequent analysis. Topological methods are valuable in this context because they provide robust and general feature definitions. As the growth of serial computational power has stalled, data analysis is becoming increasingly dependent on massively parallel machines. To satisfy the computational demand created by complex datasets, algorithms need to effectively utilize these computer architectures. The main strength of topological methods, their emphasis on global information, turns into an obstacle during parallelization. We present two approaches to alleviate this problem. We develop a distributed representation of the merge tree that avoids computing the global tree on a single processor and lets us parallelize subsequent queries. To account for the increasing number of cores per processor, we develop a new data structure that lets us take advantage of multiple shared-memory cores to parallelize the work on a single node. Finally, we present experiments that illustrate the strengths of our approach as well as help identify future challenges.

  11. Merging Black Holes

    Science.gov (United States)

    Centrella, Joan

    2009-05-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  12. ESO's Two Observatories Merge

    Science.gov (United States)

    2005-02-01

    On February 1, 2005, the European Southern Observatory (ESO) has merged its two observatories, La Silla and Paranal, into one. This move will help Europe's prime organisation for astronomy to better manage its many and diverse projects by deploying available resources more efficiently where and when they are needed. The merged observatory will be known as the La Silla Paranal Observatory. Catherine Cesarsky, ESO's Director General, comments the new development: "The merging, which was planned during the past year with the deep involvement of all the staff, has created unified maintenance and engineering (including software, mechanics, electronics and optics) departments across the two sites, further increasing the already very high efficiency of our telescopes. It is my great pleasure to commend the excellent work of Jorge Melnick, former director of the La Silla Observatory, and of Roberto Gilmozzi, the director of Paranal." ESO's headquarters are located in Garching, in the vicinity of Munich (Bavaria, Germany), and this intergovernmental organisation has established itself as a world-leader in astronomy. Created in 1962, ESO is now supported by eleven member states (Belgium, Denmark, Finland, France, Germany, Italy, The Netherlands, Portugal, Sweden, Switzerland, and the United Kingdom). It operates major telescopes on two remote sites, all located in Chile: La Silla, about 600 km north of Santiago and at an altitude of 2400m; Paranal, a 2600m high mountain in the Atacama Desert 120 km south of the coastal city of Antofagasta. Most recently, ESO has started the construction of an observatory at Chajnantor, a 5000m high site, also in the Atacama Desert. La Silla, north of the town of La Serena, has been the bastion of the organization's facilities since 1964. It is the site of two of the most productive 4-m class telescopes in the world, the New Technology Telescope (NTT) - the first major telescope equipped with active optics - and the 3.6-m, which hosts HARPS

  13. Comment on "Chebyshev finite difference method for the effects of variable viscosity and variable thermal conductivity on heat transfer to a micro-polar fluid from a non-isothemal stretching sheet with suction and blowing," by S.N. Odda and A.M. Farhan

    CERN Document Server

    Pantokratoras, A

    2007-01-01

    In the paper [Chaos, Solitons & Fractals, 2006, vol. 30, pp. 851-858]the authors treat the boundary layer flow of a micropolar fluid along a horizontal flat plate with blowing or suction. The fluid viscosity and thermal conductivity are assumed functions of temperature. The boundary layer equations are transformed into ordinary ones and subsequently are solved using the Chebyshev finite difference method. However, there are some deficiencies and errors in this paper.

  14. Surface dilatational viscosity of Langmuir monolayers

    Science.gov (United States)

    Lopez, Juan; Vogel, Michael; Hirsa, Amir

    2003-11-01

    With increased interest in microfluidic systems, interfacial phenomena is receiving more attention. As the length scales of fluid problems decrease, the surface to volume ratio increases and the coupling between interfacial flow and bulk flow becomes increasingly dominated by effects due to intrinsic surface viscosities (shear and dilatational), in comparison to elastic effects (due to surface tension gradients). The surface shear viscosity is well-characterized, as cm-scale laboratory experiments are able to isolate its effects from other interfacial processes (e.g., in the deep-channel viscometer). The same is not true for the dilatational viscosity, because it acts in the direction of surface tension gradients. Their relative strength scale with the capillary number, and for cm-scale laboratory flows, surface tension effects tend to dominate. In microfluidic scale flows, the scaling favors viscosity. We have devised an experimental apparatus which is capable of isolating and enhancing the effects of dilatational viscosity at the cm scales by driving the interface harmonically in time, while keeping the interface flat. In this talk, we shall present both the theory for how this works as well as experimental measurements of surface velocity from which we deduce the dilatational viscosity of several monolayers on the air-water interface over a substantial range of surface concentrations. Anomalous behavior over some range of concentration, which superficially indicates negative viscosity, maybe explained in terms of compositional effects due to large spatial and temporal variations in concentration and corresponding viscosity.

  15. The effect of the volume fraction and viscosity on the compression and tension behavior of the cobalt-ferrite magneto-rheological fluids

    Directory of Open Access Journals (Sweden)

    H. Shokrollahi

    2016-03-01

    Full Text Available The purpose of this work is to investigate the effects of the volume fraction and bimodal distribution of solid particles on the compression and tension behavior of the Co-ferrite-based magneto-rheological fluids (MRFs containing silicon oil as a carrier. Hence, Co-ferrite particles (CoFe2O4 with two various sizes were synthesized by the chemical co-precipitation method and mixed so as to prepare the bimodal MRF. The X-Ray Diffraction (XRD analysis, Fourier Transform Infrared Spectroscopy (FTIR, Laser Particle Size Analysis (LPSA and Vibrating Sample Magnetometer (VSM were conducted to examine the structural and magnetic properties, respectively. The results indicated that the increase of the volume fraction has a direct increasing influence on the values of the compression and tension strengths of fluids. In addition, the compression and tension strengths of the mixed MRF sample (1.274 and 0.647 MPa containing 60 and 550 nm samples were higher than those of the MRF sample with the same volume fraction and uniform particle size of 550 nm.

  16. A merge model with endogenous technological change

    Energy Technology Data Exchange (ETDEWEB)

    Kypreos, S.; Bahn, O.

    2002-03-01

    A new version of the MERGE model, called MERGE-ETL, has been developed to consider endogenous technological change in the energy system. The basic formulation of MERGE-ETL as well as some first results are reported here. (author)

  17. On the similarity of variable viscosity flows

    Science.gov (United States)

    Voivenel, L.; Danaila, L.; Varea, E.; Renou, B.; Cazalens, M.

    2016-08-01

    Turbulent mixing is ubiquitous in both nature and industrial applications. Most of them concern different fluids, therefore with variable physical properties (density and/or viscosity). The focus here is on variable viscosity flows and mixing, involving density-matched fluids. The issue is whether or not these flows may be self-similar, or self-preserving. The importance of this question stands on the predictability of these flows; self-similar dynamical systems are easier tractable from an analytical viewpoint. More specifically, self-similar analysis is applied to the scale-by-scale energy transport equations, which represent the transport of energy at each scale and each point of the flow. Scale-by-scale energy budget equations are developed for inhomogeneous and anisotropic flows, in which the viscosity varies as a result of heterogeneous mixture or temperature variations. Additional terms are highlighted, accounting for the viscosity gradients, or fluctuations. These terms are present at both small and large scales, thus rectifying the common belief that viscosity is a small-scale quantity. Scale-by-scale energy budget equations are then adapted for the particular case of a round jet evolving in a more viscous host fluid. It is further shown that the condition of self-preservation is not necessarily satisfied in variable-viscosity jets. Indeed, the jet momentum conservation, as well as the constancy of the Reynolds number in the central region of the jet, cannot be satisfied simultaneously. This points to the necessity of considering less stringent conditions (with respect to classical, single-fluid jets) when analytically tackling these flows and reinforces the idea that viscosity variations must be accounted for when modelling these flows.

  18. China Satcom Merged Into CASC

    Institute of Scientific and Technical Information of China (English)

    Wei Tong

    2009-01-01

    @@ China Satellite Communications Corporation (China Satcom) merged with China Aerospace Science and Technology Corporation (CASC) recently on the request under regrouping and structure readjustment by the State-owned Assets Supervision and Administration Commission of the State Council (SASAC).

  19. Optical viscosity sensor

    Science.gov (United States)

    Chang, Cheng-Ling; Peyroux, Juliette; Perez, Alex; Tsui, Chi-Leung; Wang, Wei-Chih

    2009-03-01

    Viscosity measurement by bend loss of fiber is presented. The sensing principle makes use of the damping characteristic of a vibrating optical fiber probe with fix-free end configuration. By measuring the displacement of the fiber probe, the viscosity can be determined by matching the probe's displacement with the displacement built in the database obtained by either experimental method or Finite element calculation. Experimental results are presented by measuring the sucrose and glycerol solutions of different concentrations with a viscosity varying from 1 to 15 cP. Stokes' flow assumption is utilized to attenuate the mass density effect and simplify the viscosity measurement.

  20. Viscosity of Earth's Outer Core

    CERN Document Server

    Smylie, D E

    2007-01-01

    A viscosity profile across the entire fluid outer core is found by interpolating between measured boundary values, using a differential form of the Arrhenius law governing pressure and temperature dependence. The discovery that both the retrograde and prograde free core nutations are in free decay (Palmer and Smylie, 2005) allows direct measures of viscosity at the top of the outer core, while the reduction in the rotational splitting of the two equatorial translational modes of the inner core allows it to be measured at the bottom. We find 2,371 plus/minus 1,530 Pa.s at the top and 1.247 plus/minus 0.035 x 10^11 Pa.s at the bottom. Following Brazhkin (1998) and Brazhkin and Lyapin (2000) who get 10^2 Pa.s at the top, 10^11 Pa.s at the bottom, by an Arrhenius extrapolation of laboratory experiments, we use a differential form of the Arrhenius law to interpolate along the melting temperature curve to find a viscosity profile across the outer core. We find the variation to be closely log-linear between the meas...

  1. Selective Withdrawal with an Inverted Viscosity Ratio

    Science.gov (United States)

    Case, Sarah

    2005-03-01

    In the selective withdrawal experiment, fluid is withdrawn, at rate Q, through a tube with its tip suspended a distance S above an unperturbed interface separating two immiscible fluids. For high Q, the lower fluid is entrained along with the upper one while for low Q only the upper fluid is withdrawn. We have studied the situation where the ratio of lower to the upper fluid viscosities, η>1. For low Q, the interface forms a steady-state hump and only the upper fluid is withdrawn. When Q is increased, or S is decreased, the interface undergoes a two-stage transition: first the hump forms an unsteady, thin spout which then expands into a second thicker steady-state structure with distinct flow patterns in the lower fluid. This thick-spout structure is not observed for ηCohen and S. R. Nagel, Phys. Rev. Lett. 88, 074501 1- 4 (2002).

  2. Viscosity Reduction in Liquid Suspensions by Electric or Magnetic Fields

    Science.gov (United States)

    Tao, R.; Xu, X.

    Reducing the viscosity of liquid suspensions is of great importance in science and engineering. We present a theory and experiments that a suitable electric or magnetic field pulse can effectively reduce the viscosity for several hours with no appreciable change of temperature. Positive experimental results with magnetorheological fluids and crude oil suggest a broad range of practical applications.

  3. Viscosity Prediction of Hydrocarbon Mixtures Based on the Friction Theory

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Cisneros, Sergio; Stenby, Erling Halfdan

    2001-01-01

    The application and capability of the friction theory (f-theory) for viscosity predictions of hydrocarbon fluids is further illustrated by predicting the viscosity of binary and ternary liquid mixtures composed of n-alkanes ranging from n-pentane to n-decane for wide ranges of temperature and fro...

  4. Bulk viscosity, interaction and the viability of phantom solutions

    CERN Document Server

    Leyva, Yoelsy

    2016-01-01

    We study the dynamics of a bulk viscosity model in the Eckart approach for a spatially flat Friedmann-Robertson-Walker (FRW) universe. We have included radiation and dark energy, assumed as perfect fluids, and dark matter treated as an imperfect fluid having bulk viscosity. We also introduce an interaction term between the dark matter and dark energy components. Considering that the bulk viscosity is proportional to the dark matter energy density and imposing a complete cosmological dynamics, we find bounds on the bulk viscosity in order to reproduce a matter-dominated era (MDE). This constraint is independent of the interaction term. Some late time phantom solutions are mathematically possible. However, the constraint imposed by a MDE restricts the interaction parameter, in the phantom solutions, to a region consistent with a null value, eliminating the possibility of late time stable solutions with $w<-1$. From the different cases that we study, the only possible scenario, with bulk viscosity and interac...

  5. Viscosity near Earth's solid inner core

    Science.gov (United States)

    Smylie

    1999-04-16

    Anomalous splitting of the two equatorial translational modes of oscillation of Earth's solid inner core is used to estimate the effective viscosity just outside its boundary. Superconducting gravimeter observations give periods of 3.5822 +/- 0.0012 (retrograde) and 4.0150 +/- 0.0010 (prograde) hours. With the use of Ekman layer theory to estimate viscous drag forces, an inferred single viscosity of 1.22 x 10(11) Pascal seconds gives calculated periods of 3.5839 and 4.0167 hours for the two modes, close to the observed values. The large effective viscosity is consistent with a fluid, solid-liquid mixture surrounding the inner core associated with the "compositional convection" that drives Earth's geodynamo.

  6. Evolving networks by merging cliques

    Science.gov (United States)

    Takemoto, Kazuhiro; Oosawa, Chikoo

    2005-10-01

    We propose a model for evolving networks by merging building blocks represented as complete graphs, reminiscent of modules in biological system or communities in sociology. The model shows power-law degree distributions, power-law clustering spectra, and high average clustering coefficients independent of network size. The analytical solutions indicate that a degree exponent is determined by the ratio of the number of merging nodes to that of all nodes in the blocks, demonstrating that the exponent is tunable, and are also applicable when the blocks are classical networks such as Erdös-Rényi or regular graphs. Our model becomes the same model as the Barabási-Albert model under a specific condition.

  7. Radiative Bulk Viscosity

    CERN Document Server

    Chen, X

    2001-01-01

    Viscous resistance to changes in the volume of a gas arises when different degrees of freedom have different relaxation times. Collisions tend to oppose the resulting departures from equilibrium and, in so doing, generate entropy. Even for a classical gas of hard spheres, when the mean free paths or mean flight times of constituent particles are long, we find a nonvanishing bulk viscosity. Here we apply a method recently used to uncover this result for a classical rarefied gas to radiative transfer theory and derive an expression for the radiative stress tensor for a gray medium with absorption and Thomson scattering. We determine the transport coefficients through the calculation of the comoving entropy generation. When scattering dominates absorption, the bulk viscosity becomes much larger than either the shear viscosity or the thermal conductivity.

  8. Dynamics of Bouncing-vs.-Merging Responses in Jet Collision

    Science.gov (United States)

    Li, Minglei; Saha, Abhishek; Zhu, Delin L.; Sun, Chao; Law, Chung K.

    2015-11-01

    Collision of two fluid masses is a common natural and industrial phenomenon. Many kinds of noncoalescence phenomena of collisional fluid masses, such as droplet & droplet, droplet & liquid film, have been studied, and the dynamics of the gas layer between the colliding liquid surfaces was found to play a crucial role. However, many fluid mass collision processes are nonstationary, making it difficult to study this air layer dynamics in detail. Jet bouncing can be in a stationary state with a geometrically simple gas layer, providing an ideal system to investigate the dynamics of the air film between the colliding interfaces. In this work, we observe an entire suite of possible jet collision outcomes of (soft) merging, bouncing and (hard) merging with increasing impact inertia. These transitions between these different regimes are characterized through scaling analysis by considering the competing effects of impact inertia, surface tension and viscous thinning of the interfacial air-gap leading to activate the van der Waals force to effect merging.

  9. Viscosity and Plasticity of Latvian Illite Clays

    OpenAIRE

    2012-01-01

    Due to viscosity and plasticity, clays and clay minerals are used in civil engineering, pottery and also in cosmetics and medicine as thickening agents and emulsion and suspension stabilizers. The rheological properties of clay suspensions are complex. Mostly it is an interaction between mineral composition, clay particle size and pH value and also depends on clay minerals. Clay-water suspension is non-Newtonian fluid showing thixotropic and pseudoplastic properties. Results showed that plast...

  10. Viscosity of Thorium Soaps

    Directory of Open Access Journals (Sweden)

    RAMAKANT SHARMA

    2013-06-01

    Full Text Available The density and viscosity results of thorium soaps in benzene methanol mixture have been explained satisfactorily in terms of the equations proposed by Einstein, Vand and Jones-Dole. The values of the CMC and molar volume of thorium soaps calculated from these equations are in close agreement.

  11. Viscosity in accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Katz, J.I.

    1980-01-01

    Both HerX-1 and SS433 may contain accretion disks slaved to a precessing companion star. If so, it is possible to bound the effective viscosity in these disks. The results, in terms of the disk parameter alpha, are lower bounds of 0.01 for HerX-1 and of 0.1 for SS433.

  12. Dean vortex membrane microfiltration non-Newtonian viscosity effects

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Belfort, G.

    2002-01-01

    Many industrial feeds behave as non-Newtonian fluids, and little understanding exists as to their influence on cross-flow microfiltration (CMF) performance. The viscosity effects of a model non-Newtonian shear-thickening fluid were investigated in CMF with and without suspended silica particles in t

  13. Dean vortex membrane microfiltration non-Newtonian viscosity effects

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Belfort, G.

    2002-01-01

    Many industrial feeds behave as non-Newtonian fluids, and little understanding exists as to their influence on cross-flow microfiltration (CMF) performance. The viscosity effects of a model non-Newtonian shear-thickening fluid were investigated in CMF with and without suspended silica particles in

  14. Measuring shear viscosity using transverse momentum correlations in relativistic nuclear collisions.

    Science.gov (United States)

    Gavin, Sean; Abdel-Aziz, Mohamed

    2006-10-20

    Elliptic flow measurements at the Brookhaven National Laboratory Relativistic Heavy Ion Collider suggest that quark-gluon fluid flows with very little viscosity compared to weak-coupling expectations, challenging theorists to explain why this fluid is so nearly "perfect." It is therefore vital to find quantitative experimental information on the viscosity of the fluid. We propose that measurements of transverse momentum fluctuations can be used to determine the shear viscosity. We use current data to estimate the viscosity-to-entropy ratio in the range from 0.08 to 0.3 and discuss how future measurements can reduce this uncertainty.

  15. Viscosity-Induced Crossing of the Phantom Barrier

    Directory of Open Access Journals (Sweden)

    Iver Brevik

    2015-09-01

    Full Text Available We show explicitly, by using astrophysical data plus reasonable assumptions for the bulk viscosity in the cosmic fluid, how the magnitude of this viscosity may be high enough to drive the fluid from its position in the quintessence region at present time t = 0 across the barrier w = −1 into the phantom region in the late universe. The phantom barrier is accordingly not a sharp mathematical divide, but rather a fuzzy concept. We also calculate the limiting forms of various thermodynamical quantities, including the rate of entropy production, for a dark energy fluid near the future Big Rip singularity.

  16. Shear viscosity of nanofluids mixture%纳米流体黏度特性

    Institute of Scientific and Technical Information of China (English)

    凌智勇; 邹涛; 丁建宁; 程广贵; 张忠强; 孙东建; 钱龙

    2012-01-01

    The influences of temperature, chemical dispersant, and volume fraction of nanoparticles on the shear viscosity of the nanoparticle-fluid mixture were experimentally investigated. The nanofluids including different types of nanoparticles were prepared by a two-steps method. The results showed that the shear viscosity of the mixture decreased with increasing temperature below a threshold of 60℃ . Interestingly, the viscosity of Cu-water and Al2O3-water nanofluids increased with increasing temperature above 60℃ . The Brownian motion was enhanced as temperature increased, and the moving of the nanoparticles covering surfactants would increase the viscosity. The viscosity hysteresis between the heating and cooling processes could be observed obviously. The shear viscosity of CuO-water nanofluid in this experiment was in good agreement with fluid dynamics continuum theory for the fluids without dispersant. After the dispersant was added in CuO-water nanofluid, the experimental value of shear viscosity was larger than the theoretical data. And the varying trend of viscosity was consistent with that of the dispersant. The use of surfactant had an important role in the calculation of viscosity. The viscosity of nanofluids increased with increasing particle volume fraction, but the viscosity increments for the nanofluids with the same particle volume fraction were not the same. So density, surface electrical and diameter of the nanoparticles should be considered when calculating the viscosity of nanofluids.

  17. Viscosity model of high-viscosity dispersing system

    Institute of Scientific and Technical Information of China (English)

    魏先福; 王娜; 黄蓓青; 孙承博

    2008-01-01

    High-viscosity dispersing system is formed by dispersing the solid particles in the high-viscosity continuous medium.It is very easy to form the three-dimensional network structure for solid particles in the system and the rheology behavior becomes complicated.The apparent viscosity of this dispersing system always has the connection with the volume ratio and the shear rate.In order to discuss the rheology behavior and put up the viscosity model,the suspension of silicon dioxide and silicon oil were prepared.Through testing the viscosity,the solid concentration and the shear rate,the effects of the ratio and the shear rate on viscosity was analyzed,the model of the high-viscosity dispersing system was designed and the model with the printing ink were validated.The experiment results show that the model is applicable to the high-viscosity dispersing systems.

  18. Jets from Merging Neutron Stars

    Science.gov (United States)

    Kohler, Susanna

    2016-06-01

    With the recent discovery of gravitational waves from the merger of two black holes, its especially important to understand the electromagnetic signals resulting from mergers of compact objects. New simulations successfully follow a merger of two neutron stars that produces a short burst of energy via a jet consistent with short gamma-ray burst (sGRB) detections.Still from the authors simulation showing the two neutron stars, and their magnetic fields, before merger. [Adapted from Ruiz et al. 2016]Challenging SystemWe have long suspected that sGRBs are produced by the mergers of compact objects, but this model has been difficult to prove. One major hitch is that modeling the process of merger and sGRB launch is very difficult, due to the fact that these extreme systems involve magnetic fields, fluids and full general relativity.Traditionally, simulations are only able to track such mergers over short periods of time. But in a recent study, Milton Ruiz (University of Illinois at Urbana-Champaign and Industrial University of Santander, Colombia) and coauthors Ryan Lang, Vasileios Paschalidis and Stuart Shapiro have modeled a binary neutron star system all the way through the process of inspiral, merger, and the launch of a jet.A Merger TimelineHow does this happen? Lets walk through one of the teams simulations, in which dipole magnetic field lines thread through the interior of each neutron star and extend beyond its surface(like magnetic fields found in pulsars). In this example, the two neutron stars each have a mass of 1.625 solar masses.Simulation start (0 ms)Loss of energy via gravitational waves cause the neutron stars to inspiral.Merger (3.5 ms)The neutron stars are stretched by tidal effects and make contact. Their merger produces a hypermassive neutron star that is supported against collapse by its differential (nonuniform) rotation.Delayed collapse into a black hole (21.5 ms)Once the differential rotation is redistributed by magnetic fields and partially

  19. Modelling viscosity and mass fraction of bitumen - diluent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Miadonye, A.; Latour, N.; Puttagunta, V.R. [Lakehead Univ., Thunder Bay, ON (Canada)

    1999-07-01

    In recovery of bitumen in oil sands extraction, the reduction of the viscosity is important above and below ground. The addition of liquid diluent breaks down or weakens the intermolecular forces that create a high viscosity in bitumen. The addition of even 5% of diluent can cause a viscosity reduction in excess of 8%, thus facilitating the in situ recovery and pipeline transportation of bitumen. Knowledge of bitumen - diluent viscosity is highly important because without it, determination of upgrading processes, in situ recovery, well simulation, heat transfer, fluid flow and a variety of other engineering problems would be difficult or impossible to solve. The development of a simple correlation to predict the viscosity of binary mixtures of bitumen - diluent in any proportion is described. The developed correlation used to estimate the viscosities and mass fractions of bitumen - diluent mixtures was within acceptable limits of error. For the prediction of mixture viscosities, the developed correlation gave the best results with an overall average absolute deviation of 12% compared to those of Chironis (17%) and Cragoe (23%). Predictions of diluent mass fractions yielded a much better result with an overall average absolute deviation of 5%. The unique features of the correlation include its computational simplicity, its applicability to mixtures at temperatures other than 30 degrees C, and the fact that only the bitumen and diluent viscosities are needed to make predictions. It is the only correlation capable of predicting viscosities of mixtures, as well as diluent mass fractions required to reduce bitumen viscosity to pumping viscosities. The prediction of viscosities at 25, 60.3, and 82.6 degrees C produced excellent results, particularly at high temperatures with an average absolute deviation of below 10%. 11 refs., 3 figs., 8 tabs.

  20. Viscosity and density dependence during maximal flow in man.

    Science.gov (United States)

    Staats, B A; Wilson, T A; Lai-Fook, S J; Rodarte, J R; Hyatt, R E

    1980-02-01

    Maximal expiratory flow curves were obtained from ten healthy subjects white breathing air and three other gas mixtures with different densities and viscosities. From these data, the magnitudes of the dependence of maximal flow on gas density and viscosity were obtained. The scaling laws of fluid mechanics, together with a model for the flow-limiting mechanism, were used to obtain a prediction of the relationship between the density dependence and the viscosity dependence of maximal flow. Although the data for individual subjects were too variable to allow a precise comparison with this prediction, the relationship between the mean density dependence and the mean viscosity dependence of all usbjects agreed with the theoretic prediction. This agreement supports the assumption, which is frequently made, that flow resistance rather than tissue visoelasticity is the dominant contributor to peripheral resistance. Information on the relationships between the pressure drop to the flow-limiting segment and flow, gas density and viscosity, and lung volume were also obtained.

  1. Viscosity of Campi Flregrei (Italy) magmas

    Science.gov (United States)

    Misiti, Valeria; Vetere, Francesco; Scarlato, Piergiorgio; Behrens, Harald; Mangiacapra, Annarita; Freda, Carmela

    2010-05-01

    ν is the viscosity in Pa×s, T the temperature in K, and w is the water content in wt%; a, b, c, d, e, g are the Vogel-Fulcher-Tamman parameters. Each of the two compositions shows its own VTF parameters. Following this equation we can now calculate viscosity values for the two compositions under the condition inferred for Campi Flegrei magma chambers, i.e., water content from 0.3 to 3 wt%, T=1393K (Mangiacapra et al., 2008). For melt with 0.3 wt% water content we obtain viscosity values (ν in Pas) of 102.68and 102.24 for shoshonite and latite, respectively. At higher water contents of about 3 wt% the viscosity difference decreases to 101.71 (shoshonite) and 101.51 (latite). One important application of these data is the estimate of flow regime and magma rising velocity from deep to shallow reservoirs. Given the inferred magma water contents (0.3 and 3 wt%), temperature (1393K) and depth of deep and shallow reservoirs (9 and 4 km, respectively, Mangiacapra et al., 2008) and assuming a 2 m dyke wide, we have calculated (Lister and Kerry, 1991) a rising time from deep to shallow reservoir in the order of few minutes, 4.4 and 5.9 for a shoshonitic magma with 3 and 0.3 wt% water content, respectively. The same order of magnitude (4.1 and 5.2) has been obtained for latitic magma with similar amount of water. Lister and Kerry (1991) Fluid mechanical models of cracks propagation and their application to magmatic transport and dyke. Journal of Geophysical Research 96, 10049-10077. Mangiacapra A., Moretti, R., Rutherford L., Civetta L., Orsi G., Papale P. (2008) The deep magmatic system of the Campi Flegrei caldera (Italy). Geophysical Research Letters 35, L21304.

  2. Viscosity bound versus the universal relaxation bound

    Science.gov (United States)

    Hod, Shahar

    2017-10-01

    For gauge theories with an Einstein gravity dual, the AdS/CFT correspondence predicts a universal value for the ratio of the shear viscosity to the entropy density, η / s = 1 / 4 π. The holographic calculations have motivated the formulation of the celebrated KSS conjecture, according to which all fluids conform to the lower bound η / s ≥ 1 / 4 π. The bound on η / s may be regarded as a lower bound on the relaxation properties of perturbed fluids and it has been the focus of much recent attention. In particular, it was argued that for a class of field theories with Gauss-Bonnet gravity dual, the shear viscosity to entropy density ratio, η / s, could violate the conjectured KSS bound. In the present paper we argue that the proposed violations of the KSS bound are strongly constrained by Bekenstein's generalized second law (GSL) of thermodynamics. In particular, it is shown that physical consistency of the Gauss-Bonnet theory with the GSL requires its coupling constant to be bounded by λGB ≲ 0 . 063. We further argue that the genuine physical bound on the relaxation properties of physically consistent fluids is ℑω(k > 2 πT) > πT, where ω and k are respectively the proper frequency and the wavenumber of a perturbation mode in the fluid.

  3. Reducing Viscosity of Liquid Suspensions by pulsed electric or magnetic field

    Science.gov (United States)

    Tao, R.

    2007-03-01

    Viscosity of liquid suspensions is of great importance. Controlling the viscosity is vital in science and engineering. In electrorheological (ER) or magentorheological (MR) fluids, electric or magnetic field is used to increase the viscosity. However, in most cases we need to lower the viscosity. For example, reducing blood's viscosity improves circulation and prevents cardiovascular events. Lowering the viscosity of crude oil is the key to transporting offshore oil via undersea pipelines. Unfortunately, to date there are no effective methods for reducing the viscosity except by changing the temperature. In case that changing temperature is not an option, such as in the above examples, reducing the viscosity becomes formidable. Here we present a theory and experimental results showing that application of a suitable electric or magnetic field pulse can significantly reduce the viscosity of liquid suspensions for several hours with no change of temperature. The field induces dipolar interactions between the suspended particles and forces them to aggregate into large particles. The aggregation changes the rheological properties of the fluids and reduces the effective viscosity. Positive experimental results with MR fluids and crude oil indicate that this method, developed from the basic mechanism of viscosity, is universal and powerful for all liquid suspensions with broad applications.

  4. Merging By Decentralized Eventual Consistency Algorithms

    Directory of Open Access Journals (Sweden)

    Ahmed-Nacer Mehdi

    2015-12-01

    Full Text Available Merging mechanism is an essential operation for version control systems. When each member of collaborative development works on an individual copy of the project, software merging allows to reconcile modifications made concurrently as well as managing software change through branching. The collaborative system is in charge to propose a merge result that includes user’s modifications. Theusers now have to check and adapt this result. The adaptation should be as effort-less as possible, otherwise, the users may get frustrated and will quit the collaboration. This paper aims to reduce the conflicts during the collaboration and im prove the productivity. It has three objectives: study the users’ behavior during the collaboration, evaluate the quality of textual merging results produced by specific algorithms and propose a solution to improve the r esult quality produced by the default merge tool of distributed version control systems. Through a study of eight open-source repositories totaling more than 3 million lines of code, we observe the behavior of the concurrent modifications during t he merge p rocedure. We i dentified when th e ex isting merge techniques under-perform, and we propose solutions to improve the quality of the merge. We finally compare with the traditional merge tool through a large corpus of collaborative editing.

  5. Note: precision viscosity measurement using suspended microchannel resonators.

    Science.gov (United States)

    Lee, I; Park, K; Lee, J

    2012-11-01

    We report the characterization of a suspended microchannel resonator (SMR) for viscosity measurements in a low viscosity regime (<10 mPa s) using two measurement schemes. First, the quality factor (Q-factor) of the SMR was characterized with glycerol-water mixtures. The measured Q-factor at 20 °C exhibits a bilinear behavior with the sensitivity of 1281 (mPa s)(-1) for a lower (1-4 mPa s) and 355 (mPa s)(-1) for a higher viscosity range (4-8 mPa s), respectively. The second scheme is the vibration amplitude monitoring of the SMR running in a closed loop feedback. When compared in terms of the measurement time, the amplitude-based measurement takes only 0.1 ~ 1 ms while the Q-factor-based measurement takes ~30 s. However, the viscosity resolution of the Q-factor-based measurement is at least three times better than the amplitude-based measurement. By comparing the Q-factors of heavy water and 9.65 wt.% glycerol-water mixture that have very similar viscosities but different densities, we confirmed that the SMR can measure the dynamic viscosity without the density correction. The obtained results demonstrate that the SMR can measure the fluid viscosity with high precision and even real-time monitoring of the viscosity change is possible with the amplitude-based measurement scheme.

  6. Dynamic viscosity measurement in non-Newtonian graphite nanofluids.

    Science.gov (United States)

    Duan, Fei; Wong, Ting Foong; Crivoi, Alexandru

    2012-07-02

    : The effective dynamic viscosity was measured in the graphite water-based nanofluids. The shear thinning non-Newtonian behavior is observed in the measurement. On the basis of the best fitting of the experimental data, the viscosity at zero shear rate or at infinite shear rate is determined for each of the fluids. It is found that increases of the particle volume concentration and the holding time period of the nanofluids result in an enhancement of the effective dynamic viscosity. The maximum enhancement of the effective dynamic viscosity at infinite rate of shear is more than 24 times in the nanofluids held for 3 days with the volume concentration of 4% in comparison with the base fluid. A transmission electron microscope is applied to reveal the morphology of aggregated nanoparticles qualitatively. The large and irregular aggregation of the particles is found in the 3-day fluids in the drying samples. The Raman spectra are extended to characterize the D and G peaks of the graphite structure in the nanofluids. The increasing intensity of the D peak indicates the nanoparticle aggregation growing with the higher concentration and the longer holding time of the nanofluids. The experimental results suggest that the increase on effective dynamic viscosity of nanofluids is related to the graphite nanoparticle aggregation in the fluids.

  7. Student project: Of spinning coins and merging black holes

    CERN Document Server

    Bland-Hawthorn, Joss

    2016-01-01

    For the past decade, the SAIL labs at the University of Sydney have been challenging students with short research projects that elucidate basic principles of physics. These include the development of instruments launched on cubesats, balloons, on telescopes or placed out in the field. This experiment is inspired by the spectacular 2015 discovery of merging black holes with the Laser Interferometric Gravitational-Wave Observatory (LIGO). Students are profoundly inspired by LIGO, and for good reason, but it is challenging to construct a table top demonstration of a gravitational wave observatory. Instead we consider chirps which are remarkable transient phenomena in nature involving both frequency and amplitude modulation, as we can demonstrate with a spinning coin. In the case of the LIGO event, orbital energy is being released as gravitational radiation; for the spinning coin, its spin/orbit energy is being released dissipatively (sound, heat, air viscosity). Our experiment involves a simple device to spin a ...

  8. A brief review on viscosity of nanofluids

    Science.gov (United States)

    Mishra, Purna Chandra; Mukherjee, Sayantan; Nayak, Santosh Kumar; Panda, Arabind

    2014-10-01

    Since the past decade, rapid development in nanotechnology has produced several aspects for the scientists and technologists to look into. Nanofluid is one of the incredible outcomes of such advancement. Nanofluids (colloidal suspensions of metallic and nonmetallic nanoparticles in conventional base fluids) are best known for their remarkable change to enhanced heat transfer abilities. Earlier research work has already acutely focused on thermal conductivity of nanofluids. However, viscosity is another important property that needs the same attention due to its very crucial impact on heat transfer. Therefore, viscosity of nanofluids should be thoroughly investigated before use for practical heat transfer applications. In this contribution, a brief review on theoretical models is presented precisely. Furthermore, the effects of nanoparticles' shape and size, temperature, volume concentration, pH, etc. are organized together and reviewed.

  9. Viscosity: From air to hot nuclei

    Indian Academy of Sciences (India)

    Nguyen Dinh Dang

    2014-11-01

    After a brief review of the history of viscosity from classical to quantal fluids, a discussion of how the shear viscosity of a finite hot nucleus is calculated directly from the width and energy of the giant dipole resonance (GDR) of the nucleus is given in this paper. The ratio / with s being the entropy volume density, is extracted from the experimental systematic of GDR in copper, tin and lead isotopes at finite temperature . These empirical results are compared with the results predicted by several independent models, as well as with almost model-independent estimations. Based on these results, it is concluded that the ratio / in medium and heavy nuclei decreases with increasing to reach (1.3−4)$×\\hbar/(4 k_B)$ at = 5 MeV, which is almost the same as that obtained for quark-gluon plasma at > 170 MeV.

  10. Viscosity effects in wind wave generation

    CERN Document Server

    Paquier, Anna; Rabaud, Marc

    2016-01-01

    We investigate experimentally the influence of the liquid viscosity on the problem of the generation of waves by a turbulent wind at the surface of a liquid, extending the results of Paquier, Moisy and Rabaud [Phys. Fluids {\\bf 27}, 122103 (2015)] over nearly three decades of viscosity. The surface deformations are measured with micrometer accuracy using the Free-Surface Synthetic Schlieren method. We recover the two regimes of surface deformations previously identified: the wrinkles regime at small wind velocity, resulting from the viscous imprint on the liquid surface of the turbulent fluctuations in the boundary layer, and the regular wave regime at large wind velocity. Below the wave threshold, we find that the characteristic amplitude of the wrinkles scales as $\

  11. Hall Viscosity I: Linear Response Theory for Viscosity

    Science.gov (United States)

    Bradlyn, Barry; Goldstein, Moshe; Read, Nicholas

    2012-02-01

    In two dimensional systems with broken time-reversal symmetry, there can exist a non-dissipative viscosity coefficient [1,2,3]. This Hall viscosity is similar in nature to the non-dissipative Hall conductivity. In order to investigate this phenomenon further, we develop a linear response formalism for viscosity. We derive a Kubo formula for the frequency dependent viscosity tensor in the long wavelength limit. We compute the viscosity tensor for the free electron gas, integer quantum Hall systems, and two-dimensional paired superfluids. In the zero frequency limit, we show how the known results [3,4] for the Hall viscosity are recovered.[4pt] [1] J. Avron, R. Seiler, and P. Zograf, Phys. Rev. Lett. 75, 697 (1995).[0pt] [2] P. Levay, J. Math. Phys. 36, 2792 (1995).[0pt] [3] N. Read, Phys. Rev. B 79, 045308 (2009).[0pt] [4] N. Read and E. Rezayi, Phys. Rev. B 84, 085316 (2011).

  12. Density and viscosity modeling and characterization of heavy oils

    DEFF Research Database (Denmark)

    Cisneros, Sergio; Andersen, Simon Ivar; Creek, J

    2005-01-01

    are widely used within the oil industry. Further work also established the basis for extending the approach to heavy oils. Thus, in this work, the extended f-theory approach is further discussed with the study and modeling of a wider set of representative heavy reservoir fluids with viscosities up...... to thousands of mPa center dot s. Essential to the presented extended approach for heavy oils is, first, achievement of accurate P nu T results for the EOS-characterized fluid. In particular, it has been determined that, for accurate viscosity modeling of heavy oils, a compressibility correction in the way...

  13. A memory-based model for blood viscosity

    Science.gov (United States)

    Ionescu, Clara M.

    2017-04-01

    This paper presents a comparison between existing models for non-Newtonian fluid viscosity as a function of shear rate variations. A novel model is introduced whose parameters are linked to physiological phenomena in the blood. The end use of such models is to predict changes in viscosity to adapt the speed of a nanorobot device for targeted drug delivery purposes. Simulation results show the agreement between the proposed model and available models from literature. A laboratory scale validation of the proposed model for a fluid mimicking non-Newtonian properties has been performed. Conceptual perspectives are also given in this work.

  14. Cosmology with bulk viscosity and the gravitino problem

    CERN Document Server

    Buoninfante, L

    2016-01-01

    The gravitino problem is revisited in the framework of cosmological models in which the primordial cosmic matter is described by a relativistic imperfect fluid. Dissipative effects (or bulk viscosity effects) arise owing to the different cooling rates of the fluid components. We show that the effects of the bulk viscosity allow to avoid the late abundance of gravitinos. In particular, we found that for a particular choice of the parameters characterizing the cosmological model, the gravitino abundance turns out to be independent on the reheating temperature.

  15. Effective viscosity of magnetic nanofluids through capillaries.

    Science.gov (United States)

    Patel, Rajesh

    2012-02-01

    The simultaneous effect of magnetic field and temperature on the capillary viscosity of magnetic nanofluid is an important parameter for a new class of applications such as nanoduct flow, nanomotors, micro- and nanofluidic devices, for transformer cooling, magnetic targeted drug delivery, etc. The effective viscosity of a nanofluid is explained based on the rotation of the particles and the effect of torque on it due to an externally applied magnetic field. Two types of fluids are used here, temperature-sensitive and non-temperature-sensitive magnetic nanofluids. In both types of fluids, decrease in effective viscosity with temperature is observed, but in both cases the mechanism for the decrement is quite different. One is due to temperature dependence of the magnetic moment and the other is due to removal of the secondary surfactant. For temperature-sensitive magnetic nanofluids, a Curie temperature of ~80 °C is extracted from this study. For non-temperature-sensitive magnetic nanofluids ~65% of the secondary surfactant is removed for a change in temperature, ΔT = 40 °C. This is analogous with removal of a drug from magnetic particles for targeted drug delivery. Further, a linear dependence of effective viscosity with different capillary size and ξ (angle between magnetic field and flow direction, ξε[0,π/2]) is also observed. This linear dependence can also be a good approximation for the study of magnetic drug targeting, as in the human body the capillaries are of different sizes, and the externally applied magnetic field is not always parallel or perpendicular to the drug flow direction.

  16. Advantages and Problems with Merging Data Bases.

    Science.gov (United States)

    Cnaan, Ram A.

    1985-01-01

    Presents the Israeli experience with merging different computerized files using a unique identifier. The advantages and disadvantages of this identifier are examined. Four types of problems are identified and some examples of use of an I.D. number as identifier are given. The desirability of merging files and confidentiality issues are also…

  17. Falsification of Dark Energy by Fluid Mechanics

    Science.gov (United States)

    Gibson, Carl H.

    2012-03-01

    The 2011 Nobel Prize in Physics was awarded for the discovery of accelerating super- novae dimness, suggesting a remarkable reversal in the expansion rate of the Universe from a decrease to an increase, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanics and Herschel- Planck-Spitzer-Hubble etc. space telescope observations falsify both the accelerating ex- pansion rate and dark energy concepts. Kinematic viscosity is neglected in models of self-gravitational structure formation. Large plasma photon viscosity predicts protosu- perclustervoid fragmentation early in the plasma epoch and protogalaxies at the end. At the plasma-gas transition, the gas protogalaxies fragment into Earth-mass rogue plan- ets in highly persistent, trillion-planet clumps (proto-globular-star-cluster PGCs). PGC planets freeze to form the dark matter of galaxies and merge to form their stars, giving the hydrogen triple-point (14 K) infrared emissions observed. Dark energy is a system- atic dimming error for Supernovae Ia caused by partially evaporated planets feeding hot white dwarf stars at the Chandrasekhar carbon limit. Planet atmospheres may or may not dim light from SNe-Ia events depending on the line of sight.

  18. Entanglement and coherence in quantum state merging

    CERN Document Server

    Streltsov, A; Rana, S; Bera, M N; Winter, A; Lewenstein, M

    2016-01-01

    Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging where two parties aim to merge their parts of a tripartite quantum state. In standard quantum state merging, entanglement is considered as an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process, and apply them to several relevant scenarios. While quantum state merging can lead to ...

  19. Bayes and empirical Bayes: do they merge?

    CERN Document Server

    Petrone, Sonia; Scricciolo, Catia

    2012-01-01

    Bayesian inference is attractive for its coherence and good frequentist properties. However, it is a common experience that eliciting a honest prior may be difficult and, in practice, people often take an {\\em empirical Bayes} approach, plugging empirical estimates of the prior hyperparameters into the posterior distribution. Even if not rigorously justified, the underlying idea is that, when the sample size is large, empirical Bayes leads to "similar" inferential answers. Yet, precise mathematical results seem to be missing. In this work, we give a more rigorous justification in terms of merging of Bayes and empirical Bayes posterior distributions. We consider two notions of merging: Bayesian weak merging and frequentist merging in total variation. Since weak merging is related to consistency, we provide sufficient conditions for consistency of empirical Bayes posteriors. Also, we show that, under regularity conditions, the empirical Bayes procedure asymptotically selects the value of the hyperparameter for ...

  20. A study to investigate the fluid properties of fuel-vapour/air-mixtures of an automotive fuel system during refuelling. Determination of air-content, density and dynamic viscosity of the vapour-mixture in the venting of automotive fuel tanks during refuelling; Untersuchungen zur Bestimmung der Fluideigenschaften von Kraftstoffdampf-Luft-Gemischen von Kraftfahrzeuganlagen waehrend der Betankung. Bestimmung des Luftanteils, der Dichte und der dynamischen Viskositaet des Gasgemisches in der Entlueftung eines Kraftfahrzeugtanks waehrend der Betankung

    Energy Technology Data Exchange (ETDEWEB)

    Geurtz, Heinz-Juergen [Porsche AG, Weissach (Germany)

    2011-09-15

    This study investigates the methods of calculating the fluid-dynamic properties of fuel-vapour/air-mixtures. It aims to determine models for the calculation of the dynamic viscosity and density of these fuel-vapour/air-mixtures. For this purpose, fuels were analyzed. The data received were collected in a database which was complemented with the temperature-dependent vapour-pressures and dynamic viscosity-properties. Experiments were conducted in order to determine the air-content in the vapour venting from a fuel system during refueling. Based on these data conclusions can be drawn on the composition of the liquid fuel, which allows the assessment of the fuel-vapour and its properties. The results received were subsequently used to develop parametric models for the calculation of the average molecular weight, density and dynamic viscosity of fuel-vapour/air-mixtures. (orig.)

  1. Viscosity of the earth's core.

    Science.gov (United States)

    Gans, R. F.

    1972-01-01

    Calculation of the viscosity of the core at the boundary of the inner and outer core. It is assumed that this boundary is a melting transition and the viscosity limits of the Andrade (1934,1952) hypothesis (3.7 to 18.5 cp) are adopted. The corresponding kinematic viscosities are such that the precessional system explored by Malkus (1968) would be unstable. Whether it would be sufficiently unstable to overcome a severely subadiabatic temperature gradient cannot be determined.

  2. Droplets Formation and Merging in Two-Phase Flow Microfluidics

    Directory of Open Access Journals (Sweden)

    Hao Gu

    2011-04-01

    Full Text Available Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i the emulsification step should lead to a very well controlled drop size (distribution; and (ii the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  3. Droplets formation and merging in two-phase flow microfluidics.

    Science.gov (United States)

    Gu, Hao; Duits, Michel H G; Mugele, Frieder

    2011-01-01

    Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  4. Development of Viscosity Model for Petroleum Industry Applications

    Science.gov (United States)

    Motahhari, Hamed reza

    Heavy oil and bitumen are challenging to produce and process due to their very high viscosity, but their viscosity can be reduced either by heating or dilution with a solvent. Given the key role of viscosity, an accurate viscosity model suitable for use with reservoir and process simulators is essential. While there are several viscosity models for natural gases and conventional oils, a compositional model applicable to heavy petroleum and diluents is lacking. The objective of this thesis is to develop a general compositional viscosity model that is applicable to natural gas mixtures, conventional crudes oils, heavy petroleum fluids, and their mixtures with solvents and other crudes. The recently developed Expanded Fluid (EF) viscosity correlation was selected as a suitable compositional viscosity model for petroleum applications. The correlation relates the viscosity of the fluid to its density over a broad range of pressures and temperatures. The other inputs are pressure and the dilute gas viscosity. Each fluid is characterized for the correlation by a set of fluid-specific parameters which are tuned to fit data. First, the applicability of the EF correlation was extended to asymmetric mixtures and liquid mixtures containing dissolved gas components. A new set of mass-fraction based mixing rules was developed to calculate the fluid-specific parameters for mixtures. The EF correlation with the new set of mixing rules predicted the viscosity of over 100 mixtures of hydrocarbon compounds and carbon dioxide with overall average absolute relative deviations (AARD) of less than 10% either with measured densities or densities estimated by Advanced Peng-Robinson equation of state (APR EoS). To improve the viscosity predictions with APR EoS-estimated densities, general correlations were developed for non-zero viscosity binary interaction parameters. The EF correlation was extended to non-hydrocarbon compounds typically encountered in natural gas industry. It was

  5. Molecular Dynamics Simulation of Behaviours of Non-Polar Droplets Merging and Interactions with Hydrophobic Surfaces

    Institute of Scientific and Technical Information of China (English)

    Y.Y.Yan; C.Y.Ji

    2008-01-01

    This paper presents a molecular dynamics simulation of the behaviours of non-polar droplets merging and also the fluid molecules interacting with a hydrophobic surface. Such behaviours and transport phenomena are popular in general micro-channel flow boiling and two-phase flow. The droplets are assumed to be composed of Lennards-Jones type molecules. Periodic boundary conditions are applied in three coordinate directions ofa 3-D system, where there exist two liquid droplets and their vapour. The two droplets merge when they come within the prescribed small distance. The merging of two droplets apart from each other at different initial distances is tested and the possible larger (or critical) non-dimensional distance, in which droplets merging can occur, is discussed. The evolution of the merging process is simulated numerically by employing the Molecular Dynamics (MD) method. For interactions with hydrophobic solid wail, a system with fluid confined between two walls is used to study the wetting phenomena of fluid and solid wail. The results are compared with those of hydrophilic wall to show the unique characteristics of hydrophobic interactions by microscopic methods.

  6. From Suitable Weak Solutions to Entropy Viscosity

    KAUST Repository

    Guermond, Jean-Luc

    2010-12-16

    This paper focuses on the notion of suitable weak solutions for the three-dimensional incompressible Navier-Stokes equations and discusses the relevance of this notion to Computational Fluid Dynamics. The purpose of the paper is twofold (i) to recall basic mathematical properties of the three-dimensional incompressible Navier-Stokes equations and to show how they might relate to LES (ii) to introduce an entropy viscosity technique based on the notion of suitable weak solution and to illustrate numerically this concept. © 2010 Springer Science+Business Media, LLC.

  7. Viscosity and density of some lower alkyl chlorides and bromides

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, W.M.

    1988-07-01

    A high-pressure capillary viscometer, used previously to measure the viscosity of methyl chloride was rebuilt to eliminate the first-order dependence of the measured viscosity on the value assumed for the density of the fluid being investigated. At the same time, the system was arranged so that part of the apparatus could be used to measure density by a volumetric displacement technique. Viscosity and density were measured for ethyl chloride, 1-chloropropane, 1-chlorobutane, methyl bromide, ethyl bromide, and 1-bromopropane. The temperature and pressure ranges of the experiments were 20-150 /sup 0/C and 0.27-6.99 MPa, respectively. The accuracy of the viscosity measurements was estimated to be +-1% and of the density measurements, +-0.2%.

  8. The 2003 Merged Model for Vietnam

    DEFF Research Database (Denmark)

    Jensen, Henning Tarp; Tarp, Finn

    This monograph documents the 2003 Merged Model for Vietnam. The initialization and calibration of the model is based on a financial 2003 SAM framework and an auxiliary 2002-3 data set. The recursive nature of the solution of the Merged Model is discussed with reference to the four main sectors...... domestic credit, private domestic credit, and private net foreign debt, are discussed with reference to historical time series data. Accordingly, the current monograph facilitates the future implementation of the Merged Model for Vietnam by going through the main considerations necessary...

  9. Better Language Models with Model Merging

    CERN Document Server

    Brants, T

    1996-01-01

    This paper investigates model merging, a technique for deriving Markov models from text or speech corpora. Models are derived by starting with a large and specific model and by successively combining states to build smaller and more general models. We present methods to reduce the time complexity of the algorithm and report on experiments on deriving language models for a speech recognition task. The experiments show the advantage of model merging over the standard bigram approach. The merged model assigns a lower perplexity to the test set and uses considerably fewer states.

  10. GONG ClassicMerge: Pipeline and Product

    CERN Document Server

    Hughes, Anna L H; Kholikov, Shukur

    2016-01-01

    A recent processing effort has been undertaken in order to extend the range-of-coverage of the GONG merged dopplergrams. The GONG-Classic-era observations have now been merged to provide, albeit at lower resolution, mrvzi data as far back as May of 1995. The contents of this document provide an overview of what these data look like, the processing steps used to generate them from the original site observations, and the outcomes of a few initial quality-assurance tests designed to validate the final merged images. Based on these tests, the GONG project is releasing this data product to the user community (http://nisp.nso.edu/data).

  11. Observation of Dispersive Shock Waves, Solitons, and Their Interactions in Viscous Fluid Conduits.

    Science.gov (United States)

    Maiden, Michelle D; Lowman, Nicholas K; Anderson, Dalton V; Schubert, Marika E; Hoefer, Mark A

    2016-04-29

    Dispersive shock waves and solitons are fundamental nonlinear excitations in dispersive media, but dispersive shock wave studies to date have been severely constrained. Here, we report on a novel dispersive hydrodynamic test bed: the effectively frictionless dynamics of interfacial waves between two high viscosity contrast, miscible, low Reynolds number Stokes fluids. This scenario is realized by injecting from below a lighter, viscous fluid into a column filled with high viscosity fluid. The injected fluid forms a deformable pipe whose diameter is proportional to the injection rate, enabling precise control over the generation of symmetric interfacial waves. Buoyancy drives nonlinear interfacial self-steepening, while normal stresses give rise to the dispersion of interfacial waves. Extremely slow mass diffusion and mass conservation imply that the interfacial waves are effectively dissipationless. This enables high fidelity observations of large amplitude dispersive shock waves in this spatially extended system, found to agree quantitatively with a nonlinear wave averaging theory. Furthermore, several highly coherent phenomena are investigated including dispersive shock wave backflow, the refraction or absorption of solitons by dispersive shock waves, and the multiphase merging of two dispersive shock waves. The complex, coherent, nonlinear mixing of dispersive shock waves and solitons observed here are universal features of dissipationless, dispersive hydrodynamic flows.

  12. Accelerating cosmological expansion from shear and bulk viscosity

    CERN Document Server

    Floerchinger, Stefan; Wiedemann, Urs Achim

    2015-01-01

    The dissipation of energy from local velocity perturbations in the cosmological fluid affects the time evolution of spatially averaged fluid dynamic fields and the cosmological solution of Einstein's field equations. We show how this backreaction effect depends on shear and bulk viscosity and other material properties of the dark sector, as well as the spectrum of perturbations. If sufficiently large, this effect could account for the acceleration of the cosmological expansion.

  13. Accelerating Cosmological Expansion from Shear and Bulk Viscosity

    Science.gov (United States)

    Floerchinger, Stefan; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2015-03-01

    The dissipation of energy from local velocity perturbations in the cosmological fluid affects the time evolution of spatially averaged fluid dynamic fields and the cosmological solution of Einstein's field equations. We show how this backreaction effect depends on shear and bulk viscosity and other material properties of the dark sector, as well as the spectrum of perturbations. If sufficiently large, this effect could account for the acceleration of the cosmological expansion.

  14. Effective Viscosity Coefficient of Nanosuspensions

    Science.gov (United States)

    Rudyak, V. Ya.; Belkin, A. A.; Egorov, V. V.

    2008-12-01

    Systematic calculations of the effective viscosity coefficient of nanosuspensions have been performed using the molecular dynamics method. It is established that the viscosity of a nanosuspension depends not only on the volume concentration of the nanoparticles but also on their mass and diameter. Differences from Einstein's relation are found even for nanosuspensions with a low particle concentration.

  15. Can bulk viscosity drive inflation

    Energy Technology Data Exchange (ETDEWEB)

    Pacher, T.; Stein-Schabes, J.A.; Turner, M.S.

    1987-09-15

    Contrary to other claims, we argue that bulk viscosity associated with the interactions of non- relativistic particles with relativistic particles around the time of the grand unified theory (GUT) phase transition cannot lead to inflation. Simply put, the key ingredient for inflation, negative pressure, cannot arise due to the bulk-viscosity effects of a weakly interacting mixture of relativistic and nonrelativistic particles.

  16. The Development and Field Testing of Low Viscosity and Low Gel Strength Polymer Collapse-Resistant Water-Based Drilling Fluid in the Fuling Shale Gas Field%涪陵页岩气田低黏低切聚合物防塌水基钻井液研制及现场试验

    Institute of Scientific and Technical Information of China (English)

    张国仿

    2016-01-01

    During drilling in Jiaoshiba Block of Fuling Area ,problems were encountered in the second spudding as high viscosity of drilling fluid ,high drag ,large torque and that WOB could not be transmitted to the bit during directional drilling .To address these problems ,a kind of polymer collapse‐resistant wa‐ter‐based drilling fluid with low viscosity and low gel strength was developed .Laboratory tests showed that the water‐based drilling fluid demonstrated good inhibition ,lubricity ,plugging properties and con‐tamination resistance ,high temperature resistance up to 100 ℃ .It was successfully implemented in the second‐spudding in the Jiaoshiba Block ,and the problems that caused by formation hydration ,including high viscosity and high density as well as ineffective transmission of WOB were solved effectively ,so as to keep normal drilling ,shorten drilling cycle time and improve drilling efficiency .%为了解决涪陵地区焦石坝区块二开钻井过程中钻井液黏度高、摩阻高、扭矩大及定向托压严重等问题,研究了一种低黏低切聚合物防塌水基钻井液。室内试验表明,该水基钻井液抑制性、润滑性、封堵性良好,抗温能达100℃,且具有很好的抗污染能力。该钻井液在涪陵地区焦石坝区块二开井段进行了现场试验,有效解决了因地层钻屑水化造浆而造成的钻井液黏度升高、密度升高及井下托压严重等问题,保证了井下作业的正常进行,缩短了钻井周期,提高了钻井效率。

  17. Reference Correlation for the Viscosity of Ethane

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Eckhard, E-mail: eckhard.vogel@uni-rostock.de [Institut für Chemie, Universität Rostock, D-18059 Rostock (Germany); Span, Roland [Lehrstuhl für Thermodynamik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Herrmann, Sebastian [Fachgebiet Technische Thermodynamik, Hochschule Zittau/Görlitz, D-02763 Zittau (Germany)

    2015-12-15

    A new representation of the viscosity for the fluid phase of ethane includes a zero-density correlation and a contribution for the critical enhancement, initially both developed separately, but based on experimental data. The higher-density contributions are correlated as a function of the reduced density δ = ρ/ρ{sub c} and of the reciprocal reduced temperature τ = T{sub c}/T (ρ{sub c}—critical density and T{sub c}—critical temperature). The final formulation contains 14 coefficients obtained using a state-of-the-art linear optimization algorithm. The evaluation and choice of the selected primary data sets is reviewed, in particular with respect to the assessment used in earlier viscosity correlations. The new viscosity surface correlation makes use of the reference equation of state for the thermodynamic properties of ethane by Bücker and Wagner [J. Phys. Chem. Ref. Data 35, 205 (2006)] and is valid in the fluid region from the melting line to temperatures of 675 K and pressures of 100 MPa. The viscosity in the limit of zero density is described with an expanded uncertainty of 0.5% (coverage factor k = 2) for temperatures 290 < T/K < 625, increasing to 1.0% at temperatures down to 212 K. The uncertainty of the correlated values is 1.5% in the range 290 < T/K < 430 at pressures up to 30 MPa on the basis of recent measurements judged to be very reliable as well as 4.0% and 6.0% in further regions. The uncertainty in the near-critical region (1.001 < 1/τ < 1.010 and 0.8 < δ < 1.2) increases with decreasing temperature up to 3.0% considering the available reliable data. Tables of the viscosity calculated from the correlation are listed in an appendix for the single-phase region, for the vapor–liquid phase boundary, and for the near-critical region.

  18. Viscosity of carbon nanotube suspension using artificial neural networks with principal component analysis

    Science.gov (United States)

    Yousefi, Fakhri; Karimi, Hajir; Mohammadiyan, Somayeh

    2016-11-01

    This paper applies the model including back-propagation network (BPN) and principal component analysis (PCA) to estimate the effective viscosity of carbon nanotubes suspension. The effective viscosities of multiwall carbon nanotubes suspension are examined as a function of the temperature, nanoparticle volume fraction, effective length of nanoparticle and the viscosity of base fluids using artificial neural network. The obtained results by BPN-PCA model have good agreement with the experimental data.

  19. Volatiles Which Increase Magma Viscosity

    Science.gov (United States)

    Webb, S.

    2015-12-01

    The standard model of an erupting volcano is one in which the viscosity of a decompressing magma increases as the volatiles leave the melt structure to form bubbles. It has now been observed that the addition of the "volatiles" P, Cl and F result in an increase in silicate melt viscosity. This observation would mean that the viscosity of selected degassing magmas would decrease rather than increase. Here we look at P, Cl and F as three volatiles which increase viscosity through different structural mechanisms. In all three cases the volatiles increase the viscosity of peralkaline composition melts, but appear to always decrease the viscosity of peraluminous melts. Phosphorus causes the melt to unmix into a Na-P rich phase and a Na-poor silicate phase. Thus as the network modifying Na (or Ca) are removed to the phosphorus-rich melt, the matrix melt viscosity increases. With increasing amounts of added phosphorus (at network modifying Na ~ P) the addition of further phosphorus causes a decrease in viscosity. The addition of chlorine to Fe-free aluminosilicate melts results in an increase in viscosity. NMR data on these glass indicates that the chlorine sits in salt-like structures surrounded by Na and/or Ca. Such structures would remove network-modifying atoms from the melt structure and thus result in an increase in viscosity. The NMR spectra of fluorine-bearing glasses shows that F takes up at least 5 different structural positions in peralkaline composition melts. Three of these positions should result in a decrease in viscosity due to the removal of bridging oxygens. Two of the structural positons of F, however, should result in an increase in viscosity as they require the removal of network-modifying atoms from the melt structure (with one of the structures being that observed for Cl). This would imply that increasing amounts of F might result in an increase in viscosity. This proposed increase in viscosity with increasing F has now been experimentally confirmed.

  20. Measurement of Viscosity of Hydrocarbon Liquids Using a Microviscometer

    DEFF Research Database (Denmark)

    Dandekar, Abhijit; Andersen, Simon Ivar; Stenby, Erling Halfdan

    1998-01-01

    The viscosity of normal alkanes, their mixtures, and true boiling point (TBP) fractions (C (sub 6) -C (sub 19)) of four North Sea petroleum reservoir fluids have been measured by use of an automatic rolling ball mixroviscometer at 20°C. The equipment is specially suited for samples of limited amo...

  1. PVT characterization and viscosity modeling and prediction of crude oils

    DEFF Research Database (Denmark)

    Cisneros, Eduardo Salvador P.; Dalberg, Anders; Stenby, Erling Halfdan

    2004-01-01

    In previous works, the general, one-parameter friction theory (f-theory), models have been applied to the accurate viscosity modeling of reservoir fluids. As a base, the f-theory approach requires a compositional characterization procedure for the application of an equation of state (EOS), in mos...

  2. Conservative smoothing versus artificial viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, C.; Hicks, D.L. [Michigan Technological Univ., Houghton, MI (United States); Swegle, J.W. [Sandia National Labs., Albuquerque, NM (United States). Solid and Structural Mechanics Dept.

    1994-08-01

    This report was stimulated by some recent investigations of S.P.H. (Smoothed Particle Hydrodynamics method). Solid dynamics computations with S.P.H. show symptoms of instabilities which are not eliminated by artificial viscosities. Both analysis and experiment indicate that conservative smoothing eliminates the instabilities in S.P.H. computations which artificial viscosities cannot. Questions were raised as to whether conservative smoothing might smear solutions more than artificial viscosity. Conservative smoothing, properly used, can produce more accurate solutions than the von Neumann-Richtmyer-Landshoff artificial viscosity which has been the standard for many years. The authors illustrate this using the vNR scheme on a test problem with known exact solution involving a shock collision in an ideal gas. They show that the norms of the errors with conservative smoothing are significantly smaller than the norms of the errors with artificial viscosity.

  3. Design on high speed hybrid ceramics bearing and spindle lubricated by high water based fluid with controllable viscosity%采用粘度可控高水基液润滑的高速动静压陶瓷滑动轴承主轴设计

    Institute of Scientific and Technical Information of China (English)

    刘峰; 林彬

    2011-01-01

    高速主轴作为高速高精密加工机床的关键技术,直接决定着机床的各项工作性能.文中提出一种对粘度一轴承间隙寻优,从而实现主轴高性能的高速高精密主轴设计方法,并设计出新型绿色、粘度可控的高水基液作为润滑剂,随后通过采用动静压陶瓷滑动轴承的高速主轴热弹流数值计算,确定了润滑剂粘度及主轴系统相关结构参数,最终完成了该高速主轴的结构设计.%As the high speed spindle is the key technology of the high speed and highly precision spindle machine tool, which directly influences the various operating performances of the machine.This paper presents a new design method for high speed and highly precision spindle in which the match of lubricant viscosity and bearing clearance is optimized to improve the performance of spindle. A green and viscosity controllable high water based fluid which is adopted as lubricant of spindle is designed and tested. Optimum lubricant viscosity and structure parameters of spindle system are deduced based on thermal elastohydrodynamic numerical calculations of high speed hybrid ceramics sliding bearing and spindle. Finally the structure design of high speed and highly precision spindle is completed.

  4. Merging of the grains during wire drawing

    OpenAIRE

    Metlov, Leonid; Zavdoveev, Anatoliy; Pashinska, Elena

    2015-01-01

    It has been first proved the effect of grains merging during drawing deformation. This was done with example of producing a steel wire from rod manufactured by rolling with shear technology and was shown not only grain refinement but its merging as well. The result obtained in current work has fundamental importance; it reveals new mechanism of the "recrystallization" which takes place without diffusion actions owing to the mechanical impact.

  5. Singularities and Entropy in Bulk Viscosity Dark Energy Model

    Institute of Scientific and Technical Information of China (English)

    孟新河; 窦旭

    2011-01-01

    In this paper bulk viscosity is introduced to describe the effects of cosmic non-perfect fluid on the cosmos evolution and to build the unified dark energy (DE) with (dark) matter models. Also we derive a general relation between the bulk viscosity form and Hubble parameter that can provide a procedure for the viscosity DE model building. Especially, a redshift dependent viscosity parameter ζ ∝ λ0 +λ1(1 +z)n proposed in the previous work [X.H. Meng and X. Dou, Commun. Theor. Phys. B2 (2009) 377] is investigated extensively in this present work. Further more we use the recently released supernova dataset (the Constitution dataset) to constrain the model parameters. In order to differentiate the proposed concrete dark energy models from the well known ACDM model, statefinder diagnostic method is applied to this bulk viscosity model, as a complementary to the Om parameter diagnostic and the deceleration parameter analysis performed by us before. The DE model evolution behavior and tendency are shown in the plane of the statefinder diagnostic parameter pair {τ, s} as axes where the fixed point represents the A CDM model The possible singularity property in this bulk viscosity cosmology is also discussed to which we can conclude that in the different parameter regions chosen properly, this concrete viscosity DE model can have various late evolution behaviors and the late time singularity could be avoided. We also calculate the cosmic entropy in the bulk viscosity dark energy frame, and find that the total entropy in the viscosity DE model increases monotonously with respect to the scale factor evolution, thus this monotonous increasing property can indicate an arrow of time in the universe evolution, though the quantum version of the arrow of time is still very puzzling.

  6. Entanglement and Coherence in Quantum State Merging.

    Science.gov (United States)

    Streltsov, A; Chitambar, E; Rana, S; Bera, M N; Winter, A; Lewenstein, M

    2016-06-17

    Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.

  7. On the micropolar flow in a circular pipe: the effects of the viscosity coefficients

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper considers the stationary flow of incompressible micropolar fluid through a thin cylindrical pipe governed by the pressure drop between pipe's ends. Its goal is to investigate the influence of the viscosity coefficients on the effective flow. Depending on the magnitude of viscosity coefficients with respect to the pipe's thickness, it derives different asymptotic models and discusses their properties.

  8. Merged ozone profiles from four MIPAS processors

    Science.gov (United States)

    Laeng, Alexandra; von Clarmann, Thomas; Stiller, Gabriele; Dinelli, Bianca Maria; Dudhia, Anu; Raspollini, Piera; Glatthor, Norbert; Grabowski, Udo; Sofieva, Viktoria; Froidevaux, Lucien; Walker, Kaley A.; Zehner, Claus

    2017-04-01

    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) was an infrared (IR) limb emission spectrometer on the Envisat platform. Currently, there are four MIPAS ozone data products, including the operational Level-2 ozone product processed at ESA, with the scientific prototype processor being operated at IFAC Florence, and three independent research products developed by the Istituto di Fisica Applicata Nello Carrara (ISAC-CNR)/University of Bologna, Oxford University, and the Karlsruhe Institute of Technology-Institute of Meteorology and Climate Research/Instituto de Astrofísica de Andalucía (KIT-IMK/IAA). Here we present a dataset of ozone vertical profiles obtained by merging ozone retrievals from four independent Level-2 MIPAS processors. We also discuss the advantages and the shortcomings of this merged product. As the four processors retrieve ozone in different parts of the spectra (microwindows), the source measurements can be considered as nearly independent with respect to measurement noise. Hence, the information content of the merged product is greater and the precision is better than those of any parent (source) dataset. The merging is performed on a profile per profile basis. Parent ozone profiles are weighted based on the corresponding error covariance matrices; the error correlations between different profile levels are taken into account. The intercorrelations between the processors' errors are evaluated statistically and are used in the merging. The height range of the merged product is 20-55 km, and error covariance matrices are provided as diagnostics. Validation of the merged dataset is performed by comparison with ozone profiles from ACE-FTS (Atmospheric Chemistry Experiment-Fourier Transform Spectrometer) and MLS (Microwave Limb Sounder). Even though the merging is not supposed to remove the biases of the parent datasets, around the ozone volume mixing ratio peak the merged product is found to have a smaller (up to 0.1 ppmv

  9. ZBLAN Viscosity Instrumentation

    Science.gov (United States)

    Kaukler, William

    2001-01-01

    The past year's contribution from Dr. Kaukler's experimental effort consists of these 5 parts: a) Construction and proof-of-concept testing of a novel shearing plate viscometer designed to produce small shear rates and operate at elevated temperatures; b) Preparing nonlinear polymeric materials to serve as standards of nonlinear Theological behavior; c) Measurements and evaluation of above materials for nonlinear rheometric behavior at room temperature using commercial spinning cone and plate viscometers available in the lab; d) Preparing specimens from various forms of pitch for quantitative comparative testing in a Dynamic Mechanical Analyzer, Thermal Mechanical Analyzer; and Archeological Analyzer; e) Arranging to have sets of pitch specimens tested using the various instruments listed above, from different manufacturers, to form a baseline of the viscosity variation with temperature using the different test modes offered by these instruments by compiling the data collected from the various test results. Our focus in this project is the shear thinning behavior of ZBLAN glass over a wide range of temperature. Experimentally, there are no standard techniques to perform such measurements on glasses, particularly at elevated temperatures. Literature reviews to date have shown that shear thinning in certain glasses appears to occur, but no data is available for ZBLAN glass. The best techniques to find shear thinning behavior require the application of very low rates of shear. In addition, because the onset of the thinning behavior occurs at an unknown elevated temperature, the instruments used in this study must provide controlled low rates of shear and do so for temperatures approaching 600 C. In this regard, a novel shearing parallel plate viscometer was designed and a prototype built and tested.

  10. Viscosity Measurement for Tellurium Melt

    Science.gov (United States)

    Lin, Bochuan; Li, Chao; Ban, Heng; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2006-01-01

    The viscosity of high temperature Te melt was measured using a new technique in which a rotating magnetic field was applied to the melt sealed in a suspended ampoule, and the torque exerted by rotating melt flow on the ampoule wall was measured. Governing equations for the coupled melt flow and ampoule torsional oscillation were solved, and the viscosity was extracted from the experimental data by numerical fitting. The computational result showed good agreement with experimental data. The melt velocity transient initiated by the rotating magnetic field reached a stable condition quickly, allowing the viscosity and electrical conductivity of the melt to be determined in a short period.

  11. Bulk viscosity, interaction and the viability of phantom solutions

    Energy Technology Data Exchange (ETDEWEB)

    Leyva, Yoelsy; Sepulveda, Mirko [Universidad de Tarapaca, Departamento de Fisica, Facultad de Ciencias, Arica (Chile)

    2017-06-15

    We study the dynamics of a bulk viscosity model in the Eckart approach for a spatially flat Friedmann-Robertson-Walker (FRW) Universe. We have included radiation and dark energy, assumed as perfect fluids, and dark matter treated as an imperfect fluid having bulk viscosity. We also introduce an interaction term between the dark matter and dark energy components. Considering that the bulk viscosity is proportional to the dark matter energy density and imposing a complete cosmological dynamics, we find bounds on the bulk viscosity in order to reproduce a matter-dominated era (MDE). This constraint is independent of the interaction term. Some late time phantom solutions are mathematically possible. However, the constraint imposed by a MDE restricts the interaction parameter, in the phantom solutions, to a region consistent with a null value, eliminating the possibility of late time stable solutions with w < -1. From the different cases that we study, the only possible scenario, with bulk viscosity and interaction term, belongs to the quintessence region. In the latter case, we find bounds on the interaction parameter compatible with latest observational data. (orig.)

  12. Bulk Viscosity and Cavitation in Boost-Invariant Hydrodynamic Expansion

    CERN Document Server

    Rajagopal, Krishna

    2009-01-01

    We solve second order relativistic hydrodynamics equations for a boost-invariant 1+1-dimensional expanding fluid with an equation of state taken from lattice calculations of the thermodynamics of strongly coupled quark-gluon plasma. We investigate the dependence of the energy density as a function of proper time on the values of the shear viscosity, the bulk viscosity, and second order coefficients, confirming that large changes in the values of the latter have negligible effects. Varying the shear viscosity between zero and a few times s/(4 pi), with s the entropy density, has significant effects, as expected based on other studies. Introducing a nonzero bulk viscosity also has significant effects. In fact, if the bulk viscosity peaks near the crossover temperature Tc to the degree indicated by recent lattice calculations in QCD without quarks, it can make the fluid cavitate -- falling apart into droplets. It is interesting to see a hydrodynamic calculation predicting its own breakdown, via cavitation, at th...

  13. ESTIMATION OF VISCOSITY ENGINE OILS USING ROTATIONAL RHEOMETER

    Directory of Open Access Journals (Sweden)

    Anna M. RYNIEWICZ

    2014-06-01

    Full Text Available The operating criteria, the assurance of energy-efficiency and environmental protection impose very diversified rheological requirements on the parameters of work of car engine oils. The aim of the work was the estimation of rheological parameters of selected car engine oils at controlled shear stress in a wide range of temperatures, using a rotational rheometer. Investigated mineral engine oils, semi-synthetic and synthetic ones that belong to different viscosity classes. The characteristics of viscosity in relation to temperature in the testing node were determined. The results of tests at sub-zero and low temperatures indicate significant differentiation of rheological properties of engine oils. It can be claimed that in the exploited friction nodes, especially in the conditions of fluid and mixed friction, the smallest viscosity is characteristic to the fully synthetic oils from the tested group 5W and the semi-synthetic oil Orlen Gas Semisynthetic 10W-40. Semi-synthetic oil Platinum Rally Sport 10W-60 stands out as its viscosity values at sub-zero and low temperatures are greater than the ones of mineral oils from the tested group 15W-40. At high temperatures one can distinguish the oil called Elf Sporti SRI 15W-40 whose viscosity very slightly decreases. The conducted oil tests confirmed their catalog parameters and affiliation to viscosity classes.

  14. Black Brane Viscosity and the Gregory-Laflamme Instability

    CERN Document Server

    Camps, Joan; Haddad, Nidal

    2010-01-01

    We study long wavelength perturbations of neutral black p-branes in asymptotically flat space and show that, as anticipated in the blackfold approach, solutions of the relativistic hydrodynamic equations for an effective p+1-dimensional fluid yield solutions to the vacuum Einstein equations in a derivative expansion. Going beyond the perfect fluid approximation, we compute the effective shear and bulk viscosities of the black brane. The values we obtain saturate generic bounds. Sound waves in the effective fluid are unstable, and have been previously related to the Gregory-Laflamme instability of black p-branes. By including the damping effect of the viscosity in the unstable sound waves, we obtain a remarkably good and simple approximation to the dispersion relation of the Gregory-Laflamme modes, whose accuracy increases with the number of transverse dimensions. We propose an exact limiting form as the number of dimensions tends to infinity.

  15. Hot-Wire Method for Kinematic Viscosity Estimation

    Science.gov (United States)

    Giaretto, Valter

    2010-03-01

    This paper explores the characterization of thermal and momentum diffusion properties of condensed phase biological fluids. The widely used transient hot-wire technique for determination of thermal diffusion properties is proposed here to investigate also the apparent kinematic viscosity of fluids with the apparatus commonly adopted for thermal conductivity and/or thermal diffusivity determination. The undesired onset of convection in the determination of thermal diffusion properties is in this case the useful effect measured at the wire-fluid interface. From a theoretical point of view, the onset of convection time at a given vertical position along the wire has been related to the Prandtl number, and the reliability of the kinematic viscosity has been studied and preliminarily tested in the case of water.

  16. Dynamical Friction and Galaxy Merging Timescales

    CERN Document Server

    Boylan-Kolchin, Michael; Quataert, Eliot

    2007-01-01

    The timescale for galaxies within merging dark matter halos to merge with each other is an important ingredient in galaxy formation models. Accurate estimates of merging timescales are required for predictions of astrophysical quantities such as black hole binary merger rates, the build-up of stellar mass in central galaxies, and the statistical properties of satellite galaxies within dark matter halos. In this paper, we study the merging timescales of extended dark matter halos using N-body simulations. We compare these results to standard estimates based on the Chandrasekhar theory of dynamical friction. We find that these standard predictions for merging timescales, which are often used in semi-analytic galaxy formation models, are systematically shorter than those found in simulations. The discrepancy is approximately a factor of 1.7 for M_sat/M_host approx 0.1 and becomes larger for more disparate satellite-to-host mass ratios, reaching a factor of ~3.3 for M_sat/M_host approx 0.01. Based on our simulati...

  17. Fission hindrance and nuclear viscosity

    Indian Academy of Sciences (India)

    Indranil Mazumdar

    2015-08-01

    We discuss the role of nuclear viscosity in hindering the fission of heavy nuclei as observed in the experimental measurements of GDR -ray spectra from the fissioning nuclei. We review a set of experiments carried out and reported by us previously [see Dioszegi et al, Phys. Rev. C 61, 024613 (2000); Shaw et al, Phys. Rev. C 61, 044612 (2000)] and argue that the nuclear viscosity parameter has no apparent dependence on temperature. However, it may depend upon the deformation of the nucleus.

  18. Viscosities of the quasigluon plasma

    CERN Document Server

    Bluhm, M; Redlich, K

    2010-01-01

    We investigate bulk and shear viscosities of the gluon plasma within relaxation time approximation to an effective Boltzmann-Vlasov type kinetic theory by viewing the plasma as describable in terms of quasigluon excitations with temperature dependent self-energies. The found temperature dependence of the transport coefficients agrees fairly well with available lattice QCD results. The impact of some details in the quasigluon dispersion relation on the specific shear viscosity is discussed.

  19. Can bulk viscosity drive inflation

    Energy Technology Data Exchange (ETDEWEB)

    Pacher, T.; Stein-Schabes, J.A.; Turner, M.S.

    1987-04-01

    Contrary to other claims, we argue that, bulk viscosity associated with the interactions of nonrelativistic particles with relativistic particles around the time of the grand unified theory (GUT) phase transition cannot lead to inflation. Simply put, the key ingredient for inflation, negative pressure, cannot arise due to the bulk viscosity effects of a weakly-interacting mixture of relativistic and nonrelativistic particles. 13 refs., 1 fig.

  20. Viscosity model for aluminosilicate melt

    Directory of Open Access Journals (Sweden)

    Zhang G.H.

    2012-01-01

    Full Text Available The structurally based viscosity model proposed in our previous study is extended to include more components, e.g. SiO2, Al2O3, FeO, MnO, MgO, CaO, Na2O and K2O. A simple method is proposed to calculate the numbers of different types of oxygen ions classified by the different cations they bonded with, which is used to characterize the influence of composition on viscosity. When dealing with the aluminosilicate melts containing several basic oxides, the priority order is established for different cations for charge compensating Al3+ ions, according to the coulombic force between cation and oxygen anion. It is indicated that basic oxides have two paradox influences on viscosity: basic oxide with a higher basicity decreases viscosity more greatly by forming weaker non-bridging oxygen bond; while it increases viscosity more greatly by forming stronger bridging oxygen bond in tetrahedron after charge compensating Al3+ ion. The present model can extrapolate its application range to the system without SiO2. Furthermore, it could also give a satisfy interpretation to the abnormal phenomenon that viscosity increases when adding K2O to CaO-Al2O3-SiO2 melt within a certain composition range.

  1. Merging of high speed argon plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Case, A.; Messer, S.; Brockington, S.; Wu, L.; Witherspoon, F. D. [HyperV Technologies Corp., Chantilly, Virginia 22180 (United States); Elton, R. [University of Maryland, College Park, Maryland 20742 (United States)

    2013-01-15

    Formation of an imploding plasma liner for the plasma liner experiment (PLX) requires individual plasma jets to merge into a quasi-spherical shell of plasma converging on the origin. Understanding dynamics of the merging process requires knowledge of the plasma phenomena involved. We present results from the study of the merging of three plasma jets in three dimensional geometry. The experiments were performed using HyperV Technologies Corp. 1 cm Minirailguns with a preionized argon plasma armature. The vacuum chamber partially reproduces the port geometry of the PLX chamber. Diagnostics include fast imaging, spectroscopy, interferometry, fast pressure probes, B-dot probes, and high speed spatially resolved photodiodes, permitting measurements of plasma density, temperature, velocity, stagnation pressure, magnetic field, and density gradients. These experimental results are compared with simulation results from the LSP 3D hybrid PIC code.

  2. Short communication Approximate merging of multiple Bézier segments

    Institute of Scientific and Technical Information of China (English)

    Min Cheng; Guojin Wang

    2008-01-01

    This paper deals with the approximate merging problem of multiple adjacent Bezier curves with different degrees by a single Bezier curve, which is a frequently seen problem in modeling. The unified matrix representation for precise merging is presented and the approximate merging curve is further derived based on matrix operation. Continuity at the endpoints of curves is also discussed in the merging process. Examples show that the method in this paper achieves satisfying merging results.

  3. Field induced rotational viscosity of ferrofluid: effect of capillary size and magnetic field direction.

    Science.gov (United States)

    Andhariya, Nidhi; Chudasama, Bhupendra; Patel, Rajesh; Upadhyay, R V; Mehta, R V

    2008-07-01

    In the present investigation we report the effect of capillary diameter and the direction of applied magnetic field on the rotational viscosity of water and kerosene based ferrofluids. We found that changes in the field induced rotational viscosity are larger in the case of water based magnetic fluid than that of kerosene based fluid. The field induced rotational viscosity is found to be inversely proportional to the capillary diameter and it falls exponentially as a function of the angle between the direction of field and vorticity of flow. Magnetophoretic mobility and hydrodynamic volume fraction of nanomagnetic particles are determined for above cases.

  4. Shear viscosity in holography and effective theory of transport without translational symmetry

    CERN Document Server

    Burikham, Piyabut

    2016-01-01

    We study the shear viscosity in an effective hydrodynamic theory and holographic model where the translational symmetry is broken by massless scalar fields. We identify the shear viscosity, $\\eta$, from the coefficient of the shear tensor in the modified constitutive relation, constructed from thermodynamic quantities, fluid velocity and the scalar fields, which break the translational symmetry explicitly. Our construction of constitutive relation is inspired by those derived from the fluid/gravity correspondence in the weakly disordered limit $m/T \\ll 1$. We found that the shear viscosity - entropy density ratio violate the KSS bound even when the translational symmetry is weakly broken. At the leading order in disorder strength, as the energy density is fixed and the disorder strength increases, we observe that the shear viscosity remains unchanged while the entropy grows larger, resulting in the violation of the bound. At higher order correction in $m/T$, we show that the shear viscosity from the constitut...

  5. Fundamental study on the new method to estimate vibration level on a ship. Formulation of the damping matrix based on dissipation energy caused by fluid viscosity; Senpaku no shindo level suitei ni kansuru kisoteki kenkyu. Ryutai no nensei ni yoru san`itsu energy ni motozuku gensui matrix no teishikika

    Energy Technology Data Exchange (ETDEWEB)

    Funaki, T.; Hayashi, S. [Osaka University, Osaka (Japan). Faculty of engineering

    1996-12-31

    It is known in estimating vibration characteristics of a ship that fluid range affects largely a structure. In order to analyze the compound vibration therein, a method was proposed, which estimates vibration levels without using the finite element method. However, the problem of mode decay ratio has not been solved. Therefore, this paper first describes a method to introduce an equivalent linear decay matrix. The paper then mentions difference in the decay effects due to fluid viscosity in a shallow and deep water regions. Furthermore, vibration levels in the deep water region were estimated in a model experiment to verify the estimation result. Under a hypothesis that two-node vibration in a rotating ellipse has displacement distributions in the deep and shallow water regions equivalent, and when a case of vibration in a layer flow condition is calculated, dissipation energy in the shallow region is larger than that in the deep region by about 26%. About 5% of the total dissipation energy is consumed at bottom of the sea. According to a frequency response calculation, estimated values for the response levels still differ from experimental values, although the trend that the vibration levels change can be reproduced. 6 refs., 15 figs., 2 tabs.

  6. The 2003 Merged Model for Vietnam

    OpenAIRE

    Jensen, Henning Tarp; Tarp, Finn

    2006-01-01

    This paper documents the 2003 Merged Model for Vietnam. The initialization and calibration of the model is based on a financial 2003 SAM framework and an auxiliary 2002-3 data set. The recursive nature of the solution of the Merged Model is discussed with reference to the four main sectors of the model, including (i) the goods market and private sector budget, (ii) the government budget, (iii) the money market, and (iv) the balance of payments, and the initialization and solution of individua...

  7. Merging history of three bimodal clusters

    Science.gov (United States)

    Maurogordato, S.; Sauvageot, J. L.; Bourdin, H.; Cappi, A.; Benoist, C.; Ferrari, C.; Mars, G.; Houairi, K.

    2011-01-01

    We present a combined X-ray and optical analysis of three bimodal galaxy clusters selected as merging candidates at z ~ 0.1. These targets are part of MUSIC (MUlti-Wavelength Sample of Interacting Clusters), which is a general project designed to study the physics of merging clusters by means of multi-wavelength observations. Observations include spectro-imaging with XMM-Newton EPIC camera, multi-object spectroscopy (260 new redshifts), and wide-field imaging at the ESO 3.6 m and 2.2 m telescopes. We build a global picture of these clusters using X-ray luminosity and temperature maps together with galaxy density and velocity distributions. Idealized numerical simulations were used to constrain the merging scenario for each system. We show that A2933 is very likely an equal-mass advanced pre-merger ~200 Myr before the core collapse, while A2440 and A2384 are post-merger systems (~450 Myr and ~1.5 Gyr after core collapse, respectively). In the case of A2384, we detect a spectacular filament of galaxies and gas spreading over more than 1 h-1 Mpc, which we infer to have been stripped during the previous collision. The analysis of the MUSIC sample allows us to outline some general properties of merging clusters: a strong luminosity segregation of galaxies in recent post-mergers; the existence of preferential axes - corresponding to the merging directions - along which the BCGs and structures on various scales are aligned; the concomitance, in most major merger cases, of secondary merging or accretion events, with groups infalling onto the main cluster, and in some cases the evidence of previous merging episodes in one of the main components. These results are in good agreement with the hierarchical scenario of structure formation, in which clusters are expected to form by successive merging events, and matter is accreted along large-scale filaments. Based on data obtained with the European Southern Observatory, Chile (programs 072.A-0595, 075.A-0264, and 079.A-0425

  8. Merging of image data in electron crystallography.

    Science.gov (United States)

    Arheit, Marcel; Castaño-Diéz, Daniel; Thierry, Raphaël; Abeyrathne, Priyanka; Gipson, Bryant R; Stahlberg, Henning

    2013-01-01

    Electron crystallography of membrane proteins uses cryo-transmission electron microscopy to record images and diffraction patterns of frozen-hydrated 2D crystals. Each two-dimensional (2D) crystal is only imaged once, at one specific tilt angle, and the recorded images can be automatically processed with the 2dx/MRC software package. Processed image data from non-tilted and tilted 2D crystals then need to be merged into a 3D reconstruction of the membrane protein structure. We here describe the process of the 3D merging, using the 2dx software system.

  9. Viscosity of magnetite–toluene nanofluids: Dependence on temperature and nanoparticle concentration

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rahul [Department of Mechanical Engineering, Iowa State University, Ames, IA (United States); Sanchez, Oswaldo [Department of Mathematical Sciences, Morningside College, Sioux City, IA (United States); Ghosh, Suvojit [Department of Engineering Physics, McMaster University, Hamilton, ON (Canada); Kadimcherla, Naveen [Department of Mechanical Engineering, Iowa State University, Ames, IA (United States); Sen, Swarnendu [Department of Mechanical Engineering, Jadavpur University, Kolkata, West Bengal (India); Balasubramanian, Ganesh, E-mail: bganesh@iastate.edu [Department of Mechanical Engineering, Iowa State University, Ames, IA (United States)

    2015-10-23

    Highlights: • Viscosity of magnetite in toluene nanofluid increases monotonically with particle concentration. • Clusters formed at higher particle concentration are monodisperse. • With increasing temperature, viscosity decreases due less fraction of immobile fluid molecules. - Abstract: We examine the dependence of the viscosity of nanofluids, comprised of magnetite nanoparticles dispersed in toluene, on particle concentration and temperature. The nanofluid viscosity increases monotonically with particle concentration. We show that although the nanoparticles aggregate to form clusters with increasing concentration, the cluster size is fairly monodisperse and hence the viscosity can be expressed as a function of only the particle concentration. The viscosity of the nanofluid is found to decrease with temperature, similarly to the characteristics of the carrier liquid. We describe these dependencies through an empirical correlation, since the observations are useful to employ such nanofluids in engineering applications.

  10. New Formulation for the Viscosity of Propane

    Science.gov (United States)

    Vogel, Eckhard; Herrmann, Sebastian

    2016-12-01

    A new viscosity formulation for propane, using the reference equation of state for its thermodynamic properties by Lemmon et al. [J. Chem. Eng. Data 54, 3141 (2009)] and valid in the fluid region from the triple-point temperature to 650 K and pressures up to 100 MPa, is presented. At the beginning, a zero-density contribution and one for the critical enhancement, each based on the experimental data, were independently generated in parts. The higher-density contributions are correlated as a function of the reciprocal reduced temperature τ = Tc/T and of the reduced density δ = ρ/ρc (Tc—critical temperature, ρc—critical density). The final formulation includes 17 coefficients inferred by applying a state-of-the-art linear optimization algorithm. The evaluation and choice of the primary data sets are detailed due to its importance. The viscosity at low pressures p ≤ 0.2 MPa is represented with an expanded uncertainty of 0.5% (coverage factor k = 2) for temperatures 273 ≤ T/K ≤ 625. The expanded uncertainty in the vapor phase at subcritical temperatures T ≥ 273 K as well as in the supercritical thermodynamic region T ≤ 423 K at pressures p ≤ 30 MPa is assumed to be 1.5%. In the near-critical region (1.001 < 1/τ < 1.010 and 0.8 < δ < 1.2), the expanded uncertainty increases with decreasing temperature up to 3.0%. It is further increased to 4.0% in regions of less reliable primary data sets and to 6.0% in ranges in which no primary data are available but the equation of state is valid. Tables of viscosity computed for the new formulation are given in an Appendix for the single-phase region, for the vapor-liquid phase boundary, and for the near-critical region.

  11. Boosting Magnetic Reconnection by Viscosity and Thermal Conduction

    CERN Document Server

    Minoshima, Takashi; Imada, Shinsuke

    2016-01-01

    Nonlinear evolution of magnetic reconnection is investigated by means of magnetohydrodynamic simulations including uniform resistivity, uniform viscosity, and anisotropic thermal conduction. When viscosity exceeds resistivity (the magnetic Prandtl number Prm > 1), the viscous dissipation dominates outflow dynamics and leads to the decrease in the plasma density inside a current sheet. The low-density current sheet supports the excitation of the vortex. The thickness of the vortex is broader than that of the current for Prm > 1. The broader vortex flow more efficiently carries the upstream magnetic flux toward the reconnection region, and consequently boosts the reconnection. The reconnection rate increases with viscosity provided that thermal conduction is fast enough to take away the thermal energy increased by the viscous dissipation (the fluid Prandtl number Pr < 1). The result suggests the need to control the Prandtl numbers for the reconnection against the conventional resistive model.

  12. Prediction of Anomalous Blood Viscosity in Confined Shear Flow

    Science.gov (United States)

    Thiébaud, Marine; Shen, Zaiyi; Harting, Jens; Misbah, Chaouqi

    2014-06-01

    Red blood cells play a major role in body metabolism by supplying oxygen from the microvasculature to different organs and tissues. Understanding blood flow properties in microcirculation is an essential step towards elucidating fundamental and practical issues. Numerical simulations of a blood model under a confined linear shear flow reveal that confinement markedly modifies the properties of blood flow. A nontrivial spatiotemporal organization of blood elements is shown to trigger hitherto unrevealed flow properties regarding the viscosity η, namely ample oscillations of its normalized value [η]=(η-η0)/(η0ϕ) as a function of hematocrit ϕ (η0=solvent viscosity). A scaling law for the viscosity as a function of hematocrit and confinement is proposed. This finding can contribute to the conception of new strategies to efficiently detect blood disorders, via in vitro diagnosis based on confined blood rheology. It also constitutes a contribution for a fundamental understanding of rheology of confined complex fluids.

  13. Energy Loss in Pulse Detonation Engine due to Fuel Viscosity

    Directory of Open Access Journals (Sweden)

    Weipeng Hu

    2014-01-01

    Full Text Available Fluid viscosity is a significant factor resulting in the energy loss in most fluid dynamical systems. To analyze the energy loss in the pulse detonation engine (PDE due to the viscosity of the fuel, the energy loss in the Burgers model excited by periodic impulses is investigated based on the generalized multisymplectic method in this paper. Firstly, the single detonation energy is simplified as an impulse; thus the complex detonation process is simplified. And then, the symmetry of the Burgers model excited by periodic impulses is studied in the generalized multisymplectic framework and the energy loss expression is obtained. Finally, the energy loss in the Burgers model is investigated numerically. The results in this paper can be used to explain the difference between the theoretical performance and the experimental performance of the PDE partly. In addition, the analytical approach of this paper can be extended to the analysis of the energy loss in other fluid dynamic systems due to the fluid viscosity.

  14. The role of bulk viscosity on the decay of compressible, homogeneous, isotropic turbulence

    Science.gov (United States)

    Johnsen, Eric; Pan, Shaowu

    2016-11-01

    The practice of neglecting bulk viscosity in studies of compressible turbulence is widespread. While exact for monatomic gases and unlikely to strongly affect the dynamics of fluids whose bulk-to-shear viscosity ratio is small and/or of weakly compressible turbulence, this assumption is not justifiable for compressible, turbulent flows of gases whose bulk viscosity is orders of magnitude larger than their shear viscosities (e.g., CO2). To understand the mechanisms by which bulk viscosity and the associated phenomena affect compressible turbulence, we conduct DNS of freely decaying compressible, homogeneous, isotropic turbulence for ratios of bulk-to-shear viscosity ranging from 0-1000. Our simulations demonstrate that bulk viscosity increases the decay rate of turbulent kinetic energy; while enstrophy exhibits little sensitivity to bulk viscosity, dilatation is reduced by an order of magnitude within the two eddy turnover time. Via a Helmholtz decomposition of the flow, we determined that bulk viscosity damps the dilatational velocity and reduces dilatational-solenoidal exchanges, as well as pressure-dilatation coupling. In short, bulk viscosity renders compressible turbulence incompressible by reducing energy transfer between translational and internal modes.

  15. Merged Sounding VAP Version 2.0

    Energy Technology Data Exchange (ETDEWEB)

    Troyan, D.; Jensen, M.; Turner, D.; Miloshevich, L.

    2010-03-15

    The Merged Sounding Value-Added Product (VAP) has been in the ARM and ASR pipeline since 2001. Output data streams have been added to the Evaluation Products section of the ARM website for the past five years. Currently, there are data for all of the ACRF fixed sites and all deployments of the Mobile Facility. Fifty-three years of Merged Sounding data is available as an evaluation product. The process of moving all to the ARM Data Archive has been started and will be completed shortly. A second version of the Merged Sounding VAP was developed to address several concerns: (1) Vaisala radiosondes have inherent problems obtaining an accurate measurement of relative humidity, (2) the profile can be extended from 20 km to 60 km above ground level based upon the height achieved by ECMWF profiles, and (3) ECMWF temperatures require adjustments at high altitude (between 1mb and 100 mb). Solutions to these issues have been incorporated in the new version of this VAP. Along with producing that second version of Merged Sounding, a secondary data stream - Sonde Adjust - was created. This VAP incorporates any humidity corrections to the Vaisala RS-80, RS-90, and RS-92 radiosondes. The algorithms used to perform these corrections are documented by Wang et. al. (2002), Turner et. al. (2003), and Miloshevich et. al. (2004, 2009).

  16. Evolution of Collisionally Merged Massive Stars

    CERN Document Server

    Suzuki, T K; Baumgardt, H; Ibukiyama, A; Makino, J; Ebisuzaki, & T; Suzuki, Takeru K; Nakasato, Naohito; Baumgardt, Holger; Ibukiyama, Akihiro; Makino, Junichiro

    2007-01-01

    We investigate the evolution of collisionally merged stars with mass of ~100 Msun which might be formed in dense star clusters. We assumed that massive stars with several tens Msun collide typically after ~1Myr of the formation of the cluster and performed hydrodynamical simulations of several collision events. Our simulations show that after the collisions, merged stars have extended envelopes and their radii are larger than those in the thermal equilibrium states and that their interiors are He-rich because of the stellar evolution of the progenitor stars. We also found that if the mass-ratio of merging stars is far from unity, the interior of the merger product is not well mixed and the elemental abundance is not homogeneous. We then followed the evolution of these collision products by a one dimensional stellar evolution code. After an initial contraction on the Kelvin-Helmholtz (thermal adjustment) timescale (~10^{3-4} yr), the evolution of the merged stars traces that of single homogeneous stars with co...

  17. The University Illustration Merged in Thailand

    Science.gov (United States)

    Puangyod, Paithoon; Sirisuthi, Chaiyuth; Sriphutharin, Sumalee

    2015-01-01

    This research aimed to reflect the merged university's scenario: the case study of Nakhon-Phanom University in 4 aspects: administration, personnel management, technology management and missions. It was divided into 2 parts. The research results were as follows: Part 1: Nakhon-Phanom University's education arrangement in light of the…

  18. Neural correlates of merging number words.

    Science.gov (United States)

    Hung, Yi-Hui; Pallier, Christophe; Dehaene, Stanislas; Lin, Yi-Chen; Chang, Acer; Tzeng, Ovid J-L; Wu, Denise H

    2015-11-15

    Complex number words (e.g., "twenty two") are formed by merging together several simple number words (e.g., "twenty" and "two"). In the present study, we explored the neural correlates of this operation and investigated to what extent it engages brain areas involved processing numerical quantity and linguistic syntactic structure. Participants speaking two typologically distinct languages, French and Chinese, were required to read aloud sequences of simple number words while their cerebral activity was recorded by functional magnetic resonance imaging. Each number word could either be merged with the previous ones (e.g., 'twenty three') or not (e.g., 'three twenty'), thus forming four levels ranging from lists of number words to complex numerals. When a number word could be merged with the preceding ones, it was named faster than when it could not. Neuroimaging results showed that the number of merges correlated with activation in the left inferior frontal gyrus and in the left inferior parietal lobule. Consistent findings across Chinese and French participants suggest that these regions serve as the neural bases for forming complex number words in different languages.

  19. Cluster Physics with Merging Galaxy Clusters

    Directory of Open Access Journals (Sweden)

    Sandor M. Molnar

    2016-02-01

    Full Text Available Collisions between galaxy clusters provide a unique opportunity to study matter in a parameter space which cannot be explored in our laboratories on Earth. In the standard LCDM model, where the total density is dominated by the cosmological constant ($Lambda$ and the matter density by cold dark matter (CDM, structure formation is hierarchical, and clusters grow mostly by merging.Mergers of two massive clusters are the most energetic events in the universe after the Big Bang,hence they provide a unique laboratory to study cluster physics.The two main mass components in clusters behave differently during collisions:the dark matter is nearly collisionless, responding only to gravity, while the gas is subject to pressure forces and dissipation, and shocks and turbulenceare developed during collisions. In the present contribution we review the different methods used to derive the physical properties of merging clusters. Different physical processes leave their signatures on different wavelengths, thusour review is based on a multifrequency analysis. In principle, the best way to analyze multifrequency observations of merging clustersis to model them using N-body/HYDRO numerical simulations. We discuss the results of such detailed analyses.New high spatial and spectral resolution ground and space based telescopeswill come online in the near future. Motivated by these new opportunities,we briefly discuss methods which will be feasible in the near future in studying merging clusters.

  20. Merging Programming of MATLAB and VB

    Institute of Scientific and Technical Information of China (English)

    张军鹏; CUI Yuan; FENG Huan-ting

    2006-01-01

    This paper is aimed at the realization of merging programming of MATLAB and VB.We mainly discuss how to realize programming by MATLAB Automation Server technology, and demonstrate how to incorporate visual Porgramming interface d VB with the powerful function of MATLAB in numerical calculation and graphic display.

  1. A new reference viscosity model for hydrogen sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, K.A.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering, Electrical and Computer Engineering Research Facility; Quinones-Cisneros, S.E. [Univ. Nacional Autonoma de Mexico, Mexico City (Mexico). Dept. of Rheology, Materials Research Inst.; Giri, B.R.; Blais, P.; Marriott, R.A. [Alberta Sulphur Research Ltd., Calgary, AB (Canada); Calgary Univ., AB (Canada). Dept. of Chemistry

    2010-07-01

    New and economical ways of reducing emissions of acid gases to the atmosphere are becoming increasingly important in the petroleum industry. This presentation discussed the promising sequestration option of injecting these acid gases into formations for disposal and or storage. Acid gas injection (AGI) is a commonly used process for the disposal of mixtures of hydrogen sulphide and carbon dioxide, particularly in small scale schemes. The acid gas is sometimes used as a miscible flood fluid for pressure maintenance. The use of AGI is being considered for the production of elemental sulphur. Accurate viscosities are needed in the design of these injection schemes to determine pressure drops due to fluid flow in both the acid gas pipeline and the injection well. This presentation included experimental data and discussed the applicability of the friction theory for viscosity modelling to reproduce the existing experimental visco cities of hydrogen sulphide and its mixtures. The friction theory model was shown to be a highly flexible and powerful tool for the modelling the viscosity of reservoir fluids, from light to heavy fluids under broad conditions of temperature, pressure and composition. During the development of this reference viscosity model, a literature review identified areas where additional data is needed to fill voids and resolve discrepancies of existing data sets. It was concluded that although the developed model was based on limited data, the sound physical reasoning provided good results. An experimental program has been launched to determine the viscosities of hydrogen sulphide (H{sub 2}S) in the critical areas identified in the initial reference model. The current update to the data set consists of experimental H{sub 2}S viscosities up to 1000 bar and at temperatures between 0 and 150 degrees C. The data will be applied to update the H{sub 2}S reference viscosity model based on the friction-theory. The updated reference equation will help improve

  2. Non-Newtonian viscosity in magnetized plasma

    CERN Document Server

    Johnson, Robert W

    2007-01-01

    The particle and momentum balance equations can be solved on concentric circular flux surfaces to determine the effective viscous drag present in a magnetized tokamak plasma in the low aspect ratio limit. An analysis is developed utilizing the first-order Fourier expansion of the poloidal variation of quantities on the flux surface akin to that by Stacey and Sigmar [Phys. Fluids, 28, 9 (1985)]. Expressions to determine the poloidal variations of density, poloidal velocity, toroidal velocity, radial electric field, poloidal electric field, and other radial profiles are presented in a multi-species setting. Using as input experimental data for the flux surface averaged profiles of density, temperature, toroidal current, toroidal momentum injection, and the poloidal and toroidal rotations of at least one species of ion, one may solve the equations numerically for the remaining profiles. The resultant effective viscosities are compared to those predicted by Stacey and Sigmar and Shaing, et al., [Nuclear Fusion, 2...

  3. Viscosity of liquid undercooled tungsten

    Science.gov (United States)

    Paradis, Paul-François; Ishikawa, Takehiko; Yoda, Shinichi

    2005-05-01

    Knowledge of the viscosity and its temperature dependence is essential to improve metallurgical processes as well as to validate theoretical and empirical models of liquid metals. However, data for metals with melting points above 2504K could not be determined yet due to contamination and containment problems. Here we report the viscosity of tungsten, the highest melting point metal (3695K), measured by a levitation technique. Over the 3350-3700-K temperature range, which includes the undercooled region by 345K, the viscosity data could be fitted as η(T )=0.108exp[1.28×105/(RT)](mPas). At the melting point, the datum agrees with the proposed theoretical and empirical models of liquid metals but presents atypical temperature dependence, suggesting a basic change in the mechanism of momentum transfer.

  4. Viscosity changes in hyaluronic acid: Irradiation and rheological studies

    Energy Technology Data Exchange (ETDEWEB)

    Daar, Eman [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)], E-mail: e.daar@surrey.ac.uk; King, L.; Nisbet, A. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Thorpe, R.B. [Fluids and Systems Centre, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Bradley, D.A. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2010-04-15

    Hyaluronic acid (HA) is a significant component of the extracellular matrix (ECM), particular interest being shown herein in synovial fluid. The present study aims to investigate the degrading effects of X-ray radiation on HA at radiotherapy doses. Measurements of viscosity and shear stresses on HA solutions have been made at different shear rates using various types of viscometer for different concentrations in the range 0.01-1% w/v of HA. The HA has been subjected to doses of 6 MV photon radiation ranging from 0 to 20 Gy, the major emphasis being on doses below 5 Gy. It is found that there is a dose-dependent relationship between viscosity and shear rate, viscosity reducing with radiation dose, this being related to polymer scissions via the action of radiation-induced free radicals. The dependency appears to become weaker at higher concentrations, possibly due to the contribution to viscosity from polymer entanglement becoming dominant over that from mean molecular weight. Present results, for HA solutions in the concentration range 0.01% to 1% w/v, show reduced viscosity with dose over the range 0-4 Gy, the latter covering the dose regime of interest in fractionated radiotherapy. The work also shows agreement with previous Raman microspectrometry findings by others, the possible bond alterations being defined by comparison with available published data.

  5. Dissipative Processes in the Early Universe: Bulk Viscosity

    CERN Document Server

    Tawfik, A; Mansour, H; Wahba, M

    2009-01-01

    In this talk, we discuss one of the dissipative processes which likely take place in the Early Universe. We assume that the matter filling the isotropic and homogeneous background is to be described by a relativistic viscous fluid characterized by an ultra-relativistic equation of state and finite bulk viscosity deduced from recent lattice QCD calculations and heavy-ion collisions experiments. We concentrate our treatment to bulk viscosity as one of the essential dissipative processes in the rapidly expanding Early Universe and deduce the dependence of the scale factor and Hubble parameter on the comoving time $t$. We find that both scale factor and Hubble parameter are finite at $t=0$, revering to absence of singularity. We also find that their evolution apparently differs from the one resulting in when assuming that the background matter is an ideal and non-viscous fluid.

  6. Dynamic heterogeneity controls diffusion and viscosity near biological interfaces

    Science.gov (United States)

    Pronk, Sander; Lindahl, Erik; Kasson, Peter M.

    2014-01-01

    At a nanometre scale, the behaviour of biological fluids is largely governed by interfacial physical chemistry. This may manifest as slowed or anomalous diffusion. Here we describe how measures developed for studying glassy systems allow quantitative measurement of interfacial effects on water dynamics, showing that correlated motions of particles near a surface result in a viscosity greater than anticipated from individual particle motions. This effect arises as a fundamental consequence of spatial heterogeneity on nanometre length scales and applies to any fluid near any surface. Increased interfacial viscosity also causes the classic finding that large solutes such as proteins diffuse much more slowly than predicted in bulk water. This has previously been treated via an empirical correction to the solute size: the hydrodynamic radius. Using measurements of quantities from theories of glass dynamics, we can now calculate diffusion constants from molecular details alone, eliminating the empirical correction factor.

  7. Image Classifying Registration and Dynamic Region Merging

    Directory of Open Access Journals (Sweden)

    Himadri Nath Moulick

    2013-07-01

    account spatial variations of intensity dependencies while keeping a good registration accuracy. And the addresses the automatic image segmentation problem in a region merging style. With an initially over-segmented image, in which the many regions (or super-pixels with homogeneous color aredetected, image segmentation is performed by iteratively merging the regions according to a statistical test. There are two essential issues in a region merging algorithm: order of merging and the stopping criterion. In the proposed algorithm, these two issues are solved by a novel predicate, which is defined by the sequential probability ratio test (SPRT and the minimal cost criterion. Starting from an over-segmented image, neighboring regions are progressively merged if there is an evidence for merging according to this predicate. We show that the merging order follows the principle of dynamic programming. This formulates image segmentation as an inference problem, where the final segmentation is established based on the observed image. We also prove that the produced segmentation satisfies certain global properties. In addition, a faster algorithm is developed to accelerate the region merging process, which maintains a nearest neighbor graph (NNG in each iteration. Experiments on real natural images are conducted to demonstrate the performance of the proposed dynamic region merging algorithm.

  8. A computational fluid dynamics simulation of the hypersonic flight of the Pegasus(TM) vehicle using an artificial viscosity model and a nonlinear filtering method. M.S. Thesis

    Science.gov (United States)

    Mendoza, John Cadiz

    1995-01-01

    The computational fluid dynamics code, PARC3D, is tested to see if its use of non-physical artificial dissipation affects the accuracy of its results. This is accomplished by simulating a shock-laminar boundary layer interaction and several hypersonic flight conditions of the Pegasus(TM) launch vehicle using full artificial dissipation, low artificial dissipation, and the Engquist filter. Before the filter is applied to the PARC3D code, it is validated in one-dimensional and two-dimensional form in a MacCormack scheme against the Riemann and convergent duct problem. For this explicit scheme, the filter shows great improvements in accuracy and computational time as opposed to the nonfiltered solutions. However, for the implicit PARC3D code it is found that the best estimate of the Pegasus experimental heat fluxes and surface pressures is the simulation utilizing low artificial dissipation and no filter. The filter does improve accuracy over the artificially dissipative case but at a computational expense greater than that achieved by the low artificial dissipation case which has no computational time penalty and shows better results. For the shock-boundary layer simulation, the filter does well in terms of accuracy for a strong impingement shock but not as well for weaker shock strengths. Furthermore, for the latter problem the filter reduces the required computational time to convergence by 18.7 percent.

  9. An empirical method to estimate the viscosity of mineral oil by means of ultrasonic attenuation.

    Science.gov (United States)

    Ju, Hyeong; Gottlieb, Emanuel; Augenstein, Donald; Brown, Gregor; Tittmann, Bernhard

    2010-07-01

    This paper presents an empirical method for measuring the viscosity of mineral oil. In a built-in pipeline application, conventional ultrasonic methods using shear reflectance or rheological and acoustical phenomena may fail because of attenuated shear wave propagation and an unpredictable spreading loss caused by protective housings and comparable main flows. The empirical method utilizing longitudinal waves eliminates the unknown spreading loss from attenuation measurements on the object fluid by removing the normalized spreading loss per focal length with the measurement of a reference fluid of a known acoustic absorption coefficient. The ultrasonic attenuation of fresh water as the reference fluid and mineral oil as the object fluid were measured along with the sound speed and effective frequency. The empirical equation for the spreading loss in the reference fluid is determined by high-order polynomial fitting. To estimate the shear viscosity of the mineral oil, a linear fit is applied to the total loss difference between the two fluids, whose slope (the absorption coefficient) is combined with an assumed shear-to-volume viscosity relation. The empirical method predicted the viscosities of two types of the mineral oil with a maximum statistical uncertainty of 8.8% and a maximum systematic error of 12.5% compared with directly measured viscosity using a glass-type viscometer. The validity of this method was examined by comparison with the results from theoretical far-field spreading.

  10. Viscosity of food boluses affects the axial force in the esophagus

    Institute of Scientific and Technical Information of China (English)

    Flemming Gravesen; Niall Behan; Asbjorn Drewes; Hans Gregersen

    2011-01-01

    AIM: To study the effect of viscosity on axial force in the esophagus during primary peristalsis using a newly vali-dated impedance-based axial force recording technique. METHODS: A probe able to simultaneously measure both axial force and manometry was positioned above the lower esophageal sphincter. Potable tap water and three thickened fluids were used to create boluses of different viscosities. Water has a viscosity of 1 mPa·s. The three thickened fluids were made with different concentrations of Clinutren Instant thickener. The vis-cous fluids were in appearance comparable to pudding (2 kPa·s), yogurt (6 kPa·s) and slush ice (10 kPa·s). Six healthy volunteers swallowed 5 and 10 mL of bo-luses multiple times. RESULTS: The pressure amplitude did not increase with the bolus viscosity nor with the bolus volume whereas the axial force increased marginally with bo-lus volume (0.1 > P > 0.05). Both techniques showed that contraction duration increased with bolus viscosity (P < 0.01). Association was found between axial force and pressure but the association became weaker with increasing viscosity. The pressure amplitude did not in-crease with the viscosity or bolus volume whereas the axial force increased marginally with the bolus size. CONCLUSION: This indicates a discrepancy between the physiological functions that can be recorded with axial force measurements and pressure measurements.

  11. Dissipative particle dynamics simulations of the viscosities of molten TNT and molten TNT suspensions containing nanoparticles.

    Science.gov (United States)

    Zhou, Yang; Li, Yixue; Qian, Wen; He, Bi

    2016-09-01

    Based on dissipative particle dynamics (DPD) methods and experimental data, we used an empirical relationship between the DPD temperature and the real temperature to build a model that describes the viscosity of molten TNT fluids. The errors in the predicted viscosity based on this model were no more than 2.3 %. We also studied the steady-state shear rheological behavior of molten TNT fluids containing nanoparticles ("nanofluids"). The dependence of the nanofluid viscosity on the temperature was found to satisfy an Arrhenius-type equation, η = Ae (B/T) , where B, the flow activation energy, depends on particle content, size, and shape. We modified the Einstein-type viscosity model to account for the effects of nanoparticle solvation in TNT nanofluids. The resulting model was able to correctly predict the viscosities of suspensions containing nano- to microsized particles, and did not require any changes to the physical background of Einstein's viscosity theory. Graphical Abstract The revised Einstein viscosity model that correctly predict the viscosity of TNT suspensions containing nanoparticles.

  12. Bulk viscosity and deflationary universes

    CERN Document Server

    Lima, J A S; Waga, I

    2007-01-01

    We analyze the conditions that make possible the description of entropy generation in the new inflationary model by means of a nearequilibrium process. We show that there are situations in which the bulk viscosity cannot describe particle production during the coherent field oscillations phase.

  13. Pressure Effect on Extensional Viscosity

    DEFF Research Database (Denmark)

    Christensen, Jens Horslund; Kjær, Erik Michael

    1999-01-01

    The primary object of these experiments was to investigate the influence of hydrostatic pressure on entrance flow. The effect of pressure on shear and extensional viscosity was evaluated using an axis symmetric capillary and a slit die where the hydrostatic pressure was raised with valves...

  14. Effective viscosity of confined hydrocarbons

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.

    2012-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon films with molecular lengths from 20 to 1400 carbon atoms. We find that the logarithm of the effective viscosity ηeff for nanometer-thin films depends linearly on the logarithm of the shear rate: log ηeff=C-nlog γ̇, where...

  15. The Universe With Bulk Viscosity

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Exact solutions for a model with variable G, A and bulk viscosity areobtained. Inflationary solutions with constant (de Sitter-type) and variable energydensity are found. An expanding anisotropic universe is found to isotropize duringits expansion but a static universe cannot isotropize. The gravitational constant isfound to increase with time and the cosmological constant decreases with time asAo∝t-2.

  16. Connections matter: Updraft merging in organized tropical deep convection

    Science.gov (United States)

    Glenn, I. B.; Krueger, Steven K.

    2017-07-01

    When tropical cumulus convection is organized, the spacing between updrafts is reduced, and deep convective cloud tops are higher. The relative importance of various processes through which organization increases cloud top heights is not well understood. It is likely that decreased spacing between updrafts in organized convection increases the frequency of convective updraft merging. What is the relative importance of merging in determining an updraft parcel's detrainment height? We investigated updraft parcel merging in organized deep convection using results from a large eddy simulation. We used Lagrangian parcel trajectories (LPTs) to locate merging events. LPTs that merge reach detrainment heights 1.5 km higher on average than LPTs which do not merge. Merged LPTs are more buoyant than nonmerged LPTs, implying less dilution due to entrainment. Using mutual information analysis, we found that merging, cloud base vertical velocity, and cloud base area are about equally important in determining parcel detrainment height.

  17. In-depth analysis of drivers' merging behavior and rear-end crash risks in work zone merging areas.

    Science.gov (United States)

    Weng, Jinxian; Xue, Shan; Yang, Ying; Yan, Xuedong; Qu, Xiaobo

    2015-04-01

    This study investigates the drivers' merging behavior and the rear-end crash risk in work zone merging areas during the entire merging implementation period from the time of starting a merging maneuver to that of completing the maneuver. With the merging traffic data from a work zone site in Singapore, a mixed probit model is developed to describe the merging behavior, and two surrogate safety measures including the time to collision (TTC) and deceleration rate to avoid the crash (DRAC) are adopted to compute the rear-end crash risk between the merging vehicle and its neighboring vehicles. Results show that the merging vehicle has a bigger probability of completing a merging maneuver quickly under one of the following situations: (i) the merging vehicle moves relatively fast; (ii) the merging lead vehicle is a heavy vehicle; and (iii) there is a sizable gap in the adjacent through lane. Results indicate that the rear-end crash risk does not monotonically increase as the merging vehicle speed increases. The merging vehicle's rear-end crash risk is also affected by the vehicle type. There is a biggest increment of rear-end crash risk if the merging lead vehicle belongs to a heavy vehicle. Although the reduced remaining distance to work zone could urge the merging vehicle to complete a merging maneuver quickly, it might lead to an increased rear-end crash risk. Interestingly, it is found that the rear-end crash risk could be generally increased over the elapsed time after the merging maneuver being triggered. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The Astrophysics of Merging Black Holes

    Science.gov (United States)

    Schnittman, Jeremy D.

    2011-01-01

    When two supermassive black holes (SMBHs) approach within 1-10 mpc, gravitational wave (GW) losses begin to dominate the evolution of the binary, pushing the system to merge in a relatively small time. During this final inspiral regime, the system will emit copious energy in GWs, which should be directly detectable by pulsar timing arrays and space-based interferometers. At the same time, any gas or stars in the immediate vicinity of the merging 5MBHs can get heated and produce bright electromagnetic (EM) counterparts to the GW signals. We present here a number of possible mechanisms by which simultaneous EM and GW signals will yield valuable new information about galaxy evolution, accretion disk dynamics, and fundamental physics in the most extreme gravitational fields.

  19. Merging Galaxies Create a Binary Quasar

    Science.gov (United States)

    2010-02-01

    Astronomers have found the first clear evidence of a binary quasar within a pair of actively merging galaxies. Quasars are the extremely bright centers of galaxies surrounding super-massive black holes, and binary quasars are pairs of quasars bound together by gravity. Binary quasars, like other quasars, are thought to be the product of galaxy mergers. Until now, however, binary quasars have not been seen in galaxies that are unambiguously in the act of merging. But images of a new binary quasar from the Carnegie Institution's Magellan telescope in Chile show two distinct galaxies with "tails" produced by tidal forces from their mutual gravitational attraction. "This is really the first case in which you see two separate galaxies, both with quasars, that are clearly interacting," says Carnegie astronomer John Mulchaey who made observations crucial to understanding the galaxy merger. Most, if not all, large galaxies, such as our galaxy the Milky Way, host super-massive black holes at their centers. Because galaxies regularly interact and merge, astronomers have assumed that binary super-massive black holes have been common in the Universe, especially during its early history. Black holes can only be detected as quasars when they are actively accreting matter, a process that releases vast amounts of energy. A leading theory is that galaxy mergers trigger accretion, creating quasars in both galaxies. Because most such mergers would have happened in the distant past, binary quasars and their associated galaxies are very far away and therefore difficult for most telescopes to resolve. The binary quasar, labeled SDSS J1254+0846, was initially detected by the Sloan Digital Sky Survey, a large scale astronomical survey of galaxies and over 120,000 quasars. Further observations by Paul Green of the Harvard-Smithsonian Center for Astrophysics and colleagues* using NASA's Chandra's X-ray Observatory and telescopes at Kitt Peak National Observatory in Arizona and Palomar

  20. Image Segmentation Using Hierarchical Merge Tree

    Science.gov (United States)

    Liu, Ting; Seyedhosseini, Mojtaba; Tasdizen, Tolga

    2016-10-01

    This paper investigates one of the most fundamental computer vision problems: image segmentation. We propose a supervised hierarchical approach to object-independent image segmentation. Starting with over-segmenting superpixels, we use a tree structure to represent the hierarchy of region merging, by which we reduce the problem of segmenting image regions to finding a set of label assignment to tree nodes. We formulate the tree structure as a constrained conditional model to associate region merging with likelihoods predicted using an ensemble boundary classifier. Final segmentations can then be inferred by finding globally optimal solutions to the model efficiently. We also present an iterative training and testing algorithm that generates various tree structures and combines them to emphasize accurate boundaries by segmentation accumulation. Experiment results and comparisons with other very recent methods on six public data sets demonstrate that our approach achieves the state-of-the-art region accuracy and is very competitive in image segmentation without semantic priors.

  1. Particle Merging Algorithm for PIC Codes

    CERN Document Server

    Vranic, Marija; Martins, Joana L; Fonseca, Ricardo A; Silva, Luis O

    2014-01-01

    Particle-in-cell merging algorithms aim to resample dynamically the six-dimensional phase space occupied by particles without distorting substantially the physical description of the system. Whereas various approaches have been proposed in previous works, none of them seemed to be able to conserve fully charge, momentum, energy and their associated distributions. We describe here an alternative algorithm based on the coalescence of N massive or massless particles, considered to be close enough in phase space, into two new macro-particles. The local conservation of charge, momentum and energy are ensured by the resolution of a system of scalar equations. Various simulation comparisons have been carried out with and without the merging algorithm, from classical plasma physics problems to extreme scenarios where quantum electrodynamics is taken into account, showing in addition to the conservation of local quantities, the good reproducibility of the particle distributions. In case where the number of particles o...

  2. Interaction and merging of vortex filaments

    Science.gov (United States)

    Liu, C. H.; Weston, R. P.; Ishii, K.; Ting, L.; Visintainer, J. A.

    1988-01-01

    The asymptotic solutions of Navier-Stokes equations for vortex filaments of finite strength with small effective vortical cores are summarized with special emphasis placed on the physical meaning and the practical limit to the applicability of the asymptotic solution. Finite-difference solutions of Navier-Stokes equations for the marging of the filament(s) are described with a focus on the development of the approximate boundary conditions for the computational domain. An efficiency study employing a model problem is used to assess the advantages of the present approximate boundary condition method over previously used techniques. Applications of the present method are presented for the motion and decay of a 3:1 elliptic vortex ring, and for the merging process of a pair of coaxial vortex rings. A numerical procedure for the problem of local merging of vortex filaments, which requires the asymptotic analysis as well as the numerical Navier-Stokes solver, is also presented.

  3. Merged Sounding Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Troyan, D

    2010-03-03

    The Merged Sounding value-added product (VAP) uses a combination of observations from radiosonde soundings, the microwave radiometer (MWR), surface meteorological instruments, and European Centre for Medium-Range Weather Forecasts (ECMWF) model output with a sophisticated scaling/interpolation/smoothing scheme in order to define profiles of the atmospheric thermodynamic state at one-minute temporal intervals and a total of 266 altitude levels.

  4. Merging Digital Surface Models Implementing Bayesian Approaches

    Science.gov (United States)

    Sadeq, H.; Drummond, J.; Li, Z.

    2016-06-01

    In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades). It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.

  5. MERGING DIGITAL SURFACE MODELS IMPLEMENTING BAYESIAN APPROACHES

    Directory of Open Access Journals (Sweden)

    H. Sadeq

    2016-06-01

    Full Text Available In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades. It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.

  6. Modelling droplet collision outcomes for different substances and viscosities

    Science.gov (United States)

    Sommerfeld, Martin; Kuschel, Matthias

    2016-12-01

    The main objective of the present study is the derivation of models describing the outcome of binary droplet collisions for a wide range of dynamic viscosities in the well-known collision maps (i.e. normalised lateral droplet displacement at collision, called impact parameter, versus collision Weber number). Previous studies by Kuschel and Sommerfeld (Exp Fluids 54:1440, 2013) for different solution droplets having a range of solids contents and hence dynamic viscosities (here between 1 and 60 mPa s) revealed that the locations of the triple point (i.e. coincidence of bouncing, stretching separation and coalescence) and the critical Weber number (i.e. condition for the transition from coalescence to separation for head-on collisions) show a clear dependence on dynamic viscosity. In order to extend these findings also to pure liquids and to provide a broader data basis for modelling the viscosity effect, additional binary collision experiments were conducted for different alcohols (viscosity range 1.2-15.9 mPa s) and the FVA1 reference oil at different temperatures (viscosity range 3.0-28.2 mPa s). The droplet size for the series of alcohols was around 365 and 385 µm for the FVA1 reference oil, in each case with fixed diameter ratio at Δ= 1. The relative velocity between the droplets was varied in the range 0.5-3.5 m/s, yielding maximum Weber numbers of around 180. Individual binary droplet collisions with defined conditions were generated by two droplet chains each produced by vibrating orifice droplet generators. For recording droplet motion and the binary collision process with good spatial and temporal resolution high-speed shadow imaging was employed. The results for varied relative velocity and impact angle were assembled in impact parameter-Weber number maps. With increasing dynamic viscosity a characteristic displacement of the regimes for the different collision scenarios was also observed for pure liquids similar to that observed for solutions. This

  7. On the Viscosity of Emulsions

    CERN Document Server

    Kroy, K; Djabourov, M; Kroy, Klaus; Capron, Isabelle; Djabourov, Madeleine

    1999-01-01

    Combining direct computations with invariance arguments, Taylor's constitutive equation for an emulsion can be extrapolated to high shear rates. We show that the resulting expression is consistent with the rigorous limits of small drop deformation and that it bears a strong similarity to an a priori unrelated rheological quantity, namely the dynamic (frequency dependent) linear shear response. More precisely, within a large parameter region the nonlinear steady-state shear viscosity is obtained from the real part of the complex dynamic viscosity, while the first normal stress difference is obtained from its imaginary part. Our experiments with a droplet phase of a binary polymer solution (alginate/caseinate) can be interpreted by an emulsion analogy. They indicate that the predicted similarity rule generalizes to the case of moderately viscoelastic constituents that obey the Cox-Merz rule.

  8. Research of intelligent substation merging unit calibration equipment

    Science.gov (United States)

    Shu, Zhan; Cai, Xia; Chen, Bo; Zhou, Ning; Su, Yongchun

    2017-05-01

    This paper analyzes the structure and principle of the merging unit. Considering the effect of merging unit device performance of metering device and electrical protection, determines the inspection items and technical indicators. Combined with the merging unit related performance detection technology and related standards and rules, the paper uses system integration technology and automatic control technology to studied synchronization method in a separate network and the operation of SV for IEEE1588. Merging unit field calibration device was developed with advantages of high quality, good performance, reliable, and the device was used for field testing at some intelligent substation merge cells, its validity was proved.

  9. Asymptotic Analysis of the Curved-Pipe Flow with a Pressure-Dependent Viscosity Satisfying Barus Law

    National Research Council Canada - National Science Library

    Pazanin, Igor

    2015-01-01

    .... The goal of this paper is to study the flow of incompressible fluid with a pressure-dependent viscosity through a curved pipe with an arbitrary central curve and constant circular cross section...

  10. Shear viscosity of nuclear matter

    CERN Document Server

    Magner, A G; Grygoriev, U V; Plujko, V A

    2016-01-01

    Shear viscosity $\\eta$ is calculated for the nuclear matter described as a system of interacting nucleons with the van der Waals (VDW) equation of state. The Boltzmann-Vlasov kinetic equation is solved in terms of the plane waves of the collective overdamped motion. In the frequent collision regime, the shear viscosity depends on the particle number density $n$ through the mean-field parameter $a$ which describes attractive forces in the VDW equation. In the temperature region $T=15\\div 40$~MeV, a ratio of the shear viscosity to the entropy density $s$ is smaller than 1 at the nucleon number density $n =(0.5\\div 1.5)\\,n^{}_0$, where $n^{}_0=0.16\\,$fm$^{-3}$ is the particle density of equilibrium nuclear matter at zero temperature. A minimum of the $\\eta/s$ ratio takes place somewhere in a vicinity of the critical point of the VDW system. Large values of $\\eta/s\\gg 1$ are however found in both the low density, $n\\ll n^{}_0$, and high density, $n>2n^{}_0$, regions. This makes the ideal hydrodynamic approach ina...

  11. Viscosity Index Improvers and Thickeners

    Science.gov (United States)

    Stambaugh, R. L.; Kinker, B. G.

    The viscosity index of an oil or an oil formulation is an important physical parameter. Viscosity index improvers, VIIs, are comprised of five main classes of polymers: polymethylmethacrylates (PMAs), olefin copolymers (OCPs), hydrogenated poly(styrene-co-butadiene or isoprene) (HSD/SIP/HRIs), esterified polystyrene-co-maleic anhydride (SPEs) and a combination of PMA/OCP systems. The chemistry, manufacture, dispersancy and utility of each class are described. The comparative functions, properties, thickening ability, dispersancy and degradation of VIIs are discussed. Permanent and temporary shear thinning of VII-thickened formulations are described and compared. The end-use performance and choice of VI improvers is discussed in terms of low- and high-temperature viscosities, journal bearing oil film thickness, fuel economy, oil consumption, high-temperature pumping efficiency and deposit control. Discussion of future developments concludes that VI improvers will evolve to meet new challenges of increased thermal-oxidative degradation from increased engine operating temperatures, different base stocks of either synthetic base oils or vegetable oil-based, together with alcohol- or vegetable oil-based fuels. VI improvers must also evolve to deal with higher levels of fuel dilution and new types of sludge and also enhanced low-temperature requirements.

  12. On the behavior of Kazhikov-Smagulov mass diffusion model for vanishing diffusion and viscosity coefficients

    Science.gov (United States)

    Araruna, F. D.; Braz e Silva, P.; Carvalho, R. R.; Rojas-Medar, M. A.

    2015-06-01

    We consider the motion of a viscous incompressible fluid consisting of two components with a diffusion effect obeying Fick's law in ℝ3. We prove that there exists a small time interval where the fluid variables converge uniformly as the viscosity and the diffusion coefficient tend to zero. In the limit, we find a non-homogeneous, non-viscous, incompressible fluid governed by an Euler-like system.

  13. Asymptotic Modeling of the Thin Film Flow with a Pressure-Dependent Viscosity

    Directory of Open Access Journals (Sweden)

    Eduard Marušić-Paloka

    2014-01-01

    Full Text Available We study the lubrication process with incompressible fluid taking into account the dependence of the viscosity on the pressure. Assuming that the viscosity-pressure relation is given by the well-known Barus law, we derive an effective model using asymptotic analysis with respect to the film thickness. The key idea is to conveniently transform the governing system and then apply two-scale expansion technique.

  14. Microrheology with Optical Tweezers: Measuring the solutions' relative viscosity at a glance

    CERN Document Server

    Del Giudice, Francesco; Greco, Francesco; Netti, Paolo Antonio; Maffettone, Pier Luca; Cooper, Jonathan M; Tassieri, Manlio

    2014-01-01

    We present a straightforward method for measuring the fluids' relative viscosity via a simple graphical analysis of the normalised position autocorrelation function of an optically trapped bead, without the need of embarking on laborious calculations. The advantages of the proposed microrheology method become evident, for instance, when it is adopted for measuring the molecular weight of rare or precious materials by means of their intrinsic viscosity. The proposed method has been validated by direct comparison with conventional bulk rheology methods.

  15. The Fate of Merging Neutron Stars

    Science.gov (United States)

    Kohler, Susanna

    2017-08-01

    A rapidly spinning, highly magnetized neutron star is one possible outcome when two smaller neutron stars merge. [Casey Reed/Penn State University]When two neutron stars collide, the new object that they make can reveal information about the interior physics of neutron stars. New theoretical work explores what we should be seeing, and what it can teach us.Neutron Star or Black Hole?So far, the only systems from which weve detected gravitational waves are merging black holes. But other compact-object binaries exist and are expected to merge on observable timescales in particular, binary neutron stars. When two neutron stars merge, the resulting object falls into one of three categories:a stable neutron star,a black hole, ora supramassive neutron star, a large neutron star thats supported by its rotation but will eventually collapse to a black hole after it loses angular momentum.Histograms of the initial (left) and final (right) distributions of objects in the authors simulations, for five different equations of state. Most cases resulted primarily in the formation of neutron stars (NSs) or supramassive neutron stars (sNSs), not black holes (BHs). [Piro et al. 2017]Whether a binary-neutron-star merger results in another neutron star, a black hole, or a supramassive neutron star depends on the final mass of the remnant and what the correct equation of state is that describes the interiors of neutron stars a longstanding astrophysical puzzle.In a recent study, a team of scientists led by Anthony Piro (Carnegie Observatories) estimated which of these outcomes we should expect for mergers of binary neutron stars. The teams results along with future observations of binary neutron stars may help us to eventually pin down the equation of state for neutron stars.Merger OutcomesPiro and collaborators used relativistic calculations of spinning and non-spinning neutron stars to estimate the mass range that neutron stars would have for several different realistic equations of

  16. On the helical pipe flow with a pressure-dependent viscosity

    Directory of Open Access Journals (Sweden)

    Igor Pažanin

    2014-01-01

    Full Text Available We address the flow of incompressible fluid with a pressure-dependent viscosity through a pipe with helical shape. The viscosity-pressure relation is defined by the Barus law. The thickness of the pipe and the helix step are assumed to be of the same order and considered as the small parameter. After transforming the starting problem, we compute the asymptotic solution using curvilinear coordinates and standard perturbation technique. The solution is provided in the explicit form clearly showing the influence of viscosity-pressure dependence and pipe's geometry on the effective flow.

  17. Effective shear viscosity and dynamics of suspensions of micro-swimmers at moderate concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, Lipnikov [Los Alamos National Laboratory; Gyrya, V [PENNSYLVANIA STATE UNIV.; Aronson, I [ANL; Berlyand, L [PENNSYLVANIA STATE UNIV.

    2009-01-01

    Recently, there have been a number of experimental studies suggesting that a suspension of self-propelled bacteria (microswimmers in general) may have an effective viscosity significantly smaller than the viscosity of the ambient fluid. This is in sharp contrast with suspensions of hard passive inclusions, whose presence always increases the viscosity. Here we present a 2D model for a suspension of microswimmers in a fluid and analyze it analytically in the dilute regime (no swimmer-swimmer interactions) and numerically using a Mimetic Finite Difference discretization. Our analysis shows that in the dilute regime the effective shear viscosity is not affected by self-propulsion. But at the moderate concentrations (due to swimmer-swimmer interactions) the effective viscosity decreases linearly as a function of the propulsion strength of the swimmers. These findings prove that (i) a physically observable decrease of viscosity for a suspension of self-propelled bacteria can be explained purely by hydrodynamic interactions and (ii) self-propulsion and interaction of swimmers are both essential to the reduction of the effective shear viscosity. We performed a number of numerical experiments analyzing the dynamics of swimmers resulting from pairwise interactions. The numerical results agree with the physically observed phenomena (e.g., attraction of swimmer to swimmer and swimmer to the wall). This is viewed as an additional validation of the model and the numerical scheme.

  18. Merging Thermal Plumes in the Indoor Environment

    DEFF Research Database (Denmark)

    Bjørn, Erik; Nielsen, Peter V.

    This experimental work deals with the basic problem of merging thermal plumes from heat sources situated in the vicinity of each other. No studies have been made yet of how close two heat sources must be to each other, before they can be considered as a single source with a cumulative heat effect......, and how far apart they must be to be considered separate. Also, it is not known how the flow field behaves in the intermediate fase, where the plumes are neither completely joined nor completely separate. A possible, very simple, solution of the velocity distribution between two plumes is to assume...

  19. Fabrication and Testing of Viscosity Measuring Instrument (Viscometer

    Directory of Open Access Journals (Sweden)

    A. B. HASSAN

    2006-01-01

    Full Text Available This paper presents the fabrication and testing of a simple and portable viscometer for the measurement of bulk viscosity of different Newtonian fluids. It is aimed at making available the instrument in local markets and consequently reducing or eliminating the prohibitive cost of importation. The method employed is the use of a D.C motor to rotate a disc having holes for infra-red light to pass through and fall on a photo-diode thus undergoing amplification and this signal being translated on a moving-coil meter as a deflection. The motor speed is kept constant but varies with changes in viscosity of the fluid during stirring, which alter signals being read on the meter. The faster is revolution per minute of the disc, the less the deflection on the meter and vise-versa. From the results of tests conducted on various sample fluids using data on standard Newtonian fluids as reliable guide the efficiency of the viscometer was 76.5%.

  20. Extension of Radiative Viscosity to Superfluid Matter

    Institute of Scientific and Technical Information of China (English)

    PI Chun-Mei; YANG Shu-Hua; ZHENG Xiao-Ping

    2011-01-01

    The radiative viscosity of superfluid npe matter is studied and it is found that to the lowest order of δμ/T,the ratio of radiative viscosity to bulk viscosity is the same as that of its normal matter.As one of the most important transport coefficients,the bulk viscosities of simple npe matter,of hyperon matter and even of quark matter,both in normal and superfluid states,have been extensively studied,[1-18] for more detail see Ref.[19].%The radiative viscosity of superfluid npe matter is studied and it is found that to the lowest order of δμ/T, the ratio of radiative viscosity to bulk viscosity is the same as that of its normal matter.

  1. Influence of Oil Viscosity on Alkaline Flooding for Enhanced Heavy Oil Recovery

    Directory of Open Access Journals (Sweden)

    Yong Du

    2013-01-01

    Full Text Available Oil viscosity was studied as an important factor for alkaline flooding based on the mechanism of “water drops” flow. Alkaline flooding for two oil samples with different viscosities but similar acid numbers was compared. Besides, series flooding tests for the same oil sample were conducted at different temperatures and permeabilities. The results of flooding tests indicated that a high tertiary oil recovery could be achieved only in the low-permeability (approximately 500 mD sandpacks for the low-viscosity heavy oil (Zhuangxi, 390 mPa·s; however, the high-viscosity heavy oil (Chenzhuang, 3450 mPa·s performed well in both the low- and medium-permeability (approximately 1000 mD sandpacks. In addition, the results of flooding tests for the same oil at different temperatures also indicated that the oil viscosity put a similar effect on alkaline flooding. Therefore, oil with a high-viscosity is favorable for alkaline flooding. The microscopic flooding test indicated that the water drops produced during alkaline flooding for oils with different viscosities differed significantly in their sizes, which might influence the flow behaviors and therefore the sweep efficiencies of alkaline fluids. This study provides an evidence for the feasibility of the development of high-viscosity heavy oil using alkaline flooding.

  2. Core merging and stratification following giant impact

    Science.gov (United States)

    Landeau, Maylis; Olson, Peter; Deguen, Renaud; Hirsh, Benjamin H.

    2016-10-01

    A stratified layer below the core-mantle boundary has long been suspected on the basis of geomagnetic and seismic observations. It has been suggested that the outermost core has a stratified layer about 100 km thick that could be due to the diffusion of light elements. Recent seismological evidence, however, supports a layer exceeding 300 km in thickness of enigmatic origin. Here we show from turbulent mixing experiments that merging between projectile and planetary core following a giant impact can lead to a stratified layer at the top of the core. Scaling relationships between post-impact core structure and projectile properties suggest that merging between Earth's protocore and a projectile core that is enriched in light elements and 20 times less massive can produce the thick stratification inferred from seismic data. Our experiments favour Moon-forming impact scenarios involving a projectile smaller than the proto-Earth and suggest that entrainment of mantle silicates into the protocore led to metal-silicate equilibration under extreme pressure-temperature conditions. We conclude that the thick stratified layer detected at the top of Earth's core can be explained as a vestige of the Moon-forming giant impact during the late stages of planetary accretion.

  3. Oscillatory relaxation of a merging galaxy cluster

    CERN Document Server

    Faltenbacher, A; Mathews, W G

    2006-01-01

    Within the cosmic framework clusters of galaxies are relatively young objects. Many of them have recently experienced major mergers. Here we investigate an equal mass merging event at z = ~0.6 resulting in a dark matter haloe of ~2.2 times 10^{14} Msol/h at z=0. The merging process is covered by 270 outputs of a high resolution cosmological N-body simulation performed with the ART (adaptive refinement tree) code. Some 2 Gyrs elapse between the first peri-centre passage of the progenitor cores and their final coalescence. During that phase the cores experience six peri-centre passages with minimal distances declining from ~30 to ~2 kpc/h. The time intervals between the peri-centre passages continuously decrease from 9 to 1 times 10^8 yrs. We follow the mean density, the velocity dispersion and the entropy of the two progenitors within a set of fixed proper radii (25, 50, 100, 250, 500, 1000 kpc/h). During the peri-centre passages we find sharp peaks of the mean densities within these radii, which exceed the su...

  4. Existence of the passage to the limit of inviscid fluid

    CERN Document Server

    Goldobin, Denis S

    2016-01-01

    With the dynamics of viscous fluid, the case of vanishing kinematic viscosity is actually the case of the Reynolds number tending to infinity. Hence, in the limit of vanishing viscosity the fluid flow is essentially turbulent. On the other hand, the Euler equation, which is conventionally adopted for description of flow of inviscid fluid, does not possess proper turbulent behaviour. The latter rises the question of existence of the passage to the limit of inviscid fluid for real low-viscosity fluids. To address this question, one should employ the theory of turbulent boundary layer near an inflexible boundary (e.g., rigid wall). On the basis of this theory, one can see how the solutions to the Euler equation become relevant for the description of flow of low-viscosity fluids, and obtain the small parameter quantifying accuracy of this description for real fluids.

  5. A mathematical model for the movement of food bolus of varying viscosities through the esophagus

    Science.gov (United States)

    Tripathi, Dharmendra

    2011-09-01

    This mathematical model is designed to study the influence of viscosity on swallowing of food bolus through the esophagus. Food bolus is considered as viscous fluid with variable viscosity. Geometry of esophagus is assumed as finite length channel and flow is induced by peristaltic wave along the length of channel walls. The expressions for axial velocity, transverse velocity, pressure gradient, volume flow rate and stream function are obtained under the assumptions of long wavelength and low Reynolds number. The impacts of viscosity parameter on pressure distribution, local wall shear stress, mechanical efficiency and trapping are numerically discussed with the help of computational results. On the basis of presented study, it is revealed that swallowing of low viscous fluids through esophagus requires less effort in comparison to fluids of higher viscosity. This result is similar to the experimental result obtained by Raut et al. [1], Dodds [2] and Ren et al. [3]. It is further concluded that the pumping efficiency increases while size of trapped bolus reduces when viscosity of fluid is high.

  6. The viscosity of dimethyl ether

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Jakobsen, Jørgen

    2007-01-01

    Dimethyl ether (DME) has been recognised as an excellent fuel for diesel engines for over one decade now. Engines fuelled by DME emit virtually no particulate matter even at low NOx levels. This is only possible in the case of diesel oil operation if expensive and efficient lowering particles...... for pressurisation in these methods. The results of the VFVM are consolidated by measurements of the viscosities of propane and butane: these agree with the outcome of measurements using a quartz crystal microbalance (QCM) a method that is supposedly less sensible than the Reynolds number....

  7. Pressure-drop viscosity measurements for gamma-Al2O nanoparticles in water and PG-water mixtures (nanofluids).

    Science.gov (United States)

    Lai, W Y; Phelan, P E; Prasher, R S

    2010-12-01

    Nanofluids have attracted wide attention because of their promising thermal applications. Compared with the base fluid, numerous experiments have generally indicated increases in effective thermal conductivity and convective heat transfer coefficient for suspensions having only a small amount of nanoparticles. It is also known that with the presence of nanoparticles, the viscosity of a nanofluid is greater than its base fluid and deviates from Einstein's classical prediction. However, only a few groups have reported nanofluid viscosity results to date. Therefore, relative viscosity data for gamma-Al2O3 nanoparticles in DI-water and propylene glycol/H2O mixtures are presented here based on pressure drop measurements of flowing nanofluids. Results indicate that with constant wall heat flux, the relative viscosities of nanofluid decrease with increasing volume flow rate. The results also show, based on Brenner's model, that the nanofluid viscosity can be explained in part by the aspect ratio of the aggregates.

  8. Dielectrowetting manipulation for digital microfluidics: creating, transporting, splitting, and merging of droplets.

    Science.gov (United States)

    Geng, Hongyao; Feng, Jian; Stabryla, Lisa Marie; Cho, Sung Kwon

    2017-03-14

    Generating, splitting, transporting, and merging droplets are fundamental and critical unit operations for digital (droplet-based) microfluidics. State-of-the-art digital microfluidics performs such operations commonly using electrowetting-on-dielectric (EWOD) in the typical configuration of two parallel channel plates. This paper presents such operations using dielectrowetting (derived from liquid dielectrophoresis), not EWOD, with an array of interdigitated electrodes. The major and unique feature is that the present droplet manipulations are effective for conductive (water with/without surfactant) and non-conductive (propylene carbonate) fluids. An equally important aspect is that the manipulations are performed in an open space without the covering top plate. This behavior is attributed to the intrinsic nature of dielectrowetting to generate stronger wetting forces than EWOD (with the ability to achieve complete wetting with contact angle = 0° to form a thin film). Using dielectrowetting, micro-droplets of various volumes are created from a large droplet and transported. Splitting a single droplet as well as multiple droplets and merging them are also achieved, even when the droplets are smaller than the electrode pads. The above splitting, transport, and merging operations are effective for propylene carbonate as well as DI water with/without surfactant, though the creating operation is proven only for propylene carbonate at this moment. All the above manipulations are successfully carried out on a single plate, which not only simplifies the structure and operation procedure, but could also eliminate the restriction to the volume of fluid handled.

  9. An estimate of the bulk viscosity of the hadronic medium

    CERN Document Server

    Sarwar, Golam; Alam, Jan-e

    2015-01-01

    The bulk viscosity of the hadronic medium within the ambit of the Hadron Resonance Gas (HRG) model approach including the Hagedorn density of states has been estimated. The HRG thermodynamics within a grand canonical ensemble provides the mean hadron number as well as its fluctuation. The fluctuation in the chemical composition of the hadronic medium in the grand canonical ensemble can result in non-zero divergence of the hadronic fluid flow velocity, allowing us to estimate the hadronic bulk viscosity $\\zeta$ upto a relaxation time. We study the influence of the hadronic spectrum on $\\zeta$ and find its correlation with the conformal symmetry breaking (CSB) measure, $\\epsilon-3P$. We estimate $\\zeta$ along the chemical freezeout curve and find that at FAIR energies $\\zeta/s$ can be enhanced by a factor of five as compared to LHC energies.

  10. Probing the shear viscosity of an active nematic film

    Science.gov (United States)

    Guillamat, Pau; Ignés-Mullol, Jordi; Shankar, Suraj; Marchetti, M. Cristina; Sagués, Francesc

    2016-12-01

    In vitro reconstituted active systems, such as the adenosine triphosphate (ATP)-driven microtubule bundle suspension developed by the Dogic group [T. Sanchez, D. T. Chen, S. J. DeCamp, M. Heymann, and Z. Dogic, Nature (London) 491, 431 (2012), 10.1038/nature11591], provide a fertile testing ground for elucidating the phenomenology of active liquid crystalline states. Controlling such novel phases of matter crucially depends on our knowledge of their material and physical properties. In this Rapid Communication, we show that the shear viscosity of an active nematic film can be probed by varying its hydrodynamic coupling to a bounding oil layer. Using the motion of disclinations as intrinsic tracers of the flow field and a hydrodynamic model, we obtain an estimate for the shear viscosity of the nematic film. Knowing this now provides us with an additional handle for robust and precision tunable control of the emergent dynamics of active fluids.

  11. Phantom dark energy as an effect of bulk viscosity

    CERN Document Server

    Velten, Hermano; Meng, Xinhe

    2013-01-01

    In a homogeneous and isotropic universe bulk viscosity is the unique viscous effect capable to modify the background dynamics. Effects like shear viscosity or heat conduction can only change the evolution of the perturbations. The existence of a bulk viscous pressure in a fluid, which in order to obey to the second law of thermodynamics is negative, reduces its effective pressure. We discuss in this study the degeneracy in bulk viscous cosmologies and address the possibility that phantom dark energy cosmology could be caused by the existence of non-equilibrium pressure in any cosmic component. We establish the conditions under which either matter or radiation viscous cosmologies can be mapped into the phantom dark energy scenario with constraints from multiple observational data-sets

  12. Area evolution, bulk viscosity and entropy principles for dynamical horizons

    CERN Document Server

    Gourgoulhon, E; Gourgoulhon, Eric; Jaramillo, Jose Luis

    2006-01-01

    We derive from Einstein equation an evolution law for the area of a trapping or dynamical horizon. The solutions to this differential equation show a causal behavior. Moreover, in a viscous fluid analogy, the equation can be interpreted as an energy balance law, yielding to a positive bulk viscosity. These two features contrast with the event horizon case, where the non-causal evolution of the area and the negative bulk viscosity require teleological boundary conditions. This reflects the local character of trapping horizons as opposed to event horizons. Interpreting the area as the entropy, we propose to use an area/entropy evolution principle to select a unique dynamical horizon and time slicing in the Cauchy evolution of an initial marginally trapped surface.

  13. Dark matter perturbations and viscosity: a causal approach

    CERN Document Server

    Acquaviva, Giovanni; Pénin, Aurélie

    2016-01-01

    The inclusion of dissipative effects in cosmic fluids modifies their clustering properties and could have observable effects on the formation of large scale structures. We analyse the evolution of density perturbations of cold dark matter endowed with causal bulk viscosity. The perturbative analysis is carried out in the Newtonian approximation and the bulk viscosity is described by the causal Israel-Stewart (IS) theory. In contrast to the non-causal Eckart theory, we obtain a third order evolution equation for the density contrast that depends on three free parameters. For certain parameter values, the density contrast and growth factor in IS mimic their behaviour in $\\Lambda$CDM when $z \\geq 1$. Interestingly, and contrary to intuition, certain sets of parameters lead to an increase of the clustering.

  14. Viscosity affected by nanoparticle aggregation in Al2O3-water nanofluids.

    Science.gov (United States)

    Duan, Fei; Kwek, Dingtian; Crivoi, Alexandru

    2011-03-22

    An investigation on viscosity was conducted 2 weeks after the Al2O3-water nanofluids having dispersants were prepared at the volume concentration of 1-5%. The shear stress was observed with a non-Newtonian behavior. On further ultrasonic agitation treatment, the nanofluids resumed as a Newtonian fluids. The relative viscosity increases as the volume concentrations increases. At 5% volume concentration, an increment was about 60% in the re-ultrasonication nanofluids in comparison with the base fluid. The microstructure analysis indicates that a higher nanoparticle aggregation had been observed in the nanofluids before re-ultrasonication.

  15. Viscosity and inertia in cosmic-ray transport - Effects of an average magnetic field

    Science.gov (United States)

    Williams, L. L.; Jokipii, J. R.

    1991-01-01

    A generalized transport equation is introduced which describes the transport and propagation of cosmic rays in a magnetized, collisionless medium. The equation is valid if the cosmic-ray distribution function is nearly isotropic in momentum, if the ratio of fluid speed to fluid-flow particle speed is small, and if the ratio of collision time to time for change in the macroscopic flow is small. Five independent cosmic-ray viscosity coefficients are found, and the ralationship of this viscosity to particle orbits in a magnetic field is presented.

  16. The tribological behaviour of different clearance MOM hip joints with lubricants of physiological viscosities.

    Science.gov (United States)

    Hu, X Q; Wood, R J K; Taylor, A; Tuke, M A

    2011-11-01

    Clearance is one of the most influential parameters on the tribological performance of metal-on-metal (MOM) hip joints and its selection is a subject of considerable debate. The objective of this paper is to study the lubrication behaviour of different clearances for MOM hip joints within the range of human physiological and pathological fluid viscosities. The frictional torques developed by MOM hip joints with a 50 mm diameter were measured for both virgin surfaces and during a wear simulator test. Joints were manufactured with three different diametral clearances: 20, 100, and 200 microm. The fluid used for the friction measurements which contained different ratios of 25 percent newborn calf serum and carboxymethyl cellulose (CMC) with the obtained viscosities values ranging from 0.001 to 0.71 Pa s. The obtained results indicate that the frictional torque for the 20 microm clearance joint remains high over the whole range of the viscosity values. The frictional torque of the 100 microm clearance joint was low for the very low viscosity (0.001 Pa s) lubricant, but increased with increasing viscosity value. The frictional torque of the 200 microm clearance joint was high at very low viscosity levels, however, it reduced with increasing viscosity. It is concluded that a smaller clearance level can enhance the formation of an elastohydrodynamic lubrication (EHL) film, but this is at the cost of preventing fluid recovery between the bearing surfaces during the unloaded phase of walking. Larger clearance bearings allow a better recovery of lubricant during the unloaded phase, which is necessary for higher viscosity lubricants. The selection of the clearance value should therefore consider both the formation of the EHL film and the fluid recovery as a function of the physiological viscosity in order to get an optimal tribological performance for MOM hip joints. The application of either 25 per cent bovine serum or water in existing in vitro tribological study should

  17. Drop Spreading with Random Viscosity

    Science.gov (United States)

    Xu, Feng; Jensen, Oliver

    2016-11-01

    Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.

  18. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana

    2013-10-15

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  19. Bulk viscosity-driven suppression of shear viscosity effects on the flow harmonics at RHIC

    CERN Document Server

    Noronha-Hostler, J; Grassi, F

    2014-01-01

    The interplay between shear and bulk viscosities on the flow harmonics, $v_n$'s, at RHIC is investigated using the newly developed relativistic 2+1 hydrodynamical code v-USPhydro that includes bulk and shear viscosity effects both in the hydrodynamic evolution and also at freeze-out. While shear viscosity is known to attenuate the flow harmonics, we find that the inclusion of bulk viscosity decreases the shear viscosity-induced suppression of the flow harmonics bringing them closer to their values in ideal hydrodynamical calculations. Depending on the value of the bulk viscosity to entropy density ratio, $\\zeta/s$, in the quark-gluon plasma, the bulk viscosity-driven suppression of shear viscosity effects on the flow harmonics may require a re-evaluation of the previous estimates of the shear viscosity to entropy density ratio, $\\eta/s$, of the quark-gluon plasma previously extracted by comparing hydrodynamic calculations to heavy ion data.

  20. Ultraviolet light-responsive photorheological fluids: as a new class of smart fluids

    Science.gov (United States)

    Cho, Min-Young; Kim, Ji-Sik; Choi, Hyoung Jin; Choi, Seung-Bok; Kim, Gi-Woo

    2017-05-01

    We present a comprehensive introduction to the photorheological (PR) fluids whose rheological behavior can be changed by ultraviolet (UV) light with a wavelength of 365 nm. When the PR fluid was exposed to UV light, the viscosity of the fluid decreased, while the viscosity recovered to its initial value when UV light was turned off, indicating that the viscosity of these types of fluids can be reversible and tunable by UV light. Contrary to conventional smart fluids, such as electrorheological and magnetorheological fluids, PR fluid does not suffer from a phase splitting problem because it exists in a single-phase solution. Additionally, the PR fluid does not require any contact component, such as electrodes, and electric wires that are essential components for conventional smart fluids. In this work, the PR fluids were synthesized by doping lecithin/sodium deoxycholate reverse micelles with a photo-chromic spiropyran compound. It is demonstrated that the viscosity changes of PR fluids can be induced by UV light, and their rheological properties are examined in detail. In addition, an example of tailoring rheological properties using photoluminescence was introduced for improved response time. One of the potential applications, such as microfluidic flow control using the PR fluids, is also briefly presented.

  1. Viscosity-Modification to Improve Remediation Efficiencies within Heterogeneous Contaminated Groundwater Aquifers: Laboratory and Field-Scale Evaluation

    Science.gov (United States)

    Silva, J. A.; Crimi, M.

    2013-12-01

    A key challenge in in situ groundwater remediation practice is achieving efficient contact between the injected remedial fluid and the target contamination in the presence of subsurface permeability heterogeneities. Even apparently small permeability contrasts can affect the delivery and subsurface distribution of injected remedial fluids, as a result of preferential flows, and reduce treatment effectiveness as a result of bypassing of contaminated media of lower permeability. Viscosity-modification is a technique that can be used to mitigate the effects of permeability heterogeneity and improve the delivery and distribution of remediation fluids during subsurface injection. Viscosity-modification involves increasing the viscosity of the injected fluid, and modifying the fluids rheological character in some cases. The increased viscosity provides a reduced fluid mobility condition within higher permeability media that, in turn, enhances the penetration of fluids into adjacent lower permeability media, improving the overall sweep efficiency within heterogeneous geomedia. Herein, we present the results of laboratory (two-dimensional flow tank) and numerical experiments that were designed to critically evaluate the utility of viscosity-modification for groundwater remediation application. Specifically, we will address the benefits and limitations of the approach and highlight the effect of system variables on the degree sweep efficiency improvement achievable. We also present the results of a recently completed Environmental Security Technology Certification Program (ESTCP) technology validation project in which viscosity-modification was applied to permanganate in situ chemical oxidation. Site selection criteria, implementation design considerations, and the long-term effects of viscosity-modified fluid treatments will be discussed.

  2. Modeling Flows Around Merging Black Hole Binaries

    Science.gov (United States)

    Centrella, Joan

    2008-01-01

    Coalescing massive black hole binaries are produced by the merger of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases in which the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a first step towards this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We report on the results of these initial simulations and discuss their likely importance for future hydrodynamical simulations.

  3. Merging Multiparty Protocols in Multiparty Choreographies

    Directory of Open Access Journals (Sweden)

    Fabrizio Montesi

    2013-02-01

    Full Text Available Choreography-based programming is a powerful paradigm for defining communication-based systems from a global viewpoint. A choreography can be checked against multiparty protocol specifications, given as behavioural types, that may be instantiated indefinitely at runtime. Each protocol instance is started with a synchronisation among the involved peers. We analyse a simple transformation from a choreography with a possibly unbounded number of protocol instantiations to a choreography instantiating a single protocol, which is the merge of the original ones. This gives an effective methodology for obtaining new protocols by composing existing ones. Moreover, by removing all synchronisations required for starting protocol instances, our transformation reduces the number of communications and resources needed to execute a choreography.

  4. Merging and energy exchange between optical filaments

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, D. A., E-mail: dgeorgieva@tu-sofia.bg [Faculty of Applied Mathematics and Computer Science, Technical University of Sofia, 8 Kliment Ohridski Blvd., 1000 Sofia (Bulgaria); Kovachev, L. M. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradcko Chaussee Blvd., 1784 Sofia (Bulgaria)

    2015-10-28

    We investigate nonlinear interaction between collinear femtosecond laser pulses with power slightly above the critical for self-focusing P{sub cr} trough the processes of cross-phase modulation (CPM) and degenerate four-photon parametric mixing (FPPM). When there is no initial phase difference between the pulses we observe attraction between pulses due to CPM. The final result is merging between the pulses in a single filament with higher power. By method of moments it is found that the attraction depends on the distance between the pulses and has potential character. In the second case we study energy exchange between filaments. This process is described through FPPM scheme and requests initial phase difference between the waves.

  5. U.S. begins merging satellite programs

    Science.gov (United States)

    Showstack, Randy

    The U.S. government has moved closer to merging and streamlining two separate environmental satellite programs operated by the Department of Defense (DOD) and the National Oceanic and Atmospheric Administration (NOAA).Earlier this month, the government installed the Integrated Polar Acquisition and Control Subsystem in a Commerce Department facility in Suitland, Maryland. Beginning next summer, the system will operate the two environmental satellites in DOD's Defense Meteorological Satellite Program. Under merger plans, NOAA will be responsible for operating the DOD satellite system as well as its own. The elimination of separate systems could save $678 million through fiscal year 1999, according to James Mannen, Director of the federal government's Integrated Program Office

  6. Merging Educational Finance Reform and Desegregation Goals

    Directory of Open Access Journals (Sweden)

    Deborah M. Kazal-Thresher

    1993-06-01

    Full Text Available Educational finance reforms and desegregation have both sought to address inequities in educational opportunities for minorities and low income families. The recent methods of addressing desegregation issues have tended to focus on attaining racial balance rather than educational quality, however. This paper explores how desegregation goals can be merged with educational finance reform to more systematically address educational quality in schools serving low income and minority populations. By moving toward centralized control over school financing, the inequity of school outcomes that are based on unequal school resources can be reduced. In addition, state determined expenditures when combined with desegregation monies, would meet the original intention of desegregation funds by clearly providing add-on monies for additional services for minority children, while at the same time, creating a better monitoring mechanism.

  7. An optimal merging technique for high-resolution precipitation products

    Directory of Open Access Journals (Sweden)

    Roshan Shrestha

    2011-12-01

    Full Text Available Precipitation products are currently available from various sources at higher spatial and temporal resolution than any time in the past. Each of the precipitation products has its strengths and weaknesses in availability, accuracy, resolution, retrieval techniques and quality control. By merging the precipitation data obtained from multiple sources, one can improve its information content by minimizing these issues. However, precipitation data merging poses challenges of scale-mismatch, and accurate error and bias assessment. In this paper we present Optimal Merging of Precipitation (OMP, a new method to merge precipitation data from multiple sources that are of different spatial and temporal resolutions and accuracies. This method is a combination of scale conversion and merging weight optimization, involving performance-tracing based on Bayesian statistics and trend-analysis, which yields merging weights for each precipitation data source. The weights are optimized at multiple scales to facilitate multiscale merging and better precipitation downscaling. Precipitation data used in the experiment include products from the 12-km resolution North American Land Data Assimilation (NLDAS system, the 8-km resolution CMORPH and the 4-km resolution National Stage-IV QPE. The test cases demonstrate that the OMP method is capable of identifying a better data source and allocating a higher priority for them in the merging procedure, dynamically over the region and time period. This method is also effective in filtering out poor quality data introduced into the merging process.

  8. Galaxy merging and the Fundamental Plane of elliptical galaxies

    CERN Document Server

    Nipoti, C; Ciotti, L; Nipoti, Carlo; Londrillo, Pasquale; Ciotti, Luca

    2001-01-01

    We present preliminary results of numerical simulations of dissipationless merging of stellar systems, aimed at exploring the consequences of merging between gas free, spheroidal systems. In particular, we study the dynamical and structural characteristics of hierarchical merging between equal mass stellar systems, and we compare the properties of the end-products with the most important structural and dynamical scaling relations obeyed by spheroids. In the explored hierarchy of four successive mergings we find that the FP tilt is marginally conserved, but both the Faber-Jackson and Kormendy relations are not conserved.

  9. Dark Viscous Fluid coupled with Dark Matter and future singularity

    CERN Document Server

    Sebastiani, Lorenzo

    2010-01-01

    We study effects of viscous fluid coupled with dark matter in our universe. We consider bulk viscosity in the cosmic fluid and we suppose the existence of a coupling between fluid and dark matter, in order to reproduce a stable de Sitter universe protected against future-time singularities. More general inhomogeneous fluids are studied related to future singularities.

  10. VISCOSITY DICTATES METABOLIC ACTIVITY of Vibrio ruber

    Directory of Open Access Journals (Sweden)

    Maja eBoric

    2012-07-01

    Full Text Available Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment.

  11. Fluid control structures in microfluidic devices

    Energy Technology Data Exchange (ETDEWEB)

    Mathies, Richard A.; Grover, William H.; Skelley, Alison; Lagally, Eric; Liu, Chung N.

    2017-05-09

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  12. Drop spreading with random viscosity

    CERN Document Server

    Xu, Feng

    2016-01-01

    We examine theoretically the spreading of a viscous liquid drop over a thin film of uniform thickness, assuming the liquid's viscosity is regulated by the concentration of a solute that is carried passively by the spreading flow. The solute is assumed to be initially heterogeneous, having a spatial distribution with prescribed statistical features. To examine how this variability influences the drop's motion, we investigate spreading in a planar geometry using lubrication theory, combining numerical simulations with asymptotic analysis. We assume diffusion is sufficient to suppress solute concentration gradients across but not along the film. The solute field beneath the bulk of the drop is stretched by the spreading flow, such that the initial solute concentration immediately behind the drop's effective contact lines has a long-lived influence on the spreading rate. Over long periods, solute swept up from the precursor film accumulates in a short region behind the contact line, allowing patches of elevated v...

  13. Shear Viscosity from Lattice QCD

    CERN Document Server

    Mages, Simon W; Fodor, Zoltán; Schäfer, Andreas; Szabó, Kálmán

    2015-01-01

    Understanding of the transport properties of the the quark-gluon plasma is becoming increasingly important to describe current measurements at heavy ion collisions. This work reports on recent efforts to determine the shear viscosity h in the deconfined phase from lattice QCD. The main focus is on the integration of the Wilson flow in the analysis to get a better handle on the infrared behaviour of the spectral function which is relevant for transport. It is carried out at finite Wilson flow time, which eliminates the dependence on the lattice spacing. Eventually, a new continuum limit has to be carried out which sends the new regulator introduced by finite flow time to zero. Also the non-perturbative renormalization strategy applied for the energy momentum tensor is discussed. At the end some quenched results for temperatures up to 4 : 5 T c are presented

  14. Hyperon bulk viscosity in strong magnetic fields

    CERN Document Server

    Sinha, Monika

    2008-01-01

    We study bulk viscosity in neutron star matter including $\\Lambda$ hyperons in the presence of quantizing magnetic fields. Relaxation time and bulk viscosity due to both the non-leptonic weak process involving $\\Lambda$ hyperons and the direct Urca (dUrca) process are calculated here. In the presence of a strong magnetic field, bulk viscosity coefficients are enhanced when protons, electrons and muons are populated in their respective zeroth Landau levels compared with the field free cases. The enhancement of bulk viscosity coefficient is larger for the dUrca case.

  15. The effects of viscosity on circumplanetary disks

    Institute of Scientific and Technical Information of China (English)

    De-Fu Bu; Hsien Shang; Feng Yuan

    2013-01-01

    The effects of viscosity on the circumplanetary disks residing in the vicinity of protoplanets are investigated through two-dimensional hydrodynamical simulations with the shearing sheet model.We find that viscosity can considerably affect properties of the circumplanetary disk when the mass of the protoplanet Mp (<) 33 M(⊙),where M(⊙) is the Earth's mass.However,effects of viscosity on the circumplanetary disk are negligibly small when the mass of the protoplanet Mp(>) 33 M(⊙).We find that when Mp(<) 33 M(⊙),viscosity can markedly disrupt the spiral structure of the gas around the planet and smoothly distribute the gas,which weakens the torques exerted on the protoplanet.Thus,viscosity can slow the migration speed of a protoplanet.After including viscosity,the size of the circumplanetary disk can be decreased by a factor of (>) 20%.Viscosity helps to transport gas into the circumplanetary disk from the differentially rotating circumstellar disk.The mass of the circumplanetary disk can be increased by a factor of 50% after viscosity is taken into account when Mp(<) 33 M(⊙).Effects of viscosity on the formation of planets and satellites are briefly discussed.

  16. Influence of Liquid Viscosity on Droplet Impingement on Superhydrophobic Surfaces

    CERN Document Server

    Pearson, John T; Webb, Brent W

    2010-01-01

    This fluid dynamics video describes droplet impingement experiments performed on superhydrophobic surfaces. When droplets of pure water are impinged upon superhydrophobic surfaces, a region of thin coherent jets are observed for Weber numbers between 5 and 15. Also, peripheral splashing is observed for Weber numbers above about 200. When the viscosity of the droplet is increased by mixing glycerol with the water, the thin jets are not observed and peripheral splashing is delayed somewhat. In the Weber number range where pure water droplets are observed to splash peripherally, the water/glycerol droplets are observed to have two-pronged jets.

  17. Growth rates of lava domes with respect to viscosity of magmas

    Directory of Open Access Journals (Sweden)

    I. Yokoyama

    2005-06-01

    Full Text Available In the discussion of lava dome formation, viscosity of magma plays an important role. Measurements of viscosity of magmas in field and laboratory are briefly summarized. The types of lava dome emplacements are classified into two, squeeze- and spine-type, by kinetic processes. The squeeze-type is the formation of a dome as a result of squeezes of magma through conduits and the latter is solidified magma forced to ascend by underlying fluid magma. An important parameter in the formation of such lava domes is their growth rates. Lava domes of squeeze-type are governed by the Hagen-Poiseuille Law which involves their viscosoties and other eruption parameters. At present, the real viscosity of magmas at the site of lava dome is still inaccessible. In order to avoid uncertainty in viscosity of magmas, a conception of «macroscopic viscosity» is proposed, which involves effects of chemical components, mainly SiO2 and volatile material, crystals and temperature, and their changes with time. Lava dome formations during the 20th century are briefly examined and their growth rates are estimated. The relationship between the growth rates and the SiO2 content of the magma is statistically studied, and the macroscopic viscosity is empirically expressed as a function of SiO2 content. The linearity between the two parameters is reasonably interpreted. This means that formation processes of lava domes are dominantly controlled by macroscopic viscosity of magma.

  18. Gas viscosity measurement with diamagnetic-levitation viscometer based on electromagnetically spinning system.

    Science.gov (United States)

    Shimokawa, Y; Matsuura, Y; Hirano, T; Sakai, K

    2016-12-01

    Utilizing a graphite-disk probe attached with a thin aluminum disk, we have developed a friction-free viscosity measurement system. The probe is levitated above a NdFeB magnet because of diamagnetic effect and rotated by an electromagnetically induced torque. The probe is absolutely free form mechanical friction, and therefore, the accurate measurements of the viscosity of gases can be achieved. To demonstrate the accuracy and sensitivity of our method, we measured the viscosity of 8 kinds of gases and its temperature change from 278 K to 318 K, and we confirmed a good agreement between the obtained values and literature values. This paper demonstrates that our method has the ability to measure the fluid viscosity in the order of μPa ⋅ s.

  19. The Effect of Variable Viscosities on Micropolar Flow of Two Nanofluids

    Science.gov (United States)

    Nadeem, S.; Ahmed, Z.; Saleem, S.

    2016-12-01

    A study of nanofluids is carried out that reveals the effect of rotational inertia and other physical parameters on the heat transfer and fluid flow. Temperature-dependent dynamic viscosity makes the microrotation viscosity parameter and the micro inertia density variant as well. The governing nonlinear partial differential equations are converted into a set of nonlinear ordinary differential equations by introducing suitable similarity transformations. These reduced nonlinear differential equations are then solved numerically by Keller-box method. The obtained numerical and graphical result discloses many interesting behaviour of nanofluids. It is seen that the temperature gradient decreases with the increase in viscosity parameter. Also, it is observed that with the fixed values of micropolar parameter and viscosity parameter, the velocity gradient near the wall increases with increasing values of solid particle volume fraction parameter. A suitable comparison of results is also presented in this study.

  20. Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities

    Energy Technology Data Exchange (ETDEWEB)

    Karanikas, John Michael; Vinegar, Harold J

    2014-03-04

    A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. A viscosity of one or more zones of the hydrocarbon layer is assessed. The heating rates in the zones are varied based on the assessed viscosities. The heating rate in a first zone of the formation is greater than the heating rate in a second zone of the formation if the viscosity in the first zone is greater than the viscosity in the second zone. Fluids are produced from the formation through the production wells.

  1. Crossover phenomena in non-Newtonian viscous fingers at a finite viscosity ratio

    Science.gov (United States)

    Nagatani, Takashi

    1990-04-01

    A viscous fingering of non-Newtonian fluids at a finite viscosity ratio is considered in order to study the effect of non-Newtonian fluid on crossover phenomena. The crossover from the fractal pattern to the dense structure is investigated by using a two-parameter position-space renormalization-group method. The global flow diagrams in two-parameter space are obtained. It is found that there are two nontrivial fixed points: the fractal point and the Eden point. When the viscosity ratio is finite, the pattern must eventually cross over to the dense structure. The dependences of the crossover phenomena on the parameter k, which describes the different non-Newtonian fluids, are shown. It is found that the non-Newtonian fluids have important effects on the fractal point and the crossover line but the crossover exponent is independent of the non-Newtonian property.

  2. A technique for evaluating the oil/heavy-oil viscosity changes under ultrasound in a simulated porous medium.

    Science.gov (United States)

    Hamidi, Hossein; Mohammadian, Erfan; Junin, Radzuan; Rafati, Roozbeh; Manan, Mohammad; Azdarpour, Amin; Junid, Mundzir

    2014-02-01

    Theoretically, Ultrasound method is an economical and environmentally friendly or "green" technology, which has been of interest for more than six decades for the purpose of enhancement of oil/heavy-oil production. However, in spite of many studies, questions about the effective mechanisms causing increase in oil recovery still existed. In addition, the majority of the mechanisms mentioned in the previous studies are theoretical or speculative. One of the changes that could be recognized in the fluid properties is viscosity reduction due to radiation of ultrasound waves. In this study, a technique was developed to investigate directly the effect of ultrasonic waves (different frequencies of 25, 40, 68 kHz and powers of 100, 250, 500 W) on viscosity changes of three types of oil (Paraffin oil, Synthetic oil, and Kerosene) and a Brine sample. The viscosity calculations in the smooth capillary tube were based on the mathematical models developed from the Poiseuille's equation. The experiments were carried out for uncontrolled and controlled temperature conditions. It was observed that the viscosity of all the liquids was decreased under ultrasound in all the experiments. This reduction was more significant for uncontrolled temperature condition cases. However, the reduction in viscosity under ultrasound was higher for lighter liquids compare to heavier ones. Pressure difference was diminished by decreasing in the fluid viscosity in all the cases which increases fluid flow ability, which in turn aids to higher oil recovery in enhanced oil recovery (EOR) operations. Higher ultrasound power showed higher liquid viscosity reduction in all the cases. Higher ultrasound frequency revealed higher and lower viscosity reduction for uncontrolled and controlled temperature condition experiments, respectively. In other words, the reduction in viscosity was inversely proportional to increasing the frequency in temperature controlled experiments. It was concluded that cavitation

  3. Responsible Student Affairs Practice: Merging Student Development and Quality Management.

    Science.gov (United States)

    Whitner, Phillip A.; And Others

    The merging of Total Quality Management (TQM) and Involvement Theory into a managerial philosophy can assist student affairs professionals with an approach for conducting work that improves student affairs practice. When merged or integrated, accountability can easily be obtained because the base philosophies of qualitative research, TQM, and…

  4. Learning to merge search results for efficient Distributed Information Retrieval

    NARCIS (Netherlands)

    Tjin-Kam-Jet, Kien; Hiemstra, Djoerd

    2010-01-01

    Merging search results from different servers is a major problem in Distributed Information Retrieval. We used Regression-SVM and Ranking-SVM which would learn a function that merges results based on information that is readily available: i.e. the ranks, titles, summaries and URLs contained in the

  5. Calculation of the effect of inertia on the dynamic viscosity of dilute emulsions in a pure straining motion

    NARCIS (Netherlands)

    Oosterbroek, M.; Tropper, R.; Mellema, J.

    1980-01-01

    The dynamic viscosity of a dilute emulsion is calculated for a pure straining motion. The emulsion consists of almost spherical drops of a Newtonian fluid immersed in another Newtonian fluid. The oscillating velocity field of the flow is derived from the Navier-Stokes equation, in which the linear

  6. Temperature-Dependent Conformations of Model Viscosity Index Improvers

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Uma Shantini; Cosimbescu, Lelia; Martini, Ashlie

    2015-05-01

    Lubricants are comprised of base oils and additives where additives are chemicals that are deliberately added to the oil to enhance properties and inhibit degradation of the base oils. Viscosity index (VI) improvers are an important class of additives that reduce the decline of fluid viscosity with temperature [1], enabling optimum lubricant performance over a wider range of operating temperatures. These additives are typically high molecular weight polymers, such as, but not limited to, polyisobutylenes, olefin copolymer, and polyalkylmethacrylates, that are added in concentrations of 2-5% (w/w). Appropriate polymers, when dissolved in base oil, expand from a coiled to an uncoiled state with increasing temperature [2]. The ability of VI additives to increase their molar volume and improve the temperature-viscosity dependence of lubricants suggests there is a strong relationship between molecular structure and additive functionality [3]. In this work, we aim to quantify the changes in polymer size with temperature for four polyisobutylene (PIB) based molecular structures at the nano-scale using molecular simulation tools. As expected, the results show that the polymers adopt more conformations at higher temperatures, and there is a clear indication that the expandability of a polymer is strongly influenced by molecular structure.

  7. A Study of Eddy Viscosity Coefficient in Numerical Tidal Simulation

    Institute of Scientific and Technical Information of China (English)

    陈永平; 雷智益

    2001-01-01

    Based on the fluid motion equations, the physical meaning of eddy viscosity coefficient and the rationality of theBoussinesq hypothesis are discussed in this paper. The effect of the coefficient on numerical stability is analyzed briefly.A semi-enclosed rectangular sea area, with an orthogonal spur dike, is applied in a 2-D numerical model to study the effect of horizontal eddy viscosity coefficient (AH). The computed result shows that AH has little influence on the tidal level and averaged flow velocity, but has obvious influence on the intensity and the range of return flow around near thespur dike. Correspondingly, a wind-driven current pool and an annular current are applied in a 3-D numerical modelrespectively to study the effect of vertical eddy viscosity coefficient (AV). The computed result shows that the absolute value of AV is inversely proportional to that of horizontal velocity, and the vertical gradient value of AV determines the ver-tical distribution of horizontal velocity. The distribution form of AV is theoretically recommended as a parabolic type, ofwhich the maximum value appears at 0.5 H.

  8. Viscosity scaling of fingering instability in finite slices with Korteweg stress

    CERN Document Server

    Pramanik, Satyajit

    2015-01-01

    We perform linear stability analyses (LSA) and direct numerical simulations (DNS) to investigate the influence of the dynamic viscosity on viscous fingering (VF) instability in miscible slices. Selecting the characteristic scales appropriately the importance of the magnitude of the dynamic viscosity of individual fluids on VF in miscible slice has been shown in the context of the transient interfacial tension. Further, we have confirmed this result for immiscible fluids and manifest the similarities between VF in immiscible and miscible slices with transient interfacial tension. In a more general setting, the findings of this letter will be very useful for multiphase viscous flow, in which the momentum balance equation contains an additional stress term free from the dynamic viscosity.

  9. Gyro-viscosity and linear dispersion relations in pair-ion magnetized plasmas

    CERN Document Server

    Kono, M

    2015-01-01

    A fluid theory has been developed by taking account of gyro-viscosity to study wave propagation characteristics in a homogeneous pair-ion magnetized plasma with a cylindrical symmetry. The exact dispersion relations derived by the Hankel-Fourier transformation are shown comparable with those observed in the experiment by Oohara and co-workers. The gyro-viscosity is responsible for the change in propagation characteristics of the ion cyclotron wave from forward to backward by suppressing the effect of the thermal pressure which normally causes the forward nature of dispersion. Although the experiment has been already explained by a kinetic theory by the present authors, the kinetic derivations are so involved because of exact particle orbits in phase space, finite Larmor radius effects, and higher order ion cyclotron resonances. The present fluid theory provides a simple and transparent structure to the dispersion relations since the gyro-viscosity is renormalized into the ion cyclotron frequency which itself ...

  10. Merging Knowledge Bases in Possibilistic Logic by Lexicographic Aggregation

    CERN Document Server

    Qi, Guilin; Liu, Weiru; Bell, David A

    2012-01-01

    Belief merging is an important but difficult problem in Artificial Intelligence, especially when sources of information are pervaded with uncertainty. Many merging operators have been proposed to deal with this problem in possibilistic logic, a weighted logic which is powerful for handling inconsistency and deal- ing with uncertainty. They often result in a possibilistic knowledge base which is a set of weighted formulas. Although possibilistic logic is inconsistency tolerant, it suers from the well-known "drowning effect". Therefore, we may still want to obtain a consistent possi- bilistic knowledge base as the result of merg- ing. In such a case, we argue that it is not always necessary to keep weighted informa- tion after merging. In this paper, we define a merging operator that maps a set of pos- sibilistic knowledge bases and a formula rep- resenting the integrity constraints to a clas- sical knowledge base by using lexicographic ordering. We show that it satisfies nine pos- tulates that generalize basic...

  11. Vortex formation by merging multiple trapped Bose-Einstein condensates

    Science.gov (United States)

    Weiler, Chad; Neely, Tyler; Scherer, David; Anderson, Brian

    2007-06-01

    We have experimentally studied the merging of three trapped Bose-Einstein condensates. We find that, depending on the rate of merging, the final single BEC may contain a single vortex core (for slow merging rates), or multiple cores (for fast merging rates). Similarly, a triple-well trap may initiate the formation of three isolated BECs, but if the barriers between the wells are weak enough, the condensates merge together during their growth; this process can also lead to the formation of vortices in the final BEC. We interpret both scenarios in terms of interference between the initial uncorrelated condensates with indeterminate relative phases. We will discuss the results and interpretation of this experiment (D.R. Scherer, C.N. Weiler, T.W. Neely, B.P. Anderson, cond-mat/0610187, to be published in Phys. Rev. Lett.).

  12. Best-first Model Merging for Hidden Markov Model Induction

    CERN Document Server

    Stolcke, A; Stolcke, Andreas; Omohundro, Stephen M.

    1994-01-01

    This report describes a new technique for inducing the structure of Hidden Markov Models from data which is based on the general `model merging' strategy (Omohundro 1992). The process begins with a maximum likelihood HMM that directly encodes the training data. Successively more general models are produced by merging HMM states. A Bayesian posterior probability criterion is used to determine which states to merge and when to stop generalizing. The procedure may be considered a heuristic search for the HMM structure with the highest posterior probability. We discuss a variety of possible priors for HMMs, as well as a number of approximations which improve the computational efficiency of the algorithm. We studied three applications to evaluate the procedure. The first compares the merging algorithm with the standard Baum-Welch approach in inducing simple finite-state languages from small, positive-only training samples. We found that the merging procedure is more robust and accurate, particularly with a small a...

  13. Determination of the vapour viscosities of refrigerant mixtures; Bestimmung der Dampfviskositaeten von Kaeltemittelgemischen

    Energy Technology Data Exchange (ETDEWEB)

    Mayinger, E.H.F. [Technische Univ. Muenchen (Germany). Lehrstuhl A fuer Thermodynamik; Nabizadeh, H. [Technische Univ. Muenchen (Germany). Lehrstuhl A fuer Thermodynamik

    1997-02-01

    The research project aimed at the determination of the viscosity of superheated and saturated vapours of the binary fluids R 410A and R 507 and the ternary fluids R 404A and R 407C. (HW) [Deutsch] Es ist das Ziel des Forschungsvorhabens, die Viskositaet gesaettigter und ueberhitzter Daempfe der binaeren Gemische R 410A und R 507, sowie der ternaeren Gemische R 404A und R 407C zu bestimmen. (HW)

  14. Reducing blood viscosity with magnetic fields.

    Science.gov (United States)

    Tao, R; Huang, K

    2011-07-01

    Blood viscosity is a major factor in heart disease. When blood viscosity increases, it damages blood vessels and increases the risk of heart attacks. Currently, the only method of treatment is to take drugs such as aspirin, which has, however, several unwanted side effects. Here we report our finding that blood viscosity can be reduced with magnetic fields of 1 T or above in the blood flow direction. One magnetic field pulse of 1.3 T lasting ~1 min can reduce the blood viscosity by 20%-30%. After the exposure, in the absence of magnetic field, the blood viscosity slowly moves up, but takes a couple of hours to return to the original value. The process is repeatable. Reapplying the magnetic field reduces the blood viscosity again. By selecting the magnetic field strength and duration, we can keep the blood viscosity within the normal range. In addition, such viscosity reduction does not affect the red blood cells' normal function. This technology has much potential for physical therapy.

  15. Comment on "The effect of variable viscosity on the flow and heat transfer on a continuous stretching surface"

    CERN Document Server

    Pantokratoras, A

    2007-01-01

    The problem of forced convection along an isothermal, constantly moving plate is a classical problem of fluid mechanics that has been solved for the first time in 1961 by Sakiadis (1961). Thereafter, many solutions have been obtained for different aspects of this class of boundary layer problems. Solutions have been appeared including mass transfer, varying plate velocity, varying plate temperature, fluid injection and fluid suction at the plate. The work by Hassanien (1997) belongs to the above class of problems, including a linearly varying velocity and the variation of fluid viscosity with temperature. The author obtained similarity solutions considering that viscosity varies as an inverse function of temperature. However, the Prandtl number, which is a function of viscosity, has been considered constant across the boundary layer. It has been already confirmed in the literature that the assumption of constant Prandtl number leads to unrealistic results (Pantokratoras, 2004, 2005). The objective of the pres...

  16. Helical propulsion in shear-thinning fluids

    CERN Document Server

    Gomez, Saul; Lauga, Eric; Zenit, Roberto

    2016-01-01

    Swimming microorganisms often have to propel in complex, non-Newtonian fluids. We carry out experiments with self-propelling helical swimmers driven by an externally rotating magnetic field in shear-thinning, inelastic fluids. Similarly to swimming in a Newtonian fluid, we obtain for each fluid a locomotion speed which scales linearly with the rotation frequency of the swimmer, but with a prefactor which depends on the power index of the fluid. The fluid is seen to always increase the swimming speed of the helix, up to 50% faster and thus the strongest of such type reported to date. The maximum relative increase for a fluid power index of around 0.6. Using simple scalings, we argue that the speed increase is not due to the local decrease of the flow viscosity around the helical filament but hypothesise instead that it originates from confinement-like effect due to viscosity stratification around the swimmer.

  17. Star Formation History In Merging Galaxies

    CERN Document Server

    Chien, Li-Hsin

    2009-01-01

    Galaxy interactions are known to trigger starbursts. Young massive star clusters formed in interacting galaxies and mergers may become young globular clusters. The ages of these clusters can provide clues about the timing of interaction-triggered events, and thus provide an important way to reconstruct the star formation history of merging galaxies. Numerical simulations of galaxy mergers can implement different star formation rules. For instance, star formation dependent on gas density or triggered by shocks, predicts significantly different star formation histories. To test the validity of these models, multi-object spectroscopy was used to map the ages of young star clusters throughout the bodies and tails of a series of galaxy mergers at different stages (Arp 256, NGC 7469, NGC 4676, Arp 299, IC 883 and NGC 2623). We found that the cumulative distribution of ages becomes shallower as the stage of merger advances. This result suggests a trend of cluster ages as a function of merger stage. In NGC 4676 we fo...

  18. Can low metallicity binaries avoid merging?

    CERN Document Server

    de Mink, S E; Pols, O R

    2007-01-01

    Rapid mass transfer in a binary system can drive the accreting star out of thermal equilibrium, causing it to expand. This can lead to a contact system, strong mass loss from the system and possibly merging of the two stars. In low metallicity stars the timescale for heat transport is shorter due to the lower opacity. The accreting star can therefore restore thermal equilibrium more quickly and possibly avoid contact. We investigate the effect of accretion onto main sequence stars with radiative envelopes with different metallicities. We find that a low metallicity (Z<0.001), 4 solar mass star can endure a 10 to 30 times higher accretion rate before it reaches a certain radius than a star at solar metallicity. This could imply that up to two times fewer systems come into contact during rapid mass transfer when we compare low metallicity. This factor is uncertain due to the unknown distribution of binary parameters and the dependence of the mass transfer timescale on metallicity. In a forthcoming paper we w...

  19. Existence and uniqueness for magnetohydrodynamic flows in pipes with viscosity dependent on the temperature

    Directory of Open Access Journals (Sweden)

    Giovanni Cimatti

    2009-04-01

    Full Text Available The steady motion of a viscous fluid in pipes of arbitrary cross-sections under a transverse magnetic field is studied, assuming that the viscosity and the electric and thermal conductivity are given functions of the temperature. Theorems of existence and uniqueness for the nonlinear elliptic system governing the problem are presented.

  20. Density and Viscosity Measurement of Diesel Fuels at Combined High Pressure and Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Carl Schaschke

    2013-07-01

    Full Text Available We report the measurement of the viscosity and density of various diesel fuels, obtained from British refineries, at elevated pressures up to 500 MPa and temperatures in the range 298 K to 373 K. The measurement and prediction procedures of fluid properties under high pressure conditions is of increasing interest in many processes and systems including enhanced oil recovery, automotive engine fuel injection, braking, and hydraulic systems. Accurate data and understanding of the fluid characteristic in terms of pressure, volume and temperature is required particularly where the fluid is composed of a complex mixture or blend of aliphatic or aromatic hydrocarbons. In this study, high pressure viscosity data was obtained using a thermostatically-controlled falling sinker-type high pressure viscometer to provide reproducible and reliable viscosity data based on terminal velocity sinker fall times. This was supported with density measurements using a micro-pVT device. Both high-pressure devices were additionally capable of illustrating the freezing points of the hydrocarbon mixtures. This work has, thus, provided data that can extend the application of mixtures of commercially available fuels and to test the validity of available predictive density and viscosity models. This included a Tait-style equation for fluid compressibility prediction. For complex diesel fuel compositions, which have many unidentified components, the approach illustrates the need to apply appropriate correlations, which require accurate knowledge or prediction of thermodynamic properties.

  1. Plasma Viscosity : A Risk Factor In Hypertension

    Directory of Open Access Journals (Sweden)

    Puniyani R. R

    1989-01-01

    Full Text Available Haemorrheological study on hypertension was done at Indian Institute of Technology Hospital, Bombay. Male population in the age groups of 35 to 60 years was screened for hypertension from February 1986 to February 1987. Out of 340 subjects examined, 44 hypertensive cases were found, who were investigated for blood viscosity profile and were compared with 45 controls. The parameters studied were plasma viscosity, whole blood viscosity, red cell aggregation, red cell deformability and haematocrit W.H.O. criteria of hypertension (HT was strictly adhered to (B.P. above 160/95 mm of Hg. When compared to control group, plasma viscosity and whole blood viscosity were elevated in freshly detected and uncontrolled hypertensives. Red cell aggregation and deformability were significantly altered in chronic hypertensives than in normal, but haematocrit was not affected in any group.

  2. Cosmic bulk viscosity through backreaction

    CERN Document Server

    Barbosa, Rodrigo M; Zimdahl, Winfried; Piattella, Oliver F

    2015-01-01

    We consider an effective viscous pressure as the result of a backreaction of inhomogeneities within Buchert's formalism. The use of an effective metric with a time-dependent curvature radius allows us to calculate the luminosity distance of the backreaction model. This quantity is different from its counterpart for a "conventional" spatially flat bulk viscous fluid universe. Both expressions are tested against the SNIa data of the Union2.1 sample with only marginally different results.

  3. Shear behavior of squalane and tetracosane under extreme confinement. III. Effect of confinement on viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.A.; Cochran, H.D.; Cummings, P.T. [Department of Chemical Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200 (United States)]|[Chemical Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6268 (United States)

    1997-12-01

    This study uses nonequilibrium molecular dynamics simulation to explore the rheology of confined liquid alkanes. Two alkanes that differ in molecular structural complexity are examined: tetracosane (C{sub 24}H{sub 50}), which is a linear alkane, and squalane (C{sub 30}H{sub 62}), which has six symmetrically placed methyl branches along a 24 carbon backbone. These model lubricants are confined between model walls that have short chains tethered to them, thus screening the wall details. This paper, the third of a three part series, compares the viscosities of the confined fluids to those of the bulk fluids. The alkanes are described by a well-documented potential model that has been shown to reproduce bulk experimental viscosity and phase equilibria measurements. Details of the simulation method, and structural information can be found in the preceding two papers of this series. The measured strain rates in these simulations range between 10{sup 8} and 10{sup 11} s{sup {minus}1}, which is typical of a number of practical applications. The confined fluids undergo extensive shear thinning, showing a power-law behavior. Comparison of results for the confined fluid to those for the bulk fluid reveal that, for the conditions examined, there is no difference between the bulk and confined viscosities for these alkanes. This observation is in contrast to experimental results at much lower strain rates (10{endash}10{sup 5} s{sup {minus}1}), which indicate the viscosities of the confined fluid to be much larger than the bulk viscosities. In making the comparison, we have carefully accounted for slip at the wall and have performed simulations of the bulk fluid at the same conditions of strain rate, temperature, and pressure as for the corresponding confined fluid. The viscosity is found to be independent of the wall spacing. The calculated power-law exponents are similar to experimentally observed values. We also note that the exponent increases with increasing density of the

  4. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, Katherine [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    be the cause of the viscosity reduction. The flow behavior of alumina particles in water and BECy is markedly different. Aqueous alumina suspensions are shear thinning at all alumina loadings and capable of 50 vol% loading before losing fluidity whereas BECy/alumina suspensions show Newtonian behavior up to 5 vol%, and above 5 vol% show shear thinning at all shear rates. Highly loaded suspensions (i.e. 20vol% alumina) exhibit shear thinning at low and moderate shear rates and shear thickening at higher shear rates. The maximum particle loading for a fluid suspension, in this case, appears to be about 20 vol%. The difference in the viscosity of these suspensions must be related to the solvent-particle interactions for each system. The reason is not exactly known, but there are some notable differences between BECy and water. Water molecules are {approx}0.28 nm in length and highly hydrogen bonded with a low viscosity (1 mPa's) whereas in the cyanate ester (BECy) system, the solvent molecule is about 1.2 nm, in the largest dimension, with surfaces of varied charge distribution throughout the molecule. The viscosity of the monomer is also reasonably low for organic polymer precursor, about 7 mPa's. Nanoparticles in water tend to agglomerate and form flocs which are broken with the shear force applied during viscosity measurement. The particle-particle interaction is very important in this system. In BECy, the particles appear to be well dispersed and not as interactive. The solvent-particle interaction appears to be most important. It is not known exactly how the alumina particles interact with the monomer, but NMR suggests hydrogen bonding. These hydrogen bonds between the particle and monomer could very well affect the viscosity. A conclusion that can be reached in this work is that the presence of hydroxyl groups on the surface of the alumina particles is significant and seems to affect the interactions between other particles and the solvent. Thus, the

  5. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, Katherine [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    be the cause of the viscosity reduction. The flow behavior of alumina particles in water and BECy is markedly different. Aqueous alumina suspensions are shear thinning at all alumina loadings and capable of 50 vol% loading before losing fluidity whereas BECy/alumina suspensions show Newtonian behavior up to 5 vol%, and above 5 vol% show shear thinning at all shear rates. Highly loaded suspensions (i.e. 20vol% alumina) exhibit shear thinning at low and moderate shear rates and shear thickening at higher shear rates. The maximum particle loading for a fluid suspension, in this case, appears to be about 20 vol%. The difference in the viscosity of these suspensions must be related to the solvent-particle interactions for each system. The reason is not exactly known, but there are some notable differences between BECy and water. Water molecules are {approx}0.28 nm in length and highly hydrogen bonded with a low viscosity (1 mPa's) whereas in the cyanate ester (BECy) system, the solvent molecule is about 1.2 nm, in the largest dimension, with surfaces of varied charge distribution throughout the molecule. The viscosity of the monomer is also reasonably low for organic polymer precursor, about 7 mPa's. Nanoparticles in water tend to agglomerate and form flocs which are broken with the shear force applied during viscosity measurement. The particle-particle interaction is very important in this system. In BECy, the particles appear to be well dispersed and not as interactive. The solvent-particle interaction appears to be most important. It is not known exactly how the alumina particles interact with the monomer, but NMR suggests hydrogen bonding. These hydrogen bonds between the particle and monomer could very well affect the viscosity. A conclusion that can be reached in this work is that the presence of hydroxyl groups on the surface of the alumina particles is significant and seems to affect the interactions between other particles and the solvent. Thus, the

  6. Viscosity of carbonate-rich melts under different oxygen fugacity conditions

    Science.gov (United States)

    Di Genova, Danilo; Hess, Kai-Uwe; Cimarelli, Corrado; Dingwell, Donald B.

    2015-04-01

    Viscosity is a fundamental property of many materials and its changes affects the fluid dynamics of natural system as well as industrial processes. The mobility of carbonatitic melts, which are carbonate-rich and very fluid melts, has attracted renewed interest in both earth science and industry. In fact, these melts are considered the main transport agent of carbon from the mantle to the crust and may be intimately linked to the generation of kimberlites. At the same time lithium, potassium and sodium carbonate are used as electrolytes in molten carbonate fuel cells which operate at high temperatures (~650° C) for the production of electricity without CO2 emissions. Accurate measurement of the transport property (i.e. viscosity) of carbonatitic melts is a priority in order to understand the carbonatite mobility and reaction rates. Additionally, obtaining accurate viscosity measurements of such low viscosity melts is however an experimental challenge due to volatility, very low torques and chemical melt instability in the viscometer. To overcome these limitations we have customized a Modular Compact Rheometer (MCR 502 from Anton Paar) ad hoc equipped with 2 narrow gap concentric-cylinder geometries of steel and Pt-Au. The rheometer is characterized by an air-bearing-supported synchronous motor with torque ranging between 0.01 μNm and 230 mNm (resolution of 0.1 nNm), achieving very low viscosity measurements in the order of mPa s, temperatures up to 1000° C and shear rates ranging between 1 and 100 sec-1. These experimental conditions well match the temperature-viscosity-shear rate window relevant for carbonate melts. Here we present the calibration of the rheometer and the results of a rheological characterization study on a series of very low viscous synthetic and natural carbonatitic melts at different oxygen fugacity (air and CO2 saturated atmosphere). Viscosity measurements on carbonate melts have been performed in the temperature range between ~650 and 1000

  7. Evaluation of the impact of viscosity, injection volume, and injection flow rate on subcutaneous injection tolerance

    Directory of Open Access Journals (Sweden)

    Berteau C

    2015-11-01

    Full Text Available Cecile Berteau,1 Orchidée Filipe-Santos,1 Tao Wang,2 Humberto E Rojas,2 Corinne Granger,1 Florence Schwarzenbach1 1Becton-Dickinson Medical Pharmaceutical Systems, Le Pont de Claix, France; 2Eli Lilly and Company, Indianapolis, IN, USA Aim: The primary objective of this study was to evaluate the impact of fluid injection viscosity in combination with different injection volumes and flow rates on subcutaneous (SC injection pain tolerance. Methods: The study was a single-center, comparative, randomized, crossover, Phase I study in 24 healthy adults. Each participant received six injections in the abdomen area of either a 2 or 3 mL placebo solution, with three different fluid viscosities (1, 8–10, and 15–20 cP combined with two different injection flow rates (0.02 and 0.3 mL/s. All injections were performed with 50 mL syringes and 27G, 6 mm needles. Perceived injection pain was assessed using a 100 mm visual analog scale (VAS (0 mm/no pain, 100 mm/extreme pain. The location and depth of the injected fluid was assessed through 2D ultrasound echography images. Results: Viscosity levels had significant impact on perceived injection pain (P=0.0003. Specifically, less pain was associated with high viscosity (VAS =12.6 mm than medium (VAS =16.6 mm or low (VAS =22.1 mm viscosities, with a significant difference between high and low viscosities (P=0.0002. Target injection volume of 2 or 3 mL was demonstrated to have no significant impact on perceived injection pain (P=0.89. Slow (0.02 mL/s or fast (0.30 mL/s injection rates also showed no significant impact on perceived pain during SC injection (P=0.79. In 92% of injections, the injected fluid was located exclusively in SC tissue whereas the remaining injected fluids were found located in SC and/or intradermal layers. Conclusion: The results of this study suggest that solutions of up to 3 mL and up to 15–20 cP injected into the abdomen within 10 seconds are well tolerated without pain. High

  8. Comparative evaluation of aqueous humor viscosity.

    Science.gov (United States)

    Davis, Kyshia; Carter, Renee; Tully, Thomas; Negulescu, Ioan; Storey, Eric

    2015-01-01

    To evaluate aqueous humor viscosity in the raptor, dog, cat, and horse, with a primary focus on the barred owl (Strix varia). Twenty-six raptors, ten dogs, three cats, and one horse. Animals were euthanized for reasons unrelated to this study. Immediately, after horizontal and vertical corneal dimensions were measured, and anterior chamber paracentesis was performed to quantify anterior chamber volume and obtain aqueous humor samples for viscosity analysis. Dynamic aqueous humor viscosity was measured using a dynamic shear rheometer (AR 1000 TA Instruments, New Castle, DE, USA) at 20 °C. Statistical analysis included descriptive statistics, unpaired t-tests, and Tukey's test to evaluate the mean ± standard deviation for corneal diameter, anterior chamber volume, and aqueous humor viscosity amongst groups and calculation of Spearman's coefficient for correlation analyses. The mean aqueous humor viscosity in the barred owl was 14.1 centipoise (cP) ± 9, cat 4.4 cP ± 0.2, and dog 2.9 cP ± 1.3. The aqueous humor viscosity for the horse was 1 cP. Of the animals evaluated in this study, the raptor aqueous humor was the most viscous. The aqueous humor of the barred owl is significantly more viscous than the dog (P humor viscosity of the raptor, dog, cat, and horse can be successfully determined using a dynamic shear rheometer. © 2014 American College of Veterinary Ophthalmologists.

  9. A Study of Oil Viscosity Mental Model

    Science.gov (United States)

    Albaiti; Liliasari; Sumarna, Omay; Abdulkadir Martoprawiro, Muhamad

    2017-02-01

    There is no study regarding on how to learn viscosity of the liquid (e.g. oil) by interconnecting macroscopic, sub-microscopic and symbolic levels. Therefore, the purpose of this research was to study the mental model of the oil viscosity. Intermolecular attractive force of oil constituent on the sub-microscopic level is depicted in the form of mental models. In this research, the viscosity data for some types of oil was measured by using Hoppler method. Viscosity of mineral oil SAE 20W-50, mineral oil SAE 15W-40 and synthetic oil SAE 10W-40 were 1.75, 1.31, and 1.03 Pa s, and the densities of these oils were 908.64, 885.04, and 877.02 kg/m3, respectively. The results showed that the greater density of the mineral oil that is assumed to be composed of linear chains of hydrocarbons, the longer the chain of hydrocarbon linear. Consequently, there are stronger the London force and greater the oil viscosity. The density and viscosity of synthetic oil are lower than that of both mineral oils. Synthetic oil structurally forms polymers with large branching. This structure affects a lower synthetic oil viscosity. This study contributes to construct a mental model of pre-service chemistry teachers.

  10. Controlling inclusive cross sections in parton shower + matrix element merging

    Energy Technology Data Exchange (ETDEWEB)

    Plaetzer, Simon

    2012-11-15

    We propose an extension of matrix element plus parton shower merging at tree level to preserve inclusive cross sections obtained from the merged and showered sample. Implementing this constraint generates approximate next-to-leading order (NLO) contributions similar to the LoopSim approach. We then show how full NLO, or in principle even higher order, corrections can be added consistently, including constraints on inclusive cross sections to account for yet missing parton shower accuracy at higher logarithmic order. We also show how NLO accuracy below the merging scale can be obtained.

  11. Two-dimensional assignment with merged measurements using Langrangrian relaxation

    Science.gov (United States)

    Briers, Mark; Maskell, Simon; Philpott, Mark

    2004-01-01

    Closely spaced targets can result in merged measurements, which complicate data association. Such merged measurements violate any assumption that each measurement relates to a single target. As a result, it is not possible to use the auction algorithm in its simplest form (or other two-dimensional assignment algorithms) to solve the two-dimensional target-to-measurement assignment problem. We propose an approach that uses the auction algorithm together with Lagrangian relaxation to incorporate the additional constraints resulting from the presence of merged measurements. We conclude with some simulated results displaying the concepts introduced, and discuss the application of this research within a particle filter context.

  12. Viscosity studies of water based magnetite nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Anu, K.; Hemalatha, J. [Advanced Materials Lab, Department of Physics, National Institute of Technology, Tiruchirappalli, Tamilnadu, India – 620015 (India)

    2016-05-23

    Magnetite nanofluids of various concentrations have been synthesized through co-precipitation method. The structural and topographical studies made with the X-Ray Diffractometer and Atomic Force Microscope are presented in this paper. The density and viscosity studies for the ferrofluids of various concentrations have been made at room temperature. The experimental viscosities are compared with theoretical values obtained from Einstein, Batchelor and Wang models. An attempt to modify the Rosensweig model is made and the modified Rosensweig equation is reported. In addition, new empirical correlation is also proposed for predicting viscosity of ferrofluid at various concentrations.

  13. Intrinsic viscosity of a suspension of cubes

    KAUST Repository

    Mallavajula, Rajesh K.

    2013-11-06

    We report on the viscosity of a dilute suspension of cube-shaped particles. Irrespective of the particle size, size distribution, and surface chemistry, we find empirically that cubes manifest an intrinsic viscosity [η]=3.1±0.2, which is substantially higher than the well-known value for spheres, [η]=2.5. The orientation-dependent intrinsic viscosity of cubic particles is determined theoretically using a finite-element solution of the Stokes equations. For isotropically oriented cubes, these calculations show [η]=3.1, in excellent agreement with our experimental observations. © 2013 American Physical Society.

  14. Bare Shear Viscosity and Anomalous Fall Rate of Oil Droplets in Nitrogen

    Science.gov (United States)

    Varley, Rodney

    2011-11-01

    Experimental evidence of Kim and Fedele (1982) indicates a breakdown of the Millikan Law for the fall rate of oil droplets in Nitrogen gas over a pressure range of 1-15 atm. The discrepancy is most pronounced for smallest, 0.1 micron radius droplets for which the fall rate increases with pressure. The opposite behavior was observed by Millikan with larger drops in air of pressure at most one atm. We explain these results by arguing that the particle's motion, in particular Stokes' drag formula, is determined by the so-called bare shear viscosity which applies to micro fluid flows. This is in contrast with the usual theory which uses a renormalized shear viscosity and which is well approximated by the Enskog value. A mode coupling formula for the bare shear viscosity is discussed and a graphical comparison is made with the experimental results. Basically an increase in gas pressure produces a decrease in the bare shear viscosity and thus the fall rate increases. The idea that the shear viscosity is smaller for micro flows is consistent with the intuitive belief that on small enough spatial and time scales, fluid flows are conservative without dissipation.

  15. Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids.

    Science.gov (United States)

    Pastoriza-Gallego, María José; Lugo, Luis; Legido, José Luis; Piñeiro, Manuel M

    2011-03-15

    The dispersion and stability of nanofluids obtained by dispersing Al2O3 nanoparticles in ethylene glycol have been analyzed at several concentrations up to 25% in mass fraction. The thermal conductivity and viscosity were experimentally determined at temperatures ranging from 283.15 K to 323.15 K using an apparatus based on the hot-wire method and a rotational viscometer, respectively. It has been found that both thermal conductivity and viscosity increase with the concentration of nanoparticles, whereas when the temperature increases the viscosity diminishes and the thermal conductivity rises. Measured enhancements on thermal conductivity (up to 19%) compare well with literature values when available. New viscosity experimental data yield values more than twice larger than the base fluid. The influence of particle size on viscosity has been also studied, finding large differences that must be taken into account for any practical application. These experimental results were compared with some theoretical models, as those of Maxwell-Hamilton and Crosser for thermal conductivity and Krieger and Dougherty for viscosity.

  16. A new and reliable model for predicting methane viscosity at high pressures and high temperatures

    Institute of Scientific and Technical Information of China (English)

    Ehsan Heidaryan; Jamshid Moghadasi; Amir Salarabadi

    2010-01-01

    In recent years,there has been an increase of interest in the flow of gases at relatively high pressures and high temperatures.Hydrodynamic calculation of the energy losses in the flow of gases in conduits,as well as through the porous media constituting natural petroleum reservoirs,requires knowledge of the viscosity of the fluid at the pressure and temperature involved.Although there are numerous publications concerning the viscosity of methane at atmospheric pressure,there appears to be little information available relating to the effect of pressure and temperature upon the viscosity.A survey of the literature reveals that the disagreements between published data on the viscosity of methane are common and that most investigations have been conducted over restricted temperature and pressure ranges.Experimental viscosity data for methane are presented for temperatures from 320 to 400 K and pressures from 3000 to 140000 kPa by using falling body viscometer.A summary is given to evaluate the available data for methane,and a comparison is presented for that data common to the experimental range reported in this paper.A new and reliable correlation for methane gas viscosity is presented.Predicted values are given for temperatures up to 400 K and pressures up to 140000 kPa with Average Absolute Percent Relative Error(EABS)of 0.794.

  17. Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids

    Science.gov (United States)

    Pastoriza-Gallego, María José; Lugo, Luis; Legido, José Luis; Piñeiro, Manuel M.

    2011-12-01

    The dispersion and stability of nanofluids obtained by dispersing Al2O3 nanoparticles in ethylene glycol have been analyzed at several concentrations up to 25% in mass fraction. The thermal conductivity and viscosity were experimentally determined at temperatures ranging from 283.15 K to 323.15 K using an apparatus based on the hot-wire method and a rotational viscometer, respectively. It has been found that both thermal conductivity and viscosity increase with the concentration of nanoparticles, whereas when the temperature increases the viscosity diminishes and the thermal conductivity rises. Measured enhancements on thermal conductivity (up to 19%) compare well with literature values when available. New viscosity experimental data yield values more than twice larger than the base fluid. The influence of particle size on viscosity has been also studied, finding large differences that must be taken into account for any practical application. These experimental results were compared with some theoretical models, as those of Maxwell-Hamilton and Crosser for thermal conductivity and Krieger and Dougherty for viscosity.

  18. Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids

    Directory of Open Access Journals (Sweden)

    Pastoriza-Gallego María

    2011-01-01

    Full Text Available Abstract The dispersion and stability of nanofluids obtained by dispersing Al2O3 nanoparticles in ethylene glycol have been analyzed at several concentrations up to 25% in mass fraction. The thermal conductivity and viscosity were experimentally determined at temperatures ranging from 283.15 K to 323.15 K using an apparatus based on the hot-wire method and a rotational viscometer, respectively. It has been found that both thermal conductivity and viscosity increase with the concentration of nanoparticles, whereas when the temperature increases the viscosity diminishes and the thermal conductivity rises. Measured enhancements on thermal conductivity (up to 19% compare well with literature values when available. New viscosity experimental data yield values more than twice larger than the base fluid. The influence of particle size on viscosity has been also studied, finding large differences that must be taken into account for any practical application. These experimental results were compared with some theoretical models, as those of Maxwell-Hamilton and Crosser for thermal conductivity and Krieger and Dougherty for viscosity.

  19. Effects of a carbohydrate-electrolyte beverage on blood viscosity after dehydration in healthy adults

    Institute of Scientific and Technical Information of China (English)

    CHANG Cui-qing; CHEN Yan-bo; CHEN Zhi-min; ZHANG Lan-tao

    2010-01-01

    Background The consumption of carbohydrate-electrolyte beverages (CEs) has been known to be more effective than plain water for recovery from dehydration. This phenomenon suggests that the ingestion of CEs after dehydration is better than water for maintaining body fluid and plasma volume, and for the recovery from hemoconcentration and high blood viscosity as well. High blood viscosity causes infarction and other cardiovascular events. In this study, CE was compared with water and tea for the ability to reduce increased blood viscosity after dehydration.Methods A crossover random control study was conducted to assess the effectiveness of three beverages for rehydration and decreasing of blood viscosity. Following exercise-induced dehydration of 2.2% of body weight in a permanent warm environment, 10 male subjects rested in a thermoneutral environment for 3 hours (rehydration period,REP). The subjects ingested test beverages equal to their body weight loss during the first 20 minutes in REP. Blood and urine samples were obtained throughout the experiments to assess the rehydration effect.rate was significantly greater for CE ((77.0+3.9)%) than water ((61.2±3.4)%) and tea ((60.5±3.7)%) for 3 hours of rest in REP.Conclusions The recovery from high blood viscosity induced by dehydration was higher with CE consumption than with water or tea. These results suggest that CE is useful for normalizing increased blood viscosity due to exercise-induced dehydration.

  20. The bound on viscosity and the generalized second law of thermodynamics

    CERN Document Server

    Fouxon, Itzhak; Bekenstein, Jacob D

    2007-01-01

    We describe a new paradox for ideal fluids. It arises in the accretion of an \\textit{ideal} fluid onto a black hole, where, under suitable boundary conditions, the flow can violate the generalized second law of thermodynamics. The paradox indicates that there is in fact a lower bound to the correlation length of any \\textit{real} fluid, the value of which is determined by the thermodynamic properties of that fluid. We observe that the universal bound on entropy, itself suggested by the generalized second law, puts a lower bound on the correlation length of any fluid in terms of its specific entropy. With the help of a new, efficient estimate for the viscosity of liquids, we argue that this also means that viscosity is bounded from below in a way reminiscent of the conjectured Kovtun-Son-Starinets lower bound on the ratio of viscosity to entropy density. We conclude that much light may be shed on the Kovtun-Son-Starinets bound by suitable arguments based on the generalized second law.

  1. The Effect of Viscosity on Performance of a Low Specific Speed Centrifugal Pump

    Directory of Open Access Journals (Sweden)

    Rouhollah Torabi

    2016-01-01

    Full Text Available Centrifugal pump delivery head and flow rate drop effectively during the pumping of viscous fluids. Several methods and correlations have been developed to predict reduction rate in centrifugal pump performance when handling viscous fluids, but their results are not in very good agreement with each other. In this study, a common industrial low specific speed pump, which is extensively used in different applications, is studied. The entire pump, including impeller, volute, pipes, front and rear sidewall gaps, and balance holes, is simulated in Computational Fluid Dynamics and 3D full Navier Stokes equations are solved. CFD results are compared with experimental data such as pump performance curves, static pressure in casing, and disk friction loss. Dimensionless angular velocity and leakage rate are investigated in sidewall gap and efficiency variation due to viscosity is studied. The results demonstrate that the behavior of the fluid in sidewall gap is strictly sensitive to viscosity. Increasing viscosity improves the volumetric efficiency by reducing internal leakage through wear rings and balance holes, causing, however, a significant fall in the disk and overall efficiency. Results lead to some recommendations for designing centrifugal pumps which may be used in transferring viscous fluids.

  2. Measurement of the viscosity-density product using multiple reflections of ultrasonic shear horizontal waves.

    Science.gov (United States)

    Greenwood, Margaret S; Adamson, Justus D; Bond, Leonard J

    2006-12-22

    We have developed an on-line computer-controlled sensor, based on ultrasound reflection measurements, to determine the product of the viscosity and density of a liquid or slurry for Newtonian fluids and the shear impedance of the liquid for non-Newtonian fluids. A 14 MHz shear wave transducer is bonded to one side of a 45-90 degrees fused silica wedge and the base is in contract with the liquid. Twenty-eight echoes were observed due to the multiple reflections of an ultrasonic shear horizontal (SH) wave within the wedge. The fast Fourier transform of each echo was obtained for a liquid and for water, which serves as the calibration fluid, and the reflection coefficient at the solid-liquid interface was obtained. Data were obtained for 11 sugar water solutions ranging in concentration from 10% to 66% by weight. The viscosity values are shown to be in good agreement with those obtained independently using a laboratory viscometer. The data acquisition time is 14s and this can be reduced by judicious selection of the echoes for determining the reflection coefficient. The measurement of the density results in a determination of the viscosity for Newtonian fluids or the shear wave velocity for non-Newtonian fluids. The sensor can be deployed for process control in a pipeline, with the base of the wedge as part of the pipeline wall, or immersed in a tank.

  3. Ultrasound rays in droplets: The role of viscosity and caustics in acoustic streaming

    DEFF Research Database (Denmark)

    Bruus, Henrik

    2017-01-01

    When an acoustic wave propagates through a viscous fluid, it progressively transfers momentum to the fluid through viscous dissipation, which results in the formation of a steady vortical flow called acoustic streaming. Although spawned by viscous effects, the magnitude of the streaming does...... not depend on the viscosity in most simple geometries. However, viscosity has a profound influence on the acoustic streaming as demonstrated by Riaud et al. (J. Fluid Mech., vol. 821, 2017, pp. 384-420) in their study of sessile mm-sized water-glycerol droplets placed on a piezoelectric substrate with a 20......-MHz ultrasound surface acoustic wave propagating along its surface. A detailed experimental and numerical analysis reveals that streaming dynamics is driven by a few ultrasound ray caustics inside the droplet....

  4. Raman Lidar MERGE Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, Rob [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Goldsmith, John [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sivaraman, Chitra [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-15

    combined (or merged) into a single signal with improved dynamic range. The process of combining the analog and photon counting data has become known as “gluing” (Whiteman et al., 2006).

  5. Runaway Merging of Black Holes Analytical Constraint on the Timescale

    CERN Document Server

    Mouri, H

    2002-01-01

    Following the discovery of a black hole (BH) with a mass of 10^3-10^6 M(sun) in a starburst galaxy M82, we study formation of such a BH via successive merging of stellar-mass BHs within a star cluster. The merging has a runaway characteristic. This is because massive BHs sink into the cluster core and have a high number density, and because the merging probability is higher for more massive BHs. We use the Smoluchowski equation to study analytically the evolution of the BH mass distribution. Under favorable conditions, which are expected for some star clusters in starburst galaxies, the timescale of the runaway merging is at most of order 10^7 yr. This is short enough to account for the presence of a BH heavier than 10^3 M(sun) in an ongoing starburst region.

  6. 2013 NOAA Coastal California TopoBathy Merge Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project merged recently collected topographic, bathymetric, and acoustic elevation data along the entire California coastline from approximately the 10 meter...

  7. 2013 NOAA Coastal California TopoBathy Merge Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project merged recently collected topographic, bathymetric, and acoustic elevation data along the entire California coastline from approximately the 10 meter...

  8. The MeSsI (Merging Systems Identification) Algorithm & Catalogue

    CERN Document Server

    Rios, Martín de los; Paz, Dante; Merchán, Manuel

    2015-01-01

    Merging galaxy systems provides observational evidence of the existence of dark matter and constraints on its properties. Therefore, statistical uniform samples of merging systems would be a powerful tool for several studies. In this work we presents a new methodology for merging systems identification and the results of its application to galaxy redshift surveys. We use as starting point a mock catalogue of galaxy systems, identified using traditional FoF algorithms, which experienced a major merger as indicated by its merger tree. Applying machine learning techniques in this training sample, and using several features computed from the observable properties of galaxy members, it is possible to select galaxy groups with a high probability of have been experienced a major merger. Next we apply clustering techniques on galaxy members in order to reconstruct the properties of the haloes involved in such merger. This methodology provides a highly reliable sample of merging systems with low contamination and prec...

  9. Laser photon merging in an electromagnetic field inhomogeneity

    CERN Document Server

    Gies, Holger; Shaisultanov, Rashid

    2014-01-01

    We study the effect of laser photon merging, or equivalently high harmonic generation, in the quantum vacuum subject to inhomogeneous electromagnetic fields. Such a process is facilitated by the effective nonlinear couplings arising from charged particle-antiparticle fluctuations in the quantum vacuum subject to strong electromagnetic fields. We derive explicit results for general kinematic and polarization configurations involving optical photons. Concentrating on merged photons in reflected channels which are preferable in experiments for reasons of noise suppression, we demonstrate that photon merging is typically dominated by the competing nonlinear process of quantum reflection, though appropriate polarization and signal filtering could specifically search for the merging process. As a byproduct, we devise a novel systematic expansion of the photon polarization tensor in plane wave fields.

  10. Implementation and Development of Village Merging in Zhucheng City

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    This article introduces the status quo of implementation of village merging in Zhucheng City of Shandong Province.Owing to thoroughness and originality,the village merging of Zhucheng City has created " Zhucheng Model" and disseminated " Zhucheng experience".By comparing part of annual values concerning the process of rural communitization in Zhucheng City,we use SWOT analysis method to objectively obtain strength,weakness,opportunity and risk of village merging in Zhucheng City,and offer corresponding SO,WO,ST,WT countermeasures.Finally,some proposals are put forward for future work of village merging in Zhucheng City as follows:grasp opportunity to undergird merger achievement;improve the drawback to beef up merger achievement;monitor risk to maintain merger achievement;eliminate hidden trouble to safeguard merger achievement.

  11. Belief Merging and Judgment Aggregation in Fuzzy Setting

    Directory of Open Access Journals (Sweden)

    Ismat Beg

    2012-01-01

    Full Text Available We explore how judgment aggregation and belief merging in the framework of fuzzy logic can help resolve the “Doctrinal Paradox.” We also illustrate the use of fuzzy aggregation functions in social choice theory.

  12. Merged Land and Ocean Surface Temperature, Version 3.5

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The historical Merged Land-Ocean Surface Temperature Analysis (MLOST) is derived from two independent analyses, an Extended Reconstructed Sea Surface Temperature...

  13. Direct observational evidence for the merging of equatorial plasma bubbles

    Science.gov (United States)

    Narayanan, V. L.; Gurubaran, S.; Shiokawa, K.

    2016-08-01

    In this work we present direct ground-based observational evidence for the merging of individual equatorial plasma bubbles (EPBs) obtained through the imaging of OI 630.0 nm airglow. Three potential mechanisms have been identified: (1) One of the EPBs tilts and reaches location of the adjacent growing EPB finally merging with it. (2) Some of the branches of an EPB arising from secondary instabilities reach out to adjacent EPB and merge with it. (3) The eastward zonal drift of the EPB on the eastern side slows down while the adjacent EPB on the western side drifts relatively faster and catches up. In one of the cases, a branch of an EPB was observed to get interchanged with another EPB as a result of merging and consequent pinching off from the parent EPB.

  14. An approximate Expression for Viscosity of Nanosuspensions

    CERN Document Server

    Domostroeva, N G

    2009-01-01

    We consider liquid suspensions with dispersed nanoparticles. Using two-points Pade approximants and combining results of both hydrodynamic and molecular dynamics methods, we obtain the effective viscosity for any diameters of nanoparticles

  15. Sludge based Bacillus thuringiensis biopesticides: viscosity impacts.

    Science.gov (United States)

    Brar, S K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2005-08-01

    Viscosity studies were performed on raw, pre-treated (sterilised and thermal alkaline hydrolysed or both types of treatment) and Bacillus thuringiensis (Bt) fermented sludges at different solids concentration (10-40 g/L) for production of biopesticides. Correlations were established among rheological parameter (viscosity), solids (total and dissolved) concentration and entomotoxicity (Tx) of Bt fermented sludges. Exponential and power laws were preferentially followed by hydrolysed fermented compared to raw fermented sludge. Soluble chemical oxygen demand variation corroborated with increase in dissolved solids concentration on pre-treatments, contributing to changes in viscosity. Moreover, Tx was higher for hydrolysed fermented sludge in comparison to raw fermented sludge owing to increased availability of nutrients and lower viscosity that improved oxygen transfer. The shake flask results were reproducible in fermenter. This study will have major impact on selecting fermentation, harvesting and formulation techniques of Bt fermented sludges for biopesticide production.

  16. Hydrodynamic Electron Flow and Hall Viscosity

    Science.gov (United States)

    Scaffidi, Thomas; Nandi, Nabhanila; Schmidt, Burkhard; Mackenzie, Andrew P.; Moore, Joel E.

    2017-06-01

    In metallic samples of small enough size and sufficiently strong momentum-conserving scattering, the viscosity of the electron gas can become the dominant process governing transport. In this regime, momentum is a long-lived quantity whose evolution is described by an emergent hydrodynamical theory. Furthermore, breaking time-reversal symmetry leads to the appearance of an odd component to the viscosity called the Hall viscosity, which has attracted considerable attention recently due to its quantized nature in gapped systems but still eludes experimental confirmation. Based on microscopic calculations, we discuss how to measure the effects of both the even and odd components of the viscosity using hydrodynamic electronic transport in mesoscopic samples under applied magnetic fields.

  17. Neoclassical Viscosities and Anomalous Flows in Stellarators

    Science.gov (United States)

    Ware, A. S.; Spong, D. A.; Breyfogle, M.; Marine, T.

    2009-05-01

    We present initial work to use neoclassical viscosities calculated with the PENTA code [1] in a transport model that includes Reynolds stress generation of flows [2]. The PENTA code uses a drift kinetic equation solver to calculate neoclassical viscosities and flows in general three-dimensional geometries over a range of collisionalities. The predicted neoclassical viscosities predicted by PENTA can be flux-surfaced average and applied in a 1-D transport model that includes anomalous flow generation. This combination of codes can be used to test the impact of stellarator geometry on anomalous flow generation. As a test case, we apply the code to modeling flows in the HSX stellarator. Due to variations in the neoclassical viscosities, HSX can have strong neoclassical flows in the core region. In turn, these neoclassical flows can provide a seed for anomalous flow generation. [1] D. A. Spong, Phys. Plasmas 12, 056114 (2005). [2] D. E. Newman, et al., Phys. Plasmas 5, 938 (1998).

  18. Variable viscosity effects on mixed convection heat and mass ...

    African Journals Online (AJOL)

    Variable viscosity effects on mixed convection heat and mass transfer along a ... PROMOTING ACCESS TO AFRICAN RESEARCH ... Keywords: Variable viscosity, Chemical Reaction, Viscous Dissipation, Finite difference method, Suction.

  19. Water nano-hydrodynamics: The interplay between interfacial viscosity, slip and chemistry

    Science.gov (United States)

    Chiu, Hsiang-Chih; Ortiz-Young, Deborah; Riedo, Elisa

    2012-02-01

    The understanding and the ability to manipulate fluids at the nanoscale is a matter of continuously growing scientific and technological interest. Fluid flow in nano-confined geometries is relevant for biology, polymer science and geophysics. The applications range from gene sequencing to protein segregation, cell sorting, sensors, nanotribology and diffusion through porous media. Here, we present experiments which show how the interfacial viscosity of water strongly depends on the wetting properties of the confining surfaces. This dependence is fully explained by considering water slippage at the stationary solid surface. The interfacial viscous forces as a function of six surfaces with different wettability are fitted with a modified form of the Newtonian definition of viscosity, which takes into consideration the fluid slip. This simple relationship can explain the viscosity measurements and permits us to extract a ``slip parameter'' for each investigated surface. This slip parameter is found to increase with the static contact angle of the solid surface as expected from previous work, bringing clear evidence of the relationship between viscosity and slip.

  20. Impact of biofluid viscosity on size and sedimentation efficiency of the isolated microvesicles

    Directory of Open Access Journals (Sweden)

    Fatemeh eMomen-Heravi

    2012-05-01

    Full Text Available Microvesicles are nano-sized lipid vesicles released by all cells in vivo and in vitro. They are released physiologically under normal conditions but their rate of release is higher under pathological conditions such as tumors. Once released they end up in the systemic circulation and have been found and characterized in all biofluids such as plasma, serum, cerebrospinal fluid (CSF, breast milk, ascites, and urine. Microvesicles represent the status of the donor cell they are released from and they are currently under intense investigation as a potential source for disease biomarkers. Currently, the gold standard for isolating microvesicles is ultracentrifugation, although alternative techniques such as affinity purification have been explored. Viscosity is the resistance of a fluid to a deforming force by either shear or tensile stress. The different chemical and molecular compositions of biofluids have an effect on its viscosity and this could affect movements of the particles inside the fluid. In this manuscript we addressed the issue of whether viscosity has an effect on sedimentation efficiency of microvesicles using ultracentrifugation. We used different biofluids and spiked them with polystyrene beads and assessed their recovery using the Nanoparticle Tracking Analysis. We demonstrate that MVs recovery inversely correlates with viscosity and as a result, sample dilutions should be considered prior to ultracentifugation when processing any biofluids.

  1. Near-surface viscosity effects on capillary rise of water in nanotubes

    Science.gov (United States)

    Vo, Truong Quoc; Barisik, Murat; Kim, BoHung

    2015-11-01

    In this paper, we present an approach for predicting nanoscale capillary imbibitions using the Lucas-Washburn (LW) theory. Molecular dynamics (MD) simulations were employed to investigate the effects of surface forces on the viscosity of liquid water. This provides an update to the modified LW equation that considered only a nanoscale slip length. An initial water nanodroplet study was performed to properly elucidate the wetting behavior of copper and gold surfaces. Intermolecular interaction strengths between water and corresponding solid surfaces were determined by matching the contact angle values obtained by experimental measurements. The migration of liquid water into copper and gold capillaries was measured by MD simulations and was found to differ from the modified LW equation. We found that the liquid layering in the vicinity of the solid surface induces a higher density and viscosity, leading to a slower MD uptake of fluid into the capillaries than was theoretically predicted. The near-surface viscosity for the nanoscale-confined water was defined and calculated for the thin film of water that was sheared between the two solid surfaces, as the ratio of water shear stress to the applied shear rate. Considering the effects of both the interface viscosity and slip length of the fluid, we successfully predicted the MD-measured fluid rise in the nanotubes.

  2. Gyro-viscosity and linear dispersion relations in pair-ion magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kono, M. [Faculty of Policy Studies, Chuo University, Tokyo 192-0393 (Japan); Vranjes, J. [Instituto de Astrofisica de Canarias, Tenerife E38205 (Spain); Departamento de Astrofisica, Universidad de La Laguna, Tenerife E38205 (Spain)

    2015-11-15

    A fluid theory has been developed by taking account of gyro-viscosity to study wave propagation characteristics in a homogeneous pair-ion magnetized plasma with a cylindrical symmetry. The exact dispersion relations derived by the Hankel-Fourier transformation are shown comparable with those observed in the experiment by Oohara and co-workers. The gyro-viscosity is responsible for the change in propagation characteristics of the ion cyclotron wave from forward to backward by suppressing the effect of the thermal pressure which normally causes the forward nature of dispersion. Although the experiment has been already explained by a kinetic theory by the present authors, the kinetic derivations are so involved because of exact particle orbits in phase space, finite Lamor radius effects, and higher order ion cyclotron resonances. The present fluid theory provides a simple and transparent structure to the dispersion relations since the gyro-viscosity is renormalized into the ion cyclotron frequency which itself indicates the backward nature of dispersion. The usual disadvantage of a fluid theory, which treats only fundamental modes of eigen-waves excited in a system and is not able to describe higher harmonics that a kinetic theory does, is compensated by simple derivations and clear picture based on the renormalization of the gyro-viscosity.

  3. Conflict Detection and Merging in Model based SCM Systems

    OpenAIRE

    Waqar Mehmood; Arshad Ali

    2014-01-01

    This study presents a fine-grained approach to the problem of conflict detection and merging in model-based Software Configuration Management (SCM) systems. Traditional SCM systems uses textual or structured data to represent models at fine-grained level. Our approach is based on defining graph structure to represent models data at fine-grained level. The approach is based on transforming the textual or structured data into graph structure and then performing the diff, merge and evolution con...

  4. Investigating merging galaxies by using Pan-STARRS images

    Science.gov (United States)

    Lin, Yi-Fan; Yu, Po-Chieh; Huang, Jen-Chao; Hwang, Chorng-Yuan; Chen, Wen-Ping; Kaiser, Nick; Metcalfe, Nigel; Waters, Christopher

    2017-03-01

    Aims: We studied the r'-, z'-, and y'-band images of merging galaxies from the observations of the Panoramic Survey Telescope & Rapid Response System (Pan-STARRS). The merging galaxies were selected from our merging catalog that was created by checking the images of the Red-Sequence Cluster Survey 2 from the observations of the Canada France Hawaii Telescope. Methods: By using the homomorphic-aperture, we determined the photometric results of these merging systems. To obtain accurate photometry, we calibrated the Pan-STARRS r'-, z'-, and y'-band data to match the results of Sloan Digital Sky Survey Data Release 9. We also investigated the stellar masses of the merging galaxies by comparing the Wide-field Infrared Survey Explorer 3.4 μm emission with the calibrated y'-band data. Results: We present a catalog of the r'-, z'-, and y'-band photometric results for 4698 merging galaxies. For extended sources, our results suggest that the homomorphic-aperture method can obtain more reasonable results than the Desktop Virtual Observatory photometry. We derived new relations between the Pan-STARRS y'-band luminosities and the stellar masses of the merging galaxies. Our results show that the stellar masses of the merging galaxies range from 108 to 1013M⊙; some of the dry mergers could be as massive as 1013M⊙. The catalog is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A28

  5. ANTI-INFLAMMATORY ACTIVITY OF DODONAEA VISCOSE

    OpenAIRE

    Mahadevan, N.; Venkatesh, Sama; Suresh, B

    1998-01-01

    Dodonaea viscose, Linn is a widely grown plant of Nilgiris district of Tamil and is commonly used by the tribals of Nilgiris as a traditional medicine for done fracture and joint sprains. Since it is generally believed tat fractures are accompanied by either some degree of injury or inflammations, it was felt desirable to carry our anti inflammatory activity of Dodonaea viscose. Anti-inflammatory activity of the plant was carried out by carrageenin induced paw edema method in Wister albino rats.

  6. Anti-inflammatory activity of dodonaea viscose.

    Science.gov (United States)

    Mahadevan, N; Venkatesh, S; Suresh, B

    1998-10-01

    Dodonaea viscose, Linn is a widely grown plant of Nilgiris district of Tamil and is commonly used by the tribals of Nilgiris as a traditional medicine for done fracture and joint sprains. Since it is generally believed tat fractures are accompanied by either some degree of injury or inflammations, it was felt desirable to carry our anti inflammatory activity of Dodonaea viscose. Anti-inflammatory activity of the plant was carried out by carrageenin induced paw edema method in Wister albino rats.

  7. Viscosity anomaly in core-softened liquids

    OpenAIRE

    Fomin, Yu. D.; Ryzhov, V. N.

    2013-01-01

    The present article presents a molecular dynamics study of several anomalies of core-softened systems. It is well known that many core-softened liquids demonstrate diffusion anomaly. Usual intuition relates the diffusion coefficient to shear viscosity via Stockes-Einstein relation. However, it can break down at low temperature. In this respect it is important to see if viscosity also demonstrates anomalous behavior.

  8. Rotational Viscosity in Linear Irreversible Thermodynamics and its Application to Neutron Stars

    CERN Document Server

    Sandoval-Villalbazo, A; García-Colin, L S; Sandoval-Villalbazo, Alfredo; Garcia-Perciante, Ana; Garcia-Colin, LS

    2001-01-01

    A generalized analysis of the local entropy production of a simple fluid is used to show that, if intrinsic angular momentum is taken into account, rotational viscosity must arise in the linear non-equilibrium regime. As a consequence, the stress tensor of dense rotating matter, such as the one present in neutron stars, posseses a significant non-vansishing antisymmetrical part. A simple argument suggests that, due to the extreme magnetic fields present in neutron stars, the relaxation time associated to rotational viscosity is large (approx 10^{21} s). The formalism leads to generalized Navier-Stokes equations useful in neutron star physics which involve vorticity in the linear regime.

  9. Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids

    Science.gov (United States)

    Vakarelski, Ivan U.; Berry, Joseph D.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T.

    2016-09-01

    The drag coefficient CD of a solid smooth sphere moving in a fluid is known to be only a function of the Reynolds number Re and diminishes rapidly at the drag crisis around Re ˜3 ×1 05 . A Leidenfrost vapor layer on a hot sphere surface can trigger the onset of the drag crisis at a lower Re. By using a range of high viscosity perfluorocarbon liquids, we show that the drag reduction effect can occur over a wide range of Re, from as low as ˜600 to 1 05. The Navier slip model with a viscosity dependent slip length can fit the observed drag reduction and wake shape.

  10. STUDY OF THE VISCOSITY OF PROTEIN SOLUTIONS THROUGH THE RAPID VISCOSITY ANALYZER (RVA

    Directory of Open Access Journals (Sweden)

    Maura P. Alves

    2014-05-01

    Full Text Available This study aimed to determine viscosity curves prepared from whey protein concentrates (WPCs by the rapid viscosity analyzer (RVA and determine the optimal heat treatment time in order to obtain the maximum viscosity solutions at this stage. The WPCs produced from whey samples initially subjected to thermal treatment and microfiltration presented composition compatible with the international standards, with a significant difference (p<0.05 for fat concentration. Viscographic profiles indicated that WPCs produced from microfiltered whey had higher viscosities than those subjected to heat treatment. In addition, 10 min was determined to be the optimal length of time for heat treatment in order to maximise WPCs viscosity. These results indicate that WPC production can be designed for different food applications. Finally, a rapid viscosity analyzer was demonstrated to be an appropriate tool to study the application of whey proteins in food systems.

  11. Merging ultrasound in the intensive care routine.

    Science.gov (United States)

    Jakobson, Daniel J; Shemesh, Iftach

    2013-11-01

    Goal-oriented ultrasound examination is gaining a place in the intensive care unit. Some protocols have been proposed but the applicability of ultrasound as part of a routine has not been studied. To assess the influence of ultrasound performed by intensive care physicians. This retrospective descriptive clinical study was performed in a medical-surgical intensive care unit of a university-affiliated general hospital. Data were collected from patients undergoing ultrasound examinations performed by a critical care physician during the period 2010 to June 2011. A total of 299 ultrasound exams were performed in 113 mechanically ventilated patients (70 males, mean age 65 years). Exams included trans-cranial Doppler (n = 24), neck evaluation before tracheostomy (n = 15), chest exam (n = 83), focuse cardiac echocardiography (n = 60), abdominal exam (n = 41), and comprehensive screening at patient admission (n = 30). Ultrasound was used to guide invasive procedures for vascular catheter insertion (n = 42), pleural fluid drainage (n = 24), and peritoneal fluid drainage (n = 7). One pneumothorax was seen during central venous line insertion but no complications were observed after pleural or abdominal drainage. The ultrasound study provided good quality visualization in 86% (258 of 299 exams) and was a diagnostic tool that induced a change in treatment in 58% (132 of 226 exams). Bedside ultrasound examinations performed by critical care physicians provide an important adjunct to diagnostic and therapeutic performance, improving quality of care and patient safety.

  12. THE MERGING OF TWO UNEQUAL AXISYMMETRIC PARALLEL TURBULENT JETS

    Institute of Scientific and Technical Information of China (English)

    BARATIAN-GHORGHI Zahra; KAYE Nigel B.; KHAN Abdul A.; SMITH Jeffrey R.

    2012-01-01

    Results of an experimental study of the merging of unequal parallel round turbulent jets are presented.Experiments were conducted for a jet axial separation to nozzle diameter ratio of 3.0 and the Reynolds numbers ranging from 8 000 to 15 000.The distance to the point where the jets are merged was measured for a range of jet source momentum flux ratios.Three different merger criteria were used based on the mean velocity profile,mean passive tracer concentration profile,and Reynolds stress profile.The results show that the concentration profile merges closest to the jet sources followed by the velocity profile with the Reynolds stress profile merging furthest from the nozzles.For all three profiles the merge distance is relatively insensitive to the momentum flux ratio,consistent with previous findings for slot jets and buoyant round jets.The measured merge distances are consistent with previously published results for equal round jets,though the poor spatial resolution of data in the literature means that limited comparison is possible.There are no studies of unequal jet merger currently in the literature that could be used for comparison.

  13. Viscosity of mafic magmas at high pressures

    Science.gov (United States)

    Cochain, B.; Sanloup, C.; Leroy, C.; Kono, Y.

    2017-01-01

    While it is accepted that silica-rich melts behave anomalously with a decrease of their viscosity at increased pressures (P), the viscosity of silica-poor melts is much less constrained. However, modeling of mantle melts dynamics throughout Earth's history, including the magma ocean era, requires precise knowledge of the viscous properties of silica-poor magmas. We extend here our previous measurements on fayalite melt to natural end-members pyroxenite melts (MgSiO3 and CaSiO3) using in situ X-ray radiography up to 8 GPa. For all compositions, viscosity decreases with P, rapidly below 5 GPa and slowly above. The magnitude of the viscosity decrease is larger for pyroxene melts than for fayalite melt and larger for the Ca end-member within pyroxene melts. The anomalous viscosity decrease appears to be a universal behavior for magmas up to 13 GPa, while the P dependence of viscosity beyond this remains to be measured. These results imply that mantle melts are very pervasive at depth.

  14. Modified Eyring viscosity equation and calculation of activation energy based on the liquid quasi-lattice model

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Viscosity is an important physical parameter of fluid,and the Eyring viscosity equation is a popular viscosity theory.Based on the Eyring reaction rate equation and Boltzmann statistical theory,and including the probabilities of creating a hole in liquid and the transition to the neighboring hole,a modified Eyring viscosity equation was proposed.According to the structural characteristics of short-range order,liquid is treated as a quasi-lattice structure in a small region.The activation energy,which is the minimum energy needed for the molecule to jump to its neighboring hole because of the restriction of other molecules around it,was analytically calculated from an intermolecular Lennard-Jones potential function and a Stockmayer potential function.The viscosity values of 37 kinds of typical liquids at 25°C and the dependence of viscosity of three kinds of liquids on temperatures were calculated with this modified viscosity equation,and the calculated results agree with the experimental values to some extent.This work not only enriches the understanding of the mechanism of liquid viscosity,but also could provide some theoretical guides for the relevant studies and applications.

  15. Evaluation of the impact of viscosity, injection volume, and injection flow rate on subcutaneous injection tolerance.

    Science.gov (United States)

    Berteau, Cecile; Filipe-Santos, Orchidée; Wang, Tao; Rojas, Humberto E; Granger, Corinne; Schwarzenbach, Florence

    2015-01-01

    The primary objective of this study was to evaluate the impact of fluid injection viscosity in combination with different injection volumes and flow rates on subcutaneous (SC) injection pain tolerance. The study was a single-center, comparative, randomized, crossover, Phase I study in 24 healthy adults. Each participant received six injections in the abdomen area of either a 2 or 3 mL placebo solution, with three different fluid viscosities (1, 8-10, and 15-20 cP) combined with two different injection flow rates (0.02 and 0.3 mL/s). All injections were performed with 50 mL syringes and 27G, 6 mm needles. Perceived injection pain was assessed using a 100 mm visual analog scale (VAS) (0 mm/no pain, 100 mm/extreme pain). The location and depth of the injected fluid was assessed through 2D ultrasound echography images. Viscosity levels had significant impact on perceived injection pain (P=0.0003). Specifically, less pain was associated with high viscosity (VAS =12.6 mm) than medium (VAS =16.6 mm) or low (VAS =22.1 mm) viscosities, with a significant difference between high and low viscosities (P=0.0002). Target injection volume of 2 or 3 mL was demonstrated to have no significant impact on perceived injection pain (P=0.89). Slow (0.02 mL/s) or fast (0.30 mL/s) injection rates also showed no significant impact on perceived pain during SC injection (P=0.79). In 92% of injections, the injected fluid was located exclusively in SC tissue whereas the remaining injected fluids were found located in SC and/or intradermal layers. The results of this study suggest that solutions of up to 3 mL and up to 15-20 cP injected into the abdomen within 10 seconds are well tolerated without pain. High viscosity injections were shown to be the most tolerated, whereas injection volume and flow rates did not impact perceived pain.

  16. Effect of non-Newtonian fluid properties on bovine sperm motility.

    Science.gov (United States)

    Hyakutake, Toru; Suzuki, Hiroki; Yamamoto, Satoru

    2015-09-18

    The swimming process by which mammal spermatozoa progress towards an egg within the reproductive organs is important in achieving successful internal fertilization. The viscosity of oviductal mucus is more than two orders of magnitude greater than that of water, and oviductal mucus also has non-Newtonian properties. In this study, we experimentally observed sperm motion in fluids with various fluid rheological properties and investigated the influence of varying the viscosity and whether the fluid was Newtonian or non-Newtonian on the sperm motility. We selected polyvinylpyrrolidone and methylcellulose as solutes to create solutions with different rheological properties. We used the semen of Japanese cattle and investigated the following parameters: the sperm velocity, the straight-line velocity and the amplitude from the trajectory, and the beat frequency from the fragellar movement. In a Newtonian fluid environment, as the viscosity increased, the motility of the sperm decreased. However, in a non-Newtonian fluid, the straight-line velocity and beat frequency were significantly higher than in a Newtonian fluid with comparable viscosity. As a result, the linearity of the sperm movement increased. Additionally, increasing the viscosity brought about large changes in the sperm flagellar shape. At low viscosities, the entire flagellum moved in a curved flapping motion, whereas in the high-viscosity, only the tip of the flagellum flapped. These results suggest that the bovine sperm has evolved to swim toward the egg as quickly as possible in the actual oviduct fluid, which is a high-viscosity non-Newtonian fluid.

  17. "Fluid bearing" effect of enclosed liquids in grooves on drag reduction in microchannels

    Science.gov (United States)

    Chen, Haosheng; Gao, Yang; Stone, Howard A.; Li, Jiang

    2016-12-01

    We report details of the fluid motion formed within and above grooves when a laminar continuous phase fluid flows over a second immiscible fluid enclosed in a grooved microchannel. Vortical structures within the transverse grooves were caused by a slip velocity at the fluid-fluid interface and act as "fluid bearings" on the boundary to lubricate the flow of the continuous phase. We investigated the drag reduction in the laminar flow in the microchannel by measuring slip at the boundaries and calculating an effective slip length, taking into account the influence of the effect of the viscosity ratio of the two fluids on the effective slip length. The "fluid bearing" effect can be used to transport high viscosity fluids using low viscosity fluids trapped in cavities to reduce drag.

  18. Tribological and electrochemical studies on biomimetic synovial fluids

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this study, tribological and electrochemical performances of the new biomimetic synovial fluids were studied according to different composition concentrations, including hyaluronic acid, albumin and alendronic acid sodium. By using Taguchi method, the composition contents of the biomimetic synovial fluids were designed. Items such as friction coefficient, mean scar diameter and viscosity were investigated via a four-ball tribo-tester, viscosity meter and optical microscope. Polarization studies were carried out to analyze the electrochemical behaviour of the fluids. Results showed that hyaluronic acid dominates the viscosity of the fluids. High albumin concentration will reduce friction, while increasing wear rate due to the electro-chemical effect. Alendronic acid sodium is found to reduce the biocorrosion of CoCrMo as well as provide better lubricating. In conclusion, biomimetic synovial fluids partially recover the functions of natural synovial fluids and provide good lubricating property.

  19. Undulatory swimming in shear-thinning fluids

    CERN Document Server

    Gagnon, David A; Arratia, Paulo E

    2014-01-01

    The swimming behaviour of microorganisms can be strongly influenced by the rheology of their fluid environment. In this manuscript, we experimentally investigate the effects of shear-thinning viscosity on the swimming behaviour of an undulatory swimmer, the nematode Caenorhabditis elegans. Tracking methods are used to measure the swimmer's kinematic data (including propulsion speed) and velocity fields. We find that shear-thinning viscosity modifies the velocity fields produced by the swimming nematode but does not modify the nematode's speed and beating kinematics. Velocimetry data show significant enhancement in local vorticity and circulation, and an increase in fluid velocity near the nematode's tail, compared to Newtonian fluids of similar effective viscosity. These findings are in good agreement with recent theoretical and numerical results.

  20. Stability of viscosity stratified flows down an incline: Role of miscibility and wall slip

    CERN Document Server

    Ghosh, Sukhendu

    2016-01-01

    The effects of wall velocity slip on the linear stability of a gravity-driven miscible two-fluid flow down an incline are examined. The fluids have the matched density but different viscosity. A smooth viscosity stratification is achieved due to the presence of a thin mixed layer between the fluids. The results show that the presence of slip exhibits a promise for stabilizing the miscible flow system by raising the critical Reynolds number at the onset and decreasing the bandwidth of unstable wave numbers beyond the threshold of the dominant instability. This is different from its role in the case of a single fluid down a slippery substrate where slip destabilizes the flow system at the onset. Though the stability properties are analogous to the same flow system down a rigid substrate, slip is shown to delay the surface mode instability for any viscosity contrast. It has a damping/promoting effect on the overlap modes (which exist due to the overlap of critical layer of dominant disturbance with the mixed lay...

  1. Viscosity and electric properties of water aerosols

    Science.gov (United States)

    Shavlov, A. V.; Sokolov, I. V.; Dzhumandzhi, V. A.

    2016-09-01

    The flow of water mist in a narrow duct has been studied experimentally. The profile of the velocity of drops has been measured, and the viscosity of the mist has been calculated using the Navier-Stokes equation. It has been found that at low gradients of the rate of shear the viscosity of the mist can exceed that of clean air by tens and even hundreds of times. The electric charge of the drops has been measured. It has been found that the viscosity of the mist differs from that of clean air at gradients of the rate of shear that are less than the frequency of the establishment of electric equilibrium between the drops. A comparative analysis of the viscosities of the mist and a drop cluster has been carried out, and the dependence of the viscosity of the water aerosol on the radius and the charge of the drops has been predicted. The possible role of aerosols that contain submicron drops in the known "clear air turbulence" problem has been shown.

  2. Viscosity model for fully liquid silicate melt

    Directory of Open Access Journals (Sweden)

    Zhang Guo-Hua

    2012-01-01

    Full Text Available A model for estimating the viscosity of silicate melt as derived in our previous paper is extended to the system containing MgO, CaO, SrO, BaO, Li2O, Na2O, K2O, which can express the nonlinear variation of activation energy of viscosity with the composition. It is found that the optimized parameters of model which characterize the deforming ability of bonds around non-bridging oxygen decrease with increasing the bond strength of M-O bond expressed by I=2Q/RMz+ + rO2-2 (where Q is the valence of cation M; r is the radius. It is pointed out that viscosity is not only determined by the bond strength, but also by the radius of cation which is defined as the size effect. The radius of cation plays paradox roles in the two factors: smaller radius leads to a stronger bond, thus a higher viscosity; while cations with smaller radius are easier to diffuse when neglecting the interaction force, thus a lower viscosity will be.

  3. High temperature viscosity measurement system and viscosity of a common dielectric liquid

    CERN Document Server

    Tuncer, Enis

    2013-01-01

    A device to measure viscosity of dielectric oils was developed. The device is an inset to an autoclave system where the temperature and the pressure could be controlled. The device is capable of measuring viscosities up to 400C and 5000psi, which are the limits of our autoclave at the moment.

  4. Viscosity and dissipative hydrodynamics from effective field theory

    Science.gov (United States)

    Grozdanov, Sašo; Polonyi, Janos

    2015-05-01

    With the goal of deriving dissipative hydrodynamics from an action, we study classical actions for open systems, which follow from the generic structure of effective actions in the Schwinger-Keldysh closed-time-path (CTP) formalism with two time axes and a doubling of degrees of freedom. The central structural feature of such effective actions is the coupling between degrees of freedom on the two time axes. This reflects the fact that from an effective field theory point of view, dissipation is the loss of energy of the low-energy hydrodynamical degrees of freedom to the integrated-out, UV degrees of freedom of the environment. The dynamics of only the hydrodynamical modes may therefore not possess a conserved stress-energy tensor. After a general discussion of the CTP effective actions, we use the variational principle to derive the energy-momentum balance equation for a dissipative fluid from an effective Goldstone action of the long-range hydrodynamical modes. Despite the absence of conserved energy and momentum, we show that we can construct the first-order dissipative stress-energy tensor and derive the Navier-Stokes equations near hydrodynamical equilibrium. The shear viscosity is shown to vanish in the classical theory under consideration, while the bulk viscosity is determined by the form of the effective action. We also discuss the thermodynamics of the system and analyze the entropy production.

  5. Empirical slip and viscosity model performance for microscale gas flows.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Boyd, Iain D. (University of Michigan, Ann Arbor, MI); McNenly, Matthew J. (University of Michigan, Ann Arbor, MI)

    2004-07-01

    For the simple geometries of Couette and Poiseuille flows, the velocity profile maintains a similar shape from continuum to free molecular flow. Therefore, modifications to the fluid viscosity and slip boundary conditions can improve the continuum based Navier-Stokes solution in the non-continuum non-equilibrium regime. In this investigation, the optimal modifications are found by a linear least-squares fit of the Navier-Stokes solution to the non-equilibrium solution obtained using the direct simulation Monte Carlo (DSMC) method. Models are then constructed for the Knudsen number dependence of the viscosity correction and the slip model from a database of DSMC solutions for Couette and Poiseuille flows of argon and nitrogen gas, with Knudsen numbers ranging from 0.01 to 10. Finally, the accuracy of the models is measured for non-equilibrium cases both in and outside the DSMC database. Flows outside the database include: combined Couette and Poiseuille flow, partial wall accommodation, helium gas, and non-zero convective acceleration. The models reproduce the velocity profiles in the DSMC database within an L{sub 2} error norm of 3% for Couette flows and 7% for Poiseuille flows. However, the errors in the model predictions outside the database are up to five times larger.

  6. An estimate of the bulk viscosity of the hadronic medium

    Science.gov (United States)

    Sarwar, Golam; Chatterjee, Sandeep; Alam, Jane

    2017-05-01

    The bulk viscosity (ζ) of the hadronic medium has been estimated within the ambit of the Hadron Resonance Gas (HRG) model including the Hagedorn density of states. The HRG thermodynamics within a grand canonical ensemble provides the mean hadron number as well as its fluctuation. The fluctuation in the chemical composition of the hadronic medium in the grand canonical ensemble can result in non-zero divergence of the hadronic fluid flow velocity, allowing us to estimate the ζ of the hadronic matter up to a relaxation time. We study the influence of the hadronic spectrum on ζ and find its correlation with the conformal symmetry breaking measure, ε -3P. We estimate ζ along the contours with constant, S/{N}B (total entropy/net baryon number) in the T-μ plane (temperature-baryonic chemical potential) for S/{N}B=30,45 and 300. We also assess the value of ζ on the chemical freeze-out curve for various centers of mass energy (\\sqrt{{s}{NN}}) and find that the bulk viscosity to entropy density ratio, \\zeta /s is larger in the energy range of the beam energy scan program of RHIC, low energy SPS run, AGS, NICA and FAIR, than LHC energies.

  7. Merging a Pair of Supermassive Black Holes

    Science.gov (United States)

    Kohler, Susanna

    2016-10-01

    When galaxies merge, the supermassive black holes (SMBHs) at the galaxies centers are thought to coalesce, forming a new, larger black hole. But can this merger process take place on timescales short enough that we could actually observe it? Results from a new simulation suggests that it can!When Galaxies CollideThese stills demonstrate the time evolution of the galaxy merger after the beginning of the authors simulation (starting from z=3.6). The red and blue dots mark the positions of the SMBHs. [Adapted from Khan et al. 2016]At present, its not well understood how the merger of two SMBHs proceeds from the merger of their host galaxies. Whats more, there are concerns about whether the SMBHs can coalesce on reasonable timescales; in many simulations and models, the inspiral of these behemoths stalls out when they are about a parsec apart, in whats known as the final parsec problem.Why are these mergers poorly understood? Modeling them from the initial interactions of the host galaxies all the way down to the final coalescence of their SMBHs in a burst of gravitational waves is notoriously complicated, due to the enormous range of scales and different processes that must be accounted for.But in a recent study, a team of scientists led by Fazeel Khan (Institute of Space Technology in Pakistan) has presented a simulation that successfully manages to track the entire merger making it the first multi-scale simulation to model the complete evolution of an SMBH binary that forms within a cosmological galaxy merger.Stages of aSimulationKhan and collaborators tackled the challenges of this simulation by using a multi-tiered approach.Beginning with the output of a cosmological hydrodynamical simulation, the authors select a merger of two typical massive galaxies at z=3.6 and use this as the starting point for their simulation. They increase the resolution and add in two supermassive black holes, one at the center of each galaxy.They then continue to evolve the galaxies

  8. Refrigerating fluids; Fluides frigorigenes

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-03-01

    Refrigerating fluids are experiencing a real revolution since few years. CFCs with their destructive effect on the ozone layer are now prohibited while HCFCs will be progressively eliminated and replaced by HFCs. However, HFCs can contribute to the increase of the greenhouse effect. The solutions proposed by thermal engineering professionals consist in the confinement of air-conditioning installations (elimination of recurrent leaks) and in the improvement of installations efficiency. HCFC fluids like the R 22 are still widely used in air-conditioning but they are supposed to be replaced by HFC fluids like the R 134a, the R 407C or the R 410A. This short paper gives a brief presentation of these fluids and of their chemical characteristics. (J.S.)

  9. Individual Subjective Initiative Merge Model Based on Cellular Automaton

    Directory of Open Access Journals (Sweden)

    Yin-Jie Xu

    2013-01-01

    Full Text Available The merge control models proposed for work zones are classified into two types (Hard Control Merge (HCM model and Soft Control Merge (SCM model according to their own control intensity and are compared with a new model, called Individual Subjective Initiative Merge (ISIM model, which is based on the linear lane-changing probability strategy in the merging area. The attention of this paper is paid to the positive impact of the individual subjective initiative for the whole traffic system. Three models (ISIM, HCM, and SCM are established and compared with each other by two order parameters, that is, system output and average vehicle travel time. Finally, numerical results show that both ISIM and SCM perform better than HCM. Compared with SCM, the output of ISIM is 20 vehicles per hour higher under the symmetric input condition and is more stable under the asymmetric input condition. Meanwhile, the average travel time of ISIM is 2000 time steps less under the oversaturated input condition.

  10. A Numerical Study of Vortex and Precipitating Cloud Merging in Middle Latitudes

    Institute of Scientific and Technical Information of China (English)

    PING Fan; LUO Zhe-Xian; JU Jian-Hua

    2006-01-01

    @@ We mainly focus on the study of precipitating cloud merging associated with vortex merging. The vortex and precipitating cloud merging are simulated by the cloud resolving model from 0000 21 to 1800 23 July 2003. The results show that the model well simulates vortex circulation associated with precipitating clouds. It is also proven that the vortex merging follows the precipitating cloud merging although vortices show the spatial and temporal differences. The convection vorticity vector is introduced to describe the merging processes. Two merging cases are identified during the 42-h simulation and are studied.

  11. Viscosity bound violation in holographic solids and the viscoelastic response

    CERN Document Server

    Alberte, Lasma; Pujolas, Oriol

    2016-01-01

    We argue that the Kovtun--Son--Starinets (KSS) lower bound on the viscosity to entropy density ratio holds in fluid systems but is violated in solid materials with a non-zero shear elastic modulus. We construct explicit examples of this by applying the standard gauge/gravity duality methods to massive gravity and show that the KSS bound is clearly violated in black brane solutions whenever the massive gravity theories are of solid type. We argue that the physical reason for the bound violation relies on the viscoelastic nature of the mechanical response in these materials. We speculate on whether any real-world materials can violate the bound and discuss a possible generalization of the bound that involves the ratio of the shear elastic modulus to the pressure.

  12. Viscosity bound violation in holographic solids and the viscoelastic response

    Science.gov (United States)

    Alberte, Lasma; Baggioli, Matteo; Pujolàs, Oriol

    2016-07-01

    We argue that the Kovtun-Son-Starinets (KSS) lower bound on the viscosity to entropy density ratio holds in fluid systems but is violated in solid materials with a nonzero shear elastic modulus. We construct explicit examples of this by applying the standard gauge/gravity duality methods to massive gravity and show that the KSS bound is clearly violated in black brane solutions whenever the massive gravity theories are of solid type. We argue that the physical reason for the bound violation relies on the viscoelastic nature of the mechanical response in these materials. We speculate on whether any real-world materials can violate the bound and discuss a possible generalization of the bound that involves the ratio of the shear elastic modulus to the pressure.

  13. Field study of heavy oil viscosity reduction for production transport

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, J.; Annichiariccom, G.; Montanez, M. [Ecopetrol S.A. (Venezuela); Faust, M.; Weathers, T. [Nalco Energy Services (Colombia); Parra, R. [Nalco de Colombia Ltda. (Colombia)

    2011-07-01

    In the heavy oil industry, production and transportation are expensive processes requiring complex equipment and procedures. The main issue with heavy crude oil is its high viscosity. A method using naphtha injection was developed to dilute the fluids and aid in water separation, but this method is expensive and raises safety issues. To reduce naphtha consumption, Ecopetrol and Nalco Energy Services developed a new dispersion technology. This paper presents this technology and the results of its field trial in the Chichimene oil field. Key production indicators were monitored to determine how effective the emulsion method was in enhancing production. Results showed no negative effect on the separation facility or oil and water quality while reducing by 75% the injection of diluent. This paper presents a dispersion technology which successfully reduced the need for naphtha and thus reduced production costs.

  14. Viscosity jump in Earth's mid-mantle.

    Science.gov (United States)

    Rudolph, Maxwell L; Lekić, Vedran; Lithgow-Bertelloni, Carolina

    2015-12-11

    The viscosity structure of Earth's deep mantle affects the thermal evolution of Earth, the ascent of mantle plumes, settling of subducted oceanic lithosphere, and the mixing of compositional heterogeneities in the mantle. Based on a reanalysis of the long-wavelength nonhydrostatic geoid, we infer viscous layering of the mantle using a method that allows us to avoid a priori assumptions about its variation with depth. We detect an increase in viscosity at 800- to 1200-kilometers depth, far greater than the depth of the mineral phase transformations that define the mantle transition zone. The viscosity increase is coincident in depth with regions where seismic tomography has imaged slab stagnation, plume deflection, and changes in large-scale structure and offers a simple explanation of these phenomena.

  15. Relativistic r-modes and shear viscosity

    CERN Document Server

    Gualtieri, L; Miralles, J A; Ferrari, V

    2006-01-01

    We derive the relativistic equations for stellar perturbations, including in a consistent way shear viscosity in the stress-energy tensor, and we numerically integrate our equations in the case of large viscosity. We consider the slow rotation approximation, and we neglect the coupling between polar and axial perturbations. In our approach, the frequency and damping time of the emitted gravitational radiation are directly obtained. We find that, approaching the inviscid limit from the finite viscosity case, the continuous spectrum is regularized. Constant density stars, polytropic stars, and stars with realistic equations of state are considered. In the case of constant density stars and polytropic stars, our results for the viscous damping times agree, within a factor two, with the usual estimates obtained by using the eigenfunctions of the inviscid limit. For realistic neutron stars, our numerical results give viscous damping times with the same dependence on mass and radius as previously estimated, but sys...

  16. Herschel-Bulkley fluid flow through narrow tubes

    CERN Document Server

    Nallapu, Santhosh

    2014-01-01

    A two-fluid model of Herschel-Bulkley fluid flow through tubes of small diameters is studied. It is assumed that the core region consists of Herschel-Bulkley fluid and Newtonian fluid in the peripheral region. The analytical solutions for velocity, flow flux, effective viscosity, core hematocrit and mean hematocrit have been derived and the effects of various relevant parameters on these flow variables have been studied. It has been observed that the effective viscosity and mean hematocrit increase with yield stress, power-law index, hematocrit and tube radius. Further, the core hematocrit decreases with hematocrit and tube radius.

  17. Viscosity Meaurement Technique for Metal Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Heng [Utah State Univ., Logan, UT (United States). Mechanical and Aerospace Engineering; Kennedy, Rory [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-09

    Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.

  18. Merged-Beams for Slow Molecular Collision Experiments

    CERN Document Server

    Wei, Qi; Herschbach, Dudley

    2012-01-01

    Molecular collisions can be studied at very low relative kinetic energies, in the milliKelvin range, by merging codirectional beams with much higher translational energies, extending even to the kiloKelvin range, provided that the beam speeds can be closely matched. This technique provides far more intensity and wider chemical scope than methods that require slowing both collision partners. Previously, at far higher energies, merged beams have been widely used with ions and/or neutrals formed by charge transfer. Here we assess for neutral, thermal molecular beams the range and resolution of collision energy that now appears attainable, determined chiefly by velocity spreads within the merged beams. Our treatment deals both with velocity distributions familiar for molecular beams formed by effusion or supersonic expansion, and an unorthodox variant produced by a rotating supersonic source capable of scanning the lab beam velocity over a wide range.

  19. Pressure and Magnetics Measurements of Single and Merged Jets

    Science.gov (United States)

    Messer, S.; Case, A.; Brockington, S.; Bomgardner, R.; Witherspoon, F. D.

    2010-11-01

    We present pressure and magnetic data from both a single full scale coaxial gun and from the merging of jets from several minirailguns. The magnetic probes measure all three components of field, and include an array of probes inside the coaxial gun. Magnetic measurements beyond the muzzle of the gun show the scale of currents trapped in the plasma plume. The pressure probe measures adiabatic stagnation pressure and shows how this quantity decreases with distance from the gun as well as the changes in stagnation pressure through the merge process. Stagnation pressure is influenced by density, temperature, and velocity, and serves as a check on spectroscopic and interferometer measurements. Unlike optical measurements, stagnation pressure is taken at a definite location. These guns are early prototypes of guns to be installed on the Plasma Liner eXperiment at LANL. The jet-merging results are reviewed in the context of what is expected for PLX.

  20. Scaled beam merging experiment for heavy ion inertial fusion

    Directory of Open Access Journals (Sweden)

    P. A. Seidl

    2003-09-01

    Full Text Available Transverse beam combining is a cost-saving option employed in many designs for heavy ion fusion drivers. However, the resultant transverse phase space dilution must be minimized so as not to sacrifice focusability at the target. A prototype combining experiment has been completed employing four 3-mA Cs^{+} beams injected at 160 keV. The focusing elements upstream of the merge consist of four quadrupoles and a final combined-function element (quadrupole and dipole. Following the merge, the resultant single beam is transported in a single alternating gradient channel where the subsequent evolution of the distribution function is diagnosed. The results are in fair agreement with particle-in-cell simulations. They indicate that for some heavy ion fusion driver designs, the phase space dilution from merging is acceptable.

  1. Gravimetric capillary method for kinematic viscosity measurements

    Science.gov (United States)

    Rosenberger, Franz; Iwan, J.; Alexander, D.; Jin, Wei-Qing

    1992-01-01

    A novel version of the capillary method for viscosity measurements of liquids is presented. Viscosity data can be deduced in a straightforward way from mass transfer data obtained by differential weighing during the gravity-induced flow of the liquid between two cylindrical chambers. Tests of this technique with water, carbon tetrachloride, and ethanol suggest that this arrangement provides an accuracy of about +/- 1 percent. The technique facilitates operation under sealed, isothermal conditions and, thus can readily be applied to reactive and/or high vapor pressure liquids.

  2. Shear Viscosity of a Unitary Fermi Gas

    OpenAIRE

    Wlazłowski, Gabriel; Magierski, Piotr; Drut, Joaquín E.

    2012-01-01

    We present the first ab initio determination of the shear viscosity eta of the Unitary Fermi Gas, based on finite temperature quantum Monte Carlo calculations and the Kubo linear-response formalism. We determine the temperature dependence of the shear viscosity to entropy density ratio eta/s. The minimum of eta/s appears to be located above the critical temperature for the superfluid-to-normal phase transition with the most probable value being eta/s approx 0.2 hbar/kB, which almost saturates...

  3. Shear Viscosity in a Gluon Gas

    OpenAIRE

    Xu, Zhe; Greiner, Carsten

    2007-01-01

    The relation of the shear viscosity coefficient to the recently introduced transport rate is derived within relativistic kinetic theory. We calculate the shear viscosity over entropy ratio \\eta/s for a gluon gas, which involves elastic gg-> gg perturbative QCD (PQCD) scatterings as well as inelastic ggggg PQCD bremsstrahlung. For \\alpha_s=0.3 we find \\eta/s=0.13 and for \\alpha_s=0.6, \\eta/s=0.076. The small \\eta/s values, which suggest strongly coupled systems, are due to the gluon bremsstrah...

  4. Entropy viscosity method for nonlinear conservation laws

    KAUST Repository

    Guermond, Jean-Luc

    2011-05-01

    A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.

  5. Slim accretion discs with different viscosity prescriptions

    Energy Technology Data Exchange (ETDEWEB)

    Szuszkiewicz, E. (Max-Planck-Institut fuer Physik und Astrophysik, Garching (Germany, F.R.). Inst. fuer Astrophysik)

    1990-05-15

    The variability of X-ray sources powered by accretion may be connected to thermal instabilities in the innermost parts of slim discs. The time-scales of variability predicted by the theory with the standard {alpha}-viscosity prescription agree with those observed in a wide range of sources. The amplitudes (3-4 orders of magnitude in luminosity) are correctly predicted for X-ray transient sources, but in general are too big for quasars, Seyferts, galactic black hole candidates and LMXBs. We show here that a slight modification of the viscosity prescription can offer a much better agreement with observations. (author).

  6. Measuring Viscosities of Gases at Atmospheric Pressure

    Science.gov (United States)

    Singh, Jag J.; Mall, Gerald H.; Hoshang, Chegini

    1987-01-01

    Variant of general capillary method for measuring viscosities of unknown gases based on use of thermal mass-flowmeter section for direct measurement of pressure drops. In technique, flowmeter serves dual role, providing data for determining volume flow rates and serving as well-characterized capillary-tube section for measurement of differential pressures across it. New method simple, sensitive, and adaptable for absolute or relative viscosity measurements of low-pressure gases. Suited for very complex hydrocarbon mixtures where limitations of classical theory and compositional errors make theoretical calculations less reliable.

  7. Viscosity-temperature correlation for crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Shanshool, J.; Niazi, E. [Chemical Engineering Dept., Al-Nahrain Univ., Baghdad (Iraq)

    2004-12-01

    The kinematic viscosities of crude oils were measured over a temperature range 10-50 C and at atmospheric pressure. These data were used to develop a method to predict the viscosity of crude oils, based upon API gravity, pour point and molecular weight. The proposed new correlation has been verified using data base of about twelve Middle East crude oils, showing significantly improved correlation, with an average absolute deviation of 5.3%. The correlation is also applicable to crude oils with a wide range of API gravities, pour points and molecular weights. (orig.)

  8. Comparative analysis of CFD models for jetting fluidized beds: Effect of particle-phase viscosity

    Institute of Scientific and Technical Information of China (English)

    Pei Pei; Kai Zhang; Gang Xu; Yongping Yang; Dongsheng Wen

    2012-01-01

    Under the Eulerian-Eulerian framework of simulating gas-solid two-phase flow,the accuracy of the hydrodynamic prediction is strongly affected by the selection of rheology of the particulate phase,for which a detailed assessment is still absent.Using a jetting fluidized bed as an example,this work investigates the influence of solid theology on the hydrodynamic behavior by employing different particle-phase viscosity models.Both constant particle-phase viscosity model (CVM) with different viscosity values and a simple two-fluid model without particle-phase viscosity (NVM) are incorporated into the classical twofluid model and compared with the experimental measurements.Qualitative and quantitative results show that the jet penetration depth,jet frequency and averaged bed pressure drop are not a strong function of the particle-phase viscosity.Compared to CVM,the NVM exhibits better predictions on the jet behaviors,which is more suitable for investigating the hydrodynamics of gas-solid fluidized bed with a central jet.

  9. Effect of viscosity ratio on the motion of drops flowing on an inclined surface

    Science.gov (United States)

    Aberuee, M.; Mortazavi, S.

    2017-06-01

    The flow of two-dimensional drops on an inclined channel is studied by numerical simulations at finite Reynolds numbers. The effect of viscosity ratio on the behaviour of the two-phase medium is examined. The flow is driven by the acceleration due to gravity, and there is no pressure gradient along the flow direction. An implicit version of the finite difference/front-tracking method was developed and used in the present study. The lateral migration of a drop is studied first. It is found that the equilibrium position of a drop moves away from the channel floor as the viscosity ratio increases. However, the trend reverses beyond a certain viscosity ratio. Simulations with 40 drops in a relatively large channel show that there exists a limiting viscosity ratio where the drops behave like solid particles, and the effect of internal circulation of drops becomes negligible. This limiting condition resembles the granular flow regime except that the effect of interstitial fluid is present. The limiting viscosity ratio depends on the flow conditions (80 for Re=10 , and 200 for Re=20 ). There are two peaks in the areal fraction distribution of drops across the channel which is different from granular flow regime. It is also found that the peak in areal fraction distribution of drops moves away from the channel floor as the inclination angle of the channel increases.

  10. Impact of merging methods on radar based nowcasting of rainfall

    Science.gov (United States)

    Shehu, Bora; Haberlandt, Uwe

    2017-04-01

    Radar data with high spatial and temporal resolution are commonly used to track and predict rainfall patterns that serve as input for hydrological applications. To mitigate the high errors associated with the radar, many merging methods employing ground measurements have been developed. However these methods have been investigated mainly for simulation purposes, while for nowcasting they are limited to the application of the mean field bias correction. Therefore this study aims to investigate the impact of different merging methods on the nowcasting of the rainfall volumes regarding urban floods. Radar bias correction based on mean fields and quantile mapping are analyzed individually and also are implemented in conditional merging. Special attention is given to the impact of spatial and temporal filters on the predictive skill of all methods. The relevance of the radar merging techniques is demonstrated by comparing the performance of the forecasted rainfall field from the radar tracking algorithm HyRaTrac for both raw and merged radar data. For this purpose several extreme events are selected and the respective performance is evaluated by cross validation of the continuous criteria (bias and rmse) and categorical criteria (POD, FAR and GSS) for lead times up to 2 hours. The study area is located within the 128 km radius of Hannover radar in Lower Saxony, Germany and the data set constitutes of 80 recording stations in 5 min time steps for the period 2000-2012. The results reveal how the choice of merging method and the implementation of filters impacts the performance of the forecast algorithm.

  11. Simulating the Dynamic Behavior of Shear Thickening Fluids

    CERN Document Server

    Ozgen, Oktar; Brown, Eric

    2015-01-01

    While significant research has been dedicated to the simulation of fluids, not much attention has been given to exploring new interesting behavior that can be generated with the different types of non-Newtonian fluids with non-constant viscosity. Going in this direction, this paper introduces a computational model for simulating the interesting phenomena observed in non-Newtonian shear thickening fluids, which are fluids where the viscosity increases with increased stress. These fluids have unique and unconventional behavior, and they often appear in real world scenarios such as when sinking in quicksand or when experimenting with popular cornstarch and water mixtures. While interesting behavior of shear thickening fluids can be easily observed in the real world, the most interesting phenomena of these fluids have not been simulated before in computer graphics. The fluid exhibits unique phase changes between solid and liquid states, great impact resistance in its solid state and strong hysteresis effects. Our...

  12. Atom Chip for Transporting and Merging Magnetically Trapped Atom Clouds

    CERN Document Server

    Hänsel, W; Hommelhoff, P; Hänsch, T W

    2000-01-01

    We demonstrate an integrated magnetic ``atom chip'' which transports cold trapped atoms near a surface with very high positioning accuracy. Time-dependent currents in a lithographic conductor pattern create a moving chain of magnetic potential wells; atoms are transported in these wells while remaining confined in all three dimensions. We achieve fluxes up to 10^6 /s with a negligible heating rate. An extension of this ``atomic conveyor belt'' allows the merging of magnetically trapped atom clouds by unification of two Ioffe-Pritchard potentials. Under suitable conditions, the clouds merge without loss of phase space density. We demonstrate this unification process experimentally.

  13. Second Law Analysis for Variable Viscosity Hydromagnetic Boundary Layer Flow with Thermal Radiation and Newtonian Heating

    Directory of Open Access Journals (Sweden)

    Oluwole Daniel Makinde

    2011-08-01

    Full Text Available The present paper is concerned with the analysis of inherent irreversibility in hydromagnetic boundary layer flow of variable viscosity fluid over a semi-infinite flat plate under the influence of thermal radiation and Newtonian heating. Using local similarity solution technique and shooting quadrature, the velocity and temperature profiles are obtained numerically and utilized to compute the entropy generation number. The effects of magnetic field parameter, Brinkmann number, the Prandtl number, variable viscosity parameter, radiation parameter and local Biot number on the fluid velocity profiles, temperature profiles, local skin friction and local Nusselt number are presented. The influences of the same parameters and the dimensionless group parameter on the entropy generation rate in the flow regime and Bejan number are calculated, depicted graphically and discussed quantitatively. It is observed that the peak of entropy generation rate is attained within the boundary layer region and plate surface act as a strong source of entropy generation and heat transfer irreversibility.

  14. SOME ASPECTS OF THE REACTIVITY OF PULP INTENDED FOR HIGH-VISCOSITY VISCOSE

    Directory of Open Access Journals (Sweden)

    Linda Ostberg,

    2012-01-01

    Full Text Available The motivation for this study was to reduce the consumption of C2S when preparing high-viscosity viscose by pre-treating two softwood pulps with enzymes prior to the viscose stages. Reactivity was evaluated in two ways, Fock´s test of the pulp and the gamma number of the viscose solution prior to regeneration. Whilst the reactivity of a pulp that had been subjected to enzyme pretreatment increased according to Fock´s test, it did not increase according to the gamma number. This unexpected difference between the two reactivity tests was investigated. It was concluded that Fock´s test measures the extent to which C2S reacts with a pulp sample during a standardized test, whereas the gamma number measures the resulting degree of xanthate substitution on the cellulose backbone. The gamma number was judged to be the more relevant of the two tests, since it reflects the dissolution ability of a pulp in the viscose preparation. A higher gamma number also means that the coagulation time in the spinning process is prolonged; this is beneficial, as it can be used to increase the tenacity of the viscose fibres. Measuring the reactivity according to Fock´s test, on the contrary, provides more dubious results, as the test has no undisputed correlation to the viscose preparation process.

  15. Periodical structure in a magnetic fluid under the action of an electric field and with a shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Veguera, Janna G. [Stavropol State University, 1 Pushkin st., Stavropol 355009 (Russian Federation)]. E-mail: veguera@yandex.ru; Dikansky, Yury I. [Stavropol State University, 1 Pushkin st., Stavropol 355009 (Russian Federation)

    2005-03-15

    The results of ordering structural formation in a flowing magnetic fluid under the action of an electric field are described. The influence of structural formation process on a viscosity and conductivity of this fluids has been considered.

  16. Relativistic fluid dynamics in heavy ion collisions

    CERN Document Server

    Pu, Shi

    2011-01-01

    This dissertation is about the study of three important issues in the theory of relativistic fluid dynamics: the stability of dissipative fluid dynamics, the shear viscosity, and fluid dynamics with triangle anomaly.(1)The second order theory of fluid dynamics is necessary for causality. However the causality cannot be guaranteed for all parameters. The constraints for parameters are then given. We also point out that the causality and the stability are inter-correlated. It is found that a causal system must be stable, but an acausal system in the boost frame at high speed must be unstable. (2)The transport coefficients can be determined in kinetic theory. We will firstly discuss about derivation of the shear viscosity via variational method in the Boltzmann equation. Secondly, we will compute the shear viscosity via AdS/CFT duality in a Bjorken boost invariant fluid with radial flow. It is found that the ratio of the shear viscosity to entropy density is consistent with the work of Policastro, Son and Starin...

  17. Introduction to the physics of fluids and solids

    CERN Document Server

    Trefil, J S

    2013-01-01

    Introduction to the Physics of Fluids and Solids presents a way to learn continuum mechanics without mastering any other systems. It discusses an introduction to the principles of fluid mechanics. Another focus of study is the fluids in astrophysics. Some of the topics covered in the book are the rotation of the galaxy, the concept of stability, the fluids in motion, and the waves in fluids, the theory of the tides, the vibrations of the earth, and nuclear fission. The viscosity in fluids is covered. The flow of viscous fluids is discussed. The text identifies the general circulation of the a

  18. Instability of the interface in two-layer flows with large viscosity contrast at small Reynolds numbers

    Institute of Scientific and Technical Information of China (English)

    Jiebin Liu; Jifu Zhou

    2016-01-01

    The Kelvin–Helmholtz instability is believed to be the dominant instability mechanism for free shear flows at large Reynolds numbers. At small Reynolds numbers, a new instability mode is identified when the temporal instability of parallel viscous two fluid mixing layers is extended to current-fluid mud systems by considering a composite error function velocity profile. The new mode is caused by the large viscosity difference between the two fluids. This interfacial mode exists when the fluid mud boundary layer is sufficiently thin. Its performance is different from that of the Kelvin–Helmholtz mode. This mode has not yet been reported for interface instability problems with large viscosity contrasts. These results are essential for further stability analysis of flows relevant to the breaking up of this type of interface.

  19. Nectar feeding by the hovering hawk moth Macroglossum stellatarum: intake rate as a function of viscosity and concentration of sucrose solutions.

    Science.gov (United States)

    Josens, R B; Farina, W M

    2001-10-01

    Although nectar feeding in insects has long been studied, the knowledge of the effect of nectar energy content on the ingestion dynamics separately from the viscosity of the fluid is very limited. To determine the effects of both factors on the feeding behavior of the hovering hawk moth Macroglossum stellatarum, we developed a method to independently manipulate sucrose concentrations and viscosity. The intake rate was analyzed as a function of sucrose concentration, the concentration at constant viscosity (kept constant by adding tylose, an inert polysaccharide), and of the different viscosities of a 30% weight/weight (w/w) sucrose solution (by adding different amounts of tylose). By increasing the concentration, and thus its viscosity, the solution intake rate (in microl s (-1)) decreased beyond a 20% w/w sucrose solution. For a 30% sucrose solution, the intake rate decreased with increasing viscosity. At constant viscosity, the solution intake rate decreased beyond a 30% w/w sucrose solution. However, if we considered the quantity of sucrose ingested per unit time (sucrose intake rate), the same fitted maximum was attained for both series in which the sucrose concentration changed (33.6% w/w). Results suggest that the gustatory input affects the dynamics of fluid ingestion separately from the viscosity.

  20. Non-local viscosity of polymer melts approaching their glassy state

    DEFF Research Database (Denmark)

    Puscasu, Ruslan; Todd, Billy; Daivis, Peter

    2010-01-01

    The nonlocal viscosity kernels of polymer melts have been determined by means of equilibrium molecular dynamics upon cooling toward the glass transition. Previous results for the temperature dependence of the self-diffusion coefficient and the value of the glass transition temperature are confirmed...... transition, leading to a very broad kernel in physical space. Thus, spatial nonlocality turns out to play an important role in polymeric fluids at temperatures near the glass transition temperature...