Mesoscale Models of Fluid Dynamics
Boghosian, Bruce M.; Hadjiconstantinou, Nicolas G.
During the last half century, enormous progress has been made in the field of computational materials modeling, to the extent that in many cases computational approaches are used in a predictive fashion. Despite this progress, modeling of general hydrodynamic behavior remains a challenging task. One of the main challenges stems from the fact that hydrodynamics manifests itself over a very wide range of length and time scales. On one end of the spectrum, one finds the fluid's "internal" scale characteristic of its molecular structure (in the absence of quantum effects, which we omit in this chapter). On the other end, the "outer" scale is set by the characteristic sizes of the problem's domain. The resulting scale separation or lack thereof as well as the existence of intermediate scales are key to determining the optimal approach. Successful treatments require a judicious choice of the level of description which is a delicate balancing act between the conflicting requirements of fidelity and manageable computational cost: a coarse description typically requires models for underlying processes occuring at smaller length and time scales; on the other hand, a fine-scale model will incur a significantly larger computational cost.
Direct modeling for computational fluid dynamics
Xu, Kun
2015-06-01
All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct
AFDM: An Advanced Fluid-Dynamics Model
International Nuclear Information System (INIS)
Wilhelm, D.
1990-09-01
This volume describes the Advanced Fluid-Dynamics Model (AFDM) for topologies, flow regimes, and interfacial areas. The objective of these models is to provide values for the interfacial areas between all components existing in a computational cell. The interfacial areas are then used to evaluate the mass, energy, and momentum transfer between the components. A new approach has been undertaken in the development of a model to convect the interfacial areas of the discontinuous velocity fields in the three-velocity-field environment of AFDM. These interfacial areas are called convectible surface areas. The continuous and discontinuous components are chosen using volume fraction and levitation criteria. This establishes so-called topologies for which the convectible surface areas can be determined. These areas are functions of space and time. Solid particulates that are limited to being discontinuous within the bulk fluid are assumed to have a constant size. The convectible surface areas are subdivided to model contacts between two discontinuous components or discontinuous components and the structure. The models have been written for the flow inside of large pools. Therefore, the structure is tracked only as a boundary to the fluid volume without having a direct influence on velocity or volume fraction distribution by means of flow regimes or boundary layer models. 17 refs., 7 tabs., 18 figs
AFDM: An Advanced Fluid-Dynamics Model
International Nuclear Information System (INIS)
Bohl, W.R.; Parker, F.R.; Wilhelm, D.; Goutagny, L.; Ninokata, H.
1990-09-01
AFDM, or the Advanced Fluid-Dynamics Model, is a computer code that investigates new approaches simulating the multiphase-flow fluid-dynamics aspects of severe accidents in fast reactors. The AFDM formalism starts with differential equations similar to those in the SIMMER-II code. These equations are modified to treat three velocity fields and supplemented with a variety of new models. The AFDM code has 12 topologies describing what material contacts are possible depending on the presence or absence of a given material in a computational cell, on the dominant liquid, and on the continuous phase. Single-phase, bubbly, churn-turbulent, cellular, and dispersed flow regimes are permitted for the pool situations modeled. Virtual mass terms are included for vapor in liquid-continuous flow. Interfacial areas between the continuous and discontinuous phases are convected to allow some tracking of phenomenological histories. Interfacial areas are also modified by models of nucleation, dynamic forces, turbulence, flashing, coalescence, and mass transfer. Heat transfer is generally treated using engineering correlations. Liquid-vapor phase transitions are handled with the nonequilibrium, heat-transfer-limited model, whereas melting and freezing processes are based on equilibrium considerations. Convection is treated using a fractional-step method of time integration, including a semi-implicit pressure iteration. A higher-order differencing option is provided to control numerical diffusion. The Los Alamos SESAME equation-of-state has been implemented using densities and temperatures as the independent variables. AFDM programming has vectorized all computational loops consistent with the objective of producing an exportable code. 24 refs., 4 figs
Modeling quantum fluid dynamics at nonzero temperatures
Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.
2014-01-01
The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures. PMID:24704874
Computational fluid dynamics modelling in cardiovascular medicine.
Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2016-01-01
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. Published by the BMJ Publishing Group Limited. For permission
AFDM: An advanced fluid-dynamics model
International Nuclear Information System (INIS)
Henneges, G.; Kleinheins, S.
1994-01-01
This volume of the Advanced Fluid-Dynamics Model (AFDM) documents the modeling of the equation of state (EOS) in the code. The authors present an overview of the basic concepts underlying the thermodynamics modeling and resulting EOS, which is a set of relations between the thermodynamic properties of materials. The AFDM code allows for multiphase-multimaterial systems, which they explore in three phase models: two-material solid, two-material liquid, and three-material vapor. They describe and compare two ways of specifying the EOS of materials: (1) as simplified analytic expressions, or (2) as tables that precisely describe the properties of materials and their interactions for mechanical equilibrium. Either of the two EOS models implemented in AFDM can be selected by specifying the option when preprocessing the source code for compilation. Last, the authors determine thermophysical properties such as surface tension, thermal conductivities, and viscosities in the model for the intracell exchanges of AFDM. Specific notations, routines, EOS data, plots, test results, and corrections to the code are available in the appendices
Computational Fluid Dynamics Modeling of Bacillus anthracis ...
Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict
AIR INGRESS ANALYSIS: COMPUTATIONAL FLUID DYNAMIC MODELS
Energy Technology Data Exchange (ETDEWEB)
Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang
2010-08-01
The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.
Computational fluid dynamic modelling of cavitation
Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.
1993-01-01
Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.
Dynamic Modeling of ThermoFluid Systems
DEFF Research Database (Denmark)
Jensen, Jakob Munch
2003-01-01
The objective of the present study has been to developed dynamic models for two-phase flow in pipes (evaporation and condensation). Special attention has been given to modeling evaporators for refrigeration plant particular dry-expansion evaporators. Models of different complexity have been...... formulated. The different models deviate with respect to the detail¿s included and calculation time in connection with simulation. The models have been implemented in a new library named ThermoTwoPhase to the programming language Modelica. A test rig has been built with an evaporator instrumented in a way...
Meteorological fluid dynamics asymptotic modelling, stability and chaotic atmospheric motion
Zeytounian, Radyadour K
1991-01-01
The author considers meteorology as a part of fluid dynamics. He tries to derive the properties of atmospheric flows from a rational analysis of the Navier-Stokes equations, at the same time analyzing various types of initial and boundary problems. This approach to simulate nature by models from fluid dynamics will be of interest to both scientists and students of physics and theoretical meteorology.
Modeling of Dynamic Fluid Forces in Fast Switching Valves
DEFF Research Database (Denmark)
Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik Clemmensen
2015-01-01
Switching valves experience opposing fluid forces due to movement of the moving member itself, as the surrounding fluid volume must move to accommodate the movement. This movement-induced fluid force may be divided into three main components; the added mass term, the viscous term and the socalled...... history term. For general valve geometries there are no simple solution to either of these terms. During development and design of such switching valves, it is therefore, common practice to use simple models to describe the opposing fluid forces, neglecting all but the viscous term which is determined...... based on shearing areas and venting channels. For fast acting valves the opposing fluid force may retard the valve performance significantly, if appropriate measures are not taken during the valve design. Unsteady Computational Fluid Dynamics (CFD) simulations are available to simulate the total fluid...
Modelling Emission from Building Materials with Computational Fluid Dynamics
DEFF Research Database (Denmark)
Topp, Claus; Nielsen, Peter V.; Heiselberg, Per
This paper presents a numerical model that by means of computational fluid dynamics (CFD) is capable of dealing with both pollutant transport across the boundary layer and internal diffusion in the source without prior knowledge of which is the limiting process. The model provides the concentration...
Particle hopping vs. fluid-dynamical models for traffic flow
Energy Technology Data Exchange (ETDEWEB)
Nagel, K.
1995-12-31
Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.
A dynamic neutral fluid model for the PIC scheme
Wu, Alan; Lieberman, Michael; Verboncoeur, John
2010-11-01
Fluid diffusion is an important aspect of plasma simulation. A new dynamic model is implemented using the continuity and boundary equations in OOPD1, an object oriented one-dimensional particle-in-cell code developed at UC Berkeley. The model is described and compared with analytical methods given in [1]. A boundary absorption parameter can be adjusted from ideal absorption to ideal reflection. Simulations exhibit good agreement with analytic time dependent solutions for the two ideal cases, as well as steady state solutions for mixed cases. For the next step, fluid sources and sinks due to particle-particle or particle-fluid collisions within the simulation volume and to surface reactions resulting in emission or absorption of fluid species will be implemented. The resulting dynamic interaction between particle and fluid species will be an improvement to the static fluid in the existing code. As the final step in the development, diffusion for multiple fluid species will be implemented. [4pt] [1] M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd Ed, Wiley, 2005.
Discrete modeling considerations in multiphase fluid dynamics
International Nuclear Information System (INIS)
Ransom, V.H.; Ramshaw, J.D.
1988-01-01
The modeling of multiphase flows play a fundamental role in light water reactor safety. The main ingredients in our discrete modeling Weltanschauung are the following considerations: (1) Any physical model must be cast into discrete form for a digital computer. (2) The usual approach of formulating models in differential form and then discretizing them is potentially hazardous. It may be preferable to formulate the model in discrete terms from the outset. (3) Computer time and storage constraints limit the resolution that can be employed in practical calculations. These limits effectively define the physical phenomena, length scales, and time scales which cannot be directly represented in the calculation and therefore must be modeled. This information should be injected into the model formulation process at an early stage. (4) Practical resolution limits are generally so coarse that traditional convergence and truncation-error analyses become irrelevant. (5) A discrete model constitutes a reduced description of a physical system, from which fine-scale details are eliminated. This elimination creates a statistical closure problem. Methods from statistical physics may therefore be useful in the formulation of discrete models. In the present paper we elaborate on these themes and illustrate them with simple examples. 48 refs
Cellular-automata supercomputers for fluid-dynamics modeling
International Nuclear Information System (INIS)
Margolus, N.; Toffoli, T.; Vichniac, G.
1986-01-01
We report recent developments in the modeling of fluid dynamics, and give experimental results (including dynamical exponents) obtained using cellular automata machines. Because of their locality and uniformity, cellular automata lend themselves to an extremely efficient physical realization; with a suitable architecture, an amount of hardware resources comparable to that of a home computer can achieve (in the simulation of cellular automata) the performance of a conventional supercomputer
Green Algae as Model Organisms for Biological Fluid Dynamics
Goldstein, Raymond E.
2015-01-01
In the past decade, the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimeters), their geometric regularity, the ease with which they can be cultured, and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.
Bernard, Peter S
2015-01-01
This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.
Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model
Reid, Daniel A. P.; Hildenbrandt, H.; Hemelrijk, C. K.; Padding, J.T.
2012-01-01
The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed
International Nuclear Information System (INIS)
Myeong, Hyeon Guk
1999-06-01
This book deals with computational fluid dynamics with basic and history of numerical fluid dynamics, introduction of finite volume method using one-dimensional heat conduction equation, solution of two-dimensional heat conduction equation, solution of Navier-Stokes equation, fluid with heat transport, turbulent flow and turbulent model, Navier-Stokes solution by generalized coordinate system such as coordinate conversion, conversion of basic equation, program and example of calculation, application of abnormal problem and high speed solution of numerical fluid dynamics.
Computational fluid dynamics modelling of displacement natural ventilation.
Ji, Yingchun
2005-01-01
Natural ventilation is widely recognised as contributing towards low-energy building design. The requirement to reduce energy usage in new buildings has rejuvenated interest in natural ventilation. This thesis deals with computer modelling of natural displacement ventilation driven either by buoyancy or buoyancy combined with wind forces. Two benchmarks have been developed using computational fluid dynamics (CFD) in order to evaluate the accuracy with which CFD is able to mo...
A numerical model for dynamic crustal-scale fluid flow
Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel
2015-04-01
Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude
Cardioplegia heat exchanger design modelling using computational fluid dynamics.
van Driel, M R
2000-11-01
A new cardioplegia heat exchanger has been developed by Sorin Biomedica. A three-dimensional computer-aided design (CAD) model was optimized using computational fluid dynamics (CFD) modelling. CFD optimization techniques have commonly been applied to velocity flow field analysis, but CFD analysis was also used in this study to predict the heat exchange performance of the design before prototype fabrication. The iterative results of the optimization and the actual heat exchange performance of the final configuration are presented in this paper. Based on the behaviour of this model, both the water and blood fluid flow paths of the heat exchanger were optimized. The simulation predicted superior heat exchange performance using an optimal amount of energy exchange surface area, reducing the total contact surface area, the device priming volume and the material costs. Experimental results confirm the empirical results predicted by the CFD analysis.
Fluid mechanics and heat transfer advances in nonlinear dynamics modeling
Asli, Kaveh Hariri
2015-01-01
This valuable new book focuses on new methods and techniques in fluid mechanics and heat transfer in mechanical engineering. The book includes the research of the authors on the development of optimal mathematical models and also uses modern computer technology and mathematical methods for the analysis of nonlinear dynamic processes. It covers technologies applicable to both fluid mechanics and heat transfer problems, which include a combination of physical, mechanical, and thermal techniques. The authors develop a new method for the calculation of mathematical models by computer technology, using parametric modeling techniques and multiple analyses for mechanical system. The information in this book is intended to help reduce the risk of system damage or failure. Included are sidebar discussions, which contain information and facts about each subject area that help to emphasize important points to remember.
Computational fluid dynamic modeling of fluidized-bed polymerization reactors
Energy Technology Data Exchange (ETDEWEB)
Rokkam, Ram [Iowa State Univ., Ames, IA (United States)
2012-01-01
Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.
Yu, Alex; Jackson, Trachette; Tsume, Yasuhiro; Koenigsknecht, Mark; Wysocki, Jeffrey; Marciani, Luca; Amidon, Gordon L; Frances, Ann; Baker, Jason R; Hasler, William; Wen, Bo; Pai, Amit; Sun, Duxin
2017-11-01
Gastrointestinal (GI) fluid volume and its dynamic change are integral to study drug disintegration, dissolution, transit, and absorption. However, key questions regarding the local volume and its absorption, secretion, and transit remain unanswered. The dynamic fluid compartment absorption and transit (DFCAT) model is proposed to estimate in vivo GI volume and GI fluid transport based on magnetic resonance imaging (MRI) quantified fluid volume. The model was validated using GI local concentration of phenol red in human GI tract, which was directly measured by human GI intubation study after oral dosing of non-absorbable phenol red. The measured local GI concentration of phenol red ranged from 0.05 to 168 μg/mL (stomach), to 563 μg/mL (duodenum), to 202 μg/mL (proximal jejunum), and to 478 μg/mL (distal jejunum). The DFCAT model characterized observed MRI fluid volume and its dynamic changes from 275 to 46.5 mL in stomach (from 0 to 30 min) with mucus layer volume of 40 mL. The volumes of the 30 small intestine compartments were characterized by a max of 14.98 mL to a min of 0.26 mL (0-120 min) and a mucus layer volume of 5 mL per compartment. Regional fluid volumes over 0 to 120 min ranged from 5.6 to 20.38 mL in the proximal small intestine, 36.4 to 44.08 mL in distal small intestine, and from 42 to 64.46 mL in total small intestine. The DFCAT model can be applied to predict drug dissolution and absorption in the human GI tract with future improvements.
Ruban, Anatoly I
This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...
A fully dynamic magneto-rheological fluid damper model
International Nuclear Information System (INIS)
Jiang, Z; Christenson, R E
2012-01-01
Control devices can be used to dissipate the energy of a civil structure subjected to dynamic loading, thus reducing structural damage and preventing failure. Semiactive control devices have received significant attention in recent years. The magneto-rheological (MR) fluid damper is a promising type of semiactive device for civil structures due to its mechanical simplicity, inherent stability, high dynamic range, large temperature operating range, robust performance, and low power requirements. The MR damper is intrinsically nonlinear and rate-dependent, both as a function of the displacement across the MR damper and the command current being supplied to the MR damper. As such, to develop control algorithms that take maximum advantage of the unique features of the MR damper, accurate models must be developed to describe its behavior for both displacement and current. In this paper, a new MR damper model that includes a model of the pulse-width modulated (PWM) power amplifier providing current to the damper, a proposed model of the time varying inductance of the large-scale 200 kN MR dampers coils and surrounding MR fluid—a dynamic behavior that is not typically modeled—and a hyperbolic tangent model of the controllable force behavior of the MR damper is presented. Validation experimental tests are conducted with two 200 kN large-scale MR dampers located at the Smart Structures Technology Laboratory (SSTL) at the University of Illinois at Urbana-Champaign and the Lehigh University Network for Earthquake Engineering Simulation (NEES) facility. Comparison with experimental test results for both prescribed motion and current and real-time hybrid simulation of semiactive control of the MR damper shows that the proposed MR damper model can accurately predict the fully dynamic behavior of the large-scale 200 kN MR damper. (paper)
Shivamoggi, Bhimsen K
1998-01-01
"Although there are many texts and monographs on fluid dynamics, I do not know of any which is as comprehensive as the present book. It surveys nearly the entire field of classical fluid dynamics in an advanced, compact, and clear manner, and discusses the various conceptual and analytical models of fluid flow." - Foundations of Physics on the first edition. Theoretical Fluid Dynamics functions equally well as a graduate-level text and a professional reference. Steering a middle course between the empiricism of engineering and the abstractions of pure mathematics, the author focuses
Dynamic dielectrophoresis model of multi-phase ionic fluids.
Directory of Open Access Journals (Sweden)
Ying Yan
Full Text Available Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.
Dynamic dielectrophoresis model of multi-phase ionic fluids.
Yan, Ying; Luo, Jing; Guo, Dan; Wen, Shizhu
2015-01-01
Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.
Vortex dynamics in the two-fluid model
International Nuclear Information System (INIS)
Thouless, D. J.; Geller, M. R.; Vinen, W. F.; Fortin, J.-Y.; Rhee, S. W.
2001-01-01
We have used two-fluid dynamics to study the discrepancy between the work of Thouless, Ao, and Niu (TAN) and that of Iordanskii. In TAN no transverse force on a vortex due to normal fluid flow was found, whereas the earlier work found a transverse force proportional to normal fluid velocity u n and normal fluid density ρ n . We have linearized the time-independent two-fluid equations about the exact solution for a vortex, and find three solutions that are important in the region far from the vortex. Uniform superfluid flow gives rise to the usual superfluid Magnus force. Uniform normal fluid flow gives rise to no forces in the linear region, but does not satisfy reasonable boundary conditions at short distances. A logarithmically increasing normal fluid flow gives a viscous force. As in classical hydrodynamics, and as in the early work of Hall and Vinen, this logarithmic increase must be cut off by nonlinear effects at large distances; this gives a viscous force proportional to u n /lnu n , and a transverse contribution that goes like u n /(lnu n ) 2 , even in the absence of an explicit Iordanskii force. In the limit u n ->0 the TAN result is obtained, but at nonzero u n there are important corrections that were not found in TAN. We argue that the Magnus force in a superfluid at nonzero temperature is an example of a topological relation for which finite-size corrections may be large
Computational Fluid Dynamics Model for Saltstone Vault 4 Vapor Space
International Nuclear Information System (INIS)
Lee, Si Young
2005-01-01
Computational fluid dynamics (CFD) methods have been used to estimate the flow patterns for vapor space inside the Saltstone Vault No.4 under different operating scenarios. The purpose of this work is to examine the gas motions inside the vapor space under the current vault configurations. A CFD model took three-dimensional transient momentum-energy coupled approach for the vapor space domain of the vault. The modeling calculations were based on prototypic vault geometry and expected normal operating conditions as defined by Waste Solidification Engineering. The modeling analysis was focused on the air flow patterns near the ventilated corner zones of the vapor space inside the Saltstone vault. The turbulence behavior and natural convection mechanism used in the present model were benchmarked against the literature information and theoretical results. The verified model was applied to the Saltstone vault geometry for the transient assessment of the air flow patterns inside the vapor space of the vault region using the boundary conditions as provided by the customer. The present model considered two cases for the estimations of the flow patterns within the vapor space. One is the reference baseline case. The other is for the negative temperature gradient between the roof inner and top grout surface temperatures intended for the potential bounding condition. The flow patterns of the vapor space calculated by the CFD model demonstrate that the ambient air comes into the vapor space of the vault through the lower-end ventilation hole, and it gets heated up by the Benard-cell type circulation before leaving the vault via the higher-end ventilation hole. The calculated results are consistent with the literature information
Directory of Open Access Journals (Sweden)
Alina Żogała
2014-01-01
Originality/value: This paper presents state of art in the field of coal gasification modeling using kinetic and computational fluid dynamics approach. The paper also presents own comparative analysis (concerned with mathematical formulation, input data and parameters, basic assumptions, obtained results etc. of the most important models of underground coal gasification.
Modeling fires in adjacent ship compartments with computational fluid dynamics
International Nuclear Information System (INIS)
Wix, S.D.; Cole, J.K.; Koski, J.A.
1998-01-01
This paper presents an analysis of the thermal effects on radioactive (RAM) transportation pack ages with a fire in an adjacent compartment. An assumption for this analysis is that the adjacent hold fire is some sort of engine room fire. Computational fluid dynamics (CFD) analysis tools were used to perform the analysis in order to include convective heat transfer effects. The analysis results were compared to experimental data gathered in a series of tests on the United States Coast Guard ship Mayo Lykes located at Mobile, Alabama. (authors)
Computational fluid dynamics in fire engineering theory, modelling and practice
Yuen, Kwok Kit
2009-01-01
Fire and combustion presents a significant engineering challenge to mechanical, civil and dedicated fire engineers, as well as specialists in the process and chemical, safety, buildings and structural fields. We are reminded of the tragic outcomes of 'untenable' fire disasters such as at King's Cross underground station or Switzerland's St Gotthard tunnel. In these and many other cases, computational fluid dynamics (CFD) is at the forefront of active research into unravelling the probable causes of fires and helping to design structures and systems to ensure that they are less likely in the f
Kleinstreuer, Clement
2018-01-01
Modern Fluid Dynamics, Second Edition provides up-to-date coverage of intermediate and advanced fluids topics. The text emphasizes fundamentals and applications, supported by worked examples and case studies. Scale analysis, non-Newtonian fluid flow, surface coating, convection heat transfer, lubrication, fluid-particle dynamics, microfluidics, entropy generation, and fluid-structure interactions are among the topics covered. Part A presents fluids principles, and prepares readers for the applications of fluid dynamics covered in Part B, which includes computer simulations and project writing. A review of the engineering math needed for fluid dynamics is included in an appendix.
Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model in 2D
Reid, D.A.P.; Hildenbrandt, H.; Padding, J.T.; Hemelrijk, C.K.
2012-01-01
The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed
Fluid Dynamic Models for Bhattacharyya-Based Discriminant Analysis.
Noh, Yung-Kyun; Hamm, Jihun; Park, Frank Chongwoo; Zhang, Byoung-Tak; Lee, Daniel D
2018-01-01
Classical discriminant analysis attempts to discover a low-dimensional subspace where class label information is maximally preserved under projection. Canonical methods for estimating the subspace optimize an information-theoretic criterion that measures the separation between the class-conditional distributions. Unfortunately, direct optimization of the information-theoretic criteria is generally non-convex and intractable in high-dimensional spaces. In this work, we propose a novel, tractable algorithm for discriminant analysis that considers the class-conditional densities as interacting fluids in the high-dimensional embedding space. We use the Bhattacharyya criterion as a potential function that generates forces between the interacting fluids, and derive a computationally tractable method for finding the low-dimensional subspace that optimally constrains the resulting fluid flow. We show that this model properly reduces to the optimal solution for homoscedastic data as well as for heteroscedastic Gaussian distributions with equal means. We also extend this model to discover optimal filters for discriminating Gaussian processes and provide experimental results and comparisons on a number of datasets.
Modeling centrifugal cell washers using computational fluid dynamics.
Kellet, Beth E; Han, Binbing; Dandy, David S; Wickramasinghe, S Ranil
2004-11-01
Reinfusion of shed blood during surgery could avoid the need for blood transfusions. Prior to reinfusion of the red blood cells, the shed blood must be washed in order to remove leukocytes, platelets, and other contaminants. Further, the hematocrit of the washed blood must be increased. The feasibility of using computational fluid dynamics (CFD) to guide the design of better centrifuges for processing shed blood is explored here. The velocity field within a centrifuge bowl and the rate of protein removal from the shed blood has been studied. The results obtained indicate that CFD could help screen preliminary centrifuge bowl designs, thus reducing the number of initial experimental tests required when developing new centrifuge bowls. Although the focus of this work is on washing shed blood, the methods developed here are applicable to the design of centrifuge bowls for other blood-processing applications.
Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models
Energy Technology Data Exchange (ETDEWEB)
Cook, Christopher B.; Richmond, Marshall C.
2001-05-01
This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.
Qweak Data Analysis for Target Modeling Using Computational Fluid Dynamics
Moore, Michael; Covrig, Silviu
2015-04-01
The 2.5 kW liquid hydrogen (LH2) target used in the Qweak parity violation experiment is the highest power LH2 target in the world and the first to be designed with Computational Fluid Dynamics (CFD) at Jefferson Lab. The Qweak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from unpolarized liquid hydrogen at small momentum transfer (Q2 = 0 . 025 GeV2). This target met the design goals of bench-marked with the Qweak target data. This work is an essential ingredient in future designs of very high power low noise targets like MOLLER (5 kW, target noise asymmetry contribution < 25 ppm) and MESA (4.5 kW).
National Aeronautics and Space Administration — Computational fluid dynamics (CFD) simulations are routinely used by NASA to optimize the design of propulsion systems. Current methods for CFD modeling rely on...
International Nuclear Information System (INIS)
Melo, Ana Cristina Bezerra Azedo de
2004-12-01
The fluid dynamic behavior of a riser in a cold type FCC model was investigated by means of catalyst concentration distribution measured with gamma attenuation and simulated with a mathematical model. In the riser of the cold model, MEF, 0,032 m in diameter, 2,30 m in length the fluidized bed, whose components are air and FCC catalyst, circulates. The MEF is operated by automatic control and instruments for measuring fluid dynamic variables. An axial catalyst concentration distribution was measured using an Am-241 gamma source and a NaI detector coupled to a multichannel provided with a software for data acquisition and evaluation. The MEF was adapted for a fluid dynamic model validation which describes the flow in the riser, for example, by introducing an injector for controlling the solid flow in circulation. Mathematical models were selected from literature, analyzed and tested to simulate the fluid dynamic of the riser. A methodology for validating fluid dynamic models was studied and implemented. The stages of the work were developed according to the validation methodology, such as data planning experiments, study of the equations which describe the fluidodynamic, computational solvers application and comparison with experimental data. Operational sequences were carried out keeping the MEF conditions for measuring catalyst concentration and simultaneously measuring the fluid dynamic variables, velocity of the components and pressure drop in the riser. Following this, simulated and experimental values were compared and statistical data treatment done, aiming at the required precision to validate the fluid dynamic model. The comparison tests between experimental and simulated data were carried out under validation criteria. The fluid dynamic behavior of the riser was analyzed and the results and the agreement with literature were discussed. The adopt model was validated under the MEF operational conditions, for a 3 to 6 m/s gas velocity in the riser and a slip
Static/dynamic fluid-structure interaction analysis for 3-D rotary blade model
International Nuclear Information System (INIS)
Kim, Dong Hyun; Kim, Yu Sung; Kim, Dong Man; Park, Kang Kyun
2009-01-01
In this study, static/dynamic fluid-structure interaction analyses have been conducted for a 3D rotary blade model like a turbo-machinery or wind turbine blade. Advanced computational analysis system based on Computational Fluid Dynamics (CFD) and Computational Structural Dynamics (CSD) has been developed in order to investigate detailed dynamic responses of rotary type models. Fluid domains are modeled using the computational grid system with local grid deforming techniques. Reynolds-averaged Navier-Stokes equations with various turbulence model are solved for unsteady flow problems of the rotating blade model. Detailed static/dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating blades.
International Nuclear Information System (INIS)
Elfelsoufi, Z.; Azrar, L.
2016-01-01
In this paper, a mathematical modeling of flutter and divergence analyses of fluid conveying pipes based on integral equation formulations is presented. Dynamic stability problems related to fluid pressure, velocity, tension, topography slope and viscoelastic supports and foundations are formulated. A methodological approach is presented and the required matrices, associated to the influencing fluid and pipe parameters, are explicitly given. Internal discretizations are used allowing to investigate the deformation, the bending moment, slope and shear force at internal points. Velocity–frequency, pressure-frequency and tension-frequency curves are analyzed for various fluid parameters and internal elastic supports. Critical values of divergence and flutter behaviors with respect to various fluid parameters are investigated. This model is general and allows the study of dynamic stability of tubes crossed by stationary and instationary fluid on various types of supports. Accurate predictions can be obtained and are of particular interest for a better performance and for an optimal safety of piping system installations. - Highlights: • Modeling the flutter and divergence of fluid conveying pipes based on RBF. • Dynamic analysis of a fluid conveying pipe with generalized boundary conditions. • Considered parameters fluid are the pressure, tension, slopes topography, velocity. • Internal support increase the critical velocity value. • This methodologies determine the fluid parameters effects.
Dynamic modeling of fluid power transmissions for wind turbines
Diepeveen, N.F.B.; Jarquin Laguna, A.
2011-01-01
Fluid power transmission for wind turbines is quietly gaining more ground/interest. The principle of the various concepts presented so far is to convert aerodynamic torque of the rotor blades into a pressurized fluid flow by means of a positive displacement pump. At the other end of the fluid power
Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model
Reid, Daniel A. P.; Hildenbrandt, H.; Padding, J. T.; Hemelrijk, C. K.
2012-02-01
The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed analysis. Their insights may guide empirical work. Particularly the recently introduced multiparticle collision dynamics method may be suitable for the study of moving organisms because it is computationally fast, simple to implement, and has a continuous representation of space. As regards the study of hydrodynamics of moving organisms, the method has only been applied at low Reynolds numbers (below 120) for soft, permeable bodies, and static fishlike shapes. In the present paper we use it to study the hydrodynamics of an undulating fish at Reynolds numbers 1100-1500, after confirming its performance for a moving insect wing at Reynolds number 75. We measure (1) drag, thrust, and lift forces, (2) swimming efficiency and spatial structure of the wake, and (3) distribution of forces along the fish body. We confirm the resemblance between the simulated undulating fish and empirical data. In contrast to theoretical predictions, our model shows that for steadily undulating fish, thrust is produced by the rear 2/3 of the body and that the slip ratio U/V (with U the forward swimming speed and V the rearward speed of the body wave) correlates negatively (instead of positively) with the actual Froude efficiency of swimming. Besides, we show that the common practice of modeling individuals while constraining their sideways acceleration causes them to resemble unconstrained fish with a higher tailbeat frequency.
Ogilvie, Gordon I.
2016-06-01
> These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.
Perspectives in Fluid Dynamics
Batchelor, G. K.; Moffatt, H. K.; Worster, M. G.
2002-12-01
With applications ranging from modelling the environment to automotive design and physiology to astrophysics, conventional textbooks cannot hope to give students much information on what topics in fluid dynamics are currently being researched, or how to choose between them. This book rectifies matters. It consists of eleven chapters that introduce and review different branches of the subject for graduate-level courses, or for specialists seeking introductions to other areas. Hb ISBN (2001): 0-521-78061-6
Samsudin, A.; Fratiwi, N.; Amin, N.; Wiendartun; Supriyatman; Wibowo, F.; Faizin, M.; Costu, B.
2018-05-01
This study based on an importance of improving students’ conceptions and reduces students’ misconceptions on fluid dynamics concepts. Consequently, should be done the study through combining Peer Teaching Model (PTM) and PDEODE (Prediction, Discuss, Explain, Observe, Discuss and Explain) learning strategy (PTM-PDEODE). For the research methods, we used the 4D model (Defining, Designing, Developing, and Disseminating). The samples are 38 students (their ages were an average of 17 years-old) at one of the senior high schools in Bandung. The improvement of students’ conceptions was diagnosed through a four-tier test of fluid dynamics. At the disseminating phase, students’ conceptions of fluid dynamics concepts are increase after the use of PTM-PDEODE. In conclusion, the development of PTM-PDEODE is respectable enough to improve students’ conceptions on dinamics fluid.
Geophysical fluid dynamics understanding (almost) everything with rotating shallow water models
Zeitlin, Vladimir
2018-01-01
The book explains the key notions and fundamental processes in the dynamics of the fluid envelopes of the Earth (transposable to other planets), and methods of their analysis, from the unifying viewpoint of rotating shallow-water model (RSW). The model, in its one- or two-layer versions, plays a distinguished role in geophysical fluid dynamics, having been used for around a century for conceptual understanding of various phenomena, for elaboration of approaches and methods, to be applied later in more complete models, for development and testing of numerical codes and schemes of data assimilations, and many other purposes. Principles of modelling of large-scale atmospheric and oceanic flows, and corresponding approximations, are explained and it is shown how single- and multi-layer versions of RSW arise from the primitive equations by vertical averaging, and how further time-averaging produces celebrated quasi-geostrophic reductions of the model. Key concepts of geophysical fluid dynamics are exposed and inte...
Fluid dynamics of dilatant fluid
DEFF Research Database (Denmark)
Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko
2012-01-01
of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon external impact. An analysis of the model...
A computational fluid dynamics model for designing heat exchangers based on natural convection
Dirkse, M.H.; Loon, van W.K.P.; Walle, van der T.; Speetjens, S.L.; Bot, G.P.A.
2006-01-01
A computational fluid dynamics model was created for the design of a natural convection shell-and-tube heat exchanger with baffles. The flow regime proved to be turbulent and this was modelled using the k¿¿ turbulence model. The features of the complex geometry were simplified considerably resulting
Computational electrochemo-fluid dynamics modeling in a uranium electrowinning cell
International Nuclear Information System (INIS)
Kim, K.R.; Choi, S.Y.; Kim, S.H.; Shim, J.B.; Paek, S.; Kim, I.T.
2014-01-01
A computational electrochemo-fluid dynamics model has been developed to describe the electrowinning behavior in an electrolyte stream through a planar electrode cell system. Electrode reaction of the uranium electrowinning process from a molten-salt electrolyte stream was modeled to illustrate the details of the flow-assisted mass transport of ions to the cathode. This modeling approach makes it possible to represent variations of the convective diffusion limited current density by taking into account the concentration profile at the electrode surface as a function of the flow characteristics and applied current density in a commercially available computational fluid dynamics platform. It was possible to predict the conventional current-voltage relation in addition to details of electrolyte fluid dynamics and electrochemical variables, such as the flow field, species concentrations, potential, and current distributions throughout the galvanostatic electrolysis cell. (author)
Computational fluid-dynamic model of laser-induced breakdown in air
International Nuclear Information System (INIS)
Dors, Ivan G.; Parigger, Christian G.
2003-01-01
Temperature and pressure profiles are computed by the use of a two-dimensional, axially symmetric, time-accurate computational fluid-dynamic model for nominal 10-ns optical breakdown laser pulses. The computational model includes a kinetics mechanism that implements plasma equilibrium kinetics in ionized regions and nonequilibrium, multistep, finite-rate reactions in nonionized regions. Fluid-physics phenomena following laser-induced breakdown are recorded with high-speed shadowgraph techniques. The predicted fluid phenomena are shown by direct comparison with experimental records to agree with the flow patterns that are characteristic of laser spark decay
Fiszdon, W
1965-01-01
Fluid Dynamics Transactions, Volume 2 compiles 46 papers on fluid dynamics, a subdiscipline of fluid mechanics that deals with fluid flow. The topics discussed in this book include developments in interference theory for aeronautical applications; diffusion from sources in a turbulent boundary layer; unsteady motion of a finite wing span in a compressible medium; and wall pressure covariance and comparison with experiment. The certain classes of non-stationary axially symmetric flows in magneto-gas-dynamics; description of the phenomenon of secondary flows in curved channels by means of co
Complex fluid network optimization and control integrative design based on nonlinear dynamic model
International Nuclear Information System (INIS)
Sui, Jinxue; Yang, Li; Hu, Yunan
2016-01-01
In view of distribution according to complex fluid network’s needs, this paper proposed one optimization computation method of the nonlinear programming mathematical model based on genetic algorithm. The simulation result shows that the overall energy consumption of the optimized fluid network has a decrease obviously. The control model of the fluid network is established based on nonlinear dynamics. We design the control law based on feedback linearization, take the optimal value by genetic algorithm as the simulation data, can also solve the branch resistance under the optimal value. These resistances can provide technical support and reference for fluid network design and construction, so can realize complex fluid network optimization and control integration design.
International Nuclear Information System (INIS)
Jackson, V.L.
2011-01-01
The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.
Advances in engineering turbulence modeling. [computational fluid dynamics
Shih, T.-H.
1992-01-01
Some new developments in two equation models and second order closure models are presented. In this paper, modified two equation models are proposed to remove shortcomings such as computing flows over complex geometries and the ad hoc treatment near the separation and reattachment points. The calculations using various two equation models are compared with direct numerical solutions of channel flows and flat plate boundary layers. Development of second order closure models will also be discussed with emphasis on the modeling of pressure related correlation terms and dissipation rates in the second moment equations. All existing models poorly predict the normal stresses near the wall and fail to predict the three dimensional effect of mean flow on the turbulence. The newly developed second order near-wall turbulence model to be described in this paper is capable of capturing the near-wall behavior of turbulence as well as the effect of three dimension mean flow on the turbulence.
Research Summary 3-D Computational Fluid Dynamics (CFD) Model Of The Human Respiratory System
The U.S. EPA’s Office of Research and Development (ORD) has developed a 3-D computational fluid dynamics (CFD) model of the human respiratory system that allows for the simulation of particulate based contaminant deposition and clearance, while being adaptable for age, ethnicity,...
Modelling dynamic liquid-gas systems: Extensions to the volume-of-fluid solver
CSIR Research Space (South Africa)
Heyns, Johan A
2013-06-01
Full Text Available This study presents the extension of the volume-of-fluid solver, interFoam, for improved accuracy and efficiency when modelling dynamic liquid-gas systems. Examples of these include the transportation of liquids, such as in the case of fuel carried...
Computational Fluid Dynamics model of stratified atmospheric boundary-layer flow
DEFF Research Database (Denmark)
Koblitz, Tilman; Bechmann, Andreas; Sogachev, Andrey
2015-01-01
For wind resource assessment, the wind industry is increasingly relying on computational fluid dynamics models of the neutrally stratified surface-layer. So far, physical processes that are important to the whole atmospheric boundary-layer, such as the Coriolis effect, buoyancy forces and heat...
2017-07-05
SECURITY CLASSIFICATION OF: We use multiscale modeling and computational fluid dynamics to examine the stability of a swimming organism in the face of...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
Application of computational fluid dynamics modelling to an ozone ...
African Journals Online (AJOL)
The turbulence effect induced by the gas injection was modelled by increasing the level of turbulence intensity at the ozone contactor inlet. The simulated tracer response corresponded closely to the experimental results. The framework of ozone reaction modelling was subsequently investigated using values of rate ...
Five decades of tackling models for stiff fluid dynamics problems a scientific autobiography
Zeytounian, Radyadour Kh
2014-01-01
Rationality - as opposed to 'ad-hoc' - and asymptotics - to emphasize the fact that perturbative methods are at the core of the theory - are the two main concepts associated with the Rational Asymptotic Modeling (RAM) approach in fluid dynamics when the goal is to specifically provide useful models accessible to numerical simulation via high-speed computing. This approach has contributed to a fresh understanding of Newtonian fluid flow problems and has opened up new avenues for tackling real fluid flow phenomena, which are known to lead to very difficult mathematical and numerical problems irrespective of turbulence. With the present scientific autobiography the author guides the reader through his somewhat non-traditional career; first discovering fluid mechanics, and then devoting more than fifty years to intense work in the field. Using both personal and general historical contexts, this account will be of benefit to anyone interested in the early and contemporary developments of an important branch of the...
DEFF Research Database (Denmark)
Larsson, Hilde Kristina
the velocity and pressure distributions in a fluid. CFD also enables the modelling of several fluids simultaneously, e.g. gas bubbles in a liquid, as well as the presence of turbulence and dissolved chemicals in a fluid, and many other phenomena. This makes CFD an appreciated tool for studying flow structures......, mixing, and other mass transfer phenomena in chemical and biochemical reactor systems. In this project, four selected case studies are investigated in order to explore the capabilities of CFD. The selected cases are a 1 ml stirred microbioreactor, an 8 ml magnetically stirred reactor, a Rushton impeller...... and an ion-exchange reaction are also modelled and compared to experimental data. The thesis includes a comprehensive overview of the fundamentals behind a CFD software, as well as a more detailed review of the fluid dynamic phenomena investigated in this project. The momentum and continuity equations...
Application of computational fluid dynamics modelling to an ozone ...
African Journals Online (AJOL)
driniev
2004-01-01
Jan 1, 2004 ... Turbulent kinetic energy m2·s-2 km. Disinfection rate constant for .... modelling the kinetic reactions to achieve the most efficient use of the ozone dosed to the system. The USEPA techniques .... be globally categorised into off-gas losses, consumption, and loss by self-decomposition. (Bredtmann, 1982).
Developments in numerical modelling of cardio-vascular fluid dynamics
International Nuclear Information System (INIS)
Collins, M.W.; Long, Q.; Biondi, A.; Ciofalo, M.
1998-01-01
Cardiovascular haemodynamics is a subject area of high medical importance. Over about the last ten years, as the current generation of engineering CFD codes have been developed, so they have been applied to arterial problems and have been demonstrated to be valuable and reliable research tool in this area. In this paper we firstly look back at what has been achieved, taking as examples work at TFERC, which may be regarded as typical of that of other groups. The authors then look at current studies including the coupling of solid mechanics codes with the CFD codes, the writing of specialised software to take direct clinical data from, say, magnetic resonance, and the development of clinically-useful post-processing of a virtual reality nature. Finally, for the future the authors envisage overall integrated software, comprehensive modelling of the human left ventricle, and the development of models for nano-scale physiological flows
Developments in numerical modelling of cardio-vascular fluid dynamics
Energy Technology Data Exchange (ETDEWEB)
Collins, M.W.; Long, Q. [City Univ., London (United Kingdom). Thermo-fluid Engineering Centre ; Biondi, A.; Ciofalo, M. [Palermo Univ. (Italy). Dipt. di Ingegneria Nucleare
1998-07-01
Cardiovascular haemodynamics is a subject area of high medical importance. Over about the last ten years, as the current generation of engineering CFD codes have been developed, so they have been applied to arterial problems and have been demonstrated to be valuable and reliable research tool in this area. In this paper we firstly look back at what has been achieved, taking as examples work at TFERC, which may be regarded as typical of that of other groups. The authors then look at current studies including the coupling of solid mechanics codes with the CFD codes, the writing of specialised software to take direct clinical data from, say, magnetic resonance, and the development of clinically-useful post-processing of a virtual reality nature. Finally, for the future the authors envisage overall integrated software, comprehensive modelling of the human left ventricle, and the development of models for nano-scale physiological flows.
Faber, T. E.
1995-08-01
This textbook provides an accessible and comprehensive account of fluid dynamics that emphasizes fundamental physical principles and stresses connections with other branches of physics. Beginning with a basic introduction, the book goes on to cover many topics not typically treated in texts, such as compressible flow and shock waves, sound attenuation and bulk viscosity, solitary waves and ship waves, thermal convection, instabilities, turbulence, and the behavior of anisotropic, non-Newtonian and quantum fluids. Undergraduate or graduate students in physics or engineering who are taking courses in fluid dynamics will find this book invaluable.
A Computation Fluid Dynamic Model for Gas Lift Process Simulation in a Vertical Oil Well
Directory of Open Access Journals (Sweden)
Kadivar Arash
2017-03-01
Full Text Available Continuous gas-lift in a typical oil well was simulated using computational fluid dynamic (CFD technique. A multi fluid model based on the momentum transfer between liquid and gas bubbles was employed to simulate two-phase flow in a vertical pipe. The accuracy of the model was investigated through comparison of numerical predictions with experimental data. The model then was used to study the dynamic behaviour of the two-phase flow around injection point in details. The predictions by the model were compared with other empirical correlations, as well. To obtain an optimum condition of gas-lift, the influence of the effective parameters including the quantity of injected gas, tubing diameter and bubble size distribution were investigated. The results revealed that increasing tubing diameter, the injected gas rate and decreasing bubble diameter improve gas-lift performance.
Directory of Open Access Journals (Sweden)
Xu Liu
2015-01-01
Full Text Available Unsteady aerodynamic system modeling is widely used to solve the dynamic stability problems encountering aircraft design. In this paper, single degree-of-freedom (SDF vibration model and forced simple harmonic motion (SHM model for dynamic derivative prediction are developed on the basis of modified Etkin model. In the light of the characteristics of SDF time domain solution, the free vibration identification methods for dynamic stability parameters are extended and applied to the time domain numerical simulation of blunted cone calibration model examples. The dynamic stability parameters by numerical identification are no more than 0.15% deviated from those by experimental simulation, confirming the correctness of SDF vibration model. The acceleration derivatives, rotary derivatives, and combination derivatives of Army-Navy Spinner Rocket are numerically identified by using unsteady N-S equation and solving different SHV patterns. Comparison with the experimental result of Army Ballistic Research Laboratories confirmed the correctness of the SHV model and dynamic derivative identification. The calculation result of forced SHM is better than that by the slender body theory of engineering approximation. SDF vibration model and SHM model for dynamic stability parameters provide a solution to the dynamic stability problem encountering aircraft design.
DEFF Research Database (Denmark)
Yin, Chungen; Johansen, Lars Christian Riis; Rosendahl, Lasse
2010-01-01
gases model (WSGGM) is derived, which is applicable to computational fluid dynamics (CFD) modeling of both air-fuel and oxy-fuel combustion. First, a computer code is developed to evaluate the emissivity of any gas mixture at any condition by using the exponential wide band model (EWBM...
Energy Technology Data Exchange (ETDEWEB)
Barbante, Paolo [Dipartimento di Matematica, Politecnico di Milano - Piazza Leonardo da Vinci 32 - 20133 Milano (Italy); Frezzotti, Aldo; Gibelli, Livio [Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano - Via La Masa 34 - 20156 Milano (Italy)
2014-12-09
The unsteady evaporation of a thin planar liquid film is studied by molecular dynamics simulations of Lennard-Jones fluid. The obtained results are compared with the predictions of a diffuse interface model in which capillary Korteweg contributions are added to hydrodynamic equations, in order to obtain a unified description of the liquid bulk, liquid-vapor interface and vapor region. Particular care has been taken in constructing a diffuse interface model matching the thermodynamic and transport properties of the Lennard-Jones fluid. The comparison of diffuse interface model and molecular dynamics results shows that, although good agreement is obtained in equilibrium conditions, remarkable deviations of diffuse interface model predictions from the reference molecular dynamics results are observed in the simulation of liquid film evaporation. It is also observed that molecular dynamics results are in good agreement with preliminary results obtained from a composite model which describes the liquid film by a standard hydrodynamic model and the vapor by the Boltzmann equation. The two mathematical model models are connected by kinetic boundary conditions assuming unit evaporation coefficient.
Dynamic Variables Fail to Predict Fluid Responsiveness in an Animal Model With Pericardial Effusion.
Broch, Ole; Renner, Jochen; Meybohm, Patrick; Albrecht, Martin; Höcker, Jan; Haneya, Assad; Steinfath, Markus; Bein, Berthold; Gruenewald, Matthias
2016-10-01
The reliability of dynamic and volumetric variables of fluid responsiveness in the presence of pericardial effusion is still elusive. The aim of the present study was to investigate their predictive power in a porcine model with hemodynamic relevant pericardial effusion. A single-center animal investigation. Twelve German domestic pigs. Pigs were studied before and during pericardial effusion. Instrumentation included a pulmonary artery catheter and a transpulmonary thermodilution catheter in the femoral artery. Hemodynamic variables like cardiac output (COPAC) and stroke volume (SVPAC) derived from pulmonary artery catheter, global end-diastolic volume (GEDV), stroke volume variation (SVV), and pulse-pressure variation (PPV) were obtained. At baseline, SVV, PPV, GEDV, COPAC, and SVPAC reliably predicted fluid responsiveness (area under the curve 0.81 [p = 0.02], 0.82 [p = 0.02], 0.74 [p = 0.07], 0.74 [p = 0.07], 0.82 [p = 0.02]). After establishment of pericardial effusion the predictive power of dynamic variables was impaired and only COPAC and SVPAC and GEDV allowed significant prediction of fluid responsiveness (area under the curve 0.77 [p = 0.04], 0.76 [p = 0.05], 0.83 [p = 0.01]) with clinically relevant changes in threshold values. In this porcine model, hemodynamic relevant pericardial effusion abolished the ability of dynamic variables to predict fluid responsiveness. COPAC, SVPAC, and GEDV enabled prediction, but their threshold values were significantly changed. Copyright © 2016 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Braz Filho, Francisco A.; Caldeira, Alexandre D.; Borges, Eduardo M., E-mail: fbraz@ieav.cta.b, E-mail: alexdc@ieav.cta.b, E-mail: eduardo@ieav.cta.b [Instituto de Estudos Avancados (IEAv/CTA), Sao Jose dos Campos, SP (Brazil). Div. de Energia Nuclear
2011-07-01
In a heated vertical channel, the subcooled flow boiling regime occurs when the bulk fluid temperature is lower than the saturation temperature, but the fluid temperature reaches the saturation point near the channel wall. This phenomenon produces a significant increase in heat flux, limited by the critical heat flux. This study is particularly important to the thermal-hydraulics analysis of pressurized water reactors. The purpose of this work is the validation of a multidimensional model to analyze the subcooled flow boiling comparing the results with experimental data found in literature. The computational fluid dynamics code FLUENT was used with Eulerian multiphase model option. The calculated values of wall temperature in the liquid-solid interface presented an excellent agreement when compared to the experimental data. Void fraction calculations presented satisfactory results in relation to the experimental data in pressures of 15, 30 and 45 bars. (author)
International Nuclear Information System (INIS)
Braz Filho, Francisco A.; Caldeira, Alexandre D.; Borges, Eduardo M.
2011-01-01
In a heated vertical channel, the subcooled flow boiling regime occurs when the bulk fluid temperature is lower than the saturation temperature, but the fluid temperature reaches the saturation point near the channel wall. This phenomenon produces a significant increase in heat flux, limited by the critical heat flux. This study is particularly important to the thermal-hydraulics analysis of pressurized water reactors. The purpose of this work is the validation of a multidimensional model to analyze the subcooled flow boiling comparing the results with experimental data found in literature. The computational fluid dynamics code FLUENT was used with Eulerian multiphase model option. The calculated values of wall temperature in the liquid-solid interface presented an excellent agreement when compared to the experimental data. Void fraction calculations presented satisfactory results in relation to the experimental data in pressures of 15, 30 and 45 bars. (author)
Blocken, B.J.E.; Gualtieri, C.
2012-01-01
Computational Fluid Dynamics (CFD) is increasingly used to study a wide variety of complex Environmental Fluid Mechanics (EFM) processes, such as water flow and turbulent mixing of contaminants in rivers and estuaries and wind flow and air pollution dispersion in urban areas. However, the accuracy
Preface: Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics
Mancho, Ana M.; Hernández-García, Emilio; López, Cristóbal; Turiel, Antonio; Wiggins, Stephen; Pérez-Muñuzuri, Vicente
2018-02-01
The third edition of the international workshop Nonlinear Processes in Oceanic and Atmospheric Flows was held at the Institute of Mathematical Sciences (ICMAT) in Madrid from 6 to 8 July 2016. The event gathered oceanographers, atmospheric scientists, physicists, and applied mathematicians sharing a common interest in the nonlinear dynamics of geophysical fluid flows. The philosophy of this meeting was to bring together researchers from a variety of backgrounds into an environment that favoured a vigorous discussion of concepts across different disciplines. The present Special Issue on Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics contains selected contributions, mainly from attendants of the workshop, providing an updated perspective on modelling aspects of geophysical flows as well as issues on prediction and assimilation of observational data and novel tools for describing transport and mixing processes in these contexts. More details on these aspects are discussed in this preface.
Partridge, P; Boundary Elements in Fluid Dynamics
1992-01-01
This book Boundary Elements in Fluid Dynamics is the second volume of the two volume proceedings of the International Conference on Computer Modelling of Seas and Coastal Regions and Boundary Elements and Fluid Dynamics, held in Southampton, U.K., in April 1992. The Boundary Element Method (BEM) is now fully established as an ac curate and successful technique for solving engineering problems in a wide range of fields. The success of the method is due to its advantages in data reduction, as only the boundary of the region is modelled. Thus moving boundaries may be more easily handled, which is not the case if domain methods are used. In addition, the method is easily able to model regions to extending to infinity. Fluid mechanics is traditionally one of the most challenging areas of engi neering, the simulation of fluid motion, particularly in three dimensions, is always a serious test for any numerical method, and is an area in which BEM analysis may be used taking full advantage of its special character...
APPLICATION OF COMPUTATIONAL FLUID DYNAMICS MODELLING TO A HORIZONTAL SEDIMENTATION TANK IN IRAQ
Ali Hadi GHAWI
2017-01-01
Computational Fluid Dynamics modeling has been applied to examine the hydrodynamic behavior of water treatment sedimentation tanks at Baghdad Water Works, operated by Alkurech Water in Baghdad in Iraq. The existing tanks perform poorly at current flows and flow is unevenly split among online tanks, Therefore, CFD was used to investigate velocity profiles at current and projected loadings for the existing basins. Results from the CFD analysis were used to develop retrofit strategies to improve...
Noncommutative geometry and fluid dynamics
International Nuclear Information System (INIS)
Das, Praloy; Ghosh, Subir
2016-01-01
In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)
Noncommutative geometry and fluid dynamics
Energy Technology Data Exchange (ETDEWEB)
Das, Praloy; Ghosh, Subir [Indian Statistical Institute, Physics and Applied Mathematics Unit, Kolkata (India)
2016-11-15
In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)
Dynamic analysis of electro- and magneto-rheological fluid dampers using duct flow models
International Nuclear Information System (INIS)
Esteki, Kambiz; Bagchi, Ashutosh; Sedaghati, Ramin
2014-01-01
Magneto-rheological (MR) and electro-rheological (ER) fluid dampers provide a semi-active control mechanism for suppressing vibration responses of a structure. MR and ER fluids change their viscosity under the influence of magnetic and electrical fields, respectively, which facilitates automatic control when these fluids are used in damping devices. The existing models, namely the phenomenological models for simulating the behavior of MR and ER dampers, rely on various parameters determined experimentally by the manufacturers for each damper configuration. It is of interest to develop mechanistic models of these dampers which can be applied to various configurations so that their fundamental characteristics can be studied to develop flexible design solutions for smart structures. This paper presents a formulation for dynamic analysis of electro-rheological (ER) and magneto-rheological (MR) fluid dampers in flow and mix mode configurations under harmonic and random excitations. The procedure employs the vorticity transport equation and the regularization function to deal with the unsteady flow and nonlinear behavior of ER/MR fluid in general motion. The finite difference method has been used to solve the governing differential equations. Using the developed approach, the damping force of ER/MR dampers can be calculated under any type of excitation. (paper)
Energy Technology Data Exchange (ETDEWEB)
Tian, Wei [Univ. of Miami, FL (United States). Dept. of Civil, Architectural and Environmental Engineering; Sevilla, Thomas Alonso [Univ. of Miami, FL (United States). Dept. of Civil, Architectural and Environmental Engineering; Zuo, Wangda [Univ. of Miami, FL (United States). Dept. of Civil, Architectural and Environmental Engineering; Sohn, Michael D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Div.
2017-06-08
Historically, multizone models are widely used in building airflow and energy performance simulations due to their fast computing speed. However, multizone models assume that the air in a room is well mixed, consequently limiting their application. In specific rooms where this assumption fails, the use of computational fluid dynamics (CFD) models may be an alternative option. Previous research has mainly focused on coupling CFD models and multizone models to study airflow in large spaces. While significant, most of these analyses did not consider the coupled simulation of the building airflow with the building's Heating, Ventilation, and Air-Conditioning (HVAC) systems. This paper tries to fill the gap by integrating the models for HVAC systems with coupled multizone and CFD simulations for airflows, using the Modelica simul ation platform. To improve the computational efficiency, we incorporated a simplified CFD model named fast fluid dynamics (FFD). We first introduce the data synchronization strategy and implementation in Modelica. Then, we verify the implementation using two case studies involving an isothermal and a non-isothermal flow by comparing model simulations to experiment data. Afterward, we study another three cases that are deemed more realistic. This is done by attaching a variable air volume (VAV) terminal box and a VAV system to previous flows to assess the capability of the models in studying the dynamic control of HVAC systems. Finally, we discuss further research needs on the coupled simulation using the models.
Moving on to the modeling and simulation using computational fluid dynamics
International Nuclear Information System (INIS)
Norasalwa Zakaria; Rohyiza Baan; Muhd Noor Muhd Yunus
2006-01-01
The heat is on but not at the co-combustor plant. Using the Computational Fluid Dynamics (CFD), modeling and simulation of an incinerator has been made easy and possible from the comfort of cozy room. CFD has become an important design tool in nearly every industrial field because it provides understanding of flow patterns. CFD provide values for fluid velocity, fluid temperature, pressure and species concentrations throughout a flow domain. MINT has acquired a complete CFD software recently, consisting of GAMBIT, which is use to build geometry and meshing, and FLUENT as the processor or solver. This paper discusses on several trial runs that was carried out on several parts of the co-combustor plant namely the under fire section and the mixing chamber section
Modeling near-road air quality using a computational fluid dynamics model, CFD-VIT-RIT.
Wang, Y Jason; Zhang, K Max
2009-10-15
It is well recognized that dilution is an important mechanism governing the near-road air pollutant concentrations. In this paper, we aim to advance our understanding of turbulent mixing mechanisms on and near roadways using computation fluid dynamics. Turbulent mixing mechanisms can be classified into three categories according to their origins: vehicle-induced turbulence (VIT), road-induced turbulence (RIT), and atmospheric boundary layer turbulence. RIT includes the turbulence generated by road embankment, road surface thermal effects, and roadside structures. Both VIT and RIT are affected by the roadway designs. We incorporate the detailed treatment of VIT and RIT into the CFD (namely CFD-VIT-RIT) and apply the model in simulating the spatial gradients of carbon monoxide near two major highways with different traffic mix and roadway configurations. The modeling results are compared to the field measurements and those from CALINE4 and CFD without considering VIT and RIT. We demonstrate that the incorporation of VIT and RIT considerably improves the modeling predictions, especially on vertical gradients and seasonal variations of carbon monoxide. Our study implies that roadway design can significantly influence the near-road air pollution. Thus we recommend that mitigating near-road air pollution through roadway designs be considered in the air quality and transportation management In addition, thanks to the rigorous representation of turbulent mixing mechanisms, CFD-VIT-RIT can become valuable tools in the roadway designs process.
Bazaz Behbahani, Sanaz; Tan, Xiaobo
2017-08-01
Fish actively control their stiffness in different swimming conditions. Inspired by such an adaptive behavior, in this paper we study the design, prototyping, and dynamic modeling of compact, tunable-stiffness fins for robotic fish, where electrorheological (ER) fluid serves as the enabling element. A multi-layer composite fin with an ER fluid core is prototyped and utilized to investigate the influence of electrical field on its performance. Hamilton's principle is used to derive the dynamic equations of motion of the flexible fin, and Lighthill's large-amplitude elongated-body theory is adopted to estimate the hydrodynamic force when the fin undergoes base-actuated rotation. The dynamic equations are then discretized using the finite element method, to obtain an approximate numerical solution. Experiments are conducted on the prototyped flexible ER fluid-filled beam for parameter identification and validation of the proposed model, and for examining the effectiveness of electrically controlled stiffness tuning. In particular, it is found that the natural frequency is increased by almost 40% when the applied electric field changes from 0 to 1.5× {10}6 {{V}} {{{m}}}-1.
Modeling the Effect of Fluid-Structure Interaction on the Impact Dynamics of Pressurized Tank Cars
2009-11-13
This paper presents a computational framework that : analyzes the effect of fluid-structure interaction (FSI) on the : impact dynamics of pressurized commodity tank cars using the : nonlinear dynamic finite element code ABAQUS/Explicit. : There exist...
A discrete force allocation algorithm for modelling wind turbines in computational fluid dynamics
DEFF Research Database (Denmark)
Réthoré, Pierre-Elouan; Sørensen, Niels N.
2012-01-01
at the position of the wind turbine rotor to estimate correctly the power production and the rotor loading. The method proposed in this paper solves this issue by spreading the force on the direct neighbouring cells and applying an equivalent pressure jump at the cell faces. This can potentially open......This paper describes an algorithm for allocating discrete forces in computational fluid dynamics (CFD). Discrete forces are useful in wind energy CFD. They are used as an approximation of the wind turbine blades’ action on the wind (actuator disc/line), to model forests and to model turbulent...
Computational Fluid Dynamics (CFD) simulations provide a number of unique opportunities for expanding and improving capabilities for modeling exposures to environmental pollutants. The US Environmental Protection Agency's National Exposure Research Laboratory (NERL) has been c...
Methods and models for accelerating dynamic simulation of fluid power circuits
Energy Technology Data Exchange (ETDEWEB)
Aaman, R.
2011-07-01
The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, two mechanisms which make the system stiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation
Stovern, Michael; Felix, Omar; Csavina, Janae; Rine, Kyle P.; Russell, MacKenzie R.; Jones, Robert M.; King, Matt; Betterton, Eric A.; Sáez, A. Eduardo
2014-01-01
Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of dust and aerosol from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are heavily contaminated with lead and arsenic. Using a computational fluid dynamics model, we model dust transport from the mine tailings to the surrounding region. The model includes gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport is used to track the trajectories of larger particles and to monitor their deposition locations. In order to improve the accuracy of the dust transport simulations, both regional topographical features and local weather patterns have been incorporated into the model simulations. Results show that local topography and wind velocity profiles are the major factors that control deposition. PMID:25621085
Stovern, Michael; Felix, Omar; Csavina, Janae; Rine, Kyle P; Russell, MacKenzie R; Jones, Robert M; King, Matt; Betterton, Eric A; Sáez, A Eduardo
2014-09-01
Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of dust and aerosol from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are heavily contaminated with lead and arsenic. Using a computational fluid dynamics model, we model dust transport from the mine tailings to the surrounding region. The model includes gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport is used to track the trajectories of larger particles and to monitor their deposition locations. In order to improve the accuracy of the dust transport simulations, both regional topographical features and local weather patterns have been incorporated into the model simulations. Results show that local topography and wind velocity profiles are the major factors that control deposition.
Simple Theory for the Dynamics of Mean-Field-Like Models of Glass-Forming Fluids
Szamel, Grzegorz
2017-10-01
We propose a simple theory for the dynamics of model glass-forming fluids, which should be solvable using a mean-field-like approach. The theory is based on transparent physical assumptions, which can be tested in computer simulations. The theory predicts an ergodicity-breaking transition that is identical to the so-called dynamic transition predicted within the replica approach. Thus, it can provide the missing dynamic component of the random first order transition framework. In the large-dimensional limit the theory reproduces the result of a recent exact calculation of Maimbourg et al. [Phys. Rev. Lett. 116, 015902 (2016), 10.1103/PhysRevLett.116.015902]. Our approach provides an alternative, physically motivated derivation of this result.
A Computational Fluid Dynamic Model for a Novel Flash Ironmaking Process
Perez-Fontes, Silvia E.; Sohn, Hong Yong; Olivas-Martinez, Miguel
A computational fluid dynamic model for a novel flash ironmaking process based on the direct gaseous reduction of iron oxide concentrates is presented. The model solves the three-dimensional governing equations including both gas-phase and gas-solid reaction kinetics. The turbulence-chemistry interaction in the gas-phase is modeled by the eddy dissipation concept incorporating chemical kinetics. The particle cloud model is used to track the particle phase in a Lagrangian framework. A nucleation and growth kinetics rate expression is adopted to calculate the reduction rate of magnetite concentrate particles. Benchmark experiments reported in the literature for a nonreacting swirling gas jet and a nonpremixed hydrogen jet flame were simulated for validation. The model predictions showed good agreement with measurements in terms of gas velocity, gas temperature and species concentrations. The relevance of the computational model for the analysis of a bench reactor operation and the design of an industrial-pilot plant is discussed.
Directory of Open Access Journals (Sweden)
Mohsen Mehrabi
2012-01-01
Full Text Available This study focuses on the behavior of blood flow in the stenosed vessels. Blood is modelled as an incompressible non-Newtonian fluid which is based on the power law viscosity model. A numerical technique based on the finite difference method is developed to simulate the blood flow taking into account the transient periodic behaviour of the blood flow in cardiac cycles. Also, pulsatile blood flow in the stenosed vessel is based on the Womersley model, and fluid flow in the lumen region is governed by the continuity equation and the Navier-Stokes equations. In this study, the stenosis shape is cosine by using Tu and Devil model. Comparing the results obtained from three stenosed vessels with 30%, 50%, and 75% area severity, we find that higher percent-area severity of stenosis leads to higher extrapressure jumps and higher blood speeds around the stenosis site. Also, we observe that the size of the stenosis in stenosed vessels does influence the blood flow. A little change on the cross-sectional value makes vast change on the blood flow rate. This simulation helps the people working in the field of physiological fluid dynamics as well as the medical practitioners.
Computational fluid dynamic applications
Energy Technology Data Exchange (ETDEWEB)
Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.
2000-04-03
The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.
Fluid dynamics an introduction
Rieutord, Michel
2015-01-01
This book is dedicated to readers who want to learn fluid dynamics from the beginning. It assumes a basic level of mathematics knowledge that would correspond to that of most second-year undergraduate physics students and examines fluid dynamics from a physicist’s perspective. As such, the examples used primarily come from our environment on Earth and, where possible, from astrophysics. The text is arranged in a progressive and educational format, aimed at leading readers from the simplest basics to more complex matters like turbulence and magnetohydrodynamics. Exercises at the end of each chapter help readers to test their understanding of the subject (solutions are provided at the end of the book), and a special chapter is devoted to introducing selected aspects of mathematics that beginners may not be familiar with, so as to make the book self-contained.
SPH modeling of fluid-solid interaction for dynamic failure analysis of fluid-filled thin shells
Caleyron, F.; Combescure, A.; Faucher, V.; Potapov, S.
2013-05-01
This work concerns the prediction of failure of a fluid-filled tank under impact loading, including the resulting fluid leakage. A water-filled steel cylinder associated with a piston is impacted by a mass falling at a prescribed velocity. The cylinder is closed at its base by an aluminum plate whose characteristics are allowed to vary. The impact on the piston creates a pressure wave in the fluid which is responsible for the deformation of the plate and, possibly, the propagation of cracks. The structural part of the problem is modeled using Mindlin-Reissner finite elements (FE) and Smoothed Particle Hydrodynamics (SPH) shells. The modeling of the fluid is also based on an SPH formulation. The problem involves significant fluid-structure interactions (FSI) which are handled through a master-slave-based method and the pinballs method. Numerical results are compared to experimental data.
Dynamic mean field theory for lattice gas models of fluid mixtures confined in mesoporous materials.
Edison, J R; Monson, P A
2013-11-12
We present the extension of dynamic mean field theory (DMFT) for fluids in porous materials (Monson, P. A. J. Chem. Phys. 2008, 128, 084701) to the case of mixtures. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable equilibrium states for fluids in pores after a change in the bulk pressure or composition. It is especially useful for studying systems where there are capillary condensation or evaporation transitions. Nucleation processes associated with these transitions are emergent features of the theory and can be visualized via the time dependence of the density distribution and composition distribution in the system. For mixtures an important component of the dynamics is relaxation of the composition distribution in the system, especially in the neighborhood of vapor-liquid interfaces. We consider two different types of mixtures, modeling hydrocarbon adsorption in carbon-like slit pores. We first present results on bulk phase equilibria of the mixtures and then the equilibrium (stable/metastable) behavior of these mixtures in a finite slit pore and an inkbottle pore. We then use DMFT to describe the evolution of the density and composition in the pore in the approach to equilibrium after changing the state of the bulk fluid via composition or pressure changes.
Cloud fluid models of gas dynamics and star formation in galaxies
Struck-Marcell, Curtis; Scalo, John M.; Appleton, P. N.
1987-01-01
The large dynamic range of star formation in galaxies, and the apparently complex environmental influences involved in triggering or suppressing star formation, challenges the understanding. The key to this understanding may be the detailed study of simple physical models for the dominant nonlinear interactions in interstellar cloud systems. One such model is described, a generalized Oort model cloud fluid, and two simple applications of it are explored. The first of these is the relaxation of an isolated volume of cloud fluid following a disturbance. Though very idealized, this closed box study suggests a physical mechanism for starbursts, which is based on the approximate commensurability of massive cloud lifetimes and cloud collisional growth times. The second application is to the modeling of colliding ring galaxies. In this case, the driving processes operating on a dynamical timescale interact with the local cloud processes operating on the above timescale. The results is a variety of interesting nonequilibrium behaviors, including spatial variations of star formation that do not depend monotonically on gas density.
Pedlosky, Joseph
1982-01-01
The content of this book is based, largely, on the core curriculum in geophys ical fluid dynamics which land my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same tim...
Pedlosky, Joseph
1979-01-01
The content of this book is based, largely, on the core curriculum in geophys ical fluid dynamics which I and my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same ti...
DEFF Research Database (Denmark)
Dam Jensen, Mette; Ingildsen, Pernille; Rasmussen, Michael R.
2005-01-01
Aeration Tank Settling is a control method alowing settling in the process tank during high hydraulic load. The control method is patented. Aeration Tank Settling has been applied in several waste water treatment plant's using present design of the process tanks. Some process tank designs have...... shown to be more effective than others. To improve the design of less effective plants Computational Fluid Dynamics (CFD) modelling of hydraulics and sedimentation has been applied. The paper discusses the results at one particular plant experiencing problems with partly short-circuiting of the inlet...
Jensen, M D; Ingildsen, P; Rasmussen, M R; Laursen, J
2006-01-01
Aeration tank settling is a control method allowing settling in the process tank during high hydraulic load. The control method is patented. Aeration tank settling has been applied in several waste water treatment plants using the present design of the process tanks. Some process tank designs have shown to be more effective than others. To improve the design of less effective plants, computational fluid dynamics (CFD) modelling of hydraulics and sedimentation has been applied. This paper discusses the results at one particular plant experiencing problems with partly short-circuiting of the inlet and outlet causing a disruption of the sludge blanket at the outlet and thereby reducing the retention of sludge in the process tank. The model has allowed us to establish a clear picture of the problems arising at the plant during aeration tank settling. Secondly, several process tank design changes have been suggested and tested by means of computational fluid dynamics modelling. The most promising design changes have been found and reported.
Liang, Feng; Yang, Xiao-Dong; Zhang, Wei; Qian, Ying-Jing
2018-03-01
In this paper, a dynamical model of simply-supported spinning pipes conveying fluid with axial deployment is proposed and the transverse free vibration and stability for such a doubly gyroscopic system involving time-dependent parameters are investigated. The partial differential equations of motion are derived by the extended Hamilton principle and then truncated by the Galerkin technique. The time-variant frequencies, mode shapes and responses to initial conditions are comprehensively investigated to reveal the dynamical essence of the system. It is indicated that the qualitative stability evolution of the system mainly depends on the effect of fluid-structure interaction (FSI), while the spinning motion will enhance the pipe rigidity and eliminate the buckling instability. The dynamical evolution of a retracting pipe is almost inverse to that of the deploying one. The pipe possesses different mode configurations of spatial curves as the pipe length increases and some modal and response characteristics of the present system are found rather distinct from those of deploying cantilevered structures.
Optimization of a new flow design for solid oxide cells using computational fluid dynamics modelling
DEFF Research Database (Denmark)
Duhn, Jakob Dragsbæk; Jensen, Anker Degn; Wedel, Stig
2016-01-01
Design of a gas distributor to distribute gas flow into parallel channels for Solid Oxide Cells (SOC) is optimized, with respect to flow distribution, using Computational Fluid Dynamics (CFD) modelling. The CFD model is based on a 3d geometric model and the optimized structural parameters include...... the width of the channels in the gas distributor and the area in front of the parallel channels. The flow of the optimized design is found to have a flow uniformity index value of 0.978. The effects of deviations from the assumptions used in the modelling (isothermal and non-reacting flow) are evaluated...... and it is found that a temperature gradient along the parallel channels does not affect the flow uniformity, whereas a temperature difference between the channels does. The impact of the flow distribution on the maximum obtainable conversion during operation is also investigated and the obtainable overall...
Computational fluid dynamics modeling of a lithium/thionyl chloride battery with electrolyte flow
Energy Technology Data Exchange (ETDEWEB)
Gu, W.B.; Wang, C.Y.; Weidner, J.W.; Jungst, R.G.; Nagasubramanian, G.
2000-02-01
A two-dimensional model is developed to simulate discharge of a lithium/thionyl chloride primary battery. As in earlier one-dimensional models, the model accounts for transport of species and charge, and electrode porosity variations and electrolyte flow induced by the volume reduction caused by electrochemical reactions. Numerical simulations are performed using a finite volume method of computational fluid dynamics. The predicted discharge curves for various temperatures show good agreement with published experimental data, and are essentially identical to results published for one-dimensional models. The detailed two-dimensional flow simulations show that the electrolyte is replenished from the cell head space predominantly through the separator into the front of the cathode during most parts of the discharge, especially for higher cell temperatures.
Directory of Open Access Journals (Sweden)
Jiazhou Wu
2018-06-01
Full Text Available A three-dimensional multiphysical transient model was developed to investigate keyhole formation, weld pool dynamics, and mass transfer in laser welding of dissimilar materials. The coupling of heat transfer, fluid flow, keyhole free surface evolution, and solute diffusion between dissimilar metals was simulated. The adaptive heat source model was used to trace the change of keyhole shape, and the Rayleigh scattering of the laser beam was considered. The keyhole wall was calculated using the fluid volume equation, primarily considering the recoil pressure induced by metal evaporation, surface tension, and hydrostatic pressure. Fluid flow, diffusion, and keyhole formation were considered simultaneously in mass transport processes. Welding experiments of 304L stainless steel and industrial pure titanium TA2 were performed to verify the simulation results. It is shown that spatters are shaped during the welding process. The thickness of the intermetallic reaction layer between the two metals and the diffusion of elements in the weld are calculated, which are important criteria for welding quality. The simulation results correspond well with the experimental results.
Computational fluid dynamics modeling of mixed convection flows in buildings enclosures
Energy Technology Data Exchange (ETDEWEB)
Kayne, Alexander; Agarwal, Ramesh K. [Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130 (United States)
2013-07-01
In recent years Computational Fluid Dynamics (CFD) simulations are increasingly used to model the air circulation and temperature environment inside the rooms of residential and office buildings to gain insight into the relative energy consumptions of various HVAC systems for cooling/heating for climate control and thermal comfort. This requires accurate simulation of turbulent flow and heat transfer for various types of ventilation systems using the Reynolds-Averaged Navier-Stokes (RANS) equations of fluid dynamics. Large Eddy Simulation (LES) or Direct Numerical Simulation (DNS) of Navier-Stokes equations is computationally intensive and expensive for simulations of this kind. As a result, vast majority of CFD simulations employ RANS equations in conjunction with a turbulence model. In order to assess the modeling requirements (mesh, numerical algorithm, turbulence model etc.) for accurate simulations, it is critical to validate the calculations against the experimental data. For this purpose, we use three well known benchmark validation cases, one for natural convection in 2D closed vertical cavity, second for forced convection in a 2D rectangular cavity and the third for mixed convection in a 2D square cavity. The simulations are performed on a number of meshes of different density using a number of turbulence models. It is found that k-epsilon two-equation turbulence model with a second-order algorithm on a reasonable mesh gives the best results. This information is then used to determine the modeling requirements (mesh, numerical algorithm, turbulence model etc.) for flows in 3D enclosures with different ventilation systems. In particular two cases are considered for which the experimental data is available. These cases are (1) air flow and heat transfer in a naturally ventilated room and (2) airflow and temperature distribution in an atrium. Good agreement with the experimental data and computations of other investigators is obtained.
Cerebrospinal fluid dynamics in a simplified model of the human ventricular system
International Nuclear Information System (INIS)
Ammourah, S.; Aroussi, A.; Vloeberghs, M.
2003-01-01
This study investigates the flow of the Cerebrospinal Fluid (CSF) inside a simplified model of the human ventricular system. Both computational and experimental results are explored. Due to the complexity of the real geometry, a simplified three-dimensional (3-D) model of the ventricular system was constructed with the same volume as the real geometry. The numerical study was conducted using the commercial computational fluid dynamics (CFD) package FLUENT-6. Different CFD cases were solved for different flow rates range between 100-500 ml/day. A scaled up to 4:1 physical model with the same geometry as the computational model, was built. A diluted dye was injected into the physical model and visualized. From the CFD studies it was found that the flow pattern of the CSF is structured and has a 3-D motion. Recirculating motion takes place in the lateral ventricles in the form of small eddies at each plane. Experimentally, the dye reverse motion noticed confirms the CFD findings about the presence of a recirculating motion. (author)
Computational fluid dynamics (CFD) modelling of coal/biomass co-firing in pulverised fuel boilers
Energy Technology Data Exchange (ETDEWEB)
Moghtaderi, B.; Meesri, C. [University of Newcastle, Callaghan, NSW (Australia). CRC for Coal in Sustainable Development, Dept. of Chemical Engineering
2002-07-01
The present study is concerned with computational fluid dynamics (CFD) modelling of coal/biomass blends co-fired under conditions pertinent to pulverised fuel (PF) boilers. The attention is particularly focused on the near burner zone to examine the impact of biomass on the flame geometry and temperature. The predictions are obtained by numerical solution of the conservation equations for the gas and particle phases. The gas phase is solved in the Eulerian domain using steady-state time-averaged Navier-Stokes equations while the solution of the particle phase is obtained from a series of Lagrangian particle tracking equations. Turbulence is modelled using the {kappa}-{epsilon} and Reynolds Stress models. The comparison between the predictions and experimental measurement reported in the literature resulted in a good agreement. Other influences of biomass co-firing are observed for fuel devolatilisation and burnout. 19 refs., 6 figs.
International Nuclear Information System (INIS)
Zhou, Chenn
2008-01-01
Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process
Essential Computational Fluid Dynamics
Zikanov, Oleg
2011-01-01
This book serves as a complete and self-contained introduction to the principles of Computational Fluid Dynamic (CFD) analysis. It is deliberately short (at approximately 300 pages) and can be used as a text for the first part of the course of applied CFD followed by a software tutorial. The main objectives of this non-traditional format are: 1) To introduce and explain, using simple examples where possible, the principles and methods of CFD analysis and to demystify the `black box’ of a CFD software tool, and 2) To provide a basic understanding of how CFD problems are set and
Connolly, Joseph W.; Friedlander, David; Kopasakis, George
2015-01-01
This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.
International Nuclear Information System (INIS)
Mølgaard Mortensen, Peter; Willum Hansen, Thomas; Birkedal Wagner, Jakob; Degn Jensen, Anker
2015-01-01
The temperature and velocity field, pressure distribution, and the temperature variation across the sample region inside an environmental transmission electron microscope (ETEM) have been modeled by means of computational fluid dynamics (CFD). Heating the sample area by a furnace type TEM holder gives rise to temperature gradients over the sample area. Three major mechanisms have been identified with respect to heat transfer in the sample area: radiation from the grid, conduction in the grid, and conduction in the gas. A parameter sensitivity analysis showed that the sample temperature was affected by the conductivity of the gas, the emissivity of the sample grid, and the conductivity of the grid. Ideally the grid should be polished and made from a material with good conductivity, e.g. copper. With hydrogen gas, which has the highest conductivity of the gases studied, the temperature difference over the TEM grid is less than 5 °C, at what must be considered typical conditions, and it is concluded that the conditions on the sample grid in the ETEM can be considered as isothermal during general use. - Highlights: • Computational fluid dynamics used for mapping flow and temperature in ETEM setup. • Temperature gradient across TEM grid in furnace based heating holder very small in ETEM. • Conduction from TEM grid and gas in addition to radiation from TEM grid most important. • Pressure drop in ETEM limited to the pressure limiting apertures
International Nuclear Information System (INIS)
Mihalas, D.; Weaver, R.
1982-01-01
The purpose of this paper is to give an overview of the role of radiation in the transport of energy and momentum in a combined matter-radiation fluid. The transport equation for a moving radiating fluid is presented in both a fully Eulerian and a fully Lagrangian formulation, along with conservation equations describing the dynamics of the fluid. Special attention is paid to the problem of deriving equations that are mutually consistent in each frame, and between frames, to 0(v/c). A detailed analysis is made to show that in situations of broad interest, terms that are formally of 0(v/c) actually dominate the solution, demonstrating that it is essential (1) to pay scrupulous attention to the question of the frame dependence in formulating the equations, and (2) to solve the equations to 0(v/c) in quite general circumstances. These points are illustrated in the context of the nonequilibrium radiation diffusion limit, and a sketch of how the Lagrangian equations are to be solved is presented
Huda, Nazmul; Naser, Jamal; Brooks, Geoffrey; Reuter, Markus A.; Matusewicz, Robert W.
2012-02-01
Slag fuming is a reductive treatment process for molten zinciferous slags for extracting zinc in the form of metal vapor by injecting or adding a reductant source such as pulverized coal or lump coal and natural gas. A computational fluid dynamic (CFD) model was developed to study the zinc slag fuming process from imperial smelting furnace (ISF) slag in a top-submerged lance furnace and to investigate the details of fluid flow, reaction kinetics, and heat transfer in the furnace. The model integrates combustion phenomena and chemical reactions with the heat, mass, and momentum interfacial interaction between the phases present in the system. A commercial CFD package AVL Fire 2009.2 (AVL, Graz, Austria) coupled with a number of user-defined subroutines in FORTRAN programming language were used to develop the model. The model is based on three-dimensional (3-D) Eulerian multiphase flow approach, and it predicts the velocity and temperature field of the molten slag bath, generated turbulence, and vortex and plume shape at the lance tip. The model also predicts the mass fractions of slag and gaseous components inside the furnace. The model predicted that the percent of ZnO in the slag bath decreases linearly with time and is consistent broadly with the experimental data. The zinc fuming rate from the slag bath predicted by the model was validated through macrostep validation process against the experimental study of Waladan et al. The model results predicted that the rate of ZnO reduction is controlled by the mass transfer of ZnO from the bulk slag to slag-gas interface and rate of gas-carbon reaction for the specified simulation time studied. Although the model is based on zinc slag fuming, the basic approach could be expanded or applied for the CFD analysis of analogous systems.
DEFF Research Database (Denmark)
Kinch, K.M.; Merrison, J.P.; Gunnlaugsson, H.P.
2006-01-01
Motivated by questions raised by the magnetic properties experiments on the NASA Mars Pathfinder and Mars Exploration Rover (MER) missions, we have studied in detail the capture of airborne magnetic dust by permanent magnets using a computational fluid dynamics (CFD) model supported by laboratory...... simulations. The magnets studied are identical to the capture magnet and filter magnet on MER, though results are more generally applicable. The dust capture process is found to be dependent upon wind speed, dust magnetization, dust grain size and dust grain mass density. Here we develop an understanding...... of how these parameters affect dust capture rates and patterns on the magnets and set bounds for these parameters based on MER data and results from the numerical model. This results in a consistent picture of the dust as containing varying amounts of at least two separate components with different...
Computational fluid dynamics modeling of bun baking process under different oven load conditions.
Tank, A; Chhanwal, N; Indrani, D; Anandharamakrishnan, C
2014-09-01
A computational fluid dynamics (CFD) model was developed to study the temperature profile of the bun during baking process. Evaporation-condensation mechanism and effect of the latent heat during phase change of water was incorporated in this model to represent actual bun baking process. Simulation results were validated with experimental measurements of bun temperature at two different positions. Baking process is completed within 20 min, after the temperature of crumb become stable at 98 °C. Further, this study was extended to investigate the effect of partially (two baking trays) loaded and fully loaded (eight baking trays) oven on temperature profile of bun. Velocity and temperature profile differs in partially loaded and fully loaded oven. Bun placed in top rack showed rapid baking while bun placed in bottom rack showed slower baking due to uneven temperature distribution in the oven. Hence, placement of bun inside the oven affects temperature of bun and consequently, the quality of the product.
Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow
Energy Technology Data Exchange (ETDEWEB)
Gu, W.B.; Jungst, Rudolph G.; Nagasubramanian, Ganesan; Wang, C.Y.; Weidner, John.
1999-06-11
A two-dimensional model is developed to simulate discharge of a lithium/thionyl chloride primary battery. The model accounts for not only transport of species and charge, but also the electrode porosity variations and the electrolyte flow induced by the volume reduction caused by electrochemical reactions. Numerical simulations are performed using a finite volume method of computational fluid dynamics. The predicted discharge curves for various temperatures are compared to the experimental data with excellent agreement. Moreover, the simulation results. in conjunction with computer visualization and animation techniques, confirm that cell utilization in the temperature and current range of interest is limited by pore plugging or clogging of the front side of the cathode as a result of LiCl precipitation. The detailed two-dimensional flow simulation also shows that the electrolyte is replenished from the cell header predominantly through the separator into the front of the cathode during most parts of the discharge, especially for higher cell temperatures.
Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions
Choo, Yung K. (Compiler)
1995-01-01
The NASA Steering Committee for Surface Modeling and Grid Generation (SMAGG) sponsored a workshop on surface modeling, grid generation, and related issues in Computational Fluid Dynamics (CFD) solutions at Lewis Research Center, Cleveland, Ohio, May 9-11, 1995. The workshop provided a forum to identify industry needs, strengths, and weaknesses of the five grid technologies (patched structured, overset structured, Cartesian, unstructured, and hybrid), and to exchange thoughts about where each technology will be in 2 to 5 years. The workshop also provided opportunities for engineers and scientists to present new methods, approaches, and applications in SMAGG for CFD. This Conference Publication (CP) consists of papers on industry overview, NASA overview, five grid technologies, new methods/ approaches/applications, and software systems.
Gulamali, M. Y.; Saunders, J. H.; Jackson, M. D.; Pain, C. C.
2009-04-01
We present results from a new computational multi-fluid dynamics code, designed to model the transport of heat, mass and chemical species during flow of single or multiple immiscible fluid phases through porous media, including gravitational effects and compressibility. The model also captures the electrical phenomena which may arise through electrokinetic, electrochemical and electrothermal coupling. Building on the advanced computational technology of the Imperial College Ocean Model, this new development leads the way towards a complex multiphase code using arbitrary unstructured and adaptive meshes, and domains decomposed to run in parallel over a cluster of workstations or a dedicated parallel computer. These facilities will allow efficient and accurate modelling of multiphase flows which capture large- and small-scale transport phenomena, while preserving the important geology and/or surface topology to make the results physically meaningful and realistic. Applications include modelling of contaminant transport in aquifers, multiphase flow during hydrocarbon production, migration of carbon dioxide during sequestration, and evaluation of the design and safety of nuclear reactors. Simulations of the streaming potential resulting from multiphase flow in laboratory- and field-scale models demonstrate that streaming potential signals originate at fluid fronts, and at geologic boundaries where fluid saturation changes. This suggests that downhole measurements of streaming potential may be used to inform production strategies in oil and gas reservoirs. As water encroaches on an oil production well, the streaming-potential signal associated with the water front encompasses the well even when the front is up to 100 m away, so the potential measured at the well starts to change significantly relative to a distant reference electrode. Variations in the geometry of the encroaching water front could be characterized using an array of electrodes positioned along the well
Directory of Open Access Journals (Sweden)
Guan Heng Yeoh
2016-12-01
Full Text Available The main focus in the analysis of pool or flow boiling in saturated or subcooled conditions is the basic understanding of the phase change process through the heat transfer and wall heat flux partitioning at the heated wall and the two-phase bubble behaviours in the bulk liquid as they migrate away from the heated wall. This paper reviews the work in this rapid developing area with special reference to modelling nucleate boiling of cryogenic liquids in the context of computational fluid dynamics and associated theoretical developments. The partitioning of the wall heat flux at the heated wall into three components – single-phase convection, transient conduction and evaporation – remains the most popular mechanistic approach in predicting the heat transfer process during boiling. Nevertheless, the respective wall heat flux components generally require the determination of the active nucleation site density, bubble departure diameter and nucleation frequency, which are crucial to the proper prediction of the heat transfer process. Numerous empirical correlations presented in this paper have been developed to ascertain these three important parameters with some degree of success. Albeit the simplicity of empirical correlations, they remain applicable to only a narrow range of flow conditions. In order to extend the wall heat flux partitioning approach to a wider range of flow conditions, the fractal model proposed for the active nucleation site density, force balance model for bubble departing from the cavity and bubble lifting off from the heated wall and evaluation of nucleation frequency based on fundamental theory depict the many enhancements that can improve the mechanistic model predictions. The macroscopic consideration of the two-phase boiling in the bulk liquid via the two-fluid model represents the most effective continuum approach in predicting the volume fraction and velocity distributions of each phase. Nevertheless, the
HIGH-FIDELITY SIMULATION-DRIVEN MODEL DEVELOPMENT FOR COARSE-GRAINED COMPUTATIONAL FLUID DYNAMICS
Energy Technology Data Exchange (ETDEWEB)
Hanna, Botros N.; Dinh, Nam T.; Bolotnov, Igor A.
2016-06-01
Nuclear reactor safety analysis requires identifying various credible accident scenarios and determining their consequences. For a full-scale nuclear power plant system behavior, it is impossible to obtain sufficient experimental data for a broad range of risk-significant accident scenarios. In single-phase flow convective problems, Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) can provide us with high fidelity results when physical data are unavailable. However, these methods are computationally expensive and cannot be afforded for simulation of long transient scenarios in nuclear accidents despite extraordinary advances in high performance scientific computing over the past decades. The major issue is the inability to make the transient computation parallel, thus making number of time steps required in high-fidelity methods unaffordable for long transients. In this work, we propose to apply a high fidelity simulation-driven approach to model sub-grid scale (SGS) effect in Coarse Grained Computational Fluid Dynamics CG-CFD. This approach aims to develop a statistical surrogate model instead of the deterministic SGS model. We chose to start with a turbulent natural convection case with volumetric heating in a horizontal fluid layer with a rigid, insulated lower boundary and isothermal (cold) upper boundary. This scenario of unstable stratification is relevant to turbulent natural convection in a molten corium pool during a severe nuclear reactor accident, as well as in containment mixing and passive cooling. The presented approach demonstrates how to create a correction for the CG-CFD solution by modifying the energy balance equation. A global correction for the temperature equation proves to achieve a significant improvement to the prediction of steady state temperature distribution through the fluid layer.
Computational Fluid Dynamics Modeling of the Human Pulmonary Arteries with Experimental Validation.
Bordones, Alifer D; Leroux, Matthew; Kheyfets, Vitaly O; Wu, Yu-An; Chen, Chia-Yuan; Finol, Ender A
2018-05-21
Pulmonary hypertension (PH) is a chronic progressive disease characterized by elevated pulmonary arterial pressure, caused by an increase in pulmonary arterial impedance. Computational fluid dynamics (CFD) can be used to identify metrics representative of the stage of PH disease. However, experimental validation of CFD models is often not pursued due to the geometric complexity of the model or uncertainties in the reproduction of the required flow conditions. The goal of this work is to validate experimentally a CFD model of a pulmonary artery phantom using a particle image velocimetry (PIV) technique. Rapid prototyping was used for the construction of the patient-specific pulmonary geometry, derived from chest computed tomography angiography images. CFD simulations were performed with the pulmonary model with a Reynolds number matching those of the experiments. Flow rates, the velocity field, and shear stress distributions obtained with the CFD simulations were compared to their counterparts from the PIV flow visualization experiments. Computationally predicted flow rates were within 1% of the experimental measurements for three of the four branches of the CFD model. The mean velocities in four transversal planes of study were within 5.9 to 13.1% of the experimental mean velocities. Shear stresses were qualitatively similar between the two methods with some discrepancies in the regions of high velocity gradients. The fluid flow differences between the CFD model and the PIV phantom are attributed to experimental inaccuracies and the relative compliance of the phantom. This comparative analysis yielded valuable information on the accuracy of CFD predicted hemodynamics in pulmonary circulation models.
Umeda, Yasuyuki; Ishida, Fujimaro; Tsuji, Masanori; Furukawa, Kazuhiro; Shiba, Masato; Yasuda, Ryuta; Toma, Naoki; Sakaida, Hiroshi; Suzuki, Hidenori
2017-01-01
This study aimed to predict recurrence after coil embolization of unruptured cerebral aneurysms with computational fluid dynamics (CFD) using porous media modeling (porous media CFD). A total of 37 unruptured cerebral aneurysms treated with coiling were analyzed using follow-up angiograms, simulated CFD prior to coiling (control CFD), and porous media CFD. Coiled aneurysms were classified into stable or recurrence groups according to follow-up angiogram findings. Morphological parameters, coil packing density, and hemodynamic variables were evaluated for their correlations with aneurysmal recurrence. We also calculated residual flow volumes (RFVs), a novel hemodynamic parameter used to quantify the residual aneurysm volume after simulated coiling, which has a mean fluid domain > 1.0 cm/s. Follow-up angiograms showed 24 aneurysms in the stable group and 13 in the recurrence group. Mann-Whitney U test demonstrated that maximum size, dome volume, neck width, neck area, and coil packing density were significantly different between the two groups (P CFD and larger RFVs in the porous media CFD. Multivariate logistic regression analyses demonstrated that RFV was the only independently significant factor (odds ratio, 1.06; 95% confidence interval, 1.01-1.11; P = 0.016). The study findings suggest that RFV collected under porous media modeling predicts the recurrence of coiled aneurysms.
Fluid dynamics characterization of riser in a FCC cold flow model using gas radiotracer
International Nuclear Information System (INIS)
Santos, Valdemir A. dos; Lima, Emerson A.O.
2013-01-01
Was carried out the characterization of a diameter small riser of a cold flow model of a circulating fluidized bed (CFB), with aid of a radioactive tracer. Compressed air and catalytic cracking of petroleum flow through solids pneumatic transport regime, made of transparent material (glass, acrylic, PVC, polycarbonate) for study of problems in Fluid Catalytic Cracking (FCC) unit and development of methods of measurement of fluid dynamic parameters. The CFB model consisted of a mixer component solid-gas (compressed air at 25 deg C and 200 kN/m 2 ; cracking catalyst with an average diameter of 72μm and specific mass of 1,500 kg/m 3 ), comprising a riser pipe glass 0.02m internal diameter and 1.8m height, a gas solid separation vessel by flash effect, with the filter in the gas outlet, and a return column (a glass tube with an internal diameter of 0.0254m) to redirect the catalyst for the riser base. Recorded data allowed studies on residence time distribution of the gaseous phase in the riser, with the identification and characterization of the flow of gas-solid components in the CFB riser of small diameter. A plug flow type with deviations due to back mixing of catalyst close to the walls, associated with the density difference between this component was observed. (author)
Directory of Open Access Journals (Sweden)
Yik Siang Pang
2018-01-01
Full Text Available This paper presents a Computational Fluid Dynamics (CFD study of a natural gas combustion burner focusing on the effect of combustion, thermal radiation and turbulence models on the temperature and chemical species concentration fields. The combustion was modelled using the finite rate/eddy dissipation (FR/EDM and partially premixed flame models. Detailed chemistry kinetics CHEMKIN GRI-MECH 3.0 consisting of 325 reactions was employed to model the methane combustion. Discrete ordinates (DO and spherical harmonics (P1 model were employed to predict the thermal radiation. The gas absorption coefficient dependence on the wavelength is resolved by the weighted-sum-of-gray-gases model (WSGGM. Turbulence flow was simulated using Reynolds-averaged Navier-Stokes (RANS based models. The findings showed that a combination of partially premixed flame, P1 and standard k-ε (SKE gave the most accurate prediction with an average deviation of around 7.8% of combustion temperature and 15.5% for reactant composition (methane and oxygen. The results show the multi-step chemistry in the partially premixed model is more accurate than the two-step FR/EDM. Meanwhile, inclusion of thermal radiation has a minor effect on the heat transfer and species concentration. SKE turbulence model yielded better prediction compared to the realizable k-ε (RKE and renormalized k-ε (RNG. The CFD simulation presented in this work may serve as a useful tool to evaluate a performance of a natural gas combustor. Copyright © 2018 BCREC Group. All rights reserved Received: 26th July 2017; Revised: 9th October 2017; Accepted: 30th October 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018 How to Cite: Pang, Y.S., Law, W.P., Pung, K.Q., Gimbun, J. (2018. A Computational Fluid Dynamics Study of Turbulence, Radiation, and Combustion Models for Natural Gas Combustion Burner. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 155-169 (doi:10.9767/bcrec
Energy Technology Data Exchange (ETDEWEB)
Richmond, Marshall C.; Rakowski, Cynthia L.; Perkins, William A.; Serkowski, John A.; Ebner, Laurie L.; Schlenker, Stephen J.
2009-07-27
At The Dalles Dam, located between Oregon and Washington on the Columbia River, juvenile salmon passing over the spillway have a survival rate that is below acceptable levels. An important factor affecting survival is the egress route fish take through the immediate tailrace of the dam. Passage through the high-energy spillway and stilling basin environment can leave fish disoriented and vulnerable to predators. Egress conditions can be improved through structural and operational modifications that provide flow paths that move fish more rapidly into the thalweg of the river hence reducing their exposure to predators. We used the results from free-surface computational fluid dynamics (CFD) modeling combined with Lagrangian particle tracking to evaluate the tailrace egress conditions at The Dalles Dam for different alignments of a proposed guidance wall and for different spillway discharge scenarios.
DEFF Research Database (Denmark)
Mortensen, Peter Mølgaard; Jensen, Anker Degn; Hansen, Thomas Willum
2015-01-01
The temperature and velocity field, pressure distribution, and the temperature variation across the sample region inside an environmental transmission electron microscope (ETEM) have been modeled by means of computational fluid dynamics (CFD). Heating the sample area by a furnace type TEM holder...... gives rise to temperature gradients over the sample area. Three major mechanisms have been identified with respect to heat transfer in the sample area: radiation from the grid, conduction in the grid, and conduction in the gas. A parameter sensitivity analysis showed that the sample temperature...... was affected by the conductivity of the gas, the emissivity of the sample grid, and the conductivity of the grid. Ideally the grid should be polished and made from a material with good conductivity, e.g. copper. With hydrogen gas, which has the highest conductivity of the gases studied, the temperature...
Assessment of Computational Fluid Dynamics (CFD) Models for Shock Boundary-Layer Interaction
DeBonis, James R.; Oberkampf, William L.; Wolf, Richard T.; Orkwis, Paul D.; Turner, Mark G.; Babinsky, Holger
2011-01-01
A workshop on the computational fluid dynamics (CFD) prediction of shock boundary-layer interactions (SBLIs) was held at the 48th AIAA Aerospace Sciences Meeting. As part of the workshop numerous CFD analysts submitted solutions to four experimentally measured SBLIs. This paper describes the assessment of the CFD predictions. The assessment includes an uncertainty analysis of the experimental data, the definition of an error metric and the application of that metric to the CFD solutions. The CFD solutions provided very similar levels of error and in general it was difficult to discern clear trends in the data. For the Reynolds Averaged Navier-Stokes methods the choice of turbulence model appeared to be the largest factor in solution accuracy. Large-eddy simulation methods produced error levels similar to RANS methods but provided superior predictions of normal stresses.
Computational fluid dynamics modelling of left valvular heart diseases during atrial fibrillation
Directory of Open Access Journals (Sweden)
Stefania Scarsoglio
2016-07-01
Full Text Available Background: Although atrial fibrillation (AF, a common arrhythmia, frequently presents in patients with underlying valvular disease, its hemodynamic contributions are not fully understood. The present work aimed to computationally study how physical conditions imposed by pathologic valvular anatomy act on AF hemodynamics. Methods: We simulated AF with different severity grades of left-sided valvular diseases and compared the cardiovascular effects that they exert during AF, compared to lone AF. The fluid dynamics model used here has been recently validated for lone AF and relies on a lumped parameterization of the four heart chambers, together with the systemic and pulmonary circulation. The AF modelling involves: (i irregular, uncorrelated and faster heart rate; (ii atrial contractility dysfunction. Three different grades of severity (mild, moderate, severe were analyzed for each of the four valvulopathies (AS, aortic stenosis, MS, mitral stenosis, AR, aortic regurgitation, MR, mitral regurgitation, by varying–through the valve opening angle–the valve area. Results: Regurgitation was hemodynamically more relevant than stenosis, as the latter led to inefficient cardiac flow, while the former introduced more drastic fluid dynamics variation. Moreover, mitral valvulopathies were more significant than aortic ones. In case of aortic valve diseases, proper mitral functioning damps out changes at atrial and pulmonary levels. In the case of mitral valvulopathy, the mitral valve lost its regulating capability, thus hemodynamic variations almost equally affected regions upstream and downstream of the valve. In particular, the present study revealed that both mitral and aortic regurgitation strongly affect hemodynamics, followed by mitral stenosis, while aortic stenosis has the least impact among the analyzed valvular diseases. Discussion: The proposed approach can provide new mechanistic insights as to which valvular pathologies merit more aggressive
Vulović, Aleksandra; Šušteršič, Tijana; Cvijić, Sandra; Ibrić, Svetlana; Filipović, Nenad
2018-02-15
One of the critical components of the respiratory drug delivery is the manner in which the inhaled aerosol is deposited in respiratory tract compartments. Depending on formulation properties, device characteristics and breathing pattern, only a certain fraction of the dose will reach the target site in the lungs, while the rest of the drug will deposit in the inhalation device or in the mouth-throat region. The aim of this study was to link the Computational fluid dynamics (CFD) with physiologically-based pharmacokinetic (PBPK) modelling in order to predict aerolisolization of different dry powder formulations, and estimate concomitant in vivo deposition and absorption of amiloride hydrochloride. Drug physicochemical properties were experimentally determined and used as inputs for the CFD simulations of particle flow in the generated 3D geometric model of Aerolizer® dry powder inhaler (DPI). CFD simulations were used to simulate air flow through Aerolizer® inhaler and Discrete Phase Method (DPM) was used to simulate aerosol particles deposition within the fluid domain. The simulated values for the percent emitted dose were comparable to the values obtained using Andersen cascade impactor (ACI). However, CFD predictions indicated that aerosolized DPI have smaller particle size and narrower size distribution than assumed based on ACI measurements. Comparison with the literature in vivo data revealed that the constructed drug-specific PBPK model was able to capture amiloride absorption pattern following oral and inhalation administration. The PBPK simulation results, based on the CFD generated particle distribution data as input, illustrated the influence of formulation properties on the expected drug plasma concentration profiles. The model also predicted the influence of potential changes in physiological parameters on the extent of inhaled amiloride absorption. Overall, this study demonstrated the potential of the combined CFD-PBPK approach to model inhaled drug
The non-equilibrium statistical mechanics of a simple geophysical fluid dynamics model
Verkley, Wim; Severijns, Camiel
2014-05-01
Lorenz [1] has devised a dynamical system that has proved to be very useful as a benchmark system in geophysical fluid dynamics. The system in its simplest form consists of a periodic array of variables that can be associated with an atmospheric field on a latitude circle. The system is driven by a constant forcing, is damped by linear friction and has a simple advection term that causes the model to behave chaotically if the forcing is large enough. Our aim is to predict the statistics of Lorenz' model on the basis of a given average value of its total energy - obtained from a numerical integration - and the assumption of statistical stationarity. Our method is the principle of maximum entropy [2] which in this case reads: the information entropy of the system's probability density function shall be maximal under the constraints of normalization, a given value of the average total energy and statistical stationarity. Statistical stationarity is incorporated approximately by using `stationarity constraints', i.e., by requiring that the average first and possibly higher-order time-derivatives of the energy are zero in the maximization of entropy. The analysis [3] reveals that, if the first stationarity constraint is used, the resulting probability density function rather accurately reproduces the statistics of the individual variables. If the second stationarity constraint is used as well, the correlations between the variables are also reproduced quite adequately. The method can be generalized straightforwardly and holds the promise of a viable non-equilibrium statistical mechanics of the forced-dissipative systems of geophysical fluid dynamics. [1] E.N. Lorenz, 1996: Predictability - A problem partly solved, in Proc. Seminar on Predictability (ECMWF, Reading, Berkshire, UK), Vol. 1, pp. 1-18. [2] E.T. Jaynes, 2003: Probability Theory - The Logic of Science (Cambridge University Press, Cambridge). [3] W.T.M. Verkley and C.A. Severijns, 2014: The maximum entropy
Dudley, Peter N; Bonazza, Riccardo; Jones, T Todd; Wyneken, Jeanette; Porter, Warren P
2014-01-01
As global temperatures increase throughout the coming decades, species ranges will shift. New combinations of abiotic conditions will make predicting these range shifts difficult. Biophysical mechanistic niche modeling places bounds on an animal's niche through analyzing the animal's physical interactions with the environment. Biophysical mechanistic niche modeling is flexible enough to accommodate these new combinations of abiotic conditions. However, this approach is difficult to implement for aquatic species because of complex interactions among thrust, metabolic rate and heat transfer. We use contemporary computational fluid dynamic techniques to overcome these difficulties. We model the complex 3D motion of a swimming neonate and juvenile leatherback sea turtle to find power and heat transfer rates during the stroke. We combine the results from these simulations and a numerical model to accurately predict the core temperature of a swimming leatherback. These results are the first steps in developing a highly accurate mechanistic niche model, which can assists paleontologist in understanding biogeographic shifts as well as aid contemporary species managers about potential range shifts over the coming decades.
Directory of Open Access Journals (Sweden)
Peter N Dudley
Full Text Available As global temperatures increase throughout the coming decades, species ranges will shift. New combinations of abiotic conditions will make predicting these range shifts difficult. Biophysical mechanistic niche modeling places bounds on an animal's niche through analyzing the animal's physical interactions with the environment. Biophysical mechanistic niche modeling is flexible enough to accommodate these new combinations of abiotic conditions. However, this approach is difficult to implement for aquatic species because of complex interactions among thrust, metabolic rate and heat transfer. We use contemporary computational fluid dynamic techniques to overcome these difficulties. We model the complex 3D motion of a swimming neonate and juvenile leatherback sea turtle to find power and heat transfer rates during the stroke. We combine the results from these simulations and a numerical model to accurately predict the core temperature of a swimming leatherback. These results are the first steps in developing a highly accurate mechanistic niche model, which can assists paleontologist in understanding biogeographic shifts as well as aid contemporary species managers about potential range shifts over the coming decades.
Energy Technology Data Exchange (ETDEWEB)
Abboud, Alexander William [Idaho National Laboratory; Guillen, Donna Post [Idaho National Laboratory
2016-01-01
At the Hanford site, radioactive waste stored in underground tanks is slated for vitrification for final disposal. A comprehensive knowledge of the glass batch melting process will be useful in optimizing the process, which could potentially reduce the cost and duration of this multi-billion dollar cleanup effort. We are developing a high-fidelity heat transfer model of a Joule-heated ceramic lined melter to improve the understanding of the complex, inter-related processes occurring with the melter. The glass conversion rates in the cold cap layer are dependent on promoting efficient heat transfer. In practice, heat transfer is augmented by inserting air bubblers into the molten glass. However, the computational simulations must be validated to provide confidence in the solutions. As part of a larger validation procedure, it is beneficial to split the physics of the melter into smaller systems to validate individually. The substitution of molten glass for a simulant liquid with similar density and viscosity at room temperature provides a way to study mixing through bubbling as an isolated effect without considering the heat transfer dynamics. The simulation results are compared to experimental data obtained by the Vitreous State Laboratory at the Catholic University of America using bubblers placed within a large acrylic tank that is similar in scale to a pilot glass waste melter. Comparisons are made for surface area of the rising air bubbles between experiments and CFD simulations for a variety of air flow rates and bubble injection depths. Also, computed bubble rise velocity is compared to a well-accepted expression for bubble terminal velocity.
Interface model coupling in fluid dynamics: application to two-phase flows
International Nuclear Information System (INIS)
Galie, Th.
2009-03-01
This thesis is devoted to the study of interface model coupling problems in space between different models of compressible flows. We consider one-dimensional problems where the interface is sharp, fixed and separating two regions of space corresponding to the two coupled models. Our goal is to define a coupling condition at the interface and to solve numerically the coupling problem with this condition. After a state of art on the interface model coupling of hyperbolic systems of conservation laws, we propose a new coupling condition by adding in the equations of the coupled problem a measure source term at the interface. We first suppose a given constant weight associated to this source term. Two Riemann solvers are developed and one of them is based on a relaxation approach preserving equilibrium solutions of the coupled problem. This relaxation method is then used in an optimization problem, defined by several motivations at the interface, which permits to calculate a time dynamical weight. In a second part, we develop an approached Riemann solver for a two-phase two-pressure model in the particular case of a two-phase isentropic flow. Such a model contains non conservative terms that we write under the form of measure source terms. The previous relaxation method is thus extended to the case of the two-phase two-pressure model with an a priori estimation of the non conservative term contributions. The method allows us to solve, in the next and last chapter, the coupling problem of a two-fluid two-pressure model with a drift-flux model thanks to the father model approach. (authors)
A Modelling Approach to Multibody Dynamics of Fluid Power Machinery with Hydrodynamic Lubrication
DEFF Research Database (Denmark)
Johansen, Per; Rømer, Daniel; Andersen, Torben Ole
2013-01-01
The efficiency potential of the digital displacement technology and the increasing interest in hydraulic transmissions in wind and wave energy applications has created an incentive for development of high efficiency fluid power machinery. Modelling and analysis of fluid power machinery loss...... mechanisms is necessary in order to accommodate this demand. At present fully coupled thermo-elastic models for various tribological interfaces has been presented. However, in order to analyse the interaction between tribological interfaces in fluid power pumps and motors, these interface models needs...
A History of constitutive modeling via molecular dynamics: Shock waves in fluids and gases
Directory of Open Access Journals (Sweden)
Holian B.L.
2011-01-01
Full Text Available From its inception in the mid-Fifties, the method of molecular-dynamics (MD computer simulations has been used to probe the foundations of statistical mechanics, first for equilibrium equation-of-state averages, and then for transport properties from equilibrium fluctuations. Traditional statistical mechanical theoreticians were shocked to see that this new-fangled computational physics approach was feasible, even with incredibly tiny samples (on the order of a hundred atoms. When direct measurement of transport coefficients by non-equilibrium molecular dynamics (NEMD was proposed in the early Seventies, even greater resistance was encountered from the traditionalists – though evidence for convergence with the equilibrium fluctuation method gradually accumulated. In the late Seventies and early Eighties, shock-wave simulations by NEMD made it possible to test directly the principal continuum constitutive theory for fluids, namely, Navier-Stokes viscous flow and Fourier’s Law of heat conduction. To everyone’s surprise – and the consternation of many – NEMD, once again, demonstrated that continuum theory applies at embarrassingly small (atomistic time and length scales. We pursue this early line of work into the modern era, showing how NEMD shock-wave simulations can still provide surprising insights and improvements upon our understanding of constitutive modeling.
Orientational dynamics of superfluid 3He: A ''Two-fluid'' model . II. orbital dynamics
International Nuclear Information System (INIS)
Leggett, A.J.; Takagi, S.
1978-01-01
We present a phenomenological theory of the homogeneous orbital dynamics of the class of ''separable'' anisotropic superfluid phases which includes the ABM state generally identified with 3 He-A. The theory is developed by analogy with the spin dynamics described in the first paper of this series; the basic variables are the orientation of the Cooper-pair wavefunction (in the ABM phase, the l-vector) and a quantity K which we visualize as the ''pseudo-angular momentum'' of the Cooper pairs but which must be distinguished, in general, from the total orbital angular momentum of the system. In the ABM case l is the analog of d in the spin dynamics and K of the ''superfluid spin'' S/sub p/. Important points of difference from the spin case which are taken into account include the fact that a rotation of l without a simultaneous rotation of the normal-component distribution strongly increases the energy of the system (''normal locking''), and that the equilibrium value of K is zero even for finite total angular momentum. The theory does not claim to handle correctly effects associated with any intrinsic angular momentum arising from particle-hole asymmetry, but it is shown that the magnitude of this quantity can be estimated directly from experimental data and is extremely small; also, the Landau damping does not emerge automatically from the theory, but can be put in in an ad hoc way. With these provisos the theory should be valid for all frequencies ωvery-much-less-thanΔ (T)/h irrespective of the value of ωtau. (Δ=gap parameter, tau=quasi-particle relaxation time.) It disagrees with all existing phenomenological theories of comparable generality, although the disagreement with that of Volovik and Mineev is confined to the ''gapless'' region very close to T/sub c/.The phenomenological equations of motion, which are similar in general form to those of the spin dynamics with damping, involve an ''orbital susceptibility of the Cooper pairs'' chi/sub orb/
Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi; Richardson, Jacob A.; Cashman, Katharine V.
2017-01-01
Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, designing flow mitigation measures, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics (CFD) models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, COMSOL, and MOLASSES. We model viscous, cooling, and solidifying flows over horizontal planes, sloping surfaces, and into topographic obstacles. We compare model results to physical observations made during well-controlled analogue and molten basalt experiments, and to analytical theory when available. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and OpenFOAM and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We assess the goodness-of-fit of the simulation results and the computational cost. Our results guide the selection of numerical simulation codes for different applications, including inferring emplacement conditions of past lava flows, modeling the temporal evolution of ongoing flows during eruption, and probabilistic assessment of lava flow hazard prior to eruption. Finally, we outline potential experiments and desired key observational data from future flows that would extend existing benchmarking data sets.
Yukananto, Riza; Pozarlik, Artur K.; Brem, Gerrit
2018-01-01
Gasification in supercritical water is a very promising technology to process wet biomass into a valuable gas. Providing insight of the process behavior is therefore very important. In this research a computational fluid dynamic model is developed to investigate glycerol gasification in
Energy Technology Data Exchange (ETDEWEB)
Kabilan, S.; Suffield, S. R.; Recknagle, K. P.; Jacob, R. E.; Einstein, D. R.; Kuprat, A. P.; Carson, J. P.; Colby, S. M.; Saunders, J. H.; Hines, S. A.; Teeguarden, J. G.; Straub, T. M.; Moe, M.; Taft, S. C.; Corley, R. A.
2016-09-01
Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation–exhalation breathing conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology for deposition.
Energy Technology Data Exchange (ETDEWEB)
Kabilan, Senthil; Suffield, Sarah R.; Recknagle, Kurtis P.; Jacob, Rick E.; Einstein, Daniel R.; Kuprat, Andrew P.; Carson, James P.; Colby, Sean M.; Saunders, James H.; Hines, Stephanie; Teeguarden, Justin G.; Straub, Tim M.; Moe, M.; Taft, Sarah; Corley, Richard A.
2016-09-30
Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. The highest exposure concentration was modeled in the rabbit based upon prior acute inhalation studies. For comparison, human simulation was also conducted at the same concentration. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways compared to the human at the same air concentration of anthrax spores. As a result, higher particle deposition was predicted in the conducting airways and deep lung of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology.
Takahashi, Y. O.; Takehiro, S.; Sugiyama, K.; Odaka, M.; Ishiwatari, M.; Sasaki, Y.; Nishizawa, S.; Ishioka, K.; Nakajima, K.; Hayashi, Y.
2012-12-01
) is a collection of various sample programs using ``SPML''. These sample programs provide the basekit for simple numerical experiments of geophysical fluid dynamics. For example, SPMODEL includes 1-dimensional KdV equation model, 2-dimensional barotropic, shallow water, Boussinesq models, 3-dimensional MHD dynamo models in rotating spherical shells. These models are written in the common style in harmony with SPML functions. ``Deepconv'' (Sugiyama et al., 2010) and ``Dcpam'' are a cloud resolving model and a general circulation model for the purpose of applications to the planetary atmospheres, respectively. ``Deepconv'' includes several physical processes appropriate for simulations of Jupiter and Mars atmospheres, while ``Dcpam'' does for simulations of Earth, Mars, and Venus-like atmospheres. ``Rdoc-f95'' is a automatic generator of reference manuals of Fortran90/95 programs, which is an extension of ruby documentation tool kit ``rdoc''. It analyzes dependency of modules, functions, and subroutines in the multiple program source codes. At the same time, it can list up the namelist variables in the programs.
Palazzi, Elisa; Fraedrich, Klaus
2016-01-01
This volume provides an overview of the fluid aspects of the climate system, focusing on basic aspects as well as recent research developments. It will bring together contributions from diverse fields of the physical, mathematical and engineering sciences. The volume will be useful to doctorate students, postdocs and researchers working on different aspects of atmospheric, oceanic and environmental fluid dynamics. It will also be of interest to researchers interested in quantitatively understanding how fluid dynamics can be applied to the climate system, and to climate scientists willing to gain a deeper insight into the fluid mechanics underlying climate processes.
Hariharan, Prasanna; D'Souza, Gavin A; Horner, Marc; Morrison, Tina M; Malinauskas, Richard A; Myers, Matthew R
2017-01-01
A "credible" computational fluid dynamics (CFD) model has the potential to provide a meaningful evaluation of safety in medical devices. One major challenge in establishing "model credibility" is to determine the required degree of similarity between the model and experimental results for the model to be considered sufficiently validated. This study proposes a "threshold-based" validation approach that provides a well-defined acceptance criteria, which is a function of how close the simulation and experimental results are to the safety threshold, for establishing the model validity. The validation criteria developed following the threshold approach is not only a function of Comparison Error, E (which is the difference between experiments and simulations) but also takes in to account the risk to patient safety because of E. The method is applicable for scenarios in which a safety threshold can be clearly defined (e.g., the viscous shear-stress threshold for hemolysis in blood contacting devices). The applicability of the new validation approach was tested on the FDA nozzle geometry. The context of use (COU) was to evaluate if the instantaneous viscous shear stress in the nozzle geometry at Reynolds numbers (Re) of 3500 and 6500 was below the commonly accepted threshold for hemolysis. The CFD results ("S") of velocity and viscous shear stress were compared with inter-laboratory experimental measurements ("D"). The uncertainties in the CFD and experimental results due to input parameter uncertainties were quantified following the ASME V&V 20 standard. The CFD models for both Re = 3500 and 6500 could not be sufficiently validated by performing a direct comparison between CFD and experimental results using the Student's t-test. However, following the threshold-based approach, a Student's t-test comparing |S-D| and |Threshold-S| showed that relative to the threshold, the CFD and experimental datasets for Re = 3500 were statistically similar and the model could be
O'Brien, Haley D; Bourke, Jason
2015-12-07
In the mammalian order Artiodactyla, the majority of arterial blood entering the intracranial cavity is supplied by a large arterial meshwork called the carotid rete. This vascular structure functionally replaces the internal carotid artery. Extensive experimentation has demonstrated that the artiodactyl carotid rete drives one of the most effective selective brain cooling mechanisms among terrestrial vertebrates. Less well understood is the impact that the unique morphology of the carotid rete may have on the hemodynamics of blood flow to the cerebrum. It has been hypothesized that, relative to the tubular internal carotid arteries of most other vertebrates, the highly convoluted morphology of the carotid rete may increase resistance to flow during extreme changes in cerebral blood pressure, essentially protecting the brain by acting as a resistor. We test this hypothesis by employing simple and complex physical models to a 3D surface rendering of the carotid rete of the domestic goat, Capra hircus. First, we modeled the potential for increased resistance across the carotid rete using an electrical circuit analog. The extensive branching of the rete equates to a parallel circuit that is bound in series by single tubular arteries, both upstream and downstream. This method calculated a near-zero increase in resistance across the rete. Because basic equations do not incorporate drag, shear-stress, and turbulence, we used computational fluid dynamics to simulate the impact of these computationally intensive factors on resistance. Ultimately, both simple and complex models demonstrated negligible changes in resistance and blood pressure across the arterial meshwork. We further tested the resistive potential of the carotid rete by simulating blood pressures known to occur in giraffes. Based on these models, we found resistance (and blood pressure mitigation as a whole) to be an unlikely function for the artiodactyl carotid rete. Copyright © 2015 Elsevier Ltd. All
Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly
International Nuclear Information System (INIS)
Andrey Ioilev; Maskhud Samigulin; Vasily Ustinenko; Simon Lo; Adrian Tentner
2005-01-01
Full text of publication follows: The goal of this project is to develop an advanced Computational Fluid Dynamics (CFD) computer code (CFD-BWR) that allows the detailed analysis of the two-phase flow and heat transfer phenomena in a Boiling Water Reactor (BWR) fuel bundle under various operating conditions. This code will include more fundamental physical models than the current generation of sub-channel codes and advanced numerical algorithms for improved computational accuracy, robustness, and speed. It is highly desirable to understand the detailed two-phase flow phenomena inside a BWR fuel bundle. These phenomena include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for the analysis of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is still too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Recent progress in Computational Fluid Dynamics (CFD), coupled with the rapidly increasing computational power of massively parallel computers, shows promising potential for the fine-mesh, detailed simulation of fuel assembly two-phase flow phenomena. However, the phenomenological models available in the commercial CFD programs are not as advanced as those currently being used in the sub-channel codes used in the nuclear industry. In particular, there are no models currently available which are able to reliably predict the nature of the flow regimes, and use the appropriate sub-models for those flow regimes. The CFD-BWR code is being developed as a customized module built on the foundation of the commercial CFD Code STAR-CD which provides general two-phase flow modeling capabilities. The paper describes the model development strategy which has been adopted by the development team for the
Thorp, Scott A.
1992-01-01
This presentation will discuss the development of a NASA Geometry Exchange Specification for transferring aerodynamic surface geometry between LeRC systems and grid generation software used for computational fluid dynamics research. The proposed specification is based on a subset of the Initial Graphics Exchange Specification (IGES). The presentation will include discussion of how the NASA-IGES standard will accommodate improved computer aided design inspection methods and reverse engineering techniques currently being developed. The presentation is in viewgraph format.
Modeling Aerosol Particle Deposition on a Person Using Computational Fluid Dynamics
2015-04-03
Consulting Inc. 534 Paradise Crescent, Waterloo, Ontario PWGSC Contractor Number: W7702-155701/001/EDM Contract Scientific Authority: Eugene Yee...Fluid Dynamics Final Report Hua Ji and Fue-Sang Lien Waterloo CFD Engineering Consulting Inc. (WATCFD) 534 Paradise Cres, Waterloo Ontario, N2L 3G1...enters a new eddy. The time step is chosen to be the minimum of one fifth of the eddy lifetime or one fifth of the minimum side length of the local
Computational Fluid Dynamics Study on the Effects of RATO Timing on the Scale Model Acoustic Test
Nielsen, Tanner; Williams, B.; West, Jeff
2015-01-01
The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). The purpose of this test is to characterize and understand a variety of acoustic phenomena that occur during the early portions of lift off, one being the overpressure environment that develops shortly after booster ignition. The SLS lift off configuration consists of four RS-25 liquid thrusters on the core stage, with two solid boosters connected to each side. Past experience with scale model testing at MSFC (in ER42), has shown that there is a delay in the ignition of the Rocket Assisted Take Off (RATO) motor, which is used as the 5% scale analog of the solid boosters, after the signal to ignite is given. This delay can range from 0 to 16.5ms. While this small of a delay maybe insignificant in the case of the full scale SLS, it can significantly alter the data obtained during the SMAT due to the much smaller geometry. The speed of sound of the air and combustion gas constituents is not scaled, and therefore the SMAT pressure waves propagate at approximately the same speed as occurs during full scale. However, the SMAT geometry is much smaller allowing the pressure waves to move down the exhaust duct, through the trench, and impact the vehicle model much faster than occurs at full scale. To better understand the effect of the RATO timing simultaneity on the SMAT IOP test data, a computational fluid dynamics (CFD) analysis was performed using the Loci/CHEM CFD software program. Five different timing offsets, based on RATO ignition delay statistics, were simulated. A variety of results and comparisons will be given, assessing the overall effect of RATO timing simultaneity on the SMAT overpressure environment.
Nielsen, Tanner; West, Jeff
2015-01-01
The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). The purpose of this test is to characterize and understand a variety of acoustic phenomena that occur during the early portions of lift off, one being the overpressure environment that develops shortly after booster ignition. The pressure waves that propagate from the mobile launcher (ML) exhaust hole are defined as the ignition overpressure (IOP), while the portion of the pressure waves that exit the duct or trench are the duct overpressure (DOP). Distinguishing the IOP and DOP in scale model test data has been difficult in past experiences and in early SMAT results, due to the effects of scaling the geometry. The speed of sound of the air and combustion gas constituents is not scaled, and therefore the SMAT pressure waves propagate at approximately the same speed as occurs in full scale. However, the SMAT geometry is twenty times smaller, allowing the pressure waves to move down the exhaust hole, through the trench and duct, and impact the vehicle model much faster than occurs at full scale. The DOP waves impact portions of the vehicle at the same time as the IOP waves, making it difficult to distinguish the different waves and fully understand the data. To better understand the SMAT data, a computational fluid dynamics (CFD) analysis was performed with a fictitious geometry that isolates the IOP and DOP. The upper and lower portions of the domain were segregated to accomplish the isolation in such a way that the flow physics were not significantly altered. The Loci/CHEM CFD software program was used to perform this analysis.
The Variety of Fluid Dynamics.
Barnes, Francis; And Others
1980-01-01
Discusses three research topics which are concerned with eminently practical problems and deal at the same time with fundamental fluid dynamical problems. These research topics come from the general areas of chemical and biological engineering, geophysics, and pure mathematics. (HM)
Sanchez, E. Y.; Colman Lerner, J. E.; Porta, A.; Jacovkis, P. M.
2013-01-01
The adverse health effects of the release of hazardous substances into the atmosphere continue being a matter of concern, especially in densely populated urban regions. Emergency responders need to have estimates of these adverse health effects in the local population to aid planning, emergency response, and recovery efforts. For this purpose, models that predict the transport and dispersion of hazardous materials are as necessary as those that estimate the adverse health effects in the population. In this paper, we present the results obtained by coupling a Computational Fluid Dynamics model, FLACS (FLame ACceleration Simulator), with an exposure model, DDC (Damage Differential Coupling). This coupled model system is applied to a scenario of hypothetical release of chlorine with obstacles, such as buildings, and the results show how it is capable of predicting the atmospheric dispersion of hazardous chemicals, and the adverse health effects in the exposed population, to support decision makers both in charge of emergency planning and in charge of real-time response. The results obtained show how knowing the influence of obstacles in the trajectory of the toxic cloud and in the diffusion of the pollutants transported, and obtaining dynamic information of the potentially affected population and of associated symptoms, contribute to improve the planning of the protection and response measures.
Plate falling in a fluid: Regular and chaotic dynamics of finite-dimensional models
Kuznetsov, Sergey P.
2015-05-01
Results are reviewed concerning the planar problem of a plate falling in a resisting medium studied with models based on ordinary differential equations for a small number of dynamical variables. A unified model is introduced to conduct a comparative analysis of the dynamical behaviors of models of Kozlov, Tanabe-Kaneko, Belmonte-Eisenberg-Moses and Andersen-Pesavento-Wang using common dimensionless variables and parameters. It is shown that the overall structure of the parameter spaces for the different models manifests certain similarities caused by the same inherent symmetry and by the universal nature of the phenomena involved in nonlinear dynamics (fixed points, limit cycles, attractors, and bifurcations).
2-D fluid dynamics models for laser driven fusion on IBM 3090 vector multiprocessors
International Nuclear Information System (INIS)
Atzeni, S.
1988-01-01
Fluid-dynamics codes for laser fusion are complex research codes, consisting of many distinct modules and embodying a variety of numerical methods. They are therefore good candidates for testing general purpose advanced computer architectures and the related software. In this paper, after a brief outline of the basic concepts of laser fusion, the implementation of the 2-D laser fusion fluid code DUED on the IBM 3090 VF vector multiprocessors is discussed. Emphasis is put on parallelization, performed by means of IBM Parallel FORTRAN (PF). It is shown how different modules have been optimized by using different features of PF: i) modules based on depth-2 nested loops exploit automatic parallelization; ii) laser light ray tracing is partitioned by scheduling parallel ICCG algorithm (executed in parallel by appropiately synchronized parallel subroutines). Performance results are given for separate modules of the code, as well as for typical complete runs
Directory of Open Access Journals (Sweden)
Juhyun Lee
Full Text Available Peristaltic contraction of the embryonic heart tube produces time- and spatial-varying wall shear stress (WSS and pressure gradients (∇P across the atrioventricular (AV canal. Zebrafish (Danio rerio are a genetically tractable system to investigate cardiac morphogenesis. The use of Tg(fli1a:EGFP (y1 transgenic embryos allowed for delineation and two-dimensional reconstruction of the endocardium. This time-varying wall motion was then prescribed in a two-dimensional moving domain computational fluid dynamics (CFD model, providing new insights into spatial and temporal variations in WSS and ∇P during cardiac development. The CFD simulations were validated with particle image velocimetry (PIV across the atrioventricular (AV canal, revealing an increase in both velocities and heart rates, but a decrease in the duration of atrial systole from early to later stages. At 20-30 hours post fertilization (hpf, simulation results revealed bidirectional WSS across the AV canal in the heart tube in response to peristaltic motion of the wall. At 40-50 hpf, the tube structure undergoes cardiac looping, accompanied by a nearly 3-fold increase in WSS magnitude. At 110-120 hpf, distinct AV valve, atrium, ventricle, and bulbus arteriosus form, accompanied by incremental increases in both WSS magnitude and ∇P, but a decrease in bi-directional flow. Laminar flow develops across the AV canal at 20-30 hpf, and persists at 110-120 hpf. Reynolds numbers at the AV canal increase from 0.07±0.03 at 20-30 hpf to 0.23±0.07 at 110-120 hpf (p< 0.05, n=6, whereas Womersley numbers remain relatively unchanged from 0.11 to 0.13. Our moving domain simulations highlights hemodynamic changes in relation to cardiac morphogenesis; thereby, providing a 2-D quantitative approach to complement imaging analysis.
A computational fluid dynamics modeling study of guide walls for downstream fish passage
Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.
2017-01-01
A partial-depth, impermeable guidance structure (or guide wall) for downstream fish passage is typically constructed as a series of panels attached to a floating boom and anchored across a water body (e.g. river channel, reservoir, or power canal). The downstream terminus of the wall is generally located nearby to a fish bypass structure. If guidance is successful, the fish will avoid entrainment in a dangerous intake structure (i.e. turbine intakes) while passing from the headpond to the tailwater of a hydroelectric facility through a safer passage route (i.e. the bypass). The goal of this study is to determine the combination of guide wall design parameters that will most likely increase the chance of surface-oriented fish being successfully guided to the bypass. To evaluate the flow field immediately upstream of a guide wall, a parameterized computational fluid dynamics model of an idealized power canal was constructed in © ANSYS Fluent v 14.5 (ANSYS Inc., 2012). The design parameters investigated were the angle and depth of the guide wall and the average approach velocity in the power canal. Results call attention to the importance of the downward to sweeping flow ratio and demonstrate how a change in guide wall depth and angle can affect this important hydraulic cue to out-migrating fish. The key findings indicate that a guide wall set at a small angle (15° is the minimum in this study) and deep enough such that sweeping flow dominant conditions prevail within the expected vertical distribution of fish approaching the structure will produce hydraulic conditions that are more likely to result in effective passage.
Energy Technology Data Exchange (ETDEWEB)
Ndanou, S., E-mail: serge.ndanou@univ-amu.fr; Favrie, N., E-mail: nicolas.favrie@univ-amu.fr; Gavrilyuk, S., E-mail: sergey.gavrilyuk@univ-amu.fr
2015-08-15
We extend the model of diffuse solid–fluid interfaces developed earlier by authors of this paper to the case of arbitrary number of interacting hyperelastic solids. Plastic transformations of solids are taken into account through a Maxwell type model. The specific energy of each solid is given in separable form: it is the sum of a hydrodynamic part of the energy depending only on the density and the entropy, and an elastic part of the energy which is unaffected by the volume change. It allows us to naturally pass to the fluid description in the limit of vanishing shear modulus. In spite of a large number of governing equations, the model has a quite simple mathematical structure: it is a duplication of a single visco-elastic model. The model is well posed both mathematically and thermodynamically: it is hyperbolic and compatible with the second law of thermodynamics. The resulting model can be applied in the situations involving an arbitrary number of fluids and solids. In particular, we show the ability of the model to describe spallation and penetration phenomena occurring during high velocity impacts.
International Nuclear Information System (INIS)
Chen, Jiaoliao; Xu, Fang; Tan, Dapeng; Shen, Zheng; Zhang, Libin; Ai, Qinglin
2015-01-01
Highlights: • A novel control method for the heating greenhouse with SWSHPS is proposed. • CFD is employed to predict the priorities of FCU loops for thermal performance. • EPM is act as an on-line tool to predict the total energy demand of greenhouse. • The CFD–EPM-based method can save energy and improve control accuracy. • The energy savings potential is between 8.7% and 15.1%. - Abstract: As energy heating is one of the main production costs, many efforts have been made to reduce the energy consumption of agricultural greenhouses. Herein, a novel control method of greenhouse heating using computational fluid dynamics (CFD) and energy prediction model (EPM) is proposed for energy savings and system performance. Based on the low-Reynolds number k–ε turbulence principle, a CFD model of heating greenhouse is developed, applying the discrete ordinates model for the radiative heat transfers and porous medium approach for plants considering plants sensible and latent heat exchanges. The CFD simulations have been validated, and used to analyze the greenhouse thermal performance and the priority of fan coil units (FCU) loops under the various heating conditions. According to the heating efficiency and temperature uniformity, the priorities of each FCU loop can be predicted to generate a database with priorities for control system. EPM is built up based on the thermal balance, and used to predict and optimize the energy demand of the greenhouse online. Combined with the priorities of FCU loops from CFD simulations offline, we have developed the CFD–EPM-based heating control system of greenhouse with surface water source heat pumps system (SWSHPS). Compared with conventional multi-zone independent control (CMIC) method, the energy savings potential is between 8.7% and 15.1%, and the control temperature deviation is decreased to between 0.1 °C and 0.6 °C in the investigated greenhouse. These results show the CFD–EPM-based method can improve system
Andersson, Kennet
2011-01-01
Patients with idiopathic normal pressure hydrocephalus (INPH) have a disturbance in the cerebrospinal fluid (CSF) system. The treatment is neurosurgical – a shunt is placed in the CSF system. The infusion test is used to assess CSF system dynamics and to aid in the selection of patients that will benefit from shunt surgery. The infusion test can be divided into three parts: a mathematical model, an infusion protocol and a parameter estimation method. A non-linear differential equation is used...
Mota, J.P.B.; Esteves, I.A.A.C.; Rostam-Abadi, M.
2004-01-01
A computational fluid dynamics (CFD) software package has been coupled with the dynamic process simulator of an adsorption storage tank for methane fuelled vehicles. The two solvers run as independent processes and handle non-overlapping portions of the computational domain. The codes exchange data on the boundary interface of the two domains to ensure continuity of the solution and of its gradient. A software interface was developed to dynamically suspend and activate each process as necessary, and be responsible for data exchange and process synchronization. This hybrid computational tool has been successfully employed to accurately simulate the discharge of a new tank design and evaluate its performance. The case study presented here shows that CFD and process simulation are highly complementary computational tools, and that there are clear benefits to be gained from a close integration of the two. ?? 2004 Elsevier Ltd. All rights reserved.
Thermo-fluid-dynamic modelling of a cold store for cheese maturation
Directory of Open Access Journals (Sweden)
Ferruccio Giametta
2013-03-01
Full Text Available In this study, drying tests on fresh cheeses were carried out in a cold store equipped with a Munters MG90 dehumidifier that controls the humidity of the room air. In this system, the condensation/drainage stage is omitted since the humid room air is directed out of the cold store (process air and the dried air is introduced by the dehumidifier inside the cold store. Eight air temperature probes were introduced in the store; two probes (HOBO U12-012, 1 HOBO – Onset Computer Corporation, Cape Cod, MA, USA were also introduced and used to measure relative humidity and temperature together with an anemometer to analyse any changes in thermal and fluid dynamics in the cell environment. COMSOL multiphysics software (Comsol Group, Stockolm, Sweden was used to simulate the store environment based on the finite elements method. This allowed us to compare and discuss the experimental data collected and the results obtained by the thermo- fluid-dynamic simulation.
Nakashima, Motomu; Satou, Ken; Miura, Yasufumi
The purpose of this study is to develop a swimming human simulation model considering rigid body dynamics and unsteady fluid force for the whole body, which will be utilized to analyze various dynamical problems in human swimming. First, the modeling methods and their formulations for the human body and the fluid force are respectively described. Second, experiments to identify the coefficients of the normal drag and the added mass are conducted by use of an experimental setup, in which a limb model rotates in the water, and its rotating angle and the bending moment at the root are measured. As the result of the identification, the present model for the fluid force was found to have satisfactory performance in order to represent the unsteady fluctuations of the experimental data, although it has 10% error. Third, a simulation for the gliding position is conducted in order to identify the tangential drag coefficient. Finally, a simulation example of standard six beat front crawl swimming is shown. The swimming speed of the simulation became a reasonable value, indicating the validity of the present simulation model, although it is 7.5% lower than the actual swimming.
Saho, Tatsunori; Onishi, Hideo
2015-07-01
In this study, we evaluated hemodynamics using simulated models and determined how cerebral aneurysms develop in simulated and patient-specific models based on medical images. Computational fluid dynamics (CFD) was analyzed by use of OpenFOAM software. Flow velocity, stream line, and wall shear stress (WSS) were evaluated in a simulated model aneurysm with known geometry and in a three-dimensional angiographic model. The ratio of WSS at the aneurysm compared with that at the basilar artery was 1:10 in simulated model aneurysms with a diameter of 10 mm and 1:18 in the angiographic model, indicating similar tendencies. Vortex flow occurred in both model aneurysms, and the WSS decreased in larger model aneurysms. The angiographic model provided accurate CFD information, and the tendencies of simulated and angiographic models were similar. These findings indicate that hemodynamic effects are involved in the development of aneurysms.
Sverdlova, N S; Arkali, F; Witzel, U; Perry, S F
2013-10-01
Respiratory evaporative cooling is an important mechanism of temperature control in bird. A computational simulation of the breathing cycle, heat and water loss in anatomical avian trachea/air sac model has not previously been conducted. We report a first attempt to simulate a breathing cycle in a three-dimensional model of avian trachea and air sacs (domestic fowl) using transient computational fluid dynamics. The airflow in the trachea of the model is evoked by changing the volume of the air sacs based on the measured tidal volume and inspiratory/expiratory times for the domestic fowl. We compare flow parameters and heat transfer results with in vivo data and with our previously reported results for a two-dimensional model. The total respiratory heat loss corresponds to about 13-19% of the starvation metabolic rate of domestic fowl. The present study can lend insight into a possible thermoregulatory function in species with long necks and/or a very long trachea, as found in swans and birds of paradise. Assuming the structure of the sauropod dinosaur respiratory system was close to avian, the simulation of the respiratory temperature control (using convective and evaporative cooling) in the extensively experimentally studied domestic fowl may also help in making simulations of respiratory heat control in these extinct animals. Copyright © 2013 Elsevier B.V. All rights reserved.
Computational fluid dynamics application: slosh analysis of a fuel tank model
International Nuclear Information System (INIS)
Iu, H.S.; Cleghorn, W.L.; Mills, J.K.
2004-01-01
This paper presents the analysis of fluid slosh behaviour inside a fuel tank model. The fuel tank model was a simplified version of a stock fuel tank that has a sloshing noise problem. A commercial CFD software, FLOW-3D, was used to simulate the slosh behaviour. Slosh experiments were performed to verify the computer simulation results. High speed video equipment enhanced with a data acquisition system was used to record the slosh experiments and to obtain the instantaneous sound level of each video frame. Five baffle configurations including the no baffle configuration were considered in the computer simulations and the experiments. The simulation results showed that the best baffle configuration can reduce the mean kinetic energy by 80% from the no baffle configuration in a certain slosh situation. The experimental results showed that 15dB(A) noise reduction can be achieved by the best baffle configuration. The correlation analysis between the mean kinetic energy and the noise level showed that high mean kinetic energy of the fluid does not always correspond to high sloshing noise. High correlation between them only occurs for the slosh situations where the fluid hits the top of the tank and creates noise. (author)
Conceptual Models of the Climate 2003 Program of Study: Non-Newtonian Geophysical Fluid Dynamics
National Research Council Canada - National Science Library
Balmforth, NeiI
2004-01-01
Non-Newtonian fluids occur commonly in our world. These fluids, such as toothpaste, saliva, oils, mud and lava, exhibit a number of behaviors that are different from Newtonian fluids and have a number of additional material properties...
Energy Technology Data Exchange (ETDEWEB)
Burkhardt, T.
1999-09-16
At an industrial scale, the hydro-treating of oil fractions is carried out in multiphase fixed bed reactors. The oil and hydrogen cross the catalyst bed, usually in co-current downflow. Since the product specifications are steadily becoming more severe, the testing of new catalysts and of modified operating conditions in pilot plants becomes increasingly important. Although these pilot plants are frequently by a factor of 100 000 smaller than the industrial units, they still have to allow the up-scaling to industrial units. In the literature relatively low conversion degrees in pilot plants are frequently reported, especially in downflow. The significantly lower fluid velocities in pilot plants seem to be responsible for such differences, as the influence of fluid-dynamic non-idealities and of the extra-particle mass transfer phenomena increases with a decrease of the fluid velocities. In the present work, the influence of important fluid-dynamic non-idealities on the hydro-treating of gas oil fractions in pilot plants was examined. This was done on the one hand in experiments with different pilot plants and on the other hand by simulations with an especially developed multiphase model. The phenomena were considered as well in an isolated manner. In order to examine any interactions with the chemical reactions, they were also studied in a reactive system. This methodology was applied to the phenomena, 'axial dispersion'and 'gas-liquid mass transfer'. (author)
Computational Fluid Dynamic Modeling of Rocket Based Combined Cycle Engine Flowfields
Daines, Russell L.; Merkle, Charles L.
1994-01-01
Computational Fluid Dynamic techniques are used to study the flowfield of a fixed geometry Rocket Based Combined Cycle engine operating in rocket ejector mode. Heat addition resulting from the combustion of injected fuel causes the subsonic engine flow to choke and go supersonic in the slightly divergent combustor-mixer section. Reacting flow computations are undertaken to predict the characteristics of solutions where the heat addition is determined by the flowfield. Here, adaptive gridding is used to improve resolution in the shear layers. Results show that the sonic speed is reached in the unheated portions of the flow first, while the heated portions become supersonic later. Comparison with results from another code show reasonable agreement. The coupled solutions show that the character of the combustion-based thermal choking phenomenon can be controlled reasonably well such that there is opportunity to optimize the length and expansion ratio of the combustor-mixer.
Cinbiz, Mahmut N; Tığli, R Seda; Beşkardeş, Işil Gerçek; Gümüşderelioğlu, Menemşe; Colak, Uner
2010-11-01
In this study, computational fluid dynamics (CFD) analysis of a rotating-wall perfused-vessel (RWPV) bioreactor is performed to characterize the complex hydrodynamic environment for the simulation of cartilage development in RWPV bioreactor in the presence of tissue-engineered cartilage constructs, i.e., cell-chitosan scaffolds. Shear stress exerted on chitosan scaffolds in bioreactor was calculated for different rotational velocities in the range of 33-38 rpm. According to the calculations, the lateral and lower surfaces were exposed to 0.07926-0.11069 dyne/cm(2) and 0.05974-0.08345 dyne/cm(2), respectively, while upper surfaces of constructs were exposed to 0.09196-0.12847 dyne/cm(2). Results validate adequate hydrodynamic environment for scaffolds in RWPV bioreactor for cartilage tissue development which concludes the suitability of operational conditions of RWPV bioreactor. Copyright © 2010 Elsevier B.V. All rights reserved.
Energy saving during bulb storage applying modeling with computational fluid dynamics (CFD)
Energy Technology Data Exchange (ETDEWEB)
Sapounas, A.A.; Campen, J.B.; Wildschut, J.; Bot, G.P. [Wageningen UR Greenhouse Horticutlure and Applied Plant Research, Wageningen (Netherlands)
2010-07-01
Tulip bulbs are stored in ventilated containers to avoid high ethylene concentration between the bulbs. A commercial computational fluid dynamics (CFD) code was used in this study to examine the distribution of air flow between the containers and the potential energy saving by applying simple solutions concerning the design of the air inlet area and the adjustment of the ventilation rate. The variation in container ventilation was calculated to be between 60 and 180 per cent, with 100 per cent being the average flow through the containers. Various improvement measures were examined. The study showed that 7 per cent energy can be saved by smoothing the sharp corners of the entrance channels of the ventilation wall. The most effective and simple improvement was to cover the open top containers. In this case, the variation was between 80 and 120 per cent. The energy saving was about 38 per cent by adjusting the overall ventilation to the container with the minimal acceptable air flow.
Colour in visualisation for computational fluid dynamics
Kinnear, D; Atherton, MA; Collins, MW; Dokhan, J; Karayiannis, TG
2006-01-01
Colour is used in computational fluid dynamic (CFD) simulations in two key ways. First it is used to visualise the geometry and allow the engineers to be confident that the model constructed is a good representation of the engineering situation. Once an analysis has been completed, colour is used in post-processing the data from the simulations to illustrate the complex fluid mechanic phenomena under investigation. This paper describes these two uses of colour and provides some examples to il...
Energy Technology Data Exchange (ETDEWEB)
Baek, Seung Man [Seoul Nat' l Univ., Seoul (Korea, Republic of); Zhong, Yiming; Nam, Jin Hyun [Daegu Univ., Daegu (Korea, Republic of); Chung, Jae Dong [Sejong Univ., Seoul (Korea, Republic of); Hong, Hiki [Kyung Hee Univ., Seoul (Korea, Republic of)
2013-04-15
In a solar domestic hot water (Shadow) system, solar energy is collected using collector panels, transferred to a circulating heat transfer fluid (brine), and eventually stored in a thermal storage tank (Test) as hot water. In this study, a computational fluid dynamics (CAD) model was developed to predict the solar thermal energy storage in a hybrid type Test equipped with a helical jacket heater (mantle heat exchanger) and an immersed spiral coil heater. The helical jacket heater, which is the brine flow path attached to the side wall of a Test, has advantages including simple system design, low brine flow rate, and enhanced thermal stratification. In addition, the spiral coil heater further enhances the thermal performance and thermal stratification of the Test. The developed model was validated by the good agreement between the CAD results and the experimental results performed with the hybrid-type Test in Shadow settings.
International Nuclear Information System (INIS)
Baek, Seung Man; Zhong, Yiming; Nam, Jin Hyun; Chung, Jae Dong; Hong, Hiki
2013-01-01
In a solar domestic hot water (Shadow) system, solar energy is collected using collector panels, transferred to a circulating heat transfer fluid (brine), and eventually stored in a thermal storage tank (Test) as hot water. In this study, a computational fluid dynamics (CAD) model was developed to predict the solar thermal energy storage in a hybrid type Test equipped with a helical jacket heater (mantle heat exchanger) and an immersed spiral coil heater. The helical jacket heater, which is the brine flow path attached to the side wall of a Test, has advantages including simple system design, low brine flow rate, and enhanced thermal stratification. In addition, the spiral coil heater further enhances the thermal performance and thermal stratification of the Test. The developed model was validated by the good agreement between the CAD results and the experimental results performed with the hybrid-type Test in Shadow settings
Computational Fluid Dynamics in Ventilation
DEFF Research Database (Denmark)
Nielsen, Peter V.; Allard, Francis; Awbi, Hazim B.
2008-01-01
Computational Fluid Dynamics in Ventilation Design is a new title in the is a new title in the REHVA guidebook series. The guidebook is written for people who need to use and discuss results based on CFD predictions, and it gives insight into the subject for those who are not used to work with CFD...
Spreading dynamics of power-law fluid droplets
International Nuclear Information System (INIS)
Liang Zhanpeng; Peng Xiaofeng; Wang Xiaodong; Lee, D-J; Su Ay
2009-01-01
This paper aims at providing a summary of the theoretical models available for non-Newtonian fluid spreading dynamics. Experimental findings and model predictions for a Newtonian fluid spreading test are briefly reviewed. Then how the complete wetting and partial wetting power-law fluids spread over a solid substrate is examined. The possible extension of Newtonian fluid models to power-law fluids is also discussed.
Directory of Open Access Journals (Sweden)
Muhammad Ahsan
2015-07-01
Full Text Available Fluid catalytic cracking (FCC is an essential process for the conversion of gas oil to gasoline. This study is an effort to model the phenomenon numerically using commercial computational fluid dynamics (CFD software, heavy density catalyst and 4-lump kinetic model. Geometry, boundary conditions and dimensions of industrial riser for catalytic cracking unit are conferred for 2D simulation using commercial CFD code FLUENT 6.3. Continuity, momentum, energy and species transport equations, applicable to two phase solid and gas flow, are used to simulate the physical phenomenon as efficient as possible. This study implements and predicts the use of the granular Eulerian multiphase model with species transport. Time accurate transient problem is solved with the prediction of mass fraction profiles of gas oil, gasoline, light gas and coke. The output curves demonstrate the breaking of heavy hydrocarbon in the presence of catalyst. An approach proposed in this study shows good agreement with the experimental and numerical data available in the literature.
Challenges in fluid dynamics a new approach
Zeytounian, R Kh
2017-01-01
This monograph presents a synopsis of fluid dynamics based on the personal scientific experience of the author who has contributed immensely to the field. The interested reader will also benefit from the general historical context in which the material is presented in the book. The book covers a wide range of relevant topics of the field, and the main tool being rational asymptotic modelling (RAM) approach. The target audience primarily comprises experts in the field of fluid dynamics, but the book may also be beneficial for graduate students.
Engineering applications of computational fluid dynamics
Awang, Mokhtar
2015-01-01
This volume presents the results of Computational Fluid Dynamics (CFD) analysis that can be used for conceptual studies of product design, detail product development, process troubleshooting. It demonstrates the benefit of CFD modeling as a cost saving, timely, safe and easy to scale-up methodology.
Computational fluid dynamics modeling of gas dispersion in multi impeller bioreactor.
Ahmed, Syed Ubaid; Ranganathan, Panneerselvam; Pandey, Ashok; Sivaraman, Savithri
2010-06-01
In the present study, experiments have been carried out to identify various flow regimes in a dual Rushton turbines stirred bioreactor for different gas flow rates and impeller speeds. The hydrodynamic parameters like fractional gas hold-up, power consumption and mixing time have been measured. A two fluid model along with MUSIG model to handle polydispersed gas flow has been implemented to predict the various flow regimes and hydrodynamic parameters in the dual turbines stirred bioreactor. The computational model has been mapped on commercial solver ANSYS CFX. The flow regimes predicted by numerical simulations are validated with the experimental results. The present model has successfully captured the flow regimes as observed during experiments. The measured gross flow characteristics like fractional gas hold-up, and mixing time have been compared with numerical simulations. Also the effect of gas flow rate and impeller speed on gas hold-up and power consumption have been investigated. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Fluid dynamics of Ribbed Annuli
International Nuclear Information System (INIS)
McCreery, G. E.; Pink, R. J.; Condie, K. G.; McEligot, D. M.
2003-01-01
Typical advanced gas-cooled reactor designs use periodic spacer ribs to center rods in circular cooling channels, e.g., as for control rods (General Atomics and others) and fuel rods (HTTR). In contrast to classical studies of axisymmetric annuli, the flow becomes three-dimensional but is typically periodic in the circumferential direction and - in some cases - in the streamwise direction. Fundamental measurements have been obtained for two idealizations of these complex geometries: an annulus with three ribs circumferentially and one with four. Laser Doppler Velocimetry (LDV) was employed with INEEL's unique Matched-Index-of-Refraction (MIR) flow facility to determine the velocity and turbulence fields. The initial experiment was aimed at obtaining benchmark data to test the capabilities of CFD (Computational Fluid Dynamics) codes to handle ribbed annular geometries without the complications of turbulent transport. The Reynolds number was about 1120. These conditions correspond to some stages during a pressurized cooldown (LOFA) event. Power spectral densities were obtained to determine the eddy shedding frequency downstream of the ribs. For the second experiment LDV measurements were obtained in another ribbed-annular model at a higher flow rate. For this nominally turbulent flow, evidence of laminarization appears in the flow converging to pass between ribs. The measurements indicated flow details which could be useful for assessment of CFD codes
Fundamentals of Geophysical Fluid Dynamics
McWilliams, James C.
2006-07-01
Earth's atmosphere and oceans exhibit complex patterns of fluid motion over a vast range of space and time scales. These patterns combine to establish the climate in response to solar radiation that is inhomogeneously absorbed by the materials comprising air, water, and land. Spontaneous, energetic variability arises from instabilities in the planetary-scale circulations, appearing in many different forms such as waves, jets, vortices, boundary layers, and turbulence. Geophysical fluid dynamics (GFD) is the science of all these types of fluid motion. This textbook is a concise and accessible introduction to GFD for intermediate to advanced students of the physics, chemistry, and/or biology of Earth's fluid environment. The book was developed from the author's many years of teaching a first-year graduate course at the University of California, Los Angeles. Readers are expected to be familiar with physics and mathematics at the level of general dynamics (mechanics) and partial differential equations. Covers the essential GFD required for atmospheric science and oceanography courses Mathematically rigorous, concise coverage of basic theory and applications to both oceans and atmospheres Author is a world expert; this book is based on the course he has taught for many years Exercises are included, with solutions available to instructors from solutions@cambridge.org
International Nuclear Information System (INIS)
Sazhin, S.S.
1995-01-01
Traditional applications of the commercial CFD package FLUENT include modelling of gas and liquid flows, combustion processes, thermal radiation exchange, particle dynamics and related processes of industrial interest. Recently, however, the area of applications of this package has been extended to modelling of new processes such as CO 2 laser discharges and the solution of the Boltzmann equation. Results of this modelling were reported at XXI International Conference on Phenomena in Ionized gases in Bochum and were later published in a number of research papers. The aim of this report is to summarize some further latest developments of the FLUENT package aimed to adjust it to the needs of modelling of plasma processes including those in ionized gases. The simplest way to modify this package is to include Amper force into Navier-Stokes equation and Ohm heating term into the enthalpy equation. In most cases, however, electric currents and electric and magnetic fields used in these equations cannot be assumed to be a priori known as they depend on plasma dynamics (distribution of velocities and pressures) and thermodynamics (distribution of temperatures) which implicitly enter into Maxwell or any equivalent electromagnetic equations. This makes it necessary to include these electromagnetic equations into the general iteration loop used in FLUENT
Edison, John R; Monson, Peter A
2013-06-21
This article addresses the accuracy of a dynamic mean field theory (DMFT) for fluids in porous materials [P. A. Monson, J. Chem. Phys. 128, 084701 (2008)]. The theory is used to study the relaxation processes of fluids in pores driven by step changes made to a bulk reservoir in contact with the pore. We compare the results of the DMFT to those obtained by averaging over large numbers of dynamic Monte Carlo (DMC) simulation trajectories. The problem chosen for comparison is capillary condensation in slit pores, driven by step changes in the chemical potential in the bulk reservoir and involving a nucleation process via the formation of a liquid bridge. The principal difference between the DMFT results and DMC is the replacement of a distribution of nucleation times and location along the pore for the formation of liquid bridges by a single time and location. DMFT is seen to yield an otherwise qualitatively accurate description of the dynamic behavior.
International Nuclear Information System (INIS)
Parihar, A.; Kulkarni, A.; Stern, F.; Xing, T.; Moeykens, S.
2005-01-01
Flow over an Ahmed body is a key benchmark case for validating the complex turbulent flow field around vehicles. In spite of the simple geometry, the flow field around an Ahmed body retains critical features of real, external vehicular flow. The present study is an attempt to implement such a real life example into the course curriculum for undergraduate engineers. FlowLab, which is a Computational Fluid Dynamics (CFD) tool developed by Fluent Inc. for use in engineering education, allows students to conduct interactive application studies. This paper presents a synopsis of FlowLab, a description of one FlowLab exercise, and an overview of the educational experience gained by students through using FlowLab, which is understood through student surveys and examinations. FlowLab-based CFD exercises were implemented into 57:020 Mechanics of Fluids and Transport Processes and 58:160 Intermediate Mechanics of Fluids courses at the University of Iowa in the fall of 2004, although this report focuses only on experiences with the Ahmed body exercise, which was used only in the intermediate-level fluids class, 58:160. This exercise was developed under National Science Foundation funding by the authors of this paper. The focus of this study does not include validating the various turbulence models used for the Ahmed body simulation, because a two-dimensional simplification was applied. With the two-dimensional simplification, students may setup, run, and post process this model in a 50 minute class period using a single-CPU PC, as required for the 58:160 class at the University of Iowa. It is educational for students to understand the implication of a two- dimensional approximation for essentially a three-dimensional flow field, along with the consequent variation in both qualitative and quantitative results. Additionally, through this exercise, students may realize that the choice of the respective turbulence model will affect simulation prediction. (author)
Near-wellbore modeling of a horizontal well with Computational Fluid Dynamics
DEFF Research Database (Denmark)
Szanyi, Márton L.; Hemmingsen, Casper Schytte; Yan, Wei
2018-01-01
Dynamics (CFD) is capable of modeling the complex interaction between the creeping reservoir flow and turbulent well flow for single phases, while capturing both the completion geometry and formation damage. A series of single phase steady-state simulations are undertaken, using such fully coupled three...... dimensional numerical models, to predict the inflow to the well. The present study considers the applicability of CFD for near-wellbore modeling through benchmark cases with available analytical solutions. Moreover, single phase steady-state numerical investigations are performed on a specific perforated...... horizontal well producing from the Siri field, offshore Denmark. The performance of the well is investigated with an emphasis on the inflow profile and the productivity index for different formation damage scenarios. A considerable redistribution of the inflow profile were found when the filtrate invasion...
Ong, Robert H.; King, Andrew J. C.; Mullins, Benjamin J.; Cooper, Timothy F.; Caley, M. Julian
2012-01-01
We present Computational Fluid Dynamics (CFD) models of the coupled dynamics of water flow, heat transfer and irradiance in and around corals to predict temperatures experienced by corals. These models were validated against controlled laboratory experiments, under constant and transient irradiance, for hemispherical and branching corals. Our CFD models agree very well with experimental studies. A linear relationship between irradiance and coral surface warming was evident in both the simulation and experimental result agreeing with heat transfer theory. However, CFD models for the steady state simulation produced a better fit to the linear relationship than the experimental data, likely due to experimental error in the empirical measurements. The consistency of our modelling results with experimental observations demonstrates the applicability of CFD simulations, such as the models developed here, to coral bleaching studies. A study of the influence of coral skeletal porosity and skeletal bulk density on surface warming was also undertaken, demonstrating boundary layer behaviour, and interstitial flow magnitude and temperature profiles in coral cross sections. Our models compliment recent studies showing systematic changes in these parameters in some coral colonies and have utility in the prediction of coral bleaching. PMID:22701582
COUPLED CHEMOTAXIS FLUID MODEL
LORZ, ALEXANDER
2010-01-01
We consider a model system for the collective behavior of oxygen-driven swimming bacteria in an aquatic fluid. In certain parameter regimes, such suspensions of bacteria feature large-scale convection patterns as a result of the hydrodynamic
Damodara, Vijaya; Chen, Daniel H; Lou, Helen H; Rasel, Kader M A; Richmond, Peyton; Wang, Anan; Li, Xianchang
2017-05-01
Emissions from flares constitute unburned hydrocarbons, carbon monoxide (CO), soot, and other partially burned and altered hydrocarbons along with carbon dioxide (CO 2 ) and water. Soot or visible smoke is of particular concern for flare operators/regulatory agencies. The goal of the study is to develop a computational fluid dynamics (CFD) model capable of predicting flare combustion efficiency (CE) and soot emission. Since detailed combustion mechanisms are too complicated for (CFD) application, a 50-species reduced mechanism, LU 3.0.1, was developed. LU 3.0.1 is capable of handling C 4 hydrocarbons and soot precursor species (C 2 H 2 , C 2 H 4 , C 6 H 6 ). The new reduced mechanism LU 3.0.1 was first validated against experimental performance indicators: laminar flame speed, adiabatic flame temperature, and ignition delay. Further, CFD simulations using LU 3.0.1 were run to predict soot emission and CE of air-assisted flare tests conducted in 2010 in Tulsa, Oklahoma, using ANSYS Fluent software. Results of non-premixed probability density function (PDF) model and eddy dissipation concept (EDC) model are discussed. It is also noteworthy that when used in conjunction with the EDC turbulence-chemistry model, LU 3.0.1 can reasonably predict volatile organic compound (VOC) emissions as well. A reduced combustion mechanism containing 50 C 1 -C 4 species and soot precursors has been developed and validated against experimental data. The combustion mechanism is then employed in the computational fluid dynamics (CFD) of modeling of soot emission and combustion efficiency (CE) of controlled flares for which experimental soot and CE data are available. The validated CFD modeling tools are useful for oil, gas, and chemical industries to comply with U.S. Environmental Protection Agency's (EPA) mandate to achieve smokeless flaring with a high CE.
Modeling cell-substrate de-adhesion dynamics under fluid shear
Maan, Renu; Rani, Garima; Menon, Gautam I.; Pullarkat, Pramod A.
2018-07-01
Changes in cell-substrate adhesion are believed to signal the onset of cancer metastasis, but such changes must be quantified against background levels of intrinsic heterogeneity between cells. Variations in cell-substrate adhesion strengths can be probed through biophysical measurements of cell detachment from substrates upon the application of an external force. Here, we investigate, theoretically and experimentally, the detachment of cells adhered to substrates when these cells are subjected to fluid shear. We present a theoretical framework within which we calculate the fraction of detached cells as a function of shear stress for fast ramps as well as the decay in this fraction at fixed shear stress as a function of time. Using HEK and 3T3 fibroblast cells as experimental model systems, we extract characteristic force scales for cell adhesion as well as characteristic detachment times. We estimate force-scales of ∼500 pN associated to a single focal contact, and characteristic time-scales of s representing cell-spread-area dependent mean first passage times to the detached state at intermediate values of the shear stress. Variations in adhesion across cell types are especially prominent when cell detachment is probed by applying a time-varying shear stress. These methods can be applied to characterizing changes in cell adhesion in a variety of contexts, including metastasis.
Modelling the normal bouncing dynamics of spheres in a viscous fluid
Directory of Open Access Journals (Sweden)
Izard Edouard
2017-01-01
Full Text Available Bouncing motions of spheres in a viscous fluid are numerically investigated by an immersed boundary method to resolve the fluid flow around solids which is combined to a discrete element method for the particles motion and contact resolution. Two well-known configurations of bouncing are considered: the normal bouncing of a sphere on a wall in a viscous fluid and a normal particle-particle bouncing in a fluid. Previous experiments have shown the effective restitution coefficient to be a function of a single parameter, namely the Stokes number which compares the inertia of the solid particle with the fluid viscous dissipation. The present simulations show a good agreement with experimental observations for the whole range of investigated parameters. However, a new definition of the coefficient of restitution presented here shows a dependence on the Stokes number as in previous works but, in addition, on the fluid to particle density ratio. It allows to identify the viscous, inertial and dry regimes as found in experiments of immersed granular avalanches of Courrech du Pont et al. Phys. Rev. Lett. 90, 044301 (2003, e.g. in a multi-particle configuration.
International Nuclear Information System (INIS)
Sharma, D.
1982-01-01
This paper presents the formulation and applications of a mathematical model designed to predict the fluid dynamics and associated mass transfers in variably saturated porous media. Novelties in the formulation are emphasized and demonstrated to provide several computational advantages. The numerical procedure employed is of the integrated finite-difference variety which employs a hybrid differencing scheme. This procedure, while solving the coupled governing equations in conservative form, permits accommodation of substantial heterogeneities and anisotropies in material properties of the porous media. Accordingly, it is capable of making reliable predictions of steeply varying moisture and chemical-specie concentration fronts. The paper provides several examples of application of the model to the solution of practical problems. It is demonstrated that economical solutions to highly non-linear problems associated with solid and liquid waste disposal practices can be obtained
DEFF Research Database (Denmark)
Damsgaard, Anders; Egholm, David Lundbek; Beem, Lucas H.
The macroscopic behavior of granular materials is the result of the self-organizing complexity of the constituent grains. Granular materials are known for their ability to change phase, where each phase is characterized by distinct mechanical properties. This rich generic phenomenology has made...... it difficult to constrain generalized and adequate mathematical models for their mechanical behavior. Glaciers and ice streams often move by deformation of underlying melt-water saturated sediments. Glacier flow models including subglacial sediment deformation use simplified a priori assumptions for sediment......, the method imposes intense computational requirements on the computational time step. The majority of steps in the granular dynamics algorithm are massively parallel, which makes the DEM an obvious candidate for exploiting the capabilities of modern GPUs. The granular computations are coupled to a fluid...
El Baroudi, A; Razafimahery, F; Rakotomanana, L
2012-01-01
This work aims to present some fluid-structure models for analyzing the dynamics of the aorta during a brusque loading. Indeed, various lesions may appear at the aortic arch during car crash or other accident such as brusque falling. Aortic stresses evolution are simulated during the shock at the cross section and along the aorta. One hot question was that if a brusque deceleration can generate tissue tearing, or a shock is necessary to provoke such a damage. Different constitutive laws of blood are then tested whereas the aorta is assumed linear and elastic. The overall shock model is inspired from an experimental jig. We show that the viscosity has strong influence on the stress and parietal moments and forces. The nonlinear viscosity has no significant additional effects for healthy aorta, but modifies the stress and parietal loadings for the stenotic aorta.
Directory of Open Access Journals (Sweden)
Mattauch S.
2012-10-01
Full Text Available After the dynamics of microemulsions adjacent to a planar hydrophilic wall have been characterized using grazing incidence neutron spin echo spectroscopy, the model of Seifert was employed to explain the discovered acceleration for the surface near lamellar ordered membranes. Reflections of hydrodynamic waves by the wall – or the volume conservation between the membrane and the wall – explain faster relaxations and, therefore, a lubrication effect that is important for flow fields in narrow pores. The whole scenery is now spectated by using different scenarios of a bicontinuous microemulsion exposed to clay particles and of a lamellar microemulsion adjacent to a planar wall. The Seifert concept could successfully be transferred to the new problems.
Directory of Open Access Journals (Sweden)
Kupecki Jakub
2017-03-01
Full Text Available The article presents a numerical analysis of an innovative method for starting systems based on high temperature fuel cells. The possibility of preheating the fuel cell stacks from the cold state to the nominal working conditions encounters several limitations related to heat transfer and stability of materials. The lack of rapid and safe start-up methods limits the proliferation of MCFCs and SOFCs. For that reason, an innovative method was developed and verified using the numerical analysis presented in the paper. A dynamic 3D model was developed that enables thermo-fluidic investigations and determination of measures for shortening the preheating time of the high temperature fuel cell stacks. The model was implemented in ANSYS Fluent computational fluid dynamic (CFD software and was used for verification of the proposed start-up method. The SOFC was chosen as a reference fuel cell technology for the study. Results obtained from the study are presented and discussed.
Hariharan, Prasanna; Giarra, Matthew; Reddy, Varun; Day, Steven W; Manning, Keefe B; Deutsch, Steven; Stewart, Sandy F C; Myers, Matthew R; Berman, Michael R; Burgreen, Greg W; Paterson, Eric G; Malinauskas, Richard A
2011-04-01
This study is part of a FDA-sponsored project to evaluate the use and limitations of computational fluid dynamics (CFD) in assessing blood flow parameters related to medical device safety. In an interlaboratory study, fluid velocities and pressures were measured in a nozzle model to provide experimental validation for a companion round-robin CFD study. The simple benchmark nozzle model, which mimicked the flow fields in several medical devices, consisted of a gradual flow constriction, a narrow throat region, and a sudden expansion region where a fluid jet exited the center of the nozzle with recirculation zones near the model walls. Measurements of mean velocity and turbulent flow quantities were made in the benchmark device at three independent laboratories using particle image velocimetry (PIV). Flow measurements were performed over a range of nozzle throat Reynolds numbers (Re(throat)) from 500 to 6500, covering the laminar, transitional, and turbulent flow regimes. A standard operating procedure was developed for performing experiments under controlled temperature and flow conditions and for minimizing systematic errors during PIV image acquisition and processing. For laminar (Re(throat)=500) and turbulent flow conditions (Re(throat)≥3500), the velocities measured by the three laboratories were similar with an interlaboratory uncertainty of ∼10% at most of the locations. However, for the transitional flow case (Re(throat)=2000), the uncertainty in the size and the velocity of the jet at the nozzle exit increased to ∼60% and was very sensitive to the flow conditions. An error analysis showed that by minimizing the variability in the experimental parameters such as flow rate and fluid viscosity to less than 5% and by matching the inlet turbulence level between the laboratories, the uncertainties in the velocities of the transitional flow case could be reduced to ∼15%. The experimental procedure and flow results from this interlaboratory study (available
Energy Technology Data Exchange (ETDEWEB)
Di Piazza, Ivan, E-mail: ivandipiazza@yahoo.i [Dipartimento di Ingegneria Nucleare, Universita degli studi di Palermo, Viale delle Scienze, Edificio 6, CAP 90128, Palermo (Italy)
2009-12-15
An analytical model of fluid flow and heat transfer of a Nuclear Thermal Rocket (NTR) engine concept is presented. The engine is based on the direct conversion of the kinetic energy of the fission fragments (FFs) into the propellant enthalpy. The FFs can escape from an extremely thin layer of fissionable material: a sufficiently large surface coated with few micrometers of Americium 242m, confined by a neutron moderator-reflector, may become a critical reactor. Three dimensional coupled CFD-Monte Carlo simulations have already been presented in . In this paper, an analytical integral 1-D model of fluid dynamics and heat transfer is built in order to foresee the performances on the basis of simple, physically founded correlations. The Peclet number has been identified as the main governing parameter of the system, and theoretically based correlations have been found for the thermodynamic efficiency of the engine and for the specific impulse. The correlations show a good agreement with numerical results presented in from fully coupled 3D CFD-Monte Carlo calculations.
Yoon, Jeoung Seok; Zang, Arno; Zimmermann, Günter; Stephansson, Ove
2016-04-01
Operation of fluid injection into and withdrawal from the subsurface for various purposes has been known to induce earthquakes. Such operations include hydraulic fracturing for shale gas extraction, hydraulic stimulation for Enhanced Geothermal System development and waste water disposal. Among these, several damaging earthquakes have been reported in the USA in particular in the areas of high-rate massive amount of wastewater injection [1] mostly with natural fault systems. Oil and gas production have been known to induce earthquake where pore fluid pressure decreases in some cases by several tens of Mega Pascal. One recent seismic event occurred in November 2013 near Azle, Texas where a series of earthquakes began along a mapped ancient fault system [2]. It was studied that a combination of brine production and waste water injection near the fault generated subsurface pressures sufficient to induced earthquakes on near-critically stressed faults. This numerical study aims at investigating the occurrence mechanisms of such earthquakes induced by fluid injection [3] and withdrawal by using hydro-geomechanical coupled dynamic simulator (Itasca's Particle Flow Code 2D). Generic models are setup to investigate the sensitivity of several parameters which include fault orientation, frictional properties, distance from the injection well to the fault, amount of fluid withdrawal around the injection well, to the response of the fault systems and the activation magnitude. Fault slip movement over time in relation to the diffusion of pore pressure is analyzed in detail. Moreover, correlations between the spatial distribution of pore pressure change and the locations of induced seismic events and fault slip rate are investigated. References [1] Keranen KM, Weingarten M, Albers GA, Bekins BA, Ge S, 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science 345, 448, DOI: 10.1126/science.1255802. [2] Hornbach MJ, DeShon HR
Bokhove, Onno; Norbury, J.; Roulstone, I.
2002-01-01
Most fluid systems, such as the three-dimensional compressible Euler equations, are too complicated to yield general analytical solutions, and approximation methods are needed to make progress in understanding aspects of particular flows. This chapter reviews derivations of approximate or reduced
Yousfi, M.; Eichwald, O.; Merbahi, N.; Jomaa, N.
2012-08-01
This work is devoted to fluid modeling based on experimental investigations of a classical setup of a low-temperature plasma jet. The latter is generated at atmospheric pressure using a quartz tube of small diameter crossed by helium gas flow and surrounded by an electrode system powered by a mono-polar high-voltage pulse. The streamer-like behavior of the fast plasma bullets or ionization waves launched in ambient air for every high-voltage pulse, already emphasized in the literature from experimental or analytical considerations or recent preliminary fluid models, is confirmed by a numerical one-moment fluid model for the simulation of the ionization wave dynamics. The dominant interactions between electron and the main ions present in He-air mixtures with their associated basic data are taken into account. The gradual dilution of helium in air outside the tube along the axis is also considered using a gas hydrodynamics model based on the Navier-Stokes equation assuming a laminar flow. Due to the low magnitude of the reduced electric field E/N (not exceeding 15 Td), it is first shown that consideration of the stepwise ionization of helium metastables is required to reach the critical size of the electron avalanches in order to initiate the formation of ionization waves. It is also shown that a gas pre-ionization ahead of the wave front of about 109 cm-3 (coming from Penning ionization without considering the gas photo-ionization) is required for the propagation. Furthermore, the second ionization wave experimentally observed during the falling time of the voltage pulse, between the powered electrode and the tube exit, is correlated with the electric field increase inside the ionized channel in the whole region between the electrode and the tube exit. The propagation velocity and the distance traveled by the front of the ionization wave outside the tube in the downstream side are consistent with the present experimental measurements. In comparison with the
Computational fluid dynamics in ventilation design
Allard, Francis; Awbi, Hazim B; Davidson, Lars; Schälin, Alois
2007-01-01
CFD-calculations have been rapidly developed to a powerful tool for the analysis of air pollution distribution in various spaces. However, the user of CFD-calculation should be aware of the basic principles of calculations and specifically the boundary conditions. Computational Fluid Dynamics (CFD) – in Ventilation Design models is written by a working group of highly qualified international experts representing research, consulting and design.
Schellart, W. P.
Analogue models of lithospheric deformation and fluid dynamic models of mantle flow mostly use some kind of syrup such as honey or glucose syrup to simulate the low-viscosity sub-lithospheric mantle. This paper describes detailed rheological tests and density measurements of three brands of glucose
Pourmehran, Oveis; Gorji, Tahereh B; Gorji-Bandpy, Mofid
2016-10-01
Magnetic drug targeting (MDT) is a local drug delivery system which aims to concentrate a pharmacological agent at its site of action in order to minimize undesired side effects due to systemic distribution in the organism. Using magnetic drug particles under the influence of an external magnetic field, the drug particles are navigated toward the target region. Herein, computational fluid dynamics was used to simulate the air flow and magnetic particle deposition in a realistic human airway geometry obtained by CT scan images. Using discrete phase modeling and one-way coupling of particle-fluid phases, a Lagrangian approach for particle tracking in the presence of an external non-uniform magnetic field was applied. Polystyrene (PMS40) particles were utilized as the magnetic drug carrier. A parametric study was conducted, and the influence of particle diameter, magnetic source position, magnetic field strength and inhalation condition on the particle transport pattern and deposition efficiency (DE) was reported. Overall, the results show considerable promise of MDT in deposition enhancement at the target region (i.e., left lung). However, the positive effect of increasing particle size on DE enhancement was evident at smaller magnetic field strengths (Mn [Formula: see text] 1.5 T), whereas, at higher applied magnetic field strengths, increasing particle size has a inverse effect on DE. This implies that for efficient MTD in the human respiratory system, an optimal combination of magnetic drug career characteristics and magnetic field strength has to be achieved.
Liu, Yushi; Poh, Hee Joo
2014-11-01
The Computational Fluid Dynamics analysis has become increasingly important in modern urban planning in order to create highly livable city. This paper presents a multi-scale modeling methodology which couples Weather Research and Forecasting (WRF) Model with open source CFD simulation tool, OpenFOAM. This coupling enables the simulation of the wind flow and pollutant dispersion in urban built-up area with high resolution mesh. In this methodology meso-scale model WRF provides the boundary condition for the micro-scale CFD model OpenFOAM. The advantage is that the realistic weather condition is taken into account in the CFD simulation and complexity of building layout can be handled with ease by meshing utility of OpenFOAM. The result is validated against the Joint Urban 2003 Tracer Field Tests in Oklahoma City and there is reasonably good agreement between the CFD simulation and field observation. The coupling of WRF- OpenFOAM provide urban planners with reliable environmental modeling tool in actual urban built-up area; and it can be further extended with consideration of future weather conditions for the scenario studies on climate change impact.
Piergiovanni, Monica; Bianchi, Elena; Capitani, Giada; Li Piani, Irene; Ganzer, Lucia; Guidotti, Luca G; Iannacone, Matteo; Dubini, Gabriele
2017-10-03
The liver is organized in hexagonal functional units - termed lobules - characterized by a rather peculiar blood microcirculation, due to the presence of a tangled network of capillaries - termed sinusoids. A better understanding of the hemodynamics that governs liver microcirculation is relevant to clinical and biological studies aimed at improving our management of liver diseases and transplantation. Herein, we built a CFD model of a 3D sinusoidal network, based on in vivo images of a physiological mouse liver obtained with a 2-photon microscope. The CFD model was developed with Fluent 16.0 (ANSYS Inc., Canonsburg, PA), particular care was taken in imposing the correct boundary conditions representing a physiological state. To account for the remaining branches of the sinusoids, a lumped parameter model was used to prescribe the correct pressure at each outlet. The effect of an adhered cell on local hemodynamics is also investigated for different occlusion degrees. The model here proposed accurately reproduces the fluid dynamics in a portion of the sinusoidal network in mouse liver. Mean velocities and mass flow rates are in agreement with literature values from in vivo measurements. Our approach provides details on local phenomena, hardly described by other computational studies, either focused on the macroscopic hepatic vasculature or based on homogeneous porous medium model. Copyright © 2017 Elsevier Ltd. All rights reserved.
Boutsioukis, C; Verhaagen, B; Versluis, M; Kastrinakis, E; van der Sluis, L W M
2010-05-01
To compare the results of a Computational Fluid Dynamics (CFD) simulation of the irrigant flow within a prepared root canal, during final irrigation with a syringe and a needle, with experimental high-speed visualizations and theoretical calculations of an identical geometry and to evaluate the effect of off-centre positioning of the needle inside the root canal. A CFD model was created to simulate irrigant flow from a side-vented needle inside a prepared root canal. Calculations were carried out for four different positions of the needle inside a prepared root canal. An identical root canal model was made from poly-dimethyl-siloxane (PDMS). High-speed imaging of the flow seeded with particles and Particle Image Velocimetry (PIV) were combined to obtain the velocity field inside the root canal experimentally. Computational, theoretical and experimental results were compared to assess the validity of the computational model. Comparison between CFD computations and experiments revealed good agreement in the velocity magnitude and vortex location and size. Small lateral displacements of the needle inside the canal had a limited effect on the flow field. High-speed imaging experiments together with PIV of the flow inside a simulated root canal showed a good agreement with the CFD model, even though the flow was unsteady. Therefore, the CFD model is able to predict reliably the flow in similar domains.
International Nuclear Information System (INIS)
Kliem, S.; Grahn, A.; Rohde, U.; Schuetze, J.; Frank, Th.
2010-01-01
The computational fluid dynamics code ANSYS CFX has been coupled with the neutron-kinetic core model DYN3D. ANSYS CFX calculates the fluid dynamics and related transport phenomena in the reactors coolant and provides the corresponding data to DYN3D. In the fluid flow simulation of the coolant, the core itself is modeled within the porous body approach. DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the prototype that is currently available, the coupling is restricted to single-phase flow problems. In the time domain an explicit coupling of the codes has been implemented so far. Steady-state and transient verification calculations for two small-size test problems confirm the correctness of the implementation of the prototype coupling. The first test problem was a mini-core consisting of nine real-size fuel assemblies with quadratic cross section. Comparison was performed with the DYN3D stand-alone code. In the steady state, the effective multiplication factor obtained by the DYN3D/ANSYS CFX codes hows a deviation of 9.8 pcm from the DYN3D stand-alone solution. This difference can be attributed to the use of different water property packages in the two codes. The transient test case simulated the withdrawal of the control rod from the central fuel assembly at hot zero power in the same mini-core. Power increase during the introduction of positive reactivity and power reduction due to fuel temperature increase are calculated in the same manner by the coupled and the stand-alone codes. The maximum values reached during the power rise differ by about 1 MW at a power level of 50 MW. Beside the different water property packages, these differences are caused by the use of different flow solvers. The same calculations were carried for a mini-core with seven real-size fuel assemblies with hexagonal cross section in
Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, Fred W.
1989-01-01
Time-dependent evolutions of the profile of the free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low- and microgravity environments, (2) linear functions of increasing and decreasing gravity environments at high- and low-rotating cylinder speeds, and (3) step functions of spin-up and spin-down in a low-gravity environment.
Computational methods for fluid dynamics
Ferziger, Joel H
2002-01-01
In its 3rd revised and extended edition the book offers an overview of the techniques used to solve problems in fluid mechanics on computers and describes in detail those most often used in practice. Included are advanced methods in computational fluid dynamics, like direct and large-eddy simulation of turbulence, multigrid methods, parallel computing, moving grids, structured, block-structured and unstructured boundary-fitted grids, free surface flows. The 3rd edition contains a new section dealing with grid quality and an extended description of discretization methods. The book shows common roots and basic principles for many different methods. The book also contains a great deal of practical advice for code developers and users, it is designed to be equally useful to beginners and experts. The issues of numerical accuracy, estimation and reduction of numerical errors are dealt with in detail, with many examples. A full-feature user-friendly demo-version of a commercial CFD software has been added, which ca...
Principles of computational fluid dynamics
Wesseling, Pieter
2001-01-01
The book is aimed at graduate students, researchers, engineers and physicists involved in flow computations. An up-to-date account is given of the present state-of-the-art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated with a fair amount of detail, using elementary mathematical analysis. Attention is given to difficulties arising from geometric complexity of the flow domain and of nonuniform structured boundary-fitted grids. Uniform accuracy and efficiency for singular perturbation problems is studied, pointing the way to accurate computation of flows at high Reynolds number. Much attention is given to stability analysis, and useful stability conditions are provided, some of them new, for many numerical schemes used in practice. Unified methods for compressible and incompressible flows are discussed. Numerical analysis of the shallow-water equations is included. The theory of hyperbolic conservation laws is treated. Godunov's order barrier and ho...
DEFF Research Database (Denmark)
Johansen, Per; Rømer, Daniel; Andersen, Torben Ole
2014-01-01
The increasing interest in hydraulic transmissions in wind and wave energy applications has created an incentive for the development of high efficiency fluid power machinery. Modeling and analysis of fluid power machinery loss mechanisms are necessary in order to accommodate this demand. At present...... fully coupled thermo-elastic models has been used to simulate and study loss mechanisms in various tribological interfaces. Consequently, a reasonable focus of further development is to couple the interface models and the rigid body mechanics of fluid power machinery. The focus of the current paper...
Modeling of the fluid dynamics and SO{sub 2} absorption in a gas-liquid reactor
Energy Technology Data Exchange (ETDEWEB)
Marocco, L. [Alstom Power Italy, Milan (Italy)
2010-08-01
This paper illustrates a computational fluid dynamic (CFD) model of a counter-current Open Spray Tower desulphurisation reactor and its application in the simulation of a full-scale industrial equipment. The raw flue gas flows upward while a suspension of water and limestone is sprayed downward from different heights. Thereby sulfur dioxide is washed out of the gas. The two-phase gas-liquid flow inside the equipment has been simulated with an Euler-Lagrange approach using a commercial CFD code, while a model for the SO{sub 2} absorption has been developed and implemented in the software through dedicated modules. Physical absorption is modeled using dual-film theory and appropriate empirical and semi-empirical correlations. The aqueous phase chemistry accounts for the instantaneous equilibrium reactions of eight dissolved species into a slurry droplet. The model is used to simulate an industrial plant at different operating conditions. The numerical results are in good agreement with the measured values of pressure drop and sulphur removal efficiency.
Santoro, Domenico; Crapulli, Ferdinando; Raisee, Mehrdad; Raspa, Giuseppe; Haas, Charles N
2015-06-16
Wastewater disinfection processes are typically designed according to heuristics derived from batch experiments in which the interaction among wastewater quality, reactor hydraulics, and inactivation kinetics is often neglected. In this paper, a computational fluid dynamics (CFD) study was conducted in a nondeterministic (ND) modeling framework to predict the Escherichia coli inactivation by peracetic acid (PAA) in municipal contact tanks fed by secondary settled wastewater effluent. The extent and variability associated with the observed inactivation kinetics were both satisfactorily predicted by the stochastic inactivation model at a 95% confidence level. Moreover, it was found that (a) the process variability induced by reactor hydraulics is negligible when compared to the one caused by inactivation kinetics, (b) the PAA dose required for meeting regulations is dictated equally by the fixed limit of the microbial concentration as well as its probability of occurrence, and (c) neglecting the probability of occurrence during process sizing could lead to an underestimation of the PAA dose required by as much as 100%. Finally, the ND-CFD model was used to generate sizing information in the form of probabilistic disinfection curves relating E. coli inactivation and probability of occurrence with the average PAA dose and PAA residual concentration at the outlet of the contact tank.
Directory of Open Access Journals (Sweden)
Yonghui Xie
2013-01-01
Full Text Available Air turbines are widely used to convert kinetic energy into power output in power engineering. The unsteady performance of air turbines with partial admission not only influences the aerodynamic performance and thermodynamic efficiency of turbine but also generates strong excitation force on blades to impair the turbine safely operating. Based on three-dimensional viscous compressible Navier-stokes equations, the present study employs RNG (Renormalization group k-ε turbulence model with finite volume discretization on air turbine with partial admission. Numerical models of four different admission rates with full annulus are built and analyzed via CFD (computational fluid dynamics modeling unsteady flows. Results indicate that the unsteady time-averaged isentropic efficiency is lower than the steady isentropic efficiency, and this difference rises as unsteady isentropic efficiency fluctuates stronger when the admission rate is reduced. The rotor axial and tangential forces with time are provided for all four admission rates. The low frequency excitation forces generated by partial admission are extraordinarily higher than the high frequency excitation forces by stator wakes.
A History of constitutive modeling via molecular dynamics: Shock waves in fluids and gases
Holian B.L.
2011-01-01
From its inception in the mid-Fifties, the method of molecular-dynamics (MD) computer simulations has been used to probe the foundations of statistical mechanics, first for equilibrium equation-of-state averages, and then for transport properties from equilibrium fluctuations. Traditional statistical mechanical theoreticians were shocked to see that this new-fangled computational physics approach was feasible, even with incredibly tiny samples (on the order of a hundred atoms). When direct me...
Fluid dynamics of bubbly flows
International Nuclear Information System (INIS)
Ziegenhein, Thomas
2016-01-01
Bubbly flows can be found in many applications in chemical, biological and power engineering. Reliable simulation tools of such flows that allow the design of new processes and optimization of existing one are therefore highly desirable. CFD-simulations applying the multi-fluid approach are very promising to provide such a design tool for complete facilities. In the multi-fluid approach, however, closure models have to be formulated to model the interaction between the continuous and dispersed phase. Due to the complex nature of bubbly flows, different phenomena have to be taken into account and for every phenomenon different closure models exist. Therefore, reliable predictions of unknown bubbly flows are not yet possible with the multi-fluid approach. A strategy to overcome this problem is to define a baseline model in which the closure models including the model constants are fixed so that the limitations of the modeling can be evaluated by validating it on different experiments. Afterwards, the shortcomings are identified so that the baseline model can be stepwise improved without losing the validity for the already validated cases. This development of a baseline model is done in the present work by validating the baseline model developed at the Helmholtz-Zentrum Dresden-Rossendorf mainly basing on experimental data for bubbly pipe flows to bubble columns, bubble plumes and air-lift reactors that are relevant in chemical and biological engineering applications. In the present work, a large variety of such setups is used for validation. The buoyancy driven bubbly flows showed thereby a transient behavior on the scale of the facility. Since such large scales are characterized by the geometry of the facility, turbulence models cannot describe them. Therefore, the transient simulation of bubbly flows with two equation models based on the unsteady Reynolds-averaged Navier-Stokes equations is investigated. In combination with the before mentioned baseline model these
Fluid dynamics of bubbly flows
Energy Technology Data Exchange (ETDEWEB)
Ziegenhein, Thomas
2016-07-08
Bubbly flows can be found in many applications in chemical, biological and power engineering. Reliable simulation tools of such flows that allow the design of new processes and optimization of existing one are therefore highly desirable. CFD-simulations applying the multi-fluid approach are very promising to provide such a design tool for complete facilities. In the multi-fluid approach, however, closure models have to be formulated to model the interaction between the continuous and dispersed phase. Due to the complex nature of bubbly flows, different phenomena have to be taken into account and for every phenomenon different closure models exist. Therefore, reliable predictions of unknown bubbly flows are not yet possible with the multi-fluid approach. A strategy to overcome this problem is to define a baseline model in which the closure models including the model constants are fixed so that the limitations of the modeling can be evaluated by validating it on different experiments. Afterwards, the shortcomings are identified so that the baseline model can be stepwise improved without losing the validity for the already validated cases. This development of a baseline model is done in the present work by validating the baseline model developed at the Helmholtz-Zentrum Dresden-Rossendorf mainly basing on experimental data for bubbly pipe flows to bubble columns, bubble plumes and air-lift reactors that are relevant in chemical and biological engineering applications. In the present work, a large variety of such setups is used for validation. The buoyancy driven bubbly flows showed thereby a transient behavior on the scale of the facility. Since such large scales are characterized by the geometry of the facility, turbulence models cannot describe them. Therefore, the transient simulation of bubbly flows with two equation models based on the unsteady Reynolds-averaged Navier-Stokes equations is investigated. In combination with the before mentioned baseline model these
Dynamics of the Gay-Berne fluid
International Nuclear Information System (INIS)
de Miguel, E.; Rull, L.F.; Gubbins, K.E.
1992-01-01
Using molecular-dynamics computer simulation, we study the dynamical behavior of the isotropic and nematic phases of highly anisotropic molecular fluids. The interactions are modeled by means of the Gay-Berne potential with anisotropy parameters κ=3 and κ'=5. The linear-velocity autocorrelation function shows no evidence of a negative region in the isotropic phase, even at the higher densities considered. The self-diffusion coefficient parallel to the molecular axis shows an anomalous increase with density as the system enters the nematic region. This enhancement in parallel diffusion is also observed in the isotropic side of the transition as a precursor effect. The molecular reorientation is discussed in the light of different theoretical models. The Debye diffusion model appears to explain the reorientational mechanism in the nematic phase. None of the models gives a satisfactory account of the reorientation process in the isotropic phase
International Nuclear Information System (INIS)
Donea, J.; Fasoli-Stella, P.; Giuliani, S.; Halleux, J.P.; Jones, A.V.
1980-01-01
This report describes the governing equations and the finite element modelling used in the computer code EURDYN - 1 M. The code is a non-linear transient dynamic program for the analysis of coupled fluid-structure systems; It is designed for safety studies on LMFBR components (primary containment and fuel subassemblies)
Directory of Open Access Journals (Sweden)
Emma Frosina
2017-01-01
Full Text Available Small and micro hydropower systems represent an attractive solution for generating electricity at low cost and with low environmental impact. The pump-as-turbine (PAT approach has promise in this application due to its low purchase and maintenance costs. In this paper, a new method to predict the inverse characteristic of industrial centrifugal pumps is presented. This method is based on results of simulations performed with commercial three-dimensional Computational Fluid Dynamics (CFD software. Model results have been first validated in pumping mode using data supplied by pump manufacturers. Then, the results have been compared to experimental data for a pump running in reverse. Experimentation has been performed on a dedicated test bench installed in the Department of Civil Construction and Environmental Engineering of the University of Naples Federico II. Three different pumps, with different specific speeds, have been analyzed. Using the model results, the inverse characteristic and the best efficiency point have been evaluated. Finally, results have been compared to prediction methods available in the literature.
Directory of Open Access Journals (Sweden)
Pablo Fernández-Yáñez
2017-06-01
Full Text Available Around a third of the energy input in an automotive engine is wasted through the exhaust system. Since numerous technologies to harvest energy from exhaust gases are accessible, it is of great interest to find time- and cost-efficient methods to evaluate available thermal energy under different engine conditions. Computational fluid dynamics (CFD is becoming a very valuable tool for numerical predictions of exhaust flows. In this work, a methodology to build a simple three-dimensional (3D model of the exhaust system of automotive internal combustion engines (ICE was developed. Experimental data of exhaust gas in the most used part of the engine map in passenger diesel vehicles were employed as input for calculations. Sensitivity analyses of different numeric schemes have been conducted in order to attain accurate results. The model built allows for obtaining details on temperature and pressure fields along the exhaust system, and for complementing the experimental results for a better understanding of the flow phenomena and heat transfer through the system for further energy recovery devices.
Zubkov, V. S.
2012-07-06
We present a mathematical model describing the spatial distribution of tear film osmolarity across the ocular surface of a human eye during one blink cycle, incorporating detailed fluid and solute dynamics. Based on the lubrication approximation, our model comprises three coupled equations tracking the depth of the aqueous layer of the tear film, the concentration of the polar lipid, and the concentration of physiological salts contained in the aqueous layer. Diffusive boundary layers in the salt concentration occur at the thinnest regions of the tear film, the black lines. Thus, despite large Peclet numbers, diffusion ameliorates osmolarity around the black lines, but nonetheless is insufficient to eliminate the build-up of solute in these regions. More generally, a heterogeneous distribution of solute concentration is predicted across the ocular surface, indicating that measurements of lower meniscus osmolarity are not globally representative, especially in the presence of dry eye. Vertical saccadic eyelid motion can reduce osmolarity at the lower black line, raising the prospect that select eyeball motions more generally can assist in alleviating tear film hyperosmolarity. Finally, our results indicate that measured evaporative rates will induce excessive hyperosmolarity at the black lines, even for the healthy eye. This suggests that further evaporative retardation at the black lines, for instance due to the cellular glycocalyx at the ocular surface or increasing concentrations of mucus, will be important for controlling hyperosmolarity as the black line thins. © 2012 Society for Mathematical Biology.
Liu, Huolong; Li, Mingzhong
2014-11-20
In this work a two-compartmental population balance model (TCPBM) was proposed to model a pulsed top-spray fluidized bed granulation. The proposed TCPBM considered the spatially heterogeneous granulation mechanisms of the granule growth by dividing the granulator into two perfectly mixed zones of the wetting compartment and drying compartment, in which the aggregation mechanism was assumed in the wetting compartment and the breakage mechanism was considered in the drying compartment. The sizes of the wetting and drying compartments were constant in the TCPBM, in which 30% of the bed was the wetting compartment and 70% of the bed was the drying compartment. The exchange rate of particles between the wetting and drying compartments was determined by the details of the flow properties and distribution of particles predicted by the computational fluid dynamics (CFD) simulation. The experimental validation has shown that the proposed TCPBM can predict evolution of the granule size and distribution within the granulator under different binder spray operating conditions accurately. Copyright © 2014 Elsevier B.V. All rights reserved.
Norton, Tomás; Sun, Da-Wen; Grant, Jim; Fallon, Richard; Dodd, Vincent
2007-09-01
The application of computational fluid dynamics (CFD) in the agricultural industry is becoming ever more important. Over the years, the versatility, accuracy and user-friendliness offered by CFD has led to its increased take-up by the agricultural engineering community. Now CFD is regularly employed to solve environmental problems of greenhouses and animal production facilities. However, due to a combination of increased computer efficacy and advanced numerical techniques, the realism of these simulations has only been enhanced in recent years. This study provides a state-of-the-art review of CFD, its current applications in the design of ventilation systems for agricultural production systems, and the outstanding challenging issues that confront CFD modellers. The current status of greenhouse CFD modelling was found to be at a higher standard than that of animal housing, owing to the incorporation of user-defined routines that simulate crop biological responses as a function of local environmental conditions. Nevertheless, the most recent animal housing simulations have addressed this issue and in turn have become more physically realistic.
Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly. Final CRADA Report
International Nuclear Information System (INIS)
Tentner, A.
2009-01-01
A direct numerical simulation capability for two-phase flows with heat transfer in complex geometries can considerably reduce the hardware development cycle, facilitate the optimization and reduce the costs of testing of various industrial facilities, such as nuclear power plants, steam generators, steam condensers, liquid cooling systems, heat exchangers, distillers, and boilers. Specifically, the phenomena occurring in a two-phase coolant flow in a BWR (Boiling Water Reactor) fuel assembly include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for this purpose of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Advanced CFD (Computational Fluid Dynamics) codes provide a potential for detailed 3D simulations of coolant flow inside a fuel assembly, including flow around a spacer element using more fundamental physical models of flow regimes and phase interactions than sub-channel codes. Such models can extend the code applicability to a wider range of situations, which is highly important for increasing the efficiency and to prevent accidents.
Fluid dynamic modeling of junctions in internal combustion engine inlet and exhaust systems
Chalet, David; Chesse, Pascal
2010-10-01
The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance. This paper presents new pressure losses models which can be included in a one dimensional engine simulation code. In a first part, a CFD analysis is made in order to show the importance of the density in the modeling approach. Then, the CFD code is used, as a numerical test bench, for the pressure losses models development. These coefficients depend on the geometrical characteristics of the junction and an experimental validation is made with the use of a shock tube test bench. All the models are then included in the engine simulation code of the laboratory. The numerical calculation of unsteady compressible flow, in each pipe of the inlet and exhaust systems, is made and the calculated engine torque is compared with experimental measurements.
COUPLED CHEMOTAXIS FLUID MODEL
LORZ, ALEXANDER
2010-06-01
We consider a model system for the collective behavior of oxygen-driven swimming bacteria in an aquatic fluid. In certain parameter regimes, such suspensions of bacteria feature large-scale convection patterns as a result of the hydrodynamic interaction between bacteria. The presented model consist of a parabolicparabolic chemotaxis system for the oxygen concentration and the bacteria density coupled to an incompressible Stokes equation for the fluid driven by a gravitational force of the heavier bacteria. We show local existence of weak solutions in a bounded domain in d, d = 2, 3 with no-flux boundary condition and in 2 in the case of inhomogeneous Dirichlet conditions for the oxygen. © 2010 World Scientific Publishing Company.
International Nuclear Information System (INIS)
Faybishenko, Boris; Doughty, Christine; Geller, Jil T.
1999-01-01
DOE faces the remediation of numerous contaminated sites, such as those at Hanford, INEEL, LLNL, and LBNL, where organic and/or radioactive wastes were intentionally or accidentally released to the vadose zone from surface spills, underground tanks, cribs, shallow ponds, and deep wells. Migration of these contaminants through the vadose zone has led to the contamination of (or threatens to contaminate) underlying groundwater. A key issue in choosing a corrective action plan to clean up contaminated sites is the determination of the location, total mass, mobility and travel time to receptors for contaminants moving in the vadose zone. These problems are difficult to solve in a technically defensible and accurate manner because contaminants travel downward intermittently, through narrow pathways, driven by variations in environmental conditions. These preferential flow pathways can be difficult to find and predict. The primary objective of this project is to determine if and when dynamical chaos theory can be used to investigate infiltration of fluid and contaminant transport in heterogeneous soils and fractured rocks. The objective of this project is being achieved through the following activities: Development of multi scale conceptual models and mathematical and numerical algorithms for flow and transport, which incorporate both (a) the spatial variability of heterogeneous porous and fractured media and (b) the temporal dynamics of flow and transport; Development of appropriate experimental field and laboratory techniques needed to detect diagnostic parameters for chaotic behavior of flow; Evaluation of chaotic behavior of flow in laboratory and field experiments using methods from non-linear dynamics; Evaluation of the impact these dynamics may have on contaminant transport through heterogeneous fractured rocks and soils and remediation efforts. This approach is based on the consideration of multi scale spatial heterogeneity and flow phenomena that are affected by
Directory of Open Access Journals (Sweden)
W. Limtrakarn
2012-01-01
Full Text Available Natural flow rate and sweet peppers productivity in tropical greenhouse are improved by CFD simulation is the main objective of this research work. Most of the greenhouse types today are in the arch shape. To develop an improved greenhouse structure for the region, the arch type was built and used as the control model. Mae Sar Mai agriculture research station under the royal project foundation was selected as the field test site. Temperature sensors with data logger were installed to monitor variation of temperature inside the greenhouse. The measured temperature data were used as the boundary conditions for the CFD analysis. A new greenhouse model with two-step roof shape was designed and the air flow behavior was simulated by using CFD. Regarding CFD results the air flow rate of the new model is about 39% higher than that of old model. The maximum temperature of the new model is lower than that of the old one. The sweet paper growths in both greenhouse models were measured and compared. Results show that the new model obtains 4°C lower maximum temperature in day time, 97% in number and 90% in weight higher the first grade pepper productivity than the old one.
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2001-01-01
Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...
Fluid Dynamics Theory, Computation, and Numerical Simulation
Pozrikidis, Constantine
2009-01-01
Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...
Benton, E. R.
1986-01-01
A spherical harmonic representation of the geomagnetic field and its secular variation for epoch 1980, designated GSFC(9/84), is derived and evaluated. At three epochs (1977.5, 1980.0, 1982.5) this model incorporates conservation of magnetic flux through five selected patches of area on the core/mantle boundary bounded by the zero contours of vertical magnetic field. These fifteen nonlinear constraints are included like data in an iterative least squares parameter estimation procedure that starts with the recently derived unconstrained field model GSFC (12/83). Convergence is approached within three iterations. The constrained model is evaluated by comparing its predictive capability outside the time span of its data, in terms of residuals at magnetic observatories, with that for the unconstrained model.
From many body wee partons dynamics to perfect fluid: a standard model for heavy ion collisions
Energy Technology Data Exchange (ETDEWEB)
Venugopalan, R.
2010-07-22
We discuss a standard model of heavy ion collisions that has emerged both from experimental results of the RHIC program and associated theoretical developments. We comment briefly on the impact of early results of the LHC program on this picture. We consider how this standard model of heavy ion collisions could be solidified or falsified in future experiments at RHIC, the LHC and a future Electro-Ion Collider.
Optics and Fluid Dynamics Department annual progress report for 2003
Bindslev, H.; Hanson, Steen Grüner; Lynov, Jens-Peter; Petersen, Paul Michael; Skaarup, Bitten
2004-01-01
The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The departmenthas core competences in: optical sensors, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics, fusion plasma physics and plasma technology. The research is supported by several ...
Optics and Fluid Dynamics Department annual progress report for 2000
DEFF Research Database (Denmark)
Hanson, Steen Grüner; Johansen, Per Michael; Lynov, Jens-Peter
2001-01-01
The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The department has corecompetences in: optical sensors, optical materials......, optical storage, biooptics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danishresearch councils and by industry. A summary of the activities in 2000 is presented....
Optics and Fluid Dynamics Department annual progress report for 2003
DEFF Research Database (Denmark)
Bindslev, H.; Hanson, Steen Grüner; Lynov, Jens-Peter
2004-01-01
The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The departmenthas core competences in: optical sensors......, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics, fusion plasma physics and plasma technology. The research is supported by several EUprogrammes, including EURATOM, by Danish research councils and by industry. A summary of the activities...
Optics and Fluid Dynamics Department annual progress report for 2002
DEFF Research Database (Denmark)
Bindslev, H.; Hanson, Steen Grüner; Lynov, Jens-Peter
2003-01-01
The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The departmenthas core competences in: optical sensors......, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, includingEURATOM, by Danish research councils and by industry. A summary of the activities in 2002...
Experimental kinetic parameters in the thermo-fluid-dynamic modelling of coal combustion
International Nuclear Information System (INIS)
Migliavacca, G.; Perini, M.; Parodi, E.
2001-01-01
The designing and the optimisation of modern and efficient combustion systems are nowadays frequently based on calculation tools for mathematical modelling, which are able to predict the evolution of the process starting from the first principles of physics. Otherwise, in many cases, specific experimental parameters are needed to describe the specific nature of the materials considered in the calculations. It is especially true in the modelling of coal combustion, which is a complex process strongly dependent on the chemical and physical features of the fuel. This paper describes some experimental techniques used to estimate the fundamental kinetic parameters of coal combustion and shows how this data may be introduced in a model calculation to predict the pollutant emissions from a real scale combustion plant [it
Application of the fluid dynamics model to the field of fibre reinforced self-compacting concrete
DEFF Research Database (Denmark)
Svec, Oldrich; Skocek, Jan; Stang, Henrik
Ability to properly simulate a form filling process with steel fibre reinforced self-compacting concrete is a challenging task. Such simulations may clarify the evolution of fibre orientation and distribution which in turn significantly influences final mechanical properties of the cast body. We...... have developed such a computational model and briefly introduce it in this paper. The main focus of the paper is towards validation of the ability of the model to properly mimic the flow of the fibre reinforced self-compacting concrete. An experiment was conducted where a square slab was filled...... behaviour of the self-compacting fibre reinforced concrete....
International Nuclear Information System (INIS)
Swidersky, H.; Schaffrath, A.; Dudlik, A.
2011-01-01
Condensation induced water hammer (CIWH) represent a dangerous phenomenon in pipings, which can endanger the pipe integrity. If they cannot be excluded, they have to be taken into account for the integrity proof of components and pipe structures. Up to now, there exists no substantiated model, which sufficiently determines loads due to CIWH. Within the framework of the research alliance CIWA, a tool for estimating the potential and the amount of pressure loads will be developed based on theoretical work and supported by experimental results. This first study discusses used computational models, compares their results against experimental observations and gives an outlook onto future techniques. (author)
Principles of computational fluid dynamics
International Nuclear Information System (INIS)
Wesseling, P.
2001-01-01
The book is aimed at graduate students, researchers, engineers and physicists involved in flow computations. An up-to-date account is given of the present state- of-the-art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated with a fair amount of detail, using elementary mathematical analysis. Attention is given to difficulties arising from geometric complexity of the flow domain and of nonuniform structured boundary-fitted grids. Uniform accuracy and efficiency for singular perturbation problems is studied, pointing the way to accurate computation of flows at high Reynolds number. Much attention is given to stability analysis, and useful stability conditions are provided, some of them new, for many numerical schemes used in practice. Unified methods for compressible and incompressible flows are discussed. Numerical analysis of the shallow-water equations is included. The theory of hyperbolic conservation laws is treated. Godunov's order barrier and how to overcome it by means of slope-limited schemes is discussed. An introduction is given to efficient iterative solution methods, using Krylov subspace and multigrid acceleration. Many pointers are given to recent literature, to help the reader to quickly reach the current research frontier. (orig.)
Experimental Validation of a Coupled Fluid-Multibody Dynamics Model for Tanker Trucks
2007-11-08
PFEM ) [17] in which the particles are used to generate a polyhedral finite element mesh every time step using an extended Delaunay tesselation. The...interpolation of the solution field onto the new mesh. • Particle methods require a large number of particles to accurately model the free surface. The PFEM
CONSIDERATIONS ON FLUID DYNAMICS INSIDE A HYDRAULIC SEISMIC ENERGY ABSORBER
Directory of Open Access Journals (Sweden)
ȘCHEAUA Fănel
2013-06-01
Full Text Available This study presents a method for obtaining a simplified model of a seismic energy dissipation device whose operating principle is based on viscous fluid as a solution for structural isolation against seismic actions. The device operation is based on the resistance force developed by the working fluid when the piston tends to move due to occurrence of a seismic motion. A 3D model achieved is introduced in CFD analysis for emphasize dynamic fluid flow inside the device dissipation cylinder.
International Nuclear Information System (INIS)
Rojas-Sola, José Ignacio; Bouza-Rodríguez, José Benito; Menéndez-Díaz, Agustín
2016-01-01
Highlights: • Technical and functional analysis of the two typologies of windmills in Spain. • Spatial distribution of velocities and pressures by computational-fluid dynamics (CFD). • Finite-element analysis (FEA) of the rotors of these two types of windmills. • Validation of the operative functionality of these windmills. - Abstract: A detailed study has been made of the two typologies of windmills in Spain, specifically the rectangular-bladed type, represented by the windmill ‘Sardinero’, located near the town of Campo de Criptana (Ciudad Real province, Spain) and the type with triangular sails (lateens), represented by the windmill ‘San Francisco’, in the town of Vejer de la Frontera (Cádiz province, Spain). For this, an ad hoc research methodology has been applied on the basis of three aspects: three-dimensional geometric modeling, analysis by computational-fluid dynamics (CFD), and finite-element analysis (FEA). The results found with the CFD technique show the correct functioning of the two windmills in relation to the spatial distribution of the wind velocities and pressures to which each is normally exposed (4–7 m/s in the case of ‘Sardinero’, and 5–11 for ‘San Francisco’), thereby validating the operative functionality of both types. In addition, as a result of the FEA, the spatial distribution of stresses on the rotor has revealed that the greatest concentrations of these occurs in the teeth of the head wheel in ‘Sardinero’, reaching a value of 12 MPa, and at the base of the masts in the case of the ‘San Francisco’, with a value of 24 MPa. Also, this analysis evidences that simple, effective designs to reinforce the masts absorb a great concentration of stresses that would otherwise cause breakage. Furthermore, it was confirmed that the oak wood from which the rotors were made functioned properly, as the windmill never exceeded the maximum admissible working stress, demonstrating the effectiveness of the materials
Energy Technology Data Exchange (ETDEWEB)
Royaee, Sayed Javid; Shafeghat, Amin [Research Institute of Petroleum Industry, Tehran (Iran, Islamic Republic of); Sohrabi, Morteza [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)
2014-02-15
A photo impinging streams cyclone reactor has been used as a novel apparatus in photocatalytic degradation of organic compounds using titanium dioxide nanoparticles in wastewater. The operating parameters, including catalyst loading, pH, initial phenol concentration and light intensity have been optimized to increase the efficiency of the photocatalytic degradation process within this photoreactor. The results have demonstrated a higher efficiency and an increased performance capability of the present reactor in comparison with the conventional processes. In the next step, residence time distribution (RTD) of the slurry phase within the reactor was measured using the impulse tracer method. A CFD-based model for predicting the RTD was also developed which compared well with the experimental results. The RTD data was finally applied in conjunction with the phenol degradation kinetic model to predict the apparent rate coefficient for such a reaction.
W. Limtrakarn; P. Boonmongkol; A. Chompupoung; K. Rungprateepthaworn; J. Kruenate; P. Dechaumphai
2012-01-01
Natural flow rate and sweet peppers productivity in tropical greenhouse are improved by CFD simulation is the main objective of this research work. Most of the greenhouse types today are in the arch shape. To develop an improved greenhouse structure for the region, the arch type was built and used as the control model. Mae Sar Mai agriculture research station under the royal project foundation was selected as the field test site. Temperature sensors with data logger were installed to monitor ...
The fluid dynamics of the chocolate fountain
International Nuclear Information System (INIS)
Townsend, Adam K; Wilson, Helen J
2016-01-01
We consider the fluid dynamics of the chocolate fountain. Molten chocolate is a mildly shear-thinning non-Newtonian fluid. Dividing the flow into three main domains—the pumped flow up the centre, the film flow over each dome, and the freely falling curtain flow between the domes—we generate a wide-ranging study of Newtonian and non-Newtonian fluid mechanics. The central pumped flow is a benchmark to elucidate the effects of shear-thinning. The dome flow can be modelled as a thin-film flow with the leading-order effects being a simple balance of gravity and viscosity. Finally, the curtain flow is analytically intractable but is related to the existing theory of water bells (both inviscid and viscous). In pipe flow, Newtonian fluids exhibit a parabolic velocity profile; shear-thinning makes the profile more blunted. In thin-film flow over the dome, gravitational and viscous effects balance and the dome shape is not important beyond the local slope. We find that the chocolate thins and slows down as it travels down the dome. Finally, in the curtain flow, we predict the shape of the falling sheet for an inviscid fluid, and compare this with the literature to predict the shape for a viscous fluid, having shown that viscous forces are too great to ignore. We also find that the primary effect driving the shape of the curtain (which falls inwards towards the axis of the fountain) is surface tension. We find that the three domains provide excellent introductions to non-Newtonian mechanics, the important mathematical technique of scaling, and how to manipulate existing data to make our own predictions. We also find that the topic generates interest among the public in our engagement work. (paper)
The fluid dynamics of the chocolate fountain
Townsend, Adam K.; Wilson, Helen J.
2016-01-01
We consider the fluid dynamics of the chocolate fountain. Molten chocolate is a mildly shear-thinning non-Newtonian fluid. Dividing the flow into three main domains—the pumped flow up the centre, the film flow over each dome, and the freely falling curtain flow between the domes—we generate a wide-ranging study of Newtonian and non-Newtonian fluid mechanics. The central pumped flow is a benchmark to elucidate the effects of shear-thinning. The dome flow can be modelled as a thin-film flow with the leading-order effects being a simple balance of gravity and viscosity. Finally, the curtain flow is analytically intractable but is related to the existing theory of water bells (both inviscid and viscous). In pipe flow, Newtonian fluids exhibit a parabolic velocity profile; shear-thinning makes the profile more blunted. In thin-film flow over the dome, gravitational and viscous effects balance and the dome shape is not important beyond the local slope. We find that the chocolate thins and slows down as it travels down the dome. Finally, in the curtain flow, we predict the shape of the falling sheet for an inviscid fluid, and compare this with the literature to predict the shape for a viscous fluid, having shown that viscous forces are too great to ignore. We also find that the primary effect driving the shape of the curtain (which falls inwards towards the axis of the fountain) is surface tension. We find that the three domains provide excellent introductions to non-Newtonian mechanics, the important mathematical technique of scaling, and how to manipulate existing data to make our own predictions. We also find that the topic generates interest among the public in our engagement work.
Standardization of Thermo-Fluid Modeling in Modelica.Fluid
Energy Technology Data Exchange (ETDEWEB)
Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael
2009-09-01
This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.
Development of a theoretical framework for analyzing cerebrospinal fluid dynamics
DEFF Research Database (Denmark)
Cohen, Benjamin; Voorhees, Abram; Vedel, Søren
2009-01-01
Background: To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume conservat...
Barresi, Antonello A; Rasetto, Valeria; Marchisio, Daniele L
2018-05-15
This manuscript shows how computational models, mainly based on Computational Fluid Dynamics (CFD), can be used to simulate different parts of an industrial freeze-drying equipment and to properly design them; in particular, the freeze-dryer chamber and the duct connecting the chamber with the condenser, with the valves and vanes eventually present are analysed in this work. In Part 1, it will be shown how CFD can be employed to improve specific designs, to perform geometry optimization, to evaluate different design choices and how it is useful to evaluate the effect on product drying and batch variance. Such an approach allows an in-depth process understanding and assessment of the critical aspects of lyophilisation. This can be done by running either steady-state or transient simulations with imposed sublimation rates or with multi-scale approaches. This methodology will be demonstrated on freeze-drying equipment of different sizes, investigating the influence of the equipment geometry and shelf inter-distance. The effect of valve type (butterfly and mushroom) and shape on duct conductance and critical flow conditions will be instead investigated in Part 2. Copyright © 2018. Published by Elsevier B.V.
Nordgaard, Håvard; Swillens, Abigail; Nordhaug, Dag; Kirkeby-Garstad, Idar; Van Loo, Denis; Vitale, Nicola; Segers, Patrick; Haaverstad, Rune; Lovstakken, Lasse
2010-12-01
Competitive flow from native coronary vessels is considered a major factor in the failure of coronary bypass grafts. However, the pathophysiological effects are not fully understood. Low and oscillatory wall shear stress (WSS) is known to induce endothelial dysfunction and vascular disease, like atherosclerosis and intimal hyperplasia. The aim was to investigate the impact of competitive flow on WSS in mammary artery bypass grafts. Using computational fluid dynamics, WSS was calculated in a left internal mammary artery (LIMA) graft to the left anterior descending artery in a three-dimensional in vivo porcine coronary artery bypass graft model. The following conditions were investigated: high competitive flow (non-significant coronary lesion), partial competitive flow (significant coronary lesion), and no competitive flow (totally occluded coronary vessel). Time-averaged WSS of LIMA at high, partial, and no competitive flow were 0.3-0.6, 0.6-3.0, and 0.9-3.0 Pa, respectively. Further, oscillatory WSS quantified as the oscillatory shear index (OSI) ranged from (maximum OSI = 0.5 equals zero net WSS) 0.15 to 0.35, OSI similar to the no competitive flow condition. Graft flow is highly dependent on the degree of competitive flow. High competitive flow was found to produce unfavourable WSS consistent with endothelial dysfunction and subsequent graft narrowing and failure. Partial competitive flow, however, may be better tolerated as it was found to be similar to the ideal condition of no competitive flow.
DEFF Research Database (Denmark)
Jensen, M.D.; Ingildsen, P.; Rasmussen, Michael R.
2006-01-01
Aeration tank settling is a control method allowing settling in the process tank during highhydraulic load. The control method is patented. Aeration tank settling has been applied in several wastewater treatment plants using the present design of the process tanks. Some process tank designs...... and outletcausing a disruption of the sludge blanket at the outlet and thereby reducing the retention of sludge in theprocess tank. The model has allowed us to establish a clear picture of the problems arising at the plantduring aeration tank settling. Secondly, several process tank design changes have been...
2017-04-03
accuracy and stability of the model results. 4. CFD Experiment OpenFOAM (Open source Field Operation and Manipulation) is an open-source CFD toolbox...that enables customization of applications in continuum mechanics and chemical processes. The InterFOAM solver within OpenFOAM makes use of the...the solution from OpenFOAM . The computational domains correspond to a flume of 60 m long and 2.5 m high with the bottom step at the center. The height
A fluid dynamical flow model for the central peak in the rotation curve of disk galaxies
International Nuclear Information System (INIS)
Bhattacharyya, T.; Basu, B.
1980-01-01
The rotation curve of the central region in some disk galaxies shows a linear rise, terminating at a peak (primary peak) which is then vollowed by a deep minimum. The curve then again rises to another peak at more or less half-way across the galactic radius. This latter peak is considered as the peak of the rotation curve in all large-scale analysis of galactic structure. The primary peak is usually ignored for the purpose. In this work an attempt has been made to look at the primary peak as the manifestation of the post-explosion flow pattern of gas in the deep central region of galaxies. Solving hydrodynamical equations of motion, a flow model has been derived which imitates very closely the actually observed linear rotational velocity, followed by the falling branch of the curve to minimum. The theoretical flow model has been compared with observed results for nine galaxies. The agreement obtained is extremely encouraging. The distance of the primary peak from the galactic centre has been shown to be correlated with the angular velocity in the linear part of the rotation curve. Here also, agreement is very good between theoretical and observed results. It is concluded that the distance of the primary peak from the centre not only speaks of the time that has elapsed since the explosion occurred in the nucleus, it also speaks of the potential capability of the nucleus of the galaxy for repeating explosions through some efficient process of mass replenishment at the core. (orig.)
Fluid dynamic modeling and numerical simulation of low-density hypersonic flow
Cheng, H. K.; Wong, Eric Y.
1988-01-01
The concept of a viscous shock-layer and several related versions of continuum theories/methods are examined for their adequacy as a viable framework to study flow physics and aerothermodynamics of relevance to sustained hypersonic flights. Considering the flat plate at angle of attack, or the wedge, as a generic example for the major aerodynamic component of a hypersonic vehicle, the relative importance of the molecular-transport effects behind the shock (in the form of the 'shock slip') and the wall-slip effects are studied. In the flow regime where the shock-transition-zone thickness remains small compared to the shock radius of curvature, a quasi-one-dimensional shock structure under the Burnett/thirteen-moment approximation, as well as particulate/collisional models, can be consistently developed. The fully viscous version of the shock-layer model is shown to provide the crucial boundary condition downstream the shock in this case. The gas-kinetic basis of the continuum description for the flow behind the bow shock, and certain features affecting the non-equilibrium flow chemistry, are also discussed.
Phase space density representations in fluid dynamics
International Nuclear Information System (INIS)
Ramshaw, J.D.
1989-01-01
Phase space density representations of inviscid fluid dynamics were recently discussed by Abarbanel and Rouhi. Here it is shown that such representations may be simply derived and interpreted by means of the Liouville equation corresponding to the dynamical system of ordinary differential equations that describes fluid particle trajectories. The Hamiltonian and Poisson bracket for the phase space density then emerge as immediate consequences of the corresponding structure of the dynamics. For barotropic fluids, this approach leads by direct construction to the formulation presented by Abarbanel and Rouhi. Extensions of this formulation to inhomogeneous incompressible fluids and to fluids in which the state equation involves an additional transported scalar variable are constructed by augmenting the single-particle dynamics and phase space to include the relevant additional variable
Computational fluid dynamics a practical approach
Tu, Jiyuan; Liu, Chaoqun
2018-01-01
Computational Fluid Dynamics: A Practical Approach, Third Edition, is an introduction to CFD fundamentals and commercial CFD software to solve engineering problems. The book is designed for a wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step-by-step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. This new edition has been updated throughout, with new content and improved figures, examples and problems.
Anwar, Md Rajib; Camarda, Kyle V; Kieweg, Sarah L
2015-06-25
Topically applied microbicide gels can provide a self-administered and effective strategy to prevent sexually transmitted infections (STIs). We have investigated the interplay between vaginal tissue elasticity and the yield-stress of non-Newtonian fluids during microbicide deployment. We have developed a mathematical model of tissue deformation driven spreading of microbicidal gels based on thin film lubrication approximation and demonstrated the effect of tissue elasticity and fluid yield-stress on the spreading dynamics. Our results show that both elasticity of tissue and yield-stress rheology of gel are strong determinants of the coating behavior. An optimization framework has been demonstrated which leverages the flow dynamics of yield-stress fluid during deployment to maximize retention while reaching target coating length for a given tissue elasticity. Copyright © 2015 Elsevier Ltd. All rights reserved.
An introduction to Computational Fluid Dynamics
DEFF Research Database (Denmark)
Sørensen, Lars Schiøtt
1999-01-01
CFD is the shortname for Computational Fluid Dynamics and is a numerical method by means of which we can analyze systems containing fluids. For instance systems dealing with heat flow or smoke control systems acting when a fire occur in a building.......CFD is the shortname for Computational Fluid Dynamics and is a numerical method by means of which we can analyze systems containing fluids. For instance systems dealing with heat flow or smoke control systems acting when a fire occur in a building....
Modeling-gas phase reactions in indoor environments using computational fluid dynamics
DEFF Research Database (Denmark)
Sørensen, Dan Nørtoft; Weschler, Charles J.
2002-01-01
This CFD modeling study examines the concentrations of two gaseous compounds that react in an indoor setting to produce a hypothetical product. The reactants are ozone and either d-limonene or alpha-terpinene (which reacts with ozone about 40 times faster than d-limonene). In addition to two...... different terpenes, the scenarios include two air exchange rates (0.5 and 2.0 h(-1)). The terpene is introduced as a floor source with an emission pattern similar to a floor-care product. These four scenarios have been set in a fairly large two-dimensional room (13.6 x 40.6 m) with a supply at the top...... of the left wall and an exhaust at the bottom of the right wall. The room has been deliberately scaled so that the Reynolds numbers for key flow regimes match those of a room in which the calculated flow field has been validated against measured data. It has been further assumed that ozone interacts with room...
Validation of a loss of vacuum accident (LOVA) Computational Fluid Dynamics (CFD) model
International Nuclear Information System (INIS)
Bellecci, C.; Gaudio, P.; Lupelli, I.; Malizia, A.; Porfiri, M.T.; Quaranta, R.; Richetta, M.
2011-01-01
Intense thermal loads in fusion devices occur during plasma disruptions, Edge Localized Modes (ELM) and Vertical Displacement Events (VDE). They will result in macroscopic erosion of the plasma facing materials and consequent accumulation of activated dust into the ITER Vacuum Vessel (VV). A recognized safety issue for future fusion reactors fueled with deuterium and tritium is the generation of sizeable quantities of dust. In case of LOVA, air inlet occurs due to the pressure difference between the atmospheric condition and the internal condition. It causes mobilization of the dust that can exit the VV threatening public safety because it may contain tritium, may be radioactive from activation products, and may be chemically reactive and/or toxic (Sharpe et al.; Sharpe and Humrickhouse). Several experiments have been conducted with STARDUST facility in order to reproduce a low pressurization rate (300 Pa/s) LOVA event in ITER due to a small air leakage for two different positions of the leak, at the equatorial port level and at the divertor port level, in order to evaluate the velocity magnitude in case of a LOVA that is strictly connected with dust mobilization phenomena. A two-dimensional (2D) modelling of STARDUST, made with the CFD commercial code FLUENT, has been carried out. The results of these simulations were compared against the experimental data for CFD code validation. For validation purposes, the CFD simulation data were extracted at the same locations as the experimental data were collected. In this paper, the authors present and discuss the computer-simulation data and compare them with data collected during the laboratory studies at the University of Rome 'Tor Vergata' Quantum Electronics and Plasmas lab.
Introduction to mathematical fluid dynamics
Meyer, Richard E
2010-01-01
An introduction to the behavior of liquids and gases, this volume provides excellent coverage of kinematics, momentum principle, Newtonian fluid, rotating fluids, compressibility, and more. It is geared toward advanced undergraduate and graduate students of mathematics and general science, and it requires a background in calculus and vector analysis. 1971 edition.
Experimental and theoretical advances in fluid dynamics
Klapp, Jaime; Fuentes, Oscar Velasco
2011-01-01
The book is comprised of lectures and selected contributions presented at the Enzo Levi and XVI Annual Meeting of the Fluid Dynamic Division of the Mexican Physical Society in 2010. It is aimed at fourth year undergraduate and graduate students, as well as scientists in the fields of physics, engineering and chemistry with an interest in fluid dynamics from the experimental and theoretical point of view. The lectures are introductory and avoid the use of complicated mathematics. The other selected contributions are also geared to fourth year undergraduate and graduate students. The fluid dynam
Bubble dynamics equations in Newton fluid
International Nuclear Information System (INIS)
Xiao, J
2008-01-01
For the high-speed flow of Newton fluid, bubble is produced and expanded when it moves toward the surface of fluid. Bubble dynamics is a very important research field to understand the intrinsic feature of bubble production and motion. This research formulates the bubble expansion by expansion-local rotation transformation, which can be calculated by the measured velocity field. Then, the related dynamic equations are established to describe the interaction between the fluid and the bubble. The research shows that the bubble production condition can be expressed by critical vortex value and fluid pressure; and the bubble expansion rate can be obtained by solving the non-linear dynamic equation of bubble motion. The results may help the related research as it shows a special kind of fluid motion in theoretic sense. As an application example, the nanofiber radium-voltage relation and threshold voltage-surface tension relation in electrospinning process are discussed
International Nuclear Information System (INIS)
Nichols, B.D.; Mueller, C.; Necker, G.A.; Travis, J.R.; Spore, J.W.; Lam, K.L.; Royl, P.; Redlinger, R.; Wilson, T.L.
1998-01-01
Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior (1) in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and (2) during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included
Fluid dynamics computer programs for NERVA turbopump
Brunner, J. J.
1972-01-01
During the design of the NERVA turbopump, numerous computer programs were developed for the analyses of fluid dynamic problems within the machine. Program descriptions, example cases, users instructions, and listings for the majority of these programs are presented.
Parallel processing for fluid dynamics applications
International Nuclear Information System (INIS)
Johnson, G.M.
1989-01-01
The impact of parallel processing on computational science and, in particular, on computational fluid dynamics is growing rapidly. In this paper, particular emphasis is given to developments which have occurred within the past two years. Parallel processing is defined and the reasons for its importance in high-performance computing are reviewed. Parallel computer architectures are classified according to the number and power of their processing units, their memory, and the nature of their connection scheme. Architectures which show promise for fluid dynamics applications are emphasized. Fluid dynamics problems are examined for parallelism inherent at the physical level. CFD algorithms and their mappings onto parallel architectures are discussed. Several example are presented to document the performance of fluid dynamics applications on present-generation parallel processing devices
Relativistic Fluid Dynamics Far From Local Equilibrium
Romatschke, Paul
2018-01-01
Fluid dynamics is traditionally thought to apply only to systems near local equilibrium. In this case, the effective theory of fluid dynamics can be constructed as a gradient series. Recent applications of resurgence suggest that this gradient series diverges, but can be Borel resummed, giving rise to a hydrodynamic attractor solution which is well defined even for large gradients. Arbitrary initial data quickly approaches this attractor via nonhydrodynamic mode decay. This suggests the existence of a new theory of far-from-equilibrium fluid dynamics. In this Letter, the framework of fluid dynamics far from local equilibrium for a conformal system is introduced, and the hydrodynamic attractor solutions for resummed Baier-Romatschke-Son-Starinets-Stephanov theory, kinetic theory in the relaxation time approximation, and strongly coupled N =4 super Yang-Mills theory are identified for a system undergoing Bjorken flow.
Kimbell, Julia S; Segal, Rebecca A; Asgharian, Bahman; Wong, Brian A; Schroeter, Jeffry D; Southall, Jeremy P; Dickens, Colin J; Brace, Geoff; Miller, Frederick J
2007-01-01
Many studies suggest limited effectiveness of spray devices for nasal drug delivery due primarily to high deposition and clearance at the front of the nose. Here, nasal spray behavior was studied using experimental measurements and a computational fluid dynamics model of the human nasal passages constructed from magnetic resonance imaging scans of a healthy adult male. Eighteen commercially available nasal sprays were analyzed for spray characteristics using laser diffraction, high-speed video, and high-speed spark photography. Steadystate, inspiratory airflow (15 L/min) and particle transport were simulated under measured spray conditions. Simulated deposition efficiency and spray behavior were consistent with previous experimental studies, two of which used nasal replica molds based on this nasal geometry. Deposition fractions (numbers of deposited particles divided by the number released) of 20- and 50-microm particles exceeded 90% in the anterior part of the nose for most simulated conditions. Predicted particle penetration past the nasal valve improved when (1) the smaller of two particle sizes or the lower of two spray velocities was used, (2) the simulated nozzle was positioned 1.0 rather than 0.5 or 1.5 cm into the nostril, and (3) inspiratory airflow was present rather than absent. Simulations also predicted that delaying the appearance of normal inspiratory airflow more than 1 sec after the release of particles produced results equivalent to cases in which no inspiratory airflow was present. These predictions contribute to more effective design of drug delivery devices through a better understanding of the effects of nasal airflow and spray characteristics on particle transport in the nose.
Zonal methods and computational fluid dynamics
International Nuclear Information System (INIS)
Atta, E.H.
1985-01-01
Recent advances in developing numerical algorithms for solving fluid flow problems, and the continuing improvement in the speed and storage of large scale computers have made it feasible to compute the flow field about complex and realistic configurations. Current solution methods involve the use of a hierarchy of mathematical models ranging from the linearized potential equation to the Navier Stokes equations. Because of the increasing complexity of both the geometries and flowfields encountered in practical fluid flow simulation, there is a growing emphasis in computational fluid dynamics on the use of zonal methods. A zonal method is one that subdivides the total flow region into interconnected smaller regions or zones. The flow solutions in these zones are then patched together to establish the global flow field solution. Zonal methods are primarily used either to limit the complexity of the governing flow equations to a localized region or to alleviate the grid generation problems about geometrically complex and multicomponent configurations. This paper surveys the application of zonal methods for solving the flow field about two and three-dimensional configurations. Various factors affecting their accuracy and ease of implementation are also discussed. From the presented review it is concluded that zonal methods promise to be very effective for computing complex flowfields and configurations. Currently there are increasing efforts to improve their efficiency, versatility, and accuracy
Batch top-spray fluid bed coating: Scale-up insight using dynamic heat- and mass-transfer modelling
DEFF Research Database (Denmark)
Hede, Peter Dybdahl; Bach, P.; Jensen, Anker Degn
2009-01-01
A mathematical model was developed for batch top-spray fluid bed coating processes based on Ronsse et al. [2007a.b. Combined population balance and thermodynamic modelling of the batch top-spray fluidised bed coating process. Part I-model development and validation. journal of Food Engineering 78......, 296-307; Combined population balance and thermodynamic modelling of the batch top-spray fluidised bed coating process. Part II-model and process analysis. journal of Food Engineering 78, 308-322]. The model is based on one-dimensional discretisation of the fluid bed into a number of well-mixed control......-up principles by comparing simulation results with experimental temperature and humidity data obtained from inorganic salt coating of placebo cores in three pilot fluid bed scales being a 0.5kg small-scale (GEA Aeromatic-Fielder Strea-1), 4kg medium-scale (GEA Niro MP-1) and 24kg large-scale (GEA MP-2...
Technical Competencies Applied in Experimental Fluid Dynamics
Tagg, Randall
2017-11-01
The practical design, construction, and operation of fluid dynamics experiments require a broad range of competencies. Three types are instrumental, procedural, and design. Respective examples would be operation of a spectrum analyzer, soft-soldering or brazing flow plumbing, and design of a small wind tunnel. Some competencies, such as the selection and installation of pumping systems, are unique to fluid dynamics and fluids engineering. Others, such as the design and construction of electronic amplifiers or optical imaging systems, overlap with other fields. Thus the identification and development of learning materials and methods for instruction are part of a larger effort to identify competencies needed in active research and technical innovation.
Modern fluid dynamics for physics and astrophysics
Regev, Oded; Yecko, Philip A
2016-01-01
This book grew out of the need to provide students with a solid introduction to modern fluid dynamics. It offers a broad grounding in the underlying principles and techniques used, with some emphasis on applications in astrophysics and planetary science. The book comprehensively covers recent developments, methods and techniques, including, for example, new ideas on transitions to turbulence (via transiently growing stable linear modes), new approaches to turbulence (which remains the enigma of fluid dynamics), and the use of asymptotic approximation methods, which can give analytical or semi-analytical results and complement fully numerical treatments. The authors also briefly discuss some important considerations to be taken into account when developing a numerical code for computer simulation of fluid flows. Although the text is populated throughout with examples and problems from the field of astrophysics and planetary science, the text is eminently suitable as a general introduction to fluid dynamics. It...
International Conference on Mathematical Fluid Dynamics
Suzuki, Yukihito
2016-01-01
This volume presents original papers ranging from an experimental study on cavitation jets to an up-to-date mathematical analysis of the Navier-Stokes equations for free boundary problems, reflecting topics featured at the International Conference on Mathematical Fluid Dynamics, Present and Future, held 11–14 November 2014 at Waseda University in Tokyo. The contributions address subjects in one- and two-phase fluid flows, including cavitation, liquid crystal flows, plasma flows, and blood flows. Written by internationally respected experts, these papers highlight the connections between mathematical, experimental, and computational fluid dynamics. The book is aimed at a wide readership in mathematics and engineering, including researchers and graduate students interested in mathematical fluid dynamics.
Sobieszuk, Paweł; Zamojska-Jaroszewicz, Anna; Makowski, Łukasz
2017-12-01
The influence of the organic loading rate (also known as active anodic chamber volume) on bioelectricity generation in a continuous, two-chamber microbial fuel cell for the treatment of synthetic wastewater, with glucose as the only carbon source, was examined. Ten sets of experiments with different combinations of hydraulic retention times (0.24-1.14 d) and influent chemical oxygen demand concentrations were performed to verify the impact of organic loading rate on the voltage generation capacity of a simple dual-chamber microbial fuel cell working in continuous mode. We found that there is an optimal hydraulic retention time value at which the maximum voltage is generated: 0.41 d. However, there were no similar effects, in terms of voltage generation, when a constant hydraulic retention time with different influent chemical oxygen demand of wastewater was used. The obtained maximal voltage value (600 mV) has also been compared to literature data. Computational fluid dynamics (CFD) was used to calculate the fluid flow and the exit age distribution of fluid elements in the reactor to explain the obtained experimental results and identify the crucial parameters for the design of bioreactors on an industrial scale.
The Future with Cryogenic Fluid Dynamics
Scurlock, R. G.
many contributions to Cryogenics. As long ago as 1992, he first proposed in his "History and Origins of Cryogenics" that the temperature range for Cryogenics should be extended up to the ice-point at 273K. This paper expands on this proposal with the implicit assumption that Cryogenic Fluid Dynamics can provide a universal basis for modelling heat transfer and convective fluid behaviour of all fluids, at all temperatures, below the ice-point at 273K; or below 250K if you wish to exclude refrigeration engineering."
Liu, N.
2011-12-01
Sprite halos are brief descending glows appearing at the lower ionosphere boundary, which follow impulsive cloud-to-ground lightning discharges [e.g., Barrington-Leigh et al., JGR, 106, 1741, 2001, Wescott et al., JGR, 106, 10467, 2001; Pasko, JGR, 115, A00E35, 2010]. They last for a few milliseconds, with horizontal extension of tens of kilometers and vertical thickness of several kilometers. According to global survey of the occurrence of transient luminous events by the ISUAL instruments on the FORMOSAT-2 satellite, on average sprite halos occur once every minute on Earth [Chen et al., JGR, 113, A08306, 2008]. It has been established that sprite halos are caused by electron heating, and molecule excitation and ionization in the lower ionosphere due to lightning quasi-electrostatic field [e.g., Pasko et al., JGR, 102, 4529, 1997; Barrington-Leigh et al., 2001; Pasko, 2010]. Past modeling work on sprite halos was conducted using either a two dimensional (2D) model of at most three charged species or a zero dimensional model of multiple ion species. In this talk, we report a modeling study of sprite halos using a recently developed 2D fluid model of multiple charged species. The model charged species include the ion species set used in [Lehtinen and Inan, GRL, 34, L08804, 2007] to study the dynamics of ionization perturbations produced by gigantic jets in the middle and upper atmosphere. In addition, another charged species, O-, is added to this set, because electron detachment of O- can proceed very fast under moderate electric field [Rayment and Moruzzi, Int. J. Mass Spectrom., 26, 321, 1978], requiring a separate treatment from the other light negative ions. The modeling results of a sprite halo driven by positive cloud-to-ground lightning indicate that the halo can descend to lower altitude with much higher electron density behind its front when the O- detachment process is included. Electron density ahead of the halo front is not significantly reduced from the
Essential Fluid Dynamics for Scientists
Braithwaite, Jonathan
2017-12-01
The book is an introduction to the subject of fluid mechanics, essential for students and researchers in many branches of science. It illustrates its fundamental principles with a variety of examples drawn mainly from astrophysics and geophysics as well as from everyday experience. Prior familiarity with basic thermodynamics and vector calculus is assumed.
Vortex dynamics in plasmas and fluids
DEFF Research Database (Denmark)
Juul Rasmussen, J.; Lynov, Jens-Peter; Hesthaven, J.S.
1994-01-01
The existence and dynamics of vortical structures in both homogeneous and inhomogeneous systems will be discussed. In particular the dynamics of monopolar and dipolar vortices in a plasma with nonuniform density and in a rotating fluid with varying Coriolis force is described. The role of vortica...
Relativistic fluid dynamics with spin
Florkowski, Wojciech; Friman, Bengt; Jaiswal, Amaresh; Speranza, Enrico
2018-04-01
Using the conservation laws for charge, energy, momentum, and angular momentum, we derive hydrodynamic equations for the charge density, local temperature, and fluid velocity, as well as for the polarization tensor, starting from local equilibrium distribution functions for particles and antiparticles with spin 1/2. The resulting set of differential equations extends the standard picture of perfect-fluid hydrodynamics with a conserved entropy current in a minimal way. This framework can be used in space-time analyses of the evolution of spin and polarization in various physical systems including high-energy nuclear collisions. We demonstrate that a stationary vortex, which exhibits vorticity-spin alignment, corresponds to a special solution of the spin-hydrodynamical equations.
Advances in fluid modeling and turbulence measurements
International Nuclear Information System (INIS)
Wada, Akira; Ninokata, Hisashi; Tanaka, Nobukazu
2002-01-01
The context of this book consists of four fields: Environmental Fluid Mechanics; Industrial Fluid Mechanics; Fundamentals of Fluid Mechanics; and Turbulence Measurements. Environmental Fluid Mechanics includes free surface flows in channels, rivers, seas, and estuaries. It also discusses wind engineering issues, ocean circulation model and dispersion problems in atmospheric, water and ground water environments. In Industrial Fluid Mechanics, fluid phenomena in energy exchanges, modeling of turbulent two- or multi-phase flows, swirling flows, flows in combustors, variable density flows and reacting flows, flows in turbo-machines, pumps and piping systems, and fluid-structure interaction are discussed. In Fundamentals of Fluid Mechanics, progress in modeling turbulent flows and heat/mass transfers, computational fluid dynamics/numerical techniques, parallel computing algorithms, applications of chaos/fractal theory in turbulence are reported. In Turbulence Measurements, experimental studies of turbulent flows, experimental and post-processing techniques, quantitative and qualitative flow visualization techniques are discussed. Separate abstracts were presented for 15 of the papers in this issue. The remaining 89 were considered outside the subject scope of INIS. (J.P.N.)
Chaotic dynamics in dense fluids
International Nuclear Information System (INIS)
Posch, H.A.; Hoover, W.G.
1987-09-01
We present calculations of the full spectra of Lyapunov exponents for 8- and 32-particle systems with periodic boundary conditions and interacting with the repulsive part of a Lennard-Jones potential both in equilibrium and nonequilibrium steady states. Lyapunov characteristic exponents λ/sub n/ describe the mean exponential rates of divergence and convergence of neighbouring trajectories in phase-space. They are useful in characterizing the stochastic properties of a dynamical system. A new algorithm for their calculation is presented which incorporates ideas from control theory and constraint nonequilibrium molecular dynamics. 4 refs., 1 fig
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2017-01-01
This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB® codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This ...
Computational Fluid Dynamics and Room Air Movement
DEFF Research Database (Denmark)
Nielsen, Peter Vilhelm
2004-01-01
on the mass fraction transport equation. The importance of ?false? or numerical diffusion is also addressed in connection with the simple description of a supply opening. The different aspects of boundary conditions in the indoor environment as e.g. the simulation of Air Terminal Devices and the simulation......Nielsen, P.V. Computational Fluid Dynamics and Room Air Movement. Indoor Air, International Journal of Indoor Environment and Health, Vol. 14, Supplement 7, pp. 134-143, 2004. ABSTRACT Computational Fluid Dynamics (CFD) and new developments of CFD in the indoor environment as well as quality...... considerations are important elements in the study of energy consumption, thermal comfort and indoor air quality in buildings. The paper discusses the quality level of Computational Fluid Dynamics and the involved schemes (first, second and third order schemes) by the use of the Smith and Hutton problem...
Fluid flow dynamics in MAS systems
Wilhelm, Dirk; Purea, Armin; Engelke, Frank
2015-08-01
The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.
Optics and Fluid Dynamics Department. Annual progress report for 2003
International Nuclear Information System (INIS)
Bindslev, H.; Hanson, S.G.; Lynov, J.P.; Petersen, P.M.; Skaarup, B.
2004-05-01
The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1 laser systems and optical materials, (2 optical diagnostics and information processing and (3 plasma and fluid dynamics. The department has core competences in: optical sensors, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics, fusion plasma physics and plasma technology. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2003 is presented. (au)
Optics and Fluid Dynamics Department annual progress report for 2001
DEFF Research Database (Denmark)
Bindslev, H.; Hanson, Steen Grüner; Lynov, Jens-Peter
2002-01-01
The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The departmenthas core competences in: optical sensors......, optical materials, optical storage, biooptics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM,by Danish research councils and by industry. A summary of the activities in 2001 is presented....
Optics and Fluid Dynamics Department annual progress report for 2000
International Nuclear Information System (INIS)
Hanson, S.G.; Johansen, P.M.; Lynov, J.P.; Skaarup, B.
2001-05-01
The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The department has core competence in: optical sensors, optical materials, optical storage, bio-optics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2000 is presented. (au)
Optics and Fluid Dynamics Department. Annual Progress Report for 2002
International Nuclear Information System (INIS)
Bindslev, H.; Hanson, S.G.; Lynov, J.P.; Petersen, P.M.; Skaarup, B.
2003-05-01
The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1 Laser systems and optical materials (2 Optical diagnostics and information processing and (3 Plasma and fluid dynamics. The department has core competences in: optical sensors, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2002 is presented. (au)
Optics and Fluid Dynamics Department. Annual progress report for 2001
International Nuclear Information System (INIS)
Bindslev, H.; Hanson, S.G.; Lynov, J.P.; Petersen, P.M.; Skaarup, B.
2002-03-01
The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: 1) laser systems and optical materials, 2) optical diagnostics and information processing and 3) plasma and fluid dynamics. The department has core competence in: optical sensors, optical materials, optical storage, bio-optics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2001 is presented. (au)
Optics and Fluid Dynamics Department. Annual Progress Report for 2002
Energy Technology Data Exchange (ETDEWEB)
Bindslev, H; Hanson, S G; Lynov, J P; Petersen, P M; Skaarup, B
2003-05-01
The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) Laser systems and optical materials (2) Optical diagnostics and information processing and (3) Plasma and fluid dynamics. The department has core competences in: optical sensors, optical materials, optical storage, biophotonics, numerical modelling and information processing, non-linear dynamics and fusion plasma physics. The research is supported by several EU programmes, including EURATOM, by Danish research councils and by industry. A summary of the activities in 2002 is presented. (au)
New derivation of relativistic dissipative fluid dynamics
International Nuclear Information System (INIS)
Jaiswal, Amaresh; Bhalerao, Rajeev S.; Pal, Subrata
2012-01-01
Relativistic dissipative hydrodynamics has been quite successful in explaining the spectra and azimuthal anisotropy of particles produced in heavy-ion collisions at the RHIC and recently at the LHC. The first-order dissipative fluid dynamics or the relativistic Navier-Stokes (NS) theory involves parabolic differential equations and suffers from a causality and instability. The second-order or Israel-Stewart (IS) theory with its hyperbolic equations restores causality but may not guarantee stability. The correct formulation of relativistic viscous fluid dynamics is far from settled and is under intense investigation
Energetics and dynamics of excess electrons in simple fluids
International Nuclear Information System (INIS)
Space, B.
1992-01-01
Excess electronic dynamical and equilibrium properties are modeled in both polarizable and nonpolarizable noble gas fluids. Explicit dynamical calculations are carried out for excess electrons in fluid helium, where excess electronic eigenstates are localized. Energetics and dynamics are considered for fluids which span the entire range of polarizability present in the rare gases. Excess electronic eigenstates and eigenvalues are calculated for fluids of helium, argon and xenon. Both equilibrium and dynamical information is obtained from the calculation of these wavefunctions. A surface hopping trajectory method for studying nonadiabatic excess electronic relaxation in condensed systems is used to explore the nonadiabatic relaxation after photoexciting an equilibrated excess electron in dense fluid helium. The different types on nonadiabatic phenomena which are important in excess electronic relaxation are surveyed. The same surface hopping trajectory method is also used to study the rapid nonadiabatic relaxation after an excess electron is injected into unperturbed fluid helium. Several distinctively different relaxation processes, characterized by their relative importance at different times during the relaxation to a localized equilibrium state, are detailed. Though the dynamical properties of excess electrons under the conditions considered here have never been studied before, the behavior is remarkably similar to that observed in both experimental and theoretical studies of electron hydration dynamics, indicating that the processes described may be very general relaxation mechanisms for localization and trapping in fluids. Additionally, ground state energies of an excess electron, e 0 , are computed as a function of solvent density using model electron-atom pseudopotentials in fluid helium, argon, and xenon. The nonuniqueness of the pseudopotential description of electron-molecule interactions is demonstrated
Energy Technology Data Exchange (ETDEWEB)
Melo, Ana Cristina Bezerra Azedo de
2004-12-15
The fluid dynamic behavior of a riser in a cold type FCC model was investigated by means of catalyst concentration distribution measured with gamma attenuation and simulated with a mathematical model. In the riser of the cold model, MEF, 0,032 m in diameter, 2,30 m in length the fluidized bed, whose components are air and FCC catalyst, circulates. The MEF is operated by automatic control and instruments for measuring fluid dynamic variables. An axial catalyst concentration distribution was measured using an Am-241 gamma source and a NaI detector coupled to a multichannel provided with a software for data acquisition and evaluation. The MEF was adapted for a fluid dynamic model validation which describes the flow in the riser, for example, by introducing an injector for controlling the solid flow in circulation. Mathematical models were selected from literature, analyzed and tested to simulate the fluid dynamic of the riser. A methodology for validating fluid dynamic models was studied and implemented. The stages of the work were developed according to the validation methodology, such as data planning experiments, study of the equations which describe the fluidodynamic, computational solvers application and comparison with experimental data. Operational sequences were carried out keeping the MEF conditions for measuring catalyst concentration and simultaneously measuring the fluid dynamic variables, velocity of the components and pressure drop in the riser. Following this, simulated and experimental values were compared and statistical data treatment done, aiming at the required precision to validate the fluid dynamic model. The comparison tests between experimental and simulated data were carried out under validation criteria. The fluid dynamic behavior of the riser was analyzed and the results and the agreement with literature were discussed. The adopt model was validated under the MEF operational conditions, for a 3 to 6 m/s gas velocity in the riser and a slip
Energy Technology Data Exchange (ETDEWEB)
Karampatzakis, Andreas; Samaras, Theodoros, E-mail: theosama@auth.g [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece)
2010-10-07
In this work we present a new 3D numerical model for heat transfer in the human eye, which takes into account the aqueous humour flow in the anterior chamber. We show that consideration of this phenomenon in the calculations alters the temperature distribution on the corneal and lens surfaces, without, however, noticeably changing their absolute values. The most notable effect is that the coolest area of the cornea moves at a point of 2 mm inferior to its geometric centre. The maximum velocity of the fluid in the anterior chamber was found to be 3.36 x 10{sup -4} m s{sup -1}. The effect of the flow on displacing the cool area of the corneal surface temperature is counterbalanced by assuming anisotropic thermal conductivity. The model was implemented in the case of an artificial intraocular lens to show the resulting temperature variations.
Karampatzakis, Andreas; Samaras, Theodoros
2010-10-07
In this work we present a new 3D numerical model for heat transfer in the human eye, which takes into account the aqueous humour flow in the anterior chamber. We show that consideration of this phenomenon in the calculations alters the temperature distribution on the corneal and lens surfaces, without, however, noticeably changing their absolute values. The most notable effect is that the coolest area of the cornea moves at a point of 2 mm inferior to its geometric centre. The maximum velocity of the fluid in the anterior chamber was found to be 3.36 × 10(-4) m s(-1). The effect of the flow on displacing the cool area of the corneal surface temperature is counterbalanced by assuming anisotropic thermal conductivity. The model was implemented in the case of an artificial intraocular lens to show the resulting temperature variations.
International Nuclear Information System (INIS)
Karampatzakis, Andreas; Samaras, Theodoros
2010-01-01
In this work we present a new 3D numerical model for heat transfer in the human eye, which takes into account the aqueous humour flow in the anterior chamber. We show that consideration of this phenomenon in the calculations alters the temperature distribution on the corneal and lens surfaces, without, however, noticeably changing their absolute values. The most notable effect is that the coolest area of the cornea moves at a point of 2 mm inferior to its geometric centre. The maximum velocity of the fluid in the anterior chamber was found to be 3.36 x 10 -4 m s -1 . The effect of the flow on displacing the cool area of the corneal surface temperature is counterbalanced by assuming anisotropic thermal conductivity. The model was implemented in the case of an artificial intraocular lens to show the resulting temperature variations.
The Fluid Dynamics of Competitive Swimming
Wei, Timothy; Mark, Russell; Hutchison, Sean
2014-01-01
Nowhere in sport is performance so dependent on the interaction of the athlete with the surrounding medium than in competitive swimming. As a result, understanding (at least implicitly) and controlling (explicitly) the fluid dynamics of swimming are essential to earning a spot on the medal stand. This is an extremely complex, highly multidisciplinary problem with a broad spectrum of research approaches. This review attempts to provide a historical framework for the fluid dynamics-related aspects of human swimming research, principally conducted roughly over the past five decades, with an emphasis on the past 25 years. The literature is organized below to show a continuous integration of computational and experimental technologies into the sport. Illustrations from the authors' collaborations over a 10-year period, coupling the knowledge and experience of an elite-level coach, a lead biomechanician at USA Swimming, and an experimental fluid dynamicist, are intended to bring relevance and immediacy to the review.
Fluid dynamics in porous media with Sailfish
International Nuclear Information System (INIS)
Coelho, Rodrigo C V; Neumann, Rodrigo F
2016-01-01
In this work we show the application of Sailfish to the study of fluid dynamics in porous media. Sailfish is an open-source software based on the lattice-Boltzmann method. This application of computational fluid dynamics is of particular interest to the oil and gas industry and the subject could be a starting point for an undergraduate or graduate student in physics or engineering. We built artificial samples of porous media with different porosities and used Sailfish to simulate the fluid flow through them in order to calculate their permeability and tortuosity. We also present a simple way to obtain the specific superficial area of porous media using Python libraries. To contextualise these concepts, we analyse the applicability of the Kozeny–Carman equation, which is a well-known permeability–porosity relation, to our artificial samples. (paper)
Fluid dynamics in porous media with Sailfish
Coelho, Rodrigo C. V.; Neumann, Rodrigo F.
2016-09-01
In this work we show the application of Sailfish to the study of fluid dynamics in porous media. Sailfish is an open-source software based on the lattice-Boltzmann method. This application of computational fluid dynamics is of particular interest to the oil and gas industry and the subject could be a starting point for an undergraduate or graduate student in physics or engineering. We built artificial samples of porous media with different porosities and used Sailfish to simulate the fluid flow through them in order to calculate their permeability and tortuosity. We also present a simple way to obtain the specific superficial area of porous media using Python libraries. To contextualise these concepts, we analyse the applicability of the Kozeny-Carman equation, which is a well-known permeability-porosity relation, to our artificial samples.
Fluid dynamics via examples and solutions
Nazarenko, Sergey
2014-01-01
"This is an excellent book for fluid dynamics students. It gives a good overview of the theory through a large set of worthy example problems. After many classical textbooks on the subject, there is finally one with solved exercises. I fully appreciate the selection of topics."-Professor Miguel Onorato, Physics Department, University of Torino.
Modern Fluid Dynamics Intermediate Theory and Applications
Kleinstreuer, Clement
2010-01-01
Features pedagogical elements that include consistent 50/50 physics-mathematics approach when introducing material, illustrating concepts, showing flow visualizations, and solving problems. This title intends to help serious undergraduate student solve basic fluid dynamics problems independently, and suggest system design improvements
Syringe irrigation: blending endodontics and fluid dynamics
Boutsioukis, C.; van der Sluis, L.W.M.; Basrani, B.
2015-01-01
Syringe irrigation remains a widely used irrigant delivery method during root canal treatment. An interdisciplinary approach involving well-established methods from the field of fluid dynamics can provide new insights into the mechanisms involved in cleaning and disinfection of the root canal system
The Fluid Dynamics of Nascent Biofilms
Farthing, Nicola; Snow, Ben; Wilson, Laurence; Bees, Martin
2017-11-01
Many anti-biofilm approaches target mature biofilms with biochemical or physio-chemical interventions. We investigate the mechanics of interventions at an early stage that aim to inhibit biofilm maturation, focusing on hydrodynamics as cells transition from planktonic to surface-attached. Surface-attached cells generate flow fields that are relatively long-range compared with cells that are freely-swimming. We look at the effect of these flows on the biofilm formation. In particular, we use digital inline holographic microscopy to determine the three-dimensional flow due to a surface-attached cell and the effect this flow has on both tracers and other cells in the fluid. We compare experimental data with two models of cells on boundaries. The first approach utilizes slender body theory and captures many of the features of the experimental field. The second model develops a simple description in terms of singularity solutions of Stokes' flow, which produces qualitatively similar dynamics to both the experiments and more complex model but with significant computational savings. The range of validity of multiple cell arrangements is investigated. These two descriptions can be used to investigate the efficacy of actives developed by Unilever on nascent biofilms.
Geophysical Fluid Dynamics Laboratory Portal
National Oceanic and Atmospheric Administration, Department of Commerce — Output and documentation from a set of multi-century experiments performed using NOAA/GFDL's climate models. Users can download files, display data file attributes,...
Directory of Open Access Journals (Sweden)
Istvan Farkas
2016-08-01
Full Text Available The aim of this work is to simulate the thermohydraulic consequences of a main steam line break and to compare the obtained results with Rossendorf Coolant Mixing Model (ROCOM 1.1 experimental results. The objective is to utilize data from steady-state mixing experiments and computational fluid dynamics (CFD calculations to determine the flow distribution and the effect of thermal mixing phenomena in the primary loops for the improvement of normal operation conditions and structural integrity assessment of pressurized water reactors. The numerical model of ROCOM was developed using the FLUENT code. The positions of the inlet and outlet boundary conditions and the distribution of detailed velocity/turbulence parameters were determined by preliminary calculations. The temperature fields of transient calculation were averaged in time and compared with time-averaged experimental data. The perforated barrel under the core inlet homogenizes the flow, and therefore, a uniform temperature distribution is formed in the pressure vessel bottom. The calculated and measured values of lowest temperature were equal. The inlet temperature is an essential parameter for safety assessment. The calculation predicts precisely the experimental results at the core inlet central region. CFD results showed a good agreement (both qualitatively and quantitatively with experimental results.
Lou, Wentao; Zhu, Miaoyong
2014-10-01
A computation fluid dynamics-simultaneous reaction model (CFD-SRM) coupled model has been proposed to describe the desulfurization behavior in a gas-stirred ladle. For the desulfurization thermodynamics, different models were investigated to determine sulfide capacity and oxygen activity. For the desulfurization kinetic, the effect of bubbly plume flow, as well as oxygen absorption and oxidation reactions in slag eyes are considered. The thermodynamic and kinetic modification coefficients are proposed to fit the measured data, respectively. Finally, the effects of slag basicity and gas flow rate on the desulfurization efficiency are investigated. The results show that as the interfacial reactions (Al2O3)-(FeO)-(SiO2)-(MnO)-[S]-[O] simultaneous kinetic equilibrium is adopted to determine the oxygen activity, and the Young's model with the modification coefficient R th of 1.5 is adopted to determine slag sulfide capacity, the predicted sulfur distribution ratio LS agrees well with the measured data. With an increase of the gas blowing time, the predicted desulfurization rate gradually decreased, and when the modification parameter R k is 0.8, the predicted sulfur content changing with time in ladle agrees well with the measured data. If the oxygen absorption and oxidation reactions in slag eyes are not considered in this model, then the sulfur removal rate in the ladle would be overestimated, and this trend would become more obvious with an increase of the gas flow rate and decrease of the slag layer height. With the slag basicity increasing, the total desulfurization ratio increases; however, the total desulfurization ratio changes weakly as the slag basicity exceeds 7. With the increase of the gas flow rate, the desulfurization ratio first increases and then decreases. When the gas flow rate is 200 NL/min, the desulfurization ratio reaches a maximum value in an 80-ton gas-stirred ladle.
Mesoscopic model for binary fluids
Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.
2017-10-01
We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.
Thermo-Fluid Dynamics of Two-Phase Flow
Ishii, Mamrou
2011-01-01
"Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part
Computational fluid dynamics incompressible turbulent flows
Kajishima, Takeo
2017-01-01
This textbook presents numerical solution techniques for incompressible turbulent flows that occur in a variety of scientific and engineering settings including aerodynamics of ground-based vehicles and low-speed aircraft, fluid flows in energy systems, atmospheric flows, and biological flows. This book encompasses fluid mechanics, partial differential equations, numerical methods, and turbulence models, and emphasizes the foundation on how the governing partial differential equations for incompressible fluid flow can be solved numerically in an accurate and efficient manner. Extensive discussions on incompressible flow solvers and turbulence modeling are also offered. This text is an ideal instructional resource and reference for students, research scientists, and professional engineers interested in analyzing fluid flows using numerical simulations for fundamental research and industrial applications. • Introduces CFD techniques for incompressible flow and turbulence with a comprehensive approach; • Enr...
National Research Council Canada - National Science Library
Faragher, John
2004-01-01
... conservatism to allow for them. This report examines the feasibility of using a probabilistic approach for modelling the component temperatures in an engine using CFD (Computational Fluid Dynamics).
National Research Council Canada - National Science Library
Nusca, Michael J; Chen, Chiung-Chu; McQuaid, Michael J
2007-01-01
.... Computational fluid dynamics is employed to model the chemically reacting flow within a system's combustion chamber, and computational chemistry is employed to characterize propellant physical and reactive properties...
Computational fluid dynamics (CFD) simulation of hot air flow ...
African Journals Online (AJOL)
Computational Fluid Dynamics simulation of air flow distribution, air velocity and pressure field pattern as it will affect moisture transient in a cabinet tray dryer is performed using SolidWorks Flow Simulation (SWFS) 2014 SP 4.0 program. The model used for the drying process in this experiment was designed with Solid ...
Energy Technology Data Exchange (ETDEWEB)
Gamez, Abel; Rojas, Leorlen; Rosales, Jesus; Castro, Landy Y.; Gonzalez, Daniel; Garcia, Carlos, E-mail: agamezgmf@gmail.com, E-mail: leored1984@gmail.com, E-mail: jrosales@instec.cu, E-mail: lcastro@instec.cu, E-mail: danielgonro@gmail.com, E-mail: cgr@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Oliveira, Carlos B. de, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Dominguez, Dany S., E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil)
2015-07-01
The high temperature gas cooled reactor (HTGR) is one of candidates of next generation of nuclear reactor according to IAEA report 2013. Evaluation of thermohydraulic performance and an experimental comparison results were proposed to the international research community. In this article, the tree dimensional CFD thermohydraulic modelation of steady state of HTR-10 modular reactor, using ANSYS CFX v14.0, has been done. Code-to-code and Code-to-experiment benchmark analyses, related to the testing program of the HTR-10 plant including steady state temperature distribution with the reactor at full power, were developed. The 3D real scale representation of reflector zone and fluid path flow inner and outer reflector blocks and cold helium cavity were carried out. The porous medium model was used to simulate the core zone in the reactor. The power distribution of the initial core published by IAEA-TECDOC-1694 obtained by Chief Scientific Investigators (CSIs) from China was used as heat sources in the core zone. (author)
Computational fluid dynamics principles and applications
Blazek, J
2005-01-01
Computational Fluid Dynamics (CFD) is an important design tool in engineering and also a substantial research tool in various physical sciences as well as in biology. The objective of this book is to provide university students with a solid foundation for understanding the numerical methods employed in today's CFD and to familiarise them with modern CFD codes by hands-on experience. It is also intended for engineers and scientists starting to work in the field of CFD or for those who apply CFD codes. Due to the detailed index, the text can serve as a reference handbook too. Each chapter includes an extensive bibliography, which provides an excellent basis for further studies. The accompanying companion website contains the sources of 1-D and 2-D Euler and Navier-Stokes flow solvers (structured and unstructured) as well as of grid generators. Provided are also tools for Von Neumann stability analysis of 1-D model equations. Finally, the companion website includes the source code of a dedicated visualisation so...
Computational fluid dynamics in ventilation: Practical approach
Fontaine, J. R.
The potential of computation fluid dynamics (CFD) for conceiving ventilation systems is shown through the simulation of five practical cases. The following examples are considered: capture of pollutants on a surface treating tank equipped with a unilateral suction slot in the presence of a disturbing air draft opposed to suction; dispersion of solid aerosols inside fume cupboards; performances comparison of two general ventilation systems in a silkscreen printing workshop; ventilation of a large open painting area; and oil fog removal inside a mechanical engineering workshop. Whereas the two first problems are analyzed through two dimensional numerical simulations, the three other cases require three dimensional modeling. For the surface treating tank case, numerical results are compared to laboratory experiment data. All simulations are carried out using EOL, a CFD software specially devised to deal with air quality problems in industrial ventilated premises. It contains many analysis tools to interpret the results in terms familiar to the industrial hygienist. Much experimental work has been engaged to validate the predictions of EOL for ventilation flows.
Haro, Alexander J.; Dudley, Robert W.; Chelminski, Michael
2012-01-01
A two-dimensional computational fluid dynamics-habitat suitability (CFD–HSI) model was developed to identify potential zones of shallow depth and high water velocity that may present passage challenges for five anadromous fish species in the Penobscot River, Maine, upstream from two existing dams and as a result of the proposed future removal of the dams. Potential depth-challenge zones were predicted for larger species at the lowest flow modeled in the dam-removal scenario. Increasing flows under both scenarios increased the number and size of potential velocity-challenge zones, especially for smaller species. This application of the two-dimensional CFD–HSI model demonstrated its capabilities to estimate the potential effects of flow and hydraulic alteration on the passage of migratory fish.
Cardiac fluid dynamics meets deformation imaging.
Dal Ferro, Matteo; Stolfo, Davide; De Paris, Valerio; Lesizza, Pierluigi; Korcova, Renata; Collia, Dario; Tonti, Giovanni; Sinagra, Gianfranco; Pedrizzetti, Gianni
2018-02-20
Cardiac function is about creating and sustaining blood in motion. This is achieved through a proper sequence of myocardial deformation whose final goal is that of creating flow. Deformation imaging provided valuable contributions to understanding cardiac mechanics; more recently, several studies evidenced the existence of an intimate relationship between cardiac function and intra-ventricular fluid dynamics. This paper summarizes the recent advances in cardiac flow evaluations, highlighting its relationship with heart wall mechanics assessed through the newest techniques of deformation imaging and finally providing an opinion of the most promising clinical perspectives of this emerging field. It will be shown how fluid dynamics can integrate volumetric and deformation assessments to provide a further level of knowledge of cardiac mechanics.
Energy Technology Data Exchange (ETDEWEB)
Xiao, Jianjun; Travis, Jack; Royl, Peter; Necker, Gottfried; Svishchev, Anatoly; Jordan, Thomas
2016-07-01
Karlsruhe Institute of Technology (KIT) is developing the parallel computational fluid dynamics code GASFLOW-MPI as a best-estimate tool for predicting transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and other facility buildings. GASFLOW-MPI is a finite-volume code based on proven computational fluid dynamics methodology that solves the compressible Navier-Stokes equations for three-dimensional volumes in Cartesian or cylindrical coordinates.
Domain decomposition methods for fluid dynamics
International Nuclear Information System (INIS)
Clerc, S.
1995-01-01
A domain decomposition method for steady-state, subsonic fluid dynamics calculations, is proposed. The method is derived from the Schwarz alternating method used for elliptic problems, extended to non-linear hyperbolic problems. Particular emphasis is given on the treatment of boundary conditions. Numerical results are shown for a realistic three-dimensional two-phase flow problem with the FLICA-4 code for PWR cores. (from author). 4 figs., 8 refs
Fluid Dynamics of Pressurized, Entrained Coal Gasifiers
International Nuclear Information System (INIS)
1997-01-01
Pressurized, entrained gasification is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal gasifier at a high inlet gas velocity to increase the inflow of reactants, and at an elevated pressure to raise the overall efficiency of the process. Unfortunately, because of the extraordinary difficulties involved in performing measurements in hot, pressurized, high-velocity pilot plants, its fluid dynamics are largely unknown. Thus the designer cannot predict with certainty crucial phenomena like erosion, heat transfer and solid capture. In this context, we are conducting a study of the fluid dynamics of Pressurized Entrained Coal Gasifiers (PECGs). The idea is to simulate the flows in generic industrial PECGs using dimensional similitude. To this end, we employ a unique entrained gas-solid flow facility with the flexibility to recycle--rather than discard--gases other than air. By matching five dimensionless parameters, suspensions in mixtures of helium, carbon dioxide and sulfur hexafluoride simulate the effects of pressure and scale-upon the fluid dynamics of PECGs. Because it operates under cold, atmospheric conditions, the laboratory facility is ideal for detailed measurements
Landau fluid models of collisionless magnetohydrodynamics
International Nuclear Information System (INIS)
Snyder, P.B.; Hammett, G.W.; Dorland, W.
1997-01-01
A closed set of fluid moment equations including models of kinetic Landau damping is developed which describes the evolution of collisionless plasmas in the magnetohydrodynamic parameter regime. The model is fully electromagnetic and describes the dynamics of both compressional and shear Alfven waves, as well as ion acoustic waves. The model allows for separate parallel and perpendicular pressures p parallel and p perpendicular , and, unlike previous models such as Chew-Goldberger-Low theory, correctly predicts the instability threshold for the mirror instability. Both a simple 3 + 1 moment model and a more accurate 4 + 2 moment model are developed, and both could be useful for numerical simulations of astrophysical and fusion plasmas
International Nuclear Information System (INIS)
Zou, Zhengping; Liu, Jingyuan; Zhang, Weihao; Wang, Peng
2016-01-01
Multi-dimensional coupling simulation is an effective approach for evaluating the flow and aero-thermal performance of shrouded turbines, which can balance the simulation accuracy and computing cost effectively. In this paper, 1D leakage models are proposed based on classical jet theories and dynamics equations, which can be used to evaluate most of the main features of shroud leakage flow, including the mass flow rate, radial and circumferential momentum, temperature and the jet width. Then, the 1D models are expanded to 2D distributions on the interface by using a multi-dimensional scaling method. Based on the models and multi-dimensional scaling, a multi-dimensional coupling simulation method for shrouded turbines is developed, in which, some boundary source and sink are set on the interface between the shroud and the main flow passage. To verify the precision, some simulations on the design point and off design points of a 1.5 stage turbine are conducted. It is indicated that the models and methods can give predictions with sufficient accuracy for most of the flow field features and will contribute to pursue deeper understanding and better design methods of shrouded axial turbines, which are the important devices in energy engineering. - Highlights: • Free and wall attached jet theories are used to model the leakage flow in shrouds. • Leakage flow rate is modeled by virtual labyrinth number and residual-energy factor. • A scaling method is applied to 1D model to obtain 2D distributions on interfaces. • A multi-dimensional coupling CFD method for shrouded turbines is proposed. • The proposed coupling method can give accurate predictions with low computing cost.
Anghaie, S.; Chen, G.
1996-01-01
A computational model based on the axisymmetric, thin-layer Navier-Stokes equations is developed to predict the convective, radiation and conductive heat transfer in high temperature space nuclear reactors. An implicit-explicit, finite volume, MacCormack method in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve the thermal and fluid governing equations. Simulation of coolant and propellant flows in these reactors involves the subsonic and supersonic flows of hydrogen, helium and uranium tetrafluoride under variable boundary conditions. An enthalpy-rebalancing scheme is developed and implemented to enhance and accelerate the rate of convergence when a wall heat flux boundary condition is used. The model also incorporated the Baldwin and Lomax two-layer algebraic turbulence scheme for the calculation of the turbulent kinetic energy and eddy diffusivity of energy. The Rosseland diffusion approximation is used to simulate the radiative energy transfer in the optically thick environment of gas core reactors. The computational model is benchmarked with experimental data on flow separation angle and drag force acting on a suspended sphere in a cylindrical tube. The heat transfer is validated by comparing the computed results with the standard heat transfer correlations predictions. The model is used to simulate flow and heat transfer under a variety of design conditions. The effect of internal heat generation on the heat transfer in the gas core reactors is examined for a variety of power densities, 100 W/cc, 500 W/cc and 1000 W/cc. The maximum temperature, corresponding with the heat generation rates, are 2150 K, 2750 K and 3550 K, respectively. This analysis shows that the maximum temperature is strongly dependent on the value of heat generation rate. It also indicates that a heat generation rate higher than 1000 W/cc is necessary to maintain the gas temperature at about 3500 K, which is typical design temperature required to achieve high
Modeling and control of magnetorheological fluid dampers using neural networks
Wang, D. H.; Liao, W. H.
2005-02-01
Due to the inherent nonlinear nature of magnetorheological (MR) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the direct identification and inverse dynamic modeling for MR fluid dampers using feedforward and recurrent neural networks are studied. The trained direct identification neural network model can be used to predict the damping force of the MR fluid damper on line, on the basis of the dynamic responses across the MR fluid damper and the command voltage, and the inverse dynamic neural network model can be used to generate the command voltage according to the desired damping force through supervised learning. The architectures and the learning methods of the dynamic neural network models and inverse neural network models for MR fluid dampers are presented, and some simulation results are discussed. Finally, the trained neural network models are applied to predict and control the damping force of the MR fluid damper. Moreover, validation methods for the neural network models developed are proposed and used to evaluate their performance. Validation results with different data sets indicate that the proposed direct identification dynamic model using the recurrent neural network can be used to predict the damping force accurately and the inverse identification dynamic model using the recurrent neural network can act as a damper controller to generate the command voltage when the MR fluid damper is used in a semi-active mode.
Generalized reduced fluid model with finite ion-gyroradius effects
International Nuclear Information System (INIS)
Hsu, C.T.; Hazeltine, R.D.; Morrison, P.J.
1985-04-01
Reduced fluid models have become important tools for studying the nonlinear dynamics of plasma in a large aspect-ratio tokamak. A self-consistent nonlinear reduced fluid model, with finite ion-gyroradius effects is presented. The model is distinctive in allowing for arbitrary beta and in satisfying an exact, relatively simple energy conservation law
Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman
2017-10-01
Analysis of beam propagation, kinetic and fluid dynamic processes in Cs diode pumped alkali lasers (DPALs), using wave optics model and gasdynamic code, is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The Navier-Stokes equations for momentum, heat and mass transfer are solved by a commercial Ansys FLUENT solver based on the finite volume discretization technique. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The DPAL kinetic processes in the Cs/He/C2H6 gas mixture dealt with in this paper involve the three lowest energy levels of Cs, (1) 62S1/2, (2) 62P1/2 and (3) 62P3/2. The kinetic processes include absorption due to the 1->3 D2 transition followed by relaxation the 3 to 2 fine structure levels and stimulated emission due to the 2->1 D1 transition. Collisional quenching of levels 2 and 3 and spontaneous emission from these levels are also considered. The gas flow conservation equations are coupled to fast-Fourier-transform algorithm for transverse mode propagation to obtain a solution of the scalar paraxial propagation equation for the laser beam. The wave propagation equation is solved by the split-step beam propagation method where the gain and refractive index in the DPAL medium affect the wave amplitude and phase. Using the CFD and beam propagation models, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped Cs DPAL. The laser power, DPAL medium temperature and the laser beam quality were calculated as a function of pump power. The results of the theoretical model for laser power were compared to experimental results of Cs DPAL.
On the characteristics of a numerical fluid dynamics simulator
International Nuclear Information System (INIS)
Winkler, K.H.A.; Norman, M.L.; Norton, J.L.
1986-01-01
John von Neumann envisioned scientists and mathematicians analyzing and controlling their numerical experiments on nonlinear dynamic systems interactively. The authors describe their concept of a real-time Numerical Fluid Dynamics Simulator NFDS. The authors envision the NFDS to be composed of simulation processors, data storage devices, and image processing devices of extremely high power and capacity, interconnected by very high throughput communication channels. They present individual component performance requirements for both real-time and playback operating modes of the NFDS, using problems of current interest in fluid dynamics as examples. Scaling relations are derived showing the dependence of system requirements on the dimensionality and complexity of the numerical model. The authors conclude by extending their analysis to the system requirements posed in modeling the more involved physics of radiation hydrodynamics
Nonequilibrium chiral fluid dynamics including dissipation and noise
International Nuclear Information System (INIS)
Nahrgang, Marlene; Herold, Christoph; Bleicher, Marcus; Leupold, Stefan
2011-01-01
We present a consistent theoretical approach for the study of nonequilibrium effects in chiral fluid dynamics within the framework of the linear σ model with constituent quarks. Treating the quarks as an equilibrated heat bath, we use the influence functional formalism to obtain a Langevin equation for the σ field. This allows us to calculate the explicit form of the damping coefficient and the noise correlators. For a self-consistent derivation of both the dynamics of the σ field and the quark fluid, we have to employ the 2PI (two-particle irreducible) effective action formalism. The energy dissipation from the field to the fluid is treated in the exact formalism of the 2PI effective action where a conserved energy-momentum tensor can be constructed. We derive its form and comment on approximations generating additional terms in the energy-momentum balance of the entire system.
Basic Coandă MAV Fluid Dynamics and Flight Mechanics
Djojodihardjo, H.; Ahmed, RI
2017-04-01
Capitalizing on the basic fundamental principles, the Fluid Dynamics and Flight Mechanics of a semi-spherical Coandă MAV configurations are revisited and analyzed as a baseline. A mathematical model for a spherical Coandă MAV in hover and translatory motion is developed and analyzed from first physical principles. To gain further insight into the prevailing flow field around a Coandă MAV, as well as to verify the theoretical prediction presented in the work, a computational fluid dynamic CFD simulations for a Coandă MAV generic model are elaborated. The mathematical model and derived performance measures are shown to be capable in describing the physical phenomena of the flow field of the semi-spherical Coandă MAV. The relationships between the relevant parameters of the mathematical model of the Coandă MAV to the forces acting on it are elaborated subsequently.
Fluid and hybrid models for streamers
Bonaventura, Zdeněk
2016-09-01
Streamers are contracted ionizing waves with self-generated field enhancement that propagate into a low-ionized medium exposed to high electric field leaving filamentary trails of plasma behind. The widely used model to study streamer dynamics is based on drift-diffusion equations for electrons and ions, assuming local field approximation, coupled with Poisson's equation. For problems where presence of energetic electrons become important a fluid approach needs to be extended by a particle model, accompanied also with Monte Carlo Collision technique, that takes care of motion of these electrons. A combined fluid-particle approach is used to study an influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure. It is found that fluid-only model predicts substantially faster reignition dynamics compared to coupled fluid-particle model. Furthermore, a hybrid model can be created in which the population of electrons is divided in the energy space into two distinct groups: (1) low energy `bulk' electrons that are treated with fluid model, and (2) high energy `beam' electrons, followed as particles. The hybrid model is then capable not only to deal with streamer discharges in laboratory conditions, but also allows us to study electron acceleration in streamer zone of lighting leaders. There, the production of fast electrons from streamers is investigated, since these (runaway) electrons act as seeds for the relativistic runaway electron avalanche (RREA) mechanism, important for high-energy atmospheric physics phenomena. Results suggest that high energy electrons effect the streamer propagation, namely the velocity, the peak electric field, and thus also the production rate of runaway electrons. This work has been supported by the Czech Science Foundation research project 15-04023S.
FLOWPLOT2, 2-D, 3-D Fluid Dynamic Plots
International Nuclear Information System (INIS)
Cobb, C.K.; Tunstall, J.N.
1989-01-01
1 - Description of program or function: FLOWPLOT2 is a plotting program used with numerical or analytical fluid dynamics codes to create velocity vector plots, contour plots of up to three fluid parameters (e.g. pressure, density, and temperature), two-dimensional profile plots, three-dimensional curve plots, and/or three-dimensional surface plots for either the u or v velocity components. If the fluid dynamics code computes a transient or simulated time related solution, FLOWPLOT2 can also be used to generate these plots for any specified time interval. Multiple cases generating different plots for different time intervals may be run in one execution of the program. In addition, plots can be created for selected two- dimensional planes of three-dimensional steady-state problems. The user has the option of producing plots on CalComp or Versatec plotters or microfiche and of creating a compressed dataset before plotting. 2 - Method of solution: FLOWPLOT2 reads a dataset written by the fluid dynamics code. This dataset must be written in a specified format and must contain parametric data at the nodal points of a uniform or non-uniform rectangular grid formed by the intersection of the grid lines of the model. 3 - Restrictions on the complexity of the problem - Maxima of: 2500 nodes, 40 y-values for 2-D profile plots and 3-D curve plots, 20 contour values, 3 fluid parameters
Quality control of computational fluid dynamics in indoor environments
DEFF Research Database (Denmark)
Sørensen, Dan Nørtoft; Nielsen, P. V.
2003-01-01
Computational fluid dynamics (CFD) is used routinely to predict air movement and distributions of temperature and concentrations in indoor environments. Modelling and numerical errors are inherent in such studies and must be considered when the results are presented. Here, we discuss modelling as...... the quality of CFD calculations, as well as guidelines for the minimum information that should accompany all CFD-related publications to enable a scientific judgment of the quality of the study....
Topological fluid dynamics of interfacial flows
DEFF Research Database (Denmark)
Brøns, Morten
1994-01-01
The topological description of flows in the vicinity of a solid boundary, that is familiar from the aerodynamics literature, has recently been extended to the case of flow at a liquid–gas interface or a free surface by Lugt [Phys. Fluids 30, 3647 (1987)]. Lugt's work is revisited in a more general...... setting, including nonconstant curvature of the interface and gradients of surface tension, using tools of modern nonlinear dynamics. Bifurcations of the flow pattern occur at degenerate configurations. Using the theory of unfolding, this paper gives a complete description of the bifurcations that depend...... on terms up to the second order. The general theory of this paper is applied to the topology of streamlines during the breaking of a wave and to the flow below a stagnant surface film. Physics of Fluids is copyrighted by The American Institute of Physics....
Activities and interconnections of thermal-fluid dynamics
International Nuclear Information System (INIS)
Celata, G.P.
1999-01-01
Thermal-fluid dynamics is a field of fundamental interest for a wide spectrum of past and present advanced 'applications': in nature, in the 'machines' of our everyday life and in industry. In particular, in today industry, its knowledge and the developments are of fundamental importance in understanding, modelling and in the advance design of heat and mass transfer process in energy conversion and transformation plants. Various examples of the role of the thermal-fluid dynamics to increase efficiency in energy utilization and in the design and in the development of new components and high performance system are exposed. New thermodynamic models and advanced analysis techniques together with necessary balance between theoretical advances codes for modelling and their experimental specific verifications are throughout discussed and illustrated
Computational Fluid and Particle Dynamics in the Human Respiratory System
Tu, Jiyuan; Ahmadi, Goodarz
2013-01-01
Traditional research methodologies in the human respiratory system have always been challenging due to their invasive nature. Recent advances in medical imaging and computational fluid dynamics (CFD) have accelerated this research. This book compiles and details recent advances in the modelling of the respiratory system for researchers, engineers, scientists, and health practitioners. It breaks down the complexities of this field and provides both students and scientists with an introduction and starting point to the physiology of the respiratory system, fluid dynamics and advanced CFD modeling tools. In addition to a brief introduction to the physics of the respiratory system and an overview of computational methods, the book contains best-practice guidelines for establishing high-quality computational models and simulations. Inspiration for new simulations can be gained through innovative case studies as well as hands-on practice using pre-made computational code. Last but not least, students and researcher...
Three-Dimensional Computational Fluid Dynamics
Energy Technology Data Exchange (ETDEWEB)
Haworth, D.C.; O' Rourke, P.J.; Ranganathan, R.
1998-09-01
Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.
Marchisio, Daniele L; Galan, Miquel; Barresi, Antonello A
2018-05-05
This manuscript shows how computational models, mainly based on Computational Fluid Dynamics (CFD), can be used to simulate different parts of an industrial freeze-drying equipment and to properly design them; in particular in this part the duct connecting the chamber with the condenser, with its valves, is considered, while the chamber design and its effect on drying kinetics have been investigated in Part 1. Such an approach allows a much deeper process understanding and assessment of the critical aspects of lyophilisation. This methodology will be demonstrated on freeze-drying equipment of different sizes, investigating influence of valve type (butterfly and mushroom) and shape on duct conductance and critical flow conditions. The role of the inlet and boundary conditions considered has been assessed, also by modelling the whole apparatus including chamber and condenser, and the influence of the duct diameter has been discussed; the results show a little dependence of the relationship between critical mass flux and chamber pressure on the duct size. Results concerning the fluid dynamics of a simple disk valve, a profiled butterfly valve and a mushroom valve installed in a medium size horizontal condenser are presented. Also in these cases the maximum allowable flow when sonic flow conditions are reached can be described by a correlation similar to that found valid for empty ducts; for the mushroom valve the parameters are dependent on the valve opening length. The possibility to use the equivalent length concept, and to extend the validity of the results obtained for empty ducts will be also discussed. Finally the presence of the inert gas modifies the conductance of the duct, reducing the maximum flow rate of water that can be removed through it before the flow is choked; this also requires a proper over-sizing of the duct (or duct-butterfly valve system). Copyright © 2018. Published by Elsevier B.V.
Symposium on computational fluid dynamics: technology and applications
International Nuclear Information System (INIS)
1988-01-01
A symposium on the technology and applications of computational fluid dynamics (CFD) was held in Pretoria from 21-23 Nov 1988. The following aspects were covered: multilevel adaptive methods and multigrid solvers in CFD, a symbolic processing approach to CFD, interplay between CFD and analytical approximations, CFD on a transfer array, the application of CFD in high speed aerodynamics, numerical simulation of laminar blood flow, two-phase flow modelling in nuclear accident analysis, and the finite difference scheme for the numerical solution of fluid flow
Yusliana Ekawati, Elvin
2017-01-01
This study aimed to produce a model of scientific attitude assessment in terms of the observations for physics learning based scientific approach (case study of dynamic fluid topic in high school). Development of instruments in this study adaptation of the Plomp model, the procedure includes the initial investigation, design, construction, testing, evaluation and revision. The test is done in Surakarta, so that the data obtained are analyzed using Aiken formula to determine the validity of the content of the instrument, Cronbach’s alpha to determine the reliability of the instrument, and construct validity using confirmatory factor analysis with LISREL 8.50 program. The results of this research were conceptual models, instruments and guidelines on scientific attitudes assessment by observation. The construct assessment instruments include components of curiosity, objectivity, suspended judgment, open-mindedness, honesty and perseverance. The construct validity of instruments has been qualified (rated load factor > 0.3). The reliability of the model is quite good with the Alpha value 0.899 (> 0.7). The test showed that the model fits the theoretical models are supported by empirical data, namely p-value 0.315 (≥ 0.05), RMSEA 0.027 (≤ 0.08)
Optics and Fluid Dynamics Department annual progress report for 1995
Energy Technology Data Exchange (ETDEWEB)
Hanson, S.G.; Lading, L.; Lynov, J.P.; Skaarup, B. [eds.
1996-01-01
Research in the Optics and Fluid Dynamics Department has been performed within the following two programme areas: (1) optical diagnostics and information processing and (2) plasma and fluid dynamics. The optical activities are concentrated on optical materials, diagnostics and sensors. The plasma and fluid dynamics activities are concentrated on nonlinear dynamics in fluids, plasmas and optics as well as on plasma and fluid diagnostics. Scientific computing is an integral part of the work. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1995 is presented. (au) 36 ills., 166 refs.
Optics and Fluid Dynamics Department annual progress report for 1995
International Nuclear Information System (INIS)
Hanson, S.G.; Lading, L.; Lynov, J.P.; Skaarup, B.
1996-01-01
Research in the Optics and Fluid Dynamics Department has been performed within the following two programme areas: (1) optical diagnostics and information processing and (2) plasma and fluid dynamics. The optical activities are concentrated on optical materials, diagnostics and sensors. The plasma and fluid dynamics activities are concentrated on nonlinear dynamics in fluids, plasmas and optics as well as on plasma and fluid diagnostics. Scientific computing is an integral part of the work. The activities are supported by several EU programmes, including EURATOM, by research councils and by industry. A summary of the activities in 1995 is presented. (au) 36 ills., 166 refs
International Nuclear Information System (INIS)
Stovall, T.K.; Crabtree, A.; Felde, D.
1995-01-01
The Advanced Neutron Source (ANS) reactor is being designed to provide a research tool with capabilities beyond those of any existing reactors. One portion of its state-of-the-art design requires high speed fluid flow through narrow channels between the fuel plates in the core. Experience with previous reactors has shown that fuel plate damage can occur when debris becomes lodged at the entrance to these channels. Such debris can disrupt the fluid flow to the plate surfaces and prevent adequate cooling of the fuel. Preliminary ANS designs addressed this issue by providing an unheated entrance length for each fuel plate. In theory, any flow disruption would recover within this unheated length, thus providing adequate heat removal from the downstream heated portions of the fuel plates
Fluid dynamic effects on precision cleaning with supercritical fluids
Energy Technology Data Exchange (ETDEWEB)
Phelps, M.R.; Hogan, M.O.; Silva, L.J.
1994-06-01
Pacific Northwest Laboratory staff have assembled a small supercritical fluids parts cleaning test stand to characterize how system dynamics affect the efficacy of precision cleaning with supercritical carbon dioxide. A soiled stainless steel coupon, loaded into a ``Berty`` autoclave, was used to investigate how changes in system turbulence and solvent temperature influenced the removal of test dopants. A pulsed laser beam through a fiber optic was used to investigate real-time contaminant removal. Test data show that cleaning efficiency is a function of system agitation, solvent density, and temperature. These data also show that high levels of cleaning efficiency can generally be achieved with high levels of system agitation at relatively low solvent densities and temperatures. Agitation levels, temperatures, and densities needed for optimal cleaning are largely contaminant dependent. Using proper system conditions, the levels of cleanliness achieved with supercritical carbon dioxide compare favorably with conventional precision cleaning methods. Additional research is currently being conducted to generalize the relationship between cleaning performance and parameters such as contaminant solubilities, mass transfer rates, and solvent agitation. These correlations can be used to optimize cleaning performance, system design, and time and energy consumption for particular parts cleaning applications.
Computational modelling in fluid mechanics
International Nuclear Information System (INIS)
Hauguel, A.
1985-01-01
The modelling of the greatest part of environmental or industrial flow problems gives very similar types of equations. The considerable increase in computing capacity over the last ten years consequently allowed numerical models of growing complexity to be processed. The varied group of computer codes presented are now a complementary tool of experimental facilities to achieve studies in the field of fluid mechanics. Several codes applied in the nuclear field (reactors, cooling towers, exchangers, plumes...) are presented among others [fr
Dynamic simulation of an electrorheological fluid
International Nuclear Information System (INIS)
Bonnecaze, R.T.; Brady, J.F.
1992-01-01
A molecular-dynamics-like method is presented for the simulation of a suspension of dielectric particles in a nonconductive solvent forming an electrorheological fluid. The method accurately accounts for both hydrodynamic and electrostatic interparticle interactions from dilute volume fractions to closest packing for simultaneous shear and electric fields. The hydrodynamic interactions and rheology are determined with the Stokesian dynamics methodology, while the electrostatic interactions, in particular, the conservative electrostatic interparticle forces, are determined from the electrostatic energy of the suspension. The energy of the suspension is computed from the induced particle dipoles by a method previously developed [R. T. Bonnecaze and J. F. Brady, Proc. R. Soc. London, Ser. A 430, 285 (1990)]. Using the simulation, the dynamics can be directly correlated to the observed macroscopic rheology of the suspension for a range of the so-called Mason number, Ma, the ratio of viscous to electrostatic forces. The simulation is specifically applied to a monolayer of spherical particles of areal fraction 0.4 with a particle-to-fluid dielectric constant ratio of 4 for Ma=10 -4 to ∞. The effective viscosity of the suspension increases as Ma -1 or with the square of the electric field for small Ma and has a plateau value at large Ma, as is observed experimentally. This rheological behavior can be interpreted as Bingham plastic-like with a dynamic yield stress. The first normal stress difference is negative, and its magnitude increases as Ma -1 at small Ma with a large Ma plateau value of zero. In addition to the time averages of the rheology, the time traces of the viscosities are presented along with selected ''snapshots'' of the suspension microstructure
Verification and validation in computational fluid dynamics
Oberkampf, William L.; Trucano, Timothy G.
2002-04-01
Verification and validation (V&V) are the primary means to assess accuracy and reliability in computational simulations. This paper presents an extensive review of the literature in V&V in computational fluid dynamics (CFD), discusses methods and procedures for assessing V&V, and develops a number of extensions to existing ideas. The review of the development of V&V terminology and methodology points out the contributions from members of the operations research, statistics, and CFD communities. Fundamental issues in V&V are addressed, such as code verification versus solution verification, model validation versus solution validation, the distinction between error and uncertainty, conceptual sources of error and uncertainty, and the relationship between validation and prediction. The fundamental strategy of verification is the identification and quantification of errors in the computational model and its solution. In verification activities, the accuracy of a computational solution is primarily measured relative to two types of highly accurate solutions: analytical solutions and highly accurate numerical solutions. Methods for determining the accuracy of numerical solutions are presented and the importance of software testing during verification activities is emphasized. The fundamental strategy of validation is to assess how accurately the computational results compare with the experimental data, with quantified error and uncertainty estimates for both. This strategy employs a hierarchical methodology that segregates and simplifies the physical and coupling phenomena involved in the complex engineering system of interest. A hypersonic cruise missile is used as an example of how this hierarchical structure is formulated. The discussion of validation assessment also encompasses a number of other important topics. A set of guidelines is proposed for designing and conducting validation experiments, supported by an explanation of how validation experiments are different
Computational Fluid Dynamics in Ventilation Design
DEFF Research Database (Denmark)
Nielsen, Peter V.
2008-01-01
This paper is based on the new REHVA Guidebook Computational Fluid Dynamics in Ventilation Design (Nielsen et al. 2007) written by Peter V. Nielsen, Francis(Nielsen 2007) written by Peter V. Nielsen, Francis Allard, Hazim B. Awbi, Lars Davidson and Alois Schälin. The guidebook is made for people....... The guidebook introduces rules for good quality prediction work, and it is the purpose of the guidebook to improve the technical level of CFD work in ventilation.......This paper is based on the new REHVA Guidebook Computational Fluid Dynamics in Ventilation Design (Nielsen et al. 2007) written by Peter V. Nielsen, Francis(Nielsen 2007) written by Peter V. Nielsen, Francis Allard, Hazim B. Awbi, Lars Davidson and Alois Schälin. The guidebook is made for people...... who need to use and discuss results based on CFD predictions, and it gives insight into the subject for those who are not used to work with CFD. The guidebook is also written for people working with CFD who have to be more aware of how this numerical method is applied in the area of ventilation...
Active Polar Two-Fluid Macroscopic Dynamics
Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.
2014-03-01
We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.
Unsteady bio-fluid dynamics in flying and swimming
Liu, Hao; Kolomenskiy, Dmitry; Nakata, Toshiyuki; Li, Gen
2017-08-01
Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.
A future for computational fluid dynamics at CERN
Battistin, M
2005-01-01
Computational Fluid Dynamics (CFD) is an analysis of fluid flow, heat transfer and associated phenomena in physical systems using computers. CFD has been used at CERN since 1993 by the TS-CV group, to solve thermo-fluid related problems, particularly during the development, design and construction phases of the LHC experiments. Computer models based on CFD techniques can be employed to reduce the effort required for prototype testing, saving not only time and money but offering possibilities of additional investigations and design optimisation. The development of a more efficient support team at CERN depends on to two important factors: available computing power and experienced engineers. Available computer power IS the limiting resource of CFD. Only the recent increase of computer power had allowed important high tech and industrial applications. Computer Grid is already now (OpenLab at CERN) and will be more so in the future natural environment for CFD science. At CERN, CFD activities have been developed by...
Directory of Open Access Journals (Sweden)
Song Yidan
2017-01-01
Full Text Available The flow over four square cylinders in an in-line, square arrangement was numerically investigated by using the finite volume method with CFD techniques. The working fluid is an incompressible ideal gas. The length of the sides of the array, L, is equal. The analysis is carried out for a Reynolds number of 300, with center-to-center distance ratios, L/D, ranging from 1.5 to 8.0. To fully understand the flow mechanism, details in terms of lift and drag coefficients and Strouhal numbers of the unsteady wake frequencies are analyzed, and the vortex shedding patterns around the four square cylinders are described. It is concluded that L/D has important effects on the drag and lift coefficients, vortex shedding frequencies, and flow field characteristics.
Energy Technology Data Exchange (ETDEWEB)
Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.
2010-12-01
The U.S. Army Corps of Engineers-Portland District (CENWP) has ongoing work to improve the survival of juvenile salmonids (smolt) migrating past The Dalles Dam. As part of that effort, a spillwall was constructed to improve juvenile egress through the tailrace downstream of the stilling basin. The spillwall was designed to improve smolt survival by decreasing smolt retention time in the spillway tailrace and the exposure to predators on the spillway shelf. The spillwall guides spillway flows, and hence smolt, more quickly into the thalweg. In this study, an existing computational fluid dynamics (CFD) model was modified and used to characterize tailrace hydraulics between the new spillwall and the Washington shore for six different total river flows. The effect of spillway flow distribution was simulated for three spill patterns at the lowest total river flow. The commercial CFD solver, STAR-CD version 4.1, was used to solve the unsteady Reynolds-averaged Navier-Stokes equations together with the k-epsilon turbulence model. Free surface motion was simulated using the volume-of-fluid (VOF) technique. The model results were used in two ways. First, results graphics were provided to CENWP and regional fisheries agency representatives for use and comparison to the same flow conditions at a reduced-scale physical model. The CFD results were very similar in flow pattern to that produced by the reduced-scale physical model but these graphics provided a quantitative view of velocity distribution. During the physical model work, an additional spill pattern was tested. Subsequently, that spill pattern was also simulated in the numerical model. The CFD streamlines showed that the hydraulic conditions were likely to be beneficial to fish egress at the higher total river flows (120 kcfs and greater, uniform flow distribution). At the lowest flow case, 90 kcfs, it was necessary to use a non-uniform distribution. Of the three distributions tested, splitting the flow evenly between
Collective dynamics in dense fluid mixtures
International Nuclear Information System (INIS)
Sinha, S.
1992-01-01
This thesis deals with the short wavelength collective dynamics of dense binary fluid mixtures. The analysis shows that at the level of linearized generalized hydrodynamics, the longitudinal modes of the system separates essentially into two parts - one involves the coupling of partial density fluctuations of the two species and the other involves coupling of longitudinal momentum and temperature fluctuations. The authors have shown that the coupling of longitudinal momentum and temperature fluctuations leads to an adequate description of sound propagation in such systems. In particular, they show that structural disorder controls the trapping of sound waves in dense mixtures. The coupling of the partial density fluctuations of the two species leads to a simple description of the partial dynamic structure factors. The results are in agreement with the molecular dynamics simulations of soft sphere mixtures. The partial density fluctuations are the slowest decaying fluctuations on molecular length scales and it turns out that nonlinear coupling of these slow modes leads to important corrections to the long time behavior of the time correlation functions determining the shear viscosity in dense mixtures
The use of computers for instruction in fluid dynamics
Watson, Val
1987-01-01
Applications for computers which improve instruction in fluid dynamics are examined. Computers can be used to illustrate three-dimensional flow fields and simple fluid dynamics mechanisms, to solve fluid dynamics problems, and for electronic sketching. The usefulness of computer applications is limited by computer speed, memory, and software and the clarity and field of view of the projected display. Proposed advances in personal computers which will address these limitations are discussed. Long range applications for computers in education are considered.
International Nuclear Information System (INIS)
Fujiwara, Kazutoshi; Domae, Masafumi; Ohta, Joji; Yoneda, Kimitoshi; Inada, Fumio
2009-01-01
Flow Accelerated Corrosion (FAC), which is one of the important subjects at fossil and nuclear power plans, is caused by the accelerated dissolution of protective oxide film due to the turbulent flow. The influence factors on FAC such as water chemistry, material, and fluid dynamics are closely related to the oxide property so that the risk of FAC can be reduced by the suitable control of water chemistry. There are some FAC models and evaluation codes of FAC rate. Some of them are used in wall thinning management of nuclear power plant in some country. Nevertheless, these FAC codes include many empirical parameters so that some uncertainty to evaluate the synergistic effectiveness of factors are the controversial point for the application of FAC code to wall thinning management in Japanese nuclear power plant. In this study, a FAC model that can evaluate the effect of temperature, NH3 concentration, chromium content, and dissolved oxygen concentration on FAC rate was developed by considering the diffusion of dissolved species. The critical dissolved oxygen concentration, which can inhibit FAC, was also calculated by this model. (author)
Alonso-Torres, Beatriz; Hernández-Pérez, José Alfredo; Sierra-Espinoza, Fernando; Schenker, Stefan; Yeretzian, Chahan
2013-01-01
Heat and mass transfer in individual coffee beans during roasting were simulated using computational fluid dynamics (CFD). Numerical equations for heat and mass transfer inside the coffee bean were solved using the finite volume technique in the commercial CFD code Fluent; the software was complemented with specific user-defined functions (UDFs). To experimentally validate the numerical model, a single coffee bean was placed in a cylindrical glass tube and roasted by a hot air flow, using the identical geometrical 3D configuration and hot air flow conditions as the ones used for numerical simulations. Temperature and humidity calculations obtained with the model were compared with experimental data. The model predicts the actual process quite accurately and represents a useful approach to monitor the coffee roasting process in real time. It provides valuable information on time-resolved process variables that are otherwise difficult to obtain experimentally, but critical to a better understanding of the coffee roasting process at the individual bean level. This includes variables such as time-resolved 3D profiles of bean temperature and moisture content, and temperature profiles of the roasting air in the vicinity of the coffee bean.
Dynamic analysis of structures with solid-fluid interaction
International Nuclear Information System (INIS)
Nahavandi, A.N.; Pedrido, R.R.; Cloud, R.L.
1977-01-01
This study develops a finite element model for interaction between an elastic solid and fluid medium (flow-induced vibrations in nuclear reactor components). Plane triangular finite elements have been used separately for fluid, solid, and solid-fluid continuua and the equivalent mass, damping, and stiffness matrices and interaction load arrays for all elements are derived and assembled into global matrices. The global matrix differential equation of motion developed is solved in time to obtain the pressure and velocity distributions in the fluid, as well as the displacements in the solid. Two independent computer programs are used to obtain the dynamic solution. The first program is a finite element program developed for solid-fluid interaction studies. This program uses the modal superposition technique in which the eigenvalues and eigenvectors for the system are found and used to uncouple the equations. This approach allows an analytic solution in each integration time step. The second program is WECAN finite element program in which a new element library subroutine for solid-fluid interaction was incorporated. This program can employ a NASTRAN direct integration scheme based on a central difference formula for the acceleration and velocity terms and an implicit representation of the displacement term. This reduces the problem to a matrix equation whose right hand side is updated in every time step and is solved by a variation of the Gaussian elimination method known as the wave front technique. Results have been obtained for the case of water, between two flat elastic parallel plates, initially at rest and accelerated suddenly by applying a step pressure. The results obtained from the above-mentioned two independent finite element programs are in full agreement. This verification provides the confidence needed to initiate parametric studies. Both rigid wall (no solid-fluid interaction) and flexible wall (including solid-fluid interaction) cases were examined
Guyonvarch, Estelle; Ramin, Elham; Kulahci, Murat; Plósz, Benedek Gy
2015-10-15
The present study aims at using statistically designed computational fluid dynamics (CFD) simulations as numerical experiments for the identification of one-dimensional (1-D) advection-dispersion models - computationally light tools, used e.g., as sub-models in systems analysis. The objective is to develop a new 1-D framework, referred to as interpreted CFD (iCFD) models, in which statistical meta-models are used to calculate the pseudo-dispersion coefficient (D) as a function of design and flow boundary conditions. The method - presented in a straightforward and transparent way - is illustrated using the example of a circular secondary settling tank (SST). First, the significant design and flow factors are screened out by applying the statistical method of two-level fractional factorial design of experiments. Second, based on the number of significant factors identified through the factor screening study and system understanding, 50 different sets of design and flow conditions are selected using Latin Hypercube Sampling (LHS). The boundary condition sets are imposed on a 2-D axi-symmetrical CFD simulation model of the SST. In the framework, to degenerate the 2-D model structure, CFD model outputs are approximated by the 1-D model through the calibration of three different model structures for D. Correlation equations for the D parameter then are identified as a function of the selected design and flow boundary conditions (meta-models), and their accuracy is evaluated against D values estimated in each numerical experiment. The evaluation and validation of the iCFD model structure is carried out using scenario simulation results obtained with parameters sampled from the corners of the LHS experimental region. For the studied SST, additional iCFD model development was carried out in terms of (i) assessing different density current sub-models; (ii) implementation of a combined flocculation, hindered, transient and compression settling velocity function; and (iii
Random fluid limit of an overloaded polling model
M. Frolkova (Masha); S.G. Foss (Sergey); A.P. Zwart (Bert)
2014-01-01
htmlabstractIn the present paper, we study the evolution of an overloaded cyclic polling model that starts empty. Exploiting a connection with multitype branching processes, we derive fluid asymptotics for the joint queue length process. Under passage to the fluid dynamics, the server switches
Random fluid limit of an overloaded polling model
M. Frolkova (Masha); S.G. Foss (Sergey); A.P. Zwart (Bert)
2013-01-01
htmlabstractIn the present paper, we study the evolution of an~overloaded cyclic polling model that starts empty. Exploiting a~connection with multitype branching processes, we derive fluid asymptotics for the joint queue length process. Under passage to the fluid dynamics, the server switches
Computational fluid dynamics study of viscous fingering in supercritical fluid chromatography.
Subraveti, Sai Gokul; Nikrityuk, Petr; Rajendran, Arvind
2018-01-26
Axi-symmetric numerical simulations are carried out to study the dynamics of a plug introduced through a mixed-stream injection in supercritical fluid chromatographic columns. The computational fluid dynamics model developed in this work takes into account both the hydrodynamics and adsorption equilibria to describe the phenomena of viscous fingering and plug effect that contribute to peak distortions in mixed-stream injections. The model was implemented into commercial computational fluid dynamics software using user-defined functions. The simulations describe the propagation of both the solute and modifier highlighting the interplay between the hydrodynamics and plug effect. The simulated peaks showed good agreement with experimental data published in the literature involving different injection volumes (5 μL, 50 μL, 1 mL and 2 mL) of flurbiprofen on Chiralpak AD-H column using a mobile phase of CO 2 and methanol. The study demonstrates that while viscous fingering is the main source of peak distortions for large-volume injections (1 mL and 2 mL) it has negligible impact on small-volume injections (5 μL and 50 μL). Band broadening in small-volume injections arise mainly due to the plug effect. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Moving interface problems and applications in fluid dynamics
Khoo, Boo Cheong; Lin, Ping
2008-01-01
This volume is a collection of research papers presented at the program on Moving Interface Problems and Applications in Fluid Dynamics, which was held between January 8 and March 31, 2007 at the Institute for Mathematical Sciences (IMS) of the National University of Singapore. The topics discussed include modeling and simulations of biological flow coupled to deformable tissue/elastic structure, shock wave and bubble dynamics and various applications including biological treatments with experimental verification, multi-medium flow or multi-phase flow and various applications including cavitation/supercavitation, detonation problems, Newtonian and non-Newtonian fluid, and many other areas. Readers can benefit from some recent research results in these areas.
International Nuclear Information System (INIS)
McFadden, J.H.; Paulsen, M.P.; Gose, G.C.
1981-01-01
Thermal-hydraulic codes in general use for system calculations are based on extensive analyses of loss-of-coolant accidents following the postulated rupture of a large coolant pipe. In this study, time-dependent equation for the slip velocity in a two-phase flow condition has been incorporated into the RETRAN-02 computer code. This model addition was undertaken to remove a limitation in RETRAN-01 associated with the homogeneous equilibrium mixture model. The dynamic slip equation was derived from a set of two-fluid conservation equations. 18 refs
CFDLIB05, Computational Fluid Dynamics Library
International Nuclear Information System (INIS)
Kashiwa, B.A.; Padial, N.T.; Rauenzahn, R.M.; VanderHeyden, W.B.
2007-01-01
1 - Description of program or function: CFDLib05 is the Los Alamos Computational Fluid Dynamics Library. This is a collection of hydro-codes using a common data structure and a common numerical method, for problems ranging from single-field, incompressible flow, to multi-species, multi-field, compressible flow. The data structure is multi-block, with a so-called structured grid in each block. The numerical method is a Finite-Volume scheme employing a state vector that is fully cell-centered. This means that the integral form of the conversation laws is solved on the physical domain that is represented by a mesh of control volumes. The typical control volume is an arbitrary quadrilateral in 2D and an arbitrary hexahedron in 3D. The Finite-Volume scheme is for time-unsteady flow and remains well coupled by means of time and space centered fluxes; if a steady state solution is required, the problem is integrated forward in time until the user is satisfied that the state is stationary. 2 - Methods: Cells-centered Implicit Continuous-fluid Eulerian (ICE) method
Variational approach to nuclear fluid dynamics
International Nuclear Information System (INIS)
Da Providencia, J.P.; Holzwarth, G.
1983-01-01
A variational derivation of a fluid-dynamical formalism for finite Fermi systems is presented which is based on a single determinant as variational function and does not exclude the possibility of transverse flow. Therefore the explicit specification of the time-odd part has to go beyond the local chi-approximation, while the time-even part is taken in the generalized scaling form. The necessary boundary conditions are derived from the variation of the lagrangian. The results confirm previous simplified approaches to a remarkable degree for quadrupole modes; for other multipolarities the deviations are much less than might be expected according to a sizeable change in the transverse sound speed. (orig.)
Graphics supercomputer for computational fluid dynamics research
Liaw, Goang S.
1994-11-01
The objective of this project is to purchase a state-of-the-art graphics supercomputer to improve the Computational Fluid Dynamics (CFD) research capability at Alabama A & M University (AAMU) and to support the Air Force research projects. A cutting-edge graphics supercomputer system, Onyx VTX, from Silicon Graphics Computer Systems (SGI), was purchased and installed. Other equipment including a desktop personal computer, PC-486 DX2 with a built-in 10-BaseT Ethernet card, a 10-BaseT hub, an Apple Laser Printer Select 360, and a notebook computer from Zenith were also purchased. A reading room has been converted to a research computer lab by adding some furniture and an air conditioning unit in order to provide an appropriate working environments for researchers and the purchase equipment. All the purchased equipment were successfully installed and are fully functional. Several research projects, including two existing Air Force projects, are being performed using these facilities.
Artificial Intelligence In Computational Fluid Dynamics
Vogel, Alison Andrews
1991-01-01
Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.
Visualization of unsteady computational fluid dynamics
Haimes, Robert
1994-11-01
A brief summary of the computer environment used for calculating three dimensional unsteady Computational Fluid Dynamic (CFD) results is presented. This environment requires a super computer as well as massively parallel processors (MPP's) and clusters of workstations acting as a single MPP (by concurrently working on the same task) provide the required computational bandwidth for CFD calculations of transient problems. The cluster of reduced instruction set computers (RISC) is a recent advent based on the low cost and high performance that workstation vendors provide. The cluster, with the proper software can act as a multiple instruction/multiple data (MIMD) machine. A new set of software tools is being designed specifically to address visualizing 3D unsteady CFD results in these environments. Three user's manuals for the parallel version of Visual3, pV3, revision 1.00 make up the bulk of this report.
Approximate Riemann solver for the two-fluid plasma model
International Nuclear Information System (INIS)
Shumlak, U.; Loverich, J.
2003-01-01
An algorithm is presented for the simulation of plasma dynamics using the two-fluid plasma model. The two-fluid plasma model is more general than the magnetohydrodynamic (MHD) model often used for plasma dynamic simulations. The two-fluid equations are derived in divergence form and an approximate Riemann solver is developed to compute the fluxes of the electron and ion fluids at the computational cell interfaces and an upwind characteristic-based solver to compute the electromagnetic fields. The source terms that couple the fluids and fields are treated implicitly to relax the stiffness. The algorithm is validated with the coplanar Riemann problem, Langmuir plasma oscillations, and the electromagnetic shock problem that has been simulated with the MHD plasma model. A numerical dispersion relation is also presented that demonstrates agreement with analytical plasma waves
Complex fluids modeling and algorithms
Saramito, Pierre
2016-01-01
This book presents a comprehensive overview of the modeling of complex fluids, including many common substances, such as toothpaste, hair gel, mayonnaise, liquid foam, cement and blood, which cannot be described by Navier-Stokes equations. It also offers an up-to-date mathematical and numerical analysis of the corresponding equations, as well as several practical numerical algorithms and software solutions for the approximation of the solutions. It discusses industrial (molten plastics, forming process), geophysical (mud flows, volcanic lava, glaciers and snow avalanches), and biological (blood flows, tissues) modeling applications. This book is a valuable resource for undergraduate students and researchers in applied mathematics, mechanical engineering and physics.
Issues in computational fluid dynamics code verification and validation
Energy Technology Data Exchange (ETDEWEB)
Oberkampf, W.L.; Blottner, F.G.
1997-09-01
A broad range of mathematical modeling errors of fluid flow physics and numerical approximation errors are addressed in computational fluid dynamics (CFD). It is strongly believed that if CFD is to have a major impact on the design of engineering hardware and flight systems, the level of confidence in complex simulations must substantially improve. To better understand the present limitations of CFD simulations, a wide variety of physical modeling, discretization, and solution errors are identified and discussed. Here, discretization and solution errors refer to all errors caused by conversion of the original partial differential, or integral, conservation equations representing the physical process, to algebraic equations and their solution on a computer. The impact of boundary conditions on the solution of the partial differential equations and their discrete representation will also be discussed. Throughout the article, clear distinctions are made between the analytical mathematical models of fluid dynamics and the numerical models. Lax`s Equivalence Theorem and its frailties in practical CFD solutions are pointed out. Distinctions are also made between the existence and uniqueness of solutions to the partial differential equations as opposed to the discrete equations. Two techniques are briefly discussed for the detection and quantification of certain types of discretization and grid resolution errors.
International Nuclear Information System (INIS)
Zhang Chunyi; Gao Yitian; Meng Xianghua; Li Juan; Xu Tao; Wei Guangmei; Zhu Hongwu
2006-01-01
The phenomena of the trapped Bose-Einstein condensates related to matter waves and nonlinear atom optics can be governed by a variable-coefficient Korteweg-de Vries (vc-KdV) model with additional terms contributed from the inhomogeneity in the axial direction and the strong transverse confinement of the condensate, and such a model can also be used to describe the water waves propagating in a channel with an uneven bottom and/or deformed walls. In this paper, with the help of symbolic computation, the bilinear form for the vc-KdV model is obtained and some exact solitonic solutions including the N-solitonic solution in explicit form are derived through the extended Hirota method. We also derive the auto-Baecklund transformation, nonlinear superposition formula, Lax pairs and conservation laws of this model. Finally, the integrability of the variable-coefficient model and the characteristic of the nonlinear superposition formula are discussed
International Nuclear Information System (INIS)
Doughty, C.; Dragila, M.I.; Faybishenko, B.; Podgorney, R.K.; Stoops, T.M.; Wheatcraft, S.W.; Wood, T.R.
1998-01-01
'DOE faces the remediation of numerous contaminated sites, such as those at Hanford, INEEL, LLNL, and LBNL, where organic and/or radioactive wastes were intentionally or accidentally released to the vadose zone from surface spills, underground tanks, cribs, shallow ponds, and deep wells. Migration of these contaminants through the vadose zone has lead to the contamination of or threatens to contaminate underlying groundwater. A key issue in choosing a corrective action plan to clean up contaminated sites is to determine the location, total mass, mobility and travel time to receptors for contaminants moving in the vadose zone. These problems are difficult to solve in a technically defensible and accurate manner because contaminants travel downward intermittently through narrow pathways driven by variations in environmental conditions. These preferential pathways can be difficult to find and predict. The primary objective of this project is to determine if and when dynamical chaos theory can be used to investigate infiltration of fluid and contaminant transport in heterogeneous soils and fractured rocks. The objective of this project is being achieved through the following Activities (1) Evaluation of chaotic behavior of flow in laboratory and field experiments using methods from non-linear dynamics; (2) Evaluation of the impact these dynamics may have on contaminant transport through heterogeneous fractured rocks and soils, and how it can be used to guide remediation efforts; (3) Development of a conceptual model and mathematical and numerical algorithms for flow and transport, which incorporate both: (a) the spatial variability of heterogeneous porous and fractured media, and (b) the description of the temporal dynamics of flow and transport, which may be chaotic; and (4) Development of appropriate experimental field and laboratory techniques needed to detect diagnostic parameters for chaotic behavior of flow. This approach is based on the assumption that spatial
Dynamics of vortex structures in a stratified rotating fluid
Sokolovskiy, Mikhail A
2013-01-01
This book presents an extensive analysis of the dynamics of discrete and distributed baroclinic vortices in a multi-layer fluid that characterizes the main features of the large and mesoscales dynamics of the atmosphere and the ocean.
Chatzimavroudis, George P.; Spirka, Thomas A.; Setser, Randolph M.; Myers, Jerry G.
2004-01-01
One of NASA's objectives is to be able to perform a complete, pre-flight, evaluation of cardiovascular changes in astronauts scheduled for prolonged space missions. Computational fluid dynamics (CFD) has shown promise as a method for estimating cardiovascular function during reduced gravity conditions. For this purpose, MRI can provide geometrical information, to reconstruct vessel geometries, and measure all spatial velocity components, providing location specific boundary conditions. The objective of this study was to investigate the reliability of MRI-based model reconstruction and measured boundary conditions for CFD simulations. An aortic arch model and a carotid bifurcation model were scanned in a 1.5T Siemens MRI scanner. Axial MRI acquisitions provided images for geometry reconstruction (slice thickness 3 and 5 mm; pixel size 1x1 and 0.5x0.5 square millimeters). Velocity acquisitions provided measured inlet boundary conditions and localized three-directional steady-flow velocity data (0.7-3.0 L/min). The vessel walls were isolated using NIH provided software (ImageJ) and lofted to form the geometric surface. Constructed and idealized geometries were imported into a commercial CFD code for meshing and simulation. Contour and vector plots of the velocity showed identical features between the MRI velocity data, the MRI-based CFD data, and the idealized-geometry CFD data, with less than 10% differences in the local velocity values. CFD results on models reconstructed from different MRI resolution settings showed insignificant differences (less than 5%). This study illustrated, quantitatively, that reliable CFD simulations can be performed with MRI reconstructed models and gives evidence that a future, subject-specific, computational evaluation of the cardiovascular system alteration during space travel is feasible.
Directory of Open Access Journals (Sweden)
Pavan K. Sharma
2012-01-01
Full Text Available In water-cooled nuclear power reactors, significant quantities of steam and hydrogen could be produced within the primary containment following the postulated design basis accidents (DBA or beyond design basis accidents (BDBA. For accurate calculation of the temperature/pressure rise and hydrogen transport calculation in nuclear reactor containment due to such scenarios, wall condensation heat transfer coefficient (HTC is used. In the present work, the adaptation of a commercial CFD code with the implementation of models for steam condensation on wall surfaces in presence of noncondensable gases is explained. Steam condensation has been modeled using the empirical average HTC, which was originally developed to be used for “lumped-parameter” (volume-averaged modeling of steam condensation in the presence of noncondensable gases. The present paper suggests a generalized HTC based on curve fitting of most of the reported semiempirical condensation models, which are valid for specific wall conditions. The present methodology has been validated against limited reported experimental data from the COPAIN experimental facility. This is the first step towards the CFD-based generalized analysis procedure for condensation modeling applicable for containment wall surfaces that is being evolved further for specific wall surfaces within the multicompartment containment atmosphere.
Attractors of equations of non-Newtonian fluid dynamics
International Nuclear Information System (INIS)
Zvyagin, V G; Kondrat'ev, S K
2014-01-01
This survey describes a version of the trajectory-attractor method, which is applied to study the limit asymptotic behaviour of solutions of equations of non-Newtonian fluid dynamics. The trajectory-attractor method emerged in papers of the Russian mathematicians Vishik and Chepyzhov and the American mathematician Sell under the condition that the corresponding trajectory spaces be invariant under the translation semigroup. The need for such an approach was caused by the fact that for many equations of mathematical physics for which the Cauchy initial-value problem has a global (weak) solution with respect to the time, the uniqueness of such a solution has either not been established or does not hold. In particular, this is the case for equations of fluid dynamics. At the same time, trajectory spaces invariant under the translation semigroup could not be constructed for many equations of non-Newtonian fluid dynamics. In this connection, a different approach to the construction of trajectory attractors for dissipative systems was proposed in papers of Zvyagin and Vorotnikov without using invariance of trajectory spaces under the translation semigroup and is based on the topological lemma of Shura-Bura. This paper presents examples of equations of non-Newtonian fluid dynamics (the Jeffreys system describing movement of the Earth's crust, the model of motion of weak aqueous solutions of polymers, a system with memory) for which the aforementioned construction is used to prove the existence of attractors in both the autonomous and the non-autonomous cases. At the beginning of the paper there is also a brief exposition of the results of Ladyzhenskaya on the existence of attractors of the two-dimensional Navier-Stokes system and the result of Vishik and Chepyzhov for the case of attractors of the three-dimensional Navier-Stokes system. Bibliography: 34 titles
International Nuclear Information System (INIS)
Díaz-Ibarra, Oscar; Abad, Pablo; Molina, Alejandro
2013-01-01
To design day tanks with energy efficiency and good operation standards, a detailed transient model that considers the melting, refining, cooling and working stages of the glass production process was developed. With the model, the required power input was determined, with glass coverage with batch (β) as parameter, for a furnace with a daily production of 1130 kg of soda-lime glass and 14 h for melting/refining. A detailed analysis of the energy balance with the model showed that during the daily cycle about 70% of the energy input is released with the flue gas. During the working stage most of the energy escapes through the doors. As the peak of energy consumption is during the refining process, the power requirement for this stage defines the global power requirement. Calculated energy efficiencies vary between 13% and 16% for β = 70% and 30% respectively. A steady state CFD simulation of the combustion chamber and glass tank shows that a side-fired burner configuration allows for lower gas velocities and temperatures close to the glass and the furnace walls while guaranteeing the same heat transfer characteristics to the glass than the more traditional end-fired (U-type) furnaces. -- Highlights: ► A transient model of a day tank glass furnace captures main process characteristics. ► Heat loss through doors during working stage impacts thermal efficiency. ► A side-fired burner configuration should be preferred to an end-fired approach
Fast reactor safety and computational thermo-fluid dynamics approaches
International Nuclear Information System (INIS)
Ninokata, Hisashi; Shimizu, Takeshi
1993-01-01
This article provides a brief description of the safety principle on which liquid metal cooled fast breeder reactors (LMFBRs) is based and the roles of computations in the safety practices. A number of thermohydraulics models have been developed to date that successfully describe several of the important types of fluids and materials motion encountered in the analysis of postulated accidents in LMFBRs. Most of these models use a mixture of implicit and explicit numerical solution techniques in solving a set of conservation equations formulated in Eulerian coordinates, with special techniques included to specific situations. Typical computational thermo-fluid dynamics approaches are discussed in particular areas of analyses of the physical phenomena relevant to the fuel subassembly thermohydraulics design and that involve describing the motion of molten materials in the core over a large scale. (orig.)
[Fluid dynamics of supercritical helium within internally cooled cabled superconductors
International Nuclear Information System (INIS)
Van Sciver, S.W.
1995-01-01
The Applied Superconductivity Center of the University of Wisconsin-Madison proposes to conduct research on low temperature helium fluid dynamics as it applies to the cooling of internally cooled cabled superconductors (ICCS). Such conductors are used in fusion reactor designs including most of the coils in ITER. The proposed work is primarily experimental involving measurements of transient and steady state pressure drop in a variety of conductor configurations. Both model and prototype conductors for actual magnet designs will be investigated. The primary goal will be to measure and model the friction factor for these complex geometries. In addition, an effort will be made to study transient processes such as heat transfer and fluid expulsion associated with quench conditions
The nonlinear dynamics of a spacecraft coupled to the vibration of a contained fluid
Peterson, Lee D.; Crawley, Edward F.; Hansman, R. John
1988-01-01
The dynamics of a linear spacecraft mode coupled to a nonlinear low gravity slosh of a fluid in a cylindrical tank is investigated. Coupled, nonlinear equations of motion for the fluid-spacecraft dynamics are derived through an assumed mode Lagrangian method. Unlike linear fluid slosh models, this nonlinear slosh model retains two fundamental slosh modes and three secondary modes. An approximate perturbation solution of the equations of motion indicates that the nonlinear coupled system response involves fluid-spacecraft modal resonances not predicted by either a linear, or a nonlinear, uncoupled slosh analysis. Experimental results substantiate the analytical predictions.
Optics and Fluid Dynamics Department annual progress report for 1999
DEFF Research Database (Denmark)
Hanson, Steen Grüner; Johansen, Per Michael; Lynov, Jens-Peter
2000-01-01
The Optics and Fluid Dynamics Department performs basic and applied research within the three programmes: (1) optical materials, (2) optical diagnostics and information processing and (3) plasma and fluid dynamics. The department has core competences in:optical sensors, optical materials, biooptics...
Computational Fluid Dynamics Methods and Their Applications in Medical Science
Directory of Open Access Journals (Sweden)
Kowalewski Wojciech
2016-12-01
Full Text Available As defined by the National Institutes of Health: “Biomedical engineering integrates physical, chemical, mathematical, and computational sciences and engineering principles to study biology, medicine, behavior, and health”. Many issues in this area are closely related to fluid dynamics. This paper provides an overview of the basic concepts concerning Computational Fluid Dynamics and its applications in medicine.
EDITORIAL: Changes to Fluid Dynamics Research in 2009 Changes to Fluid Dynamics Research in 2009
Funakoshi, Mitsuaki
2009-02-01
Welcome to the first issue of the modified Fluid Dynamics Research (FDR) journal, which is now being published by IOP Publishing on behalf of the Japan Society of Fluid Mechanics. Since its launch in 1986, FDR has become a well-established international journal that publishes theoretical, numerical and experimental studies contributing to the fundamental understanding and application of fluid phenomena. It has also been an invaluable resource for physicists and researchers in engineering interested in problems relevant to the motion of fluids. From 2009, FDR will be edited by a new international Editorial Board, with the strong intention of establishing the journal further and bringing it to a wider audience. In this new-look FDR, which will be published six times per year, readers will find several special sections containing high quality invited reviews and papers written by leading researchers who have been selected by the international Editorial Board. This is in addition to the regular papers on a variety of topical subjects by active researchers in the field. As before, there are no publication charges for standard articles, and now article numbering has been adopted, enabling accepted papers to be published online more quickly, ahead of print publication. In order to maintain a balanced and up-to-date perspective, we welcome feedback from our readers regarding the content of the journal, as well as suggestions for topics to cover and areas to highlight. Finally, I would like to thank our authors, members of the international Editorial Board, and the staff at IOP Publishing for producing this first issue. We hope you will enjoy reading this renewed and exciting journal for the international fluid dynamics community.
Corley, R A; Minard, K R; Kabilan, S; Einstein, D R; Kuprat, A P; Harkema, J R; Kimbell, J S; Gargas, M L; Kinzell, John H
2009-05-01
The percentages of total airflows over the nasal respiratory and olfactory epithelium of female rabbits were calculated from computational fluid dynamics (CFD) simulations of steady-state inhalation. These airflow calculations, along with nasal airway geometry determinations, are critical parameters for hybrid CFD/physiologically based pharmacokinetic models that describe the nasal dosimetry of water-soluble or reactive gases and vapors in rabbits. CFD simulations were based upon three-dimensional computational meshes derived from magnetic resonance images of three adult female New Zealand White (NZW) rabbits. In the anterior portion of the nose, the maxillary turbinates of rabbits are considerably more complex than comparable regions in rats, mice, monkeys, or humans. This leads to a greater surface area to volume ratio in this region and thus the potential for increased extraction of water soluble or reactive gases and vapors in the anterior portion of the nose compared to many other species. Although there was considerable interanimal variability in the fine structures of the nasal turbinates and airflows in the anterior portions of the nose, there was remarkable consistency between rabbits in the percentage of total inspired airflows that reached the ethmoid turbinate region (approximately 50%) that is presumably lined with olfactory epithelium. These latter results (airflows reaching the ethmoid turbinate region) were higher than previous published estimates for the male F344 rat (19%) and human (7%). These differences in regional airflows can have significant implications in interspecies extrapolations of nasal dosimetry.
International Nuclear Information System (INIS)
Valverde Ramirez, M.; Coury, J.R.; Goncalves, J.A.S.
2009-01-01
In recent years, many computational fluid dynamics (CFD) studies have appeared attempting to predict cyclone pressure drop and collection efficiency. While these studies have been able to predict pressure drop well, they have been only moderately successful in predicting collection efficiency. Part of the reason for this failure has been attributed to the relatively simple wall boundary conditions implemented in the commercially available CFD software, which are not capable of accurately describing the complex particle-wall interaction present in a cyclone. According, researches have proposed a number of different boundary conditions in order to improve the model performance. This work implemented the critical velocity boundary condition through a user defined function (UDF) in the Fluent software and compared its predictions both with experimental data and with the predictions obtained when using Fluent's built-in boundary conditions. Experimental data was obtained from eight laboratory scale cyclones with varying geometric ratios. The CFD simulations were made using the software Fluent 6.3.26. (author)
DEFF Research Database (Denmark)
Troldborg, Niels; Zahle, Frederik; Réthoré, Pierre-Elouan
2015-01-01
, which is characterized by much higher turbulence levels. In the simulations with turbulent inflow, the wake characteristics predicted by the three methods are in close agreement, indicating that the differences observed in uniform inflow do not play an important role if the inflow is turbulent...... both uniform and turbulent inflows, and the wake properties predicted by the three models are compared. In uniform inflow, the wake properties predicted by the actuator disc and line methods are found to be in very close agreement but differ significantly from the wake of the fully resolved rotor....... Copyright © 2014 John Wiley & Sons, Ltd....
Fluid dynamics theoretical and computational approaches
Warsi, ZUA
2005-01-01
Important Nomenclature Kinematics of Fluid Motion Introduction to Continuum Motion Fluid Particles Inertial Coordinate Frames Motion of a Continuum The Time Derivatives Velocity and Acceleration Steady and Nonsteady Flow Trajectories of Fluid Particles and Streamlines Material Volume and Surface Relation between Elemental Volumes Kinematic Formulas of Euler and Reynolds Control Volume and Surface Kinematics of Deformation Kinematics of Vorticity and Circulation References Problems The Conservation Laws and the Kinetics of Flow Fluid Density and the Conservation of Mass Prin
Czech Academy of Sciences Publication Activity Database
Hrubý, Jan; Pátek, Jaroslav; Duška, Michal
2014-01-01
Roč. 228, č. 2 (2014), s. 120-128 ISSN 0957-6509 R&D Projects: GA AV ČR IAA200760905; GA ČR(CZ) GAP101/11/1593; GA MŠk LG13056 Institutional support: RVO:61388998 Keywords : metastable steam * thermodynamic properties * computational fluid dynamics Subject RIV: BJ - Thermodynamics Impact factor: 0.645, year: 2014 http://pia.sagepub.com/content/228/2.toc
Mareels, Guy; Poyck, Paul P. C.; Eloot, Sunny; Chamuleau, Robert A. F. M.; Verdonck, Pascal R.
2006-01-01
A numerical model to investigate fluid flow and oxygen (O(2)) transport and consumption in the AMC-Bioartificial Liver (AMC-BAL) was developed and applied to two representative micro models of the AMC-BAL with two different gas capillary patterns, each combined with two proposed hepatocyte
Some anticipated contributions to core fluid dynamics from the GRM
Vanvorhies, C.
1985-01-01
It is broadly maintained that the secular variation (SV) of the large scale geomagnetic field contains information on the fluid dynamics of Earth's electrically conducting outer core. The electromagnetic theory appropriate to a simple Earth model has recently been combined with reduced geomagnetic data in order to extract some of this information and ascertain its significance. The simple Earth model consists of a rigid, electrically insulating mantle surrounding a spherical, inviscid, and perfectly conducting liquid outer core. This model was tested against seismology by using truncated spherical harmonic models of the observed geomagnetic field to locate Earth's core-mantle boundary, CMB. Further electromagnetic theory has been developed and applied to the problem of estimating the horizontal fluid motion just beneath CMB. Of particular geophysical interest are the hypotheses that these motions: (1) include appreciable surface divergence indicative of vertical motion at depth, and (2) are steady for time intervals of a decade or more. In addition to the extended testing of the basic Earth model, the proposed GRM provides a unique opportunity to test these dynamical hypotheses.
The Fluid Dynamics Demo Kit: Part I
Flack, Karen; Underhill, Patrick; Prestridge, Kathy
2012-11-01
The goal of this project is to develop a fluid dynamics demonstration/experiment kit that can be used by professors and graduate students at high school outreach events. The demonstrations in the kit will be easy to use and true crowd pleasers in order to inspire understanding and pique curiosity about the physics of flow. The kits will be inexpensive, containing readily available materials so that teachers can duplicate the demonstrations and experiments. The kits will be left with the teachers as a gift from the American Physics Society. The experiments and demonstrations cover the concepts of conservation of mass, momentum, and energy, Bernoulli's equation, frictional losses and the ideal gas law. For each experiment, the teachers will receive presentation material, access to instructional videos, plus a worksheet that can be used in a high school physics classroom. This kit has been developed through the efforts of the APS-DFD Mentoring and Outreach Committee and has received funding from the APS-DFD. Work funded by the APS-DFD.
Directory of Open Access Journals (Sweden)
Hajian B
2018-03-01
Full Text Available Bita Hajian,1 Jan De Backer,2 Wim Vos,2 Wouter H van Geffen,3 Paul De Winter,1 Omar Usmani,4 Tony Cahn,5 Huib AM Kerstjens,3 Massimo Pistolesi,6 Wilfried De Backer1 1Department of Respiratory Medicine, University Hospital Antwerp, Edegem, Belgium; 2FLUIDDA nv, Kontich, Belgium; 3Department of Respiratory Medicine, University Medical Center Groningen, Groningen, the Netherlands; 4Department of Pulmonology, Brompton Hospital, London, UK; 5GSK, London, UK; 6Department of Pulmonary Diseases, University of Firenze, Florence, Italy Introduction: Severe exacerbations associated with chronic obstructive pulmonary disease (COPD that require hospitalization significantly contribute to morbidity and mortality. Definitions for exacerbations are very broad, and it is unclear whether there is one predominant underlying mechanism that leads to them. Functional respiratory imaging (FRI with modeling provides detailed information about airway resistance, hyperinflation, and ventilation–perfusion (V/Q mismatch during and following an acute exacerbation. Materials and methods: Forty-two patients with COPD participating in a multicenter study were assessed by FRI, pulmonary function tests, and self-reported outcome measures during an acute exacerbation and following resolution. Arterial blood gasses and lung function parameters were measured. Results: A significant correlation was found between alveolar–arterial gradient and image-based V/Q (iV/Q, suggesting that iV/Q represents V/Q mismatch during an exacerbation (p<0.05. Conclusion: Recovery of an exacerbation is due to decreased (mainly distal airway resistance (p<0.05. Improvement in patient-reported outcomes were also associated with decreased distal airway resistance (p<0.05, but not with forced expiratory volume. FRI is, therefore, a sensitive tool to describe changes in airway caliber, ventilation, and perfusion during and after exacerbation. On the basis of the fact that FRI increased distal airway
Gyro-Landau fluid model of tokamak core fluctuations
International Nuclear Information System (INIS)
Leboeuf, J.N.; Carreras, B.A.; Dominguez, N.; Hedrick, C.L.; Sidikman, K.L.; Lynch, V.E.; Drake, J.B.; Walker, D.W.
1992-01-01
Dissipative trapped electron modes (DTEM) may be one of the causes of deterioration of confinement in tokamak and stellatator plasmas. We have implemented a fluid model to study DTEM turbulence in slab geometry. The electron dynamics include in addition to the adiabatic part, a non-adiabatic piece modeled with an i-delta-type response. The ion dynamics include Landau damping and FLR corrections through Landau fluid approximate techniques and Pade approximants for Γ 0 (b)=I 0 (b)e -b . The model follows from the gyrokinetic equation. Evolution equations, which closely resemble those used in standard reduced MHD, are presented since these are better suited to non-linear calculations. The numerical results of radially resolved calculations will be discussed. A recently developed hybrid model, which consists of a gyrokinetic implementation for the ions using particles and the same description for the electron dynamics as in the fluid model, will also be presented
International Nuclear Information System (INIS)
Pradeep, Chaminda; Yan, Ru; Mylvaganam, Saba; Vestøl, Sondre; Melaaen, Morten C
2014-01-01
The electrical capacitance tomographic (ECT) approach is increasingly seen as attractive for measurement and control applications in the process industries. Recently, there is increased interest in using the tomographic details from ECT for comparing with and validating and tuning CFD models of multiphase flow. Collaboration with researchers working in the field of computational fluid dynamics (CFD) modeling of multiphase flows gives valuable information for both groups of researchers in the field of ECT and CFD. By studying the ECT tomograms of multiphase flows under carefully monitored inflow conditions of the different media and by obtaining the capacitance values, C(i, j, t) with i = 1…N, j = 1, 2,…N and i ≠ j obtained from ECT modules with N electrodes, it is shown how the interface heights in a pipe with stratified flow of oil and air can be fruitfully compared to the values of those obtained from ECT and gamma radiation meter (GRM) for improving CFD modeling. Monitored inflow conditions in this study are flow rates of air, water and oil into a pipe which can be positioned at varying inclinations to the horizontal, thus emulating the pipelines laid in subsea installations. It is found that ECT-based tomograms show most of the features seen in the GRM-based visualizations with nearly one-to-one correspondence to interface heights obtained from these two methods, albeit some anomalies at the pipe wall. However, there are some interesting features the ECT manages to capture: features which the GRM or the CFD modeling apparently do not show, possibly due to parameters not defined in the inputs to the CFD model or much slower response of the GRM. Results presented in this paper indicate that a combination of ECT and GRM and preferably with other modalities with enhanced data fusion and analysis combined with CFD modeling can help to improve the modeling, measurement and control of multiphase flow in the oil and gas industries and in the process industries
Pradeep, Chaminda; Yan, Ru; Vestøl, Sondre; Melaaen, Morten C.; Mylvaganam, Saba
2014-07-01
The electrical capacitance tomographic (ECT) approach is increasingly seen as attractive for measurement and control applications in the process industries. Recently, there is increased interest in using the tomographic details from ECT for comparing with and validating and tuning CFD models of multiphase flow. Collaboration with researchers working in the field of computational fluid dynamics (CFD) modeling of multiphase flows gives valuable information for both groups of researchers in the field of ECT and CFD. By studying the ECT tomograms of multiphase flows under carefully monitored inflow conditions of the different media and by obtaining the capacitance values, C(i, j, t) with i = 1…N, j = 1, 2,…N and i ≠ j obtained from ECT modules with N electrodes, it is shown how the interface heights in a pipe with stratified flow of oil and air can be fruitfully compared to the values of those obtained from ECT and gamma radiation meter (GRM) for improving CFD modeling. Monitored inflow conditions in this study are flow rates of air, water and oil into a pipe which can be positioned at varying inclinations to the horizontal, thus emulating the pipelines laid in subsea installations. It is found that ECT-based tomograms show most of the features seen in the GRM-based visualizations with nearly one-to-one correspondence to interface heights obtained from these two methods, albeit some anomalies at the pipe wall. However, there are some interesting features the ECT manages to capture: features which the GRM or the CFD modeling apparently do not show, possibly due to parameters not defined in the inputs to the CFD model or much slower response of the GRM. Results presented in this paper indicate that a combination of ECT and GRM and preferably with other modalities with enhanced data fusion and analysis combined with CFD modeling can help to improve the modeling, measurement and control of multiphase flow in the oil and gas industries and in the process industries
Energy Technology Data Exchange (ETDEWEB)
Leishear, Robert A.; Lee, Si Y.; Poirier, Michael R.; Steeper, Timothy J.; Ervin, Robert C.; Giddings, Billy J.; Stefanko, David B.; Harp, Keith D.; Fowley, Mark D.; Van Pelt, William B.
2012-10-07
Computational fluid dynamics (CFD) is recognized as a powerful engineering tool. That is, CFD has advanced over the years to the point where it can now give us deep insight into the analysis of very complex processes. There is a danger, though, that an engineer can place too much confidence in a simulation. If a user is not careful, it is easy to believe that if you plug in the numbers, the answer comes out, and you are done. This assumption can lead to significant errors. As we discovered in the course of a study on behalf of the Department of Energy's Savannah River Site in South Carolina, CFD models fail to capture some of the large variations inherent in complex processes. These variations, or scatter, in experimental data emerge from physical tests and are inadequately captured or expressed by calculated mean values for a process. This anomaly between experiment and theory can lead to serious errors in engineering analysis and design unless a correction factor, or safety factor, is experimentally validated. For this study, blending times for the mixing of salt solutions in large storage tanks were the process of concern under investigation. This study focused on the blending processes needed to mix salt solutions to ensure homogeneity within waste tanks, where homogeneity is required to control radioactivity levels during subsequent processing. Two of the requirements for this task were to determine the minimum number of submerged, centrifugal pumps required to blend the salt mixtures in a full-scale tank in half a day or less, and to recommend reasonable blending times to achieve nearly homogeneous salt mixtures. A full-scale, low-flow pump with a total discharge flow rate of 500 to 800 gpm was recommended with two opposing 2.27-inch diameter nozzles. To make this recommendation, both experimental and CFD modeling were performed. Lab researchers found that, although CFD provided good estimates of an average blending time, experimental blending times varied
Chen, Chia-Yuan; Antón, Raúl; Hung, Ming-yang; Menon, Prahlad; Finol, Ender A.; Pekkan, Kerem
2014-01-01
The pathology of the human abdominal aortic aneurysm (AAA) and its relationship to the later complication of intraluminal thrombus (ILT) formation remains unclear. The hemodynamics in the diseased abdominal aorta are hypothesized to be a key contributor to the formation and growth of ILT. The objective of this investigation is to establish a reliable 3D flow visualization method with corresponding validation tests with high confidence in order to provide insight into the basic hemodynamic features for a better understanding of hemodynamics in AAA pathology and seek potential treatment for AAA diseases. A stereoscopic particle image velocity (PIV) experiment was conducted using transparent patient-specific experimental AAA models (with and without ILT) at three axial planes. Results show that before ILT formation, a 3D vortex was generated in the AAA phantom. This geometry-related vortex was not observed after the formation of ILT, indicating its possible role in the subsequent appearance of ILT in this patient. It may indicate that a longer residence time of recirculated blood flow in the aortic lumen due to this vortex caused sufficient shear-induced platelet activation to develop ILT and maintain uniform flow conditions. Additionally, two computational fluid dynamics (CFD) modeling codes (Fluent and an in-house cardiovascular CFD code) were compared with the two-dimensional, three-component velocity stereoscopic PIV data. Results showed that correlation coefficients of the out-of-plane velocity data between PIV and both CFD methods are greater than 0.85, demonstrating good quantitative agreement. The stereoscopic PIV study can be utilized as test case templates for ongoing efforts in cardiovascular CFD solver development. Likewise, it is envisaged that the patient-specific data may provide a benchmark for further studying hemodynamics of actual AAA, ILT, and their convolution effects under physiological conditions for clinical applications. PMID:24316984
Computational Fluid Dynamics (CFD) simulations of a Heisenberg Vortex Tube
Bunge, Carl; Sitaraman, Hariswaran; Leachman, Jake
2017-11-01
A 3D Computational Fluid Dynamics (CFD) simulation of a Heisenberg Vortex Tube (HVT) is performed to estimate cooling potential with cryogenic hydrogen. The main mechanism driving operation of the vortex tube is the use of fluid power for enthalpy streaming in a highly turbulent swirl in a dual-outlet tube. This enthalpy streaming creates a temperature separation between the outer and inner regions of the flow. Use of a catalyst on the peripheral wall of the centrifuge enables endothermic conversion of para-ortho hydrogen to aid primary cooling. A κ- ɛ turbulence model is used with a cryogenic, non-ideal equation of state, and para-orthohydrogen species evolution. The simulations are validated with experiments and strategies for parametric optimization of this device are presented.
Development of a theoretical framework for analyzing cerebrospinal fluid dynamics
Directory of Open Access Journals (Sweden)
Vedel Søren
2009-09-01
Full Text Available Abstract Background To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume conservation; but control volume analysis enforces independent conditions on pressure and volume. Previously, utilization of clinical measurements has been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Methods Control volume analysis is presented to introduce the reader to the theoretical background of this foundational fluid mechanics technique for application to general control volumes. This approach is able to directly incorporate the diverse measurements obtained by clinicians to better elucidate intracranial dynamics and progression to disorder. Results Several examples of meaningful intracranial control volumes and the particular measurement sets needed for the analysis are discussed. Conclusion Control volume analysis provides a framework to guide the type and location of measurements and also a way to interpret the resulting data within a fundamental fluid physics analysis.
Phase portrait methods for verifying fluid dynamic simulations
Energy Technology Data Exchange (ETDEWEB)
Stewart, H.B.
1989-01-01
As computing resources become more powerful and accessible, engineers more frequently face the difficult and challenging engineering problem of accurately simulating nonlinear dynamic phenomena. Although mathematical models are usually available, in the form of initial value problems for differential equations, the behavior of the solutions of nonlinear models is often poorly understood. A notable example is fluid dynamics: while the Navier-Stokes equations are believed to correctly describe turbulent flow, no exact mathematical solution of these equations in the turbulent regime is known. Differential equations can of course be solved numerically, but how are we to assess numerical solutions of complex phenomena without some understanding of the mathematical problem and its solutions to guide us
Relativistic nuclear fluid dynamics and VUU kinetic theory
International Nuclear Information System (INIS)
Molitoris, J.J.; Hahn, D.; Alonso, C.; Collazo, I.; D'Alessandris, P.; McAbee, T.; Wilson, J.; Zingman, J.
1987-01-01
Relativistic kinetic theory may be used to understand hot dense hadronic matter. We address the questions of collective flow and pion production in a 3 D relativistic fluid dynamic model and in the VUU microscopic theory. The GSI/LBL collective flow and pion data point to a stiff equation of state. The effect of the nuclear equation of state on the thermodynamic parameters is discussed. The properties of dense hot hadronic matter are studied in Au + Au collisions from 0.1 to 10 GeV/nucleon. 22 refs., 5 figs
Fluid Dynamics in Rotary Piston Blood Pumps.
Wappenschmidt, Johannes; Sonntag, Simon J; Buesen, Martin; Gross-Hardt, Sascha; Kaufmann, Tim; Schmitz-Rode, Thomas; Autschbach, Ruediger; Goetzenich, Andreas
2017-03-01
Mechanical circulatory support can maintain a sufficient blood circulation if the native heart is failing. The first implantable devices were displacement pumps with membranes. They were able to provide a sufficient blood flow, yet, were limited because of size and low durability. Rotary pumps have resolved these technical drawbacks, enabled a growing number of mechanical circulatory support therapy and a safer application. However, clinical complications like gastrointestinal bleeding, aortic insufficiency, thromboembolic complications, and impaired renal function are observed with their application. This is traced back to their working principle with attenuated or non-pulsatile flow and high shear stress. Rotary piston pumps potentially merge the benefits of available pump types and seem to avoid their complications. However, a profound assessment and their development requires the knowledge of the flow characteristics. This study aimed at their investigation. A functional model was manufactured and investigated with particle image velocimetry. Furthermore, a fluid-structure interaction computational simulation was established to extend the laboratory capabilities. The numerical results precisely converged with the laboratory measurements. Thus, the in silico model enabled the investigation of relevant areas like gap flows that were hardly feasible with laboratory means. Moreover, an economic method for the investigation of design variations was established.
Computational Fluid Dynamics (CFD) Technology Programme 1995- 1999
Energy Technology Data Exchange (ETDEWEB)
Haekkinen, R.J.; Hirsch, C.; Krause, E.; Kytoemaa, H.K. [eds.
1997-12-31
The report is a mid-term evaluation of the Computational Fluid Dynamics (CFD) Technology Programme started by Technology Development Centre Finland (TEKES) in 1995 as a five-year initiative to be concluded in 1999. The main goal of the programme is to increase the know-how and application of CFD in Finnish industry, to coordinate and thus provide a better basis for co-operation between national CFD activities and encouraging research laboratories and industry to establish co-operation with the international CFD community. The projects of the programme focus on the following areas: (1) studies of modeling the physics and dynamics of the behaviour of fluid material, (2) expressing the physical models in a numerical mode and developing a computer codes, (3) evaluating and testing current physical models and developing new ones, (4) developing new numerical algorithms, solvers, and pre- and post-processing software, and (5) applying the new computational tools to problems relevant to their ultimate industrial use. The report consists of two sections. The first considers issues concerning the whole programme and the second reviews each project
Technical fluid dynamics. 7. rev. ed.
International Nuclear Information System (INIS)
Becker, E.; Piltz, E.
1993-01-01
An introductory textbook for students of engineering containing the following subjects: Definition and properties of fluids, hydrostatics, Bernoulli's equation, theorem of momentum for steadystate flows, wing lattice and single wing, plane parallel flow of a viscous fluid, pipe flow, boundary layers, gas flows. (orig.) [de
Dynamical Heterogeneity in Granular Fluids and Structural Glasses
Avila, Karina E.
Our current understanding of the dynamics of supercooled liquids and other similar slowly evolving (glassy) systems is rather limited. One aspect that is particularly poorly understood is the origin and behavior of the strong non trivial fluctuations that appear in the relaxation process toward equilibrium. Glassy systems and granular systems both present regions of particles moving cooperatively and at different rates from other regions. This phenomenon is known as spatially heterogeneous dynamics. A detailed explanation of this phenomenon may lead to a better understanding of the slow relaxation process, and perhaps it could even help to explain the presence of the glass transition. This dissertation concentrates on studying dynamical heterogeneity by analyzing simulation data for models of granular materials and structural glasses. For dissipative granular fluids, the growing behavior of dynamical heterogeneities is studied for different densities and different degrees of inelasticity in the particle collisions. The correlated regions are found to grow rapidly as the system approaches dynamical arrest. Their geometry is conserved even when probing at different cutoff length in the correlation function or when the energy dissipation in the system is increased. For structural glasses, I test a theoretical framework that models dynamical heterogeneity as originated in the presence of Goldstone modes, which emerge from a broken continuous time reparametrization symmetry. This analysis is based on quantifying the size and the spatial correlations of fluctuations in the time variable and of other kinds of fluctuations. The results obtained here agree with the predictions of the hypothesis. In particular, the fluctuations associated to the time reparametrization invariance become stronger for low temperatures, long timescales, and large coarse graining lengths. Overall, this research points to dynamical heterogeneity to be described for granular systems similarly than
Wang, Yang; Zhou, Ying; Zuo, Jian
2018-01-01
Particle emissions derived from construction activities have a significant impact on the local air quality, while the canyon effect with reduced natural ventilation contributes to the highest particulate pollution in urban environments. This study attempted to examine the effect of PM10 emissions derived from the construction of a rail transit system in an urban street canyon. Using a 3D computational fluid dynamic (CFD) model based on a real street canyon with different height ratios, this study formulates the impact of height ratio and wind directions on the dispersion and concentration of PM10. The results indicate that parallel flow would cause the concentration of PM10 at the end of the street canyons in all height ratios, and the trends in horizontal, vertical and lateral planes in all street canyons are similar. While in the condition of perpendicular flow, double-eddy circulations occur and lead to the concentration of PM10 in the middle part of the street canyon and leeward of backwind buildings in all height ratios. Furthermore, perpendicular flow will cause the concentration of PM10 to increase if the upwind buildings are higher than the backwind ones. This study also shows that the dispersion of PM10 is strongly associated with wind direction in and the height ratios of the street canyons. Certain measures could, therefore, be taken to prevent the impact on people in terms of the PM10 concentration and the heights of street canyons identified in this research. Potential mitigation strategies are suggested, include measurements below 4 m according to governmental regulations, dust shields, and atomized water. PMID:29522495
Directory of Open Access Journals (Sweden)
Yang Wang
2018-03-01
Full Text Available Particle emissions derived from construction activities have a significant impact on the local air quality, while the canyon effect with reduced natural ventilation contributes to the highest particulate pollution in urban environments. This study attempted to examine the effect of PM10 emissions derived from the construction of a rail transit system in an urban street canyon. Using a 3D computational fluid dynamic (CFD model based on a real street canyon with different height ratios, this study formulates the impact of height ratio and wind directions on the dispersion and concentration of PM10. The results indicate that parallel flow would cause the concentration of PM10 at the end of the street canyons in all height ratios, and the trends in horizontal, vertical and lateral planes in all street canyons are similar. While in the condition of perpendicular flow, double-eddy circulations occur and lead to the concentration of PM10 in the middle part of the street canyon and leeward of backwind buildings in all height ratios. Furthermore, perpendicular flow will cause the concentration of PM10 to increase if the upwind buildings are higher than the backwind ones. This study also shows that the dispersion of PM10 is strongly associated with wind direction in and the height ratios of the street canyons. Certain measures could, therefore, be taken to prevent the impact on people in terms of the PM10 concentration and the heights of street canyons identified in this research. Potential mitigation strategies are suggested, include measurements below 4 m according to governmental regulations, dust shields, and atomized water.
Wang, Yang; Zhou, Ying; Zuo, Jian; Rameezdeen, Raufdeen
2018-03-09
Particle emissions derived from construction activities have a significant impact on the local air quality, while the canyon effect with reduced natural ventilation contributes to the highest particulate pollution in urban environments. This study attempted to examine the effect of PM 10 emissions derived from the construction of a rail transit system in an urban street canyon. Using a 3D computational fluid dynamic (CFD) model based on a real street canyon with different height ratios, this study formulates the impact of height ratio and wind directions on the dispersion and concentration of PM 10 . The results indicate that parallel flow would cause the concentration of PM 10 at the end of the street canyons in all height ratios, and the trends in horizontal, vertical and lateral planes in all street canyons are similar. While in the condition of perpendicular flow, double-eddy circulations occur and lead to the concentration of PM 10 in the middle part of the street canyon and leeward of backwind buildings in all height ratios. Furthermore, perpendicular flow will cause the concentration of PM 10 to increase if the upwind buildings are higher than the backwind ones. This study also shows that the dispersion of PM 10 is strongly associated with wind direction in and the height ratios of the street canyons. Certain measures could, therefore, be taken to prevent the impact on people in terms of the PM 10 concentration and the heights of street canyons identified in this research. Potential mitigation strategies are suggested, include measurements below 4 m according to governmental regulations, dust shields, and atomized water.
Ladisa, John F; Olson, Lars E; Ropella, Kristina M; Molthen, Robert C; Haworth, Steven T; Kersten, Judy R; Warltier, David C; Pagel, Paul S
2005-08-01
Restenosis caused by neointimal hyperplasia (NH) remains an important clinical problem after stent implantation. Restenosis varies with stent geometry, and idealized computational fluid dynamics (CFD) models have indicated that geometric properties of the implanted stent may differentially influence NH. However, 3D studies capturing the in vivo flow domain within stented vessels have not been conducted at a resolution sufficient to detect subtle alterations in vascular geometry caused by the stent and the subsequent temporal development of NH. We present the details and limitations of a series of post-processing operations used in conjunction with microfocal X-ray CT imaging and reconstruction to generate geometrically accurate flow domains within the localized region of a stent several weeks after implantation. Microfocal X-ray CT reconstruction volumes were subjected to an automated program to perform arterial thresholding, spatial orientation, and surface smoothing of stented and unstented rabbit iliac arteries several weeks after antegrade implantation. A transfer function was obtained for the current post-processing methodology containing reconstructed 16 mm stents implanted into rabbit iliac arteries for up to 21 days after implantation and resolved at circumferential and axial resolutions of 32 and 50 microm, respectively. The results indicate that the techniques presented are sufficient to resolve distributions of WSS with 80% accuracy in segments containing 16 surface perturbations over a 16 mm stented region. These methods will be used to test the hypothesis that reductions in normalized wall shear stress (WSS) and increases in the spatial disparity of WSS immediately after stent implantation may spatially correlate with the temporal development of NH within the stented region.
Energy Technology Data Exchange (ETDEWEB)
Bowers, Geoffrey [Alfred Univ., NY (United States)
2017-04-05
United States Department of Energy grant DE-FG02-10ER16128, “Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces” (Geoffrey M. Bowers, P.I.) focused on developing a molecular-scale understanding of processes that occur in fluids and at solid-fluid interfaces using the combination of spectroscopic, microscopic, and diffraction studies with molecular dynamics computer modeling. The work is intimately tied to the twin proposal at Michigan State University (DOE DE-FG02-08ER15929; same title: R. James Kirkpatrick, P.I. and A. Ozgur Yazaydin, co-P.I.).
Helicopter fuselage drag - combined computational fluid dynamics and experimental studies
Batrakov, A.; Kusyumov, A.; Mikhailov, S.; Pakhov, V.; Sungatullin, A.; Valeev, M.; Zherekhov, V.; Barakos, G.
2015-06-01
In this paper, wind tunnel experiments are combined with Computational Fluid Dynamics (CFD) aiming to analyze the aerodynamics of realistic fuselage configurations. A development model of the ANSAT aircraft and an early model of the AKTAI light helicopter were employed. Both models were tested at the subsonic wind tunnel of KNRTU-KAI for a range of Reynolds numbers and pitch and yaw angles. The force balance measurements were complemented by particle image velocimetry (PIV) investigations for the cases where the experimental force measurements showed substantial unsteadiness. The CFD results were found to be in fair agreement with the test data and revealed some flow separation at the rear of the fuselages. Once confidence on the CFD method was established, further modifications were introduced to the ANSAT-like fuselage model to demonstrate drag reduction via small shape changes.
Optics and Fluid Dynamics Department. Annual progress report 1 January - 31 December 1990
International Nuclear Information System (INIS)
Juul Rasmussen, J.; Hanson, S.G.
1991-02-01
Research in the Optics and Fluid Dynamics Department covers plasma physics, fluid dynamics, optics, and neural networks. Plasma physics is concentrated on basic investigations with relevance to fusion plasmas. Both theoretical and experimental work has been performed. Pellet injection systems have been developed. Within the area of fluid dynamics spectral models for studying the dynamcis of coherent structures have been developed. Optical diagnostic methods based on quasi-elastic light scattering have been developed. Beam propagation in random and nonlinear media has been investigated. Spatial and temporal processing schemes, especially for pattern recognition, have been investigated. (author)
Dynamic Analysis of Fluid Power Drive-trains for Variable Speed Wind Turbines : A Parameter Study
Jarquin Laguna, A.; Diepeveen, N.F.B.
2013-01-01
In the pursuit of making wind energy technology more economically attractive, the application of fluid power technology for the transmission of wind energy is being developed by several parties all over the world. This paper presents a dynamic model of a fluid power transmission for variable speed
Modeling of Non-Isothermal Cryogenic Fluid Sloshing
Agui, Juan H.; Moder, Jeffrey P.
2015-01-01
A computational fluid dynamic model was used to simulate the thermal destratification in an upright self-pressurized cryostat approximately half-filled with liquid nitrogen and subjected to forced sinusoidal lateral shaking. A full three-dimensional computational grid was used to model the tank dynamics, fluid flow and thermodynamics using the ANSYS Fluent code. A non-inertial grid was used which required the addition of momentum and energy source terms to account for the inertial forces, energy transfer and wall reaction forces produced by the shaken tank. The kinetics-based Schrage mass transfer model provided the interfacial mass transfer due to evaporation and condensation at the sloshing interface. The dynamic behavior of the sloshing interface, its amplitude and transition to different wave modes, provided insight into the fluid process at the interface. The tank pressure evolution and temperature profiles compared relatively well with the shaken cryostat experimental test data provided by the Centre National D'Etudes Spatiales.
Dynamic Characteristics of Magneto-Fluid Supports
Directory of Open Access Journals (Sweden)
V. A. Chernobai
2008-01-01
Full Text Available The paper considers a vibro-protective magneto-fluid support that uses elastic properties of magnetic fluid with a free surface in magnetic field.The paper has experimentally revealed that the analyzed structure is characterized by better noise absorbing characteristics.The conducted experiments have made it possible to conclude that there is a possibility to use vibro-protective magneto-fluid supports within the frequency range from 0 to 300 Hz, amplitudes up to 2 mm and unit load up to 2,5 · 10 4 Н/м².
Coslovich, Daniele; Kahl, Gerhard; Krakoviack, Vincent
2011-06-01
discussions it became evident that the close scientific contact between theory, simulation and experiment brought along a fruitful and mutually inspiring atmosphere. On the theoretical side, these discussions have allowed clarification of several connections between the dynamics of models of fluids in porous media (quenched-annealed, pinned particles models), those of well-known limiting cases (Lorentz gas), of realistic models of liquids with strong dynamic asymmetry (asymmetric size and mass mixtures, sodium silicates, polymers blends) and even of bulk glass-formers. On the experimental side, it appeared that soft matter systems may provide an excellent test-bed to verify the theoretical predictions. From the concluding discussion it was also clear that addressing related issues relevant to biology still remains an open challenge for the future. In view of all this, it was concluded that within a short time period a workshop with analogous scope should be organized to address the progress made on both fundamental and interdisciplinary aspects. The realization of this workshop was made possible by generous financial support from CECAM, Centre Blaise Pascal-ENS de Lyon, and the ESF network 'Molecular Simulations in Biosystems and Material Science' (SimBioMa). Complex dynamics of fluids in disordered and crowded environments contents Phonon dispersions of cluster crystals Tim Neuhaus and Christos N Likos Challenges in determining anomalous diffusion in crowded fluids Marcel Hellmann, Joseph Klafter, Dieter W Heermann and Matthias Weiss Diffusion of active tracers in fluctuating fields David S Dean and Vincent Démery Self-diffusion of non-interacting hard spheres in particle gels Jean-Christophe Gimel and Taco Nicolai Probing glassy states in binary mixtures of soft interpenetrable colloids E Stiakakis, B M Erwin, D Vlassopoulos, M Cloitre, A Munam, M Gauthier, H Iatrou and N Hadjichristidis Fluids with quenched disorder: scaling of the free energy barrier near critical points
Meniscal Tear Film Fluid Dynamics Near Marx’s Line
Zubkov, V. S.
2013-07-03
Extensive studies have explored the dynamics of the ocular surface fluid, though theoretical investigations are typically limited to the use of the lubrication approximation, which is not guaranteed to be uniformly valid a-priori throughout the tear meniscus. However, resolving tear film behaviour within the meniscus and especially its apices is required to characterise the flow dynamics where the tear film is especially thin, and thus most susceptible to evaporatively induced hyperosmolarity and subsequent epithelial damage. Hence, we have explored the accuracy of the standard lubrication approximation for the tear film by explicit comparisons with the 2D Navier-Stokes model, considering both stationary and moving eyelids. Our results demonstrate that the lubrication model is qualitatively accurate except in the vicinity of the eyelids. In particular, and in contrast to lubrication theory, the solution of the full Navier-Stokes equations predict a distinct absence of fluid flow, and thus convective mixing in the region adjacent to the tear film contact line. These observations not only support emergent hypotheses concerning the formation of Marx\\'s line, a region of epithelial cell staining adjacent to the contact line on the eyelid, but also enhance our understanding of the pathophysiological consequences of the flow profile near the tear film contact line. © 2013 Society for Mathematical Biology.
Terzic, Jenny; Nagarajah, Romesh; Alamgir, Muhammad
2013-01-01
Accurate fluid level measurement in dynamic environments can be assessed using a Support Vector Machine (SVM) approach. SVM is a supervised learning model that analyzes and recognizes patterns. It is a signal classification technique which has far greater accuracy than conventional signal averaging methods. Ultrasonic Fluid Quantity Measurement in Dynamic Vehicular Applications: A Support Vector Machine Approach describes the research and development of a fluid level measurement system for dynamic environments. The measurement system is based on a single ultrasonic sensor. A Support Vector Machines (SVM) based signal characterization and processing system has been developed to compensate for the effects of slosh and temperature variation in fluid level measurement systems used in dynamic environments including automotive applications. It has been demonstrated that a simple ν-SVM model with Radial Basis Function (RBF) Kernel with the inclusion of a Moving Median filter could be used to achieve the high levels...
Effect of Fluid Dynamic Viscosity on the Strength of Chalk
DEFF Research Database (Denmark)
Hedegaard, K.; Fabricius, Ida Lykke
The mechanical strength of high porosity and weakly cemented chalk is affected by the fluid in the pores. In this study, the effect of the dynamic viscosity of non-polar fluids has been measured on outcrop chalk from Sigerslev Quarry, Stevns, Denmark. The outcome is that the measured strength...... of the chalk decreases with increasing dynamic viscosity. The proposed qualitative explanation is that pressure difference supports and enhances the generation of microscopic shear and tensile failures....
Dynamics of fluid lines, sheets, filaments and membranes
International Nuclear Information System (INIS)
Coutris, N.
1988-01-01
We establish the dynamic equations of two types of fluid structures: 1) lines-filaments and 2) sheets-membranes. In the first part, we consider one-dimensional (line) and two-dimensional (sheet) fluid structures. The second part concerns the associated three- dimensional structures: filaments and membranes. In the third part, we establish the equations for thickened lines and thickened sheets. For that purpose, we introduce a thickness in the models of the first part. The fourth part concerns the thinning of the filament and the membrane. Then, by an asymptotic process, we deduce the corresponding equations from the equations of the second part in order to show the purely formal equivalence of the equations of the third and fourth parts. To obtain the equations, we make use of theorems whose proofs can be found in the appendices. The equations can be applied to many areas of interest: instabilities of liquid jets and liquid films, modelisation of interfaces between two different fluids as sheets or membranes, modelisation with the averaged equations over a cross section of single phase flows and two-phase flows in channels with a nonrectilinear axis such as bends or pump casings [fr
Schönwald, U G; Jorczyk, U; Kipfmüller, B
2011-01-01
Stents are commonly used for the treatment of occlusive artery diseases in carotid arteries. Today, there is a controversial discussion as to whether duplex sonography (DS) displays blood velocities (BV) that are too high in stented areas. The goal of this study was to evaluate the effect of stenting on DS with respect to BV in artificial carotid arteries. The results of computational fluid dynamics (CFD) were also used for the comparison. To analyze BV using DS, a phantom with a constant flow (70 cm/s) was created. Three different types of stents for carotid arteries were selected. The phantom fluid consisted of 67 % water and 33 % glycerol. All BV measurements were carried out on the last third of the stents. Furthermore, all test runs were simulated using CFD. All measurements were statistically analyzed. DS-derived BV values increased significantly after the placement of the Palmaz Genesis stent (77.6 ± 4.92 cm/sec, p = 0.03). A higher increase in BV values was registered when using the Precise RX stent (80.1 ± 2.01 cm/sec, p CFD simulations showed similar results. Stents have a significant impact on BV, but no effect on DS. The main factor of the blood flow acceleration is the material thickness of the stents. Therefore, different stents need different velocity criteria. Furthermore, the results of computational fluid dynamics prove that CFD can be used to simulate BV in stented silicone tubes. © Georg Thieme Verlag KG Stuttgart · New York.
Four-fluid model of PWR degraded cores
International Nuclear Information System (INIS)
Dearing, J.F.
1985-01-01
This paper describes the new two-dimensional, four-fluid fluid dynamics and heat transfer (FLUIDS) module of the MELPROG code. MELPROG is designed to give an integrated, mechanistic treatment of pressurized water reactor (PWR) core meltdown accidents from accident initiation to vessel melt-through. The code has a modular data storage and transfer structure, with each module providing the others with boundary conditions at each computational time step. Thus the FLUIDS module receives mass and energy source terms from the fuel pin module, the structures module, and the debris bed module, and radiation energy source terms from the radiation module. MELPROG, which models the reactor vessel, is also designed to model the vessel as a component in the TRAC/PF1 networking solution of a PWR reactor coolant system (RCS). The coupling between TRAC and MELPROG is implicit in the fluid dynamics of the reactor coolant (liquid water and steam) allowing an accurate simulation of the coupling between the vessel and the rest of the RCS during an accident. This paper deals specifically with the numerical model of fluid dynamics and heat transfer within the reactor vessel, which allows a much more realistic simulation (with less restrictive assumptions on physical behavior) of the accident than has been possible before
Coalescence dynamics of mobile and immobile fluid interfaces
Vakarelski, Ivan Uriev
2018-01-12
Coalescence dynamics between deformable bubbles and droplets can be dramatically affected by the mobility of the interfaces with fully tangentially mobile bubble-liquid or droplet-liquid interfaces expected to accelerate the coalescence by orders of magnitudes. However, there is a lack of systematic experimental investigations that quantify this effect. By using high speed camera imaging we examine the free rise and coalescence of small air-bubbles (100 to 1300 μm in diameter) with a liquid interface. A perfluorocarbon liquid, PP11 is used as a model liquid to investigate coalescence dynamics between fully-mobile and immobile deformable interfaces. The mobility of the bubble surface was determined by measuring the terminal rise velocity of small bubbles rising at Reynolds numbers, Re less than 0.1 and the mobility of free PP11 surface by measuring the deceleration kinetics of the small bubble toward the interface. Induction or film drainage times of a bubble at the mobile PP11-air surface were found to be more than two orders of magnitude shorter compared to the case of bubble and an immobile PP11-water interface. A theoretical model is used to illustrate the effect of hydrodynamics and interfacial mobility on the induction time or film drainage time. The results of this study are expected to stimulate the development of a comprehensive theoretical model for coalescence dynamics between two fully or partially mobile fluid interfaces.
Meta fluid dynamic as a gauge field theory
International Nuclear Information System (INIS)
Mendes, A.C.R.; Neves, C.; Oliveira, W.; Takakura, F.I.
2003-01-01
In this paper, the analog of Maxwell electromagnetism for hydrodynamic turbulence, the meta fluid dynamics, is extended in order to reformulate the meta fluid dynamics as a gauge field theory. That analogy opens up the possibility to investigate this theory as a constrained system. Having this possibility in mind, we propose a Lagrangian to describe this new theory of turbulence and, subsequently, analyze it from the symplectic point of view. From this analysis, a hidden gauge symmetry is revealed, providing a clear interpretation and meaning of the physics behind the meta fluid theory. Also, the geometrical interpretation to the gauge symmetries is discussed. (author)
Wang, Hong-Yang; Liu, Long-Shan; Cao, Hai-Ming; Li, Jun; Deng, Rong-Hai; Fu, Qian; Zhang, Huan-Xi; Fei, Ji-Guang; Wang, Chang-Xi
2017-01-01
Background: Accumulating studies on computational fluid dynamics (CFD) support the involvement of hemodynamic factors in artery stenosis. Based on a patient-specific CFD model, the present study aimed to investigate the hemodynamic characteristics of transplant renal artery stenosis (TRAS) and its alteration after stent treatment. Methods: Computed tomography angiography (CTA) data of kidney transplant recipients in a single transplant center from April 2013 to November 2014 were reviewed. The three-dimensional geometry of transplant renal artery (TRA) was reconstructed from the qualified CTA images and categorized into three groups: the normal, stenotic, and stented groups. Hemodynamic parameters including pressure distribution, velocity, wall shear stress (WSS), and mass flow rate (MFR) were extracted. The data of hemodynamic parameters were expressed as median (interquartile range), and Mann–Whitney U-test was used for analysis. Results: Totally, 6 normal, 12 stenotic, and 6 stented TRAs were included in the analysis. TRAS presented nonuniform pressure distribution, adverse pressure gradient across stenosis throat, flow vortex, and a separation zone at downstream stenosis. Stenotic arteries had higher maximal velocity and maximal WSS (2.94 [2.14, 3.30] vs. 1.06 [0.89, 1.15] m/s, 256.5 [149.8, 349.4] vs. 41.7 [37.8, 45.3] Pa at end diastole, P = 0.001; 3.25 [2.67, 3.56] vs. 1.65 [1.18, 1.72] m/s, 281.3 [184.3, 364.7] vs. 65.8 [61.2, 71.9] Pa at peak systole, P = 0.001) and lower minimal WSS and MFRs (0.07 [0.03, 0.13] vs. 0.52 [0.45, 0.67] Pa, 1.5 [1.0, 3.0] vs. 11.0 [8.0, 11.3] g/s at end diastole, P = 0.001; 0.08 [0.03, 0.19] vs. 0.70 [0.60, 0.81] Pa, 2.0 [1.3, 3.3] vs. 16.5 [13.0, 20.3] g/s at peak systole, P = 0.001) as compared to normal arteries. Stent implantation ameliorated all the alterations of the above hemodynamic factors except low WSS. Conclusions: Hemodynamic factors were significantly changed in severe TRAS. Stent implantation can restore or
Wang, Hong-Yang; Liu, Long-Shan; Cao, Hai-Ming; Li, Jun; Deng, Rong-Hai; Fu, Qian; Zhang, Huan-Xi; Fei, Ji-Guang; Wang, Chang-Xi
Accumulating studies on computational fluid dynamics (CFD) support the involvement of hemodynamic factors in artery stenosis. Based on a patient-specific CFD model, the present study aimed to investigate the hemodynamic characteristics of transplant renal artery stenosis (TRAS) and its alteration after stent treatment. Computed tomography angiography (CTA) data of kidney transplant recipients in a single transplant center from April 2013 to November 2014 were reviewed. The three-dimensional geometry of transplant renal artery (TRA) was reconstructed from the qualified CTA images and categorized into three groups: the normal, stenotic, and stented groups. Hemodynamic parameters including pressure distribution, velocity, wall shear stress (WSS), and mass flow rate (MFR) were extracted. The data of hemodynamic parameters were expressed as median (interquartile range), and Mann-Whitney U-test was used for analysis. Totally, 6 normal, 12 stenotic, and 6 stented TRAs were included in the analysis. TRAS presented nonuniform pressure distribution, adverse pressure gradient across stenosis throat, flow vortex, and a separation zone at downstream stenosis. Stenotic arteries had higher maximal velocity and maximal WSS (2.94 [2.14, 3.30] vs. 1.06 [0.89, 1.15] m/s, 256.5 [149.8, 349.4] vs. 41.7 [37.8, 45.3] Pa at end diastole, P= 0.001; 3.25 [2.67, 3.56] vs. 1.65 [1.18, 1.72] m/s, 281.3 [184.3, 364.7] vs. 65.8 [61.2, 71.9] Pa at peak systole, P= 0.001) and lower minimal WSS and MFRs (0.07 [0.03, 0.13] vs. 0.52 [0.45, 0.67] Pa, 1.5 [1.0, 3.0] vs. 11.0 [8.0, 11.3] g/s at end diastole, P= 0.001; 0.08 [0.03, 0.19] vs. 0.70 [0.60, 0.81] Pa, 2.0 [1.3, 3.3] vs. 16.5 [13.0, 20.3] g/s at peak systole, P= 0.001) as compared to normal arteries. Stent implantation ameliorated all the alterations of the above hemodynamic factors except low WSS. Hemodynamic factors were significantly changed in severe TRAS. Stent implantation can restore or ameliorate deleterious change of hemodynamic
Improving coal flotation recovery using computational fluid dynamics
Energy Technology Data Exchange (ETDEWEB)
Peter Koh [CSIRO Minerals (Australia)
2009-06-15
This work involves using the latest advances in computational fluid dynamics (CFD) to increase understanding of the hydrodynamics in coal flotation and to identify any opportunities to improve design and operation of both the Microcel column and Jameson cell. The CSIRO CFD model incorporates micro-processes from cell hydrodynamics that affect particle-bubble attachments and detachments. CFD simulation results include the liquid velocities, turbulent dissipation rates, gas hold-up, particle-bubble attachment rates and detachment rates. This work has demonstrated that CFD modelling is a cost effective means of developing an understanding of particle-bubble attachments and detachments, and can be used to identify and test potential cell or process modifications.
Computational Fluid Dynamics of Choanoflagellate Filter-Feeding
Asadzadeh, Seyed Saeed; Walther, Jens; Nielsen, Lasse Tore; Kiorboe, Thomas; Dolger, Julia; Andersen, Anders
2017-11-01
Choanoflagellates are unicellular aquatic organisms with a single flagellum that drives a feeding current through a funnel-shaped collar filter on which bacteria-sized prey are caught. Using computational fluid dynamics (CFD) we model the beating flagellum and the complex filter flow of the choanoflagellate Diaphanoeca grandis. Our CFD simulations based on the current understanding of the morphology underestimate the experimentally observed clearance rate by more than an order of magnitude: The beating flagellum is simply unable to draw enough water through the fine filter. Our observations motivate us to suggest a radically different filtration mechanism that requires a flagellar vane (sheet), and addition of a wide vane in our CFD model allows us to correctly predict the observed clearance rate.
Methods of fluid dynamics in nuclear physics
International Nuclear Information System (INIS)
Zweifel, P.F.
1984-01-01
The author summaries the contributions to an interdisciplinary workshop attended by physicist and mathematicians at the University of Catania in Italy. The purpose of the workshop was to bring together physicists and mathematicians with an interest in fluid mechanical calculations. Several applications to nuclear structure and heavy ion collisions are outlined
Cerebral venous outflow and cerebrospinal fluid dynamics
Directory of Open Access Journals (Sweden)
Clive B. Beggs
2014-12-01
Full Text Available In this review, the impact of restricted cerebral venous outflow on the biomechanics of the intracranial fluid system is investigated. The cerebral venous drainage system is often viewed simply as a series of collecting vessels channeling blood back to the heart. However there is growing evidence that it plays an important role in regulating the intracranial fluid system. In particular, there appears to be a link between increased cerebrospinal fluid (CSF pulsatility in the Aqueduct of Sylvius and constricted venous outflow. Constricted venous outflow also appears to inhibit absorption of CSF into the superior sagittal sinus. The compliance of the cortical bridging veins appears to be critical to the behaviour of the intracranial fluid system, with abnormalities at this location implicated in normal pressure hydrocephalus. The compliance associated with these vessels appears to be functional in nature and dependent on the free egress of blood out of the cranium via the extracranial venous drainage pathways. Because constricted venous outflow appears to be linked with increased aqueductal CSF pulsatility, it suggests that inhibited venous blood outflow may be altering the compliance of the cortical bridging veins.
Generalised fluid dynamics and quantum mechanics
Broer, L.J.F.
1974-01-01
A generalised theory of irrotational fluid flow is developed in hamiltonian form. This allows a systematic derivation of equations for momentum, energy and the rate of work. It is shown that a nonlinear field equation for weakly interacting condensed bosons as given by Gross1) and the one-electron
Modelling of fluid-solid interaction using two stand-alone codes
CSIR Research Space (South Africa)
Grobler, Jan H
2010-01-01
Full Text Available A method is proposed for the modelling of fluid-solid interaction in applications where fluid forces dominate. Data are transferred between two stand-alone codes: a dedicated computational fluid dynamics (CFD) code capable of free surface modelling...
Energy Technology Data Exchange (ETDEWEB)
Ham, Tae K., E-mail: taekyu8@gmail.com [Nuclear Engineering Program, The Ohio State University, Columbus, OH 43210 (United States); Arcilesi, David J., E-mail: arcilesi.1@osu.edu [Nuclear Engineering Program, The Ohio State University, Columbus, OH 43210 (United States); Kim, In H., E-mail: ihkim0730@gmail.com [Nuclear Engineering Program, The Ohio State University, Columbus, OH 43210 (United States); Sun, Xiaodong, E-mail: sun.200@osu.edu [Nuclear Engineering Program, The Ohio State University, Columbus, OH 43210 (United States); Christensen, Richard N., E-mail: rchristensen@uidaho.edu [Nuclear Engineering Program, The Ohio State University, Columbus, OH 43210 (United States); Oh, Chang H. [Idaho National Laboratory, Idaho Falls, ID 83402 (United States); Kim, Eung S., E-mail: kes7741@snu.ac.kr [Idaho National Laboratory, Idaho Falls, ID 83402 (United States)
2016-04-15
shows that flow reversal could occur due to Taylor wave expansion near the end of the depressurization, which could affect subsequent stages of the air ingress accident scenario. Therefore, to properly understand and evaluate the depressurization effects, numerical simulations are performed for the double-ended guillotine break of the Gas Turbine-Modular Helium Reactor (GT-MHR) cross vessel with a computational fluid dynamics (CFD) tool, ANSYS FLUENT. A benchmark and error quantification study of the depressurization shows that the ANSYS FLUENT model can predict the depressurization problem with relatively low uncertainty. In addition, the computational results show that the depressurization of a double-ended guillotine break behaves as an isentropic process. The observed flow oscillations near the end of the depressurization promote mixing of helium gas and air near the break. The results of the CFD analyses also show that the density-driven stratified flow, which is postulated to be the next stage of the air-ingress accident scenario, is strongly dependent on the density difference between the air–helium mixture in the containment and the helium in the reactor vessel. Therefore, the flow oscillations near the end of the depressurization stage may have a minor, yet notable, effect to slow down the air ingress due to density-driven stratified flow by decreasing the bulk density of the gas mixture in the containment through the addition of helium and increasing the bulk density in the reactor vessel through the addition of air.
Groves, Curtis Edward
2014-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics
Groves, Curtis Edward
2014-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions
TDHF and fluid dynamics of nuclear collective motions
International Nuclear Information System (INIS)
Di Nardo, M.; Di Toro, M.; Giansiracusa, G.; Lombardo, U.; Russo, G.
1983-01-01
The nuclear fluid dynamical equations are derived from a mean field description of the nuclear dynamics. Simple approximate solutions, corresponding to generalized scaling modes, are worked out for rotations and vibrations, with the evaluation of inertial parameters and flow patterns. Giant resonances are shown to be quite well described within an irrotational ansatz, which is equivalent to a lowest multipoles (up to lsub(max)=2) distortion of the momentum distribution. The physical meaning of a higher order truncation of the TDHF-Fluid-Dynamics chain is finally discussed with its implication on low lying states and on some description of the Landau damping. (author)
Hamiltonian closures in fluid models for plasmas
Tassi, Emanuele
2017-11-01
This article reviews recent activity on the Hamiltonian formulation of fluid models for plasmas in the non-dissipative limit, with emphasis on the relations between the fluid closures adopted for the different models and the Hamiltonian structures. The review focuses on results obtained during the last decade, but a few classical results are also described, in order to illustrate connections with the most recent developments. With the hope of making the review accessible not only to specialists in the field, an introduction to the mathematical tools applied in the Hamiltonian formalism for continuum models is provided. Subsequently, we review the Hamiltonian formulation of models based on the magnetohydrodynamics description, including those based on the adiabatic and double adiabatic closure. It is shown how Dirac's theory of constrained Hamiltonian systems can be applied to impose the incompressibility closure on a magnetohydrodynamic model and how an extended version of barotropic magnetohydrodynamics, accounting for two-fluid effects, is amenable to a Hamiltonian formulation. Hamiltonian reduced fluid models, valid in the presence of a strong magnetic field, are also reviewed. In particular, reduced magnetohydrodynamics and models assuming cold ions and different closures for the electron fluid are discussed. Hamiltonian models relaxing the cold-ion assumption are then introduced. These include models where finite Larmor radius effects are added by means of the gyromap technique, and gyrofluid models. Numerical simulations of Hamiltonian reduced fluid models investigating the phenomenon of magnetic reconnection are illustrated. The last part of the review concerns recent results based on the derivation of closures preserving a Hamiltonian structure, based on the Hamiltonian structure of parent kinetic models. Identification of such closures for fluid models derived from kinetic systems based on the Vlasov and drift-kinetic equations are presented, and
Energy Technology Data Exchange (ETDEWEB)
Teles, Francisco A.S.; Santos, Ebenezer F.; Dantas, Carlos C., E-mail: francisco.teles@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociencias. Departamento de Energia Nuclear; Melo, Silvio B., E-mail: sbm@cin.ufpe.br [Universidade Federal de Pernambuco (CIN/UFPE), Recife, PE (Brazil). Centro de Informatica; Santos, Valdemir A. dos, E-mail: vas@unicap.br [Universidade Catolica de Pernambuco (UNICAP), Recife, PE (Brazil). Dept. de Quimica; Lima, Emerson A.O., E-mail: emathematics@gmail.com [Universidade de Pernambuco (POLI/UPE), Recife, PE (Brazil). Escola Politecnica
2013-07-01
In this paper, fluid dynamics of Fluid Catalytic Cracking (FCC) process is investigated by means of a Cold Flow Pilot Unit (CFPU) constructed in Plexiglas to visualize operational conditions. Axial and radial catalyst profiles were measured by gamma ray transmission in the riser of the CFPU. Standard uncertainty was evaluated in volumetric solid fraction measurements for several concentrations at a given point of axial profile. Monitoring of the pressure drop in riser shows a good agreement with measured standard uncertainty data. A further evaluation of the combined uncertainty was applied to volumetric solid fraction equation using gamma transmission data. Limit condition of catalyst concentration in riser was defined and simulation with random numbers provided by MATLAB software has tested uncertainty evaluation. The Guide to the expression of Uncertainty in Measurement (GUM) is based on the law of propagation of uncertainty and on the characterization of the quantities measured by means of either a Gaussian distribution or a t-distribution, which allows measurement uncertainty to be delimited by means of a confidence interval. A variety of supplements to GUM are being developed, which will progressively enter into effect. The first of these supplements [3] describes an alternative procedure for the calculation of uncertainties: the Monte Carlo Method (MCM).MCM is an alternative to GUM, since it performs a characterization of the quantities measured based on the random sampling of the probability distribution functions. This paper also explains the basic implementation of the MCM method in MATLAB. (author)
International Nuclear Information System (INIS)
Teles, Francisco A.S.; Santos, Ebenezer F.; Dantas, Carlos C.; Melo, Silvio B.; Santos, Valdemir A. dos; Lima, Emerson A.O.
2013-01-01
In this paper, fluid dynamics of Fluid Catalytic Cracking (FCC) process is investigated by means of a Cold Flow Pilot Unit (CFPU) constructed in Plexiglas to visualize operational conditions. Axial and radial catalyst profiles were measured by gamma ray transmission in the riser of the CFPU. Standard uncertainty was evaluated in volumetric solid fraction measurements for several concentrations at a given point of axial profile. Monitoring of the pressure drop in riser shows a good agreement with measured standard uncertainty data. A further evaluation of the combined uncertainty was applied to volumetric solid fraction equation using gamma transmission data. Limit condition of catalyst concentration in riser was defined and simulation with random numbers provided by MATLAB software has tested uncertainty evaluation. The Guide to the expression of Uncertainty in Measurement (GUM) is based on the law of propagation of uncertainty and on the characterization of the quantities measured by means of either a Gaussian distribution or a t-distribution, which allows measurement uncertainty to be delimited by means of a confidence interval. A variety of supplements to GUM are being developed, which will progressively enter into effect. The first of these supplements [3] describes an alternative procedure for the calculation of uncertainties: the Monte Carlo Method (MCM).MCM is an alternative to GUM, since it performs a characterization of the quantities measured based on the random sampling of the probability distribution functions. This paper also explains the basic implementation of the MCM method in MATLAB. (author)
Energy Technology Data Exchange (ETDEWEB)
Pietrowski, Ronald L. [The Consolidated Edison Company of New York, Inc., New York, NY (United States)
2010-11-15
In 2009, Consolidated Edison's East River heat recovery steam generator units 10 and 20 both experienced economizer tube failures which forced each unit offline. Extensive inspections indicated that the primary failure mechanism was flow-accelerated corrosion (FAC). The inspections revealed evidence of active FAC in all 7 of the economizer modules, with the most advanced stages of degradation being noted in center modules. Analysis determined that various factors were influencing and enabling this corrosion mechanism. Computational fluid dynamics and full-scale air flow testing showed very turbulent feedwater flow prevalent in areas of the modules corresponding with the pattern of FAC damage observed through inspection. It also identified preferential flow paths, with higher flow velocities, in certain tubes directly under the inlet nozzles. A FAC risk analysis identified more general susceptibility to FAC in the areas experiencing damage due to feedwater pH, operating temperatures, local shear fluid forces, and the chemical composition of the original materials of construction. These, in combination, were the primary root causes of the failures. Corrective actions were identified, analyzed, and implemented, resulting in equipment replacements and repairs. (orig.)
Some fluid dynamical problems in astrophysics
International Nuclear Information System (INIS)
Drury, L.O.
1979-06-01
Certain aspects of the cosmic turbulence theory of galaxy formation are considered. Using a generalized form of a transformation due to Kurskov and Ozernoi I exhibit a formal equivalence between the problem of turbulence in an expanding universe containing a coupled matter-radiation fluid and in a non-expanding fluid with a time-dependent viscosity. This enables me to extend the Olson-Sachs formula for vorticity generation in cosmic turbulence to a matter-radiation fluid and to show that, the turbulence can not have an inertial subrange at the epoch of recombination. The linear inviscid stability of axisymmetric flows is considered. Using the projective form of the perturbation equations I obtain a simple proof of a generalised Richardson criterion which holds for all boundary conditions which do not actively feed energy to the perturbation. Further analysis shows the uniform density and pressure discs with self-similar rotation laws, are stable to perturbations which are incompressible in character, but that instability is a generic feature of differentially rotating compressible systems. The problem of numerically solving boundary value problems of the Orr-Sommerfeld type by shooting methods is considered, and a unifying geometrical interpretation of the principal methods is described. (author)
Geometrical approach to fluid models
International Nuclear Information System (INIS)
Kuvshinov, B.N.; Schep, T.J.
1997-01-01
Differential geometry based upon the Cartan calculus of differential forms is applied to investigate invariant properties of equations that describe the motion of continuous media. The main feature of this approach is that physical quantities are treated as geometrical objects. The geometrical notion of invariance is introduced in terms of Lie derivatives and a general procedure for the construction of local and integral fluid invariants is presented. The solutions of the equations for invariant fields can be written in terms of Lagrange variables. A generalization of the Hamiltonian formalism for finite-dimensional systems to continuous media is proposed. Analogously to finite-dimensional systems, Hamiltonian fluids are introduced as systems that annihilate an exact two-form. It is shown that Euler and ideal, charged fluids satisfy this local definition of a Hamiltonian structure. A new class of scalar invariants of Hamiltonian fluids is constructed that generalizes the invariants that are related with gauge transformations and with symmetries (Noether). copyright 1997 American Institute of Physics
Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers
Energy Technology Data Exchange (ETDEWEB)
Garcia, Julio Enrique [Univ. of California, Berkeley, CA (United States)
2003-01-01
Injection of carbon dioxide (CO_{2}) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO_{2} will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO_{2} and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO_{2}-H_{2}O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO2. The basic problem of CO_{2} injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO_{2} injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO_{2} injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO_{2}. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO_{2} into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO_{2}) the viscosity of carbon
Prandtl, Ludwig
1953-01-01
Equilibrium of liquids and gases ; kinematics : dynamics of frictionless fluids ; motion of viscous fluids : turbulence : fluid resistance : practical applications ; flow with appreciable volume changes (dynamics of gases) ; miscellaneous topics.
Atomistic Modeling of the Fluid-Solid Interface in Simple Fluids
Hadjiconstantinou, Nicolas; Wang, Gerald
2017-11-01
Fluids can exhibit pronounced structuring effects near a solid boundary, typically manifested in a layered structure that has been extensively shown to directly affect transport across the interface. We present and discuss several results from molecular-mechanical modeling and molecular-dynamics (MD) simulations aimed at characterizing the structure of the first fluid layer directly adjacent to the solid. We identify a new dimensionless group - termed the Wall number - which characterizes the degree of fluid layering, by comparing the competing effects of wall-fluid interaction and thermal energy. We find that in the layering regime, several key features of the first layer layer - including its distance from the solid, its width, and its areal density - can be described using mean-field-energy arguments, as well as asymptotic analysis of the Nernst-Planck equation. For dense fluids, the areal density and the width of the first layer can be related to the bulk fluid density using a simple scaling relation. MD simulations show that these results are broadly applicable and robust to the presence of a second confining solid boundary, different choices of wall structure and thermalization, strengths of fluid-solid interaction, and wall geometries.
Fluid dynamics of the shock wave reactor
Masse, Robert Kenneth
2000-10-01
High commercial incentives have driven conventional olefin production technologies to near their material limits, leaving the possibility of further efficiency improvements only in the development of entirely new techniques. One strategy known as the Shock Wave Reactor, which employs gas dynamic processes to circumvent limitations of conventional reactors, has been demonstrated effective at the University of Washington. Preheated hydrocarbon feedstock and a high enthalpy carrier gas (steam) are supersonically mixed at a temperature below that required for thermal cracking. Temperature recovery is then effected via shock recompression to initiate pyrolysis. The evolution to proof-of-concept and analysis of experiments employing ethane and propane feedstocks are presented. The Shock Wave Reactor's high enthalpy steam and ethane flows severely limit diagnostic capability in the proof-of-concept experiment. Thus, a preliminary blow down supersonic air tunnel of similar geometry has been constructed to investigate recompression stability and (especially) rapid supersonic mixing necessary for successful operation of the Shock Wave Reactor. The mixing capabilities of blade nozzle arrays are therefore studied in the air experiment and compared with analytical models. Mixing is visualized through Schlieren imaging and direct photography of condensation in carbon dioxide injection, and interpretation of visual data is supported by pressure measurement and flow sampling. The influence of convective Mach number is addressed. Additionally, thermal behavior of a blade nozzle array is analyzed for comparison to data obtained in the course of succeeding proof-of-concept experiments. Proof-of-concept is naturally succeeded by interest in industrial adaptation of the Shock Wave Reactor, particularly with regard to issues involving the scaling and refinement of the shock recompression. Hence, an additional, variable geometry air tunnel has been constructed to study the parameter
Effect of centrifugation on dynamic susceptibility of magnetic fluids
International Nuclear Information System (INIS)
Pshenichnikov, Alexander; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey
2017-01-01
Highlights: • Six samples of magnetic fluid were obtained by centrifuging two base ferrocolloids. • Aggregates in magnetic fluids are main reason of dynamic susceptibility dispersion. • Centrifugation is an effective way of changing the dynamic susceptibility. - Abstract: The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1–10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.
Effect of centrifugation on dynamic susceptibility of magnetic fluids
Energy Technology Data Exchange (ETDEWEB)
Pshenichnikov, Alexander, E-mail: pshenichnikov@icmm.ru; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey
2017-06-15
Highlights: • Six samples of magnetic fluid were obtained by centrifuging two base ferrocolloids. • Aggregates in magnetic fluids are main reason of dynamic susceptibility dispersion. • Centrifugation is an effective way of changing the dynamic susceptibility. - Abstract: The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1–10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.
Study of blast wave overpressures using the computational fluid dynamics
Directory of Open Access Journals (Sweden)
M. L. COSTA NETO
Full Text Available ABSTRACT The threats of bomb attacks by criminal organizations and accidental events involving chemical explosives are a danger to the people and buildings. Due the severity of these issues and the need of data required for a safety design, more research is required about explosions and shock waves. This paper presents an assessment of blast wave overpressures using a computational fluid dynamics software. Analyses of phenomena as reflection of shock waves and channeling effects were done and a comparison between numerical results and analytical predictions has been executed, based on the simulation on several models. The results suggest that the common analytical predictions aren’t accurate enough for an overpressure analysis in small stand-off distances and that poorly designed buildings may increase the shock wave overpressures due multiple blast wave reflections, increasing the destructive potential of the explosions.
Fluid dynamics of airlift reactors; Two-phase friction factors
Energy Technology Data Exchange (ETDEWEB)
Garcia-Calvo, E. (Ingenieria Quimica, Facultad de Ciencias, Univ. de Alcala, 28871 Alcala de Henares (Spain))
1992-10-01
Airlift loop reactors (ALR) are useful equipment in biotechnology in a wide range of uses, however their design is not a simple task since prediction of fluid dynamics in these reactors is difficult. Most of the different strategies found in the literature in order to predict two main parameters, namely, gas holdup and liquid velocity, are based on energy or momentum balances. The balances include frictional effects, and it is not yet clear how to predict these effects. The objective of this article is to show how criteria corresponding to one-phase flow may be used in order to predict the frictional effects in ALRs. Based on a model proposed by Garcia-Calvo (1989, 1991), we simulated experimental data of liquid velocity profiles and gas holdup obtained by Young et al. in an ALR with two different configurations. Experimental data obtained in other three external ALRs with different shapes and sizes are also simulated.
Dynamics of Biomembranes: Effect of the Bulk Fluid
Bonito, A.
2011-01-01
We derive a biomembrane model consisting of a fluid enclosed by a lipid membrane. The membrane is characterized by its Canham-Helfrich energy (Willmore energy with area constraint) and acts as a boundary force on the Navier-Stokes system modeling an incompressible fluid. We give a concise description of the model and of the associated numerical scheme. We provide numerical simulations with emphasis on the comparisons between different types of flow: the geometric model which does not take into account the bulk fluid and the biomembrane model for two different regimes of parameters. © EDP Sciences, 2011.
Resolving Neighbourhood Relations in a Parallel Fluid Dynamic Solver
Frisch, Jerome
2012-06-01
Computational Fluid Dynamics simulations require an enormous computational effort if a physically reasonable accuracy should be reached. Therefore, a parallel implementation is inevitable. This paper describes the basics of our implemented fluid solver with a special aspect on the hierarchical data structure, unique cell and grid identification, and the neighbourhood relations in-between grids on different processes. A special server concept keeps track of every grid over all processes while minimising data transfer between the nodes. © 2012 IEEE.
Self-study manual for introduction to computational fluid dynamics
Nabatov, Andrey
2017-01-01
Computational Fluid Dynamics (CFD) is the branch of Fluid Mechanics and Computational Physics that plays a decent role in modern Mechanical Engineering Design process due to such advantages as relatively low cost of simulation comparing with conduction of real experiment, an opportunity to easily correct the design of a prototype prior to manufacturing of the final product and a wide range of application: mixing, acoustics, cooling and aerodynamics. This makes CFD particularly and Computation...
Lagrangian particle method for compressible fluid dynamics
Samulyak, Roman; Wang, Xingyu; Chen, Hsin-Chiang
2018-06-01
A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface/multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremal points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free interfaces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order. The method is generalizable to coupled hyperbolic-elliptic systems. Numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.
Nonlinear transport processes and fluid dynamics: Cylindrical Couette flow of Lennard-Jones fluids
International Nuclear Information System (INIS)
Khayat, R.E.; Eu, B.C.
1988-01-01
In this paper we report on calculations of flow profiles for cylindrical Couette flow of a Lennard-Jones fluid. The flow is subjected to a temperature gradient and thermoviscous effects are taken into consideration. We apply the generalized fluid dynamic equations which are provided by the modified moment method for the Boltzmann equation reported previously. The results of calculations are in good agreement with the Monte Carlo direct simulation method by K. Nanbu [Phys. Fluids 27, 2632 (1984)] for most of Knudsen numbers for which the simulation data are available
Fluid Methods for Modeling Large, Heterogeneous Networks
National Research Council Canada - National Science Library
Towsley, Don; Gong, Weibo; Hollot, Kris; Liu, Yong; Misra, Vishal
2005-01-01
.... The resulting fluid models were used to develop novel active queue management mechanisms resulting in more stable TCP performance and novel rate controllers for the purpose of providing minimum rate...
Unsteady computational fluid dynamics in front crawl swimming.
Samson, Mathias; Bernard, Anthony; Monnet, Tony; Lacouture, Patrick; David, Laurent
2017-05-01
The development of codes and power calculations currently allows the simulation of increasingly complex flows, especially in the turbulent regime. Swimming research should benefit from these technological advances to try to better understand the dynamic mechanisms involved in swimming. An unsteady Computational Fluid Dynamics (CFD) study is conducted in crawl, in order to analyse the propulsive forces generated by the hand and forearm. The k-ω SST turbulence model and an overset grid method have been used. The main objectives are to analyse the evolution of the hand-forearm propulsive forces and to explain this relative to the arm kinematics parameters. In order to validate our simulation model, the calculated forces and pressures were compared with several other experimental and numerical studies. A good agreement is found between our results and those of other studies. The hand is the segment that generates the most propulsive forces during the aquatic stroke. As the pressure component is the main source of force, the orientation of the hand-forearm in the absolute coordinate system is an important kinematic parameter in the swimming performance. The propulsive forces are biggest when the angles of attack are high. CFD appears as a very valuable tool to better analyze the mechanisms of swimming performance and offers some promising developments, especially for optimizing the performance from a parametric study.
Grain scale observations of stick-slip dynamics in fluid saturated granular fault gouge
Johnson, P. A.; Dorostkar, O.; Guyer, R. A.; Marone, C.; Carmeliet, J.
2017-12-01
We are studying granular mechanics during slip. In the present work, we conduct coupled computational fluid dynamics (CFD) and discrete element method (DEM) simulations to study grain scale characteristics of slip instabilities in fluid saturated granular fault gouge. The granular sample is confined with constant normal load (10 MPa), and sheared with constant velocity (0.6 mm/s). This loading configuration is chosen to promote stick-slip dynamics, based on a phase-space study. Fluid is introduced in the beginning of stick phase and characteristics of slip events i.e. macroscopic friction coefficient, kinetic energy and layer thickness are monitored. At the grain scale, we monitor particle coordination number, fluid-particle interaction forces as well as particle and fluid kinetic energy. Our observations show that presence of fluids in a drained granular fault gouge stabilizes the layer in the stick phase and increases the recurrence time. In saturated model, we observe that average particle coordination number reaches higher values compared to dry granular gouge. Upon slip, we observe that a larger portion of the granular sample is mobilized in saturated gouge compared to dry system. We also observe that regions with high particle kinetic energy are correlated with zones of high fluid motion. Our observations highlight that spatiotemporal profile of fluid dynamic pressure affects the characteristics of slip instabilities, increasing macroscopic friction coefficient drop, kinetic energy release and granular layer compaction. We show that numerical simulations help characterize the micromechanics of fault mechanics.
BMS3 invariant fluid dynamics at null infinity
Penna, Robert F.
2018-02-01
We revisit the boundary dynamics of asymptotically flat, three dimensional gravity. The boundary is governed by a momentum conservation equation and an energy conservation equation, which we interpret as fluid equations, following the membrane paradigm. We reformulate the boundary’s equations of motion as Hamiltonian flow on the dual of an infinite-dimensional, semi-direct product Lie algebra equipped with a Lie–Poisson bracket. This gives the analogue for boundary fluid dynamics of the Marsden–Ratiu–Weinstein formulation of the compressible Euler equations on a manifold, M, as Hamiltonian flow on the dual of the Lie algebra of \
Optics and fluid dynamics department annual progress report for 1992
International Nuclear Information System (INIS)
Lading, L.; Lynov, J.P.; Skaarup, B.
1993-01-01
Research in the Optics and FLuid Dynamics Department is performed within two sections. The Optics Section has activities within (a) optical materials, (b) quasielastic light scattering and diagnostics in solids, fluids and plasmas, and (c) optical and electronic information processing. The Continuum Physics Section performs (a) studies of nonlinear dynamical processes in continuum systems, (b) investigations of other problems in fusion plasma physics, and (c) develops pellet injectors for fusion experiments. Most of these activities are done in connection with the Euratom Association. A summary of activities in 1992 is presented. (au) (25 ills., 36 refs.)
Free vibration analysis of multi-span pipe conveying fluid with dynamic stiffness method
International Nuclear Information System (INIS)
Li Baohui; Gao Hangshan; Zhai Hongbo; Liu Yongshou; Yue Zhufeng
2011-01-01
Research highlights: → The dynamic stiffness method was proposed to analysis the free vibration of multi-span pipe conveying fluid. → The main advantage of the proposed method is that it can hold a high precision even though the element size is large. → The flowing fluid can weaken the pipe stiffness, when the fluid velocity increases, the natural frequencies of pipe are decreasing. - Abstract: By taking a pipe as Timoshenko beam, in this paper the original 4-equation model of pipe conveying fluid was modified by taking the dynamic effects of fluid into account. The shape function that always used in the finite element method was replaced by the exact wave solution of the modified four equations. And then the dynamic stiffness was deduced for the free vibration of pipe conveying fluid. The proposed method was validated by comparing the results of critical velocity with analytical solution for a simply supported pipe at both ends. In the example, the proposed method was applied to calculate the first three natural frequencies of a three span pipe with twelve meters long in three different cases. The results of natural frequency for the pipe conveying stationary fluid fitted well with that calculated by finite element software Abaqus. It was shown that the dynamic stiffness method can still hold high precision even though the element's size was quite large. And this is the predominant advantage of the proposed method comparing with conventional finite element method.
International Nuclear Information System (INIS)
Faybishenko, B.; Doughty, C.; Geller, J.
1998-07-01
Understanding subsurface flow and transport processes is critical for effective assessment, decision-making, and remediation activities for contaminated sites. However, for fluid flow and contaminant transport through fractured vadose zones, traditional hydrogeological approaches are often found to be inadequate. In this project, the authors examine flow and transport through a fractured vadose zone as a deterministic chaotic dynamical process, and develop a model of it in these terms. Initially, the authors examine separately the geometric model of fractured rock and the flow dynamics model needed to describe chaotic behavior. Ultimately they will put the geometry and flow dynamics together to develop a chaotic-dynamical model of flow and transport in a fractured vadose zone. They investigate water flow and contaminant transport on several scales, ranging from small-scale laboratory experiments in fracture replicas and fractured cores, to field experiments conducted in a single exposed fracture at a basalt outcrop, and finally to a ponded infiltration test using a pond of 7 by 8 m. In the field experiments, they measure the time-variation of water flux, moisture content, and hydraulic head at various locations, as well as the total inflow rate to the subsurface. Such variations reflect the changes in the geometry and physics of water flow that display chaotic behavior, which they try to reconstruct using the data obtained. In the analysis of experimental data, a chaotic model can be used to predict the long-term bounds on fluid flow and transport behavior, known as the attractor of the system, and to examine the limits of short-term predictability within these bounds. This approach is especially well suited to the need for short-term predictions to support remediation decisions and long-term bounding studies. View-graphs from ten presentations made at the annual meeting held December 3--4, 1997 are included in an appendix to this report
Optimization of morphing flaps based on fluid structure interaction modeling
DEFF Research Database (Denmark)
Barlas, Athanasios; Akay, Busra
2018-01-01
This article describes the design optimization of morphing trailing edge flaps for wind turbines with ‘smart blades’. A high fidelity Fluid Structure Interaction (FSI) simulation framework is utilized, comprised of 2D Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) models....... A coupled aero-structural simulation of a 10% chordwise length morphing trailing edge flap for a 4 MW wind turbine rotor is carried out and response surfaces are produced with respect to the flap internal geometry design parameters for the design conditions. Surrogate model based optimization is applied...
Theoretical models for supercritical fluid extraction.
Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan
2012-08-10
For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. Copyright © 2012 Elsevier B.V. All rights reserved.
Equilibrium and nonequilibrium dynamics of soft sphere fluids.
Ding, Yajun; Mittal, Jeetain
2015-07-14
We use computer simulations to test the freezing-point scaling relationship between equilibrium transport coefficients (self-diffusivity, viscosity) and thermodynamic parameters for soft sphere fluids. The fluid particles interact via the inverse-power potential (IPP), and the particle softness is changed by modifying the exponent of the distance-dependent potential term. In the case of IPP fluids, density and temperature are not independent variables and can be combined to obtain a coupling parameter to define the thermodynamic state of the system. We find that the rescaled coupling parameter, based on its value at the freezing point, can approximately collapse the diffusivity and viscosity data for IPP fluids over a wide range of particle softness. Even though the collapse is far from perfect, the freezing-point scaling relationship provides a convenient and effective way to compare the structure and dynamics of fluid systems with different particle softness. We further show that an alternate scaling relationship based on two-body excess entropy can provide an almost perfect collapse of the diffusivity and viscosity data below the freezing transition. Next, we perform nonequilibrium molecular dynamics simulations to calculate the shear-dependent viscosity and to identify the distinct role of particle softness in underlying structural changes associated with rheological properties. Qualitatively, we find a similar shear-thinning behavior for IPP fluids with different particle softness, though softer particles exhibit stronger shear-thinning tendency. By investigating the distance and angle-dependent pair correlation functions in these systems, we find different structural features in the case of IPP fluids with hard-sphere like and softer particle interactions. Interestingly, shear-thinning in hard-sphere like fluids is accompanied by enhanced translational order, whereas softer fluids exhibit loss of order with shear. Our results provide a systematic evaluation
Analytical, Computational Fluid Dynamics and Flight Dynamics of Coandă MAV
Djojodihardjo, H.; Ahmed, RI
2016-11-01
The paper establishes the basic working relationships among various relevant variables and parameters governing the aerodynamics forces and performance measures of Coandă MAV in hover and translatory motion. With such motivation, capitalizing on the basic fundamental principles, the Fluid Dynamics and Flight Mechanics of semi-spherical Coandă MAV configurations are revisited and analyzed as a baseline. To gain better understanding on the principle of Coandă MAV lift generation, a mathematical model for a spherical Coandă MAV is developed and analyzed from first physical principles. To gain further insight into the prevailing flow field around a Coandă MAV, as well as to verify the theoretical prediction presented in the work, a computational fluid dynamic CFD simulation for a Coandă MAV generic model are elaborated using commercial software FLUENT®. In addition, the equation of motion for translatory motion of Coandă MAV is elaborated. The mathematical model and derived performance measures are shown to be capable in describing the physical phenomena of the flow field of the semi-spherical Coandă MAV. The relationships between the relevant parameters of the mathematical model of the Coandă MAV to the forces acting on it are elaborated subsequently.
Partial chemical equilibrium in fluid dynamics
International Nuclear Information System (INIS)
Ramshaw, J.D.
1980-01-01
An analysis is given for the flow of a multicomponent fluid in which an arbitrary number of chemical reactions may occur, some of which are in equilibrium while the others proceed kinetically. The primitive equations describing this situation are inconvenient to use because the progress rates omega-dot/sub s/ for the equilibrium reactions are determined implicitly by the associated equilibrium constraint conditions. Two alternative equivalent equation systems that are more pleasant to deal with are derived. In the first system, the omega-dot/sub s/ are eliminated by replacing the transport equations for the chemical species involved in the equilibrium reactions with transport equations for the basic components of which these species are composed. The second system retains the usual species transport equations, but eliminates the nonlinear algebraic equilibrium constraint conditions by deriving an explicit expression for the omega-dot/sub s/. Both systems are specialized to the case of an ideal gas mixture. Considerations involved in solving these equation systems numerically are discussed briefly
Dynamical stability in fluid-structure interaction
International Nuclear Information System (INIS)
Planchard, J.; Thomas, B.
1991-01-01
The aim of the paper is to investigate the dynamical stability of a group of elastic tubes placed in a cross-flow which obeys to the Navier-Stokes equations. The stability of this coupled system is deduced from the study of a quadratic eigenvalue problem arising in the linearized equations. The instability occurs when the real part of one of the eigenvalues becomes positive; the steady state is then replaced by a time-periodic state which is stable (Hopf bifurcation phenomenon). Some numerical methods for solving the quadratic eigenvalue problem are described [fr
Dynamics of polymeric liquids. Vol. 1, 2nd Ed.: Fluid mechanics
International Nuclear Information System (INIS)
Bird, R.B.; Armstrong, R.C.; Hassager, O.
1987-01-01
This book examines Newtonian liquids and polymer fluid mechanics. It begins with a review of the main ideas of fluid dynamics as well as key points of Newtonian fluids. Major revisions include extensive updating of all material and a greater emphasis on fluid dynamics problem solving. It presents summaries of experiments describing the difference between polymeric and simple fluids. In addition, it traces, roughly in historical order, various methods for solving polymer fluid dynamics problems
Molecular Dynamics Simulation of Binary Fluid in a Nanochannel
International Nuclear Information System (INIS)
Mullick, Shanta; Ahluwalia, P. K.; Pathania, Y.
2011-01-01
This paper presents the results from a molecular dynamics simulation of binary fluid (mixture of argon and krypton) in the nanochannel flow. The computational software LAMMPS is used for carrying out the molecular dynamics simulations. Binary fluids of argon and krypton with varying concentration of atom species were taken for two densities 0.65 and 0.45. The fluid flow takes place between two parallel plates and is bounded by horizontal walls in one direction and periodic boundary conditions are imposed in the other two directions. To drive the flow, a constant force is applied in one direction. Each fluid atom interacts with other fluid atoms and wall atoms through Week-Chandler-Anderson (WCA) potential. The velocity profile has been looked at for three nanochannel widths i.e for 12σ, 14σ and 16σ and also for the different concentration of two species. The velocity profile of the binary fluid predicted by the simulations agrees with the quadratic shape of the analytical solution of a Poiseuille flow in continuum theory.
A microsphere suspension model of metamaterial fluids
Directory of Open Access Journals (Sweden)
Qian Duan
2017-05-01
Full Text Available Drawing an analogy to the liquid phase of natural materials, we theoretically propose a microsphere suspension model to realize a metamaterial fluid with artificial electromagnetic indexes. By immersing high-ε, micrometer-sized dielectric spheres in a low-ε insulating oil, the structured fluid exhibits liquid-like properties from dispersing phase as well as the isotropic negative electromagnetic parameters caused by Mie resonances from dispersed microspheres. The work presented here will benefit the development of structured fluids toward metamaterials.
Traeger, Brad; Srivatsa, Sanjay S.; Beussman, Kevin M.; Wang, Yechun; Suzen, Yildirim B.; Rybicki, Frank J.; Mazur, Wojciech; Miszalski-Jamka, Tomasz
2016-04-01
Aortic stenosis is the most common valvular heart disease. Assessing the contribution of the valve as a portion to total ventricular load is essential for the aging population. A CT scan for one patient was used to create one in vivo tricuspid aortic valve geometry and assessed with computational fluid dynamics (CFD). CFD simulated the pressure, velocity, and flow rate, which were used to assess the Gorlin formula and continuity equation, current clinical diagnostic standards. The results demonstrate an underestimation of the anatomic orifice area (AOA) by Gorlin formula and overestimation of AOA by the continuity equation, using peak velocities, as would be measured clinically by Doppler echocardiography. As a result, we suggest that the Gorlin formula is unable to achieve the intended estimation of AOA and largely underestimates AOA at the critical low-flow states present in heart failure. The disparity in the use of echocardiography with the continuity equation is due to the variation in velocity profile between the outflow tract and the valve orifice. Comparison of time-averaged orifice areas by Gorlin and continuity with instantaneous orifice areas by planimetry can mask the errors of these methods, which is a result of the assumption that the blood flow is inviscid.
Dynamic analysis of multibody system immersed in a fluid medium
International Nuclear Information System (INIS)
Wu, R.W.; Liu, L.K.; Levy, S.
1977-01-01
This paper is concerned primarily with the development and evaluation of an analysis method for the reponse prediction of immersed systems to seismic and other dynamic excitations. For immersed multibody systems, the hydrodynamic interaction causes coupled motion among the solid bodies. Also, under intense external excitations, impact between bodies may occur. The complex character of such systems inhibit the use of conventional analytical solutions in closed form. Therefore, approximate numerical schemes have been devised. For an incompressible, inviscid fluid, the hydrodynamic forces exerted by the fluid on solid bodies are determined to be linearly proportional to the acceleration of the vibrating solid bodies; i.e., the presence of the fluid only affects the inertia of the solid body system. A finite element computer program has been developed for computing this hydrodynamic (or added) mass effect. This program can be used to determine the hydrodynamic mass of a two-dimensional fluid field with solid bodies of arbitrary geometry. Triangular elements and linear pressure interpolation function are used to discretize the fluid region. The component element method is used to determine the dynamic response of the multibody system to externally applied mechanical loading or support excitation. The present analysis method for predicting the dynamic response of submerged multibody system is quite general and pertains to any number of solid bodies. However in this paper, its application is demonstrated only for 4 and 25 body systems. (Auth.)
Experimental and computational fluid dynamics studies of mixing of complex oral health products
Cortada-Garcia, Marti; Migliozzi, Simona; Weheliye, Weheliye Hashi; Dore, Valentina; Mazzei, Luca; Angeli, Panagiota; ThAMes Multiphase Team
2017-11-01
Highly viscous non-Newtonian fluids are largely used in the manufacturing of specialized oral care products. Mixing often takes place in mechanically stirred vessels where the flow fields and mixing times depend on the geometric configuration and the fluid physical properties. In this research, we study the mixing performance of complex non-Newtonian fluids using Computational Fluid Dynamics models and validate them against experimental laser-based optical techniques. To this aim, we developed a scaled-down version of an industrial mixer. As test fluids, we used mixtures of glycerol and a Carbomer gel. The viscosities of the mixtures against shear rate at different temperatures and phase ratios were measured and found to be well described by the Carreau model. The numerical results were compared against experimental measurements of velocity fields from Particle Image Velocimetry (PIV) and concentration profiles from Planar Laser Induced Fluorescence (PLIF).
Simulating coupled dynamics of a rigid-flexible multibody system and compressible fluid
Hu, Wei; Tian, Qiang; Hu, HaiYan
2018-04-01
As a subsequent work of previous studies of authors, a new parallel computation approach is proposed to simulate the coupled dynamics of a rigid-flexible multibody system and compressible fluid. In this approach, the smoothed particle hydrodynamics (SPH) method is used to model the compressible fluid, the natural coordinate formulation (NCF) and absolute nodal coordinate formulation (ANCF) are used to model the rigid and flexible bodies, respectively. In order to model the compressible fluid properly and efficiently via SPH method, three measures are taken as follows. The first is to use the Riemann solver to cope with the fluid compressibility, the second is to define virtual particles of SPH to model the dynamic interaction between the fluid and the multibody system, and the third is to impose the boundary conditions of periodical inflow and outflow to reduce the number of SPH particles involved in the computation process. Afterwards, a parallel computation strategy is proposed based on the graphics processing unit (GPU) to detect the neighboring SPH particles and to solve the dynamic equations of SPH particles in order to improve the computation efficiency. Meanwhile, the generalized-alpha algorithm is used to solve the dynamic equations of the multibody system. Finally, four case studies are given to validate the proposed parallel computation approach.
Turbulent Dynamics of Partially-Ionized Fluids in 2D
Benavides, S.; Flierl, G.
2017-12-01
Ionization occurs in the upper atmospheres of Hot Jupiters, as well asthe interiors of Gas Giants, leading to Magnetohydrodynamic (MHD) effectswhich can significantly alter the flow. The interactions of these MHDregions with the non-ionized atmosphere will occur in transitionregions where only a fraction of the fluid is ionized. We areexploring the dynamics of Partially-Ionized MHD (PIMHD) using a twofluid model - one neutral and one ionized and subject to MHD -coupled by a collision, or Joule heating, term proportional to thedifference in velocities. By varying both the ionization fraction aswell as the collision frequency (coupling), we examine the parameterspace of 2D PIMHD turbulence in hopes of better understanding itscharacteristics in certain, possibly realistic, regimes. We payparticular attention to the Joule heating term and its role indissipation and energy exchange between the two species. Thisknowledge will serve as the basis to further studies in which we lookat, in a more realistic setting, the PIMHD dynamics in Gas Giant orHot Jupiter atmospheres.
APS presents prizes in fluid dynamics and plasma physics
International Nuclear Information System (INIS)
Anon.
1992-01-01
This article reviews the presentation of the American Physical Society awards in fluid dynamics and plasma physics. The recipient of the plasma physics James Clerk Maxwell Prize was John M. Green for contributions to the theory of magnetohydrodynamics equilibria and ideal and resistive instabilities, for discovering the inverse scattering transform leading to soliton solutions of many nonlinear partial differential equations and for inventing the residue method of determining the transition to global chaos. The excellence in Plasma Physics Research Award was presented to Nathaniel A. Fisch for theoretical investigations of noninductive current generation in toroidally confined plasma. Wim Pieter Leemans received the Simon Ramo Award for experimental and simulational contributions to laser-plasma physics. William R. Sears was given the 1992 Fuid Dynamics Prize for contributions to the study of steady and unsteady aerodynamics, aeroacoustics, magnetoaerodynamics,and wind tunnel design. William C. Reynolds received the Otto Laporte Award for experimental, theoretical, and computational work in turbulence modeling and control and leadership in direct numerical simulation and large eddy simulation
The fluid dynamics of deep-sea mining
Peacock, Thomas; Rzeznik, Andrew
2017-11-01
With vast mineral deposits on the ocean floor, deep-sea nodule mining operations are expected to commence in the next decade. Among several fundamental fluid dynamics problems, this could involve plans for dewatering plumes to be released into the water column by surface processing vessels. To study this scenario, we consider the effects of non-uniform, realistic stratifications on forced compressible plumes with finite initial size. The classical plume model is developed to take into account the influence of thermal conduction through the dewatering pipe and also compressibility effects, for which a dimensionless number is introduced to determine their importance compared to the background stratification. Among other things, our results show that small-scale features of a realistic stratification can have a large effect on plume dynamics compared to smoothed profiles and that for any given set of environmental parameters there is a discharge flow rate that minimizes the plume vertical extent. Our findings are put in the context of nodule mining plumes for which the rapid and efficient re-sedimentation of waste material has important environmental consequences.
Review of computational fluid dynamics (CFD) researches on nano fluid flow through micro channel
Dewangan, Satish Kumar
2018-05-01
Nanofluid is becoming a promising heat transfer fluids due to its improved thermo-physical properties and heat transfer performance. Micro channel heat transfer has potential application in the cooling high power density microchips in CPU system, micro power systems and many such miniature thermal systems which need advanced cooling capacity. Use of nanofluids enhances the effectiveness of t=scu systems. Computational Fluid Dynamics (CFD) is a very powerful tool in computational analysis of the various physical processes. It application to the situations of flow and heat transfer analysis of the nano fluids is catching up very fast. Present research paper gives a brief account of the methodology of the CFD and also summarizes its application on nano fluid and heat transfer for microchannel cases.
Landau fluid model for weakly nonlinear dispersive magnetohydrodynamics
International Nuclear Information System (INIS)
Passot, T.; Sulem, P. L.
2005-01-01
In may astrophysical plasmas such as the solar wind, the terrestrial magnetosphere, or in the interstellar medium at small enough scales, collisions are negligible. When interested in the large-scale dynamics, a hydrodynamic approach is advantageous not only because its numerical simulations is easier than of the full Vlasov-Maxwell equations, but also because it provides a deep understanding of cross-scale nonlinear couplings. It is thus of great interest to construct fluid models that extended the classical magnetohydrodynamic (MHD) equations to collisionless situations. Two ingredients need to be included in such a model to capture the main kinetic effects: finite Larmor radius (FLR) corrections and Landau damping, the only fluid-particle resonance that can affect large scales and can be modeled in a relatively simple way. The Modelization of Landau damping in a fluid formalism is hardly possible in the framework of a systematic asymptotic expansion and was addressed mainly by means of parameter fitting in a linearized setting. We introduced a similar Landau fluid model but, that has the advantage of taking dispersive effects into account. This model properly describes dispersive MHD waves in quasi-parallel propagation. Since, by construction, the system correctly reproduces their linear dynamics, appropriate tests should address the nonlinear regime. In a first case, we show analytically that the weakly nonlinear modulational dynamics of quasi-parallel propagating Alfven waves is well captured. As a second test we consider the parametric decay instability of parallel Alfven waves and show that numerical simulations of the dispersive Landau fluid model lead to results that closely match the outcome of hybrid simulations. (Author)
Ghanem, Bernard; Ahuja, Narendra
2013-01-01
This paper proposes the problem of modeling video sequences of dynamic swarms (DSs). We define a DS as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements) whose motions exhibit local spatiotemporal
Magnetohydrodynamics and fluid dynamics action principles and conservation laws
Webb, Gary
2018-01-01
This text focuses on conservation laws in magnetohydrodynamics, gasdynamics and hydrodynamics. A grasp of new conservation laws is essential in fusion and space plasmas, as well as in geophysical fluid dynamics; they can be used to test numerical codes, or to reveal new aspects of the underlying physics, e.g., by identifying the time history of the fluid elements as an important key to understanding fluid vorticity or in investigating the stability of steady flows. The ten Galilean Lie point symmetries of the fundamental action discussed in this book give rise to the conservation of energy, momentum, angular momentum and center of mass conservation laws via Noether’s first theorem. The advected invariants are related to fluid relabeling symmetries – so-called diffeomorphisms associated with the Lagrangian map – and are obtained by applying the Euler-Poincare approach to Noether’s second theorem. The book discusses several variants of helicity including kinetic helicity, cross helicity, magnetic helici...
Four-fluid description of turbulent plasma focus dynamics
International Nuclear Information System (INIS)
Hayd, A.; Maurer, M.; Meinke, P.; Kaeppeler, H.J.
1984-06-01
The dynamic phenomena in the compression, pinch and late phases of the plasma focus experiment POSEIDON in its operational mode at 60 kV, 280 kJ, were previously calculated from a two-fluid theory using the new hybrid code REDUCE/FORTRAN. Two important results were found: the neutron production already in the pinch phase for currents larger than 500 kA and filamentary structures on and around the pinch axis. In a continuation of this work, a four-fluid system of dynamical equations was formulated and programmed with the REDUCE/FORTRAN code. Besides macro-turbulence, the new four-fluid theory includes micro-instabilities and anomalous transport properties, as well as the runaway effect for electrons and ions. First results from calculations with this new theory are presented and are compared with previous calculations and with recent experimental observations. (orig.)
A Computational Fluid Dynamics Algorithm on a Massively Parallel Computer
Jespersen, Dennis C.; Levit, Creon
1989-01-01
The discipline of computational fluid dynamics is demanding ever-increasing computational power to deal with complex fluid flow problems. We investigate the performance of a finite-difference computational fluid dynamics algorithm on a massively parallel computer, the Connection Machine. Of special interest is an implicit time-stepping algorithm; to obtain maximum performance from the Connection Machine, it is necessary to use a nonstandard algorithm to solve the linear systems that arise in the implicit algorithm. We find that the Connection Machine ran achieve very high computation rates on both explicit and implicit algorithms. The performance of the Connection Machine puts it in the same class as today's most powerful conventional supercomputers.
Kandelman, A.; Nelson, D. J.
1977-01-01
Simplified mathematical model simulates large hydraulic systems on either analog or digital computers. Models of pumps, servoactuators, reservoirs, accumulators, and valves are connected generating systems containing six hundred elements.
Blending and nudging in fluid dynamics: some simple observations
Energy Technology Data Exchange (ETDEWEB)
Germano, M, E-mail: mg234@duke.edu [Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, United States of America (United States)
2017-10-15
Blending and nudging methods have been recently applied in fluid dynamics, particularly regarding the assimilation of experimental data into the computations. In the paper we formally derive the differential equation associated to blending and compare it to the standard nudging equation. Some simple considerations related to these techniques and their mutual relations are exposed. (paper)
Computational Fluid Dynamics and Building Energy Performance Simulation
DEFF Research Database (Denmark)
Nielsen, Peter V.; Tryggvason, Tryggvi
An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...
On Computational Fluid Dynamics Tools in Architectural Design
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Hougaard, Mads; Stærdahl, Jesper Winther
engineering computational fluid dynamics (CFD) simulation program ANSYS CFX and a CFD based representative program RealFlow are investigated. These two programs represent two types of CFD based tools available for use during phases of an architectural design process. However, as outlined in two case studies...