WorldWideScience

Sample records for fluence-to-absorbed dose effective

  1. Deuterons at energies of 10 MeV to 1 TeV: Conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C

    International Nuclear Information System (INIS)

    Copeland, K.; Parker, D. E.; Friedberg, W.

    2011-01-01

    Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent for isotropic exposure of an adult female and an adult male to deuterons ( 2 H + ) in the energy range 10 MeV -1 TeV (0.01-1000 GeV). Coefficients were calculated using the Monte Carlo transport code MCNPX 2.7.C and BodyBuilder TM 1.3 anthropomorphic phantoms. Phantoms were modified to allow calculation of the effective dose to a Reference Person using tissues and tissue weighting factors from 1990 and 2007 recommendations of the International Commission on Radiological Protection (ICRP) and gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. Coefficients for the equivalent and effective dose incorporated a radiation weighting factor of 2. At 15 of 19 energies for which coefficients for the effective dose were calculated, coefficients based on ICRP 1990 and 2007 recommendations differed by < 3 %. The greatest difference, 47 %, occurred at 30 MeV. (authors)

  2. Tritons at energies of 10 MeV to 1 TeV: Conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose, and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C

    International Nuclear Information System (INIS)

    Copeland, K.; Parker, D. E.; Friedberg, W.

    2010-01-01

    Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent for isotropic exposure of an adult female and an adult male to tritons ( 3 H + ) in the energy range of 10 MeV to 1 TeV (0.01-1000 GeV). Coefficients were calculated using Monte Carlo transport code MCNPX 2.7.C and BodyBuilder TM 1.3 anthropomorphic phantoms. Phantoms were modified to allow calculation of effective dose to a Reference Person using tissues and tissue weighting factors from 1990 and 2007 recommendations of the International Commission on Radiological Protection (ICRP) and calculation of gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. At 15 of the 19 energies for which coefficients for effective dose were calculated, coefficients based on ICRP 2007 and 1990 recommendations differed by less than 3%. The greatest difference, 43%, occurred at 30 MeV. Published by Oxford Univ. Press on behalf of the US Government 2010. (authors)

  3. Helions at energies of 10 MeV to 1 TeV: Conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C

    International Nuclear Information System (INIS)

    Copeland, K.; Parker, D. E.; Friedberg, W.

    2010-01-01

    Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent, for isotropic exposure of an adult male and an adult female to helions ( 3 He 2+ ) in the energy range of 10 MeV to 1 TeV (0.01-1000 GeV). Calculations were performed using Monte Carlo transport code MCNPX 2.7.C and BodyBuilder TM 1.3 anthropomorphic phantoms modified to allow calculation of effective dose using tissues and tissue weighting factors from either the 1990 or 2007 recommendations of the International Commission on Radiological Protection (ICRP), and gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. At 15 of the 19 energies for which coefficients for effective dose were calculated, coefficients based on ICRP 2007 and 1990 recommendations differed by less than 2%. The greatest difference, 62%, occurred at 100 MeV. Published by Oxford Univ. Press on behalf of the U.S. Government 2010. (authors)

  4. Neutron fluence-to-dose conversion coefficients for embryo and fetus

    International Nuclear Information System (INIS)

    Chen, J.; Meyerhof, D.; Vlahovich, S.

    2004-01-01

    A problem of concern in radiation protection is the exposure of pregnant women to ionising radiation, because of the high radiosensitivity of the embryo and fetus. External neutron exposure is of concern when pregnant women travel by aeroplane. Dose assessments for neutrons frequently rely on fluence-to-dose conversion coefficients. While neutron fluence-to-dose conversion coefficients for adults are recommended in International Commission on Radiological Protection publications and International Commission on Radiological Units and Measurements reports, conversion coefficients for embryos and fetuses are not given in the publications. This study undertakes Monte Carlo calculations to determine the mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A new set of mathematical models for the embryo and fetus has been developed at Health Canada and is used together with mathematical phantoms of a pregnant female developed at Oak Ridge National Laboratory. Monoenergetic neutrons from 1 eV to 10 MeV are considered in this study. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO) geometries. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated; for the embryo at 8 weeks and the fetus at 3, 6 or 9 months. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four age groups. Neutron fluence-to-equivalent dose conversion coefficients are given for the AP irradiations which yield the highest radiation dose to the fetal body in the neutron energy range considered here. The results indicate that for neutrons <10 MeV more protection should be given to pregnant women in the first trimester due to the higher absorbed dose per unit neutron fluence to the fetus. (authors)

  5. Neutron fluence-to-dose conversion coefficients for embryo and fetus.

    Science.gov (United States)

    Chen, Jing; Meyerhof, Dorothy; Vlahovich, Slavica

    2004-01-01

    A problem of concern in radiation protection is the exposure of pregnant women to ionising radiation, because of the high radiosensitivity of the embryo and fetus. External neutron exposure is of concern when pregnant women travel by aeroplane. Dose assessments for neutrons frequently rely on fluence-to-dose conversion coefficients. While neutron fluence-to-dose conversion coefficients for adults are recommended in International Commission on Radiological Protection publications and International Commission on Radiological Units and Measurements reports, conversion coefficients for embryos and fetuses are not given in the publications. This study undertakes Monte Carlo calculations to determine the mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A new set of mathematical models for the embryo and fetus has been developed at Health Canada and is used together with mathematical phantoms of a pregnant female developed at Oak Ridge National Laboratory. Monoenergetic neutrons from 1 eV to 10 MeV are considered in this study. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO) geometries. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated; for the embryo at 8 weeks and the fetus at 3, 6 or 9 months. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four age groups. Neutron fluence-to-equivalent dose conversion coefficients are given for the AP irradiations which yield the highest radiation dose to the fetal body in the neutron energy range considered here. The results indicate that for neutrons <10 MeV more protection should be given to pregnant women in the first trimester due to the higher absorbed dose per unit neutron fluence to the fetus.

  6. Fluence-to-Absorbed Dose Conversion Coefficients for Use in Radiological Protection of Embryo and Foetus Against External Exposure to Muons from 20MeV to 50GeV

    International Nuclear Information System (INIS)

    Chen Jing

    2008-01-01

    This study used the Monte-Carlo code MCNPX to determine mean absorbed doses to the embryo and foetus when the mother is exposed to external muon fields. Monoenergetic muons ranging from 20 MeV to 50 GeV were considered. The irradiation geometries include anteroposterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT), isotropic (ISO), and top-down (TOP). At each of these irradiation geometries, absorbed doses to the foetal body were calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months, respectively. Muon fluence-to-absorbed-dose conversion coefficients were derived for the four prenatal ages. Since such conversion coefficients are yet unknown, the results presented here fill a data gap

  7. Photon spectrum and absorbed dose in brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Silva S, A. [General Electric Healthcare, Antonio Dovali Jaime 70, Torre A 3er. piso, Col. Santa Fe, 01210 Mexico D. F. (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  8. Photon spectrum and absorbed dose in brain tumor

    International Nuclear Information System (INIS)

    Silva S, A.; Vega C, H. R.; Rivera M, T.

    2015-10-01

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  9. Fluence-to-absorbed dose conversion coefficients for use in radiological protection of embryo and foetus against external exposure to protons from 100 MeV to 100 GeV

    International Nuclear Information System (INIS)

    Chen, J.

    2006-01-01

    In the literature, no conversion coefficients are available for use in radiological protection of embryo and foetus against external exposure to protons. This study used the Monte Carlo code MCNPX to determine mean absorbed doses to the embryo and foetus when the mother is exposed to proton fields. Monoenergetic protons ranging from 100 MeV to 100 GeV were considered. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO). At each of these standard irradiation geometries, absorbed doses to the foetal brain and body were calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months. Proton fluence-to-absorbed dose conversion coefficients were derived for the four prenatal ages. (authors)

  10. Photon spectrum and absorbed dose in brain tumor.

    Science.gov (United States)

    Vega-Carrillo, Hector Rene; Silva-Sanchez, Angeles; Rivera-Montalvo, Teodoro

    2016-11-01

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is and 15.7 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 37.1 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Estimated fluence-to-absorbed dose conversion coefficients for use in radiological protection of embryo and foetus against external exposure to photons from 50 keV to 10 GeV

    International Nuclear Information System (INIS)

    Chen, J.

    2006-01-01

    In the literature, no conversion coefficients are available for use in radiological protection of the embryo and foetus against external exposure to photons. This study used the Monte-Carlo code MCNPX to determine mean absorbed doses to the embryo and foetus when the mother is exposed to external photon fields. Monoenergetic photons ranging from 50 keV to 10 GeV were considered. The irradiation geometries included antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT), and isotropic (ISO). At each of these standard irradiation geometries, absorbed doses to the foetal brain and body were calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months. Photon fluence-to-absorbed-dose conversion coefficients were estimated for the four prenatal ages. (authors)

  12. Fluence to Effective Dose and Effective Dose Equivalent Conversion Coefficients for Photons from 50 KeV to 10 GeV

    International Nuclear Information System (INIS)

    Ferrari, A.; Pelliccioni, M.; Pillon, M.

    1996-07-01

    Effective dose equivalent and effective dose per unit photon fluence have been calculated by the FLUKA code for various geometrical conditions of irradiation of an anthropomorphic phantom placed in a vacuum. Calculations have been performed for monoenergetic photons of energy ranging from 50 keV to 10 GeV. The agreement with the results of other authors, when existing, is generally very satisfactory

  13. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    Science.gov (United States)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  14. Calculus of the fluence and the absorbed dose by the different head tissues before photons of distinct energies

    International Nuclear Information System (INIS)

    Azorin V, C.; Rivera M, T.; Vega C, H. R.; Azorin N, J.

    2009-10-01

    Two models were used, in the first one the head was built with the scalp that includes the skin and the adipose tissue, the skull, the brain and the tumor, it is modeled as a sphere of 1 cm of radius that be places in the center of the head pattern. The spherical models of the scalp, the skull and the brain were built respectively with spheres of 8.5, 8 and 7 cm of radius. The tumor was irradiated with an unidirectional beam of photons, the calculated cases were photons of 6 0Co and monoenergetic photons beams of 6, 8, 10 and 15 MeV. For each case be calculated the total photons fluence to 5, 10 and 15 cm in air and to 20.5 cm that is the interface between the air and head. This calculus included values of photons fluence halfway the scalp, halfway the skull, halfway the brain and in the tumor center. Also is calculated the total absorbed dose by the scalp, the skull, the brain and the tumor. (author)

  15. Photon energy-fluence correction factor in low energy brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Paula C.G.; Yoriyaz, Hélio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo, E-mail: pacrisguian@gmail.com [Department of Atomic, Molecular, and Nuclear Physics and Instituto de Física Corpuscular (UV-CSIC), University of Valencia (Spain)

    2017-07-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D{sub tis}) and dose-to-water (D{sub w}). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the {sup 125}I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  16. Photon energy-fluence correction factor in low energy brachytherapy

    International Nuclear Information System (INIS)

    Antunes, Paula C.G.; Yoriyaz, Hélio; Vijande, Javier; Giménez-Alventosa, Vicent; Ballester, Facundo

    2017-01-01

    The AAPM TG-43 brachytherapy dosimetry formalism has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. The purpose of this work is to study the influence of photon energy-fluence in different media and to evaluate a proposal for energy-fluence correction factors for the conversion between dose-to-tissue (D tis ) and dose-to-water (D w ). State-of-the art Monte Carlo (MC) calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone) in two different codes, MCNP and PENELOPE, which in all cases include a realistic modeling of the 125 I low-energy brachytherapy seed in order to benchmark the formalism proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences using the large-cavity theory. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seed is proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases. (author)

  17. Determination of absorbed dose in reactors

    International Nuclear Information System (INIS)

    1971-01-01

    There are many areas in the use and operation of research reactors where the absorbed dose and the neutron fluence are required. These include work on the determination of the radiolytic stability of the coolant and moderator and on the determination of radiation damage in structural materials, and reactor experiments involving radiation chemistry and radiation biology. The requirements range from rough estimates of the total heating due to radiation to precise values specifying the contributions of gamma rays, thermal neutrons and fast neutrons. To meet all these requirements a variety of experimental measurements and calculations as well as a knowledge of reactor radiations and their interactions is necessary. Realizing the complexity and importance of this field, its development at widely separated laboratories and the need to bring the experts in this work together, the IAEA has convened three panel meetings. These were: 'In-pile dosimetry', held in July 1964 (published by the Agency as Technical Reports Series No. 46); 'Neutron fluence measurements', in October 1965; and 'In-pile dosimetry', in November 1966. The recommendations of these three panels led the Agency to form a Working Group on Reactor Radiation Measurements and to commission the writing of this book and a book on Neutron Fluence Measurements. The latter was published in May 1970 (Technical Reports Series No. 107). The material on neutron fluence and absorbed dose measurements is widely scattered in reports and reviews. It was considered that it was time for all relevant information to be evaluated and put together in the form of a practical guide that would be valuable both to experienced workers and beginners in the field

  18. Determination of fluence-to-dose conversion coefficients by means of artificial neural networks

    International Nuclear Information System (INIS)

    Soto B, T. G.; Rivera P, E.; De Leon M, H. A.; Hernandez D, V. M.; Vega C, H. R.; Gallego, E.; Lorente, A.

    2012-10-01

    In this paper is presented an Artificial Neural Network (Ann) that has been designed, trained and validated to determinate the effective dose e, ambient dose equivalent h(10) and personal dose equivalent hp(10,θ) fluence-to-dose conversion coefficients at different positions, having as only input data 7 count rates obtained with a Bonner Sphere Spectrometer (Bss) system. A set of 211 neutron spectra and the fluence-to-dose conversion coefficients published by the International Atomic Energy Agency were used to train and validate the Ann. This set was divided into 2 subsets, one of 181 elements to train the Ann and the remaining 30 to validate it. The Ann was trained using Bss count rates as input data and the fluence-to-dose conversion coefficients as output data. The network was validated and tested with the set of 30 elements that were not used during the training process. Good results were obtained proving that Ann are a good choice for calculating the fluence-to-dose conversion coefficients having as only data the count rates obtained with a Bss. (Author)

  19. Determination of fluence-to-dose conversion coefficients by means of artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Soto B, T. G.; Rivera P, E.; De Leon M, H. A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego, E.; Lorente, A., E-mail: tzinnia.soto@gmail.com [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, Jose Gutierrez Abascal No. 2, 28006 Madrid (Spain)

    2012-10-15

    In this paper is presented an Artificial Neural Network (Ann) that has been designed, trained and validated to determinate the effective dose e, ambient dose equivalent h(10) and personal dose equivalent hp(10,{theta}) fluence-to-dose conversion coefficients at different positions, having as only input data 7 count rates obtained with a Bonner Sphere Spectrometer (Bss) system. A set of 211 neutron spectra and the fluence-to-dose conversion coefficients published by the International Atomic Energy Agency were used to train and validate the Ann. This set was divided into 2 subsets, one of 181 elements to train the Ann and the remaining 30 to validate it. The Ann was trained using Bss count rates as input data and the fluence-to-dose conversion coefficients as output data. The network was validated and tested with the set of 30 elements that were not used during the training process. Good results were obtained proving that Ann are a good choice for calculating the fluence-to-dose conversion coefficients having as only data the count rates obtained with a Bss. (Author)

  20. Fluence to absorbed foetal dose conversion coefficients for photons in 50 keV-10 GeV calculated using RPI-P models

    International Nuclear Information System (INIS)

    Taranenko, V.; Xu, X.G.

    2008-01-01

    Radiation protection of pregnant females and the foetus against ionising radiation is of particular importance to radiation protection due to high foetal radiosensitivity. The only available set of foetal conversion coefficients for photons is based on stylised models of simplified anatomy. Using the RPI-P series of pregnant female and foetus models representing 3-, 6- and 9-month gestation, a set of new fluence to absorbed foetal dose conversion coefficients has been calculated. The RPI-P anatomical models were developed using novel 3D geometry modelling techniques. Organ masses were adjusted to agree within 1% with the ICRP reference data for a pregnant female. Monte Carlo dose calculations were carried out using the MCNPX and Penelope codes for external 50 keV-10 GeV photon beams of six standard configurations. The models were voxelised at 3-mm voxel resolution. Conversion coefficients were tabulated for the three gestational periods for the whole foetus and brain. Comparison with previously published data showed deviations up to 120% for the foetal doses at 50 keV. The discrepancy can be primarily ascribed to anatomical differences. Comparison with published data for five major mother organs is also provided for the 3-month model. Since the RPI-P models exhibit a high degree of anatomical realism, the reported dataset is recommended as a reference for radiation protection of the foetus against external photon exposure. (authors)

  1. Comparison of the standards for absorbed dose to water of the ARPANSA and the BIPM for 60Co γ radiation

    International Nuclear Information System (INIS)

    Allisy-Roberts, P.J.; Burns, D.T.; Boas, J.F.; Huntley, R.B.; Wise, K.N.

    2000-10-01

    A comparison of the standards for absorbed dose to water of the Australian Radiation Protection and Nuclear Safety Agency and of the Bureau International des Poids et Mesures (BIPM) has been carried out in 60 Co gamma radiation. The Australian standard is based on a graphite calorimeter and the subsequent conversion from absorbed dose to graphite to absorbed dose to water using the photon fluence scaling theorem. The BIPM standard is ionometric using a graphite-walled cavity ionization chamber. The comparison result is 1.0024 (standard uncertainty 0.0029). (authors)

  2. Comprehensive fluence model for absolute portal dose image prediction

    International Nuclear Information System (INIS)

    Chytyk, K.; McCurdy, B. M. C.

    2009-01-01

    Amorphous silicon (a-Si) electronic portal imaging devices (EPIDs) continue to be investigated as treatment verification tools, with a particular focus on intensity modulated radiation therapy (IMRT). This verification could be accomplished through a comparison of measured portal images to predicted portal dose images. A general fluence determination tailored to portal dose image prediction would be a great asset in order to model the complex modulation of IMRT. A proposed physics-based parameter fluence model was commissioned by matching predicted EPID images to corresponding measured EPID images of multileaf collimator (MLC) defined fields. The two-source fluence model was composed of a focal Gaussian and an extrafocal Gaussian-like source. Specific aspects of the MLC and secondary collimators were also modeled (e.g., jaw and MLC transmission factors, MLC rounded leaf tips, tongue and groove effect, interleaf leakage, and leaf offsets). Several unique aspects of the model were developed based on the results of detailed Monte Carlo simulations of the linear accelerator including (1) use of a non-Gaussian extrafocal fluence source function, (2) separate energy spectra used for focal and extrafocal fluence, and (3) different off-axis energy spectra softening used for focal and extrafocal fluences. The predicted energy fluence was then convolved with Monte Carlo generated, EPID-specific dose kernels to convert incident fluence to dose delivered to the EPID. Measured EPID data were obtained with an a-Si EPID for various MLC-defined fields (from 1x1 to 20x20 cm 2 ) over a range of source-to-detector distances. These measured profiles were used to determine the fluence model parameters in a process analogous to the commissioning of a treatment planning system. The resulting model was tested on 20 clinical IMRT plans, including ten prostate and ten oropharyngeal cases. The model predicted the open-field profiles within 2%, 2 mm, while a mean of 96.6% of pixels over all

  3. Age-dependent conversion coefficients for organ doses and effective doses for external neutron irradiation

    International Nuclear Information System (INIS)

    Nishizaki, Chihiro; Endo, Akira; Takahashi, Fumiaki

    2006-06-01

    To utilize dose assessment of the public for external neutron irradiation, conversion coefficients of absorbed doses of organs and effective doses were calculated using the numerical simulation technique for six different ages (adult, 15, 10, 5 and 1 years and newborn), which represent the member of the public. Calculations were performed using six age-specific anthropomorphic phantoms and a Monte Carlo radiation transport code for two irradiation geometries, anterior-posterior and rotational geometries, for 20 incident energies from thermal to 20 MeV. Effective doses defined by the 1990 Recommendation of ICRP were calculated from the absorbed doses in 21 organs. The calculated results were tabulated in the form of absorbed doses and effective doses per unit neutron fluence. The calculated conversion coefficients are used for dose assessment of the public around nuclear facilities and accelerator facilities. (author)

  4. Update on the Code Intercomparison and Benchmark for Muon Fluence and Absorbed Dose Induced by an 18 GeV Electron Beam After Massive Iron Shielding

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, A. [SLAC; Ferrari, A. [CERN; Ferrari, A. [HZDR, Dresden; Mokhov, N. V. [Fermilab; Mueller, S. E. [HZDR, Dresden; Nelson, W. R. [SLAC; Roesler, S. [CERN; Sanami, t.; Striganov, S. I. [Fermilab; Versaci, R. [Unlisted, CZ

    2016-12-01

    In 1974, Nelson, Kase and Svensson published an experimental investigation on muon shielding around SLAC high-energy electron accelerators [1]. They measured muon fluence and absorbed dose induced by 14 and 18 GeV electron beams hitting a copper/water beamdump and attenuated in a thick steel shielding. In their paper, they compared the results with the theoretical models available at that time. In order to compare their experimental results with present model calculations, we use the modern transport Monte Carlo codes MARS15, FLUKA2011 and GEANT4 to model the experimental setup and run simulations. The results are then compared between the codes, and with the SLAC data.

  5. Absorbed dose optimization in the microplanar beam radiotherapy

    International Nuclear Information System (INIS)

    Company, F.Z.; Jaric, J.; Allen, B.J.

    1996-01-01

    Full text: Recent advances in synchrotron generated X-ray beams with high fluence rate, small divergence and sharply defined microbeam margins permit investigation of the application of an array of closely spaced, parallel or converging microbeams for radiotherapy. The proposed technique takes advantage of the repair mechanism hypothesis of capillary endothelial cells between alternate microbeam zones, which regenerates the lethally irradiated capillaries. Unlike a pencil beam, more accurate dose calculation, beam width and spacing are essential to minimise radiation damage to normal tissue cells outside the target. The absorbed dose between microbeam zones should be kept below the threshold for irreversible radiation damage. Thus the peak-to-valley ratio for the dose distribution should be optimized. The absorbed dose profile depends on the energy of the incident beam and the composition and density of the medium. Using Monte Carlo computations, the radial absorbed dose of single 24 x 24 μm 2 cross-section X-ray beams of different energies in a tissue/lung/tissue phantom was investigated. The results indicated that at 100 keV, closely spaced square cross-sectional microbeams can be applied to the lung. A bundle of parallel 24 μm-wide planar microbeams spaced at 200 μm intervals provides much more irradiation coverage of tissue than is provided by a bundle of parallel, square cross-sectional microbeam, although the former is associated with much smaller Peak (maximum absorbed dose on the beam axis) -to-Valley ( minimum interbeam absorbed dose ) ratios than the latter. In this study the lateral and depth dose of single and multiple microplanar beams with beam dimensions of width 24 μm and 48 μm and height 2-20 cm with energy of 100 keV in a tissue/lung/tissue phantom are investigated. The EGS4 Monte Carlo code is used to calculate dose profiles at different depths and bundles of beams (2 x 2 cm 2 to 20 x 20 cm 2 square cross section) with a 150 μm 200 μm and

  6. The absorbed dose in air of photons generated from secondary cosmic rays at sea level at Nagoya, Japan

    International Nuclear Information System (INIS)

    Akhmad, Y.R.

    1995-01-01

    Investigations have been carried out to determine the absorbed dose in air of photons generated from secondary cosmic radiation at sea level at Nagoya, Japan. To isolate the contribution from cosmic photons, the pulse-height distributions due to μ particles and electrons were eliminated from the observed pulse-height distribution of a measurement with a 3'' diam. spherical NaI(Tl) detector. The pulse height due to μ particles and electrons was inferred from the coincidence technique using two types of scintillation detectors with different sensitivities to photons. To obtain the photon fluence rate for further dose calculation, the pulse-height distribution of cosmic photons was unfolded by the iterative method. The mean and its standard deviation of the absorbed dose in air and fluence rate due to cosmic photons calculated from a one year observation are 2.86±0.05 nGy.h -1 and 0.1342±0.0015 photons.cm -2 .s -1 , respectively. The absorbed dose in air from cosmic photons was 0.5% lower during autumn to winter and 0.6% higher during spring to summer than the mean taken over the year. (author)

  7. Electron scattering effects on absorbed dose measurements with LiF-dosemeters

    International Nuclear Information System (INIS)

    Bertilsson, G.

    1975-10-01

    The investigation deals with absorbed dose measurements with solid wall-less dosemeters. Electron scattering complicates both measurement of absorbed dose and its theoretical interpretation. The introduction of the dosemeter in a medium causes perturbations of the radiation field. This perturbation and its effect on the distribution of the absorbed dose inside the dosemeter is studied. Plane-parallel LiF-teflon dosemeters (0.005 - 0.1 g.cm -2 ) are irradiated by a photon beam ( 137 Cs) in different media. The investigation shows that corrections must be made for perturbations caused by electron scattering phenomena. Correction factors are given for use in accurate absorbed dose determinations with thermoluminescent dosemeters. (Auth.)

  8. IMRT fluence map editing to control hot and cold spots

    International Nuclear Information System (INIS)

    Taylor Cook, J.; Tobler, Matt; Leavitt, Dennis D.; Watson, Gordon

    2005-01-01

    Manually editing intensity-modulated radiation therapy (IMRT) fluence maps effectively controls hot and cold spots that the IMRT optimization cannot control. Many times, re-optimizing does not reduce the hot spots or increase the cold spots. In fact, re-optimizing only places the hot and cold spots in different locations. Fluence-map editing provides manual control of dose delivery and provides the best treatment plan possible. Several IMRT treatments were planned using the Varian Eclipse planning system. We compare the effects on dose distributions between fluence-map editing and re-optimization, discuss techniques for fluence-map editing, and analyze differences between fluence editing on one beam vs. multiple beams. When editing a beam's fluence map, it is essential to choose a beam that least affects dose to the tumor and critical structures. Editing fluence maps gives an advantage in treatment planning and provides controlled delivery of IMRT dose

  9. Time improvement of photoelectric effect calculation for absorbed dose estimation

    International Nuclear Information System (INIS)

    Massa, J M; Wainschenker, R S; Doorn, J H; Caselli, E E

    2007-01-01

    Ionizing radiation therapy is a very useful tool in cancer treatment. It is very important to determine absorbed dose in human tissue to accomplish an effective treatment. A mathematical model based on affected areas is the most suitable tool to estimate the absorbed dose. Lately, Monte Carlo based techniques have become the most reliable, but they are time expensive. Absorbed dose calculating programs using different strategies have to choose between estimation quality and calculating time. This paper describes an optimized method for the photoelectron polar angle calculation in photoelectric effect, which is significant to estimate deposited energy in human tissue. In the case studies, time cost reduction nearly reached 86%, meaning that the time needed to do the calculation is approximately 1/7 th of the non optimized approach. This has been done keeping precision invariant

  10. Spatial distribution of absorbed dose onboard of International Space Station

    International Nuclear Information System (INIS)

    Jadrnickova, I.; Spumy, F.; Tateyama, R.; Yasuda, N.; Kawashima, H.; Kurano, M.; Uchihori, Y.; Kitamura, H.; Akatov, Yu.; Shurshakov, V.; Kobayashi, I.; Ohguchi, H.; Koguchi, Y.

    2009-01-01

    The passive detectors (LD and PNTD) were exposed onboard of Russian Service Module Qn the International Space Station (ISS) from August 2004 to October 2005 (425 days). The detectors were located at 6 different positions inside the Service Module and also in 32 pockets on the surface of the spherical tissue-equivalent phantom located in crew cabin. Distribution of absorbed doses and dose equivalents measured with passive detectors, as well as LET spectra of fluences of registered particles, are presented as the function of detectors' location. The variation of dose characteristics for different locations can be up to factor of 2. In some cases, data measured with passive detectors are also compared with the data obtained by means of active instruments. (authors)

  11. Fluence correction factors for graphite calorimetry in a low-energy clinical proton beam: I. Analytical and Monte Carlo simulations.

    Science.gov (United States)

    Palmans, H; Al-Sulaiti, L; Andreo, P; Shipley, D; Lühr, A; Bassler, N; Martinkovič, J; Dobrovodský, J; Rossomme, S; Thomas, R A S; Kacperek, A

    2013-05-21

    The conversion of absorbed dose-to-graphite in a graphite phantom to absorbed dose-to-water in a water phantom is performed by water to graphite stopping power ratios. If, however, the charged particle fluence is not equal at equivalent depths in graphite and water, a fluence correction factor, kfl, is required as well. This is particularly relevant to the derivation of absorbed dose-to-water, the quantity of interest in radiotherapy, from a measurement of absorbed dose-to-graphite obtained with a graphite calorimeter. In this work, fluence correction factors for the conversion from dose-to-graphite in a graphite phantom to dose-to-water in a water phantom for 60 MeV mono-energetic protons were calculated using an analytical model and five different Monte Carlo codes (Geant4, FLUKA, MCNPX, SHIELD-HIT and McPTRAN.MEDIA). In general the fluence correction factors are found to be close to unity and the analytical and Monte Carlo codes give consistent values when considering the differences in secondary particle transport. When considering only protons the fluence correction factors are unity at the surface and increase with depth by 0.5% to 1.5% depending on the code. When the fluence of all charged particles is considered, the fluence correction factor is about 0.5% lower than unity at shallow depths predominantly due to the contributions from alpha particles and increases to values above unity near the Bragg peak. Fluence correction factors directly derived from the fluence distributions differential in energy at equivalent depths in water and graphite can be described by kfl = 0.9964 + 0.0024·zw-eq with a relative standard uncertainty of 0.2%. Fluence correction factors derived from a ratio of calculated doses at equivalent depths in water and graphite can be described by kfl = 0.9947 + 0.0024·zw-eq with a relative standard uncertainty of 0.3%. These results are of direct relevance to graphite calorimetry in low-energy protons but given that the fluence

  12. Photon-Fluence-Weighted let for Radiation Fields Subjected to Epidemiological Studies.

    Science.gov (United States)

    Sasaki, Michiya

    2017-08-01

    In order to estimate the uncertainty of the radiation risk associated with the photon energy in epidemiological studies, photon-fluence-weighted LET values were quantified for photon radiation fields with the target organs and irradiation conditions taken into consideration. The photon fluences giving a unit absorbed dose to the target organ were estimated by using photon energy spectra together with the dose conversion coefficients given in ICRP Publication 116 for the target organs of the colon, bone marrow, stomach, lung, skin and breast with three irradiation geometries. As a result, it was demonstrated that the weighted LET values did not show a clear difference among the photon radiation fields subjected to epidemiological studies, regardless of the target organ and the irradiation geometry.

  13. Fluence to Dose Equivalent Conversion Coefficients for Evaluation of Accelerator Radiation Environments

    International Nuclear Information System (INIS)

    Thomas, Ralph H.; Zeman, Gary H.

    2001-01-01

    The derivation of a set of conversion functions for the expression of neutron fluence measurements in terms of Effective Dose, E, is described. Four functions in analytical form are presented, covering the neutron energy range from 2.5 10-8 to 10+4 MeV, for the interpretation of fluence measurements in the typical irradiation conditions experienced around high-energy proton accelerators such as the Bevatron. For neutron energies below 200 MeV the analytical functions were modeled after the ISO and ROT conversion coefficients in ICRU 57. For neutron energies above 200 MeV, the analytical function was derived from an analysis of recent published data. Sample calculations using either the analytical expressions or the tabulated conversion coefficients from which the analytical expressions are derived show agreement to better than plus/minus 5%

  14. A numerical analysis of aspects of absorbed dose in the vicinity of the interface of different materials

    Energy Technology Data Exchange (ETDEWEB)

    Tada, J [Tsukuba Univ., (Japan); Hirayama, H [National Lab. High Enregy Phys. (Japan); Katoh, K [Ibaraki Pref. Univ. Health Sci., (Japan)

    1997-12-31

    In the measurement and/or evaluation of the absorbed dose where the charged particle distribution is far from equilibrium, knowledge on the microscopic spatial distribution of the charged particle fluence is important. Spatial distribution of secondary electrons in the vicinity of an interface of materials and the values of the absorbed dose in these regions are investigated with a monte-Carlo simulation code EGS 4. There were experiments on spatial variation of the absorbed dose in the vicinity of an interface of materials. However, the behaviour of secondary electrons were discussed only broadly and qualitatively. In this study, behaviour of the secondary electrons was analysed to clarify contribution of ruling interactions to generate secondary electrons, and influence of the interface on the energy spectra of secondary electrons. 11 figs.

  15. CALCULATION OF FLUENCE-TO-EFFECTIVE DOSE CONVERSION COEFFICIENTS FOR THE OPERATIONAL QUANTITY PROPOSED BY ICRU RC26.

    Science.gov (United States)

    Endo, Akira

    2017-07-01

    Fluence-to-effective dose conversion coefficients have been calculated for photons, neutrons, electrons, positrons, protons, muons, pions and helium ions for various incident angles of radiations. The aim of this calculation is to provide a set of conversion coefficients to the Report Committee 26 (RC26) of the International Commission on Radiation Units and Measurements (ICRU) for use in defining personal dose equivalent for individual monitoring. The data sets comprise effective dose conversion coefficients for incident angles of radiations from 0° to ±90° in steps of 15° and at ±180°. Conversion coefficients for rotational, isotropic, superior hemisphere semi-isotropic and inferior hemisphere semi-isotropic irradiations are also included. Numerical data of the conversion coefficients are presented as supplementary data. The conversion coefficients are used to define the personal dose equivalent, which is being considered by the ICRU RC26, as the operational quantity for individual monitoring. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Absorbed dose to mice in prolonged irradiation by low-dose rate ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shiragai, Akihiro [National Inst. of Radiological Sciences, Chiba (Japan); Saitou, Mikio; Kudo, Iwao [and others

    2000-07-01

    In this paper, the dose absorbed by mice was evaluated as a preliminary study of the late effects of prolonged continuous irradiation of mice with low-dose rate ionizing radiation. Eight-week-old male and female SPF C3H/HeN mice in three irradiation rooms were exposed to irradiation at 8000, 400, and 20 mGy, respectively, using a {sup 137}Cs {gamma}-source. Nine racks were arranged in a circle approximately 2.5 m from the source in each room, and 10 cages were arranged on the 4 shelves of each rack. Dose distributions, such as in air at the source level, in the three rooms were estimated by using ionization chambers, and the absorbed dose distributions in the room and relative dose distributions in the cages in relation to the distance of the cage center were examined. The mean abdomen doses of the mice measured by TLD were compared with the absorbed doses in the cages. The absorbed dose distributions showed not only inverse-inverse-square-law behavior with distance from the source, but geometric symmetry in every room. The inherent scattering and absorption in each room are responsible for such behavior and asymmetry. Comparison of relative dose distributions revealed cage positions that are not suitable for experiments with high precision doses, but all positions can be used for prolonged continuous irradiation experiments if the position of the cages is rotated regularly. The mean abdomen doses of the mice were similar in each cage. The mean abdomen doses of the mice and the absorbed doses in a cage were almost the same in all cages. Except for errors concerning the positions of the racks and cages, the uncertainties in the exposure doses were estimated to be about {+-}12% for 8000 mGy group, 17% for 400 mGy group, and 35% for 20 mGy group. (K.H.)

  17. DOSE-Analyzer. A computer program with graphical user interface to analyze absorbed dose inside a body of mouse and human upon external neutron exposure

    International Nuclear Information System (INIS)

    Satoh, Daiki; Takahashi, Fumiaki; Shigemori, Yuji; Sakamoto, Kensaku

    2010-06-01

    DOSE-Analyzer is a computer program to retrieve the dose information from a database and generate a graph through a graphical user interface (GUI). The database is constructed for absorbed dose, fluence, and energy distribution inside a body of mouse and human exposed upon external neutrons, which is calculated by our developed Monte-Carlo simulation method using voxel-based phantom and particle transport code PHITS. The input configurations of irradiation geometry, subject, and energy are set by GUI. The results are tabulated at particle types, i.e. electron, proton, deuteron, triton, and alpha particle, and target organs on a data sheet of Microsoft Office Excel TM . Simple analysis to compare the output values for two subjects is also performed on DOSE-Analyzer. This report is a user manual of DOSE-Analyzer. (author)

  18. Effect of head size on 10B dose distribution

    International Nuclear Information System (INIS)

    Gupta, N.; Blue, T.E.; Gahbauer, R.

    1992-01-01

    Boron neutron capture therapy (BNCT) for treatment of brain tumors is based on the utilization of large epithermal-neutron fields. Epithermal neutrons thermalize at depths of ∼2.5 cm inside the head and provide a maximum thermal fluence at deep-seated tumor sites with minimum damage to normal tissue. Brain tissue is a highly scattering medium for epithermal and thermal neutrons; therefore, a broad treatment field enables epithermal neutrons to enter the head over a large area. These neutrons slow down as they undergo scattering collisions and contribute to the thermal-neutron fluence at the tumor location. With the use of large neutron fields, the size of the head affects the thermal-neutron distribution and thereby the 10 B absorbed dose distribution inside the head. In this paper, the authors describe measurements using a boron trifluoride (BF 3 )-filled proportional counter to determine the effect of head size on 10 B absorbed dose distributions for a broad field accelerator epithermal-neutron source

  19. A comparison of simple and realistic eye models for calculation of fluence to dose conversion coefficients in a broad parallel beam incident of protons

    International Nuclear Information System (INIS)

    Sakhaee, Mahmoud; Vejdani-Noghreiyan, Alireza; Ebrahimi-Khankook, Atiyeh

    2015-01-01

    Radiation induced cataract has been demonstrated among people who are exposed to ionizing radiation. To evaluate the deterministic effects of ionizing radiation on the eye lens, several papers dealing with the eye lens dose have been published. ICRP Publication 103 states that the lens of the eye may be more radiosensitive than previously considered. Detailed investigation of the response of the lens showed that there are strong differences in sensitivity to ionizing radiation exposure with respect to cataract induction among the tissues of the lens of the eye. This motivated several groups to look deeper into issue of the dose to a sensitive cell population within the lens, especially for radiations with low energy penetrability that have steep dose gradients inside the lens. Two sophisticated mathematical models of the eye including the inner structure have been designed for the accurate dose estimation in recent years. This study focuses on the calculations of the absorbed doses of different parts of the eye using the stylized models located in UF-ORNL phantom and comparison with the data calculated with the reference computational phantom in a broad parallel beam incident of protons with energies between 20 MeV and 10 GeV. The obtained results indicate that the total lens absorbed doses of reference phantom has good compliance with those of the more sensitive regions of stylized models. However, total eye absorbed dose of these models greatly differ with each other for lower energies. - Highlights: • The validation of reference data for the eye was studied for proton exposures. • Two real mathematical models of the eye were imported into the UF-ORNL phantom. • Fluence to dose conversion coefficients were calculated for different eye sections. • Obtained Results were compared with that of assessed by ICRP adult male phantom

  20. Evaluation of fluence to dose equivalent conversion factors for high energy radiations, (1)

    International Nuclear Information System (INIS)

    Sato, Osamu; Uehara, Takashi; Yoshizawa, Nobuaki; Iwai, Satoshi; Tanaka, Shun-ichi.

    1992-09-01

    Computer code system and basic data have been investigated for evaluating fluence to dose equivalent conversion factors for photons and neutrons up to 10 GeV. The present work suggested that the conversion factors would be obtained by incorporating effective quality factors of charged particles into the HERMES (High Energy Radiation Monte Carlo Elaborate System) code system. The effective quality factors for charged particles were calculated on the basis of the Q-L relationships specified in the ICRP Publication-60. (author)

  1. Calculation of neutron fluence to dose equivalent conversion coefficients using GEANT4

    International Nuclear Information System (INIS)

    Ribeiro, Rosane M.; Santos, Denison de S.; Queiroz Filho, Pedro P. de; Mauricio, CLaudia L.P.; Silva, Livia K. da; Pessanha, Paula R.

    2014-01-01

    Fluence to dose equivalent conversion coefficients provide the basis for the calculation of area and personal monitors. Recently, the ICRP has started a revision of these coefficients, including new Monte Carlo codes for benchmarking. So far, little information is available about neutron transport below 10 MeV in tissue-equivalent (TE) material performed with Monte Carlo GEANT4 code. The objective of this work is to calculate neutron fluence to personal dose equivalent conversion coefficients, H p (10)/Φ, with GEANT4 code. The incidence of monoenergetic neutrons was simulated as an expanded and aligned field, with energies ranging between thermal neutrons to 10 MeV on the ICRU slab of dimension 30 x 30 x 15 cm 3 , composed of 76.2% of oxygen, 10.1% of hydrogen, 11.1% of carbon and 2.6% of nitrogen. For all incident energy, a cylindrical sensitive volume is placed at a depth of 10 mm, in the largest surface of the slab (30 x 30 cm 2 ). Physic process are included for neutrons, photons and charged particles, and calculations are made for neutrons and secondary particles which reach the sensitive volume. Results obtained are thus compared with values published in ICRP 74. Neutron fluence in the sensitive volume was calculated for benchmarking. The Monte Carlo GEANT4 code was found to be appropriate to calculate neutron doses at energies below 10 MeV correctly. (author)

  2. Fluence correction factors for graphite calorimetry in a low-energy clinical proton beam: I. Analytical and Monte Carlo simulations

    DEFF Research Database (Denmark)

    Palmans, Hugo; Al-Sulaiti, L; Andreo, P

    2013-01-01

    , is required as well. This is particularly relevant to the derivation of absorbed dose-to-water, the quantity of interest in radiotherapy, from a measurement of absorbed dose-to-graphite obtained with a graphite calorimeter. In this work, fluence correction factors for the conversion from dose...

  3. Neutron fluence-to-dose equivalent conversion factors: a comparison of data sets and interpolation methods

    International Nuclear Information System (INIS)

    Sims, C.S.; Killough, G.G.

    1983-01-01

    Various segments of the health physics community advocate the use of different sets of neutron fluence-to-dose equivalent conversion factors as a function of energy and different methods of interpolation between discrete points in those data sets. The major data sets and interpolation methods are used to calculate the spectrum average fluence-to-dose equivalent conversion factors for five spectra associated with the various shielded conditions of the Health Physics Research Reactor. The results obtained by use of the different data sets and interpolation methods are compared and discussed. (author)

  4. Absorbed dose in CT. Comparison by CT dose index

    International Nuclear Information System (INIS)

    Yamamoto, Kenji; Akazawa, Hiroshi; Andou, Takashi

    2002-01-01

    Few reports have discussed the absorbed dose on CT units with increased scanning capacity even with the current widespread adoption of multi-slice CT units. To compare and investigate the dose indexes among CT units, we measured the absorbed dose on CT units operating in Nagano Prefecture Japan. The measurements showed proportionality between phantom absorbed dose and the exposured mAs values in conventional scanning operation. Further, the measurements showed that the absorbed dose in the center of the phantom differed by about 2.1-fold between the highest and lowest levels on individual CT units. Within a single company, multi-slice CT units of the same company gave absorbed doses of about 1.3 to 1.5 times those of conventional single-slice CT units under the same exposured conditions of conventional scanning. When the scanning pitch was reduced in helical scanning, the absorbed dose at the center of the phantom increased. (author)

  5. On the use of quality factors and fluence to dose rate conversion in human radiation exposures

    Science.gov (United States)

    Sondhaus, C. A.

    1972-01-01

    It is shown that various combinations of numbers and factors arrive at estimates of dose and dose effectiveness from values of fluence; but as yet it has not been possible to use biological data with the same degree of precision to estimate the physical data. It would seem that the most reasonable way to use the human data that exist is to apply them as far as possible to the human animal as a whole.

  6. Absorbed Doses to Patients in Nuclear Medicine; Doskatalogen foer nukleaermedicin

    Energy Technology Data Exchange (ETDEWEB)

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Nosslin, Bertil [Universitetssjukhuset MAS, Malmoe (Sweden). Avd. foer radiofysik; Johansson, Lennart [Norrlands Universitetssjukhus, Umeaa (Sweden). Avd. foer radiofysik

    2004-09-01

    The work with a Swedish catalogue of radiation absorbed doses to patients undergoing nuclear medicine investigations has continued. After the previous report in 1999, biokinetic data and dose estimates (mean absorbed dose to various organs and tissues and effective dose) have been produced for a number of substances: {sup 11}C- acetate, {sup 11}C- methionine, {sup 18}F-DOPA, whole antibody labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I, fragment of antibody, F(ab'){sub 2} labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I and fragment of antibody, Fab' labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I. The absorbed dose estimates for these substances have been made from published biokinetic information. For other substances of interest, e.g. {sup 14}C-urea (children age 3-6 years), {sup 14}C-glycocholic acid, {sup 14}C-xylose and {sup 14}C-triolein, sufficient literature data have not been available. Therefore, a large number of measurements on patients and volunteers have been carried out, in order to determine the biokinetics and dosimetry for these substances. Samples of breast milk from 50 mothers, who had been subject to nuclear medicine investigations, have been collected at various times after administration of the radiopharmaceutical to the mother. The activity concentration in the breast milk samples has been measured. The absorbed dose to various organs and tissues and the effective dose to the child who ingests the milk have been determined for 17 different radiopharmaceuticals. Based on these results revised recommendations for interruption of breast-feeding after nuclear medicine investigations are suggested.

  7. Determination of absorbed dose to the lens of eye from external sources

    International Nuclear Information System (INIS)

    Chen Lishu

    1993-01-01

    The methods of determining absorbed dose distributions in human eyeball by means of the experiments and available theories have been reported. A water phantom was built up. The distributions of beta dose were measured by an extrapolation ionization chamber at some depths corresponding to components of human eyeball such as cornea, sclera, anterior chamber and the lens of eye. The ratios among superficial absorbed dose (at 0.07 mm) and average absorbed doses at the depths 1,2,3 mm are obtained. They can be used for confining the deterministic effects of superficial tissues and organs such as the lens of eye for weakly penetrating radiations

  8. Absorbed and effective dose from periapical radiography by portable intraoral x-ray machine

    International Nuclear Information System (INIS)

    Cho, Jeong Yeon; Han, Won Jeong; Kim, Eun Kyung

    2007-01-01

    The purpose of this study was to measure the absorbed dose and to calculate the effective dose for periapical radiography done by portable intraoral x-ray machines. 14 full mouth, upper posterior and lower posterior periapical radiographs were taken by wall-type 1 and portable type 3 intraoral x-ray machines. Thermoluminescent dosemeters were placed at 23 sites at the layers of the tissue-equivalent ART woman phantom for dosimetry. Average tissue absorbed dose and radiation weighted dose were calculated for each major anatomical site. Effective dose was calculated using 2005 ICRP tissue weighted factors. On 14 full mouth periapical radiographs, the effective dose for wall-type x-ray machine was 30 Sv; for portable x-ray machines were 30 Sv, 22 Sv, 36 Sv. On upper posterior radiograph, the effective dose for wall-type x-ray machine was 4 Sv; for portable x-ray machines doses were 4 Sv, 3 Sv, 5 Sv. On lower posterior radiograph, the effective dose for wall type x-ray machine was 5 Sv; for portable x-ray machines doses were 4 Sv, 4 Sv, 5 Sv. Effective doses for periapical radiographs performed by portable intraoral x-ray machines were similar to doses for periapical radiographs taken by wall type intraoral x-ray machines

  9. Calculation of absorbed dose at 0.07, 3.0 and 10.0 mm depths in a slab phantom for monoenergetic electrons

    International Nuclear Information System (INIS)

    Hirayama, H.

    1994-01-01

    The general-purpose electron gamma shower Monte Carlo code EGS4 has been used to calculate absorbed doses at 0.07, 3.0 and 10.0 mm depths per unit fluence for broad parallel beams of monoenergetic electrons impinging at an incident angle α on a slab phantom (30 cm x 30 cm x 15 cm) of polymethyl methacrylate (PMMA), water and ICRU 4-element tissue required by EURADOS WG4 for a revision of ICRP Publication 51. Absorbed doses at 7, 300 and 1000 mg.cm -2 were also calculated for PMMA. The electron kinetic energy range covered is 50 keV to 10 MeV. The incident angle (α) varies from 0 o to 75 o with an increment of 15 o . The calculated results are presented as tables. The depth against absorbed dose curves and dependence of the absorbed dose at each depth on the incident electron energy, incident angle and phantom material are also presented and discussed. (author)

  10. Staff and patient absorbed doses due to diagnostic nuclear medicine procedures

    International Nuclear Information System (INIS)

    Tabei, F.; Neshandar Asli, I.; Aghamiri, S.M.; Arbabi, K.

    2004-01-01

    Background: annual patient effective dose equivalent can be considered as a quantitative physical parameter describing the activities performed in each nuclear medicine department. annual staff dose equivalent could be also considered as a parameter describing the amount of radiation risk for performing the activities. We calculated the staff to patient dose equivalent ratio to be used as a physical parameter for quantification of ALARA law in nuclear medicine department. Materials and methods: as a part of nationwide study, this paper reports the staff and patient absorbed dose equivalents from diagnostic nuclear medicine examinations performed in four nuclear medicine department during 1999-2002. The type and frequency of examinations in each department were determined directly from hospital medical reports. Staff absorbed doses equivalents were calculated from regular personal dosimeter reports. Results: the total number of examinations increased by 16.7 % during these years. Annual patient collective dose equivalent increased about 13.0 % and the mean effective dose equivalent per exam was 3.61 ± 0.07 mSv. Annual total staff absorbed dose equivalent (total of 24 radiation workers) in four departments increased from 40.45 mSv to 47.81 mSv during four years that indicates an increase of about 20.6 %. The average of annual ratios of staff to patient effective dose equivalents in four departments were 1.83 x 10 -3 , 1.04 x 10 -3 , 3.28 x 10 -3 and 3.24 x 10 -3 , respectively, within a range of 0.9 x 10 -3 - 4.17 x 10 -3 . The mean value of ratios in four years was about 2.24 x 10 -3 ± 1.09 x 10 -3 that indicates the staff dose of about two 1000 th of patient dose. Conclusion: The mean value of ratios in four years was about 1.89 x 10 -3 ± 0.95 x 10 -3 indicating the staff dose of about one 1000 th of the patient dose. The staff to patient absorbed dose equivalent ratio could be used as a quantitative parameter for describing ALARA law in radiation protection and

  11. On the definition of absorbed dose

    International Nuclear Information System (INIS)

    Grusell, Erik

    2015-01-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before. - Highlights: • A stringent definition of absorbed dose is given. • This requires the definition of an irradiation and a suitable probability space. • A stringent definition is important for an understanding of the concept absorbed dose

  12. Does the fluence map editing in electronic tissue compensator improve dose homogeneity in bilateral field plan of head and neck patients?

    Directory of Open Access Journals (Sweden)

    Kinhikar Rajesh

    2008-01-01

    Full Text Available The purpose of this study was to evaluate the effect of fluence map editing in electronic tissue compensator (ETC on the dose homogeneity for head and neck cancer patients. Treatment planning using 6-MV X-rays and bilateral field arrangement employing ETC was carried out on the computed tomography (CT datasets of 20 patients with head and neck cancer. All the patients were planned in Varian Eclipse three-dimensional treatment planning system (3DTPS with dynamic multileaf collimator (DMLC. The treatment plans, with and without fluence editing, was compared and the effect of pre-editing and post-editing the fluence maps in the treatment field was evaluated. The skin dose was measured with thermoluminescent dosimeters (TLDs and was compared with the skin dose estimated by TPS. The mean percentage volume of the tissue receiving at least 107% of the prescription dose was 5.4 (range 1.5-10; SD 2.4. Post-editing fluence map showed that the mean percentage volume of the tissue receiving at least 107% of the prescription dose was 0.47 (range 0.1-0.9; SD 0.3. The mean skin dose measured with TLD was found to be 74% (range 71-80% of the prescribed dose while the TPS showed the mean skin dose as 85% (range 80-90%. The TPS overestimated the skin dose by 11%. Fluence map editing thus proved to be a potential tool for improving dose homogeneity in head and neck cancer patients planned with ETC, thus reducing the hot spots in the treatment region as well. The treatment with ETC is feasible with DMLC and does not take any additional time for setup or delivery. The method used to edit the fluence maps is simple and time efficient. Manual control over a plan is essential to create the best treatment plan possible.

  13. Response functions for computing absorbed dose to skeletal tissues from photon irradiation-an update

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Perry B; Bahadori, Amir A [Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Eckerman, Keith F [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Lee, Choonsik [Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892 (United States); Bolch, Wesley E, E-mail: wbolch@ufl.edu [Nuclear and Radiological/Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2011-04-21

    A comprehensive set of photon fluence-to-dose response functions (DRFs) is presented for two radiosensitive skeletal tissues-active and total shallow marrow-within 15 and 32 bone sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron-absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon micro-CT images of trabecular spongiosa taken from a 40 year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, and a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In this study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma coefficients for active marrow, inactive marrow, trabecular bone and spongiosa at higher energies are calculated using the DRF algorithm setting the electron-absorbed fraction for self-irradiation to unity. By comparing kerma coefficients and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985 Br. J. Radiol. 58 345-56) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R{sup 2} = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites representing the first such derivation for this target tissue.

  14. Vectorial and plane energy fluences - useful concepts in radiation physics

    International Nuclear Information System (INIS)

    Carlsson, C.A.

    1977-06-01

    The vectorial physical quantities describing the radiation field are defined in this report. The use of these quantities is rare in the radiation dosimetry literature since a knowledge of the directions of motion of the ionizing particle is often uninteresting when determining absorbed doses. However the plane energy fluence rate is a useful quantity in cases with plane irradiation geometries. The plane energy fluence rate is closely related to the vectorial energy fluence rate. The backscattering properties of a medium can be expressed in terms either of its albedo or its reflection-coefficient (backscatter-coefficient). These quantities are discussed in order to derive useful relations between the plane energy fluence and the energy fluence at points on an extended plane surface. Examples are also given of erroneous use of energy fluence instead of vectorial or plane energy fluence. The examples are taken from roentgen diagnostic examinations. To prevent further mistakes it could be valuable if the quantities of vectorial and plane fluences were introduced in text books in radiation dosimetry. Awaiting for this, this report may hopefully be useful. (E.R.)

  15. Fast neutron radiation inactivation of Bacillus subtilis: Absorbed dose determination

    International Nuclear Information System (INIS)

    Song Lingli; Zheng Chun; Ai Zihui; Li Junjie; Dai Shaofeng

    2011-01-01

    In this paper, fast neutron inactivation effects of Bacillus subtilis were investigated with fission fast neutrons from CFBR-II reactor of INPC (Institute of Nuclear Physics and Chemistry) and mono-energetic neutrons from the Van de Graaff accelerator at Peking University. The method for determining the absorbed dose in the Bacillus subtilis suspension contained in test tubes is introduced. The absorbed dose, on account of its dependence on the volume and the form of confined state, was determined by combined experiments and Monte Carlo method. Using the calculation results of absorbed dose, the fast neutron inactivation effects on Bacillus subtilis were studied. The survival rates and absorbed dose curve was constructed. (authors)

  16. Estimation of Absorbed Dose in Occlusal Radiography

    International Nuclear Information System (INIS)

    Yoo, Young Ah; Choi, Karp Shick; Lee, Sang Han

    1990-01-01

    The purpose of this study was to estimate absorbed dose of each important anatomic site of phantom (RT-210 Head and Neck Section R, Humanoid Systems Co., U.S.A.) head in occlusal radiography. X-radiation dosimetry at 12 anatomic sites in maxillary anterior topography, maxillary posterior topography, mandibular anterior cross-section, mandibular posterior cross-section, mandibular anterior topographic, mandibular posterior topographic occlusal projection was performed with calcium sulfate thermoluminescent dosimeters under 70 Kvp and 15 mA, 1/4 second (8 inch cone ) and 1 second (16 inch cone) exposure time. The results obtained were as follows: Skin surface produced highest absorbed dose ranged between 3264 mrad and 4073 mrad but there was little difference between projections. In maxillary anterior topographic occlusal radiography, eyeballs, maxillary sinuses, and pituitary gland sites produced higher absorbed doses than those of other sites. In maxillary posterior topographic occlusal radiography, exposed eyeball site and exposed maxillary sinus site produced high absorbed doses. In mandibular anterior cross-sectional occlusal radiography, all sites were produced relatively low absorbed dose except eyeball sites. In Mandibular posterior cross-sectional occlusal radiography, exposed eyeball site and exposed maxillary sinus site were produced relatively higher absorbed doses than other sites. In mandibular anterior topographic occlusal radiography, maxillary sinuses, submandibular glands, and thyroid gland sites produced high absorbed doses than other sites. In mandibular posterior topographic occlusal radiography, submandibular gland site of the exposed side produced high absorbed dose than other sites and eyeball site of the opposite side produced relatively high absorbed dose.

  17. Patient absorbed radiation doses estimation related to irradiation anatomy

    International Nuclear Information System (INIS)

    Soares, Flavio Augusto Penna; Soares, Amanda Anastacio; Kahl, Gabrielly Gomes

    2014-01-01

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector

  18. Conceptual basis for calculations of absorbed-dose distributions

    International Nuclear Information System (INIS)

    Sinclair, W.K.; Rossi, H.H.; Alsmiller, R.G.; Berger, M.J.; Kellerer, A.M.; Roesch, W.C.; Spencer, L.V.; Zaider, M.A.

    1991-01-01

    The effects of radiation on matter are initiated by processes in which atoms and molecules of the medium are ionized or excited. Over a wide range of conditions, it is an excellent approximation to assume that the average number of ionizations and excitations is proportional to the amount of energy imparted to the medium by ionizing radiation in the volume of interest. The absorbed dose, that is, the average amount of energy imparted to the medium per unit mass, is therefore of central importance for the production of radiation effects, and the calculation of absorbed-dose distributions in irradiated media is the focus of interest of the present report. It should be pointed out, however, that even though absorbed dose is useful as an index relating absorbed energy to radiation effects, it is almost never sufficient; it may have to be supplemented by other information, such as the distributions of the amounts of energy imparted to small sites, the correlation of the amounts of energy imparted to adjacent sites, and so on. Such quantities are termed stochastic quantities. Unless otherwise stated, all quantities considered in this report are non-stochastic. 266 refs., 11 figs., 2 tabs

  19. Absorbed dose to water determination with ionization chamber dosimetry and calorimetry in restricted neutron, photon, proton and heavy-ion radiation fields.

    Science.gov (United States)

    Brede, H J; Greif, K-D; Hecker, O; Heeg, P; Heese, J; Jones, D T L; Kluge, H; Schardt, D

    2006-08-07

    Absolute dose measurements with a transportable water calorimeter and ionization chambers were performed at a water depth of 20 mm in four different types of radiation fields, for a collimated (60)Co photon beam, for a collimated neutron beam with a fluence-averaged mean energy of 5.25 MeV, for collimated proton beams with mean energies of 36 MeV and 182 MeV at the measuring position, and for a (12)C ion beam in a scanned mode with an energy per atomic mass of 430 MeV u(-1). The ionization chambers actually used were calibrated in units of air kerma in the photon reference field of the PTB and in units of absorbed dose to water for a Farmer-type chamber at GSI. The absorbed dose to water inferred from calorimetry was compared with the dose derived from ionometry by applying the radiation-field-dependent parameters. For neutrons, the quantities of the ICRU Report 45, for protons the quantities of the ICRU Report 59 and for the (12)C ion beam, the recommended values of the International Atomic Energy Agency (IAEA) protocol (TRS 398) were applied. The mean values of the absolute absorbed dose to water obtained with these two independent methods agreed within the standard uncertainty (k = 1) of 1.8% for calorimetry and of 3.0% for ionometry for all types and energies of the radiation beams used in this comparison.

  20. Fluence map segmentation

    International Nuclear Information System (INIS)

    Rosenwald, J.-C.

    2008-01-01

    The lecture addressed the following topics: 'Interpreting' the fluence map; The sequencer; Reasons for difference between desired and actual fluence map; Principle of 'Step and Shoot' segmentation; Large number of solutions for given fluence map; Optimizing 'step and shoot' segmentation; The interdigitation constraint; Main algorithms; Conclusions on segmentation algorithms (static mode); Optimizing intensity levels and monitor units; Sliding window sequencing; Synchronization to avoid the tongue-and-groove effect; Accounting for physical characteristics of MLC; Importance of corrections for leaf transmission and offset; Accounting for MLC mechanical constraints; The 'complexity' factor; Incorporating the sequencing into optimization algorithm; Data transfer to the treatment machine; Interface between R and V and accelerator; and Conclusions on fluence map segmentation (Segmentation is part of the overall inverse planning procedure; 'Step and Shoot' and 'Dynamic' options are available for most TPS (depending on accelerator model; The segmentation phase tends to come into the optimization loop; The physical characteristics of the MLC have a large influence on final dose distribution; The IMRT plans (MU and relative dose distribution) must be carefully validated). (P.A.)

  1. Absorbed dose determination in external beam radiotherapy. An international code of practice for dosimetry based on standards of absorbed dose to water

    International Nuclear Information System (INIS)

    2000-01-01

    The International Atomic Energy Agency published in 1987 an International Code of Practice entitled 'Absorbed Dose Determination in Photon and Electron Beams' (IAEA Technical Reports Series No. 277 (TRS-277)), recommending procedures to obtain the absorbed dose in water from measurements made with an ionization chamber in external beam radiotherapy. A second edition of TRS-277 was published in 1997 updating the dosimetry of photon beams, mainly kilovoltage X rays. Another International Code of Practice for radiotherapy dosimetry entitled 'The Use of Plane-Parallel Ionization Chambers in High Energy Electron and Photon Beams' (IAEA Technical Reports Series No. 381 (TRS-381)) was published in 1997 to further update TRS-277 and complement it with respect to the area of parallel-plate ionization chambers. Both codes have proven extremely valuable for users involved in the dosimetry of the radiation beams used in radiotherapy. In TRS-277 the calibration of the ionization chambers was based on primary standards of air kerma; this procedure was also used in TRS-381, but the new trend of calibrating ionization chambers directly in a water phantom in terms of absorbed dose to water was introduced. The development of primary standards of absorbed dose to water for high energy photon and electron beams, and improvements in radiation dosimetry concepts, offer the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. The dosimetry of kilovoltage X rays, as well as that of proton and heavy ion beams, interest in which has grown considerably in recent years, can also be based on these standards. Thus a coherent dosimetry system based on standards of absorbed dose to water is possible for practically all radiotherapy beams. Many Primary Standard Dosimetry Laboratories (PSDLs) already provide calibrations in terms of absorbed dose to water at the radiation quality of 60 Co gamma rays. Some laboratories have extended calibrations to high energy photon and

  2. Neutron fluence measurements

    International Nuclear Information System (INIS)

    1970-01-01

    For research reactor work dealing with such subjects as radiation effects on solids and such disciplines as radiochemistry and radiobiology, the radiation dose or neutron fluence is an essential parameter in evaluating results. Unfortunately it is very difficult to determine. Even when the measurements have been accurate, it is difficult to compare results obtained in different experiments because present methods do not always reflect the dependence of spectra or of different types of radiation on the induced processes. After considering the recommendations of three IAEA Panels, on 'In-pile dosimetry' held in July 1964, on 'Neutron fluence measurements' in October 1965, and on 'In-pile dosimetry' in November 1966, the Agency established a Working Group on Reactor Radiation Measurements. This group consisted of eleven experts from ten different Member States and two staff members of the Agency. In the measurement of energy absorbed by materials from neutrons and gamma rays, there are various reports and reviews scattered throughout the literature. The group, however, considered that the time was ripe for all relevant information to be evaluated and gathered together in the form of a practical guide, with the aim of promoting consistency in the measurement and reporting of reactor radiation. The group arranged for the material to be divided into two manuals, which are expected to be useful both for experienced workers and for beginners

  3. Motion-encoded dose calculation through fluence/sinogram modification

    International Nuclear Information System (INIS)

    Lu, Weiguo; Olivera, Gustavo H.; Mackie, Thomas R.

    2005-01-01

    Conventional radiotherapy treatment planning systems rely on a static computed tomography (CT) image for planning and evaluation. Intra/inter-fraction patient motions may result in significant differences between the planned and the delivered dose. In this paper, we develop a method to incorporate the knowledge of intra/inter-fraction patient motion directly into the dose calculation. By decomposing the motion into a parallel (to beam direction) component and perpendicular (to beam direction) component, we show that the motion effects can be accounted for by simply modifying the fluence distribution (sinogram). After such modification, dose calculation is the same as those based on a static planning image. This method is superior to the 'dose-convolution' method because it is not based on 'shift invariant' assumption. Therefore, it deals with material heterogeneity and surface curvature very well. We test our method using extensive simulations, which include four phantoms, four motion patterns, and three plan beams. We compare our method with the 'dose-convolution' and the 'stochastic simulation' methods (gold standard). As for the homogeneous flat surface phantom, our method has similar accuracy as the 'dose-convolution' method. As for all other phantoms, our method outperforms the 'dose-convolution'. The maximum motion encoded dose calculation error using our method is within 4% of the gold standard. It is shown that a treatment planning system that is based on 'motion-encoded dose calculation' can incorporate random and systematic motion errors in a very simple fashion. Under this approximation, in principle, a planning target volume definition is not required, since it already accounts for the intra/inter-fraction motion variations and it automatically optimizes the cumulative dose rather than the single fraction dose

  4. Estimating the Absorbed Dose to Critical Organs During Dual X-ray Absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari-Dizaji, M.; Sharafi, A. A.; Larijani, B.; Mokhlesian, N.; Hasanzadeh, H. [Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2008-04-15

    Objective : The purpose of this study is to estimate a patient's organ dose (effective dose) during performance of dual X-ray absorptiometry by using the correlations derived from the surface dose and the depth doses in an anthropomorphic phantom. Materials and Methods : An anthropomorphic phantom was designed and TLDs (Thermoluminescent Dosimeters) were placed at the surface and these were also inserted at different depths of the thyroid and uterus of the anthropomorphic phantom. The absorbed doses were measured on the phantom for the spine and femur scan modes. The correlation coefficients and regression functions between the absorbed surface dose and the depth dose were determined. The derived correlation was then applied for 40 women patients to estimate the depth doses to the thyroid and uterus. Result : There was a correlation between the surface dose and depth dose of the thyroid and uterus in both scan modes. For the women's dosimetry, the average surface doses of the thyroid and uterus were 1.88 {mu}Gy and 1.81 Gy, respectively. Also, the scan center dose in the women was 5.70 Gy. There was correlation between the thyroid and uterus surface doses, and the scan center dose. Conclusion : We concluded that the effective dose to the patient's critical organs during dual X-ray absorptiometry can be estimated by the correlation derived from phantom dosimetry.

  5. Estimating the Absorbed Dose to Critical Organs During Dual X-ray Absorptiometry

    International Nuclear Information System (INIS)

    Mokhtari-Dizaji, M.; Sharafi, A. A.; Larijani, B.; Mokhlesian, N.; Hasanzadeh, H.

    2008-01-01

    Objective : The purpose of this study is to estimate a patient's organ dose (effective dose) during performance of dual X-ray absorptiometry by using the correlations derived from the surface dose and the depth doses in an anthropomorphic phantom. Materials and Methods : An anthropomorphic phantom was designed and TLDs (Thermoluminescent Dosimeters) were placed at the surface and these were also inserted at different depths of the thyroid and uterus of the anthropomorphic phantom. The absorbed doses were measured on the phantom for the spine and femur scan modes. The correlation coefficients and regression functions between the absorbed surface dose and the depth dose were determined. The derived correlation was then applied for 40 women patients to estimate the depth doses to the thyroid and uterus. Result : There was a correlation between the surface dose and depth dose of the thyroid and uterus in both scan modes. For the women's dosimetry, the average surface doses of the thyroid and uterus were 1.88 μGy and 1.81 Gy, respectively. Also, the scan center dose in the women was 5.70 Gy. There was correlation between the thyroid and uterus surface doses, and the scan center dose. Conclusion : We concluded that the effective dose to the patient's critical organs during dual X-ray absorptiometry can be estimated by the correlation derived from phantom dosimetry

  6. Calculation of neutron fluence-to-dose conversion factors for extremities

    International Nuclear Information System (INIS)

    Stewart, R.D.; Harty, R.; McDonald, J.C.; Tanner, J.E.

    1993-04-01

    The Pacific Northwest Laboratory is developing a standard for the performance testing of personnel extremity dosimeters for the US Department of Energy. Part of this effort requires the calculation of neutron fluence-to-dose conversion factors for finger and wrist extremities. This study focuses on conversion factors for two types of extremity models: namely the polymethyl methacrylate (PMMA) phantom (as specified in the draft standard for performance testing of extremity dosimeters) and more realistic extremity models composed of tissue-and-bone. Calculations for each type of model are based on both bare and D 2 O-moderated 252 Cf sources. The results are then tabulated and compared with whole-body conversion factors. More appropriate energy-averaged quality factors for the extremity models have also been computed from the neutron fluence in 50 equally spaced energy bins with energies from 2.53 x 10 -8 to 15 MeV. Tabulated results show that conversion factors for both types of extremity phantom are 15 to 30% lower than the corresponcung whole-body phantom conversion factors for 252 Cf neutron sources. This difference in extremity and whole-body conversion factors is attributable to the proportionally smaller amount of back-scattering that occurs in the extremity phantoms compared with whole-body phantoms

  7. Estimated neutron dose to embryo and foetus during commercial flight

    International Nuclear Information System (INIS)

    Chen, J.; Lewis, B. J.; Bennett, L. G. I.; Green, A. R.; Tracy, B. L.

    2005-01-01

    A study has been carried out to assess the radiation exposure from cosmic-ray neutrons to the embryo and foetus of pregnant aircrew and air travellers in consideration of the radiation exposure from cosmic-ray neutrons to the embryo and foetus. A Monte Carlo analysis was performed to determine the equivalent dose from neutrons to the brain and body of an embryo at 8 weeks and to the foetus at the 3, 6 and 9 month periods. Neutron fluence-to-absorbed dose conversion coefficients for the foetal brain and for the entire foetal body (isotropic irradiation geometry) have been determined at the four developmental stages. The equivalent dose rate to the foetus during commercial flights has been further evaluated considering the fluence-to-absorbed dose conversion coefficients, a neutron spectrum measured at an altitude of 11.3 km and an ICRP-92 radiation-weighting factor for neutrons. This study indicates that the foetus can exceed the annual dose limit of 1 mSv for the general public after, for example, 15 round trips on commercial trans-Atlantic flights. (authors)

  8. Ultrahigh precision nonlinear reflectivity measurement system for saturable absorber mirrors with self-referenced fluence characterization.

    Science.gov (United States)

    Orsila, Lasse; Härkönen, Antti; Hyyti, Janne; Guina, Mircea; Steinmeyer, Günter

    2014-08-01

    Measurement of nonlinear optical reflectivity of saturable absorber devices is discussed. A setup is described that enables absolute accuracy of reflectivity measurements better than 0.3%. A repeatability within 0.02% is shown for saturable absorbers with few-percent modulation depth. The setup incorporates an in situ knife-edge characterization of beam diameters, making absolute reflectivity estimations and determination of saturation fluences significantly more reliable. Additionally, several measures are discussed to substantially improve the reliability of the reflectivity measurements. At its core, the scheme exploits the limits of state-of-the-art digital lock-in technology but also greatly benefits from a fiber-based master-oscillator power-amplifier source, the use of an integrating sphere, and simultaneous comparison with a linear reflectivity standard.

  9. Effect of gamma background on the dose absorbed by human embryon and foetus

    International Nuclear Information System (INIS)

    Miloslavov, V.; Doncheva, B.

    1989-01-01

    A method is proposed for calculation of absorbed radiation dose in different stages of human foetus development under normal or increased gamma background. On the base of ICRP-data for critical organ's mass (foetus, placenta, blood, uterus) a formula is given for absorbed dose evaluation of gonads. It is concluded that increased gamma background is insignificant compared to internal irradiation from absorbed radionuclides

  10. Absorbed dose rate meter for β-ray

    International Nuclear Information System (INIS)

    Bingo, K.

    1977-01-01

    The absorbed dose of β-ray depends on the energy of β-rays and the epidermal thickness of tissue in interest. In order to measure the absorbed dose rate at the interested tissue directly, the ratio of counting rate to absorbed dose should be constant independent of β-ray energy. In this purpose, a thin plastic scintillator was used as a detector with a single channel analyzer. The pulse height distribution, obtained using the scintillator whose thickness is less than the range of β-rays, shows a peak at a particular pulse height depending on the thickness of scintillator used. This means an increase of the number of pulses at lower pulse height. The lower level of discrimination and window width of the single channel analyzer are chosen according to the epidermal thickness of the tissue. In the experiment, scintillators of 0.5, 1, 2, 3, 5 and 10 mm thick were tested. It was found that desirable pulse height distribution, to obtain a constant dose sensitivity, could be obtained using the 2 mm thick scintillator. The sensitivity of the absorbed dose rate meter is constant within +-15% for β-ray with maximum energy from 0.4 to 3.5 MeV, when the absorbed dose rate for skin (epidermal thickness 7mg/cm 2 ) is measured. In order to measure the dose rate for a hand (epithermal thickness 40mg/cm 2 ) the lower level of discrimination is changed to be higher and at the same time the window width is also changed. Combining these techniques, one can get an absorbed dose rate meter for the tissue dose of various thickness, which has the constant dose sensitivity within +-15% for β-rays with maximum energy from 0.4 to 3.5 MeV

  11. Transcriptional Response in Mouse Thyroid Tissue after 211At Administration: Effects of Absorbed Dose, Initial Dose-Rate and Time after Administration.

    Directory of Open Access Journals (Sweden)

    Nils Rudqvist

    Full Text Available 211At-labeled radiopharmaceuticals are potentially useful for tumor therapy. However, a limitation has been the preferential accumulation of released 211At in the thyroid gland, which is a critical organ for such therapy. The aim of this study was to determine the effect of absorbed dose, dose-rate, and time after 211At exposure on genome-wide transcriptional expression in mouse thyroid gland.BALB/c mice were i.v. injected with 1.7, 7.5 or 100 kBq 211At. Animals injected with 1.7 kBq were killed after 1, 6, or 168 h with mean thyroid absorbed doses of 0.023, 0.32, and 1.8 Gy, respectively. Animals injected with 7.5 and 100 kBq were killed after 6 and 1 h, respectively; mean thyroid absorbed dose was 1.4 Gy. Total RNA was extracted from pooled thyroids and the Illumina RNA microarray platform was used to determine mRNA levels. Differentially expressed transcripts and enriched GO terms were determined with adjusted p-value 1.5, and p-value <0.05, respectively.In total, 1232 differentially expressed transcripts were detected after 211At administration, demonstrating a profound effect on gene regulation. The number of regulated transcripts increased with higher initial dose-rate/absorbed dose at 1 or 6 h. However, the number of regulated transcripts decreased with mean absorbed dose/time after 1.7 kBq 211At administration. Furthermore, similar regulation profiles were seen for groups administered 1.7 kBq. Interestingly, few previously proposed radiation responsive genes were detected in the present study. Regulation of immunological processes were prevalent at 1, 6, and 168 h after 1.7 kBq administration (0.023, 0.32, 1.8 Gy.

  12. Absorbed dose by a CMOS in radiotherapy

    International Nuclear Information System (INIS)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R.; Paredes G, L. C.

    2011-10-01

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  13. High Conduction Neutron Absorber to Simulate Fast Reactor Environment in an Existing Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna; Greenwood, Lawrence R.; Parry, James

    2014-06-22

    A need was determined for a thermal neutron absorbing material that could be cooled in a gas reactor environment without using large amounts of a coolant that would thermalize the neutron flux. A new neutron absorbing material was developed that provided high conduction so a small amount of water would be sufficient for cooling thereby thermalizing the flux as little as possible. An irradiation experiment was performed to assess the effects of radiation and the performance of a new neutron absorbing material. Neutron fluence monitors were placed inside specially fabricated holders within a set of drop-in capsules and irradiated for up to four cycles in the Advanced Test Reactor. Following irradiation, the neutron fluence monitor wires were analyzed by gamma and x-ray spectrometry to determine the activities of the activation products. The adjusted neutron fluences were calculated and grouped into three bins – thermal, epithermal and fast to evaluate the spectral shift created by the new material. Fluence monitors were evaluated after four different irradiation periods to evaluate the effects of burn-up in the absorbing material. Additionally, activities of the three highest activity isotopes present in the specimens are given.

  14. Evaluation of the absorbed dose to the lungs due to Xe133 and Tc99m (MAA)

    International Nuclear Information System (INIS)

    Vazquez A, M.; Murillo C, F.; Castillo D, C.; Sifuentes D, Y.; Sanchez S, P.; Rojas P, E.; Marquez P, F.

    2015-10-01

    The absorbed dose in lungs of an adult patient has been evaluated using the biokinetics of radiopharmaceuticals containing Xe 133 or Tc 99m (MAA). The absorbed dose was calculated using the MIRD formalism, and the Cristy-and Eckerman lungs model. The absorbed dose in the lungs due to 133 Xe is 0.00104 mGy/MBq. Here, the absorbed dose due to remaining tissue, included in the 133 Xe biokinetics is not significant. The absorbed dose in the lungs, due Tc 99m (MAA), is 0.065 mGy/MBq. Approximately, 4.6% of the absorbed dose is due to organs like liver, kidneys, bladder, and the rest of tissues, included in the Tc 99m biokinetics. Here, the absorbed dose is very significant to be overlooked. The dose contribution is mainly due to photons emitted by the liver. (Author)

  15. Assessment of human effective absorbed dose of 67 Ga-ECC based on biodistribution rat data.

    Science.gov (United States)

    Shanehsazzadeh, Saeed; Yousefnia, Hassan; Lahooti, Afsaneh; Zolghadri, Samaneh; Jalilian, Amir Reza; Afarideh, Hossien

    2015-02-01

    In a diagnostic context, determination of absorbed dose is required before the introduction of a new radiopharmaceutical to the market to obtain marketing authorization from the relevant agencies. In this work, the absorbed dose of [67 Ga]-ethylenecysteamine cysteine [(67 Ga)ECC] to human organs was determined by using distribution data for rats. For biodistribution data, the animals were sacrificed by CO2 asphyxiation at selected times after injection (0.5, 2 and 48 h, n = 3 for each time interval), then the tissue (blood, heart, lung, brain, intestine, feces, skin, stomach, kidneys, liver, muscle and bone) were removed. The absorbed dose was determined by Medical Internal Radiation Dose (MIRD) method after calculating cumulated activities in each organ. Our prediction shows that a 185-MBq injection of (67)Ga-ECC into the humans might result in an estimated absorbed dose of 0.029 mGy in the whole body. The highest absorbed doses are observed in the spleen and liver with 33.766 and 16.847 mGy, respectively. The results show that this radiopharmaceutical can be a good SPECT tracer since it can be produced easily and also the absorbed dose in each organ is less than permitted absorbed dose.

  16. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors

    Energy Technology Data Exchange (ETDEWEB)

    Garnica-Garza, H M [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional Unidad Monterrey, Via del Conocimiento 201 Parque de Investigacion e Innovacion Tecnologica, Apodaca NL C.P. 66600 (Mexico)], E-mail: hgarnica@cinvestav.mx

    2009-09-21

    Radiotherapy using kilovoltage x-rays in conjunction with contrast agents incorporated into the tumor, gold nanoparticles in particular, could represent a potential alternative to current techniques based on high-energy linear accelerators. In this paper, using the voxelized Zubal phantom in conjunction with the Monte Carlo code PENELOPE to model a prostate cancer treatment, it is shown that in combination with a 360 deg. arc delivery technique, tumoricidal doses of radiation can be delivered to deep-seated tumors while still providing acceptable doses to the skin and other organs at risk for gold concentrations in the tumor within the range of 7-10 mg-Au per gram of tissue. Under these conditions and using a x-ray beam with 90% of the fluence within the range of 80-200 keV, a 72 Gy physical absorbed dose to the prostate can be delivered, while keeping the rectal wall, bladder, skin and femoral heads below 65 Gy, 55 Gy, 40 Gy and 30 Gy, respectively. However, it is also shown that non-uniformities in the contrast agent concentration lead to a severe degradation of the dose distribution and that, therefore, techniques to locally quantify the presence of the contrast agent would be necessary in order to determine the incident x-ray fluence that best reproduces the dosimetry obtained under conditions of uniform contrast agent distribution.

  17. Absorbed dose by a CMOS in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L. C., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-10-15

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  18. Determination of electron depth-dose curves for water, ICRU tissue, and PMMA and their application to radiation protection dosimetry

    International Nuclear Information System (INIS)

    Grosswendt, B.

    1994-01-01

    For monoenergetic electrons in the energy range between 60 keV and 10 MeV, normally incident on water, 4-element ICRU tissue and PMMA phantoms, depth-dose curves have been calculated using the Monte Carlo method. The phantoms' shape was that of a rectangular solid with a square front face of 30 cm x 30 cm and a thickness of 15 cm; it corresponds to that recommended by the ICRU for use in the procedure of calibrating radiation protection dosemeters. The depth-dose curves have been used to determine practical ranges, half-value depths, electron fluence to maximum absorbed dose conversion factors, and conversion factors between electron fluence and absorbed dose at depths d corresponding to 0.007 g.cm -2 , 0.3 g.cm -2 , and 1.0 g.cm -2 . The latter data can be used as fluence to dose equivalent conversion factors for extended parallel electron beams. (Author)

  19. Comparing calibration methods of electron beams using plane-parallel chambers with absorbed-dose to water based protocols

    International Nuclear Information System (INIS)

    Stewart, K.J.; Seuntjens, J.P.

    2002-01-01

    Recent absorbed-dose-based protocols allow for two methods of calibrating electron beams using plane-parallel chambers, one using the N D,w Co for a plane-parallel chamber, and the other relying on cross-calibration of the plane-parallel chamber in a high-energy electron beam against a cylindrical chamber which has an N D,w Co factor. The second method is recommended as it avoids problems associated with the P wall correction factors at 60 Co for plane-parallel chambers which are used in the determination of the beam quality conversion factors. In this article we investigate the consistency of these two methods for the PTW Roos, Scanditronics NACP02, and PTW Markus chambers. We processed our data using both the AAPM TG-51 and the IAEA TRS-398 protocols. Wall correction factors in 60 Co beams and absorbed-dose beam quality conversion factors for 20 MeV electrons were derived for these chambers by cross-calibration against a cylindrical ionization chamber. Systematic differences of up to 1.6% were found between our values of P wall and those from the Monte Carlo calculations underlying AAPM TG-51, and up to 0.6% when comparing with the IAEA TRS-398 protocol. The differences in P wall translate directly into differences in the beam quality conversion factors in the respective protocols. The relatively large spread in the experimental data of P wall , and consequently the absorbed-dose beam quality conversion factor, confirms the importance of the cross-calibration technique when using plane-parallel chambers for calibrating clinical electron beams. We confirmed that for well-guarded plane-parallel chambers, the fluence perturbation correction factor at d max is not significantly different from the value at d ref . For the PTW Markus chamber the variation in the latter factor is consistent with published fits relating it to average energy at depth

  20. Fluence-convolution broad-beam (FCBB) dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Weiguo; Chen Mingli, E-mail: wlu@tomotherapy.co [TomoTherapy Inc., 1240 Deming Way, Madison, WI 53717 (United States)

    2010-12-07

    IMRT optimization requires a fast yet relatively accurate algorithm to calculate the iteration dose with small memory demand. In this paper, we present a dose calculation algorithm that approaches these goals. By decomposing the infinitesimal pencil beam (IPB) kernel into the central axis (CAX) component and lateral spread function (LSF) and taking the beam's eye view (BEV), we established a non-voxel and non-beamlet-based dose calculation formula. Both LSF and CAX are determined by a commissioning procedure using the collapsed-cone convolution/superposition (CCCS) method as the standard dose engine. The proposed dose calculation involves a 2D convolution of a fluence map with LSF followed by ray tracing based on the CAX lookup table with radiological distance and divergence correction, resulting in complexity of O(N{sup 3}) both spatially and temporally. This simple algorithm is orders of magnitude faster than the CCCS method. Without pre-calculation of beamlets, its implementation is also orders of magnitude smaller than the conventional voxel-based beamlet-superposition (VBS) approach. We compared the presented algorithm with the CCCS method using simulated and clinical cases. The agreement was generally within 3% for a homogeneous phantom and 5% for heterogeneous and clinical cases. Combined with the 'adaptive full dose correction', the algorithm is well suitable for calculating the iteration dose during IMRT optimization.

  1. Multilayer detector for skin absorbed dose measuring

    International Nuclear Information System (INIS)

    Osanov, D.P.; Panova, V.P.; Shaks, A.I.

    1985-01-01

    A method for skin dosimetry based on utilization of multilayer detectors and permitting to estimate distribution of absorbed dose by skin depth is described. The detector represents a set of thin sensitive elements separated by tissue-equivalent absorbers. Quantitative evaluation and forecasting the degree of radiation injury of skin are determined by the formula based on determination of the probability of the fact that cells are not destroyed and they can divide further on. The given method ensures a possibility of quantitative evaluation of radiobiological effect and forecasting clinical consequences of skin irradiation by results of corresponding measurements of dose by means of the miultilayer detector

  2. Uncertainty and sensitivity analysis of the effect of the mean energy and FWHM of the initial electron fluence on the Bremsstrahlung photon spectra of linear accelerators

    International Nuclear Information System (INIS)

    Juste, B.; Miró, R.; Verdú, G.; Macián, R.

    2012-01-01

    A calculation of the correct dose in radiation therapy requires an accurate description of the radiation source because uncertainties in characterization of the linac photon spectrum are propagated through the dose calculations. Unfortunately, detailed knowledge of the initial electron beam parameters is not readily available, and many researchers adjust the initial electron fluence values by trial-and-error methods. The main goal of this work was to develop a methodology to characterize the fluence of initial electrons before they hit the tungsten target of an Elekta Precise medical linear accelerator. To this end, we used a Monte Carlo technique to analyze the influence of the characteristics of the initial electron beam on the distribution of absorbed dose from a 6 MV linac photon beam in a water phantom. The technique is based on calculations with Software for Uncertainty and Sensitivity Analysis (SUSA) and Monte Carlo simulations with the MCNP5 transport code. The free parameters used in the SUSA calculations were the mean energy and full-width-at-half-maximum (FWHM) of the initial electron distribution. A total of 93 combinations of these parameters gave initial electron fluence configurations. The electron spectra thus obtained were used in a simulation of the electron transport through the target of the linear accelerator, which produced different photon (Bremsstrahlung) spectra. The simulated photon spectra were compared with the 6-MV photon spectrum provided by the linac manufacturer (Elekta). This comparison revealed how the mean energy and FWHM of the initial electron fluence affect the spectrum of the generated photons. This study has made it possible to fine-tune the examined electron beam parameters to obtain the resulted absorbed doses with acceptable accuracy (error <1%). - Highlights: ► Mean energy and radial spread are important parameters for simulating the incident electron beam in radiation therapy. ► Errors in determining the electron

  3. Isoeffective dose: a concept for biological weighting of absorbed dose in proton and heavier-ion therapies

    CERN Document Server

    Wambersie, A; Menzel, H G; Gahbauer, R; DeLuca, P M; Hendry, J H; Jones, D T L

    2011-01-01

    When reporting radiation therapy procedures, International Commission on Radiation Units and Measurements (ICRU) recommends specifying absorbed dose at/in all clinically relevant points and/or volumes. In addition, treatment conditions should be reported as completely as possible in order to allow full understanding and interpretation of the treatment prescription. However, the clinical outcome does not only depend on absorbed dose but also on a number of other factors such as dose per fraction, overall treatment time and radiation quality radiation biology effectiveness (RBE). Therefore, weighting factors have to be applied when different types of treatments are to be compared or to be combined. This had led to the concept of `isoeffective absorbed dose', introduced by ICRU and International Atomic Energy Agency (IAEA). The isoeffective dose D(IsoE) is the dose of a treatment carried out under reference conditions producing the same clinical effects on the target volume as those of the actual treatment. It i...

  4. Fluence-to-effective dose conversion coefficients from a Saudi population based phantom for monoenergetic photon beams from 10 keV to 20 MeV

    International Nuclear Information System (INIS)

    Ma, Andy K; Hussein, Mohammed Adel; Altaher, Khalid Mohammed; Farid, Khalid Yousif; Amer, Mamun; Aldhafery, Bander Fuhaid; Alghamdi, Ali A

    2015-01-01

    Fluence-to-dose conversion coefficients are important quantities for radiation protection, derived from Monte Carlo simulations of the radiation particles through a stylised phantom or voxel based phantoms. The voxel phantoms have been developed for many ethnic groups for their accurate reflection of the anatomy. In this study, we used the Monte Carlo code MCNPX to calculate the photon fluence-to-effective dose conversion coefficients with a voxel phantom based on the Saudi Arabian male population. Six irradiation geometries, anterior–posterior (AP), posterior–anterior (PA), left lateral (LLAT), right lateral (RLAT), rotational (ROT) and isotropic (ISO) were simulated for monoenergetic photon beams from 10 keV to 20 MeV. We compared the coefficients with the reference values in ICRP Publication 116. The coefficients in the AP and PA geometries match the reference values to 9% and 12% on average as measured by root mean square while those in the LLAT, RLAT ROT and ISO geometries differ, mostly below, from the reference by 23, 22, 15 and 16%, respectively. The torso of the Saudi phantom is wider than the ICRP reference male phantom and likely to cause more attenuation to the lateral beam. The ICRP reference coefficients serve well for the Saudi male population as conservative estimations for the purpose of radiation protection. (paper)

  5. Tumoral fibrosis effect on the radiation absorbed dose of 177Lu–Tyr3-octreotate and 177Lu–Tyr3-octreotate conjugated to gold nanoparticles

    International Nuclear Information System (INIS)

    Azorín-Vega, E.P.; Zambrano-Ramírez, O.D.; Rojas-Calderón, E.L.; Ocampo-García, B.E.; Ferro-Flores, G.

    2015-01-01

    The aim of this work was to evaluate the tumoral fibrosis effect on the radiation absorbed dose of the radiopharmaceuticals 177 Lu–Tyr 3 -octreotate (monomeric) and 177 Lu–Tyr 3 -octreotate–gold nanoparticles (multimeric) using an experimental HeLa cells tumoral model and the Monte Carlo PENELOPE code. Experimental and computer micro-environment models with or without fibrosis were constructed. Results showed that fibrosis increases up to 33% the tumor radiation absorbed dose, although the major effect on the dose was produced by the type of radiopharmaceutical (112 Gy-multimeric vs. 43 Gy-monomeric). - Highlights: • Fibrosis increases the radiation absorbed dose to the tumor. • Fibrosis increases the radiopharmaceutical residence time in the tumor. • The multimeric nature of the radiopharmaceuticals enhances the radiopharmaceutical retention

  6. The absorbed dose to blood from blood-borne activity

    International Nuclear Information System (INIS)

    Hänscheid, H; Fernández, M; Lassmann, M

    2015-01-01

    The radiation absorbed dose to blood and organs from activity in the blood is relevant for nuclear medicine dosimetry and for research in biodosimetry. The present study provides coefficients for the average absorbed dose rates to the blood from blood-borne activity for radionuclides frequently used in targeted radiotherapy and in PET diagnostics. The results were deduced from published data for vessel radius-dependent dose rate coefficients and reasonable assumptions on the blood-volume distribution as a function of the vessel radius. Different parts of the circulatory system were analyzed separately. Vessel size information for heart chambers, aorta, vena cava, pulmonary artery, and capillaries was taken from published results of morphometric measurements. The remaining blood not contained in the mentioned vessels was assumed to reside in fractal-like vascular trees, the smallest branches of which are the arterioles or venules. The applied vessel size distribution is consistent with recommendations of the ICRP on the blood-volume distribution in the human. The resulting average absorbed dose rates to the blood per nuclear disintegration per milliliter (ml) of blood are (in 10 −11  Gy·s −1 ·Bq −1 ·ml) Y-90: 5.58, I-131: 2.49, Lu-177: 1.72, Sm-153: 2.97, Tc-99m: 0.366, C-11: 4.56, F-18: 3.61, Ga-68: 5.94, I-124: 2.55. Photon radiation contributes 1.1–1.2·10 −11  Gy·s −1 ·Bq −1 ·ml to the total dose rate for positron emitters but significantly less for the other nuclides. Blood self-absorption of the energy emitted by ß-particles in the whole blood ranges from 37% for Y-90 to 80% for Tc-99m. The correspondent values in vascular trees, which are important for the absorbed dose to organs, range from 30% for Y-90 to 82% for Tc-99m. (paper)

  7. OEDIPE, a software for personalized Monte Carlo dosimetry and treatment planning optimization in nuclear medicine: absorbed dose and biologically effective dose considerations

    International Nuclear Information System (INIS)

    Petitguillaume, A.; Broggio, D.; Franck, D.; Desbree, A.; Bernardini, M.; Labriolle Vaylet, C. de

    2014-01-01

    For targeted radionuclide therapies, treatment planning usually consists of the administration of standard activities without accounting for the patient-specific activity distribution, pharmacokinetics and dosimetry to organs at risk. The OEDIPE software is a user-friendly interface which has an automation level suitable for performing personalized Monte Carlo 3D dosimetry for diagnostic and therapeutic radionuclide administrations. Mean absorbed doses to regions of interest (ROIs), isodose curves superimposed on a personalized anatomical model of the patient and dose-volume histograms can be extracted from the absorbed dose 3D distribution. Moreover, to account for the differences in radiosensitivity between tumoral and healthy tissues, additional functionalities have been implemented to calculate the 3D distribution of the biologically effective dose (BED), mean BEDs to ROIs, isoBED curves and BED-volume histograms along with the Equivalent Uniform Biologically Effective Dose (EUD) to ROIs. Finally, optimization tools are available for treatment planning optimization using either the absorbed dose or BED distributions. These tools enable one to calculate the maximal injectable activity which meets tolerance criteria to organs at risk for a chosen fractionation protocol. This paper describes the functionalities available in the latest version of the OEDIPE software to perform personalized Monte Carlo dosimetry and treatment planning optimization in targeted radionuclide therapies. (authors)

  8. An absorbed dose calorimeter for IMRT dosimetry

    International Nuclear Information System (INIS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N.D.; Thomas, C.G.; Palmans, H.

    2012-01-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%). (authors)

  9. Fluence inhomogeneities due to a ripple filter induced Moiré effect.

    Science.gov (United States)

    Ringbæk, Toke Printz; Brons, Stephan; Naumann, Jakob; Ackermann, Benjamin; Horn, Julian; Latzel, Harald; Scheloske, Stefan; Galonska, Michael; Bassler, Niels; Zink, Klemens; Weber, Uli

    2015-02-07

    At particle therapy facilities with pencil beam scanning, the implementation of a ripple filter (RiFi) broadens the Bragg peak, so fewer energy steps from the accelerator are required for a homogeneous dose coverage of the planning target volume (PTV). However, sharply focusing the scanned pencil beams at the RiFi plane by ion optical settings can lead to a Moiré effect, causing fluence inhomogeneities at the isocenter. This has been experimentally proven at the Heidelberg Ionenstrahl-Therapiezentrum (HIT), Universitätsklinikum Heidelberg, Germany. 150 MeV u(-1) carbon-12 ions are used for irradiation with a 3 mm thick RiFi. The beam is focused in front of and as close to the RiFi plane as possible. The pencil beam width is estimated to be 0.78 mm at a 93 mm distance from the RiFi. Radiographic films are used to obtain the fluence profile 30 mm in front of the isocenter, 930 mm from the RiFi. The Monte Carlo (MC) code SHIELD-HIT12A is used to determine the RiFi-induced inhomogeneities in the fluence distribution at the isocenter for a similar setup, pencil beam widths at the RiFi plane ranging from σχ(RiFi to 1.2 mm and for scanning step sizes ranging from 1.5 to 3.7 mm. The beam application and monitoring system (BAMS) used at HIT is modelled and simulated. When the width of the pencil beams at the RiFi plane is much smaller than the scanning step size, the resulting inhomogeneous fluence distribution at the RiFi plane interfers with the inhomogeneous RiFi mass distribution and fluence inhomogeneity can be observed at the isocenter as large as an 8% deviation from the mean fluence. The inverse of the fluence ripple period at the isocenter is found to be the difference between the inverse of the RiFi period and the inverse of the scanning step size. We have been able to use MC simulations to reproduce the spacing of the ripple stripes seen in films irradiated at HIT. Our findings clearly indicate that pencil beams sharply focused near the RiFi plane result in

  10. Absorbed Dose and Effective Dose for Lung Cancer Image Guided Radiation Therapy(IGRT) using CBCT and 4D-CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Yong; Lee, Woo Suk; Koo, Ki Lae; Kim, Joo Seob; Lee, Sang Hyeon [Dept. of Radiation Oncology, GangNeung Asan Hospital, Gangneung (Korea, Republic of)

    2016-06-15

    To evaluate the results of absorbed and effective doses using CBCT and 4D-CBCT settings for lung cancer. This experimental study. Measurements were performed using a Anderson rando phantom with OSLD(optically stimulated luminescent dosimeters). It was performed computed tomography(Lightspeed GE, USA) in order to express the major organs of the human body. Measurements were obtained a mean value is repeated three times each. Evaluations of effective dose and absorbed dose were performed the CL-IX-Thorax mode and Truebeam-Thorax mode CBCT. Additionally, compared Truebeam-Thorax mode CBCT with Truebeam-Thorax mode 4D-CBCT(Four-dimensional Cone Beam Computed Tomography). Average absorbed dose in the CBCT of CL-IX was measured in lung 2.505cGy, heart 2.595cGy, liver 2.145cGy, stomach 1.934cGy, skin 2.233cGy, in case of Truebeam, It was measured lung 1.725cGy, heart 2.034cGy, liver 1.616cGy, stomach 1.470cGy, skin 1.445cGy. In case of 4D-CBCT, It was measured lung 3.849cGy, heart 4.578cGy, liver 3.497cGy, stomach 3.179cGy, skin 3.319cGy Average effective dose, considered tissue weighting and radiation weighting, in the CBCT of CL-IX was measured lung 2.164mSv, heart 2.241mSVv, liver 0.136mSv, stomach 1.668mSv, skin 0.009mSv, in case of Turebeam, it was measured lung 1.725mSv, heart 1.757mSv, liver 0.102mSv, stomach 1.270mSv, skin 0.005mSv, In case of 4D-CBCT, It was measured lung 3.326mSv, heart 3.952mSv, liver 0.223mSv, stomach 2.747mSv, skin 0.013mSv. As a result, absorbed dose and effective Dose in the CL-IX than Truebeam was higher about 1.3 times and in the 4D-CBCT Truebeam than CBCT of Truebeam was higher about 2.2times However, a large movement of the patient and respiratory gated radiotherapy may be more accurate treatment in 4D-CBCT. Therefore, it will be appropriate to selectively used.

  11. Kinetics of the absorbed dose formation and the effect of chronic β-irradiation on the cytogenetic characteristics and harvest of barley plants

    International Nuclear Information System (INIS)

    Zyablitskaya, E.Ya.; Kal'chenko, V.A.; Aleksakhin, R.M.; Zuev, N.D.

    1984-01-01

    A study was made of the kinetics of the absorbed dose formation, of the cytogenetic effects and the yield of barley plants growing in the experimental fields artificially contaminated with 90 Sr- 90 Y. It was shown that 70% of the dose absorbed during the vegetation period fall on the 1st and the and stages of organogenesis. The dose absorbed was shown to increase the cytogenetic effects. As calculated per 1 Gy the cytogenetic effects had an inverse relation to the dose rate

  12. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W. Sr.

    1992-01-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system use relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, Monte Carlo calculations were performed using the code Electron Gamma Shower (EGS4). Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessel sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was or cross fire between blood vessels was assumed. Results are useful in assessing the doses to blood and blood vessel walls for different nuclear medicine procedures

  13. The MIRD method of estimating absorbed dose

    International Nuclear Information System (INIS)

    Weber, D.A.

    1991-01-01

    The estimate of absorbed radiation dose from internal emitters provides the information required to assess the radiation risk associated with the administration of radiopharmaceuticals for medical applications. The MIRD (Medical Internal Radiation Dose) system of dose calculation provides a systematic approach to combining the biologic distribution data and clearance data of radiopharmaceuticals and the physical properties of radionuclides to obtain dose estimates. This tutorial presents a review of the MIRD schema, the derivation of the equations used to calculate absorbed dose, and shows how the MIRD schema can be applied to estimate dose from radiopharmaceuticals used in nuclear medicine

  14. Radiation absorbed dose estimates for [1-carbon-11]-glucose in adults: The effects of hyperinsulinemia

    International Nuclear Information System (INIS)

    Powers, W.J.

    1996-01-01

    As preparation for studies of blood-brain glucose transport in diabetes mellitus, radiation absorbed dose estimates from intravenous administration of [1- 11 C]-glucose for 24 internal organs, lens, blood and total body were calculated for three physiologic conditions: euinsulinemic euglycemia, hyperinsulinemic euglycemia and hyperinsulinemic hyperglycemia. Cumulated activities in blood, insulin-independent and insulin-dependent compartments were calculated from blood time-activity curves in normal human volunteers and macaques. Apportionment of cumulated activity to individual organs in insulin-dependent and insulin-independent compartments was based on previously published data. Absorbed doses were calculated with the computer program MIRDOSE 3 for the 70-kg adult phantom. S for blood was calculated separately. The heart wall, lungs and spleen were the organs receiving the highest dose. The effect of hyperinsulinemia was demonstrated by the increase in adsorbed dose to the muscle, heart and blood with a decrease to other internal organs. This effect was more pronounced during hyperinsulinemic hyperglycemia. Hyperinsulinemia produced a decrease in effective dose due to the decrease in cumulated activity in organs with specified weighting factors greater than 0.05. The effective dose per study for [1- 11 C]-glucose is comparable to that reported for 2-deoxy-[2- 18 F]-glucose. 43 refs., 1 fig., 4 tabs

  15. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W.

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was assumed nor cross fire between vessel was assumed. Results are useful in assessing the dose in blood and blood vessel walls for different nuclear medicine procedures. 6 refs., 6 figs., 5 tabs

  16. Absorbed dose to the skin in radiological examinations of upper and lower gastrointestinal tract

    International Nuclear Information System (INIS)

    Zonca, G.; Brusa, A.; Somigliana, A.; Pasqualotto, C.; Sichirollo, A.E.; Bellomi, M.; Cozzi, G.; Severini, A.

    1995-01-01

    Absorbed doses to the skin in radiological examinations of the upper and lower gastronintestinal tract in conventional and digital radiology are evaluated and compared. Absorbed doses were measured with LiF thermoluminescence dosemeters placed on the lower pelvis, umbilicus and forehead of the patient to evaluate the absorbed dose in and outside the primary beam. On 10 patients a reduction in absorbed dose of about 34% for double contrast barium enema and of 66% for upper gastrointestinal tract examinations was revealed with digital radiography equipment. In our working conditions the lower dose requirement for digital radiography is mainly due to image intensifiers and television chains and also, due to our equipment settings, to the dose reduction with digital spot fluorography compared with conventional spot film radiography. (Author)

  17. Primordial radionuclides in soil and their contributions to absorbed dose rate in air

    International Nuclear Information System (INIS)

    Moriones, C.R.; Duran, E.B.; Cruz, F.M. de la

    1989-01-01

    The predominant primordial radionuclides in soil which give rise to terrestrial radiation (external irradiation) were analyzed by gamma spectrometry. 40 K has the highest average activity mass concentration, i.e. 212 Bq kg -1 . 238 U and 232 Th concentrations are much lower and are only 14 and 16 Bq kg -1 respectively. Based on conversion factors given in the UNSCEAR Report (1988), the absorbed dose rates in air at one meter above the ground surface per unit activity mass concentration of primordial radionuclides were calculated. The average per caput absorbed dose rate in air received by Filipinos due to terrestrial radiation is 23 nGy h -1 . The relative contribution of 232 Th series to the total absorbed dose rate is highest, followed closely by 40 K. The contribution of 238 U series is only about one-half that of the 232 Th series. Based on the results obtained, the terrestrial component of the average per caput exposure dose rate due to natural radiation sources is 2.64 μR h -1 or roughly 3 μR h -1 . This leads to an annual average effective dose equivalent to 202 μSv. (Author). 5 annexes; 4 figs.; 3 tabs.; 6 refs

  18. Problems in radiation absorbed dose estimation from positron emitters

    International Nuclear Information System (INIS)

    Powell, G.F.; Harper, P.V.; Reft, C.S.; Chen, C.T.; Lathrop, K.A.

    1986-01-01

    The positron emitters commonly used in clinical imaging studies for the most part are short-lived, so that when they are distributed in the body the radiation absorbed dose is low even though most of the energy absorbed is from the positrons themselves rather than the annihilation radiation. These considerations do not apply to the administration pathway for a radiopharmaceutical where the activity may be highly concentrated for a brief period rather than distributed in the body. Thus, high local radiation absorbed doses to the vein for an intravenous administration and to the upper airways during administration by inhalation can be expected. For these geometries, beta point source functions (FPS's) have been employed to estimate the radiation absorbed dose in the present study. Physiologic measurements were done to determine other exposure parameters for intravenous administration of O-15 and Rb-82 and for administration of O-15-CO 2 by continuous breathing. Using FPS's to calculate dose rates to the vein wall from O-15 and Rb-82 injected into a vein having an internal radius of 1.5 mm yielded dose rates of 0.51 and 0.46 (rad x g/μCi x h), respectively. The dose gradient in the vein wall and surrounding tissues was also determined using FPS's. Administration of O-15-CO 2 by continuous breathing was also investigated. Using ultra-thin thermoluninescent dosimeters (TLD's) having the effective thickness of normal tracheal mucosa, experiments were performed in which 6 dosimeters were exposed to known concentrations of O-15 positrons in a hemicylindrical tracheal phantom having an internal radius of 0.96 cm and an effective length of 14 cm. The dose rate for these conditions was 3.4 (rads/h)/(μCi/cm 3 ). 15 references, 7 figures, 6 tables

  19. Conversion of ionization measurements to radiation absorbed dose in non-water density material

    International Nuclear Information System (INIS)

    El-Khatib, E.; Connors, S.

    1992-01-01

    In bone-equivalent materials two different calculations of absorbed dose are possible: the absorbed dose to soft tissue plastic (polystyrene) within bone-equivalent material and the dose to the bone-equivalent material itself. Both can be calculated from ionization measurements in phantoms. These two calculations result in significantly different doses in a heterogeneous phantom composed of polystyrene and aluminium (a bone substitute). The dose to a thin slab of polystyrene in aluminium is much higher than the dose to the aluminium itself at the same depth in the aluminium. Monte Carlo calculations confirm that the calculation of dose to polystyrene in aluminium can be accurately carried out using existing dosimetry protocols. However, the conversion of ionization measurements to absorbed dose to high atomic number materials cannot be accurately carried out with existing protocols and appropriate conversion factors need to be determined. (author)

  20. Conversion from dose-to-graphite to dose-to-water in an 80 MeV/A carbon ion beam.

    Science.gov (United States)

    Rossomme, S; Palmans, H; Shipley, D; Thomas, R; Lee, N; Romano, F; Cirrone, P; Cuttone, G; Bertrand, D; Vynckier, S

    2013-08-21

    Based on experiments and numerical simulations, a study is carried out pertaining to the conversion of dose-to-graphite to dose-to-water in a carbon ion beam. This conversion is needed to establish graphite calorimeters as primary standards of absorbed dose in these beams. It is governed by the water-to-graphite mass collision stopping power ratio and fluence correction factors, which depend on the particle fluence distributions in each of the two media. The paper focuses on the experimental and numerical determination of this fluence correction factor for an 80 MeV/A carbon ion beam. Measurements have been performed in the nuclear physics laboratory INFN-LNS in Catania (Sicily, Italy). The numerical simulations have been made with a Geant4 Monte Carlo code through the GATE simulation platform. The experimental data are in good agreement with the simulated results for the fluence correction factors and are found to be close to unity. The experimental values increase with depth reaching 1.010 before the Bragg peak region. They have been determined with an uncertainty of 0.25%. Different numerical results are obtained depending on the level of approximation made in calculating the fluence correction factors. When considering carbon ions only, the difference between measured and calculated values is maximal just before the Bragg peak, but its value is less than 1.005. The numerical value is close to unity at the surface and increases to 1.005 near the Bragg peak. When the fluence of all charged particles is considered, the fluence correction factors are lower than unity at the surface and increase with depth up to 1.025 before the Bragg peak. Besides carbon ions, secondary particles created due to nuclear interactions have to be included in the analysis: boron ions ((10)B and (11)B), beryllium ions ((7)Be), alpha particles and protons. At the conclusion of this work, we have the conversion of dose-to-graphite to dose-to-water to apply to the response of a graphite

  1. Airborne and total gamma absorbed dose rates at Patiala - India

    International Nuclear Information System (INIS)

    Tesfaye, Tilahun; Sahota, H.S.; Singh, K.

    1999-01-01

    The external gamma absorbed dose rate due to gamma rays originating from gamma emitting aerosols in air, is compared with the total external gamma absorbed dose rate at the Physics Department of Punjabi University, Patiala. It has been found out that the contribution, to the total external gamma absorbed dose rate, of radionuclides on particulate matter suspended in air is about 20% of the overall gamma absorbed dose rate. (author)

  2. Absorbed dose to the patient by computerized whole body X-ray tomography

    International Nuclear Information System (INIS)

    Krauss, O.; Schuhmacher, H.

    1977-01-01

    The absorbed dose to the patient was measured for several medical investigations by computerized whole body scanning. An Alderson-phantom mounted with LiF-TLD was irradiated with a Delta-Scan (Ohio-Nuclear, 120 kV, 30 mA). The integral dose to the brain during a full examination (6 scans, filtration 3 mm Al) was measured to 5x10 -2 J. The maximum absorbed dose at the entrance was found to be 3.2 rd and at the exit 0.6 rd. The dose to the eyes is 0.7 rd and to the thyroid gland 0.03 rd. The integral dose to the trunk (5 scans in the region of liver and kidneys, filtration 6 mm Al) was measured to 5x10 -2 J. The maximum absorbed dose at the entrance was found to be 2.4 rd and at the exit 0.25 rd. The dose to the gonads is less than 2 and 4 mrd if the distance between the last scan and the gonads is more than 15 cm

  3. Considerations on absorbed dose estimates based on different β-dose point kernels in internal dosimetry

    International Nuclear Information System (INIS)

    Uchida, Isao; Yamada, Yasuhiko; Yamashita, Takashi; Okigaki, Shigeyasu; Oyamada, Hiyoshimaru; Ito, Akira.

    1995-01-01

    In radiotherapy with radiopharmaceuticals, more accurate estimates of the three-dimensional (3-D) distribution of absorbed dose is important in specifying the activity to be administered to patients to deliver a prescribed absorbed dose to target volumes without exceeding the toxicity limit of normal tissues in the body. A calculation algorithm for the purpose has already been developed by the authors. An accurate 3-D distribution of absorbed dose based on the algorithm is given by convolution of the 3-D dose matrix for a unit cubic voxel containing unit cumulated activity, which is obtained by transforming a dose point kernel into a 3-D cubic dose matrix, with the 3-D cumulated activity distribution given by the same voxel size. However, beta-dose point kernels affecting accurate estimates of the 3-D absorbed dose distribution have been different among the investigators. The purpose of this study is to elucidate how different beta-dose point kernels in water influence on the estimates of the absorbed dose distribution due to the dose point kernel convolution method by the authors. Computer simulations were performed using the MIRD thyroid and lung phantoms under assumption of uniform activity distribution of 32 P. Using beta-dose point kernels derived from Monte Carlo simulations (EGS-4 or ACCEPT computer code), the differences among their point kernels gave little differences for the mean and maximum absorbed dose estimates for the MIRD phantoms used. In the estimates of mean and maximum absorbed doses calculated using different cubic voxel sizes (4x4x4 mm and 8x8x8 mm) for the MIRD thyroid phantom, the maximum absorbed doses for the 4x4x4 mm-voxel were estimated approximately 7% greater than the cases of the 8x8x8 mm-voxel. They were found in every beta-dose point kernel used in this study. On the other hand, the percentage difference of the mean absorbed doses in the both voxel sizes for each beta-dose point kernel was less than approximately 0.6%. (author)

  4. Proposal concerning the absorbed dose conversion factor

    Energy Technology Data Exchange (ETDEWEB)

    Shiragai, A [National Inst. of Radiological Sciences, Chiba (Japan)

    1978-03-01

    New definitions of the absorbed dose conversion factors Csub(lambda) and Csub(E) are proposed. The absorbed dose in water is given by the product of absorbed dose conversion factor, exposure calibration factor, ionisation chamber reading, cap displacement correction factor and perturbation correction factor. At exposure calibration the material of the build-up cap must be the same as that of the chamber wall. An ionisation chamber of which the wall material is water-equivalent or air-equivalent may be used. In the latter case the wall must be thin. For these two cases absorbed dose conversion factors are introduced and it is recommended that either of the two sets should be adopted. Furthermore, if the chamber wall is neither water- nor air-equivalent, the factor by which these currently defined values should be multiplied is also given: again the wall must be thin. The ICRU definitions of Csub(lambda) and Csub(E) are inconsistent, as recently pointed out, while the definitions presented here are consistent.

  5. Absorbed radiation doses in women undergone to PET-CT exams for cancer diagnosis

    International Nuclear Information System (INIS)

    Santana, Priscila do Carmo; Bernardes, Felipe Dias; Mamede, Marcelo; Oliveira, Paulo Marcio Campos de; Silva, Teogenes Augusto da; Mourao FIlho, Arnaldo Prata

    2014-01-01

    The absorbed dose in several organs and the effective dose in patients submitted to PET-CT exams with the radiopharmaceutical 18 F-FDG were assessed. The ICRP-106 biokinetic model and thermoluminescent detectors in a anthropomorphic phantom were used. The use of the PET-CT image acquisition protocol, with the CT protocol for anatomical mapping, showed that 60% of effective dose was from the radiotracer administration, being the effective dose values for a female patient of (5.80 ± 1.57) mSv. In conclusion, patient doses can be reduced by using appropriate imaging acquisition in 18 F-FDG PET-CT examinations and promoting the compliance with the radiation protection principles. (author)

  6. Genetic effects induced by neutrons in Drosophila melanogaster I. Determination of absorbed dose

    International Nuclear Information System (INIS)

    Delfin, A.; Paredes, L.C.; Zambrano, F.; Guzman-Rincon, J.; Urena-Nunez, F.

    2001-01-01

    A method to obtain the absorbed dose in Drosophila melanogaster irradiated in the thermal column facility of the Triga Mark III Reactor has been developed. The method is based on the measurements of neutron activation of gold foils produced by neutron capture to obtain the neutron fluxes. These fluxes, combined with the calculations of kinetic energy released per unit mass, enables one to obtain the absorbed doses in Drosophila melanogaster

  7. Absorbed dose to the urinary bladder wall for different radiopharmaceuticals using dynamic S-values

    International Nuclear Information System (INIS)

    Andersson, M.; Minarik, D.; Mattsson, S.; Leide-Svegborn; Johansson, L.

    2015-01-01

    Full text of publication follows. Aim and background: the urinary bladder wall is a radiosensitive organ that can receive a high absorbed dose from radiopharmaceuticals used in diagnostic nuclear medicine. Current dynamic models estimate the photon and electron absorbed dose at the inner surface of the bladder wall. The aim of this work has been to create a more realistic estimation of the mean absorbed dose to the urinary bladder wall from different radiopharmaceuticals. This calculation also uses dynamic specific absorption fractions (SAF) that changes with bladder volume and are gender specific. Materials and Methods: the volume of the urinary bladder content was calculated using a spherical approximation with a urinary inflow of 1.0 ml/min and 0.5 ml/min during day and night time, respectively. The activity in the bladder content was described using a bi-exponential extraction from the body. The absorbed dose to the bladder wall was estimated using linear interpolation of SAF values from different bladder volumes, ranging from 10 ml to 800 ml. Administration of the activity was assumed to start at 09:00 with an initial voiding after 40 minutes and a voiding interval of 3.5 hours during the day. A six hour night gap, starting at midnight, with a voiding right before and after the night period, was used. Calculations were made, with the same assumptions, for an earlier dynamic bladder model and with a static SAF value from the ICRP/ICRU adult reference computational phantoms for a bladder containing 200 ml. Values for the absorbed dose per unit administered activity for 19 commonly used radiopharmaceuticals were calculated, e.g. 18 F-FDG, 99m Tc-pertechnetate, 99m Tc-MAG3 and 123 I-NaI. Results and conclusion: the results of the estimates of the absorbed doses to the inner bladder wall were a factor of ten higher than the estimates mean absorbed doses. The mean absorbed doses to the bladder wall were slightly higher for females than males, due to a smaller female

  8. Low-intensity red and infrared laser effects at high fluences on Escherichia coli cultures

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, L.L.; Campos, V.M.A.; Magalhaes, L.A.G. [Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, RJ (Brazil). Departamento de Biofisica e Biometria; Paoli, F. [Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG (Brazil). Departamento de Morfologia; Fonseca, A.S., E-mail: adnfonseca@ig.com.br [Universidade Federal do Estado do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Ciencias Fisiologicas

    2015-10-15

    Semiconductor laser devices are readily available and practical radiation sources providing wavelength tenability and high monochromaticity. Low-intensity red and near-infrared lasers are considered safe for use in clinical applications. However, adverse effects can occur via free radical generation, and the biological effects of these lasers from unusually high fluences or high doses have not yet been evaluated. Here, we evaluated the survival, filamentation induction and morphology of Escherichia coli cells deficient in repair of oxidative DNA lesions when exposed to low-intensity red and infrared lasers at unusually high fluences. Cultures of wild-type (AB1157), endonuclease III-deficient (JW1625-1), and endonuclease IV-deficient (JW2146-1) E. coli, in exponential and stationary growth phases, were exposed to red and infrared lasers (0, 250, 500, and 1000 J/cm{sup 2}) to evaluate their survival rates, filamentation phenotype induction and cell morphologies. The results showed that low-intensity red and infrared lasers at high fluences are lethal, induce a filamentation phenotype, and alter the morphology of the E. coli cells. Low-intensity red and infrared lasers have potential to induce adverse effects on cells, whether used at unusually high fluences, or at high doses. Hence, there is a need to reinforce the importance of accurate dosimetry in therapeutic protocols. (author)

  9. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams

    International Nuclear Information System (INIS)

    Lourenço, Ana; Thomas, Russell; Bouchard, Hugo; Kacperek, Andrzej; Vondracek, Vladimir; Royle, Gary; Palmans, Hugo

    2016-01-01

    Purpose: The aim of this study was to determine fluence corrections necessary to convert absorbed dose to graphite, measured by graphite calorimetry, to absorbed dose to water. Fluence corrections were obtained from experiments and Monte Carlo simulations in low- and high-energy proton beams. Methods: Fluence corrections were calculated to account for the difference in fluence between water and graphite at equivalent depths. Measurements were performed with narrow proton beams. Plane-parallel-plate ionization chambers with a large collecting area compared to the beam diameter were used to intercept the whole beam. High- and low-energy proton beams were provided by a scanning and double scattering delivery system, respectively. A mathematical formalism was established to relate fluence corrections derived from Monte Carlo simulations, using the FLUKA code [A. Ferrari et al., “FLUKA: A multi-particle transport code,” in CERN 2005-10, INFN/TC 05/11, SLAC-R-773 (2005) and T. T. Böhlen et al., “The FLUKA Code: Developments and challenges for high energy and medical applications,” Nucl. Data Sheets 120, 211–214 (2014)], to partial fluence corrections measured experimentally. Results: A good agreement was found between the partial fluence corrections derived by Monte Carlo simulations and those determined experimentally. For a high-energy beam of 180 MeV, the fluence corrections from Monte Carlo simulations were found to increase from 0.99 to 1.04 with depth. In the case of a low-energy beam of 60 MeV, the magnitude of fluence corrections was approximately 0.99 at all depths when calculated in the sensitive area of the chamber used in the experiments. Fluence correction calculations were also performed for a larger area and found to increase from 0.99 at the surface to 1.01 at greater depths. Conclusions: Fluence corrections obtained experimentally are partial fluence corrections because they account for differences in the primary and part of the secondary

  10. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Lourenço, Ana, E-mail: am.lourenco@ucl.ac.uk [Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom and Division of Acoustics and Ionising Radiation, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Thomas, Russell; Bouchard, Hugo [Division of Acoustics and Ionising Radiation, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Kacperek, Andrzej [National Eye Proton Therapy Centre, Clatterbridge Cancer Centre, Wirral CH63 4JY (United Kingdom); Vondracek, Vladimir [Proton Therapy Center, Budinova 1a, Prague 8 CZ-180 00 (Czech Republic); Royle, Gary [Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT (United Kingdom); Palmans, Hugo [Division of Acoustics and Ionising Radiation, National Physical Laboratory, Teddington TW11 0LW, United Kingdom and Medical Physics Group, EBG MedAustron GmbH, A-2700 Wiener Neustadt (Austria)

    2016-07-15

    Purpose: The aim of this study was to determine fluence corrections necessary to convert absorbed dose to graphite, measured by graphite calorimetry, to absorbed dose to water. Fluence corrections were obtained from experiments and Monte Carlo simulations in low- and high-energy proton beams. Methods: Fluence corrections were calculated to account for the difference in fluence between water and graphite at equivalent depths. Measurements were performed with narrow proton beams. Plane-parallel-plate ionization chambers with a large collecting area compared to the beam diameter were used to intercept the whole beam. High- and low-energy proton beams were provided by a scanning and double scattering delivery system, respectively. A mathematical formalism was established to relate fluence corrections derived from Monte Carlo simulations, using the FLUKA code [A. Ferrari et al., “FLUKA: A multi-particle transport code,” in CERN 2005-10, INFN/TC 05/11, SLAC-R-773 (2005) and T. T. Böhlen et al., “The FLUKA Code: Developments and challenges for high energy and medical applications,” Nucl. Data Sheets 120, 211–214 (2014)], to partial fluence corrections measured experimentally. Results: A good agreement was found between the partial fluence corrections derived by Monte Carlo simulations and those determined experimentally. For a high-energy beam of 180 MeV, the fluence corrections from Monte Carlo simulations were found to increase from 0.99 to 1.04 with depth. In the case of a low-energy beam of 60 MeV, the magnitude of fluence corrections was approximately 0.99 at all depths when calculated in the sensitive area of the chamber used in the experiments. Fluence correction calculations were also performed for a larger area and found to increase from 0.99 at the surface to 1.01 at greater depths. Conclusions: Fluence corrections obtained experimentally are partial fluence corrections because they account for differences in the primary and part of the secondary

  11. Measurement of neutron and gamma absorbed doses in phantoms exposed to mixed fields

    International Nuclear Information System (INIS)

    Beraud-Sudreau, E.; Lemaire, G.; Maas, J.

    1985-01-01

    In order to study the dosimetric characteristics of PIN junctions, the absorbed doses measured by junctions and FLi7 in air and water phantoms were compared with the doses measured by classical neutron dosimetry in mixed fields. The validity of the experimental responses of PIN junctions being thus checked and established, neutron and gamma dose distributions in tissue equivalent plastic phantoms (plastinaut) and mammals (piglets) were evaluated as well as the absorbed dose distributions in the pig bone-marrow producing areas. By using correlatively a Monte-Carlo calculation method and applying some simplifying assumptions, the absorbed doses were derived from the spectrum of SILENE's neutrons at various depths inside a cubic water phantom and the results were compared with some from the literature [fr

  12. Absorbed Doses to Embryo from Intravenous Urography at Selected Radiological Departments in Slovakia

    International Nuclear Information System (INIS)

    Karkus, R.; Nikodemova, D.; Horvathova, M.

    2003-01-01

    Actual legislation used in radiological protection requires quality assurance program for decreasing radiation load of patients from radiological examinations. The information about irradiation of pregnant women is very important, because the embryo is more radiosensitive as adult organism. On the basis of absence of unified calculations or measurements of absorbed doses to embryo from various radiological examinations in Slovakia we present in this study the values of absorbed doses to embryo from intravenous urography at selected radiological departments in Slovakia. Absorbed doses to embryo were obtained by measurement and calculation using the simulation of irradiation of pregnant woman by intravenous urography. The results of our study indicate, that absorbed doses to embryo were at various radiological departments considerably different, depending on type of X-ray machine and different settings of technical parameters of X-ray machine. In accordance with worldwide trend it is necessary to decrease radiation load of patients as low as possible level. Differences in radiation load between radiological departments indicate, that it is necessary to continue in solving of this problem and perform measurements and calculations of absorbed doses to embryo at different types of X-ray machines and at different examinations, where the embryo is in direct beam of X-ray. (author)

  13. Validity of the concept of absorbed dose as a physical quantity

    International Nuclear Information System (INIS)

    Tada, Jun-Ichiro; Katoh, Kazuaki.

    1995-01-01

    The concept of the 'absorbed dose' of ionizing radiation is scrutinized from physical point of view. It is shown that the concept and definition of the quantity in the ICRU system is disqualified as a physical quantity and the absorbed dose can not always be a 'measure of cause' in describing causality relation between radiation and effects on matter. The current absorbed dose depends even on the energy that have already been brought out from the matter, contrary to the intention of introducing the quantity. Trials to remove these difficulties are made. However, it is also shown there still exists an essential problem that cannot be solved by improving the formulation. (author)

  14. Accuracy of a dose-area product compared to an absorbed dose to water at a point in a 2 cm diameter field

    Energy Technology Data Exchange (ETDEWEB)

    Dufreneix, S.; Ostrowsky, A.; Rapp, B.; Daures, J.; Bordy, J. M., E-mail: jean-marc.bordy@cea.fr [CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), Gif-sur-Yvette F-91191 (France)

    2016-07-15

    Purpose: Graphite calorimeters with a core diameter larger than the beam can be used to establish dosimetric references in small fields. The dose-area product (DAP) measured can theoretically be linked to an absorbed dose at a point by the determination of a profile correction. This study aims at comparing the DAP-based protocol to the usual absorbed dose at a point protocol in a 2 cm diameter field for which both references exist. Methods: Two calorimeters were used, respectively, with a sensitive volume of 0.6 cm (for the absorbed dose at a point measurement) and 3 cm diameter (for the DAP measurement). Profile correction was calculated from a 2D dose mapping using three detectors: a PinPoint chamber, a synthetic diamond, and EBT3 films. A specific protocol to read EBT3 films was implemented and the dose-rate and energy dependences were studied to assure a precise measurement, especially in the penumbra and out-of-field regions. Results: EBT3 films were found independent on dose rates over the range studied but showed a strong under-response (18%) at low energies. Depending on the dosimeter used for calculating the profile correction, a deviation of 0.8% (PinPoint chamber), 0.9% (diamond), or 1.9% (EBT3 films) was observed between the calibration coefficient derived from DAP measurements and the one directly established in terms of absorbed dose to water at a point. Conclusions: The DAP method can currently be linked to the classical dosimetric reference system based in an absorbed dose at a point only with a confidence interval of 95% (k = 2). None of the detectors studied can be used to determine an absorbed dose to water at a point from a DAP measurement with an uncertainty smaller than 1.2%.

  15. Effects of body and organ size on absorbed dose: there is no standard patient

    International Nuclear Information System (INIS)

    Poston, J.W.

    1976-01-01

    The problem of estimating the absorbed dose to organs and tissues of the human body due to the presence of a radiopharmaceutical in one or more organs is discussed. Complications are introduced by the fact that the body is not homogeneous and in many cases the organ shapes are not regular. Publications of the MIRD Committee have provided a direct means of estimating the absorbed dose (or absorbed fraction) for a number of radioisotopes. These estimates are based on Monte Carlo calculations for monoenergetic photons distributed uniformly in organs of an adult phantom. The medical physicist finds that his patient does not resemble the adult phantom. In addition, the absorbed fractions for the adult are not reasonable values for the child. This paper examines how these absorbed fraction estimates apply to a nonstandard patient

  16. Determination of Absorbed Dose to Water for Leksell Gamma Knife Unit

    International Nuclear Information System (INIS)

    Hrsak, H.

    2013-01-01

    Because of geometry of photon beams in Leksell Gamma Knife Unit (LGK), there are several technical problems in applying standard protocols for determination of absorbed dose to water (Dw). Currently, Dw in LGK unit, measured at the center of spherical plastic phantom, is used for dose calculation in LGK radiosurgery. Treatment planning software (LGP TPS) accepts this value as a measurement in water and since plastic phantom has higher electron density than water, this leads to systematic errors in dose calculation. To reduce these errors, a photon attenuation correction (PAC) method was applied. For that purpose, measurements of absorbed dose in a center of three different plastic phantoms with 16 cm diameter (ABS - acrylonitrile butadiene styrene, PMMA - polymethyl metacrylate, PMMA + teflon - polytetrafluoroethylene 5 mm shell) were made with ionization chamber (Semiflex, PTW Freiburg). For measured dose values, PAC to water was applied based on electron density (ED) and equivalent water depths (EWD) of the plastic phantoms. The relation between CT number and ED was determined by measuring CT number of standard CT to ED phantom (CIRS Model 062 Phantom). Absorbed dose in plastic phantoms was 2.5 % lower than calculated dose in water for ABS phantom and more than 5.5 % lower for PMMA and PMMA+teflon phantom. Calculated dose in water showed more consistent values for all three phantoms (max. difference 2.6 %). EWD for human cranial bones and brain has value close to the EWD of ABS phantom, which makes this phantom most suitable for dose measurements in clinical application. In LGK radiosurgery determination of errors related to the difference of phantom materials should not be neglected and measured dose should be corrected before usage for patient treatment dose calculation.(author)

  17. Estimation of absorbed doses in humans due to intravenous administration of fluorine-18-fluorodeoxyglucose in PET studies

    International Nuclear Information System (INIS)

    Mejia, A.A.; Nakamura, T.; Masatoshi, I.; Hatazawa, J.; Masaki, M.; Watanuki, S.

    1991-01-01

    Radiation absorbed doses due to intravenous administration of fluorine-18-fluorodeoxyglucose in positron emission tomography (PET) studies were estimated in normal volunteers. The time-activity curves were obtained for seven human organs (brain, heart, kidney, liver, lung, pancreas, and spleen) by using dynamic PET scans and for bladder content by using a single detector. These time-activity curves were used for the calculation of the cumulative activity in these organs. Absorbed doses were calculated by the MIRD method using the absorbed dose per unit of cumulated activity, 'S' value, transformed for the Japanese physique and the organ masses of the Japanese reference man. The bladder wall and the heart were the organs receiving higher doses of 1.2 x 10(-1) and 4.5 x 10(-2) mGy/MBq, respectively. The brain received a dose of 2.9 x 10(-2) mGy/MBq, and other organs received doses between 1.0 x 10(-2) and 3.0 x 10(-2) mGy/MBq. The effective dose equivalent was estimated to be 2.4 x 10(-2) mSv/MBq. These results were comparable to values of absorbed doses reported by other authors on the radiation dosimetry of this radiopharmaceutical

  18. Specification of absorbed dose for reporting a therapeutic irradiation

    International Nuclear Information System (INIS)

    Wambersie, A.; Chassagne, D.

    1981-01-01

    The problem of dose specification in external beam therapy with photons and electrons has been dealt with in ICRU Report 29 (1978). This problem arises from the fact that the absorbed dose distribution is usually not uniform in the target volume and that for the purpose of treatment reporting a nominal absorbed dose - which will be called target absorbed dose - has to be selected. When comparing the clinical results obtained between radiotherapy centres, the differences in the reported target absorbed doses which can be introduced by differences in the methods of dose specification often are much larger than the differences related to the dosimetric procedures themselves. This shows the importance of the problem. In this paper, some definitions of terms and concepts currently used in radiotherapy are first recalled: tumour volume, target volume, treatment volume, etc. These definitions have been proposed in ICRU Report 29 for photon and electron beams; they can be extended to any kind of irradiation. For external beam therapy with photons and electrons, the target absorbed dose is defined as the absorbed dose at selected point(s) (specification point(s)) having a meaningful relation to the target volume and/or the irradiation beams. Examples are discussed for typical cases. As far as interstitial and intracavitary therapy is concerned, the problem is more complex and no recommendations have so far been made by the ICRU Commission. A major difficulty arises from the sharp dose gradient as a function of the distance to the sources. The particular case of the treatment of cervix carcinoma is considered and some possible methods of specification are discussed: (1) the indication of the sources (in adequate units) and the duration of the application, (2) the absorbed doses at selected reference points (bladder, rectum, bony structures) and (3) the description of the tissue volume (height, width, thickness) encompassed by a given isodose surface (60Gy). (author)

  19. The Australian Commonwealth standard of measurement for absorbed radiation dose

    International Nuclear Information System (INIS)

    Sherlock, S.L.

    1990-06-01

    This report documents the absorbed dose standard for photon beams in the range from 1 to 25 MeV. Measurements of absorbed dose in graphite irradiated by a beam of cobalt-60 gamma rays from an Atomic Energy of Canada Limited (AECL) E1 Dorado 6 teletherapy unit are reported. The measurements were performed using a graphite calorimeter, which is the primary standard for absorbed dose. The measurements are used to calibrate a working standard ion chamber in terms of absorbed dose in graphite. Details of the methods, results and correction factors applied are given in Appendices. 13 refs., 6 tabs., 6 figs

  20. Eye lens dosimetry for interventional procedures – Relation between the absorbed dose to the lens and dose at measurement positions

    International Nuclear Information System (INIS)

    Geber, Therese; Gunnarsson, Mikael; Mattsson, Sören

    2011-01-01

    This study investigated the relationship between the absorbed dose to the lens of the eye and the absorbed dose at different measurement positions near the eye of interventional radiologists. It also visualised the dose distribution inside the head, both when protective eyewear were used and without such protection. The best position for an eye lens dosimeter was found to be at the side of the head nearest to the radiation source, close to the eye. Positioning the dosimeter at the eyebrow could lead to an underestimation of the lens dose of as much as 45%. The measured dose distribution showed that the absorbed dose to the eye lenses was high compared to the other parts of the head, which stresses the importance of wearing protective eyewear. However, many models of eyewear were found to be deficient as the radiation could slip through at several places, e.g. at the cheek. The relationship between the absorbed dose to the lens and the kerma-area-product (P KA ) delivered to the patient was also studied.

  1. Radioiodine Therapy of Hyperthyroidism. Simplified patient-specific absorbed dose planning

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, Helene

    2003-10-01

    Radioiodine therapy of hyperthyroidism is the most frequently performed radiopharmaceutical therapy. To calculate the activity of {sup 131}I to be administered for giving a certain absorbed dose to the thyroid, the mass of the thyroid and the individual biokinetic data, normally in the form of uptake and biologic half-time, have to be determined. The biologic half-time is estimated from several uptake measurements and the first one is usually made 24 hours after the intake of the test activity. However, many hospitals consider it time-consuming since at least three visits of the patient to the hospital are required (administration of test activity, first uptake measurement, second uptake measurement plus treatment). Instead, many hospitals use a fixed effective half-time or even a fixed administered activity, only requiring two visits. However, none of these methods considers the absorbed dose to the thyroid of the individual patient. In this work a simplified patient-specific method for treating hyperthyroidism is proposed, based on one single uptake measurement, thus requiring only two visits to the hospital. The calculation is as accurate as using the individual biokinetic data. The simplified method is as patient-convenient and time effective as using a fixed effective half-time or a fixed administered activity. The simplified method is based upon a linear relation between the late uptake measurement 4-7 days after intake of the test activity and the product of the extrapolated initial uptake and the effective half-time. Treatments not considering individual biokinetics in the thyroid result in a distribution of administered absorbed dose to the thyroid, with a range of -50 % to +160 % compared to a protocol calculating the absorbed dose to the thyroid of the individual patient. Treatments with a fixed administered activity of 370 MBq will in general administer 250 % higher activity to the patient, with a range of -30 % to +770 %. The absorbed dose to other

  2. Comparison of measurements of absorbed dose to water using a water calorimeter and ionization chambers for clinical radiotherapy photon and electron beams

    International Nuclear Information System (INIS)

    Marles, A.E.M.

    1981-01-01

    With the development of the water calorimeter direct measurement of absorbed dose in water becomes possible. This could lead to the establishment of an absorbed dose rather than an exposure related standard for ionization chambers for high energy electrons and photons. In changing to an absorbed dose standard it is necessary to investigate the effect of different parameters, among which are the energy dependence, the air volume, wall thickness and material of the chamber. The effect of these parameters is experimentally studied and presented for several commercially available chambers and one experimental chamber, for photons up to 25 MV and electrons up to 20 MeV, using a water calorimeter as the absorbed dose standard and the most recent formalism to calculate the absorbed dose with ion chambers. For electron beams, the dose measured with the calorimeter was 1% lower than the dose calculated with the chambers, independent of beam energy and chamber. For photon beams, the absorbed dose measured with the calorimeter was 3.8% higher than the absorbed dose calculated from the chamber readings. Such differences were found to be chamber and energy independent. The results for the photons were found to be statistically different from the results with the electron beams. Such difference could not be attributed to a difference in the calorimeter response

  3. Effective dose per unit fluence calculated for adults and a 7 year old girl in broad antero-posterior beams of monoenergetic electrons of 0.1 to 10 MeV

    International Nuclear Information System (INIS)

    Schultz, F.W.; Zoetelief, J.

    1997-01-01

    For broad antero-posterior beams of monoenergetic (0.1-10 MeV) electrons, organ doses per unit fluence were computed through Monte Carlo simulation with reference to male and female adult and a 7 year old girl. Effective doses (E) per unit fluence were calculated for the three phantoms and for an average adult. E increases from about 8 x 10 -14 to about 1.2 x 10 -10 Sv.cm 2 with increasing electron energy. Uncertainties were (often much) better than 6% for the adults, and 18% for the child. E as calculated for the average adult may be used for both males and females as under- or overestimations stay within 25% from E for the average adult. The child's radiation risk is underestimated for electron energies in the range of 0.6 to 3 MeV. This underestimation up to a factor of about 20 is unacceptable for radiological protection purposes. The present results were compared with literature data on operational quantities associated with radiation hazard from weakly penetrating radiation. Neither directional nor personal dose equivalent appears to be a realistic quantity in this case. Both would yield an unnecessarily large safety factor for radiological protection. (author)

  4. Advances in absorbed dose measurement standards at the australian radiation laboratory

    International Nuclear Information System (INIS)

    Boas, J.F.; Hargrave, N.J.; Huntley, R.B.; Kotler, L.H.; Webb, D.V.; Wise, K.N.

    1996-01-01

    The applications of ionising radiation in the medical and industrial fields require both an accurate knowledge of the amount of ionising radiation absorbed by the medium in question and the capability of relating this to National and International standards. The most useful measure of the amount of radiation is the absorbed dose which is defined as the energy absorbed per unit mass. For radiotherapy, the reference medium is water, even though the measurement of the absorbed dose to water is not straightforward. Two methods are commonly used to provide calibrations in absorbed dose to water. The first is the calibration of the chamber in terms of exposure in a Cobalt-60 beam, followed by the conversion by a protocol into dose to water in this and higher energy beams. The other route is via the use of a graphite calorimeter as a primary standard device, where the conversion from absorbed dose to graphite to absorbed dose in water is performed either by theoretical means making use of cavity ionisation theory, or by experiment where the graphite calorimeter and secondary standard ionisation chamber are placed at scaled distances from the source of the radiation beam (known as the Dose-Ratio method). Extensive measurements have been made at Cobalt-60 at ARL using both the exposure and absorbed dose to graphite routes. Agreement between the ARL measurements and those based on standards maintained by ANSTO and NPL is within ± 0.3%. Absorbed dose measurements have also been performed at ARL with photon beams of nominal energy 16 and 19 MeV obtained from the ARL linac. The validity of the protocols at high photon energies, the validity of the methods used to convert from absorbed dose in graphite to absorbed dose in water and the validity of the indices used to specify the beams are discussed. Brief mention will also be made of the establishment of a calibration facility for neutron monitors at ARL and of progress in the development of ERP dosimetry

  5. Advances in absorbed dose measurement standards at the australian radiation laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boas, J.F.; Hargrave, N.J.; Huntley, R.B.; Kotler, L.H.; Webb, D.V.; Wise, K.N. [Australian Radiation Laboratory, Yallambie, VIC (Australia)

    1996-12-31

    The applications of ionising radiation in the medical and industrial fields require both an accurate knowledge of the amount of ionising radiation absorbed by the medium in question and the capability of relating this to National and International standards. The most useful measure of the amount of radiation is the absorbed dose which is defined as the energy absorbed per unit mass. For radiotherapy, the reference medium is water, even though the measurement of the absorbed dose to water is not straightforward. Two methods are commonly used to provide calibrations in absorbed dose to water. The first is the calibration of the chamber in terms of exposure in a Cobalt-60 beam, followed by the conversion by a protocol into dose to water in this and higher energy beams. The other route is via the use of a graphite calorimeter as a primary standard device, where the conversion from absorbed dose to graphite to absorbed dose in water is performed either by theoretical means making use of cavity ionisation theory, or by experiment where the graphite calorimeter and secondary standard ionisation chamber are placed at scaled distances from the source of the radiation beam (known as the Dose-Ratio method). Extensive measurements have been made at Cobalt-60 at ARL using both the exposure and absorbed dose to graphite routes. Agreement between the ARL measurements and those based on standards maintained by ANSTO and NPL is within {+-} 0.3%. Absorbed dose measurements have also been performed at ARL with photon beams of nominal energy 16 and 19 MeV obtained from the ARL linac. The validity of the protocols at high photon energies, the validity of the methods used to convert from absorbed dose in graphite to absorbed dose in water and the validity of the indices used to specify the beams are discussed. Brief mention will also be made of the establishment of a calibration facility for neutron monitors at ARL and of progress in the development of ERP dosimetry.

  6. Absorbed and effective dose from spiral and computed tomography for the dental implant planning

    International Nuclear Information System (INIS)

    Hong, Beong Hee; Han, Won Jeong; Kim, Eun Kyung

    2001-01-01

    To evaluate the absorbed and effective doses of spiral and computed tomography for the dental implant planning. For radiographic projection. TLD chips were placed in 22 sites of humanoid phantom to record the exposure to skin and the mean absorbed dose to bone marrow, thyroid, pituitary, parotid and submandibular glands and nesophages. Effective dose was calculated, using the method suggested by Frederiksen at al.. Patient situations of a single tooth gap in upper and lower midline region, edentulous maxilla and mandible were simulated for spiral tomography. 35 axial slices (maxilla) and 40 axial slices (mandible) with low and standard dose setting were used for computed tomography. All the radiographic procedures were repeated three times. The mean effective dose in case of maxilla was 0.865 mSv, 0.452 mSv, 0.136 mSv and 0.025 mSv, in spiral tomography of complete edentulous maxilla, computed tomography with standard mAs, computed tomography with low mAs and spiral tomography of a single tooth gap (p<0.05). That in case of mandible was 0.614 mSv, 0.448 mSv, 0.137 mSv and 0.036 mSv, in spiral tomography of complete edentulous mandible, computed tomography with standard mAs, computed tomography with low mAs and spiral tomography of a single tooth gap (p<0.05). Based on these results, it can be concluded that low mAs computed tomography is recommended instead of spiral tomography for the complete edentulous maxilla and mandible dental implant treatment planning

  7. DETERMINATION OF SUPERFICIAL ABSORBED DOSE FROM EXTERNAL EXPOSURE OF WEAKLY PENETRATING RADIATIONS

    Institute of Scientific and Technical Information of China (English)

    陈丽姝

    1994-01-01

    The methods of determining the superficial absorbed dose distributions in a water phantom by means of the experiments and available theories have been reported.The distributions of beta dose were measured by an extrapolation ionization chamber at definite depthes corresponding to some superficial organs and tissues such as the radiosensitive layer of the skin,cornea,sclera,anterior chamber and lens of eyeball.The ratios among superficial absorbed dose D(0.07) and average absorbed doses at the depthes 1,2,3,4,5 and 6mm are also obtained with Cross's methods.They can be used for confining the deterministic effects of some superficial tissues and organs such as the skin and the components of eyeball for weakly penetrating radiations.

  8. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: gas@cdtn.br, e-mail: pls@cdtn.br, e-mail: fcp@cdtn.br, e-mail: lcmb@cdtn.br, e-mail: pabloag@cdtn.br

    2009-07-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  9. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    International Nuclear Information System (INIS)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade

    2009-01-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  10. Methods to verify absorbed dose of irradiated containers and evaluation of dosimeters

    International Nuclear Information System (INIS)

    Gao Meixu; Wang Chuanyao; Tang Zhangxong; Li Shurong

    2001-01-01

    The research on dose distribution in irradiated food containers and evaluation of several methods to verify absorbed dose were carried out. The minimum absorbed dose of treated five orange containers was in the top of the highest or in the bottom of lowest container. D max /D min in this study was 1.45 irradiated in a commercial 60 Co facility. The density of orange containers was about 0.391g/cm 3 . The evaluation of dosimeters showed that the PMMA-YL and clear PMMA dosimeters have linear relationship with dose response, and the word NOT in STERIN-125 and STERIN-300 indicators were covered completely at the dosage of 125 and 300 Gy respectively. (author)

  11. Neutron absorbed dose in a pacemaker CMOS

    International Nuclear Information System (INIS)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R.; Paredes G, L.

    2012-01-01

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10 -17 Gy per neutron emitted by the source. (Author)

  12. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: fermineutron@yahoo.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-06-15

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10{sup -17} Gy per neutron emitted by the source. (Author)

  13. Effects of high neutron doses and duration of the chemical etching on the optical properties of CR-39

    International Nuclear Information System (INIS)

    Sahoo, G.S.; Tripathy, S.P.; Paul, S.; Sharma, S.C.; Joshi, D.S.; Gupta, A.K.; Bandyopadhyay, T.

    2015-01-01

    Effects of the duration of chemical etching on the transmittance, absorbance and optical band gap width of the CR-39 (Polyallyl diglycol carbonate) detectors irradiated to high neutron doses (12.7, 22.1, 36.0 and 43.5 Sv) were studied. The neutrons were produced by bombardment of a thick Be target with 12 MeV protons of different fluences. The unirradiated and neutron-irradiated CR-39 detectors were subjected to a stepwise chemical etching at 1 h intervals. After each step, the transmission spectra of the detectors were recorded in the range from 200 to 900 nm, and the absorbances and optical band gap widths were determined. The effect of the etching on the light transmittance of unirradiated detectors was insignificant, whereas it was very significant in the case of the irradiated detectors. The dependence of the optical absorbance on the neutron dose is linear at short etching periods, but exponential at longer ones. The optical band gap narrows with increasing etching time. It is more significant for the irradiated dosimeters than for the unirradiated ones. The rate of the narrowing of the optical band gap with increasing neutron dose increases with increasing duration of the etching. - Highlights: • The variation of optical properties of CR-39 at very high neutron dose is analyzed. Etching process is found to play a crucial role for change in optical properties of neutron-irradiated CR-39. • The optical absorbance varies linearly at lower dose, at very high dose absorbance saturation occurs. The dose at which saturation absorbance is observed shifts towards lower neutron dose with increase in etching time. • The rate of decrease in optical band gap with respect to neutron dose is found to be more at higher etching durations

  14. Fluence map optimization (FMO) with dose-volume constraints in IMRT using the geometric distance sorting method.

    Science.gov (United States)

    Lan, Yihua; Li, Cunhua; Ren, Haozheng; Zhang, Yong; Min, Zhifang

    2012-10-21

    A new heuristic algorithm based on the so-called geometric distance sorting technique is proposed for solving the fluence map optimization with dose-volume constraints which is one of the most essential tasks for inverse planning in IMRT. The framework of the proposed method is basically an iterative process which begins with a simple linear constrained quadratic optimization model without considering any dose-volume constraints, and then the dose constraints for the voxels violating the dose-volume constraints are gradually added into the quadratic optimization model step by step until all the dose-volume constraints are satisfied. In each iteration step, an interior point method is adopted to solve each new linear constrained quadratic programming. For choosing the proper candidate voxels for the current dose constraint adding, a so-called geometric distance defined in the transformed standard quadratic form of the fluence map optimization model was used to guide the selection of the voxels. The new geometric distance sorting technique can mostly reduce the unexpected increase of the objective function value caused inevitably by the constraint adding. It can be regarded as an upgrading to the traditional dose sorting technique. The geometry explanation for the proposed method is also given and a proposition is proved to support our heuristic idea. In addition, a smart constraint adding/deleting strategy is designed to ensure a stable iteration convergence. The new algorithm is tested on four cases including head-neck, a prostate, a lung and an oropharyngeal, and compared with the algorithm based on the traditional dose sorting technique. Experimental results showed that the proposed method is more suitable for guiding the selection of new constraints than the traditional dose sorting method, especially for the cases whose target regions are in non-convex shapes. It is a more efficient optimization technique to some extent for choosing constraints than the dose

  15. The evaluation of lens absorbed dose according to the optimold for whole brain radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong Mo; Park, Byoung Suk; Ahn, Jong Ho; Song, Ki Won [Dept. of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2014-06-15

    In the current whole brain Radiation Therapy, Optimold was used to immobilize the head. However, skin dose was increased about 22% due to the scattering radiation by the Optimold. Since the minimum dose causing cataracts was 2 Gy, it could be seen that the effects were large especially on the lens. Therefore, in the whole brain Radiation Therapy, it was to compare and to evaluate the lens absorbed dose according to the presence of Optimold in the eyeball part. In order to compare and to evaluate the lens absorbed dose according to the presence of Optimold in the eyeball part, the Optimold mask was made up to 5 mm bolus on the part of the eye lens in the human model phantom (Anderson Rando Phantom, USA). In the practice treatment, to measure the lens dose, the simulation therapy was processed by placing the GafChromic EBT3 film under bolus, and after the treatment plan was set up through the treatment planning system (Pinnacle, PHILIPS, USA), the treatments were measured repeatedly three times in the same way. After removing the Optimold mask in the eyeball part, it was measured in the same way as above. After scanning the film and measuring the dose by using the Digital Flatbed Scanner (Expression 10000XL, EPSON, USA), the doses were compared and evaluated according to the presence of Optimold mask in the eyeball part. When there was the Optimold mask in the eyeball part, it was measured at 10.2cGy ± 1.5 in the simulation therapy, and at 24.8cGy ± 2.7 in the treatment, and when the Optimold mask was removed in the eye part, it was measured at 12.9cGy ± 2.2 in the simulation therapy, and at 17.6cGy ± 1.5 in the treatment. In case of removing the Optimold mask in the eyeball part, the dose was increased approximately 3cGy in the simulation therapy and was reduced approximately 7cGy in the treatment in comparison to the case that the Optimold mask was not removed. During the whole treatment, since the lens absorbed dose was reduced about 27%, the chance to cause

  16. The evaluation of lens absorbed dose according to the optimold for whole brain radiation therapy

    International Nuclear Information System (INIS)

    Yang, Yong Mo; Park, Byoung Suk; Ahn, Jong Ho; Song, Ki Won

    2014-01-01

    In the current whole brain Radiation Therapy, Optimold was used to immobilize the head. However, skin dose was increased about 22% due to the scattering radiation by the Optimold. Since the minimum dose causing cataracts was 2 Gy, it could be seen that the effects were large especially on the lens. Therefore, in the whole brain Radiation Therapy, it was to compare and to evaluate the lens absorbed dose according to the presence of Optimold in the eyeball part. In order to compare and to evaluate the lens absorbed dose according to the presence of Optimold in the eyeball part, the Optimold mask was made up to 5 mm bolus on the part of the eye lens in the human model phantom (Anderson Rando Phantom, USA). In the practice treatment, to measure the lens dose, the simulation therapy was processed by placing the GafChromic EBT3 film under bolus, and after the treatment plan was set up through the treatment planning system (Pinnacle, PHILIPS, USA), the treatments were measured repeatedly three times in the same way. After removing the Optimold mask in the eyeball part, it was measured in the same way as above. After scanning the film and measuring the dose by using the Digital Flatbed Scanner (Expression 10000XL, EPSON, USA), the doses were compared and evaluated according to the presence of Optimold mask in the eyeball part. When there was the Optimold mask in the eyeball part, it was measured at 10.2cGy ± 1.5 in the simulation therapy, and at 24.8cGy ± 2.7 in the treatment, and when the Optimold mask was removed in the eye part, it was measured at 12.9cGy ± 2.2 in the simulation therapy, and at 17.6cGy ± 1.5 in the treatment. In case of removing the Optimold mask in the eyeball part, the dose was increased approximately 3cGy in the simulation therapy and was reduced approximately 7cGy in the treatment in comparison to the case that the Optimold mask was not removed. During the whole treatment, since the lens absorbed dose was reduced about 27%, the chance to cause

  17. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hader, J.; Moloney, J. V. [Nonlinear Control Strategies, Inc., 3542 N. Geronimo Ave., Tucson, Arizona 85705 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Yang, H.-J.; Scheller, M. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Koch, S. W. [Department of Physics and Materials Sciences Center, Philipps Universität Marburg, Renthof 5, 35032 Marburg (Germany)

    2016-02-07

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  18. An approach to calculating absorbed doses to organs of high radiation sensitivity in diagnostic radioisotope examinations in vivo

    International Nuclear Information System (INIS)

    Staniszewska, M.A.; Jankowski, J.

    1984-01-01

    A method is presented of dose calculations for internal exposures of organ-sources and organ-targets. Variations of absorbed doses depending on sex and age of the patients investigated with the use of radionuclides are discussed. Definitions of the effective and collective dose equivalents are also given. 8 refs., 1 tab. (author)

  19. Evaluation of the distribution of absorbed dose in child phantoms exposed to diagnostic medical x rays

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W. L.; Poston, J. W.; Warner, G. G.

    1978-04-01

    The purpose of this study was to determine, by theoretical calculation and experimental measurement, the absorbed dose distributions in two heterogeneous phantoms representing one-year- and five-year-old children from typical radiographic examinations for those ages. Theoretical work included the modification of an existing internal dose code which uses Monte Carlo methods to determine doses within the Snyder-Fisher mathematical phantom. A Ge(Li) detector and a pinhole collimator were used to measure x-ray spectra which served as input to the modified Monte Carlo codes which were used to calculate organ doses in children. The calculated and measured tissue-air values were compared for a number of organs. For most organs, the results of the calculated absorbed doses agreed with the measured absorbed doses within twice the coefficient of variation of the calculated value. The absorbed dose to specific organs for several selected radiological examinations are given for one-year-old, five-year-old, and adult phantoms.

  20. Evaluation of the distribution of absorbed dose in child phantoms exposed to diagnostic medical x rays

    International Nuclear Information System (INIS)

    Chen, W.L.; Poston, J.W.; Warner, G.G.

    1978-04-01

    The purpose of this study was to determine, by theoretical calculation and experimental measurement, the absorbed dose distributions in two heterogeneous phantoms representing one-year- and five-year-old children from typical radiographic examinations for those ages. Theoretical work included the modification of an existing internal dose code which uses Monte Carlo methods to determine doses within the Snyder-Fisher mathematical phantom. A Ge(Li) detector and a pinhole collimator were used to measure x-ray spectra which served as input to the modified Monte Carlo codes which were used to calculate organ doses in children. The calculated and measured tissue-air values were compared for a number of organs. For most organs, the results of the calculated absorbed doses agreed with the measured absorbed doses within twice the coefficient of variation of the calculated value. The absorbed dose to specific organs for several selected radiological examinations are given for one-year-old, five-year-old, and adult phantoms

  1. The measurement of the indoor absorbed dose rate in air in Beijing

    International Nuclear Information System (INIS)

    Guo Mingqiang; Pan Ziqiang; Yi Nanchang; Wei Zemin; Zhang Chao; Wang Huamin; Zhu Wencai

    1985-01-01

    This paper describes the indoor absorbed dose rate in air in Beijing. The average indoor absorbed dose rate in air is 8.29 μrad/h. The ratio of indoor to outdoor absorbed dose rate for 849 buildings is 1.51

  2. High-temperature absorbed dose measurements in the megagray range

    International Nuclear Information System (INIS)

    Balian, P.; Ardonceau, J.; Zuppiroli, L.

    1988-01-01

    Organic conductors of the tetraselenotetracene family have been tested as ''high-temperature'' absorbed dose dosimeters. They were heated up to 120 0 C and irradiated at this temperature with 1-MeV electrons in order to simulate, in a short time, a much longer γ-ray irradiation. The electric resistance increase of the crystal can be considered a good measurement of the absorbed dose in the range 10 6 Gy to a few 10 8 Gy and presumably one order of magnitude more. This dosimeter also permits on-line (in-situ) measurements of the absorbed dose without removing the sensor from the irradiation site. The respective advantages of organic and inorganic dosimeters at these temperature and dose ranges are also discussed. In this connection, we outline new, but negative, results concerning the possible use of silica as a high-temperature, high-dose dosimeter. (author)

  3. Validation of a MOSFET dosemeter system for determining the absorbed and effective radiation doses in diagnostic radiology.

    Science.gov (United States)

    Manninen, A-L; Kotiaho, A; Nikkinen, J; Nieminen, M T

    2015-04-01

    This study aimed to validate a MOSFET dosemeter system for determining absorbed and effective doses (EDs) in the dose and energy range used in diagnostic radiology. Energy dependence, dose linearity and repeatability of the dosemeter were examined. The absorbed doses (ADs) were compared at anterior-posterior projection and the EDs were determined at posterior-anterior, anterior-posterior and lateral projections of thoracic imaging using an anthropomorphic phantom. The radiation exposures were made using digital radiography systems. This study revealed that the MOSFET system with high sensitivity bias supply set-up is sufficiently accurate for AD and ED determination. The dosemeter is recommended to be calibrated for energies 80 kVp. The entrance skin dose level should be at least 5 mGy to minimise the deviation of the individual dosemeter dose. For ED determination, dosemeters should be implanted perpendicular to the surface of the phantom to prevent the angular dependence error. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Evaluation of the fluence to dose conversion coefficients for high energy neutrons using a voxel phantom coupled with the GEANT4 code

    CERN Document Server

    Paganini, S

    2005-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from Galactic cosmic radiation. Crews of future high-speed commercial flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the male adult voxels phantom MAX, developed in the Nuclear Energy Department of Pernambuco Federal University in Brazil, has been coupled with the Monte Carlo simulation code GEANT4. This toolkit, distributed and upgraded from the international scientific community of CERN/Switzerland, simulates thermal to ultrahigh energy neutrons transport and interactions in the matter. The high energy neutrons are pointed as the component that contribute about 70% of the neutron effective dose that represent the 35% to 60% total dose at aircraft altitude. In this research calculations of conversion coefficients from fluence to effective dose are performed for neutrons of energies from 100 MeV ...

  5. Parotid-Absorbed Doses: A Comparison Between Spiral Tomography and Panoramic

    Directory of Open Access Journals (Sweden)

    Ehsan Hekmatian

    2016-07-01

    Full Text Available Background Jaws spiral tomography and panoramic radiography have wide applications in dentistry, and the parotid gland is one of the most sensitive organs of the head and neck. Objectives The aim of this study was to evaluate and compare the parotid-absorbed dose in spiral tomography and panoramic radiographs using a thermoluminescent dosimeter. Materials and Methods A radiation analog dosimetry phantom was placed in a Cranex Tome radiograph device, and a parotid absorbed dose was measured in both techniques. Thermoluminescent dosimeters were placed bilaterally in the parotid region (on the tube side and the opposite side. Spiral tomography dosimetry was done for the upper and lower jaws in the anterior and posterior regions. Each region contained four slices of 2 mm and four slices of 4 mm in thickness. The results were analyzed by a Wilcoxon test. Results For the tube side parotid, the average absorbed doses in spiral tomography of the anterior and posterior parts of the maxilla and mandible, with the 2 mm slice thickness, were 1.70/1.40 and 1.65/1.60 mGy, respectively. The average absorbed doses with the 4mm slices were 1.65/1.70 and 1.75/1.57 mGy, respectively. For the opposite parotid, the average absorbed dose in spiral tomography of the anterior and posterior parts of the maxilla and mandible, with the 2 mm slice thickness, were 1.40/1.30 and 1.40/1.67 mGy, respectively. The average absorbed doses with the 4mm slices were 1.50/1.66 and 1.40/1.50 mGy, respectively. The average absorbed dose of the panoramic radiograph was 1.40 mGy. Conclusions There was no statistically significant difference in the parotid absorbed dose between spiral tomography and a panoramic radiograph (P value = 0.18. The overall results of this study were similar to other studies.

  6. On a model-based approach to radiation protection

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.

    2002-01-01

    There is a preoccupation with linearity and absorbed dose as the basic quantifiers of radiation hazard. An alternative is the fluence approach, whereby radiation hazard may be evaluated, at least in principle, via an appropriate action cross section. In order to compare these approaches, it may be useful to discuss them as quantitative descriptors of survival and transformation-like endpoints in cell cultures in vitro - a system thought to be relevant to modelling radiation hazard. If absorbed dose is used to quantify these biological endpoints, then non-linear dose-effect relations have to be described, and, e.g. after doses of densely ionising radiation, dose-correction factors as high as 20 are required. In the fluence approach only exponential effect-fluence relationships can be readily described. Neither approach alone exhausts the scope of experimentally observed dependencies of effect on dose or fluence. Two-component models, incorporating a suitable mixture of the two approaches, are required. An example of such a model is the cellular track structure theory developed by Katz over thirty years ago. The practical consequences of modelling radiation hazard using this mixed two-component approach are discussed. (author)

  7. Some comments on the concept of absorbed dose

    International Nuclear Information System (INIS)

    Alvarez R, J.T.

    1998-12-01

    The main physical quantity for the evaluation of the induced effects by radiation ionizing is absorbed dose. ICRU report 51 defines this concept as quantity dε divided by dm, where dε is the mean energy imparted by radiation ionizing to matter of mass dm. However, nothing is said about the average operation concerning the stochastic energy imparted ε. Nevertheless, because considers the sum of all changes of rest mass of the involved nuclei and elementary particles in all interactions which occur within the mass (i.e. nuclear reactions and transformations of elementary particles), the average operation can not be done with an equilibrium statistical operator, rather, this has to be defined with a non-equilibrium statistical operator, therefore, absorbed dose is a function dependent on time. Furthermore, we present a discussion to clarify the equilibrium radiation and charged particle equilibrium within the context of thermodynamic equilibrium. (Author)

  8. Some comments on the concept of absorbed dose

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J.T. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1998-12-15

    The main physical quantity for the evaluation of the induced effects by radiation ionizing is absorbed dose. ICRU report 51 defines this concept as quantity d{epsilon} divided by dm, where d{epsilon} is the mean energy imparted by radiation ionizing to matter of mass dm. However, nothing is said about the average operation concerning the stochastic energy imparted {epsilon}. Nevertheless, because considers the sum of all changes of rest mass of the involved nuclei and elementary particles in all interactions which occur within the mass (i.e. nuclear reactions and transformations of elementary particles), the average operation can not be done with an equilibrium statistical operator, rather, this has to be defined with a non-equilibrium statistical operator, therefore, absorbed dose is a function dependent on time. Furthermore, we present a discussion to clarify the equilibrium radiation and charged particle equilibrium within the context of thermodynamic equilibrium. (Author)

  9. An international intercomparison of absorbed dose measurements for radiation therapy

    International Nuclear Information System (INIS)

    Taiman Kadni; Noriah Mod Ali

    2002-01-01

    Dose intercomparison on an international basis has become an important component of quality assurance measurement i.e. to check the performance of absorbed dose measurements in radiation therapy. The absorbed dose to water measurements for radiation therapy at the SSDL, MINT have been regularly compared through international intercomparison programmes organised by the IAEA Dosimetry Laboratory, Seibersdorf, Austria such as IAEA/WHO TLD postal dose quality audits and the Intercomparison of therapy level ionisation chamber calibration factors in terms of air kerma and absorbed dose to water calibration factors. The results of these intercomparison in terms of percentage deviations for Cobalt 60 gamma radiation and megavoltage x-ray from medical linear accelerators participated by the SSDL-MINT during the year 1985-2001 are within the acceptance limit. (Author)

  10. Biphasic Fluence-Response Curves for Phytochrome-Mediated Kalanchoë Seed Germination 1

    Science.gov (United States)

    Rethy, Roger; Dedonder, Andrée; De Petter, Edwin; Van Wiemeersch, Luc; Fredericq, Henri; De Greef, Jan; Steyaert, Herman; Stevens, Hilde

    1987-01-01

    The fluence-response curves for the effect of two red pulses separated by 24 hours on the germination of Kalanchoe blossfeldiana Poelln. cv Vesuv seeds, incubated on gibberellic acid (GA3) are biphasic for suboptimal concentrations. The response in the low fluence range corresponds with a classical red/far-red reversible phytochrome mediated reaction. GA3 induces an additional response in the very low fluence range, which is also phytochrome mediated. The sensitivity to phytochrome-far-red absorbing form (Pfr), however, is increased about 20,000-fold, so that even far-red fluences become saturating. Both in the very low and low fluence response range, the maximal responses induced by saturating fluences are modulated by the GA3 concentration. GA3 having no direct influence on the phytochrome phototransformations, alters the Pfr requirement and determines the responding seed population fraction in the very low and low fluence range. The effet of GA3 appears to be on the transduction chain of the phytochrome signal. PMID:16665187

  11. Effect of gamma and neutron irradiation on the mechanical properties of Spectralon™ porous PTFE

    Energy Technology Data Exchange (ETDEWEB)

    Gourdin, William H., E-mail: gourdin1@llnl.gov [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA USA (United States); Datte, Philip; Jensen, Wayne; Khater, Hesham; Pearson, Mark [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA USA (United States); Girard, Sylvain [Laboratoire Hubert Curien − UMR CNRS 5516, 18 rue du Pr. Benoît Lauras, F-42000 Saint Etienne (France); Paillet, Philippe; Alozy, Eric [CEA, DAM, DIF, F-91297 Arpajon (France)

    2016-11-15

    Highlights: • The effects of neutrons and gammas on PTFE are equivalent for a given absorbed dose. • A neutron fluence of 10{sup 13} n/cm{sup 2} corresponds to a gamma dose of 200 Gy. • The dose-to-fluence conversion factor is approximately 5 × 10{sup 10} n/(cm{sup 2}-Gy). • Irradiation in a low-oxygen environment enhances loads and elongations. • Mechanical properties of PTFE will deteriorate at a neutron fluence of 10{sup 13} n/cm{sup 2}. - Abstract: We establish a correspondence between the mechanical properties (maximum load and failure elongation) of Spectralon™ porous PTFE irradiated with 14 MeV neutrons and 1.17 and 1.33 MeV gammas from a cobalt-60 source. From this correspondence we infer that the effects of neutrons and gammas on this material are approximately equivalent for a given absorbed dose.

  12. Patient absorbed radiation doses estimation related to irradiation anatomy; Estimativa de dose absorvida pelo paciente relacionada a anatomia irradiada

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Flavio Augusto Penna; Soares, Amanda Anastacio; Kahl, Gabrielly Gomes, E-mail: prof.flavio@gmail.com, E-mail: amanda-a-soares@hotmail.com, E-mail: gabriellygkahl@gmail.com [Instituto Federal de Eduacao, Ciencia e Tecnologia de Santa Catarina (IFSC), Florianopolis, SC (Brazil)

    2014-07-01

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector.

  13. In-phantom measurement of absorbed dose to water in medium energy x-ray beams

    International Nuclear Information System (INIS)

    Hohlfeld, K.

    1996-01-01

    Absorbed dose values in a water phantom derived by the formalism of the IAEA Code of Practice of Absorbed Dose Determination in Photon and Electron Beams are a few per cent higher than those based on the procedure following e.g. ICRU Report 23. The maximum deviation exceeds 10% at 100 kV tube potential. The correction factor needed to take into account the differences at the calibration in terms of air kerma free in air and at the measurement in the water phantom can be determined in different ways: In comparing the result of the absorbed dose measurement by means of the ionization chambers with an other, preferably fundamental method of measurement of absorbed dose in the water phantom or by evaluating all component parts of the correction factor separately. The values of the perturbation correction factor in the IAEA Code were determined in the former way by comparing against a graphite extrapolation chamber. A review is given on a recent re-evaluation using former values of the extrapolation chamber measurements and on new determinations using an absorbed dose water calorimeter, a method based on calculated and measured air kerma values and a method of combining the component factors to the overall correction factor. Recent results achieved by the different methods are compared and a change of the data of the IAEA Code is recommended. (author). 31 refs, 14 figs, 3 tabs

  14. Assessment of absorbed dose rate from terrestrial gamma radiation in Red Sea State

    International Nuclear Information System (INIS)

    Abdalrahman, H. E. K.

    2012-09-01

    This study is primarily conducted to contribute in the overall strategic objective of producing Sudan radiation map which will include natural radiation levels and the resultant absorbed dose rate in air. The part covered by this study is the Red Sea State. Soil samples were collected from locations lie between latitudes 17.03 ° and the 20.18 ° N and longitudes 36.06 ° E during September 2007. Activity concentrations of the primordial radionuclides, 226 Ra, 232 Th, and 40 K in the samples were measured using gamma-ray spectrometry equipped with Nal (Tl) detector. Absorbed dose rates in air a height of 1 from the ground level and the corresponding annual effective doses were calculated from the measured activities using Dose Rate Conversion Factors (DRCFs). On the average, the activity concentrations were 19.22±13.13 Bq kg -1 ( 232 Th), 17.91±15.44 Bq kg -1 ( 226 Ra) and (507.13±161.67) Bq kg -1 for 40 K. The obtained results were found to be within the global values reported in the UNSCEAR publication for normal background areas with the exception of the samples taken from Arbaat area. The absorbed dose rate in air as calculated using UNSCEAR conversion factor averaged 40.93 n Gy h -1 which corresponds to annual effective dose of 50.23 μSvy -1 . The major contribution to the total absorbed dose rate comes from 40 K, which amounts to 53.36%. Using Geographical Information System (GIS), predication maps for activity concentrations levels of the measured radionuclides in the Red Sea state was prepared to show their respective spatial distributions. Similarly, GIS predictive map was produced for annual effective dose.(Author)

  15. Absorbed dose modeled for a liquid circulating around a Co-60 irradiator

    International Nuclear Information System (INIS)

    Mangussi, J.

    2013-01-01

    A model for the distribution of the absorbed dose in a volume of liquid circulating into an active tank containing a Co-60 irradiator is presented. The absorbed dose, the stir process and the liquid recirculation into the active tank are modeled. The absorbed dose for different fractions of the volume is calculated. The necessary irradiation times for the achievement of the required absorbed dose are evaluated. (author)

  16. Graves' disease radioiodine-therapy: Choosing target absorbed doses for therapy planning

    Energy Technology Data Exchange (ETDEWEB)

    Willegaignon, J., E-mail: j.willegaignon@gmail.com; Sapienza, M. T.; Coura-Filho, G. B.; Buchpiguel, C. A. [Cancer Institute of São Paulo State (ICESP), Clinical Hospital, School of Medicine, University of São Paulo, São Paulo 01246-000 (Brazil); Nuclear Medicine Service, Department of Radiology, School of Medicine, University of São Paulo, Sao Paulo 01246-000 (Brazil); Watanabe, T. [Nuclear Medicine Service, Department of Radiology, School of Medicine, University of São Paulo, São Paulo 01246-000 (Brazil); Traino, A. C. [Unit of Medical Physics, Azienda Ospedaliero-Universitaria Pisana, Pisa 56126 (Italy)

    2014-01-15

    Purpose: The precise determination of organ mass (m{sub th}) and total number of disintegrations within the thyroid gland (A{sup ~}) are essential for thyroid absorbed-dose calculations for radioiodine therapy. Nevertheless, these parameters may vary according to the method employed for their estimation, thus introducing uncertainty in the estimated thyroid absorbed dose and in any dose–response relationship derived using such estimates. In consideration of these points, thyroid absorbed doses for Graves’ disease (GD) treatment planning were calculated using different approaches to estimating the m{sub th} and the A{sup ~}. Methods: Fifty patients were included in the study. Thyroid{sup 131}I uptake measurements were performed at 2, 6, 24, 48, 96, and 220 h postadministration of a tracer activity in order to estimate the effective half-time (T{sub eff}) of {sup 131}I in the thyroid; the thyroid cumulated activity was then estimated using the T{sub eff} thus determined or, alternatively, calculated by numeric integration of the measured time-activity data. Thyroid mass was estimated by ultrasonography (USG) and scintigraphy (SCTG). Absorbed doses were calculated with the OLINDA/EXM software. The relationships between thyroid absorbed dose and therapy response were evaluated at 3 months and 1 year after therapy. Results: The average ratio (±1 standard deviation) betweenm{sub th} estimated by SCTG and USG was 1.74 (±0.64) and that between A{sup ~} obtained by T{sub eff} and the integration of measured activity in the gland was 1.71 (±0.14). These differences affect the calculated absorbed dose. Overall, therapeutic success, corresponding to induction of durable hypothyroidism or euthyroidism, was achieved in 72% of all patients at 3 months and in 90% at 1 year. A therapeutic success rate of at least 95% was found in the group of patients receiving doses of 200 Gy (p = 0.0483) and 330 Gy (p = 0.0131) when m{sub th} was measured by either USG or SCTG and A

  17. Absorbed dose from traversing spherically symmetric, Gaussian radioactive clouds

    International Nuclear Information System (INIS)

    Thompson, J.M.; Poston, J.W.

    1999-01-01

    If a large radioactive cloud is produced, sampling may require that an airplane traverse the cloud. A method to predict the absorbed dose to the aircrew from penetrating the radioactive cloud is needed. Dose rates throughout spherically symmetric Gaussian clouds of various sizes, and the absorbed doses from traversing the clouds, were calculated. Cloud size is a dominant parameter causing dose to vary by orders of magnitude for a given dose rate measured at some distance. A method to determine cloud size, based on dose rate readings at two or more distances from the cloud center, was developed. This method, however, failed to resolve the smallest cloud sizes from measurements made at 1,000 m to 2,000 m from the cloud center

  18. Absorbed dose due to radioiodine therapy by organs of patients with hyperthyroidism

    International Nuclear Information System (INIS)

    Lima, F.F.; Khoury, H.J.; Bertelli Neto, L.; Bertelli Neto, L.

    1999-01-01

    The dose absorbed by organs of patients with hyperthyroidism treated with 131 I was estimated by using the MIRDOSE computer program and data from ICRP-53. The calculation were performed using effective half-life and uptake average values, which were determined for 17 patients treated with 370 MBq and 555MBq of 131 I. The results shown that the dose in the thyroid, for a 370 MBq administrated activity, was of 99 Gy and 49.5 Gy for 60 g and 80 g thyroid respectively. The average dose estimated in other organs were relatively low, presenting values lower than 0.1 Gy in the kidneys, bone marrow and ovaries and 0.19 Gy in the stomach

  19. Evaluation of bismuth shielding effectiveness in reducing breast absorbed dose during thoracic CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, T. C.; Mourao, A. P.; Santana, P. C.; Silva, T. A. [Federal University of Minas Gerais, Program of Nuclear Science and Techniques, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Computed Tomography (CT) is an essential method for tracking neoplasia and efficiently diagnosing a wide variety of thoracic diseases. CT is generally considered the most accurate choice for lung examination. Due to the growing use of CT, breast and other superficial and radiosensitive organs are unnecessarily irradiated during radiological procedures, thus requiring the development of strategies appropriate to optimize and, if possible, to reduce the radiation dose. The use of bismuth shielding to reduce radiation dose absorbed by breast during thoracic CT examinations has been the subject of many studies recently published by Brazilian and foreign authors of various fields. The purpose of this paper is both to accurately determine the glandular dose when breast is exposed to radiation and to assess the reduction in absorbed dose during thoracic CT examinations, using a set of Thermoluminescent Dosimeters, an anthropomorphic phantom and bismuth shielding. (Author)

  20. Evaluation of bismuth shielding effectiveness in reducing breast absorbed dose during thoracic CT scan

    International Nuclear Information System (INIS)

    Alonso, T. C.; Mourao, A. P.; Santana, P. C.; Silva, T. A.

    2015-10-01

    Computed Tomography (CT) is an essential method for tracking neoplasia and efficiently diagnosing a wide variety of thoracic diseases. CT is generally considered the most accurate choice for lung examination. Due to the growing use of CT, breast and other superficial and radiosensitive organs are unnecessarily irradiated during radiological procedures, thus requiring the development of strategies appropriate to optimize and, if possible, to reduce the radiation dose. The use of bismuth shielding to reduce radiation dose absorbed by breast during thoracic CT examinations has been the subject of many studies recently published by Brazilian and foreign authors of various fields. The purpose of this paper is both to accurately determine the glandular dose when breast is exposed to radiation and to assess the reduction in absorbed dose during thoracic CT examinations, using a set of Thermoluminescent Dosimeters, an anthropomorphic phantom and bismuth shielding. (Author)

  1. X-ray absorbed doses evaluation on patients under radiological studies

    International Nuclear Information System (INIS)

    Medeiros, Regina Bitelli; Daros, Kellen A.C.

    1996-01-01

    The skin absorbed doses were evaluated on patient submitted to the following x-ray exams : chest, facial sinus, lumbar spine. Thermoluminescent dosimetry was used and a variety of irradiation techniques performed. The results shown considerable differences on the absorbed dose for the various alternative technical conditions

  2. Simple approximation for estimating centerline gamma absorbed dose rates due to a continuous Gaussian plume

    International Nuclear Information System (INIS)

    Overcamp, T.J.; Fjeld, R.A.

    1987-01-01

    A simple approximation for estimating the centerline gamma absorbed dose rates due to a continuous Gaussian plume was developed. To simplify the integration of the dose integral, this approach makes use of the Gaussian cloud concentration distribution. The solution is expressed in terms of the I1 and I2 integrals which were developed for estimating long-term dose due to a sector-averaged Gaussian plume. Estimates of tissue absorbed dose rates for the new approach and for the uniform cloud model were compared to numerical integration of the dose integral over a Gaussian plume distribution

  3. Study of absorbed dose distribution to high energy electron beams

    International Nuclear Information System (INIS)

    Cecatti, E.R.

    1983-01-01

    The depth absorbed dose distribution by electron beams was studied. The influence of the beam energy, the energy spread, field size and design characteristics of the accelerator was relieved. Three accelerators with different scattering and collimation systems were studied leading todifferent depth dose distributions. A theoretical model was constructed in order to explain the increase in the depth dose in the build-up region with the increase of the energy. The model utilizes a three-dimensional formalism based on the Fermi-Eyges multiple scattering theory, with the introduction of modifications that takes into account the criation of secondary electrons. (Author) [pt

  4. Calculation of neutron fluence to dose equivalent conversion coefficients using GEANT4; Calculo de coeficientes de fluencia de neutrons para equivalente de dose individual utilizando o GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Rosane M.; Santos, Denison de S.; Queiroz Filho, Pedro P. de; Mauricio, CLaudia L.P.; Silva, Livia K. da; Pessanha, Paula R., E-mail: rosanemribeiro@oi.com.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    Fluence to dose equivalent conversion coefficients provide the basis for the calculation of area and personal monitors. Recently, the ICRP has started a revision of these coefficients, including new Monte Carlo codes for benchmarking. So far, little information is available about neutron transport below 10 MeV in tissue-equivalent (TE) material performed with Monte Carlo GEANT4 code. The objective of this work is to calculate neutron fluence to personal dose equivalent conversion coefficients, H{sub p} (10)/Φ, with GEANT4 code. The incidence of monoenergetic neutrons was simulated as an expanded and aligned field, with energies ranging between thermal neutrons to 10 MeV on the ICRU slab of dimension 30 x 30 x 15 cm{sup 3}, composed of 76.2% of oxygen, 10.1% of hydrogen, 11.1% of carbon and 2.6% of nitrogen. For all incident energy, a cylindrical sensitive volume is placed at a depth of 10 mm, in the largest surface of the slab (30 x 30 cm{sup 2}). Physic process are included for neutrons, photons and charged particles, and calculations are made for neutrons and secondary particles which reach the sensitive volume. Results obtained are thus compared with values published in ICRP 74. Neutron fluence in the sensitive volume was calculated for benchmarking. The Monte Carlo GEANT4 code was found to be appropriate to calculate neutron doses at energies below 10 MeV correctly. (author)

  5. Absorbed doses received by infants subjected to panoramic dental and cephalic radiographs

    International Nuclear Information System (INIS)

    Carrizales, L.; Carreno, S.

    1998-01-01

    The IAEA Report No. 115 recommends that each country or region can establish levels of absorbed doses for each radiographic technique employed in diagnostic. assuming the extended and expensive of this purpose, we have been to begin in a first step with the dentistry area, in order to estimate the dose levels received at crystalline and thyroid level in infants that go to an important public institution in our country to realize panoramic and cephalic radiographs. This work will serve to justify and impel a quality assurance program in Venezuela on the dentistry area which includes aspects such as training for the medical lap referring the justification of the radiological practice, optimization of X-ray units to produce an adequate image quality that delivers to patient an absorbed dose as much lower as reasonably it can be reached without diagnostic detriment. (Author)

  6. Measurement of absorbed doses near interfaces, and dose mapping using gas chromic dosimetry media. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rehim, F; Said, F I.A.; Abdel-Fattah, A A [National Centre for Radiation Research and Technology, Atomic Energy Athority, P.O.Box 29 Nasr City, Cairo (Egypt)

    1996-03-01

    Gas chromic dosimetry media is a thin-coated film which has advantages for high-dose radiation dosimetry, and produces high-resolution radiation image for gamma radiation. Therefore, these films were calibrated for the dose range 0.1-50 kGy in terms of increase in absorbance at 600 nm, 400 nm; increase in the area of the absorption spectra in the ranges 395-405 nm and 320-450 nm wave length as a function of absorbed dose in water. The calibrated films were used for measurement of absorbed doses close to metal interface, and dose mapping of the radiation field inside product box during a run for sterilizing surgical gloves at the mega-gamma irradiation facility.7 figs.

  7. Absorbed doses to the main parts of eyeball due to use 90Sr + 90Y ophthalmic applicator

    International Nuclear Information System (INIS)

    Chen Lishu

    1993-05-01

    The ophthalmic radiotherapy dosimetry and some affecting factors are introduced. The distributions of absorbed doses to the main parts of a fresh eyeball such as the cornea, sclera, lens and anterior chamber, during the radiotherapy by using a 90 Sr + 90 Y ophthalmic applicator are presented. An tissue-equivalent extrapolation ionization chamber was used in the dose measurement. The reasonable doses during ophthalmic radiotherapy for different depths have been obtained. Therefore, the absorbed dose to the lens, the most sensitive organ, can be given. These data are useful for radiation protection in ophthalmic radiotherapy

  8. Neutron relative biological effectiveness for solid cancer incidence in the Japanese A-bomb survivors: an analysis considering the degree of independent effects from γ-ray and neutron absorbed doses with hierarchical partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Linda [Federal Office for Radiation Protection, Department Radiation Protection and Health, Oberschleissheim (Germany); University of Manchester, The Faculty of Medical and Human Sciences, Manchester (United Kingdom)

    2013-03-15

    It has generally been assumed that the neutron and γ-ray absorbed doses in the data from the life span study (LSS) of the Japanese A-bomb survivors are too highly correlated for an independent separation of the all solid cancer risks due to neutrons and due to γ-rays. However, with the release of the most recent data for all solid cancer incidence and the increased statistical power over previous datasets, it is instructive to consider alternatives to the usual approaches. Simple excess relative risk (ERR) models for radiation-induced solid cancer incidence fitted to the LSS epidemiological data have been applied with neutron and γ-ray absorbed doses as separate explanatory covariables. A simple evaluation of the degree of independent effects from γ-ray and neutron absorbed doses on the all solid cancer risk with the hierarchical partitioning (HP) technique is presented here. The degree of multi-collinearity between the γ-ray and neutron absorbed doses has also been considered. The results show that, whereas the partial correlation between the neutron and γ-ray colon absorbed doses may be considered to be high at 0.74, this value is just below the level beyond which remedial action, such as adding the doses together, is usually recommended. The resulting variance inflation factor is 2.2. Applying HP indicates that just under half of the drop in deviance resulting from adding the γ-ray and neutron absorbed doses to the baseline risk model comes from the joint effects of the neutrons and γ-rays - leaving a substantial proportion of this deviance drop accounted for by individual effects of the neutrons and γ-rays. The average ERR/Gy γ-ray absorbed dose and the ERR/Gy neutron absorbed dose that have been obtained here directly for the first time, agree well with previous indirect estimates. The average relative biological effectiveness (RBE) of neutrons relative to γ-rays, calculated directly from fit parameters to the all solid cancer ERR model with both

  9. Metabolic kinetics and absorbed doses of 137Cs in lactating rats and progeny during suckling

    International Nuclear Information System (INIS)

    Lyaginskaya, A.M.; Osipov, V.A.; Dement'ev, S.I.; Ermalitskij, A.P.

    2000-01-01

    The transfer of 137 Cs with maternal milk to progeny was studied in rats The rats were administered with 25 kBq/g of 137 Cs nitrate (pH = 6) in a single oral dose immediately after delivery. Nonpregnant females served as control. Absorbed doses per activity unit to lactating rats were 23 % lover than to nonlactating ones. Over the suckling period absorbed doses to young rats amounted to about 35 % of the absorbed dose to the nursing female. For nonlactating females the internal dose approximately equalled the sum of doses to the nursing female and young rats. Lactating is the effective way for removal of 1 '3 7 Cs from organism of the rats. Content of 1 '3 7 Cs in lactating rat becomes on 42.9 % lower than in organism of nonlactating rat during period of lactating (near 20 days) [ru

  10. Dose planning and dose delivery in radiation therapy

    International Nuclear Information System (INIS)

    Knoeoes, T.

    1991-01-01

    A method has been developed for calibration of CT-numbers to volumetric electron density distributions using tissue substitutes of known elemental composition and experimentally determined electron density. This information have been used in a dose calculation method based on photon and electron interaction processes. The method utilizes a convolution integral between the photon fluence matrix and dose distribution kernels. Inhomogeneous media are accounted for using the theorems of Fano and O'Connor for scaling dose distribution kernels in proportion to electron density. For clinical application of a calculated dose plan, a method for prediction of accelerator output have been developed. The methods gives the number of monitor units that has to be given to obtain a certain absorbed dose to a point inside an irregular, inhomogeneous object. The method for verification of dose distributions outlined in this study makes it possible to exclude the treatment related variance contributions, making an objective evaluation of dose calculations with experiments feasible. The methods for electron density determination, dose calculation and prediction of accelerator output discussed in this study will all contribute to an increased accuracy in the mean absorbed dose to the target volume. However, a substantial gain in the accuracy for the spatial absorbed dose distribution will also follow, especially using CT for mapping of electron density together with the dose calculation algorithm. (au)

  11. Charged particle mutagenesis at low dose and fluence in mouse splenic T cells

    Energy Technology Data Exchange (ETDEWEB)

    Grygoryev, Dmytro [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Gauny, Stacey [Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lasarev, Michael; Ohlrich, Anna [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Kronenberg, Amy [Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Turker, Mitchell S., E-mail: turkerm@ohsu.edu [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239 (United States)

    2016-06-15

    Highlights: • Densely ionizing forms of space radiation induce mutations in splenic T cells at low fluence. • Large interstitial deletions and discontinuous LOH patterns are radiation signature mutations. • Space radiation mutagenesis suggests a cancer risk from deep space travel. - Abstract: High-energy heavy charged particles (HZE ions) found in the deep space environment can significantly affect human health by inducing mutations and related cancers. To better understand the relation between HZE ion exposure and somatic mutation, we examined cell survival fraction, Aprt mutant frequencies, and the types of mutations detected for mouse splenic T cells exposed in vivo to graded doses of densely ionizing {sup 48}Ti ions (1 GeV/amu, LET = 107 keV/μm), {sup 56}Fe ions (1 GeV/amu, LET = 151 keV/μm) ions, or sparsely ionizing protons (1 GeV, LET = 0.24 keV/μm). The lowest doses for {sup 48}Ti and {sup 56}Fe ions were equivalent to a fluence of approximately 1 or 2 particle traversals per nucleus. In most cases, Aprt mutant frequencies in the irradiated mice were not significantly increased relative to the controls for any of the particles or doses tested at the pre-determined harvest time (3–5 months after irradiation). Despite the lack of increased Aprt mutant frequencies in the irradiated splenocytes, a molecular analysis centered on chromosome 8 revealed the induction of radiation signature mutations (large interstitial deletions and complex mutational patterns), with the highest levels of induction at 2 particles nucleus for the {sup 48}Ti and {sup 56}Fe ions. In total, the results show that densely ionizing HZE ions can induce characteristic mutations in splenic T cells at low fluence, and that at least a subset of radiation-induced mutant cells are stably retained despite the apparent lack of increased mutant frequencies at the time of harvest.

  12. Radiation absorbed doses in cephalography

    International Nuclear Information System (INIS)

    Eliasson, S.; Julin, P.; Richter, S.; Stenstroem, B.

    1984-01-01

    Radiation absorbed doses to different organs in the head and neck region in lateral (LAT) and postero-anterior (PA) cephalography were investigated. The doses were measured by thermoluminescence dosimeters (TLD) on a tissue equivalent phantom head. Lanthanide screens in speed group 4 were used at 90 and 85 k Vp. A near-focus aluminium dodger was used and the radiation beam was collimated strictly to the face. The maximum entrance dose from LAT was 0.25 mGy and 0.42 mGy from a PA exposure. The doses to the salivary glands ranged between 0.2 and 0.02 mGy at LAT and between 0.15 and 0.04 mGy at PA exposures. The average thyroid gland dose without any shielding was 0.11 mGy (LAT) and 0.06 mGy (PA). When a dodger was used the dose was reduced to 0.07 mGy (LAT). If the thyroid gland was sheilded off, the dose was further reduced to 0.01 mGy and if the thyroid region was collimated out of the primary radiation field the dose was reduced to only 0.005 mGy. (authors)

  13. Intercomparison of standards of absorbed dose between the USSR and the UK

    Science.gov (United States)

    Berlyand, V. A.; Bregadze, J. I.; Burns, J. E.; Dusautoy, A. R.; Sharpe, P. H. G.

    1991-05-01

    A comparison of national standards of absorbed dose was carried out between the All-Union Research Institute for Physical Technical and Radiotechnical Measurements (VNIIFTRI), USSR, and the National Physical Laboratotry (NPL), UK (United Kingdom). Absorbed dose to water for cobalt 60 gamma radiation was compared by means of Fricke dosimeters and ionization chambers in 1985 and 1986. The primary standards used to derive absorbed dose to water were cavity ionization chambers at NPL and a graphite calorimeter at VNIIFTRI. The ratio of absorbed dose to water, NPL to VNIIFTRI, using Fricke dosimeters was 1.008; using ionization chambers it was 1.007. This agreement is within the estimated uncertainties of the standards and measurement methods.

  14. The Norwegian system for implementing the IAEA code of practice based on absorbed dose to water

    International Nuclear Information System (INIS)

    Bjerke, H.

    2002-01-01

    The Norwegian Radiation Protection Authority (NRPA) SSDL recommended in 2000 the use of absorbed dose to water as the quality for calibration and code of practice in radiotherapy. The absorbed dose to water standard traceable to BIPM was established in Norway in 1995. The international code of practice, IAEA TRS 398 was under preparation. As a part of the implementation of the new dosimetry system the SSDL went to radiotherapy departments in Norway in 2001. The aim of the visit was to: Prepare and support the users in the implementation of TRS 398 by teaching, discussions and measurements on-site; Gain experience for NRPA in the practical implementation of TRS 398 and perform comparisons between TRS 277 and TRS 398 for different beam qualities; Report experience from implementation of TRS 398 to IAEA. The NRPA 30x30x30 cm 3 water phantom is equal to the BIPM calibration phantom. This was used for the photon measurements in 16 different beams. NRPA used three chambers: NE 2571, NE 2611 and PR06C for the photon measurements. As a quality control the set-up was compared with the Finnish site-visit equipment at University Hospital of Helsinki, and the measured absorbed dose to water agreed within 0.6%. The Finnish SSDL calibrated the Norwegian chambers and the absorbed dose to water calibration factors given by the two SSDLs for the three chambers agreed within 0.3%. The local clinical dosimetry in Norway was based on TRS 277. For the site-visit the absorbed dose to water was determined by NRPA using own equipment including the three chambers and the hospitals reference chamber. The hospital determined the dose the same evening using their local equipment. For the 16 photon beams the deviations between the two absorbed dose to water determinations for TRS 277 were in the range -1,7% to +4.0%. The uncertainty in the measurements was 1% (k=1). The deviation was explained in local implementation of TRS 277, the use of plastic phantoms, no resent calibration of

  15. Determination of Absorbed Dose Using a Dosimetric Film

    International Nuclear Information System (INIS)

    Scarlat, F.; Scarisoreanu, A.; Oane, M.; Badita, E.; Mitru, E.

    2009-01-01

    This paper presents the absorbed dose measurements by means of the irradiated dosimetric reference films. The dose distributions were made by MULTIDATA film densitometer using RTD-4 software, in INFLPR Linear Accelerator Department

  16. Radiation absorbed dose estimate for rubidium-82 determined from in vivo measurements in human subjects

    International Nuclear Information System (INIS)

    Ryan, J. W.; Harper, P.V.; Stark, V.S.; Peterson, E.L.; Lathrop, K.A.

    1986-01-01

    Radiation absorbed doses from rubidium-82 injected intravenously were determined in two young men, aged 23 and 27, using a dynamic conjugate counting technique to provide data for the net organ integrated time-activity curves in five organs: kidneys, lungs, liver, heart, and testes. This technique utilized a tungsten collimated Anger camera and the accuracy was validated in a prestwood phantom. The data for each organ were compared with conjugate count rates of a reference Ge-68/Ga-68 standard which had been calibrated against the Rb-82 injected. The effects of attenuation in the body were eliminated. The MIRD method was used to calculate the organ self absorbed doses and the total organ absorbed doses. The mean total absorbed doses were as follows (mrads/mCi injected): kidneys 30.9, heart walls 7.5, lungs 6.0, liver 3.0, testes 2.0 (one subject only), red marrow 1.3, remainder of body 1.3 and, extrapolating to women, ovaries 1.2. This absorbed dose to the kidney is significantly less than the pessimistic estimate of 59.4 mrads/mCi, made assuming instantaneous uptake and complete extraction of activity with no excretion by the kidneys, which receive 20% of the cardiac output. Further, in a 68 year old man the renal self absorbed dose was approximately 40% less than the mean renal self absorbed dose of the younger men. This decrease is probably related to the decline in renal blood flow which occurs with advancing age but other factors may also contribute to the observed difference. 14 references, 4 figures, 2 tables

  17. The METAS absorbed dose to water calibration service for high energy photon and electron beam radiotherapy

    International Nuclear Information System (INIS)

    Stucki, G.; Muench, W.; Quintel, H.

    2002-01-01

    Full text: The Swiss Federal Office of Metrology and Accreditation (METAS) provides an absorbed dose to water calibration service for reference dosimeters using 60 Co γ radiation, ten X-ray beam qualities between TPR 20,10 =0.639 and 0.802 and ten electron beam qualities between R 50 =1.75 gcm -2 and 8.54 gcm -2 . A 22 MeV microtron accelerator with a conventional treatment head is used as radiation source for the high energy photon and electron beams. The treatment head produces clinical beams. The METAS absorbed dose calibration service for high energy photons is based on a primary standard sealed water calorimeter of the Domen type, that is used to calibrate several METAS transfer standards of type NE2611A and NE2571A in terms of absorbed dose to water in the energy range from 60 Co to TPR 20,10 = 0.802. User reference dosimeters are compared with the transfer standards to give calibration factors in absorbed dose to water with an uncertainty of 1.0% for 60 Co γ radiation and 1.4% for higher energies (coverage factor k=2). The calibration service was launched in 1997. The calibration factors measured by METAS have been compared with those derived from the Code of Practice of the International Atomic Energy Agency using the calculated k Q factors listed in table 14. The comparison showed a maximum difference of 0.8% for the NE25611A and NE 2571A chambers. At 60 Co γ radiation the METAS primary standard of absorbed dose to water was bilaterally compared with the primary standards of the Bureau International des Poids et Mesures BIPM (Sevres) as well as of the National Research Council NRC (Canada). In either case the standards were in agreement within the comparison uncertainties. The METAS absorbed dose calibration service for high energy electron beams is based on a primary standard chemical dosimeter. A monoenergetic electron beam of precisely known particle energy and beam charge is totally absorbed in Fricke solution (ferrous ammonium sulphate) of a given

  18. Experimental studies on absorbed dose in radiation sterilization of pharmaceutical preparation

    International Nuclear Information System (INIS)

    Ohnishi, Tokuhiro; Okamoto, Shinichi; Kimura, Syojiro; Taimatsu, Meiko.

    1991-01-01

    For radiation sterilization, it is necessary to decide the irradiation conditions considering a balance between sterilization efficiency and chemical changes of samples by irradiation. These effects may be estimated by the product of two factors (D 10 and G value) and absorbed dose. In this work, it has been found experimentally by using Fricke dosimeter that the absorbed doses of the samples in vessels different in size, material, volume, etc. are not equal under the same gamma-ray irradiation condition. The correction factor from exposure to absorbed dose was estimated to be 6-7% for organic vessels (a polyethylene bag and a polystyrene vial) and a 20-ml glass vial, 9% for a 10-ml glass vial, and 10% for the 5-ml glass vial. These values of the correction factor were confirmed by using the changes of enzymic activity of saccharated powder pepsin preparation. In the cases of using organic vessels and the 10-ml glass vial, G-values for the change of the enzymic activity were calculated to show similar values in the range from 0.79 to 0.82. However, in the case of a small glass vial (5-ml), the value was 0.93. (author)

  19. Absorbed bone marrow dose in certain dental radiographic techniques

    International Nuclear Information System (INIS)

    White, S.C.; Rose, T.C.

    1979-01-01

    The absorbed dose of radiation in the bone marrow of the region of the head and neck was measured during intraoral, panoramic, and cephalometric radiography. Panoramic radiography results in a dose a fifth or less than that from an intraoral survey. The use of rectangular collimation reduces the bone marrow absorbed dose from an intraoral survey by about 60%. Comparison of the doses from dental radiography with natural environmental radiation shows that an intraoral set of films results in the same total dose to the bone marrow as 65 days of background exposure. The use of rectangular collimation reduces this value to 25 days. Panoramic radiography results in significantly less irradiation, as it reduces the value to 14 days or fewer. Dental radiography thus involves exposures in the range of variation of natural environmental background values

  20. Evaluation of the distribution of absorbed dose in child phantoms exposed to diagnostic medical x rays

    International Nuclear Information System (INIS)

    Chen, W.L.

    1977-01-01

    The purpose of the study was to determine, by theoretical calculation and experimental measurement, the absorbed dose distributions in two heterogeneous phantoms representing one-year- and five-year-old children from typical radiographic examinations for those ages. Theoretical work included the modification of an existing internal dose code which used Monte Carlo methods to determine doses within the Snyder-Fisher mathematical phantom. A Ge(Li) detector and a pinhole collimator were used to measure x-ray spectra which served as input (i.e., the source routine) to the modified Monte Carlo codes which were used to calculate organ doses in children. Experimental work included the fabrication of child phantoms to match the existing mathematical models. These phantoms were constructed of molded lucite shells filled with differing materials to simulate lung, skeletal, and soft-tissue regions. The skeleton regions of phantoms offered the opportunity to perform meaningful measurements of absorbed dose to bone marrow and bone. Thirteen to fourteen sites in various bones of the skeleton were chosen for placement of TLDs. These sites represented important regions in which active bone marrow is located. Sixteen typical radiographic examinations were performed representing common pediatric diagnostic procedures. The calculated and measured tissue-air values were compared for a number of organs. For most organs, the results of the calculated absorbed doses agreed with the measured absorbed doses within twice the coefficient of variation of the calculated value. The absorbed dose to specific organs for several selected radiological examinations are given for one-year-old, five-year-old, and adult phantoms. For selected radiological exposures, the risk factors of leukemia, thyroid cancer, and genetic death are estimated for one-year- and five-year-old children

  1. Fluence-to-absorbed-dose conversion coefficients for neutron beams from 0.001 eV to 100 GeV calculated for a set of pregnant female and fetus models

    International Nuclear Information System (INIS)

    Taranenko, Valery; Xu, X George

    2008-01-01

    Protection of fetuses against external neutron exposure is an important task. This paper reports a set of absorbed dose conversion coefficients for fetal and maternal organs for external neutron beams using the RPI-P pregnant female models and the MCNPX code. The newly developed pregnant female models represent an adult female with a fetus including its brain and skeleton at the end of each trimester. The organ masses were adjusted to match the reference values within 1%. For the 3 mm cubic voxel size, the models consist of 10-15 million voxels for 35 organs. External monoenergetic neutron beams of six standard configurations (AP, PA, LLAT, RLAT, ROT and ISO) and source energies 0.001 eV-100 GeV were considered. The results are compared with previous data that are based on simplified anatomical models. The differences in dose depend on source geometry, energy and gestation periods: from 20% up to 140% for the whole fetus, and up to 100% for the fetal brain. Anatomical differences are primarily responsible for the discrepancies in the organ doses. For the first time, the dependence of mother organ doses upon anatomical changes during pregnancy was studied. A maximum of 220% increase in dose was observed for the placenta in the nine months model compared to three months, whereas dose to the pancreas, small and large intestines decreases by 60% for the AP source for the same models. Tabulated dose conversion coefficients for the fetus and 27 maternal organs are provided

  2. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    International Nuclear Information System (INIS)

    De Angelis, L; Landry, G; Dedes, G; Parodi, K; Hansen, D; Rit, S; Belka, C

    2016-01-01

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBs was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)

  3. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, L; Landry, G; Dedes, G; Parodi, K [Ludwig-Maximilians-Universitaet Muenchen (LMU Munich), Garching b. Muenchen (Germany); Hansen, D [Aarhus University Hospital, Aarhus, Jutland (Denmark); Rit, S [University Lyon, Lyon, Auvergne-Rhone-Alpes (France); Belka, C [LMU Munich, Munich (Germany)

    2016-06-15

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBs was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)

  4. Low dose/low fluence ionizing radiation-induced biological effects: The role of intercellular communication and oxidative metabolism

    Science.gov (United States)

    Azzam, Edouard

    Mechanistic investigations have been considered critical to understanding the health risks of exposure to ionizing radiation. To gain greater insight in the biological effects of exposure to low dose/low fluence space radiations with different linear energy transfer (LET) properties, we examined short and long-term biological responses to energetic protons and high charge (Z) and high energy (E) ions (HZE particles) in human cells maintained in culture and in targeted and non-targeted tissues of irradiated rodents. Particular focus of the studies has been on mod-ulation of gene expression, proliferative capacity, induction of DNA damage and perturbations in oxidative metabolism. Exposure to mean doses of 1000 MeV/nucleon iron ions, by which a small to moderate proportion of cells in an exposed population is targeted through the nucleus by an HZE particle, induced stressful effects in the irradiated and non-irradiated cells in the population. Direct intercellular communication via gap-junctions was a primary mediator of the propagation of stressful effects from irradiated to non-irradiated cells. Compromised prolif-erative capacity, elevated level of DNA damage and oxidative stress evaluated by measurements of protein carbonylation, lipid peroxidation and activity of metabolic enzymes persisted in the progeny of irradiated and non-irradiated cells. In contrast, progeny of cells exposed to high or low doses from 150-1000 MeV protons retained the ability to form colonies and harbored similar levels of micronuclei, a surrogate form of DNA damage, as control, which correlated with normal reactive oxygen species (ROS) levels. Importantly, a significant increase in the spontaneous neoplastic transformation frequency was observed in progeny of bystander mouse embryo fibroblasts (MEFs) co-cultured with MEFs irradiated with energetic iron ions but not protons. Of particular significance, stressful effects were detected in non-targeted tissues of rats that received partial

  5. System for determining absorbed dose and its distribution for high-energy electron radiation

    International Nuclear Information System (INIS)

    Hegewald, H.; Wulff, W.

    1977-01-01

    Taking into account the polarization effect, the dose determination for high-energy electron radiation from particle accelerators depends on the knowledge of the energy dependence of the mass stopping power. Results obtained with thermoluminescent dosemeters agree with theoretical values. For absorbed dose measurements the primary energy of electron radiation has been determined by nuclear photoreactions, and the calculation of the absorbed dose from charge measurements by means of the mass stopping power is described. Thus the calibration of ionization chambers for high-energy electron radiation by absolute measurements with the Faraday cage and chemical dosemeters has become possible. (author)

  6. Calculations of electron fluence correction factors using the Monte Carlo code PENELOPE

    International Nuclear Information System (INIS)

    Siegbahn, E A; Nilsson, B; Fernandez-Varea, J M; Andreo, P

    2003-01-01

    In electron-beam dosimetry, plastic phantom materials may be used instead of water for the determination of absorbed dose to water. A correction factor φ water plastic is then needed for converting the electron fluence in the plastic phantom to the fluence at an equivalent depth in water. The recommended values for this factor given by AAPM TG-25 (1991 Med. Phys. 18 73-109) and the IAEA protocols TRS-381 (1997) and TRS-398 (2000) disagree, in particular at large depths. Calculations of the electron fluence have been done, using the Monte Carlo code PENELOPE, in semi-infinite phantoms of water and common plastic materials (PMMA, clear polystyrene, A-150, polyethylene, Plastic water TM and Solid water TM (WT1)). The simulations have been carried out for monoenergetic electron beams of 6, 10 and 20 MeV, as well as for a realistic clinical beam. The simulated fluence correction factors differ from the values in the AAPM and IAEA recommendations by up to 2%, and are in better agreement with factors obtained by Ding et al (1997 Med. Phys. 24 161-76) using EGS4. Our Monte Carlo calculations are also in good accordance with φ water plastic values measured by using an almost perturbation-free ion chamber. The important interdependence between depth- and fluence-scaling corrections for plastic phantoms is discussed. Discrepancies between the measured and the recommended values of φ water plastic may then be explained considering the different depth-scaling rules used

  7. Absorbed doses behind bones with MR image-based dose calculations for radiotherapy treatment planning.

    Science.gov (United States)

    Korhonen, Juha; Kapanen, Mika; Keyrilainen, Jani; Seppala, Tiina; Tuomikoski, Laura; Tenhunen, Mikko

    2013-01-01

    Magnetic resonance (MR) images are used increasingly in external radiotherapy target delineation because of their superior soft tissue contrast compared to computed tomography (CT) images. Nevertheless, radiotherapy treatment planning has traditionally been based on the use of CT images, due to the restrictive features of MR images such as lack of electron density information. This research aimed to measure absorbed radiation doses in material behind different bone parts, and to evaluate dose calculation errors in two pseudo-CT images; first, by assuming a single electron density value for the bones, and second, by converting the electron density values inside bones from T(1)∕T(2)∗-weighted MR image intensity values. A dedicated phantom was constructed using fresh deer bones and gelatine. The effect of different bone parts to the absorbed dose behind them was investigated with a single open field at 6 and 15 MV, and measuring clinically detectable dose deviations by an ionization chamber matrix. Dose calculation deviations in a conversion-based pseudo-CT image and in a bulk density pseudo-CT image, where the relative electron density to water for the bones was set as 1.3, were quantified by comparing the calculation results with those obtained in a standard CT image by superposition and Monte Carlo algorithms. The calculations revealed that the applied bulk density pseudo-CT image causes deviations up to 2.7% (6 MV) and 2.0% (15 MV) to the dose behind the examined bones. The corresponding values in the conversion-based pseudo-CT image were 1.3% (6 MV) and 1.0% (15 MV). The examinations illustrated that the representation of the heterogeneous femoral bone (cortex denser compared to core) by using a bulk density for the whole bone causes dose deviations up to 2% both behind the bone edge and the middle part of the bone (diameter bones). This study indicates that the decrease in absorbed dose is not dependent on the bone diameter with all types of bones. Thus

  8. Discrimination of various contributions to the absorbed dose in BNCT: Fricke-gel imaging and intercomparison with other experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G. E-mail: grazia.gambarini@mi.infn.it; Agosteo, S.; Marchesi, P.; Nava, E.; Palazzi, P.; Pecci, A.; Rosi, G.; Tinti, R

    2000-11-15

    A method is described for the 3D measurements of absorbed dose in a ferrous sulphate gel phantom, exposed in the thermal column of a nuclear reactor. The method, studied for Boron Neutron Capture Therapy (BNCT) purposes, allows absorbed dose imaging and profiling, with the separation of different contributions coming from different secondary radiations, generated from thermal neutrons. In fact, the biological effectiveness of the different radiations is different. Tests with conventional dosimeters were performed too.

  9. Incorporating the effects of lateral spread of the primary fluence, into compensator design

    International Nuclear Information System (INIS)

    Reece, P.J.; Hoban, P.

    2000-01-01

    Full text: In this study we extended ideas developed by Faddegon and Pfalzner on the construction of patient specific compensating filters. Their research was essentially focused on formulating a general method for creating compensators using a 3D planning system. In their work Faddegon and Pfalzner utilized a simple attenuation model to convert transmission arrays into filter thickness arrays. The compensators constructed from these arrays produce the primary fluence required to give a uniform dose distribution at a specified depth. This technique does not account for local geometric variations hi compensator scattering conditions. Therefore we have devised a method to incorporate the effects of lateral spread of the primary fluence passing through the compensating filter. A 2D Gaussian kernel, generated from Monte Carlo measurements, was used to model the spread of the primary fluence in the compensating filter. A 'maximum likelihood' optimisation algorithm was employed to deconvolve the kernel from the desired primary fluence to produce a more realistic incident fluence and compensator thickness array. The CMS FOCUS planning system was used to generate transmission maps corresponding to the desired influence of the compensating filter. Two compensating filters were constructed for each map, one using the standard attenuation method and the other with our method. For each method, an assessment was made using film dosimetry, on the degree of correlation between the desired primary fluence and the primary fluence produced by the compensating filter. Our results indicate that for compensating filters which are relatively uniform in thickness, there is good agreement between desired and delivered fluence maps for both methods. For non-uniform compensating filters the attenuation method deviates more notably from the desired fluence map. As expected, both methods also show significant deviations around the edges of the filter. It is anticipated that the work done here

  10. Three dimensional measurements of absorbed dose in BNCT by Fricke-gel imaging

    International Nuclear Information System (INIS)

    Gambarini, G.; Agosteo, S.; Marchesi, P.; Nava, E.; Palazzi, P.; Pecci, A.; Rosa, R.; Rosi, G.; Tinti, R.

    2001-01-01

    A method has been studied for absorbed dose imaging and profiling in a phantom exposed to thermal or epithermal neutron fields, also discriminating between various contributions to the absorbed dose. The proposed technique is based on optical imaging of FriXy-gel phantoms, which are proper tissue-equivalent phantoms acting as continuous dosimeters. Convenient modifications in phantom composition allow, from differential measurements, the discrimination of various contributions to the absorbed dose. The dosimetry technique is based on a chemical dosimeter incorporated in a tissue-equivalent gel (Agarose). The chemical dosimeter is a ferrous sulphate solution (which is the main component of the standard Fricke dosimeter) added with a metal ion indicator (Xylenol Orange). The absorbed dose is measured by analysing the variation of gel optical absorption in the visible spectrum, imaged by means of a CCD camera provided with a suitable filter. The technique validity has been tested by irradiating and analysing phantoms in the thermal facility of the fast research reactor TAPIRO (ENEA, Casaccia, Italy). In a cylindrical phantom simulating a head, we have imaged the therapy dose from thermal neutron reactions with 10 B and the dose in healthy tissue not containing boron. In tissue without boron, we have discriminated between the two main contributions to the absorbed dose, which comes from the 1 H(n,γ) 2 H and 14 N(n,p) 14 C reactions. The comparison with the results of other experimental techniques and of simulations reveals that the technique is very promising. A method for the discrimination of fast neutron contribution to the absorbed dose, still in an experimental stage, is proposed too. (author)

  11. Biphasic fluence-response curves for phytochrome-mediated kalanchoë seed germination : sensitization by gibberellic Acid.

    Science.gov (United States)

    Rethy, R; Dedonder, A; De Petter, E; Van Wiemeersch, L; Fredericq, H; De Greef, J; Steyaert, H; Stevens, H

    1987-01-01

    The fluence-response curves for the effect of two red pulses separated by 24 hours on the germination of Kalanchoe blossfeldiana Poelln. cv Vesuv seeds, incubated on gibberellic acid (GA(3)) are biphasic for suboptimal concentrations. The response in the low fluence range corresponds with a classical red/far-red reversible phytochrome mediated reaction. GA(3) induces an additional response in the very low fluence range, which is also phytochrome mediated. The sensitivity to phytochrome-far-red absorbing form (Pfr), however, is increased about 20,000-fold, so that even far-red fluences become saturating. Both in the very low and low fluence response range, the maximal responses induced by saturating fluences are modulated by the GA(3) concentration. GA(3) having no direct influence on the phytochrome phototransformations, alters the Pfr requirement and determines the responding seed population fraction in the very low and low fluence range. The effet of GA(3) appears to be on the transduction chain of the phytochrome signal.

  12. Extension of the Commonwealth standard of absorbed dose from cobalt-60 energy to 25 MV

    International Nuclear Information System (INIS)

    Sherlock, S.L.

    1986-01-01

    With the introduction of high energy linear accelerators in hospitals, there is a need for direct measurement of absorbed dose for energies to 25 MV for photons and 20 MeV electrons. The present Australian standard for absorbed dose at cobalt-60 energy is a graphite micro-calorimeter maintained at the AAEC Lucas Heights Research Laboratories. A thorough theoretical analysis of calorimeter operation suggests that computer control and monitoring techniques are appropriate. Solution of Newton's law of cooling for a four-body calorimeter allows development of a computer simulation model. Different temperature control algorithms may then be run and assessed using this model. In particular, the application of a simple differencer is examined. Successful implementation of the calorimeter for energies up to 25 MV could lead to the introduction of an Australian absorbed dose protocol based on calorimetry, therby reducing the uncertainties associated with exposure-based protocols

  13. Simplified method for creating a density-absorbed dose calibration curve for the low dose range from Gafchromic EBT3 film

    Directory of Open Access Journals (Sweden)

    Tatsuhiro Gotanda

    2016-01-01

    Full Text Available Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were −32.336 and −33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range.

  14. Mathematical models of tumor growth: translating absorbed dose to tumor control probability

    International Nuclear Information System (INIS)

    Sgouros, G.

    1996-01-01

    Full text: The dose-rate in internal emitter therapy is low and time-dependent as compared to external beam radiotherapy. Once the total absorbed dose delivered to a target tissue is calculated, however, most dosimetric analyses of radiopharmaceuticals are considered complete. To translate absorbed dose estimates obtained for internal emitter therapy to biologic effect, the growth characteristics, repair capacity, and radiosensitivity of the tumor must be considered. Tumor growth may be represented by the Gompertz equation in which tumor cells increase at an exponential growth rate that is itself decreasing at an exponential rate; as the tumor increases in size, the growth rate diminishes. The empirical Gompertz expression for tumor growth may be derived from a mechanistic model in which growth is represented by a balance between tumor-cell birth and loss. The birth rate is assumed to be fixed, while the cell loss rate is time-dependent and increases with tumor size. The birth rate of the tumors may be related to their potential doubling time. Multiple biopsies of individual tumors have demonstrated a heterogeneity in the potential doubling time of tumors. By extending the mechanistic model described above to allow for sub-populations of tumor cells with different birth rates, the effect of kinetic heterogeneity within a tumor may be examined. Model simulations demonstrate that the cell kinetic parameters of a tumor are predicted to change over time and measurements obtained using a biopsy are unlikely to reflect the kinetics of the tumor throughout its growth history. A decrease in overall tumor mass, in which each sub-population is reduced in proportion to its cell number, i.e., the log-kill assumption, leads to re-growth of a tumor that has a greater proliferation rate. Therapy that is linked to the potential doubling time or to the effective proliferation rate of the tumor may lead to re-growth of a tumor that is kinetically unchanged. The simplest model of

  15. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV.

    Science.gov (United States)

    Gudowska, I; Brahme, A; Andreo, P; Gudowski, W; Kierkegaard, J

    1999-09-01

    The absorbed dose due to photonuclear reactions in soft tissue, lung, breast, adipose tissue and cortical bone has been evaluated for a scanned bremsstrahlung beam of end point 50 MeV from a racetrack accelerator. The Monte Carlo code MCNP4B was used to determine the photon source spectrum from the bremsstrahlung target and to simulate the transport of photons through the treatment head and the patient. Photonuclear particle production in tissue was calculated numerically using the energy distributions of photons derived from the Monte Carlo simulations. The transport of photoneutrons in the patient and the photoneutron absorbed dose to tissue were determined using MCNP4B; the absorbed dose due to charged photonuclear particles was calculated numerically assuming total energy absorption in tissue voxels of 1 cm3. The photonuclear absorbed dose to soft tissue, lung, breast and adipose tissue is about (0.11-0.12)+/-0.05% of the maximum photon dose at a depth of 5.5 cm. The absorbed dose to cortical bone is about 45% larger than that to soft tissue. If the contributions from all photoparticles (n, p, 3He and 4He particles and recoils of the residual nuclei) produced in the soft tissue and the accelerator, and from positron radiation and gammas due to induced radioactivity and excited states of the nuclei, are taken into account the total photonuclear absorbed dose delivered to soft tissue is about 0.15+/-0.08% of the maximum photon dose. It has been estimated that the RBE of the photon beam of 50 MV acceleration potential is approximately 2% higher than that of conventional 60Co radiation.

  16. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV

    International Nuclear Information System (INIS)

    Gudowska, I.; Brahme, A.; Andreo, P.; Gudowski, W.; Kierkegaard, J.

    1999-01-01

    The absorbed dose due to photonuclear reactions in soft tissue, lung, breast, adipose tissue and cortical bone has been evaluated for a scanned bremsstrahlung beam of end point 50 MeV from a racetrack accelerator. The Monte Carlo code MCNP4B was used to determine the photon source spectrum from the bremsstrahlung target and to simulate the transport of photons through the treatment head and the patient. Photonuclear particle production in tissue was calculated numerically using the energy distributions of photons derived from the Monte Carlo simulations. The transport of photoneutrons in the patient and the photoneutron absorbed dose to tissue were determined using MCNP4B; the absorbed dose due to charged photonuclear particles was calculated numerically assuming total energy absorption in tissue voxels of 1 cm 3 . The photonuclear absorbed dose to soft tissue, lung, breast and adipose tissue is about (0.11-0.12)±0.05% of the maximum photon dose at a depth of 5.5 cm. The absorbed dose to cortical bone is about 45% larger than that to soft tissue. If the contributions from all photoparticles (n, p, 3 He and 4 He particles and recoils of the residual nuclei) produced in the soft tissue and the accelerator, and from positron radiation and gammas due to induced radioactivity and excited states of the nuclei, are taken into account the total photonuclear absorbed dose delivered to soft tissue is about 0.15±0.08% of the maximum photon dose. It has been estimated that the RBE of the photon beam of 50 MV acceleration potential is approximately 2% higher than that of conventional 60 Co radiation. (author)

  17. Radiation effects on video imagers

    International Nuclear Information System (INIS)

    Yates, G.J.; Bujnosek, J.J.; Jaramillo, S.A.; Walton, R.B.; Martinez, T.M.; Black, J.P.

    1985-01-01

    Radiation sensitivity of several photoconductive, photoemissive, and solid state silicon-based video imagers was measured by analyzing stored photocharge induced by irradiation with continuous and pulsed sources of high energy photons and neutrons. Transient effects as functions of absorbed dose, dose rate, fluences, and ionizing particle energy are presented

  18. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations.

    Science.gov (United States)

    Nogueira, P; Zankl, M; Schlattl, H; Vaz, P

    2011-11-07

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation-the germinative cells-absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  19. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations

    International Nuclear Information System (INIS)

    Nogueira, P; Vaz, P; Zankl, M; Schlattl, H

    2011-01-01

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation-the germinative cells-absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  20. Pain and Mean Absorbed Dose to the Pubic Bone After Radiotherapy Among Gynecological Cancer Survivors

    International Nuclear Information System (INIS)

    Waldenstroem, Ann-Charlotte; Olsson, Caroline; Wilderaeng, Ulrica; Dunberger, Gail; Lind, Helena; Al-Abany, Massoud; Palm, Asa; Avall-Lundqvist, Elisabeth; Johansson, Karl-Axel; Steineck, Gunnar

    2011-01-01

    Purpose: To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. Methods and Materials: In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. Results: We analyzed data from 650 survivors (participation rate 79%) with median follow-up of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses <52.5 Gy to the pubic bone and 5/12 (42%) to mean absorbed external beam doses ≥52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Conclusions: Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer.

  1. Absorbed dose from a beta source as shown by thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Wintle, A.G.; Aitken, M.J.

    1977-01-01

    The depth-dose curve was obtained for a 90 Sr- 90 Y beta source using a fine grain TL phosphor to measure the observed dose, aluminium absorbers being interposed between the source and the detector; the curve went through a maximum at an absorber thickness of about 40 mg cm -2 . This curve was then used to predict the average dose rate to various thicknesses of calcium fluoride which has a similar absorption characteristic to aluminium; these values were compared with experimentally determined dose rates. This work was done in connection with thermoluminescence dating of flint and calcite in archaeology and geology. (author)

  2. Absorbed dose in fibrotic microenvironment models employing Monte Carlo simulation

    International Nuclear Information System (INIS)

    Zambrano Ramírez, O.D.; Rojas Calderón, E.L.; Azorín Vega, E.P.; Ferro Flores, G.; Martínez Caballero, E.

    2015-01-01

    The presence or absence of fibrosis and yet more, the multimeric and multivalent nature of the radiopharmaceutical have recently been reported to have an effect on the radiation absorbed dose in tumor microenvironment models. Fibroblast and myofibroblast cells produce the extracellular matrix by the secretion of proteins which provide structural and biochemical support to cells. The reactive and reparative mechanisms triggered during the inflammatory process causes the production and deposition of extracellular matrix proteins, the abnormal excessive growth of the connective tissue leads to fibrosis. In this work, microenvironment (either not fibrotic or fibrotic) models composed of seven spheres representing cancer cells of 10 μm in diameter each with a 5 μm diameter inner sphere (cell nucleus) were created in two distinct radiation transport codes (PENELOPE and MCNP). The purpose of creating these models was to determine the radiation absorbed dose in the nucleus of cancer cells, based on previously reported radiopharmaceutical retain (by HeLa cells) percentages of the 177 Lu-Tyr 3 -octreotate (monomeric) and 177 Lu-Tyr 3 -octreotate-AuNP (multimeric) radiopharmaceuticals. A comparison in the results between the PENELOPE and MCNP was done. We found a good agreement in the results of the codes. The percent difference between the increase percentages of the absorbed dose in the not fibrotic model with respect to the fibrotic model of the codes PENELOPE and MCNP was found to be under 1% for both radiopharmaceuticals. (authors)

  3. Estimation of human absorbed dose for (166)Ho-PAM: comparison with (166)Ho-DOTMP and (166)Ho-TTHMP.

    Science.gov (United States)

    Vaez-Tehrani, Mahdokht; Zolghadri, Samaneh; Yousefnia, Hassan; Afarideh, Hossein

    2016-10-01

    In this study, the human absorbed dose of holmium-166 ((166)Ho)-pamidronate (PAM) as a potential agent for the management of multiple myeloma was estimated. (166)Ho-PAM complex was prepared at optimized conditions and injected into the rats. The equivalent and effective absorbed doses to human organs after injection of the complex were estimated by radiation-absorbed dose assessment resource and methods proposed by Sparks et al based on rat data. The red marrow to other organ absorbed dose ratios were compared with these data for (166)Ho-DOTMP, as the only clinically used (166)Ho bone marrow ablative agent, and (166)Ho-TTHMP. The highest absorbed dose amounts are observed in the bone surface and bone marrow with 1.11 and 0.903 mGy MBq(-1), respectively. Most other organs would receive approximately insignificant absorbed dose. While (166)Ho-PAM demonstrated a higher red marrow to total body absorbed dose ratio than (166)Ho-1,4,7,10-tetraazacyclo dodecane-1,4,7,10 tetra ethylene phosphonic acid (DOTMP) and (166)Ho-triethylene tetramine hexa (methylene phosphonic acid) (TTHMP), the red marrow to most organ absorbed dose ratios for (166)Ho-TTHMP and (166)Ho-PAM are much higher than the ratios for (166)Ho-DOTMP. The result showed that (166)Ho-PAM has significant characteristics than (166)Ho-DOTMP and therefore, this complex can be considered as a good agent for bone marrow ablative therapy. In this work, two separate points have been investigated: (1) human absorbed dose of (166)Ho-PAM, as a potential bone marrow ablative agent, has been estimated; and (2) the complex has been compared with (166)Ho-DOTMP, as the only clinically used bone marrow ablative radiopharmaceutical, showing significant characteristics.

  4. Evaluation of the absorbed dose to the kidneys due to Tc99m (DTPA) / Tc99m (Mag3) and Tc99m (Dmsa)

    International Nuclear Information System (INIS)

    Vasquez A, M.; Murillo C, F.; Castillo D, C.; Rocha J, J.; Sifuentes D, Y.; Sanchez S, P.; Idrogo C, J.; Marquez P, F.

    2015-10-01

    The absorbed dose in the kidneys of adult patients has been assessed using the biokinetics of radiopharmaceuticals containing Tc 99m (DTPA) / Tc 99m (Mag3) or Tc 99m (Dmsa).The absorbed dose was calculated using the formalism MIRD and the Cristy-Eckerman representation for the kidneys. The absorbed dose to the kidneys due to Tc 99m (DTPA) / Tc 99m (Mag3), are given by 0.00466 mGy.MBq -1 / 0.00339 mGy.MBq -1 . Approximately 21.2% of the absorbed dose is due to the bladder (content) and the remaining tissue, included in biokinetics of Tc 99m (DTPA) / Tc 99m (Mag3). The absorbed dose to the kidneys due to Tc 99m (Dmsa) is 0.17881 mGy.MBq -1 . Here, 1.7% of the absorbed dose is due to the bladder, spleen, liver and the remaining tissue, included in biokinetics of Tc 99m (Dmsa). (Author)

  5. Status of radiation dosimetry in Germany using ionization chamber calibrated in terms of absorbed dose to water

    International Nuclear Information System (INIS)

    Hohlfeld, Klaus; Roos, Martin

    1995-01-01

    In 1984 the PTB as PSDL and the DIN Standard Committee on Radiology (NAR) in close co-operation decided that in Germany the measured absorbed dose to water in a water phantom should replace exposure in the dosimetry for radiation therapy. The PTB has established primary standards of water absorbed dose in the whole range of photon and electron radiation, and international comparisons at the BIPM and with other PSDLs proved agreement within 0.5%. Secondary standards are calibrated in a water phantom under reference conditions in a Co-60 gamma radiation beam at the PTB. Thus, the calibration factor in terms of water absorbed dose, N W , is transferred to the manufacturers of dosimeters, the German Calibration Service and the dosimetry laboratories of the verification authorities. The Verification Law subjects each ionization dosimeter used in the treatment of patients with external photon radiation beams under a type-test at PTB and under a verification procedure, where the calibration factor, N W , must be shown to be within given limits. The absorbed dose determination at the users' level follows the foralism prescribed in the Standard DIN 6800-2 (1995) 'Procedures for Absorbed Dose Determination in Radiology by the Ionization Method'. The concept of this DIN Standard uses exclusively one quantity from the primary standard to the user's instrument eliminating uncertainties and sources of mistakes associated with the conversion of a calibration factor. The concept is simple and clear and covers the whole range of photon and electron radiation. As a means of quality assurance in basic dosimetry the PTB runs a calibration service, up to now on a voluntary basis, which allows the user to compare his dosimetry system against PTB standards using mailed Fricke ampoules, with water absorbed dose as measured and used

  6. Experimental verification of the air kerma to absorbed dose conversion factor Cw,u.

    Science.gov (United States)

    Mijnheer, B J; Wittkämper, F W; Aalbers, A H; van Dijk, E

    1987-01-01

    In a recently published code of practice for the dosimetry of high-energy photon beams, the absorbed dose to water is determined using an ionization chamber having an air kerma calibration factor and applying the air kerma to absorbed dose conversion factor Cw,u. The consistency of these Cw,u values has been determined for four commonly employed types of ionization chambers in photon beams with quality varying between 60Co gamma-rays and 25 MV X-rays. Using a graphite calorimeter, Cw,u has been determined for a graphite-walled ionization chamber (NE 2561) for the same qualities. The values of Cw,u determined with the calorimeter are within the experimental uncertainty equal to Cw,u values determined according to any of the recent dosimetry protocols.

  7. Absorbed doses received by patients submitted to chest radiographs in hospitals of the city of Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Freitas, Marcelo Baptista de

    2000-01-01

    Medical irradiation contributes with a significant amount to the dose received by the population. Here, this contribution was evaluated in a survey of absorbed doses received by patients submitted to chest radiological examinations (postero-anterior (PA) and lateral (LAT) projections) in hospitals of the city of Sao Paulo. Due to the variety of equipment and procedures used in radiological examinations, a selection of hospitals was made (12, totalizing 27 X-ray facilities), taking into account their representativeness as medical institutions in the city, in terms of characteristics and number of radiographs carried out. An anthropomorphic phantom, provided with thermoluminescent dosemeters (TLD-1 00), was irradiated simulating the patient, and the radiographic image quality was evaluated. Absorbed doses were determined to the thoracic region (entrance and exit skin and lung doses), and to some important organs from the radiation protection point of view (lens of the eye, thyroid and gonads). The great variation on the exposure parameters (kV, mA.s, beam size) leads to a large interval of entrance skin doses-ESD (coefficients of variation, CV, of 60% and 76%, for PA and LAT projections, respectively, were found) and of organ doses (CV of 60% and 46%. for thyroid and lung respectively). Mean values of ESD for LAT and PA projections were 0.22 and 0.98 mGy, respectively. The average absorbed doses per exam (PA and LAT) to thyroid and lung, 0.15 and 0.24 mGy respectively,showed that the thyroid was irradiated by the primary beam in many cases. Values of lens of the eye and gonad absorbed doses were below 30 μGy. Comparison of the lung doses obtained in this study with values in the literature, calculated by Monte Carlo simulation, showed good agreement. On the other hand, the comparison shows significant differences in the dose values to organs outside the chest region (thyroid, lens of eye and gonads). The effective dose calculated for a chest examination, PA and LAT

  8. CALDoseX-a software tool for the assessment of organ and tissue absorbed doses, effective dose and cancer risks in diagnostic radiology

    International Nuclear Information System (INIS)

    Kramer, R; Khoury, H J; Vieira, J W

    2008-01-01

    CALDose X is a software tool that provides the possibility of calculating incident air kerma (INAK) and entrance surface air kerma (ESAK), two important quantities used in x-ray diagnosis, based on the output of the x-ray equipment. Additionally, the software uses conversion coefficients (CCs) to assess the absorbed dose to organs and tissues of the human body, the effective dose as well as the patient's cancer risk for radiographic examinations. The CCs, ratios between organ or tissue absorbed doses and measurable quantities, have been calculated with the FAX06 and the MAX06 phantoms for 34 projections of 10 commonly performed x-ray examinations, for 40 combinations of tube potential and filtration ranging from 50 to 120 kVcp and from 2.0 to 5.0 mm aluminum, respectively, for various field positions, for 29 selected organs and tissues and simultaneously for the measurable quantities, INAK, ESAK and kerma area product (KAP). Based on the x-ray irradiation parameters defined by the user, CALDose X shows images of the phantom together with the position of the x-ray beam. By using true to nature voxel phantoms, CALDose X improves earlier software tools, which were mostly based on mathematical MIRD5-type phantoms, by using a less representative human anatomy.

  9. A Monte Carlo program converting activity distribution to absorbed dose distributions in a radionuclide treatment planning system

    International Nuclear Information System (INIS)

    Tagesson, M.; Ljungberg, M.; Strand, S.E.

    1996-01-01

    In systemic radiation therapy, the absorbed dose distribution must be calculated from the individual activity distribution. A computer code has been developed for the conversion of an arbitrary activity distribution to a 3-D absorbed dose distribution. The activity distribution can be described either analytically or as a voxel based distribution, which comes from a SPECT acquisition. Decay points are sampled according to the activity map, and particles (photons and electrons) from the decay are followed through the tissue until they either escape the patient or drop below a cut off energy. To verify the calculated results, the mathematically defined MIRD phantom and unity density spheres have been included in the code. Also other published dosimetry data were used for verification. Absorbed fraction and S-values were calculated. A comparison with simulated data from the code with MIRD data shows good agreement. The S values are within 10-20% of published MIRD S values for most organs. Absorbed fractions for photons and electrons in spheres (masses between 1 g and 200 kg) are within 10-15% of those published. Radial absorbed dose distributions in a necrotic tumor show good agreement with published data. The application of the code in a radionuclide therapy dose planning system, based on quantitative SPECT, is discussed. (orig.)

  10. Absorbed dose in AgBr in direct film for photon energies (<150 keV): relation to optical density. Theoretical calculation and experimental evaluation

    International Nuclear Information System (INIS)

    Helmrot, E.; Alm Carlsson, G.

    1996-01-01

    Calculations of absorbed dose in the silver bromide were compared with measurements of optical densities in Ultra-speed and Ektaspeed films for a broad range (25-145 kV) of X-ray energy. The calculated absorbed dose values were appropriately averaged over the complete photon energy spectrum, which was determined experimentally using a Compton spectrometer. For the whole range of tube potentials used, the measured optical densities of the films were found to be proportional to the mean absorbed dose in the AgBr grains calculated according to GREENING's theory. They were also found to be proportional to the collision kerma in silver bromide (K c,AgBr ) indicating proportionality between K c,AgBr and the mean absorbed dose in silver bromide. While GREENING's theory shows that the quotient of the mean absorbed dose in silver bromide and K c,AgBr varies with photon energy, this is not apparent when averaged over the broad (diagnostic) X-ray energy spectra used here. Alternatively, proportionality between K c,AgBr and the mean absorbed dose in silver bromide can be interpreted as resulting from a combination of the SPIERS-CHARLTON theory, valid at low photon energies ( c,AgBr (at the position of the film) independent of photon energy. The importance of taking the complete X-ray energy spectrum into full account in deriving K c,AgBr is clearly demonstrated, showing that the concept of effective energy must be used with care. (orig./HP)

  11. Cosmic ray LET spectra and doses on board Cosmos-2044 biosatellite

    International Nuclear Information System (INIS)

    Dudkin, V.E.; Kovalev, E.E.; Potapov, Yu.V.

    1992-01-01

    Results of the experiments on board Cosmos-2044 (Biosatellite 9) are presented. Various nuclear track detectors (NTD) (dielectric, AgCl-based, nuclear emulsions) were used to obtain the LET spectra inside and outside the satellite. The spectra from the different NTDs have proved to be in general agreement. The results of LET spectra calculations using two different models are also presented. The resultant LET distributions are used to calculate the absorbed and equivalent doses and the orbit-averaged quality factors (QF) of the cosmic rays (CR). Absorbed dose rates inside (∼ 20 g cm -2 shielding) and outside (1 g cm -2 ) the spacecraft, omitting electrons, were found to be 4.8 and 8.6 mrad d -1 , respectively, while the corresponding equivalent doses were 8.8 and 19.7 mrem d -1 . The effects of the flight parameters on the total fluence of, and on the dose from, the CR particles are analyzed. Integral dose distributions of the detected particles are also determined. The LET values which separate absorbed and equivalent doses into 50% intervals are estimated. The CR-39 dielectric NTD is shown to detect 20-30% of the absorbed dose and 60-70% of the equivalent dose in the Cosmos-2044 orbit. The influence of solar activity phase on the magnitude of the CR flux is discussed. (author)

  12. Utilization of radiation protection gear for absorbed dose reduction: an integrative literature review

    International Nuclear Information System (INIS)

    Soares, Flavio Augusto Penna; Flor, Rita de Cassia; Pereira, Aline Garcia

    2011-01-01

    Objective: The present study was aimed at evaluating the relation between the use of radiation protection gear and the decrease in absorbed dose of ionizing radiation, thereby reinforcing the efficacy of its use by both the patients and occupationally exposed personnel. Materials and Methods: The integrative literature review method was utilized to analyze 21 articles, 2 books, 1 thesis, 1 monograph, 1 computer program, 4 pieces of database research (Instituto Brasileiro de Geografia e Estatistica and Departamento de Informatica do Sistema Unico de Saude) and 2 sets of radiological protection guidelines. Results: Theoretically, a reduction of 86% to 99% in the absorbed dose is observed with the use of radiation protection gear. In practice, however, the reduction may achieve 88% in patients submitted to conventional radiology, and 95% in patients submitted to computed tomography. In occupationally exposed individuals, the reduction is around 90% during cardiac catheterization, and 75% during orthopedic surgery. Conclusion: According to findings of several previous pieces of research, the use of radiation protection gear is a low-cost and effective way to reduce absorbed dose both for patients and occupationally exposed individuals. Thus, its use is necessary for the implementation of effective radioprotection programs in radiodiagnosis centers. (author)

  13. Radiation absorbed dose from medically administered radiopharmaceuticals

    International Nuclear Information System (INIS)

    Roedler, H.D.; Kaul, A.

    1975-01-01

    The use of radiopharmaceuticals for medical examinations is increasing. Surveys carried out in West Berlin show a 20% average yearly increase in such examinations. This implies an increased genetic and somatic radiation exposure of the population in general. Determination of radiation exposure of the population as well as of individual patients examined requires a knowledge of the radiation dose absorbed by each organ affected by each examination. An extensive survey of the literature revealed that different authors reported widely different dose values for the same defined examination methods and radiopharmaceuticals. The reason for this can be found in the uncertainty of the available biokinetic data for dose calculations and in the application of various mathematical models to describe the kinetics and calculation of organ doses. Therefore, the authors recalculated some of the dose values published for radiopharmaceuticals used in patients by applying biokinetic data obtained from exponential models of usable metabolism data reported in the literature. The calculation of organ dose values was done according to the concept of absorbed fractions in its extended form. For all radiopharmaceuticals used in nuclear medicine the energy dose values for the most important organs (ovaries, testicles, liver, lungs, spleen, kidneys, skeleton, total body or residual body) were recalculated and tabulated for the gonads, skeleton and critical or examined organs respectively. These dose values are compared with those reported in the literature and the reasons for the observed deviations are discussed. On the basis of recalculated dose values for the gonads and bone-marrow as well as on the basis of results of statistical surveys in West Berlin, the genetically significant dose and the somatically (leukemia) significant dose were calculated for 1970 and estimated for 1975. For 1970 the GSD was 0.2 mrad and the LSD was 0.7 mrad. For 1975 the GSD is estimated at < 0.5 mrad and the

  14. Evaluation of variations in absorbed dose and image noise according to patient forms in X-ray computed tomography

    International Nuclear Information System (INIS)

    Matsubara, Kosuke; Tsujii, Hideo; Yamamoto, Tomoyuki; Koshida, Kichiro; Suzuki, Masayuki; Hayakawa, Mayumi

    2005-01-01

    Excessive radiation exposure in pediatric computed tomography (CT) scanning has become a serious problem, and it is difficult to select scan parameters for the scanning of small patients such as children. We investigated differences in absorbed dose and standard deviation (SD) in Hounsfield unit (HU) caused by differences in the form of the subject using a body-type phantom with removable body parts. Using four X-ray CT scanners, measurements were made with values from 50 mAs to 300 mAs, with slices of 50 mAs, using scan protocols that were assumed to perform thorough examinations. The results showed that the mAs values and absorbed doses were almost proportional, and the absorbed doses in the phantom without body parts were about 1.1-2.2-fold higher than those of the phantom with body parts at the same points. The SD values obtained indicated that the absorbed doses in the phantom with body parts were 0.3-0.6 times those of the phantom without body parts when the mAs values used were adjusted so that both SD values were the same. The absorbed doses in various patient forms can be estimated from these results, and they will become critical data for the selection of appropriate scan protocols. (author)

  15. Evaluation of variations in absorbed dose and image noise according to patient forms in X-ray computed tomography.

    Science.gov (United States)

    Matsubara, Kosuke; Koshida, Kichiro; Suzuki, Masayuki; Hayakawa, Mayumi; Tsujii, Hideo; Yamamoto, Tomoyuki

    2005-12-20

    Excessive radiation exposure in pediatric computed tomography (CT) scanning has become a serious problem, and it is difficult to select scan parameters for the scanning of small patients such as children. We investigated differences in absorbed dose and standard deviation (SD) in Hounsfield unit (HU) caused by differences in the form of the subject using a body-type phantom with removable body parts. Using four X-ray CT scanners, measurements were made with values from 50 mAs to 300 mAs, with slices of 50 mAs, using scan protocols that were assumed to perform thorough examinations. The results showed that the mAs values and absorbed doses were almost proportional, and the absorbed doses in the phantom without body parts were about 1.1-2.2-fold higher than those of the phantom with body parts at the same points. The SD values obtained indicated that the absorbed doses in the phantom with body parts were 0.3-0.6 times those of the phantom without body parts when the mAs values used were adjusted so that both SD values were the same. The absorbed doses in various patient forms can be estimated from these results, and they will become critical data for the selection of appropriate scan protocols.

  16. Evaluation of variations in absorbed dose and image noise according to patient forms in X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Kosuke; Tsujii, Hideo; Yamamoto, Tomoyuki [Kanazawa Univ., Hospital, Kanazawa, Ishikawa (Japan); Koshida, Kichiro; Suzuki, Masayuki; Hayakawa, Mayumi [Kanazawa Univ., Graduate School of Medical Sciences, Kanazawa, Ishikawa (Japan)

    2005-12-15

    Excessive radiation exposure in pediatric computed tomography (CT) scanning has become a serious problem, and it is difficult to select scan parameters for the scanning of small patients such as children. We investigated differences in absorbed dose and standard deviation (SD) in Hounsfield unit (HU) caused by differences in the form of the subject using a body-type phantom with removable body parts. Using four X-ray CT scanners, measurements were made with values from 50 mAs to 300 mAs, with slices of 50 mAs, using scan protocols that were assumed to perform thorough examinations. The results showed that the mAs values and absorbed doses were almost proportional, and the absorbed doses in the phantom without body parts were about 1.1-2.2-fold higher than those of the phantom with body parts at the same points. The SD values obtained indicated that the absorbed doses in the phantom with body parts were 0.3-0.6 times those of the phantom without body parts when the mAs values used were adjusted so that both SD values were the same. The absorbed doses in various patient forms can be estimated from these results, and they will become critical data for the selection of appropriate scan protocols. (author)

  17. Standard Guide for Selection and Use of Mathematical Methods for Calculating Absorbed Dose in Radiation Processing Applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide describes different mathematical methods that may be used to calculate absorbed dose and criteria for their selection. Absorbed-dose calculations can determine the effectiveness of the radiation process, estimate the absorbed-dose distribution in product, or supplement or complement, or both, the measurement of absorbed dose. 1.2 Radiation processing is an evolving field and annotated examples are provided in Annex A6 to illustrate the applications where mathematical methods have been successfully applied. While not limited by the applications cited in these examples, applications specific to neutron transport, radiation therapy and shielding design are not addressed in this document. 1.3 This guide covers the calculation of radiation transport of electrons and photons with energies up to 25 MeV. 1.4 The mathematical methods described include Monte Carlo, point kernel, discrete ordinate, semi-empirical and empirical methods. 1.5 General purpose software packages are available for the calcul...

  18. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    Science.gov (United States)

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-03-08

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance.

  19. Absorbed Dose in the Uterus of a Three Months Pregnant Woman Due to 131I

    International Nuclear Information System (INIS)

    Vega-Carrillo, Hector Rene; Manzanares-Acuna, Eduardo; Hernandez-Davila, Victor Martin; Arcos-Pichardo, Areli; Barquero, Raquel; Iniguez, M. Pilar

    2006-01-01

    The use of 131I is widely used in diagnostic and treatment of patients. If the patient is pregnant the 131I presence in the thyroid it becomes a source of constant exposition to other organs and the fetus. In this study the absorbed dose in the uterus of a 3 months pregnant woman with 131I in her thyroid gland has been calculated. The dose was determined using Monte Carlo methods in which a detailed model of the woman has been developed. The dose was also calculated using a simple procedure that was refined including the photons' attenuation in the woman organs and body. To verify these results an experiment was carried out using a neck phantom with 131I. Comparing the results it was found that the simple calculation tend to overestimate the absorbed dose, by doing the corrections due to body and organs photon attenuation the dose is 0.14 times the Monte Carlo estimation

  20. Radiologist and angiographic procedures. Absorbed radiation dose

    International Nuclear Information System (INIS)

    Tryhus, M.; Mettler, F.A. Jr.; Kelsey, C.

    1987-01-01

    The radiation dose absorbed by the angiographer during angiographic procedures is of vital importance to the radiologist. Nevertheless, most articles on the subject are incomplete, and few measure gonadal dose. In this study, three TLDs were used for each of the following sites: radiologist's eyes, thyroid, gonads with and without shielding apron, and hands. The average dose during carotid angiograms was 2.6, 4.1, 0.4, 4.7, and 7.1 mrads to the eyes, thyroid, gonads with and without .5 mm of lead shielding, and hands, respectively. Average dose during abdominal and peripheral vascular angiographic procedures was 5.2, 7.5, 1.2, 8.5, and 39.9 mrads to the eyes, thyroid, gonads with and without shielding, and hands, respectively. A literature review demonstrates a significant reduction in radiation dose to the angiographer after the advent of automated injectors. Our measured doses for carotid angiography are compatible with contemporary reported values. There was poor correlation with fluoroscopy time and measured dose to the angiographer

  1. Analysis of uncertainties in the measurements of absorbed dose to water in a secondary standard dosimetry laboratory (SSDL) 60Cobalt

    International Nuclear Information System (INIS)

    Silva, Cosme Norival Mello da; Rosado, Paulo Henrique Goncalves

    2011-01-01

    The National Metrology Laboratory of Ionizing Radiation (LNMRI) is the laboratory designated by INMETRO in the field of Metrology of ionizing radiation and is a Secondary Standard Dosimetry Laboratory (SSDL). One of its guidelines is to maintain and disseminate LNMRI absorbed dose in water used as a national standard dosimetry in radiotherapy. For this pattern is metrologically acceptable accuracy and uncertainties should be assessed over time. The objective of this study is to analyze the uncertainties involved in determining the absorbed dose rate in water and standard uncertainty of absorbed dose calibration in water from a clinical dosimeter. The largest sources of uncertainty in determining the rate of absorbed dose in water are due to: calibration coefficient of the calibration certificate supplied by the BIPM, electrometer calibration, camber stability over time, variation of pressure and humidity, strong dependence and non-uniformity of the field. The expanded uncertainty is 0.94% for k = 2. For the calibration standard uncertainty of absorbed dose in water of a dosimeter in a clinical a major source of uncertainty is due to the absorbed dose rate in water (0.94%). The value of expanded uncertainty of calibrating a clinical dosimeter is 1.2% for k = 2. (author)

  2. Absorbed dose determination in photon fields using the tandem method

    International Nuclear Information System (INIS)

    Marques Pachas, J.F.

    1999-01-01

    The purpose of this work is to develop an alternative method to determine the absorbed dose and effective energy of photons with unknown spectral distributions. It includes a 'tandem' system that consists of two thermoluminescent dosemeters with different energetic dependence. LiF: Mg, Ti, CaF 2 : Dy thermoluminescent dosemeters and a Harshaw 3500 reading system are employed. Dosemeters are characterized with 90 Sr- 90 Y, calibrated with the energy of 60 Co and irradiated with seven different qualities of x-ray beams, suggested by ANSI No. 13 and ISO 4037. The answers of each type of dosemeter are adjusted to a function that depends on the effective energy of photons. The adjustment is carried out by means of the Rosenbrock minimization algorithm. The mathematical model used for this function includes five parameters and has a gauss and a straight line. Results show that the analytical functions reproduce the experimental data of the answers, with a margin of error of less than 5%. The reason of the answers of the CaF 2 : Dy and LiF: Mg, Ti, according to the energy of the radiation, allows us to establish the effective energy of photons and the absorbed dose, with a margin of error of less than 10% and 20% respectively

  3. Editor's choice--Use of disposable radiation-absorbing surgical drapes results in significant dose reduction during EVAR procedures.

    Science.gov (United States)

    Kloeze, C; Klompenhouwer, E G; Brands, P J M; van Sambeek, M R H M; Cuypers, P W M; Teijink, J A W

    2014-03-01

    Because of the increasing number of interventional endovascular procedures with fluoroscopy and the corresponding high annual dose for interventionalists, additional dose-protecting measures are desirable. The purpose of this study was to evaluate the effect of disposable radiation-absorbing surgical drapes in reducing scatter radiation exposure for interventionalists and supporting staff during an endovascular aneurysm repair (EVAR) procedure. This was a randomized control trial in which 36 EVAR procedures were randomized between execution with and without disposable radiation-absorbing surgical drapes (Radpad: Worldwide Innovations & Technologies, Inc., Kansas City, US, type 5511A). Dosimetric measurements were performed on the interventionalist (hand and chest) and theatre nurse (chest) with and without the use of the drapes to obtain the dose reduction and effect on the annual dose caused by the drapes. Use of disposable radiation-absorbing surgical drapes resulted in dose reductions of 49%, 55%, and 48%, respectively, measured on the hand and chest of the interventionalist and the chest of the theatre nurse. The use of disposable radiation-absorbing surgical drapes significantly reduces scatter radiation exposure for both the interventionalist and the supporting staff during EVAR procedures. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Radiation absorbed dose and expected risk in head and neck tissues after thyroid radioiodine therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hamed, A [National Center for Nuclear and Radiation Control, AEA., Cairo (Egypt); Farag, H I [National Cancer instiute, Cairo University, Cairo (Egypt); Saleh, A [Al-hussien Hospital, Al-Azhar University, Cairo (Egypt)

    1997-12-31

    Measurement of absorbed dose in head and neck phantom after applying I-131 therapeutic dose for the treatment of thyroid malignancies was conducted. The measurement were carried out at several sites of phantom using TL dosimeters. The absorbed doses were also measured on the skin of four patients during their administration of I-131 therapeutic doses 1.332 GBq (36 mci) I-131. The measurements were taken over 69 hours exposure at different sites of phantom. The same measurements were carried out on the four patients. At five sites of the patients head and neck, the absorbed dose were measured and compared with that measured on the phantom. The values measured are discussed in the light of the published individual absorbed doses in the organs by ICRP tables. High absorbed doses were absorbed in the different sites of the head and neck during the I-131 therapy (0.14-9.68 mGy/mCi). 3 figs., 2 tabs.

  5. Concentration activities of natural radionuclides in three fish species in Brazilian coast and their contributions to the absorbed doses

    International Nuclear Information System (INIS)

    Pereira, Wagner de S.; Py Junior, Delcy de A.; Kelecom, Alphonse

    2009-01-01

    Activity concentrations of U-238, Ra-226, Pb-210, Th-232 e Ra-228 were analysed in three fish species at the Brasilian Coast. The fish 'Cubera snapper' (Lutjanus cyanopterus, Cuvier, 1828), in the region of Ceara and 'Whitemouth croaker' (Micropogonias furnieri, Desmarest, 1823) and 'Lebranche mullet' (Mugil liza, Valenciennes, 1836) in the region of Rio de Janeiro. These concentrations were transformed in absorbed dose rate using a dose conversion factor in unit of gray per year (μGy y -1 ), per becquerel per kilogram (Bq kg -1 ). Only the absorbed dose due to intake of radionuclides was examined, and the contributions due to radionuclides present in water and sediment were disregarded. The radionuclides were considered to be uniformly distributed in the fish body. The limit of the dose rate used, proposed by the Department of Energy of the USA, is equal to 3.65 10 03 mGy y -1 . The average dose rate due to the studied radionuclides is equal to 6.09 10 00 μGy y -1 , a value minor than 0.1% than the limits indicated by DOE, and quite similar to that found in the literature for 'benthic' fish. The most important radionuclides were the alpha emitters Ra-226 having 61 % of absorbed dose rate. U-238 and Th-232, each contributes with approximately 20 % of the absorbed dose rate. These three radionuclides are responsible for almost 100% of the dose rate received by the studied organisms. The beta emitters Ra-228 and Pb-210 account for approximately 1 % of the absorbed dose rate. (author)

  6. Renal function affects absorbed dose to the kidneys and haematological toxicity during {sup 177}Lu-DOTATATE treatment

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Johanna; Berg, Gertrud [Sahlgrenska University Hospital, Department of Oncology, Goeteborg (Sweden); Waengberg, Bo [Sahlgrenska University Hospital, Department of Surgery, Goeteborg (Sweden); Larsson, Maria [University of Gothenburg, Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy, Goeteborg (Sweden); Forssell-Aronsson, Eva; Bernhardt, Peter [University of Gothenburg, Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy, Goeteborg (Sweden); Sahlgrenska University Hospital, Department of Medical Physics and Medical Bioengineering, Goeteborg (Sweden)

    2015-05-01

    Peptide receptor radionuclide therapy (PRRT) has become an important treatment option in the management of advanced neuroendocrine tumours. Long-lasting responses are reported for a majority of treated patients, with good tolerability and a favourable impact on quality of life. The treatment is usually limited by the cumulative absorbed dose to the kidneys, where the radiopharmaceutical is reabsorbed and retained, or by evident haematological toxicity. The aim of this study was to evaluate how renal function affects (1) absorbed dose to the kidneys, and (2) the development of haematological toxicity during PRRT treatment. The study included 51 patients with an advanced neuroendocrine tumour who received {sup 177}Lu-DOTATATE treatment during 2006 - 2011 at Sahlgrenska University Hospital in Gothenburg. An average activity of 7.5 GBq (3.5 - 8.2 GBq) was given at intervals of 6 - 8 weeks on one to five occasions. Patient baseline characteristics according to renal and bone marrow function, tumour burden and medical history including prior treatment were recorded. Renal and bone marrow function were then monitored during treatment. Renal dosimetry was performed according to the conjugate view method, and the residence time for the radiopharmaceutical in the whole body was calculated. A significant correlation between inferior renal function before treatment and higher received renal absorbed dose per administered activity was found (p < 0.01). Patients with inferior renal function also experienced a higher grade of haematological toxicity during treatment (p = 0.01). The residence time of {sup 177}Lu in the whole body (range 0.89 - 3.0 days) was correlated with grade of haematological toxicity (p = 0.04) but not with renal absorbed dose (p = 0.53). Patients with inferior renal function were exposed to higher renal absorbed dose per administered activity and developed a higher grade of haematological toxicity during {sup 177}Lu-DOTATATE treatment. The study confirms the

  7. Electrical behavior research of silicon photo-cell used in online monitoring absorbed dose rate of γ-ray

    International Nuclear Information System (INIS)

    Yang Guixia; Li Xiaoyan; Fu Lan; Wu Wenhao; An You; Zeng Fansong

    2015-01-01

    The real-time online monitoring system for γ-ray absorbed dose rate was established to study the relationship between the photocurrent of semi-conductive silicon photo-cell BBZSGD-4 and γ-ray absorbed dose rate under the open circuit. The radioactive experiments in "6"0Co γ radiation field show that photo-cell BBZSGD-4 has good response to "6"0Co γ-ray, and their relationship accords with the linear law. The photocurrent of photo-cell can be up to 1.26 μA when the absorbed dose rate is 94.54 Gy/min. The relationship between photocurrent and the absorbed dose accords with exponential law when absorbed dose rate is 50 Gy/min, and the attenuation of photocurrent is 1% when the absorbed dose is 5445.8 Gy. Thus photo-cell BBZSGD-4 has the potential to be a real-time detector to detect low absorbed dose rate in "6"0Co γ radiation field. (authors)

  8. Absorbed dose measurement by the MIRD system in the 131-I treated Thyroid Cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Woon; Lim, Sang Mu; Kim, Chang Hui; Kim, Ki Sub; Cho, Jong Sio; Jeong, Jin Sung; Park, Heung Kyu; Kwon, Oh Jin [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1995-12-01

    Medical Internal Radiation Dose(MIRD) schema was developed for calculating the absorbed dose from the administrated radiopharmaceuticals. With the biological distribution data and physical properties of the radionuclide, we can estimated the absorbed dose by the MIRD schema. For the thyroid cancer patients received high dose 131-I therapy, the absorbed dose to the bone marrow is limiting factor to the administered dose and the duration of admission is determined by the retained activity in the whole body. To the monitoring of whole body radioactivity, we used Eberline Smart 200 system using ionization chamber as a detector. With the time activity (Author).

  9. Measurement of absorbed dose with a bone-equivalent extrapolation chamber

    International Nuclear Information System (INIS)

    DeBlois, Francois; Abdel-Rahman, Wamied; Seuntjens, Jan P.; Podgorsak, Ervin B.

    2002-01-01

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water trade mark sign and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to ∼2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water trade mark sign PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams

  10. Evaluation of the absorbed dose in odontological computerized tomography

    International Nuclear Information System (INIS)

    Legnani, Adriano; Schelin, Hugo R.; Rocha, Anna Silvia P.S. da; Khoury, Helen J.

    2011-01-01

    This paper evaluated the absorbed dose at the surface entry known as 'cone beam computed tomography' (CBCT) in odontological computerized tomography. Examination were simulated with CBCT for measurements of dose. A phantom were filled with water, becoming scatter object of radiation. Thermoluminescent dosemeters were positioned on points correspondent to eyes and salivary glands

  11. Methodic of the gamma-rays absorbed dose measurements on tooth enamel

    International Nuclear Information System (INIS)

    Linev, S.V.; Muravskij, V.A.; Mashevskij, A.A.; Ugolev, I.I.

    1997-01-01

    The analysis of the metrological aspects of the tooth enamel ESR dosimetry has been done. The sample preparation and measurement methods have been elaborated. The methods have passed metrological certification. The methods include tabletting of the mixture of tooth enamel powder and MnO paramagnetic centres concentration additional standard, two loops of additional irradiation of samples by 1 Gy dose and ESR-spectra measurements, calculation of absorbed dose by maximum likelihood algorithm. The algorithm of dose calculation uses enamel spectrum model with axial anisotropic spin-Hamiltonian based on 126 spectra of enamel samples. The algorithm takes into account spectra of the empty cavity, the tube for a sample, the glue and MnO standard. Certificated ESR-station is based on the ESR-analyser PS-100X. ESR-station provides tooth enamel absorbed dose measurements from 0.05 to 0.25 Gy with error 35%, and from 0.25 to 3 Gy with error 20%. The set of tooth enamel absorbed dose standard samples has been created and certificated for the purposes of ESR-station testing and certification. The set consists of 12 tabletted samples of tooth enamel irradiated by doses from 0.05 to 4 Gy. (authors). 7 refs., 1 tab., 2 figs

  12. Sensitivity analysis of the influence of the medium energy and initial fluence FWHM of electron determining a Bremsstrahlung photon spectrum of a linear accelerator

    International Nuclear Information System (INIS)

    Juste, B.; Miro, R.; Verdu, G.; Diez, S.; Campayo, J. M.

    2012-01-01

    A correct dose calculation in patient under radiotherapy treatments requires and accurate description of the radiation source. The main goal of the present work is to study the effects of initial electron beam characteristics on Monte Carlo calculated absorbed dose distribution for a 6 MeV linac photon beam. To that, we propose a methodology to determine the initial electron fluence before hitting the accelerator target for an Elektra Precisa medical linear accelerator. The method used for the electron radiation source description is based on a Software for Uncertainty and Sensitivity Analysis (SUSA) and Monte Carlo simulations using the MCNP5 transport code. This electron spectrum has been validated by means of comparison of its resulting depth dose curve in a water cube with experimental data being the mean difference below the 1%. (Author)

  13. Measuring the absorbed dose in critical organs during low rate dose brachytherapy with 137 Cs using thermoluminescent dosemeters

    International Nuclear Information System (INIS)

    Torres, A.; Gonzalez, P.R.; Furetta, C.; Azorin, J.; Andres, U.; Mendez, G.

    2003-01-01

    Intracavitary Brachytherapy is one of the most used methods for the treatment of the cervical-uterine cancer. This treatment consists in the insertion of low rate dose 137 Cs sources into the patient. The most used system for the treatment dose planning is that of Manchester. This planning is based on sources, which are considered fixed during the treatment. However, the experience has shown that, during the treatment, the sources could be displaced from its initial position, changing the dose from that previously prescribed. For this reason, it is necessary to make measurements of the absorbed dose to the surrounding organs (mainly bladder and rectum). This paper presents the results of measuring the absorbed dose using home-made LiF: Mg, Cu, P + Ptfe thermoluminescent dosimeters (TLD). Measurements were carried out in-vivo during 20 minutes at the beginning and at the end of the treatments. Results showed that the absorbed dose to the critical organs vary significantly due to the movement of the patient during the treatment. (Author)

  14. A robust method for determining the absorbed dose to water in a phantom for low-energy photon radiation

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T, E-mail: thorsten.schneider@ptb.de [Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig (Germany)

    2011-06-07

    The application of more and more low-energy photon radiation in brachytherapy-either in the form of low-dose-rate radioactive seeds such as Pd-103 or I-125 or in the form of miniature x-ray tubes-has induced greater interest in determining the absorbed dose to water in water in this energy range. As it seems to be hardly feasible to measure the absorbed dose with calorimetric methods in this low energy range, ionometric methods are the preferred choice. However, the determination of the absorbed dose to water in water by ionometric methods is difficult in this energy range. With decreasing energy, the relative uncertainty of the photon cross sections increases and as the mass energy transfer coefficients show a steep gradient, the spectra of the radiation field must be known precisely. In this work two ionometric methods to determine the absorbed dose to water are evaluated with respect to their sensitivity to the uncertainties of the spectra and of the atomic database. The first is the measurement of the air kerma free in air and the application of an MC-based conversion factor to the absorbed dose to water. The second is the determination of the absorbed dose to water by means of an extrapolation chamber as an integral part of a phantom. In the complementing MC-calculations, two assortments of spectra each of which is based on a separate unfolding procedure were used as well as two kinds of databases: the standard PEGS and the recently implemented NIST database of EGSnrc. Experimental results were obtained by using a parallel-plate graphite extrapolation chamber and a free-air chamber. In the case when the water kerma in a phantom is determined from the measurements of air kerma free in air, differences in the order of 10% were found, according to which the database or the kind of spectrum is used. In contrast to this, for the second method, the differences found were about 0.5%.

  15. Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method

    International Nuclear Information System (INIS)

    Norris, Edward T.; Liu, Xin; Hsieh, Jiang

    2015-01-01

    . Conclusions: The simulation results showed that the deterministic method can be effectively used to estimate the absorbed dose in a CTDI phantom. The accuracy of the discrete ordinates method was close to that of a Monte Carlo simulation, and the primary benefit of the discrete ordinates method lies in its rapid computation speed. It is expected that further optimization of this method in routine clinical CT dose estimation will improve its accuracy and speed

  16. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    Science.gov (United States)

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  17. Estimate of absorbed dose received by individuals irradiated with neutrons

    International Nuclear Information System (INIS)

    Fonseca, E.S. da; Mauricio, C.L.P.

    1995-01-01

    An innovating methodology is proposed to estimate the absorbed dose received by individuals irradiated with neutrons in an accident, even in the case that the victim is not using any kind of neutron dosemeter. The method combines direct measurements of 24 Na and 32 P activated in the human body. The calculation method was developed using data taken from previously published papers and experimental measurements. Other irradiations results in different neutron spectra prove the validity of the methodology here proposed. Using a whole body counter to measure 24 Na activity, it is possible to evaluate neutron absorbed doses in the order of 140 μGy of very soft (thermal) spectra. For fast neutron fields, the lower limit for neutron dose detection increases, but the present method continues to be very useful in accidents, with higher neutron doses. (author). 5 refs., 1 fig., 4 tabs

  18. Monte Carlo estimation of the absorbed dose in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Woo; Youn, Han Bean; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    The purpose of this study is to devise an algorithm calculating absorbed dose distributions of patients based on Monte Carlo (MC) methods, and which includes the dose estimations due to primary and secondary (scattered) x-ray photons. Assessment of patient dose in computed tomography (CT) at the population level has become a subject of public attention and concern, and ultimate CT quality assurance and dose optimization have the goal of reducing radiation-induced cancer risks in the examined population. However, the conventional CT dose index (CTDI) concept is not a surrogate of risk but it has rather been designed to measure an average central dose. In addition, the CTDI or the dose-length product has showed troubles for helical CT with a wider beam collimation. Simple algorithms to estimate a patient specific CT dose based on the MCNP output data have been introduced. For numerical chest and head phantoms, the spatial dose distributions were calculated. The results were reasonable. The estimated dose distribution map can be readily converted into the effective dose. The important list for further studies includes the validation of the models with the experimental measurements and the acceleration of algorithms.

  19. Quantification of micronuclei in blood lymphocytes of patients exposed to gamma radiation for dose absorbed assessment

    International Nuclear Information System (INIS)

    Barbosa, Isvania Maria Serafim da Silva

    2003-02-01

    Dose assessment in an important step to evaluate biological effects as a result of individual exposure to ionizing radiation. The use of cytogenetic dosimetry based on the quantification of micronuclei in lymphocytes is very important to complement physical dosimetry, since the measurement of absorbed dose cannot be always performed. In this research, the quantification of micronuclei was carried out in order to evaluate absorbed dose as a result of radiotherapy with 60 Co, using peripheral blood samples from 5 patients with cervical uterine cancer. For this purpose, an aliquot of whole blood from the individual patients was added in culture medium RPMI 1640 supplemented with fetal calf serum and phytohaemagglutinin. The culture was incubated for 44 hours. Henceforth, cytochalasin B was added to block the dividing lymphocytes in cytokinesis. The culture was returned to the incubator for further of 28 hours. Thus, cells were harvested, processed and analyzed. Values obtained considering micronuclei frequency after pelvis irradiation with absorption of 0,08 Gy and 1,8 Gy were, respectively, 0,0021 and 0,052. These results are in agreement with some recent researches that provided some standard values related to micronuclei frequency induced by gamma radiation exposure in different exposed areas for the human body. The results presented in this report emphasizes biological dosimetry as an important tool for dose assessment of either total or partial-body exposure to ionizing radiation, mainly in retrospective dose investigation. (author)

  20. Emission properties of thermoluminescence from natural quartz - blue and red TL response to absorbed dose

    International Nuclear Information System (INIS)

    Hashimoto, T.; Yokosaka, K.; Habuki, H.

    1987-01-01

    The TL spectrometry of natural quartz exposed to a gamma radiation dose of 8.8 kGy proved that the red TL, mainly from volcanically originated quartz, has a broad emission band with a peak around 620 nm, while the blue TL from plutonically originated quartz also has a broad emission band giving a peak around 470 nm. These typical red or blue intrinsic colours were also confirmed on the thermoluminescence colour images (TLCI). Exceptionally, a pegmatite quartz changed its TLCI colour from red to blue when the absorbed dose was increased. By using colour filter assemblies, all these quartz samples were shown to emit mainly blue and red TLs, which have distinctly different TL responses to the absorbed dose; the blue invariably showed a supralinearity relation between 1 and 10 kGy dose. For the purpose of dating, the use of red TL, is preferable. The red TL component is related to the impurity Eu content in quartz minerals. (author)

  1. Characterization of saturation of CR-39 detector at high alpha-particle fluence

    Directory of Open Access Journals (Sweden)

    M. El Ghazaly

    2018-04-01

    Full Text Available The occurrence of saturation in the CR-39 detector reduces and limits its detection dynamic range; nevertheless, this range could be extended using spectroscopic techniques and by measuring the net bulk rate of the saturated CR-39 detector surface. CR-39 detectors were irradiated by 1.5 MeV high alpha-particle fluence varying from 0.06 × 108 to 7.36 × 108 alphas/cm2 from Am-241 source; thereafter, they were etched in a 6.25N NaOH solution at a temperature of 70°C for different durations. Net bulk etch rate measurement of the 1.5 MeV alpha-irradiated CR-39 detector surface revealed that rate increases with increasing etching time and reaches its maximum value at the end of the alpha-particle range. It is also correlated with the alpha-particle fluence. The measurements of UV–Visible (UV–Vis absorbance at 500 and 600 nm reveal that the absorbance is linearly correlated with the fluence of alpha particles at the etching times of 2 and 4 hour. For extended etching times of 6, 10, and 14.5 hour, the absorbance is saturated for fluence values of 4.05 × 108, 5.30 × 108, and 7.36 × 108 alphas/cm2. These new methods pave the way to extend the dynamic range of polymer-based solid state nuclear track detectors (SSNTDs in measurement of high fluence of heavy ions as well as in radiation dosimetry. Keywords: Alpha Particle, Bulk Etch Rate, CR-39 Detector, Saturated Regime, UV–Vis Spectroscopy

  2. Measurements of X ray absorbed doses to dental patients in two dental X ray units in Nigeria

    International Nuclear Information System (INIS)

    Ogundare, F.O.; Oni, O.M.; Balogun, F.A.

    2002-01-01

    Measurements of absorbed doses from radiographic examinations to various anatomical sites in the head and neck of patients with an average age of 45 years using intra-oral dental radiography have been carried out. LiF (TLD-100) dosemeters were used for the measurements of the absorbed dose. The measured absorbed doses to the various anatomical sites in the two units are reported, discussed and compared with results from the literature. Quality control measurements were also performed using a Victoreen quality control test device on the X ray units. The tube voltage accuracies for the two units were found to be within acceptable limits (less than ±10%). On the other hand the exposure time accuracies for these units have large deviations (>20%). These results and those that have been reported in the literature may be an indication that high patient doses are common in most dental X ray centres and countries. As a result of this, regular compliance and performance checks of dental diagnostic X ray equipment are essential in order to ensure proper performance and to minimise unnecessary patient and operator doses. (author)

  3. Radiation absorbed doses at radiographic examination of third molars

    International Nuclear Information System (INIS)

    Rehnmark-Larsson, S.; Stenstroem, B.; Julin, P.; Richter, S.; Huddinge University Hospital

    1981-01-01

    The radiation absorbed doses to critical organs, i.e. the thyroid and salivary glands and the gonadal region, were measured at radiographic examination of third molars. A tissue equivalent phantom was used together with ionization chamber detectors and TLDs. The greatest thyroid dose, 35 μGy, came from a mandibular disto-oblique projection with the circular tube collimator and Ultra-Speed film. The doses in different parts of the parotid gland from the disto-oblique mandibular projection with Ultra-Speed film ranged between 2.65 and 0.052 mGy. the corresponding doses in the submandibular gland were 1.74 mGy beneath the mandible and 0.458 mGy in the fovea. A rectangular tube collimator reduced the doses by approximately 50 %. The Ekta-Speed film requirted approximately 40 % lower exposure than the Ultra-Speed film. A horizontal radiation shield reduced the thyroid doses by between 12 and 46 % and the gonadal doses by between 50 and 95 %. The reduction effect from the shield was relatively greater when using the larger aperture of the tube collimator. Combinations of leaded aprons and soft leaded collars reduced the thyroid doses between 15 and 42 % and the gonadal doses by two orders of magnitude. (Authors)

  4. Development of UV absorbing PET through Electron Irradiation

    International Nuclear Information System (INIS)

    Kim, Jung Woo; Lee, Na Eun; Lim, Hyung San; Park, Yang Jeong; Cho, Sung Oh

    2017-01-01

    Experiment to increase UV absorbance through electron beam irradiation on PET was performed. Moreover, surface hardness and roughness of each sample were observed to find the key factor increasing UV absorbance. PET sheets were irradiated with an electron beam at various fluences. The irradiated samples, as well as pristine sample, were subjected to UV-visible spectral study(UV-Vis), pencil hardness test, and scanning electron microscopy(SEM) experiment. In this study, PET samples irradiated at several conditions were analyzed through various measurements. UV absorbance-another meaning of transmittance in this study- of irradiated PET sample increased compared with pristine sample as fluence was increased in UV-Visible spectroscopy experiment.

  5. Pain and mean absorbed dose to the pubic bone after radiotherapy among gynecological cancer survivors.

    Science.gov (United States)

    Waldenström, Ann-Charlotte; Olsson, Caroline; Wilderäng, Ulrica; Dunberger, Gail; Lind, Helena; al-Abany, Massoud; Palm, Åsa; Avall-Lundqvist, Elisabeth; Johansson, Karl-Axel; Steineck, Gunnar

    2011-07-15

    To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. We analyzed data from 650 survivors (participation rate 79%) with median follow-up of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses beam doses ≥ 52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Evaluation of the absorbed doses in conditions of external and internal contamination with radionuclides

    International Nuclear Information System (INIS)

    Milivojevic, K.; Stojanovic, D.; Markovic, P.

    1981-01-01

    In experimental conditions of contamination with radionuclides of the skin and skin injuries, an evaluation of the degree of local irradiation in decontamined region and doses absorbed in organs of selective accumulating was carried out by use of mathematical models and tissue-equivalent thermoluminescent dosemeters. The evaluation of the absorbed doses based on conception, that in adequate analyses of decontamination effect, as a most efficient medico-prophilactic measure from local and total irradiation, should be taken into account the total body burden of the penetrated radionuclide, selective accumulating in critical organs or tissues, as well as the residual radioactivity in decontaminated region. (author)

  7. Magnetic collimation and metal foil filtering for electron range and fluence modulation

    International Nuclear Information System (INIS)

    Phaisangittisakul, N.; D'Souza, W.D.; Ma Lijun

    2004-01-01

    We investigated the use of magnetically collimated electron beams together with metal filters for electron fluence and range modulation. A longitudinal magnetic field collimation method was developed to reduce skin dose and to improve the electron beam penumbra. Thin metal foils were used to adjust the energies of magnetically collimated electrons. The effects for different types of foils such as Al, Be, Cu, Pb, and Ti were studied using Monte Carlo calculations. An empirical pencil beam dose calculation model was developed to calculate electron dose distributions under magnetic collimation and foil modulation. An optimization method was developed to produce conformal dose distributions for simulated targets such as a horseshoe-shaped target. Our results show that it is possible to produce an electron depth dose enhancement peak using similar techniques of producing a spread-out Bragg peak. In conclusion, our study demonstrates new aspects of using magnetic collimation and foil filtration for producing fluence and range modulated electron dose distributions

  8. Theoretical estimation of absorbed dose to organs in radioimmunotherapy using radionuclides with multiple unstable daughters

    International Nuclear Information System (INIS)

    Hamacher, K.A.; Sgouros, G.

    2001-01-01

    The toxicity and clinical utility of long-lived alpha emitters such as Ac-225 and Ra-223 will depend upon the fate of alpha-particle emitting unstable intermediates generated after decay of the conjugated parent. For example, decay of Ac-225 to a stable element yields four alpha particles and seven radionuclides. Each of these progeny has its own free-state biodistribution and characteristic half-life. Therefore, their inclusion for a more accurate prediction of absorbed dose and potential toxicity requires a formalism that takes these factors into consideration as well. To facilitate the incorporation of such intermediates into the dose calculation, a previously developed methodology (model 1) has been extended. Two new models (models 2 and 3) for allocation of daughter products are introduced and are compared with the previously developed model. Model 1 restricts the transport to a function that yields either the place of origin or the place(s) of biodistribution depending on the half-life of the parent radionuclide. Model 2 includes the transient time within the bloodstream and model 3 incorporates additional binding at or within the tumor. This means that model 2 also allows for radionuclide decay and further daughter production while moving from one location to the next and that model 3 relaxes the constraint that the residence time within the tumor is solely based on the half-life of the parent. The models are used to estimate normal organ absorbed doses for the following parent radionuclides: Ac-225, Pb-212, At-211, Ra-223, and Bi-213. Model simulations are for a 0.1 g rapidly accessible tumor and a 10 g solid tumor. Additionally, the effects of varying radiolabled carrier molecule purity and amount of carrier molecules, as well as tumor cell antigen saturation are examined. The results indicate that there is a distinct advantage in using parent radionuclides such as Ac-225 or Ra-223, each having a half-life of more than 10 days and yielding four alpha

  9. Development of fluorescent, oscillometric and photometric methods to determine absorbed dose in irradiated fruits and nuts

    International Nuclear Information System (INIS)

    Kovacs, A.; Foeldiak, G.; Hargittai, P.; Miller, S.D.

    2001-01-01

    To ensure suitable quality control at food irradiation technologies and for quarantine authorities, simple routine dosimetry methods are needed for absorbed dose control. Taking into account the requirements at quarantine locations these methods would require nondestructive analysis for repeated measurements. Different dosimetry systems with different analytical evaluation methods have been tested and/or developed for absorbed dose measurements in the dose range of 0.1-10 kGy. In order to use the well accepted ethanolmonochlorobenzene dosimeter solution and the recently developed aqueous alanine solution in small volume sealed vials, a new portable, digital, and programmable oscillometric reader was developed. To make use of the availability of the very sensitive fluorimetric evaluation method, liquid and solid inorganic and organic dosimetry systems were developed for dose control using a new routine, portable, and computer controlled fluorimeter. Absorption or transmission photometric methods were also applied for dose measurements of solid or liquid phase dosimeter systems containing radiochromic dye agents, which change colour upon irradiation. (author)

  10. Electron fluence correction factors for various materials in clinical electron beams

    International Nuclear Information System (INIS)

    Olivares, M.; Blois, F. de; Podgorsak, E.B.; Seuntjens, J.P.

    2001-01-01

    Relative to solid water, electron fluence correction factors at the depth of dose maximum in bone, lung, aluminum, and copper for nominal electron beam energies of 9 MeV and 15 MeV of the Clinac 18 accelerator have been determined experimentally and by Monte Carlo calculation. Thermoluminescent dosimeters were used to measure depth doses in these materials. The measured relative dose at d max in the various materials versus that of solid water, when irradiated with the same number of monitor units, has been used to calculate the ratio of electron fluence for the various materials to that of solid water. The beams of the Clinac 18 were fully characterized using the EGS4/BEAM system. EGSnrc with the relativistic spin option turned on was used to optimize the primary electron energy at the exit window, and to calculate depth doses in the five phantom materials using the optimized phase-space data. Normalizing all depth doses to the dose maximum in solid water stopping power ratio corrected, measured depth doses and calculated depth doses differ by less than ±1% at the depth of dose maximum and by less than 4% elsewhere. Monte Carlo calculated ratios of doses in each material to dose in LiF were used to convert the TLD measurements at the dose maximum into dose at the center of the TLD in the phantom material. Fluence perturbation correction factors for a LiF TLD at the depth of dose maximum deduced from these calculations amount to less than 1% for 0.15 mm thick TLDs in low Z materials and are between 1% and 3% for TLDs in Al and Cu phantoms. Electron fluence ratios of the studied materials relative to solid water vary between 0.83±0.01 and 1.55±0.02 for materials varying in density from 0.27 g/cm3 (lung) to 8.96 g/cm3 (Cu). The difference in electron fluence ratios derived from measurements and calculations ranges from -1.6% to +0.2% at 9 MeV and from -1.9% to +0.2% at 15 MeV and is not significant at the 1σ level. Excluding the data for Cu, electron fluence

  11. 3D calculation of absorbed dose for 131I-targeted radiotherapy: A Monte Carlo study

    International Nuclear Information System (INIS)

    Saeedzadeh, E.; Sarkar, S.; Abbaspour Tehrani-Fard, A.; Ay, M. R.; Khosravi, H. R.; Loudos, G.

    2008-01-01

    Various methods, such as those developed by the Medical Internal Radiation Dosimetry (MIRD) Committee of the Society of Nuclear Medicine or employing dose point kernels, have been applied to the radiation dosimetry of 131 I radionuclide therapy. However, studies have not shown a strong relationship between tumour absorbed dose and its overall therapeutic response, probably due in part to inaccuracies in activity and dose estimation. In the current study, the GATE Monte Carlo computer code was used to facilitate voxel-level radiation dosimetry for organ activities measured in an. 131 I-treated thyroid cancer patient. This approach allows incorporation of the size, shape and composition of organs (in the current study, in the Zubal anthropomorphic phantom) and intra-organ and intra-tumour inhomogeneities in the activity distributions. The total activities of the tumours and their heterogeneous distributions were measured from the SPECT images to calculate the dose maps. For investigating the effect of activity distribution on dose distribution, a hypothetical homogeneous distribution of the same total activity was considered in the tumours. It was observed that the tumour mean absorbed dose rates per unit cumulated activity were 0.65 E-5 and 0.61 E-5 mGY MBq -1 s -1 for the uniform and non-uniform distributions in the tumour, respectively, which do not differ considerably. However, the dose-volume histograms (DVH) show that the tumour non-uniform activity distribution decreases the absorbed dose to portions of the tumour volume. In such a case, it can be misleading to quote the mean or maximum absorbed dose, because overall response is likely limited by the tumour volume that receives low (i.e. non-cytocidal) doses. Three-dimensional radiation dosimetry, and calculation of tumour DVHs, may lead to the derivation of clinically reliable dose-response relationships and therefore may ultimately improve treatment planning as well as response assessment for radionuclide

  12. Real-time measurement and monitoring of absorbed dose for electron beams

    Science.gov (United States)

    Korenev, Sergey; Korenev, Ivan; Rumega, Stanislav; Grossman, Leon

    2004-09-01

    The real-time method and system for measurement and monitoring of absorbed dose for industrial and research electron accelerators is considered in the report. The system was created on the basis of beam parameters method. The main concept of this method consists in the measurement of dissipated kinetic energy of electrons in the irradiated product, determination of number of electrons and mass of irradiated product in the same cell by following calculation of absorbed dose in the cell. The manual and automation systems for dose measurements are described. The systems are acceptable for all types of electron accelerators.

  13. Real-time measurement and monitoring of absorbed dose for electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, Sergey E-mail: sergey_korenev@steris.com; Korenev, Ivan; Rumega, Stanislav; Grossman, Leon

    2004-10-01

    The real-time method and system for measurement and monitoring of absorbed dose for industrial and research electron accelerators is considered in the report. The system was created on the basis of beam parameters method. The main concept of this method consists in the measurement of dissipated kinetic energy of electrons in the irradiated product, determination of number of electrons and mass of irradiated product in the same cell by following calculation of absorbed dose in the cell. The manual and automation systems for dose measurements are described. The systems are acceptable for all types of electron accelerators.

  14. Real-time measurement and monitoring of absorbed dose for electron beams

    International Nuclear Information System (INIS)

    Korenev, Sergey; Korenev, Ivan; Rumega, Stanislav; Grossman, Leon

    2004-01-01

    The real-time method and system for measurement and monitoring of absorbed dose for industrial and research electron accelerators is considered in the report. The system was created on the basis of beam parameters method. The main concept of this method consists in the measurement of dissipated kinetic energy of electrons in the irradiated product, determination of number of electrons and mass of irradiated product in the same cell by following calculation of absorbed dose in the cell. The manual and automation systems for dose measurements are described. The systems are acceptable for all types of electron accelerators

  15. Determination of absorbed dose to water in a clinical carbon ion beam by means of fluorescent nuclear track detectors, ionization chambers, and water calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Osinga-Blaettermann, Julia-Maria

    2016-12-20

    Until now, dosimetry of carbon ions with ionization chambers has not reached the same level of accuracy as of high-energy photons. This is mainly caused by the threefold higher uncertainty of the k{sub Q,Q{sub 0}}-factor of ionization chambers, which is derived by calculations due to a lack of experimental data. The current thesis comprises two major aims with respect to the dosimetry of carbon ion beams: first, the investigation of the potential of fluorescent nuclear track detectors for fluence-based dosimetry and second, the experimental determination of the k{sub Q,Q{sub 0}}-factor. The direct comparison of fluence- and ionization-based measurements has shown a significant discrepancy of 4.5 %, which re-opened the discussion on the accuracy of calculated k{sub Q,Q{sub 0}}-factors. Therefore, absorbed dose to water measurements by means of water calorimetry have been performed allowing for the direct calibration of ionization chambers and thus for the experimental determination of k{sub Q,Q{sub 0}}. For the first time it could be shown that the experimental determination of k{sub Q,Q{sub 0}} for carbon ion beams is achievable with a standard measurement uncertainty of 0.8 %. This corresponds to a threefold reduction of the uncertainty compared to calculated values and therefore enables to significantly decrease the overall uncertainty related to ionization-based dosimetry of clinical carbon ion beams.

  16. Robotic stereotactic radioablation of breast tumors: Influence of beam size on the absorbed dose distributions

    International Nuclear Information System (INIS)

    Garnica-Garza, H.M.

    2016-01-01

    Robotic stereotactic radioablation (RSR) therapy for breast tumors has been shown to be an effective treatment strategy when applied concomitantly with chemotherapy, with the purpose of reducing the tumor volume thus making it more amenable for breast conserving surgery. In this paper we used Monte Carlo simulation within a realistic patient model to determine the influence that the variation in beam collimation radius has on the resultant absorbed dose distributions for this type of treatment. Separate optimized plans were obtained for treatments using 300 circular beams with radii of 0.5 cm, 0.75 cm, 1.0 cm and 1.5 cm. Cumulative dose volume histograms were obtained for the gross, clinical and planning target volumes as well as for eight organs and structures at risk. Target coverage improves as the collimator size is increased, at the expense of increasing the volume of healthy tissue receiving mid-level absorbed doses. Interestingly, it is found that the maximum dose imparted to the skin is highly dependent on collimator size, while the dosimetry of other structures, such as both the ipsilateral and contralateral lung tissue are basically unaffected by a change in beam size. - Highlights: • Stereotactic body radiation therapy of breast tumors is analyzed using Monte Carlo simulation. • The influence of beam collimation on the absorbed dose distributions is determined. • Large field sizes increase target dose uniformity and midlevel doses to healthy structures. • Skin dose is greatly affected by changes in beam collimation.

  17. Study on the quality assurance of diagnostic X-ray machines and assessment of the absorbed dose to patients

    Science.gov (United States)

    Hassan, G. M.; Rabie, N.; Mustafa, K. A.; Abdel-Khalik, S. S.

    2012-09-01

    Radiation exposure and image quality in X-ray diagnostic radiology provide a clear understanding of the relationship between the radiation dose delivered to a patient and image quality in optimizing medical diagnostic radiology. Because a certain amount of radiation is unavoidably delivered to patients, this should be as low as reasonably achievable. Several X-ray diagnostic machines were used at different medical diagnostic centers in Egypt for studying the beam quality and the dose delivered to the patient. This article studies the factors affecting the beam quality, such as the kilo-volt peak (kVp), exposure time (mSc), tube current (mAs) and the absorbed dose in (μGy) for different examinations. The maximum absorbed dose measured per mAs was 594±239 and 12.5±3.7 μGy for the abdomen and the chest, respectively, while the absorbed dose at the elbow was 18±6 μGy, which was the minimum dose recorded. The compound and expanded uncertainties accompanying these measurements were 4±0.35% and 8±0.7%, respectively. The measurements were done through quality control tests as acceptance procedures.

  18. The 1997 determination of the Australian standards of exposure and absorbed dose at 60Co

    International Nuclear Information System (INIS)

    Huntley, R.B.; Boas, J.F.; Van der Gaast, H.

    1998-05-01

    The arrangements for the maintenance of the Australian standards for 60 Co are described in detail. The primary standards are a graphite cavity chamber for exposure/air kerma and a graphite calorimeter for absorbed dose. These secondary standards are described and their responses in corresponding 90 Sr reference sources are reported. Accurate ratios between the Australian Radiation Laboratory (ARL) and Australian Nuclear Science and Technology (ANSTO) 90 Sr reference sources are derived for use in future calibrations. The value of 28.8 years for the half-life of 90 Sr is confirmed. The usefulness of 90 Sr reference source measurements in quality assurance is discussed. The charge sensitivity and linearity of the ANSTO electrometers are reported by two different methods and are compared with previous results. Calibration factors for all the secondary standard ionization chambers are given, in terms of exposure, air kerma and absorbed dose to water. Calibration factors are also given for most of the chambers in terms of absorbed dose to graphite. The methods of deriving the calibration factors are explained in detail, including all the corrections applied to both the primary and secondary standard measurements. Three alternative methods of deriving the absorbed dose to water calibration factors are compared. The reported calibration factors are compared with previous results. Changes in the Australian units of exposure, air kerma and absorbed dose to graphite and water are derived from changes in the corresponding calibration factors. The Australian units of exposure and air kerma have not changed significantly since 1990. The Australian unit of absorbed dose to graphite is now 1.1 % smaller than in 1993 and 1.3 % smaller than in 1990. The Australian unit of absorbed dose to water is now 1.4 % smaller than in 1993, but is only 0.9 % smaller than in 1990. Comparisons of the Australian standards of exposure/air kerma and absorbed dose with those of the Bureau

  19. Graphite calorimeter, the primary standard of absorbed dose at BNM-LNHB

    International Nuclear Information System (INIS)

    Daures, J.; Ostrowsky, A.; Chauvenet, B.

    2002-01-01

    The graphite calorimeter is the standard for absorbed dose to water at BNM-LNHB. The transfer from absorbed dose to graphite to absorbed dose to water is then performed by means of chemical dosimeters and ionisation chamber measurements. Therefore the quality of graphite calorimeter measurements is essential. The present graphite calorimeter is described. The characteristics of this calorimeter are pointed out. Special attention is given to the thermal feedback of the core, which is the main difference with the Domen-type calorimeter. The repeatability and reproducibility of the mean absorbed dose in the calorimeter core are presented in detail. As an example, individual measurements in the 20 MV photon beam from our Saturne 43 linac are given. The y-axis quantity is the mean absorbed dose in the core divided by the reference ionisation chamber charge. Both are normalised to the monitor ionisation chamber charge. The standard deviation (of the distribution itself) is 0.12 % for the first set of measurements performed in 1999. In 2002, for each different series, the standard deviation is 0.03%. The improvement on the 2002 standard deviation is mainly due to the change of the ionisation chamber used for the beam monitoring of the linac. Some benefit also comes from changes on the thermal control and measuring systems (nanovoltmeters, Wheatstone bridges, power supplies, determination of the measuring bridge sensitivity (V/Ω.) ). The maximum difference between the means of the three series is 0.08%. This difference is due to the variation of not only the calorimetric measurements but also of the reference ionisation chamber response, of the position of the assembly and of the monitoring of the beam. The stability of the linac (electron energy, photon beam shape) has to be very good too in order to obtain this global performance. The correction factors necessary to determine the absorbed dose to graphite at the reference point in an homogeneous phantom from the

  20. Visual indicator of absorbed radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Generalova, V V; Krasovitskii, B M; Vainshtok, B A; Gurskii, M N

    1968-10-15

    A visual indicator of the absorbed doses of ionizing radiation is proposed. The indicator has a polymer base with the addition of a dye. A distinctive feature of the indicator consists of the use of polystyrene as its polymer base with the addition of halogen-containing hydrocarbon and the light-proof dye. Such combination of the radiation-resistant polymer of polystyrene and the light-proof dyestuff makes the proposed indicator highly stable.

  1. Absorbed dose assessment in newborns during x-ray examinations

    Science.gov (United States)

    Taipe, Patricia K.; Berrocal, Mariella J.; Carita, Raúl F.

    2012-02-01

    Often a newborn presents breathing problems during the early days of life, i.e. bronchopneumonia, wich are caused in most of cases, by aspirating a mixture of meconium and amniotic fluid. In these cases, it is necessary to make use of a radiograph, requested by the physician to reach a diagnosis. This paper seeks to evaluate the absorbed doses in neonates undergoing a radiograph. For this reason we try to simulate the real conditions in a X-ray room from Lima hospitals. With this finality we perform a simulation made according a questionnaire related to technical data of X-ray equipment, distance between the source and the neonate, and its position to be irradiated. The information obtained has been used to determine the absorbed dose by infants, using the MCNP code. Finally, the results are compared with reference values of international health agencies.

  2. Mathematical phantoms for use in dose estimation of survivors in Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    Maruyama, Takashi

    1990-01-01

    The T65D (Tentative 1965 Dose) was recently revised on the basis of new scientific evidences which were available in accordance with the development of computer techniques and the accumulation of nuclear data. For the dose determinations of survivors in Hiroshima and Nagasaki, DS86 (Dosimetric System 1986) is a complete replacement of T65D for the Life Span Study (LSS) in RERF (Radiation Effects Research Foundation). In the DS86, depending on the input data for a survivor, various elements of several data bases are combined to provide the dosimetric variables requested by the user. The quantity finally desired for the LSS is absorbed dose in each organ. The calculation of quantities for converting incident fluence to absorbed dose in the target organ was carried out using Monte Carlo methods. For this calculation, mathematical phantoms were required. This paper describes the background data used for the construction of Japanese survivor phantoms and summarizes the mathematical phantoms employed in the DS86. (author)

  3. 90Y/90 Sr electron induced damages in an essential eucalyptus oil related to the absorbed dose

    International Nuclear Information System (INIS)

    Heredia Cardona, J.A.; Diaz Rizo, O.; Martinez Luzardo, F.; Quert, R.

    2007-01-01

    A good irradiation geometry was achieved in order to carry out the irradiation of an essential eucalyptus oil with a 90 Y/ 90 Sr electron source. The Monte Carlo simulation code MCNP-4C was employed to determine the absorbed doses in this particular experimental configuration. It also helped us to understand which electrons (from an energetic point of view) were responsible for the damages. In order to identify the induced damages, the irradiated samples were studied by mass spectrometry. The obtained results were related to the absorbed doses determined by the computational simulation

  4. X-ray and radioiodine dose to thyroid follicular cells

    International Nuclear Information System (INIS)

    Faw, R.E.

    1991-01-01

    Radiation doses to the epithelial cells of thyroid follicles have been calculated for internal exposure by radionuclides of iodine and by secondary radiations created as a result of interactions of externally administered x rays with iodine naturally occurring in the thyroid. Calculations were performed for the thyroids of subjects ranging from the newborn to the adult male. Results for internal radionuclides are reported as the dose rate to follicular-cell nuclei per unit specific activity of the radionuclide in the thyroid as a whole, i.e., as the specific ''S value'' as used in the MIRD method for internal dosimetry. Results for x rays are reported as the response function, i.e., the absorbed dose per unit fluence of primary x rays. Dose rates are subdivided into internal and external components, the former from radiations emitted within the colloid volume of any one follicle, and the latter from radiations emitted throughout the thyroid in follicles surrounding that one follicle. 37 refs., 5 figs., 3 tabs

  5. Supplemental computational phantoms to estimate out-of-field absorbed dose in photon radiotherapy

    Science.gov (United States)

    Gallagher, Kyle J.; Tannous, Jaad; Nabha, Racile; Feghali, Joelle Ann; Ayoub, Zeina; Jalbout, Wassim; Youssef, Bassem; Taddei, Phillip J.

    2018-01-01

    The purpose of this study was to develop a straightforward method of supplementing patient anatomy and estimating out-of-field absorbed dose for a cohort of pediatric radiotherapy patients with limited recorded anatomy. A cohort of nine children, aged 2-14 years, who received 3D conformal radiotherapy for low-grade localized brain tumors (LBTs), were randomly selected for this study. The extent of these patients’ computed tomography simulation image sets were cranial only. To approximate their missing anatomy, we supplemented the LBT patients’ image sets with computed tomography images of patients in a previous study with larger extents of matched sex, height, and mass and for whom contours of organs at risk for radiogenic cancer had already been delineated. Rigid fusion was performed between the LBT patients’ data and that of the supplemental computational phantoms using commercial software and in-house codes. In-field dose was calculated with a clinically commissioned treatment planning system, and out-of-field dose was estimated with a previously developed analytical model that was re-fit with parameters based on new measurements for intracranial radiotherapy. Mean doses greater than 1 Gy were found in the red bone marrow, remainder, thyroid, and skin of the patients in this study. Mean organ doses between 150 mGy and 1 Gy were observed in the breast tissue of the girls and lungs of all patients. Distant organs, i.e. prostate, bladder, uterus, and colon, received mean organ doses less than 150 mGy. The mean organ doses of the younger, smaller LBT patients (0-4 years old) were a factor of 2.4 greater than those of the older, larger patients (8-12 years old). Our findings demonstrated the feasibility of a straightforward method of applying supplemental computational phantoms and dose-calculation models to estimate absorbed dose for a set of children of various ages who received radiotherapy and for whom anatomies were largely missing in their original

  6. The Effects on Absorbed Dose Distribution in Intraoral X-ray Imaging When Using Tube Voltages of 60 and 70 kV for Bitewing Imaging

    Directory of Open Access Journals (Sweden)

    Kristina Hellén-Halme

    2013-10-01

    Full Text Available Objectives: Efforts are made in radiographic examinations to obtain the best image quality with the lowest possible absorbed dose to the patient. In dental radiography, the absorbed dose to patients is very low, but exposures are relatively frequent. It has been suggested that frequent low-dose exposures can pose a risk for development of future cancer. It has previously been reported that there was no significant difference in the diagnostic accuracy of approximal carious lesions in radiographs obtained using tube voltages of 60 and 70 kV. The aim of this study was, therefore, to evaluate the patient dose resulting from exposures at these tube voltages to obtain intraoral bitewing radiographs.Material and Methods: The absorbed dose distributions resulting from two bitewing exposures were measured at tube voltages of 60 and 70 kV using Gafchromic® film and an anatomical head phantom. The dose was measured in the occlusal plane, and ± 50 mm cranially and caudally to evaluate the amount of scattered radiation. The same entrance dose to the phantom was used. The absorbed dose was expressed as the ratio of the maximal doses, the mean doses and the integral doses at tube voltages of 70 and 60 kV.Results: The patient receives approximately 40 - 50% higher (mean and integral absorbed dose when a tube voltage of 70 kV is used.Conclusions: The results of this study clearly indicate that 60 kV should be used for dental intraoral radiographic examinations for approximal caries detection.

  7. Estimation of the absorbed dose in gamma irradiated food containing bone by electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Basfar, A.A.; Abdel Rehim, F.

    1997-01-01

    The use of electron spin resonance (ESR) spectroscopy to accurately evaluate the absorbed dose to radiationprocessed bones (and thus meats) is examined. The exposure of foodstuffs containing bone to a dose of ionizing radiation results in the formation of long lived free radicals which give rise to characteristics ESR signals. The yield of radicals was found to be proportional to absorbed dose. Additive re-irradiation of previously irradiated bone was used to estimate the absorbed dose in the irradiated chicken bone. Simple non-linear rational equation was found to fit to the data and yields good dose estimates for irradiated bone in the range of doses (1.0 - 5.0 kGy). Decay of the ESR signal intensity was monitored at different dose levels (2.0 and 7.0 kGy) up to 22 days. The absorbed dose in irradiated chicken (2.Om 3.0 and 6.0 kGy) was assessed at 2, 6 and 12 days after irradiation. Relatively good results were obtained when measurements were made within the following days (up to 12 days) after irradiation. The ability of the dose additive method to provide accurate dose assessments is tested here

  8. Quality control of diagnostic radiology to reduce absorbed dose of patients in Iran

    International Nuclear Information System (INIS)

    Aghahadi, Bahman.

    1996-01-01

    In order to reduce absorbed dose, to increase the image quality and to reduce the numbers of rejected films various quality control parameters were applied to X ray machines. These parameter are Kilo Volt peak, Milli Ampere, Exposure Time Focal Film Distance, Inherent Filters, Additional Filters Half Value Layer, Processor Condition, Cassettes. To evaluate and to apply these parameters in diagnostic radiological centers, ten hospitals were selected and a total number of 12 X ray machines were kept under quality control program. Considering different kinds of diagnostic radiology examination and to compare the dose before and after implementation of a quality control program, two kinds of examinations include in chest and abdomen examinations were considered. For each X ray machine, ten patients and for all selected centers, 120 patients were selected for chest examination and 120 patients for abdomen examinations; before and after implementation of quality control program, a total of 480 patients were selected randomly to be controlled. Base on different examinations carried out, it was concluded that both exposure conditions and general situations in radiological centers were not acceptable. The dosimetry results show that the average ski dose for chest and abdomen examinations were 0.28 m Gy and 4.23 Gy respectively. Before implementation of quality control step to reduce the surface skin dose, quality control parameters were applied and the exposure conditions were imposed. On average the absorbed doses for chest and abdomen examination were decreased to 79% and 61% respectively after the implementation of the program. From dose reduction point of view, the results of a part of this project which made by co-operation of International Atomic Energy Agency showed that Iran acquired the first grade for chest examination and second grade for abdomen examination. Base on the results obtained, the number of patients under chest and abdomen examination were 4041588 and

  9. Determination of the absorbed dose and dose-distribution in water for low- and medium-energetic photons

    International Nuclear Information System (INIS)

    Bultman, J.H.

    1990-05-01

    The methods to determine the absorbed dose to water for low and medium energy photons were studied. Large differences between the results of these methods exists. So, a research proposition has been made to explain these differences. The goal of this research will be the development of a method to determine the absorbed dose below approximately 400 keV with an ionization chamber calibrated at 60 Co gamma radiation. To explain the differences between the set of methods, some causes were proposed, like the influence of the ionisation chamber on the measurement in water. Also, some methods to determine the factors are proposed. (author). 29 refs

  10. SU-F-T-275: A Correlation Study On 3D Fluence-Based QA and 2D Dose Measurement-Based QA

    International Nuclear Information System (INIS)

    Liu, S; Mazur, T; Li, H; Green, O; Sun, B; Mutic, S; Yang, D

    2016-01-01

    Purpose: The aim of this paper was to demonstrate the feasibility and creditability of computing and verifying 3D fluencies to assure IMRT and VMAT treatment deliveries, by correlating the passing rates of the 3D fluence-based QA (P(ά)) to the passing rates of 2D dose measurementbased QA (P(Dm)). Methods: 3D volumetric primary fluencies are calculated by forward-projecting the beam apertures and modulated by beam MU values at all gantry angles. We first introduce simulated machine parameter errors (MU, MLC positions, jaw, gantry and collimator) to the plan. Using passing rates of voxel intensity differences (P(Ir)) and 3D gamma analysis (P(γ)), calculated 3D fluencies, calculated 3D delivered dose, and measured 2D planar dose in phantom from the original plan are then compared with those from corresponding plans with errors, respectively. The correlations of these three groups of resultant passing rates, i.e. 3D fluence-based QA (P(ά,Ir) and P(ά,γ)), calculated 3D dose (P(Dc,Ir) and P(Dc,γ)), and 2D dose measurement-based QA (P(Dm,Ir) and P(Dm,γ)), will be investigated. Results: 20 treatment plans with 5 different types of errors were tested. Spearman’s correlations were found between P(ά,Ir) and P(Dc,Ir), and also between P(ά,γ) and P(Dc,γ), with averaged p-value 0.037, 0.065, and averaged correlation coefficient ρ-value 0.942, 0.871 respectively. Using Matrixx QA for IMRT plans, Spearman’s correlations were also obtained between P(ά,Ir) and P(Dm,Ir) and also between P(ά,γ) and P(Dm,γ), with p-value being 0.048, 0.071 and ρ-value being 0.897, 0.779 respectively. Conclusion: The demonstrated correlations improve the creditability of using 3D fluence-based QA for assuring treatment deliveries for IMRT/VMAT plans. Together with advantages of high detection sensitivity and better visualization of machine parameter errors, this study further demonstrates the accuracy and feasibility of 3D fluence based-QA in pre-treatment QA and daily QA. Research

  11. Absorbed dose to man from the Se-75 labeled conjugated bile salt SeHCAT: concise communication

    International Nuclear Information System (INIS)

    Soundy, R.G.; Simpson, J.D.; Ross, H.M.; Merrick, M.V.

    1982-01-01

    The absorbed radiation dose that would result from the oral or intravenous administration of SeHCAT (23-[ 75 Se]selena-25-homotaurocholate) has been calculated using the MIRD tables and formulas and data from measurements of whole-body distribution and from long-term whole-body counting in rats, mice, and man. When SeHCAT is administered to normal subjects, the gallbladder is the critical organ, receiving 12 mrad (oral dose) or 22 mrad (i.v.) per microcurie. The whole-body dose is 1 mrad/μCi, whatever the route of administration. In severe hepatic failure the liver might receive 200 mrad/μCi. The activity likely to be used in routine clinical practice is 10 μCi. Where a whole-body counter is used, an activity of 1 μCi has proved adequate. Even at an administered activity of 25 μCi, the absorbed dose is small compared with established techniques of investigating the gastrointestinal tract

  12. Absorbed dose to man from the Se-75 labeled conjugated bile salt SeHCAT: concise communication

    International Nuclear Information System (INIS)

    Soundy, R.G.; Simpson, J.D.; Ross, H.M.; Merrick, M.V.

    1982-01-01

    The absorbed radiation dose that would result from the oral or intravenous administration of SeHCAT (23-[75Se]selena-25-homotaurocholate) has been calculated using the MIRD tables and formulas and data from measurements of whole-body distribution and from long-term whole-body counting in rats, mice, and man. When SeHCAT is administered to normal subjects, the gallbladder is the critical organ, receiving 12 mrad (oral dose) or 22 mrad (i.v.) per microcurie. The whole-body dose is 1 mrad/microCi, whatever the route of administration. In severe hepatic failure the liver might receive 200 mrad/microCi. The activity likely to be used in routine clinical practice is 10 microCi. Where a whole-body counter is used, an activity of 1 microCi has proved adequate. Even at an administered activity of 25 microCi, the absorbed dose is small compared with established techniques of investigating the gastrointestinal tract

  13. Absorbed dose to the human adrenals from iodomethylnorcholesterol (I-131) NP-59: concise communication

    International Nuclear Information System (INIS)

    Carey, J.E.; Thrall, J.H.; Freitas, J.E.; Beierwaltes, W.H.

    1979-01-01

    During the past 2 yrs, adrenal uptake percentage values were measured in more than 40 patients, using an external counting technique. They suggest that the absorbed dose to the adrenals is significantly less than the 150 rads/mCi previously estimated using concentration values from animal adrenals. The measured combined uptake percentage for both adrenals ranged from 0.15% to 0.52% in 21 patients without evidence of adrenal disease, with a mean of 0.33% +- 0.1%; also from 0.22% to 1.5% in 22 patients with Cushing's disease, with a mean uptake of 0.78% +- 0.35%. The absorbed dose to the adrenals was estimated to be 25 rads/mCi for patients without evidence of adrenal disease, and 57 rads/mCi for patients with Cushing's disease. Both values are calculated for the respective mean uptake percentages by using the MIRD formalism

  14. Absorbed dose calculation of the energy deposition close to bone, lung and soft tissue interfaces in molecular radiotherapy

    International Nuclear Information System (INIS)

    Fernandez, M.; Lassman, M.

    2015-01-01

    Full text of publication follows. Aim: for voxel-based dosimetry in molecular radiotherapy (MRT) based on tabulated voxel S-values these values are usually obtained only for soft tissue. In order to study the changes in the dose deposition patterns at interfaces between different materials we have performed Monte Carlo simulations. Methods: the deposited energy patterns were obtained using the Monte-Carlo radiation code MCNPX v2.7 for Lu 177 (medium-energy) and Y 90 (high-energy). The following interfaces were studied: soft tissue-bone and soft tissue-lungs. For this purpose a volume of soft tissue homogeneously filled with Lu 177 or Y 90 was simulated at the interface to 3 different volumes containing no activity: soft tissue, lungs and bone. The emission was considered to be isotropic. The dimensions were chosen to ensure that the energy deposited by all generated particles was scored. The materials were defined as recommended by ICPR46; the decay schemes of Eckerman and Endo were used. With these data the absorbed dose patterns normalized to the maximum absorbed dose in the source region (soft tissue) were calculated. Results: the absorbed dose fractions in the boundary with soft tissue, bone and lungs are 50%, 47% and 57%, respectively, for Lu 177 and 50%, 47% and 51% for Y 90 . The distances to the interface at which the absorbed fractions are at 0.1% are 1.0, 0.6 and 3.0 mm for Lu 177 and 7.0, 4.0 and 24 mm for Y 90 , for soft tissue, bone and lungs respectively. Conclusions: in MRT, the changes in the absorbed doses at interfaces between soft tissue and bone/lungs need to be considered for isotopes emitting high energy particles. (authors)

  15. Estimation of absorbed doses on the basis of cytogenetic methods

    International Nuclear Information System (INIS)

    Shevchenko, V.A.; Rubanovich, A.V.; Snigiryova, G.P.

    1998-01-01

    Long-term studies in the field of radiation cytogenetics have resulted in the discovery of relationship between induction of chromosome aberrations and the type of ionizing radiation, their intensity and dose. This has served as a basis of biological dosimetry as an area of application of the revealed relationship, and has been used in the practice to estimate absorbed doses in people exposed to emergency irradiation. The necessity of using the methods of biological dosimetry became most pressing in connection with the Chernobyl accident in 1986, as well as in connection with other radiation situations that occurred in nuclear industry of the former USSR. The materials presented in our works demonstrate the possibility of applying cytogenetic methods for assessing absorbed doses in populations of different regions exposed to radiation as a result of accidents at nuclear facilities (Chernobyl, the village Muslymovo on the Techa river, the Three Mile Island nuclear power station in the USA where an accident occurred in 1979). Fundamentally, new possibilities for retrospective dose assessment are provided by the FISH-method that permits the assessment of absorbed doses after several decades since the exposure occurred. In addition, the application of this method makes it possible to restore the dynamics of unstable chromosome aberrations (dicentrics and centric rings), which is important for further improvement of the method of biological dosimetry based on the analysis of unstable chromosome aberrations. The purpose of our presentation is a brief description of the cytogenetic methods used in biological dosimetry, consideration of statistical methods of data analysis and a description of concrete examples of their application. (J.P.N.)

  16. Determination of Radiation Absorbed Dose to Primary Liver Tumors and Normal Liver Tissue Using Post Radioembolization 90Y PET

    Directory of Open Access Journals (Sweden)

    Shyam Mohan Srinivas

    2014-10-01

    Full Text Available Background: Radioembolization with Yttrium-90 (90Y microspheres is becoming a more widely used transcatheter treatment for unresectable hepatocellular carcinoma (HCC. Using post-treatment 90Y PET/CT scans,the distribution of microspheres within the liver can be determined and quantitatively assessesed . We studied the radiation dose of 90Y delivered to liver and treated tumors.Methods: This retrospective study of 56 patients with HCC, including analysis of 98 liver tumors, measured and correlated the dose of radiation delivered to liver tumors and normal liver tissue using glass microspheres (TheraSpheres® to the frequency of complications with mRECIST. 90Y PET/CT and triphasic liver CT scans were used to contour treated tumor and normal liver regions and determine their respective activity concentrations. An absorbed dose factor was used to convert the measured activity concentration (Bq/mL to an absorbed dose (Gy.Results: The 98 studied tumors received a mean dose of 169 Gy (mode 90-120 Gy;range 0-570 Gy. Tumor response by mRECIST criteria was performed for 48 tumors that had follow up scans. There were 21 responders (mean dose 215 Gy and 27 nonresponders (mean dose 167 Gy. The association between mean tumor absorbed dose and response suggests a trend but did not reach statistical significance (p=0.099. Normal liver tissue received a mean dose of 67 Gy (mode 60-70 Gy; range 10-120 Gy. There was a statistically significant association between absorbed dose to normal liver and the presence of two or more severe complications (p=0.036.Conclusion: Our cohort of patients showed a possible dose response trend for the tumors. Collateral dose to normal liver is nontrivial and can have clinical implications. These methods help us understand whether patient adverse events, treatment success, or treatment failure can be attributed to the dose which the tumor or normal liver received.

  17. Absorbed doses to patients from angioradiology

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Romero, R; Hernandez-Armas, J [Servicio de Fisica Medica, Hospital Universitario de Canarias, La Laguna, Tenerife (Spain); Diaz-Romero, F [Servicio de Radiodiagnostico, Hospital Universitario de Canarias, La Laguna, Tenerife (Spain)

    2001-03-01

    The aim of study was to know patients doses exposes when three different procedures of angioradiology were carried out. The explorations considered were drainage biliary, varicocele embolization and dacriocistography made in the Radiodiagnostic Service at the University Hospital of Canary Islands, Tenerife (Spain). In total 14 patients were studied. The measurements were made using large area transmission ionisation chamber which gives the values of Dose Area Product (DAP). In addition, thermoluminescent dosimeters type TLD-100 were used in anthropomorphic phantom in order to obtain values of organ doses when the phantom was submitted to the same procedures rather than the actual patients. Furthermore, the Effdose program was used to estimate the effective doses in the procedures conditions. The values for DAP were in the range of 70-300 for drainage biliary, 43-180 for varicocele embolization and 1.4-9 for dacriocistography. The organ doses measured with TLD-100 were higher than the corresponding values estimated by Effdose program. The results for varicocele embolization were higher than other published data. In the case of drainage biliary procedure, the values were closed to other published results. It was not possible to find data for dacriocistography from other authors. (author)

  18. Absorbed doses to patients from angioradiology

    International Nuclear Information System (INIS)

    Rodriguez-Romero, R.; Hernandez-Armas, J.; Diaz-Romero, F.

    2001-01-01

    The aim of study was to know patients doses exposes when three different procedures of angioradiology were carried out. The explorations considered were drainage biliary, varicocele embolization and dacriocistography made in the Radiodiagnostic Service at the University Hospital of Canary Islands, Tenerife (Spain). In total 14 patients were studied. The measurements were made using large area transmission ionisation chamber which gives the values of Dose Area Product (DAP). In addition, thermoluminescent dosimeters type TLD-100 were used in anthropomorphic phantom in order to obtain values of organ doses when the phantom was submitted to the same procedures rather than the actual patients. Furthermore, the Effdose program was used to estimate the effective doses in the procedures conditions. The values for DAP were in the range of 70-300 for drainage biliary, 43-180 for varicocele embolization and 1.4-9 for dacriocistography. The organ doses measured with TLD-100 were higher than the corresponding values estimated by Effdose program. The results for varicocele embolization were higher than other published data. In the case of drainage biliary procedure, the values were closed to other published results. It was not possible to find data for dacriocistography from other authors. (author)

  19. Absorbed dose estimates to structures of the brain and head using a high-resolution voxel-based head phantom

    International Nuclear Information System (INIS)

    Evans, Jeffrey F.; Blue, Thomas E.; Gupta, Nilendu

    2001-01-01

    The purpose of this article is to demonstrate the viability of using a high-resolution 3-D head phantom in Monte Carlo N-Particle (MCNP) for boron neutron capture therapy (BNCT) structure dosimetry. This work describes a high-resolution voxel-based model of a human head and its use for calculating absorbed doses to the structures of the brain. The Zubal head phantom is a 3-D model of a human head that can be displayed and manipulated on a computer. Several changes were made to the original head phantom which now contains over 29 critical structures of the brain and head. The modified phantom is a 85x109x120 lattice of voxels, where each voxel is 2.2x2.2x1.4 mm 3 . This model was translated into MCNP lattice format. As a proof of principle study, two MCNP absorbed dose calculations were made (left and right lateral irradiations) using a uniformly distributed neutron disk source with an 1/E energy spectrum. Additionally, the results of these two calculations were combined to estimate the absorbed doses from a bilateral irradiation. Radiobiologically equivalent (RBE) doses were calculated for all structures and were normalized to 12.8 Gy-Eq. For a left lateral irradiation, the left motor cortex receives the limiting RBE dose. For a bilateral irradiation, the insula cortices receive the limiting dose. Among the nonencephalic structures, the parotid glands receive RBE doses that were within 15% of the limiting dose

  20. Peculiarities of absorbed dose forming in some wild animals in Chornobyl exclusion zone

    Directory of Open Access Journals (Sweden)

    V. A. Gaychenko

    2015-10-01

    Full Text Available Based on field researches conducted in the exclusion zone of the Chernobyl nuclear power plant in the years after the accident, the peculiarities are identified of formation of absorbed doses in animals of different taxonomic and ecological groups that live in conditions of radioactive contamination of ecosystems. It was shown importance of consideration of radiation features on wild animals according to their life cycle, conditions and ways of life. Data were displayed about the importance of different types of irradiation according to the period of stay of the animals in the ground, in burrows and nests. The questions were reviewed about value of external and internal radiation in absorbed dose of different types of wildlife. Results of the calculation of the absorbed dose of bird embryos from egg shell were shown.

  1. Comparision between the IAEA's protocols (TRS-277 and TRS-398) for absorbed dose determination

    International Nuclear Information System (INIS)

    Bero, M.; Anjak, O.

    2007-12-01

    The aim of this study is to compare between two IAEA's Protocols [IAEA-TRS-277 (1987) and IAEA-TRS-398 (2000)] for Absorbed Dose Determination. Five types (5 Chamber) of commonly used cylindrical ionization chambers (Farmer type, 0.6 cc) were used to check the difference in absorbed dose to water determination for Co-60 beams under reference condition. TLD dosimeter was also used for inter-comparison with IAEA's SSDL. The mean values of the measured absorbed dose were found to be similar in both cases and the relative error D (TRS-398)/D (TRS-277) is found to be approximately less than 0.5% for all chambers used in this study.(authors)

  2. Hematological toxicity in radioimmunotherapy is predicted both by the computed absorbed whole body dose (cGy) and by the administered dose (mCi)

    International Nuclear Information System (INIS)

    Marquez, Sheri D.; Knox, Susan J.; Trisler, Kirk D.; Goris, Michael L.

    1997-01-01

    -90 anti-CD20 antibody treated group, in which the estimated whole body dose varied (D(cGy)), the decrease in these values was predicted by the linear (zero intercept) equations: DWBC = 0.01158 D(cGy) + 0.05247 D(mCi), DPLAT = 0.1476 D(cGy) + 3.043 D(mCi), and DN=0.0047 D(cGy)+0.0507D(mCi). In the Iodine-131 anti-CD20 antibody treated group, where D(cGy) was constant and equal to 75 cGy, the variation in toxicity was predicted by the linear equation DPLAT = -241 + 5.53 D(mCi), with F=12.184 (p<0.01) and DWBC = -2.62 + 0.0757 D (mCi), with F=3.14 (NS). Conclusion: The results suggest that the total absorbed dose is not an absolute predictor of effect, but in this restricted data set a significant predominant effect of the administered dose on toxicity could not be demonstrated either. The data however do not invalidate the theoretical view that 1) with internal radionuclides a large fraction of the total absorbed dose is delivered at very low dose rates, which may be too low for any appreciable effect, and 2) if variation in the kinetics of the agents lead to an adaptation of the administered dose, the initial dose rate is affected. The therapeutic and toxic effects of RIT are probably a function of both the total dose and the dose rate. Further optimization of this therapy needs to take this into consideration

  3. Uncertainty analysis in the determination of absorbed dose in water by Fricke chemical dosimetry

    International Nuclear Information System (INIS)

    Vasconcelos, Fabia; Aguirre, Eder Aguirre

    2016-01-01

    This work studies the calculations of uncertainties and the level of confidence that involves the process for obtaining the dose absorbed in water using the method of Fricke dosimetry, developed at Laboratorio de Ciencias Radiologicas (LCR). Measurements of absorbance of samples Fricke, irradiated and non-irradiated is going to use in order to calculate the respective sensitivity coefficients, along with the expressions of the calculation of Fricke dose and the absorbed dose in water. Those expressions are used for calculating the others sensitivity coefficients from the input variable. It is going to use the combined uncertainty and the expanded uncertainty, with a level of confidence of 95.45%, in order to report the uncertainties of the measurement. (author)

  4. Optical fibre temperature sensor technology and potential application in absorbed dose calorimetry

    International Nuclear Information System (INIS)

    Allen, P.D.; Hargrave, N.J.

    1992-09-01

    Optical fibre based sensors are proposed as a potential alternative to the thermistors traditionally used as temperature sensors in absorbed dose calorimetry. The development of optical fibre temperature sensor technology over the last ten years is reviewed. The potential resolution of various optical techniques is assessed with particular reference to the requirements of absorbed dose calorimetry. Attention is drawn to other issues which would require investigation before the development of practical optical fibre sensors for this purpose could occur. 192 refs., 5 tabs., 4 figs

  5. Technique-dependent decrease in thyroid absorbed dose for dental radiography

    International Nuclear Information System (INIS)

    Wood, R.E.; Bristow, R.G.; Clark, G.M.; Nussbaum, C.; Taylor, K.W.

    1989-01-01

    A LiF thermoluminescent dosimetry (TLD) system, calibrated in the tissue of interest with the beam used for experimentation, was employed to investigate dosages (muGy) to the thyroid region of an anthropomorphic phantom resultant from two dental complete-mouth radiographic procedures. Both techniques were compared in terms of dosages associated with combinations of lead apron and thyroid collar shielding while using a 70-kVp or 90-kVp x-ray beam for a 20-film complete-mouth series. Lead shielding significantly decreased the dose to the thyroid using both techniques (p less than 0.05). The use of the 90-kVp beam resulted in a significant reduction in the thyroid absorbed dose when using the bisecting angle technique (p less than 0.05) but caused a significant increase in the thyroid absorbed dose when the paralleling technique was used (p less than 0.05). The implementation of higher kilovoltage techniques in dental offices must therefore be dependent on the radiographic technique employed

  6. Study of the influence of gold particles on the absorbed dose in soft tissue using polymer gel dosimetry

    International Nuclear Information System (INIS)

    Afonso, Luciana Caminha

    2011-01-01

    The presence of high-Z material adjacent to soft tissue, when submitted to irradiation, enhances locally the absorbed dose in these soft tissues. Such effect occurs due to the outscattering of photoelectrons from the high-Z material. Polymer gel dosimeters have been used to investigate this effect. Analytic calculations to estimate the dose enhancement and Monte Carlo simulations have been performed. Samples containing polymer gel (PG) with 0.005 gAu/gPG and pure polymer gel have been irradiated using an X-rays beam produced by 150 kV, filtered with 4 mm Al and 5 mm Cu, which resulted in an approximately 20% higher absorbed dose in the samples with gold in comparison to those with pure polymer gel. The analytic calculations and the Monte Carlo simulation resulted in a dose enhancement factor of approximately 30%. (author)

  7. Absorbed dose kernel and self-shielding calculations for a novel radiopaque glass microsphere for transarterial radioembolization.

    Science.gov (United States)

    Church, Cody; Mawko, George; Archambault, John Paul; Lewandowski, Robert; Liu, David; Kehoe, Sharon; Boyd, Daniel; Abraham, Robert; Syme, Alasdair

    2018-02-01

    microspheres based on weighted activities. The shapes of the absorbed dose kernels are dominated at short times postactivation by the contributions of 70 Ga and 72 Ga. Following decay of the short-lived contaminants, the absorbed dose kernel is effectively that of 90 Y. After approximately 1000 h postactivation, the contributions of 85 Sr and 89 Sr become increasingly dominant, though the absorbed dose-rate around the beads drops by roughly four orders of magnitude. The introduction of high atomic number elements for the purpose of increasing radiopacity necessarily leads to the production of radionuclides other than 90 Y in the microspheres. Most of the radionuclides in this study are short-lived and are likely not of any significant concern for this therapeutic agent. The presence of small quantities of longer lived radionuclides will change the shape of the absorbed dose kernel around a microsphere at long time points postadministration when activity levels are significantly reduced. © 2017 American Association of Physicists in Medicine.

  8. The vessel fluence; Fluence cuve

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This book presents the proceedings of the technical meeting on the reactors vessels fluence. They are grouped in eight sessions: the industrial context and the stakes of the vessels control; the organization and the methodology for the fluence computation; the concerned physical properties; the reference computation methods; the fluence monitoring in an industrial context; vessels monitoring under irradiation; others methods in the world; the research and development programs. (A.L.B.)

  9. Absorbed dose due to radioiodine therapy by organs of patients with hyperthyroidism; Dose absorvida em orgaos de pacientes com hipertiroidismo devido a radioiodoterapia

    Energy Technology Data Exchange (ETDEWEB)

    Lima, F.F.; Khoury, H.J.; Bertelli Neto, L. [Pernambuco Univ., Recife, PE (Brazil); Laboratorios CERPE, Recife, PE (Brazil); Bertelli Neto, L. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)

    1999-07-01

    The dose absorbed by organs of patients with hyperthyroidism treated with {sup 131} I was estimated by using the MIRDOSE computer program and data from ICRP-53. The calculation were performed using effective half-life and uptake average values, which were determined for 17 patients treated with 370 MBq and 555MBq of {sup 131} I. The results shown that the dose in the thyroid, for a 370 MBq administrated activity, was of 99 Gy and 49.5 Gy for 60 g and 80 g thyroid respectively. The average dose estimated in other organs were relatively low, presenting values lower than 0.1 Gy in the kidneys, bone marrow and ovaries and 0.19 Gy in the stomach.

  10. Comparison of photon organ and effective dose coefficients for PIMAL stylized phantom in bent positions in standard irradiation geometries

    Energy Technology Data Exchange (ETDEWEB)

    Dewji, Shaheen; Hiller, Mauritius [Oak Ridge National Laboratory, Center for Radiation Protection Knowledge, Environmental Sciences Division, Oak Ridge, TN (United States); Reed, K.L. [Georgia Institute of Technology, Nuclear and Radiological Engineering Program, Atlanta, GA (United States)

    2017-08-15

    Computational phantoms with articulated arms and legs have been constructed to enable the estimation of radiation dose in different postures. Through a graphical user interface, the Phantom wIth Moving Arms and Legs (PIMAL) version 4.1.0 software can be employed to articulate the posture of a phantom and generate a corresponding input deck for the Monte Carlo N-Particle (MCNP) radiation transport code. In this work, photon fluence-to-dose coefficients were computed using PIMAL to compare organ and effective doses for a stylized phantom in the standard upright position with those for phantoms in realistic work postures. The articulated phantoms represent working positions including fully and half bent torsos with extended arms for both the male and female reference adults. Dose coefficients are compared for both the upright and bent positions across monoenergetic photon energies: 0.05, 0.1, 0.5, 1.0, and 5.0 MeV. Additionally, the organ doses are compared across the International Commission on Radiological Protection's standard external radiation exposure geometries: antero-posterior, postero-anterior, left and right lateral, and isotropic (AP, PA, LLAT, RLAT, and ISO). For the AP and PA irradiation geometries, differences in organ doses compared to the upright phantom become more profound with increasing bending angles and have doses largely overestimated for all organs except the brain in AP and bladder in PA. In LLAT and RLAT irradiation geometries, energy deposition for organs is more likely to be underestimated compared to the upright phantom, with no overall change despite increased bending angle. The ISO source geometry did not cause a significant difference in absorbed organ dose between the different phantoms, regardless of position. Organ and effective fluence-to-dose coefficients are tabulated. In the AP geometry, the effective dose at the 45 bent position is overestimated compared to the upright phantom below 1 MeV by as much as 27% and 82% in the

  11. Influence of lead apron shielding on absorbed doses from cone-beam computed tomography

    International Nuclear Information System (INIS)

    Rottke, Dennis; Andersson, Jonas; Ejima, Ken-Ichiro; Sawada, Kunihiko; Schulze, Dirk

    2017-01-01

    The aim of the present work was to investigate absorbed and to calculate effective doses (EDs) in cone-beam computed tomography (CBCT). The study was conducted using examination protocols with and without lead apron shielding. A full-body male RANDO"R phantom was loaded with 110 GR200A thermoluminescence dosemeter chips at 55 different sites and set up in two different CBCT systems (CS 9500"R, ProMax"R 3D). Two different protocols were performed: the phantom was set up (1) with and (2) without a lead apron. No statistically significant differences in organ and absorbed doses from regions outside the primary beam could be found when comparing results from exposures with and without lead apron shielding. Consequently, calculating the ED showed no significant differences between the examination protocols with and without lead apron shielding. For the ProMax"R 3D with shielding, the ED was 149 μSv, and for the examination protocol without shielding 148 μSv (SD = 0.31 μSv). For the CS 9500"R, the ED was 88 and 86 μSv (SD = 0.95 μSv), respectively, with and without lead apron shielding. The results revealed no statistically significant differences in the absorbed doses between examination with and without lead apron shielding, especially in organs outside the primary beam. (authors)

  12. Absorbed dose estimation of gonads resulting from fault work of staff during injection of radiopharmaceuticals to the patients

    International Nuclear Information System (INIS)

    Maleki, M.; Karimian, A.

    2012-01-01

    Radiopharmaceuticals are used in nuclear medicine in a variety of diagnostic and therapeutic procedures and generally delivered to the patient via intravenous injection. 201 Tl and 99m Tc are the two most used radiopharmaceuticals in nuclear medicine. The maximum activity injected to the patient in nuclear medicine for 201 Tl and 99m Tc is 5 and 20-25 mCi respectively. In this research by using Monte Carlo method and MCNPX code the absorbed dose to Gonads due to drop of radiopharmaceutical on foot thigh during injection to the patient has been calculated. The activity of 201 Tl and 99m Tc has been considered 1 and 5mCi respectively. The amount of absorbed dose in gonads for 99m Tc for male and female during 8 hours of work has been measured 0.37 and 0.055 μSv respectively. Also the amount of absorbed dose for 201 Tl during working hours at first day, second day and third day after work fault for male has been measured 0.387, 0.308 and 0.246 μSv and for female 0.06, 0.048 and 0.038 μSv respectively. The total dose in these three working days for male and female has been 0.941 and 0.146 μSv respectively. Since absorbed dose of gonads was far enough from the limits of ICRP, so it can be concluded that if a fault work occurs and even staff does not be aware there is no need to treat him. (authors)

  13. Estimation of absorbed dose in cell nuclei due to DNA-bound /sup 3/H

    Energy Technology Data Exchange (ETDEWEB)

    Saito, M; Ishida, M R; Streffer, C; Molls, M

    1985-04-01

    The average absorbed dose due to DNA-bound /sup 3/H in a cell nucleus was estimated by a Monte Carlo simulation for a model nucleus which was assumed to be spheroidal. The volume of the cell nucleus was the major dose-determining factor for cell nuclei which have the same DNA content and the same specific activity of DNA. This result was applied to estimating the accumulated dose in the cell nuclei of organs of young mice born from mother mice which ingested /sup 3/H-thymidine with drinking water during pregnancy. The values of dose-modifying factors for the accumulated dose due to DNA-bound /sup 3/H compared to the dose due to an assumed homogenous distribution of /sup 3/H in organ were found to be between about 2 and 6 for the various organs.

  14. Review of reconstruction of radiation incident air kerma by measurement of absorbed dose in tooth enamel with EPR

    International Nuclear Information System (INIS)

    Wieser, A.

    2012-01-01

    Electron paramagnetic resonance dosimetry with tooth enamel has been proved to be a reliable method to determine retrospectively exposures from photon fields with minimal detectable doses of 100 mGy or lower, which is lower than achievable with cytogenetic dose reconstruction methods. For risk assessment or validating dosimetry systems for specific radiation incidents, the relevant dose from the incident has to be calculated from the total absorbed dose in enamel by subtracting additional dose contributions from the radionuclide content in teeth, natural external background radiation and medical exposures. For calculating organ doses or evaluating dosimetry systems the absorbed dose in enamel from a radiation incident has to be converted to air kerma using dose conversion factors depending on the photon energy spectrum and geometry of the exposure scenario. This paper outlines the approach to assess individual dose contributions to absorbed dose in enamel and calculate individual air kerma of a radiation incident from the absorbed dose in tooth enamel. (author)

  15. Review of reconstruction of radiation incident air kerma by measurement of absorbed dose in tooth enamel with EPR.

    Science.gov (United States)

    Wieser, A

    2012-03-01

    Electron paramagnetic resonance dosimetry with tooth enamel has been proved to be a reliable method to determine retrospectively exposures from photon fields with minimal detectable doses of 100 mGy or lower, which is lower than achievable with cytogenetic dose reconstruction methods. For risk assessment or validating dosimetry systems for specific radiation incidents, the relevant dose from the incident has to be calculated from the total absorbed dose in enamel by subtracting additional dose contributions from the radionuclide content in teeth, natural external background radiation and medical exposures. For calculating organ doses or evaluating dosimetry systems the absorbed dose in enamel from a radiation incident has to be converted to air kerma using dose conversion factors depending on the photon energy spectrum and geometry of the exposure scenario. This paper outlines the approach to assess individual dose contributions to absorbed dose in enamel and calculate individual air kerma of a radiation incident from the absorbed dose in tooth enamel.

  16. ''Nonisolated-sensor'' solid polystyrene absorbed dose measurements

    International Nuclear Information System (INIS)

    Zeitz, L.; Laughlin, J.S.

    1982-01-01

    A ''nonisolated-sensor'' solid polystyrene calorimeter was constructed to test the role of thermal diffusion in limiting the length of irradiation time during which temperature measurements with nonisolated sensors could be made sufficiently free of drift for determining dose with radiation fields such as gamma rays, x rays, and high-energy electrons. From measured ratios of dose at 5.0 and 0.5 cm in polystyrene and comparisons to dose measurements with a polystyrene parallel-plate (pancake) ion chamber, it was shown that thermal diffusion is sufficiently small in polystyrene to permit accurate measurements for irradiation periods of less than 20 min. Comparison of the absorbed dose measurements and depth dose ratios with pancake ion chambers and calorimeter showed, that within the precision and accuracy of the two measuring systems, there is close agreement. The nonisolated-sensor solid polystyrene calorimeter has the interesting features of (i) simplicity of construction, (ii) simplicity of operation without vacuum or feedback for temperature control, (iii) capability of simultaneous measurements at several depths and off-axis positions, (iv) the very small thermal defect correction with polystyrene, and (v) operation with the calorimeter in any orientation

  17. Nonisolated-sensor solid polystyrene absorbed dose measurements

    International Nuclear Information System (INIS)

    Zeitz, L.; Laughlin, J.S.

    1982-01-01

    A nonisolated-sensor solid polystyrene calorimeter was constructed to test the role of thermal diffusion in limiting the length of irradiation time during which temperature measurements with nonisolated sensors could be made sufficiently free of drift for determining dose with radiation fields such as gamma rays, x rays, and high-energy electrons. From measured ratios of dose at 5.0 and 0.5 cm in polystyrene and comparisons to dose measurements with a polystyrene parallel-plate (pancake) ion chamber, it was shown that thermal diffusion is sufficiently small in polystyrene to permit accurate measurements for irradiation periods of less than 20 min. Comparison of the absorbed dose measurements and depth dose ratios with pancake ion chambers and calorimeter showed, that within the precision and accuracy of the two measuring systems, there is close agreement. The nonisolated-sensor solid polystyrene calorimeter has the interesting features of (i) simplicity of construction, (ii) simplicity of operation without vacuum or feedback for temperature control, (iii) capability of simultaneous measurements at several depths and off-axis positions, (iv) the very small thermal defect correction with polystyrene, and (v) operation with the calorimeter in any orientation

  18. New approach for absolute fluence distribution calculations in Monte Carlo simulations of light propagation in turbid media

    International Nuclear Information System (INIS)

    Böcklin, Christoph; Baumann, Dirk; Fröhlich, Jürg

    2014-01-01

    A novel way to attain three dimensional fluence rate maps from Monte-Carlo simulations of photon propagation is presented in this work. The propagation of light in a turbid medium is described by the radiative transfer equation and formulated in terms of radiance. For many applications, particularly in biomedical optics, the fluence rate is a more useful quantity and directly derived from the radiance by integrating over all directions. Contrary to the usual way which calculates the fluence rate from absorbed photon power, the fluence rate in this work is directly calculated from the photon packet trajectory. The voxel based algorithm works in arbitrary geometries and material distributions. It is shown that the new algorithm is more efficient and also works in materials with a low or even zero absorption coefficient. The capabilities of the new algorithm are demonstrated on a curved layered structure, where a non-scattering, non-absorbing layer is sandwiched between two highly scattering layers

  19. An estimate by two methods of thyroid absorbed doses due to BRAVO fallout in several Northern Marshall Islands.

    Science.gov (United States)

    Musolino, S V; Greenhouse, N A; Hull, A P

    1997-10-01

    Estimates of the thyroid absorbed doses due to fallout originating from the 1 March 1954 BRAVO thermonuclear test on Bikini Atoll have been made for several inhabited locations in the Northern Marshall Islands. Rongelap, Utirik, Rongerik and Ailinginae Atolls were also inhabited on 1 March 1954, where retrospective thyroid absorbed doses have previously been reconstructed. The current estimates are based primarily on external exposure data, which were recorded shortly after each nuclear test in the Castle Series, and secondarily on soil concentrations of 137Cs in samples collected in 1978 and 1988, along with aerial monitoring done in 1978. The external exposures and 137Cs soil concentrations were representative of the atmospheric transport and deposition patterns of the entire Castle Series tests and show that the BRAVO test was the major contributor to fallout exposure during the Castle series and other test series which were carried out in the Marshall Islands. These data have been used as surrogates for fission product radioiodines and telluriums in order to estimate the range of thyroid absorbed doses that may have occurred throughout the Marshall Islands. Dosimetry based on these two sets of estimates agreed within a factor of 4 at the locations where BRAVO was the dominant contributor to the total exposure and deposition. Both methods indicate that thyroid absorbed doses in the range of 1 Gy (100 rad) may have been incurred in some of the northern locations, whereas the doses at southern locations did not significantly exceed levels comparable to those from worldwide fallout. The results of these estimates indicate that a systematic medical survey for thyroid disease should be conducted, and that a more definitive dose reconstruction should be made for all the populated atolls and islands in the Northern Marshall Islands beyond Rongelap, Utirik, Rongerik and Ailinginae, which were significantly contaminated by BRAVO fallout.

  20. An estimate by two methods of thyroid absorbed doses due to BRAVO fallout in several northern Marshall Islands

    International Nuclear Information System (INIS)

    Musolino, S.V.; Hull, A.P.; Greenhouse, N.A.

    1997-01-01

    Estimates of the thyroid absorbed doses due to fallout originating from the 1 March 1954 BRAVO thermonuclear test on Bikini Atoll have been made for several inhabited locations in the Northern Marshall Islands. Rongelap, Utirik, Rongerik and Ailinginae Atolls were also inhabited on 1 March 1954, where retrospective thyroid absorbed doses have previously been reconstructed. Current estimates are based primarily on external exposure data, which were recorded shortly after each nuclear test in the Castle Series, and secondarily on soil concentrations of 137 Cs in samples collected in 1978 and 1988, along with aerial monitoring done in 1978. External exposures and 137 Cs Soil concentrations were representative of the atmospheric transport and deposition patterns of the entire Castle Series tests and show that the BRAVO test was the major contributor to fallout exposure during the Castle series and other test series which were carried out in the Marshall Islands. These data have been used as surrogates for fission product radioiodines and telluriums in order to estimate the range of thyroid absorbed doses that may have occurred throughout the Marshall Islands. Dosimetry based on these two sets of estimates agreed within a factor of 4 at the locations where BRAVO was the dominant contributor to the total exposure and deposition. Both methods indicate that thyroid absorbed doses in the range of 1 Gy (100 rad) may have been incurred in some of the northern locations, whereas the doses at southern locations did not significantly exceed levels comparable to those from worldwide fallout. The results of these estimates indicate that a systematic medical survey for thyroid disease should be conducted, and that a more definitive dose reconstruction should be made for all the populated atolls and islands in the Northern Marshall Islands beyond Rongelap, Utirik, Rongerik and Ailinginae, which were significantly contaminated by BRAVO fallout. 30 refs., 2 figs., 10 tabs

  1. Organ and Effective Dose Coefficients for Cranial and Caudal Irradiation Geometries: Neutrons

    Science.gov (United States)

    Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.; Hiller, M. M.

    2017-09-01

    With the introduction of new recommendations by ICRP Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors, and the introduction of reference sex-specific computational phantoms (ICRP Publication 110). Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT), and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue absorbed doses for caudal and cranial exposures to neutrons ranging in energy from 10-9 MeV to 10 GeV have been performed using the MCNP6 radiation transport code and the adult reference voxel phantoms of ICRP Publication 110. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above about 30 MeV the cranial and caudal values are greater.

  2. Experimental Determination of the Neutron Radiation-Dose Distribution in the Human Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Stipcic, Neda [Institute Rudjer Bogkovic, Zagreb, Yugoslavia (Serbia)

    1967-01-15

    The quality of the radiation delivering the radiation dose to the human phantom is quite different from that of the incident neutron beam. This paper describes the experimental investigation of the variation of neutron dose related to the variation of neutron fluence with depth in the human phantom. The distribution of neutron radiation was determined in the human phantom - a cube of paraffin wax 25 cm x 25 cm x 50 cm with a density of 0.92 cm{sup -3}. Po-Be and Ra-Be point sources were used as neutron sources. Neutron fluences were measured using different types of detector: scintillation detector, BF{sub 3} counter, and nuclear-track emulsions. Since the fluence measurements with these three types of detectors were carried out under the same experimental conditions, it was possible to separate and analyse each part of the radiation dose in the paraffin. From the investigations, the distribution of the total radiation dose was obtained as a function of the paraffin depth. The maximum value of this dose distribution is constant with respect to the distance between the source and the paraffin phantom. From the results obtained, some conclusions may be drawn concerning the amount of absorbed radiation dose in the human phantom. (author)

  3. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C. Y.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    The absorbed dose due to neutrons by a Complementary Metal Oxide Semiconductor (CMOS) has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes a patient that must be treated by radiotherapy with a linear accelerator; the pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. When the Linac is working in Bremsstrahlung mode an undesirable neutron field is produced due to photoneutron reactions; these neutrons could damage the CMOS putting the patient at risk during the radiotherapy treatment. In order to estimate the neutron dose in the CMOS a Monte Carlo calculation was carried out where a full radiotherapy vault room was modeled with a W-made spherical shell in whose center was located the source term of photoneutrons produced by a Linac head operating in Bremsstrahlung mode at 18 MV. In the calculations a phantom made of tissue equivalent was modeled while a beam of photoneutrons was applied on the phantom prostatic region using a field of 10 x 10 cm{sup 2}. During simulation neutrons were isotropically transported from the Linac head to the phantom chest, here a 1 {theta} x 1 cm{sup 2} cylinder made of polystyrene was modeled as the CMOS, where the neutron spectrum and the absorbed dose were estimated. Main damages to CMOS are by protons produced during neutron collisions protective cover made of H-rich materials, here the neutron spectrum that reach the CMOS was calculated showing a small peak around 0.1 MeV and a larger peak in the thermal region, both connected through epithermal neutrons. (Author)

  4. Evaluation of absorbed dose-distribution in the X-ray or gamma-irradiator for blood products

    International Nuclear Information System (INIS)

    Moriyama, Satoshi; Kurihara, Katsuhiko; Yokokawa, Nobuhiko; Satake, Masahiro; Juji, Takeo

    2001-01-01

    Irradiation of blood products abrogates the proliferation of lymphocytes present in cellular component, which is currently the only accepted methodology to prevent transfusion-associated graft versus host disease (TA-GVHD). A range of irradiation dose levels between 15 Gy and 50 Gy is being used, but the majority of facilities are employing 15 Gy. It should, however, be recognized that the delivered dose in the instrument canister might differ from the actual dose absorbed by the blood bag. This study have evaluated the actual dose distribution under practical conditions where a container was loaded with blood products or water bags, or filled with distilled water. This approach provides data that the maximum attenuation occurred when the container was completely filled with a blood-compatible material. Thus, an error of approximately 20 percent should be considered in the dose measured in the in-air condition. A dose calibration in an in-air condition may lead to substantial underexposure of the blood products. A dose distribution study using adequately prearranged exposure period verified that the absorbed dose of 15 Gy was attained at any point in the container for both linear accelerator and gamma-irradiator. The maximal difference in the absorbed dose between measured points was 1.5- and 1.6-fold for linear accelerator and gamma-irradiator, respectively. In conclusion, using blood-compatible materials, a careful dose calibration study should be employed in which the absorbed dose of 15 Gy is obtained at the point where the lowest dose could be expected. (author)

  5. Multilayer detector for measuring absorbed dose in skin

    International Nuclear Information System (INIS)

    Osanov, D.P.; Panova, V.P.; Shaks, A.I.

    1985-01-01

    A method of skin dosimetry using multilayer dosimeters is described that allows the skin-depth distribution of absorbed dose to be estimated. A method of quantitative estimation and prediction of the degree of skin radiation damage using a three-layer dosimeter is demonstrated. Dosimeters are holders of tissue-equivalent material that contain photographic film, a scintillator, thermoluminophor, or any other radiation-sensitive element

  6. Preclinical Study of 68Ga-DOTATOC: Biodistribution Assessment in Syrian Rats and Evaluation of Absorbed Dose in Human Organs.

    Science.gov (United States)

    Naderi, Mojdeh; Zolghadri, Samaneh; Yousefnia, Hassan; Ramazani, Ali; Jalilian, Amir Reza

    2016-01-01

    Gallium-68 DOTA-DPhe 1 -Tyr 3 -Octreotide ( 68 Ga-DOTATOC) has been applied by several European centers for the treatment of a variety of human malignancies. Nevertheless, definitive dosimetric data are yet unavailable. According to the Society of Nuclear Medicine and Molecular Imaging, researchers are investigating the safety and efficacy of this radiotracer to meet Food and Drug Administration requirements. The aim of this study was to introduce the optimized procedure for 68 Ga-DOTATOC preparation, using a novel germanium-68 ( 68 Ge)/ 68 Ga generator in Iran and evaluate the absorbed doses in numerous organs with high accuracy. The optimized conditions for preparing the radiolabeled complex were determined via several experiments by changing the ligand concentration, pH, temperature and incubation time. Radiochemical purity of the complex was assessed, using high-performance liquid chromatography and instant thin-layer chromatography. The absorbed dose of human organs was evaluated, based on biodistribution studies on Syrian rats via Radiation Absorbed Dose Assessment Resource Method. 68 Ga-DOTATOC was prepared with radiochemical purity of >98% and specific activity of 39.6 MBq/nmol. The complex demonstrated great stability at room temperature and in human serum at 37°C at least two hours after preparation. Significant uptake was observed in somatostatin receptor-positive tissues such as pancreatic and adrenal tissues (12.83 %ID/g and 0.91 %ID/g, respectively). Dose estimations in human organs showed that the pancreas, kidneys and adrenal glands received the maximum absorbed doses (0.105, 0.074 and 0.010 mGy/MBq, respectively). Also, the effective absorbed dose was estimated at 0.026 mSv/MBq for 68 Ga-DOTATOC. The obtained results showed that 68 Ga-DOTATOC can be considered as an effective agent for clinical PET imaging in Iran.

  7. Assessment of absorbed dose to the ovaries of patients undergoing pelvic CT examination

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, H.M.B. [Isfahan Univ. of Medical Sciences (Iran, Islamic Republic of)

    2006-07-01

    Full text of publication follows: Introduction: Although Computed Tomography (CT) procedures constitute about 5% of the total diagnostic radiology procedures but are responsible for about 40% of the total ionizing radiation dose to the general population. As the dose is high especially in the CT of female pelvis, genetic radiation risk is also considerable. Materials and Methods: Radiation doses to the ovaries of the patients undergoing CT examination of the pelvis were measured from 9 different CT scanners available in Isfahan city. For each CT scanner 20 patients were selected. Measurement of organ dose was performed using TLD method. Results and Discussions: Mean and S.D. of absorbed dose to the ovaries from Shimadzo 2500 were 56.6 2.8; from GE Max 640 were 36.8 1.7; from GE Sytec 3000 were 36.6 1.8; from GE Sytec 4000 were 36.6 2.6; from Piker were 38.4 2.1; from Shimadzo 4500 were 36.4 1.2 and from Shimadzo 7800TE 28.2 1.5. Associated risks due to the measured dose are discussed. (author)

  8. Radiation absorbed doses from iron-52, iron-55, and iron-59 used to study ferrokinetics

    International Nuclear Information System (INIS)

    Robertson, J.S.; Price, R.R.; Budinger, T.F.; Fairbanks, V.F.; Pollycove, M.

    1983-01-01

    Biological data obtained principally with Fe-59 citrate are used with physical data to calculate radiation absorbed doses for ionic or weak chelate forms of Fe-52, Fe-55, and Fe-59, administered by intravenous injection. Doses are calculated for normal subjects, primary hemochromatosis (also called idiopathic or hereditary hemochromatosis), pernicious anemia in relapse, iron-deficiency anemia, and polycythemia vera. The Fe-52 doses include the dose from the Mn-52m daughter generated after injection of Fe-52. Special attention has been given to the dose to the spleen, which has a relatively high concentration of RBCs and therefore of radioiron, and which varies significantly in size in both health and disease

  9. Estimation of the absorbed dose in radiation-processed food. Pt.2

    International Nuclear Information System (INIS)

    Desrosiers, M.F.

    1991-01-01

    The use of electron paramagnetic resonance spectroscopy to accurately evaluate the absorbed dose to radiation-processed bones (and thus meats) is examined. Additive re-irradiation of the bone produces a reproducible response function which can be used to evaluate the initial dose by back-extrapolation. It was found that an exponential fit (vs linear or polynomial) to the data provides improved accuracy of the estimated dose. These data as well as the protocol for the additive dose method are presented. (author)

  10. The Australian Commonwealth standard of measurement for absorbed radiation dose. Part 1

    International Nuclear Information System (INIS)

    Sherlock, S.L.

    1989-08-01

    As an agent for the Commonwealth Scientific and Industrial Research Organisation, the Australian Nuclear Science and Technology Organisation is responsible for maintenance of the Australian Commonwealth standard of absorbed dose. This standard of measurement has application in radiation therapy dosimetry, which is required for the treatment of cancer patients. This report is the first in a series of reports documenting the absorbed dose standard for photon beams in the range from 1 to 25 MeV. The Urquhart graphite micro-calorimeters, which is used for the determination of absorbed dose under high energy photon beams, has been now placed under computer control. Accordingly, a complete upgrade of the calorimeter systems was performed to allow operation in the hospital. In this report, control and monitoring techniques have been described, with an assessment of the performance achieved being given for 6 and 18 MeV bremsstrahlung beams. Random errors have been reduced to near negligible proportions, while systematic errors have been minimized by achieving true quasi-adiabatic operation. 16 refs., 9 tabs., 11 figs

  11. Estimation of absorbed dose of radiosensitive organs and effective sose in patients underwent abdominopelvic spiral CT scan using impact CT patient dosimetry

    Directory of Open Access Journals (Sweden)

    Ayoub Amirnia

    2017-05-01

    Full Text Available Background: Due to the presence of radiosensitive organs in the abdominopelvic region and increasing the number of requests for CT scan examinations, concerns about increasing radiation doses in patients has been greatly elevated. Therefore, the goal of this study was to determine the absorbed dose of radiosensitive organs and the effective dose in patients underwent abdominopelvic CT scan using ImPACT CT patient dosimetry Calculator (version 1.0.4, Imaging Performance Assessment on Computed Tomography, www.impactscan.org. Methods: This prospective cross-sectional study was conducted in Imam Reza Hospital from November to February 2015 February 2015 in the Imam Reza Hospital, in Urmia, Iran. The demographic and dosimetric information of 100 patients who underwent abdominopelvic CT scan in a 6-slice CT scanner were obtained through the data collection forms. The demographic data of the patients included age, weight, gender, and BMI. The dosimetric parameters included pitch value, CT dose volume index (CTDIvol, dose-length product (DLP, tube voltage, tube current, exposure time, collimation size, scan length, and scan time. To determine the absorbed dose of radiosensitive organs and also the effective dose in patients, ImPACT CT patient dosimetry calculator was used. Results: The results of this study demonstrated that the mean and standard deviation (SD of patients' effective dose in abdominopelvic CT scan was 4.927±0.164 mSv. The bladder in both genders had the greatest mean organ dose, which was 64.71±17.15 mGy for men and 77.56±18.48 mGy for women (P<0.001. Conclusion: The effective dose values of this examination are in the same range as previous studies, as well as International Commission on Radiological Protection (ICRP recommendations. However, the radiation dose from CT scan has the largest contribution to the medical imaging. According to the ALARA principle, it is recommended that the scan parameters, especially mAs, should be

  12. Development of methodology for assessment of absorbed dose and stopping power for low energy conversion electrons

    International Nuclear Information System (INIS)

    Almeida, Ivan Pedro Salati de

    1995-08-01

    The evaluation of absorbed dose in the case of external and internal contamination due to radionuclides is sometimes hard, because of the difficulties in the assessment of the absorbed dose caused by electrons with energy less than 100 KeV in mucous membrane. In this work, a methodology for assessment of absorbed dose and stopping power in VYNS (co-polymer of polivinyl chloride - acetate) absorbers, for the 62.5 KeV and 84-88 KeV energy 109 Cd conversion electrons, working with a 4 π proportional pressurized detector, is presented. In order to assure the reproducibility of measurement conditions, one of the detector halves has been used to obtain a spectrum of a thin 109 Cd source, without absorber. The other half of the detector was used in concomitance to obtain spectra with different thicknesses if absorber. The absorbed energy was obtained subtracting each spectrum with absorber from the spectrum without absorber, which were stored in a microcomputer connected to signal processing systems by ACE type interface. The VYNS weight and thickness were evaluated using common radionuclide metrology procedures. As VYNS has characteristics similar to a tissue equivalent material, the results obtained are consistent with dosimetric concepts and have a good agreement with those of the literature. (author)

  13. Absorbed doses for patients undergoing panoramic radiography, cephalometric radiography and CBCT

    Directory of Open Access Journals (Sweden)

    Małgorzata Wrzesień

    2017-10-01

    Full Text Available Objectives: Contemporary dental radiology offers a wide spectrum of imaging methods but it also contributes to an increase in the participation of dental radiological diagnosis in the patient’s exposure to ionizing radiation. The aim of this study is to determine the absorbed doses of the brain, spinal column, thyroid and eye lens for patients during panoramic radiography, cephalometric radiography and cone beam computed tomography (CBCT. Material and Methods: The thermoluminescent dosimetry and anthropomorphic phantom was used for measuring the doses. The 15 panoramic, 4 cephalometric and 4 CBCT exposures were performed by placing high-sensitivity thermoluminescent detectors (TLD in 18 anatomical points of the phantom. Results: The maximum absorbed dose recorded during performed measurements corresponds to the point representing the brainstem and it is 10 mGy. The dose value recorded by the TLD placed in the thyroid during CBCT imaging in relation to the panoramic radiography differs by a factor of 13.5. Conclusions: Cone beam computed tomography, in comparison with panoramic or cephalometric imaging technique, provides higher radiation doses to the patients. Int J Occup Med Environ Health 2017;30(5:705–713

  14. Gain and time resolution of 45 μm thin Low Gain Avalanche Detectors before and after irradiation up to a fluence of 1015 neq/cm2

    CERN Document Server

    Lange, J; Cavallaro, E; Chytka, L; Davis, P.M; Flores, D; Förster, F; Grinstein, S; Hidalgo, S; Komarek, T; Kramberger, G; Mandić, I; Merlos, A; Nozka, L; Pellegrini, G; Quirion, D; Sykora, T; Physics

    2018-01-01

    The gain showed the expected decrease at a fixed voltage for a lower initial implantation dose, as well as for a higher fluence due to effective acceptor removal in the multiplication layer. Time resolutions below 30 ps were obtained at the highest applied voltages for both implantation doses before irradiation. Also after an intermediate fluence of 3 × 1014 neq/cm2, similar values were measured since a higher applicable reverse bias voltage could recover most of the pre-irradiation gain...

  15. Scaling neutron absorbed dose distributions from one medium to another

    International Nuclear Information System (INIS)

    Awschalom, M.; Rosenberg, I.; Ten Haken, R.K.

    1982-11-01

    Central axis depth dose (CADD) and off-axis absorbed dose ratio (OAR) measurements were made in water, muscle and whole skeletal bone TE-solutions, mineral oil and glycerin with a clinical neutron therapy beam. These measurements show that, for a given neutron beam quality and field size, there is a universal CADD distribution at infinity if the depth in the phantom is expressed in terms of appropriate scaling lengths. These are essentially the kerma-weighted neutron mean free paths in the media. The method used in ICRU No. 26 to scale the CADD by the ratio of the densities is shown to give incorrect results. the OAR's measured in different media at depths proportional to the respective mean free paths were also found to be independent of the media to a good approximation. It is recommended that relative CADD and OAR measurements be performed in water because of its universality and convenience. A table of calculated scaling lengths is given for various neutron energy spectra and for various tissues and materials of practical importance in neutron dosimetry

  16. Absorbed Doses and Risk Estimates of {sup 211}At-MX35 F(ab'){sub 2} in Intraperitoneal Therapy of Ovarian Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Cederkrantz, Elin [Department of Radiation Physics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Andersson, Håkan [Department of Oncology, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Bernhardt, Peter; Bäck, Tom [Department of Radiation Physics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Hultborn, Ragnar [Department of Oncology, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Jacobsson, Lars [Department of Radiation Physics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Jensen, Holger [PET and Cyclotron Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Copenhagen (Denmark); Lindegren, Sture [Department of Radiation Physics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Ljungberg, Michael [Department of Medical Radiation Physics, Clinical Sciences, Lund University, Lund (Sweden); Magnander, Tobias; Palm, Stig [Department of Radiation Physics, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Albertsson, Per, E-mail: per.albertsson@oncology.gu.se [Department of Oncology, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden)

    2015-11-01

    Purpose: Ovarian cancer is often diagnosed at an advanced stage with dissemination in the peritoneal cavity. Most patients achieve clinical remission after surgery and chemotherapy, but approximately 70% eventually experience recurrence, usually in the peritoneal cavity. To prevent recurrence, intraperitoneal (i.p.) targeted α therapy has been proposed as an adjuvant treatment for minimal residual disease after successful primary treatment. In the present study, we calculated absorbed and relative biological effect (RBE)-weighted (equivalent) doses in relevant normal tissues and estimated the effective dose associated with i.p. administration of {sup 211}At-MX35 F(ab'){sub 2}. Methods and Materials: Patients in clinical remission after salvage chemotherapy for peritoneal recurrence of ovarian cancer underwent i.p. infusion of {sup 211}At-MX35 F(ab'){sub 2}. Potassium perchlorate was given to block unwanted accumulation of {sup 211}At in thyroid and other NIS-containing tissues. Mean absorbed doses to normal tissues were calculated from clinical data, including blood and i.p. fluid samples, urine, γ-camera images, and single-photon emission computed tomography/computed tomography images. Extrapolation of preclinical biodistribution data combined with clinical blood activity data allowed us to estimate absorbed doses in additional tissues. The equivalent dose was calculated using an RBE of 5 and the effective dose using the recommended weight factor of 20. All doses were normalized to the initial activity concentration of the infused therapy solution. Results: The urinary bladder, thyroid, and kidneys (1.9, 1.8, and 1.7 mGy per MBq/L) received the 3 highest estimated absorbed doses. When the tissue-weighting factors were applied, the largest contributors to the effective dose were the lungs, stomach, and urinary bladder. Using 100 MBq/L, organ equivalent doses were less than 10% of the estimated tolerance dose. Conclusion: Intraperitoneal {sup 211}At

  17. Radiation absorbed doses at radiographic examination of third molars.

    Science.gov (United States)

    Rehnmark-Larsson, S; Stenström, B; Julin, P; Richter, S

    1982-01-01

    The radiation absorbed doses to critical organs, i.e. the thyroid and salivary glands and the gonadal region, were measured at radiographic examination of third molars. A tissue equivalent phantom was used together with ionization chamber detectors and TLDs. In the maxilla three, and in the mandible four different projections were used; also an extraoral lateral view. The greatest thyroid dose, 35 muGy, came from a mandibular disto-oblique projection with the circular tube collimator and Ultra-Speed film. the thyroid dose from an extraoral lateral view with high sensitivity screens was 3.7 muGy. The doses in different parts of the parotid gland from the disto-oblique mandibular projection with Ultra-Speed film ranged between 2.65 and 0.052 mGy. The corresponding doses in the submandibular gland were 1.74 mGy beneath the mandible and 0.458 mGy in the fovea. A rectangular tube collimator reduced the doses by approximately 50%. the Ekta-Speed film required approximately 40% lower exposure than the Ultra-Speed film. Without shielding the gonadal doses from a complete examination of four third molars were of the same order of magnitude as from a full survey with intraoral films, i.e. 3-7 muGy. A horizontal radiation shield reduced the thyroid doses by between 12 and 46% and the gonadal doses by between 50 and 95%. The reduction effect from the shield was relatively greater when using the larger aperture of the tube collimator. Combinations of leaded aprons and soft leaded collars reduced the thyroid doses by between 15 and 42% and the gonadal doses by two orders of magnitude.

  18. The 1997 determination of the Australian standards of exposure and absorbed dose at {sup 60}Co

    Energy Technology Data Exchange (ETDEWEB)

    Huntley, R.B.; Boas, J.F. [Australian Radiation Laboratory, Yallambie, VIC (Australia); Van der Gaast, H. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1998-05-01

    The arrangements for the maintenance of the Australian standards for {sup 60}Co are described in detail. The primary standards are a graphite cavity chamber for exposure/air kerma and a graphite calorimeter for absorbed dose. These secondary standards are described and their responses in corresponding {sup 90}Sr reference sources are reported. Accurate ratios between the Australian Radiation Laboratory (ARL) and Australian Nuclear Science and Technology (ANSTO) {sup 90}Sr reference sources are derived for use in future calibrations. The value of 28.8 years for the half-life of {sup 90}Sr is confirmed. The usefulness of {sup 90}Sr reference source measurements in quality assurance is discussed. The charge sensitivity and linearity of the ANSTO electrometers are reported by two different methods and are compared with previous results. Calibration factors for all the secondary standard ionization chambers are given, in terms of exposure, air kerma and absorbed dose to water. Calibration factors are also given for most of the chambers in terms of absorbed dose to graphite. The methods of deriving the calibration factors are explained in detail, including all the corrections applied to both the primary and secondary standard measurements. Three alternative methods of deriving the absorbed dose to water calibration factors are compared. The reported calibration factors are compared with previous results. Changes in the Australian units of exposure, air kerma and absorbed dose to graphite and water are derived from changes in the corresponding calibration factors. The Australian units of exposure and air kerma have not changed significantly since 1990. The Australian unit of absorbed dose to graphite is now 1.1 % smaller than in 1993 and 1.3 % smaller than in 1990. The Australian unit of absorbed dose to water is now 1.4 % smaller than in 1993, but is only 0.9 % smaller than in 1990. Comparisons of the Australian standards of exposure/air kerma and absorbed dose with

  19. Influence of lead apron shielding on absorbed doses from cone-beam computed tomography.

    Science.gov (United States)

    Rottke, Dennis; Andersson, Jonas; Ejima, Ken-Ichiro; Sawada, Kunihiko; Schulze, Dirk

    2017-06-01

    The aim of the present work was to investigate absorbed and to calculate effective doses (EDs) in cone-beam computed tomography (CBCT). The study was conducted using examination protocols with and without lead apron shielding. A full-body male RANDO® phantom was loaded with 110 GR200A thermoluminescence dosemeter chips at 55 different sites and set up in two different CBCT systems (CS 9500®, ProMax® 3D). Two different protocols were performed: the phantom was set up (1) with and (2) without a lead apron. No statistically significant differences in organ and absorbed doses from regions outside the primary beam could be found when comparing results from exposures with and without lead apron shielding. Consequently, calculating the ED showed no significant differences between the examination protocols with and without lead apron shielding. For the ProMax® 3D with shielding, the ED was 149 µSv, and for the examination protocol without shielding 148 µSv (SD = 0.31 µSv). For the CS 9500®, the ED was 88 and 86 µSv (SD = 0.95 µSv), respectively, with and without lead apron shielding. The results revealed no statistically significant differences in the absorbed doses between examination with and without lead apron shielding, especially in organs outside the primary beam. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Absorbed doses from intraoral radiography with special emphasis on collimator dimensions

    International Nuclear Information System (INIS)

    Stenstroem, B.; Henrikson, C.O.; Holm, B.; Richter, S.; Huddinge Univ. Hospital, Huddinge

    1986-01-01

    Thermoluminescence dosimeters were used in a phantom head and on patients to measure the absorbed dose to organs of special interest from full surveys with intraoral films (20 exposures) and single bitewing exposures. Two x-ray machines were used, operating at 65 kVp. The apertures of the circular tube collimators had diameters of 55 mm and 48 mm. Rectangular (35 mm x44 mm) tube collimators were also used. The distance from the x-ray focus to the open end of the collimators (FSD) was 0.20 and 0.35 m. Exposure values for Kodak Ultra-Speed film (speed group D) were used. The maximum skin dose measured from the full surveys decreased by 25 per cent on changing from the circular to the rectangular apertures. Using 0.35 m FSD and rectangular collimator the maximum skin dose was 13 mGy. The absorbed doses to the salivary glands and the thyroid gland were significantly reduced on changing from circular to rectangular apertures. The doses in the central part of the parotid and the thyroid glands were then 0.5 and 0.12 mGy, respectively, from a full survey with 20 intraoral films. With a leaded shield the thyroid dose was reduced to 0.05 mGy. All dose values could be further reduced by 40 per cent by using Kodak Ektaspeed film (speed group E)

  1. Peculiarities of absorbed dose forming in some wild animals in Chornobyl,y exclusion zone

    International Nuclear Information System (INIS)

    Gaychenko, V.A.; Krainiuk, O.Yu.

    2015-01-01

    Based on field researches conducted in the exclusion zone of the Chernobyl nuclear power plant in the years after the accident, identified the peculiarities of formation absorbed doses in animals of different taxonomic and ecological groups that live in conditions of radioactive contamination of ecosystems. Was shown importance of consideration of radiation features on wild animals according to their life cycle, conditions and ways of life. Was displayed data about the importance of different types of irradiation according to the period of stay the animals in the ground, in burrows and nests. Was reviewed the questions about value of external and internal radiation in absorbed dose of different types of wildlife. Was shown the results of the calculation of the absorbed dose of bird embryos from egg shell

  2. Functional results of radioiodine therapy with a 300-GY absorbed dose in Graves' disease

    International Nuclear Information System (INIS)

    Willemsen, U.F.; Knesewitsch, P.; Kreisig, T.; Pickardt, C.R.; Kirsch, C.M.

    1993-01-01

    The aim of this study was to assess the results of high-dose radioiodine therapy given to 43 patients with recurrent hyperthyroidism due to Graves' disease between 1986 and 1992. We chose an intrathyroidal absorbed dose of 300 Gy and determined the applied activity individually, which ranged from 240 to 3120 MBq with a median of 752 MBq. Hperthyroidism was eliminated in 86% of cases after 3 months and in 100% after 12 months. No patient required a second radioiodine treatment. The incidnece of hyperthyroidism was 63% after 3 months and 93% after 18 months. Neither the pretherapeutic thyroid-stimulating immunoglobulin level nor the degree of co-existing endocrine ophthalmopathy was correlated with the time at which hypothyroidism developed. Patients with previous radioiodine therapy developed hypothyroidism earlier than patients with previous thyroid surgery. The results show that ablative radioiodine therapy with a 300-Gy absorbed dose is a very effective treatment of hyperthyroidism in Graves' disease, but it should be restricted to patients with recurrent hyperthyroidism combined with severe co-existing disorders or episodes of unfavourable reactions to antithyroid drugs. (orig.)

  3. Organ and effective dose coefficients for cranial and caudal irradiation geometries: photons

    International Nuclear Information System (INIS)

    Veinot, K.G.; Eckerman, K.F.; Hertel, N.E.

    2016-01-01

    With the introduction of new recommendations of the International Commission on Radiological Protection (ICRP) in Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors and the introduction of reference sex-specific computational phantoms. Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT) and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for photon irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue kerma and absorbed doses for caudal and cranial exposures to photons ranging in energy from 10 keV to 10 GeV have been performed using the MCNP6.1 radiation transport code and the adult reference phantoms of ICRP Publication 110. As with calculations reported in ICRP 116, the effects of charged-particle transport are evident when compared with values obtained by using the kerma approximation. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above ∼30 MeV the cranial and caudal values are greater. (authors)

  4. Estimation of absorbed dose for 2-[F-18]fluoro-2-deoxy-d- glucose using whole-body positron emission tomography and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Deloar, H.M.; Fujiwara, Takehiko; Shidahara, Miho; Nakamura, Takashi; Watabe, Hiroshi; Narita, Yuichiro; Itoh, Masatoshi; Miyake, Masayasu; Watanuki, Shoichi

    1998-01-01

    The purpose of this study was to measure the cumulated activity and absorbed dose in organs after i.v. administration of 18 F-FDG using whole-body PET and MRI. Whole-body dynamic emission scans for 18 F-FDG were performed in six normal volunteers after transmission scans. The total activity of a source organ was obtained from the activity concentration of the organ measured by whole-body PET and the volume of that organ measured by whole-body T1-weighted MRI. The cumulated activity of each source organ was calculated from the time-activity curve. Absorbed doses to the individuals were estimated by the MIRD (medical internal radiation dosimetry) method. Another calculation of cumulated activities and absorbed doses was performed using the organ volumes from the MIRD phantom and the ''Japanese reference man'' to investigate the discrepancy of actual individual results against the phantom results. The cumulated activities of 18 source organs were calculated, and absorbed doses of 27 target organs estimated. Among the target organs, bladder wall, brain and kidney received the highest doses for the above three sets of organ volumes. Using measured individual organ volumes, the average absorbed doses for those organs were found to be 3.1 x 10 -1 , 3.7 x 10 -2 and 2.8 x 10 -2 mGy/MBq, respectively. The mean effective doses in this study for individuals of average body weight (64.5 kg) and the MIRD phantom of 70 kg were the same, i.e. 2.9 x 10 -2 mSv/MBq, while for the Japanese reference man of 60 kg the effective dose was 2.1 x 10 -2 mSv/MBq. The results for measured organ volumes derived from MRI were comparable to those obtained for organ volumes from the MIRD phantom. Although this study considered 18 F-FDG, combined use of whole-body PET and MRI might be quite effective for improving the accuracy of estimations of the cumulated activity and absorbed dose of positron-labelled radiopharmaceuticals.(orig./MG) (orig.)

  5. SU-G-TeP2-05: Development of a Thimble Calorimeter for Absorbed Dose to Water Characterized in MV Photons

    International Nuclear Information System (INIS)

    Chen-Mayer, H; Bateman, F; Tosh, R; Bergstrom, P

    2016-01-01

    Purpose: To develop a thimble sized polystyrene calorimeter for use from kV to MV photons, as a primary reference standard for applications from diagnostic CT imaging to therapy beam dose determination. Methods: A polystyrene calorimeter about 1.5 cm diameter embedded with small thermistors was characterized in a 6 MV photon beam from a clinical accelerator at 5 nominal dose rates from 0.8 to 4 Gy/min. Irradiations were delivered with beam on/off cycles first at 60 s and then at 20 s. Two sets of phantom conditions were evaluated: 1) in a 30 cm diameter polyethylene cylinder, and 2) in 10 cm depth of a 30 cm water phantom. The temperature waveforms were recorded and analyzed for temperature rise, arriving at a dose to polystyrene. This value is compared with the result of measurements under identical conditions using an ionization chamber calibrated for absorbed dose to water. Monte Carlo simulations were performed on the measurement systems to estimate such a ratio. Results: The ratio of the dose determined by the calorimeter to the dose reported by the ionization chamber was aggregated from all 5 dose rates. The 60 s results show a much elevated response in both phantoms compared to their respective expected results based on simulation. This deviation was reduced when the on/off cycles were shortened to 20 s. This behavior was possibly due to the heat conduction effects in the small calorimeter body. Finite element modeling is being conducted to simulate this effect. Conclusion: A small solid plastic calorimeter offers the convenience of a portable absorbed dose standard based on direct measurement of energy deposition, but comes at the expense of heat transfer complications which need to be characterized. This work offers preliminary evidence of the behavior and quantitative assessment of the issues to be resolved in future investigations.

  6. SU-G-TeP2-05: Development of a Thimble Calorimeter for Absorbed Dose to Water Characterized in MV Photons

    Energy Technology Data Exchange (ETDEWEB)

    Chen-Mayer, H; Bateman, F; Tosh, R; Bergstrom, P [NIST, Gaithersburg, MD (United States)

    2016-06-15

    Purpose: To develop a thimble sized polystyrene calorimeter for use from kV to MV photons, as a primary reference standard for applications from diagnostic CT imaging to therapy beam dose determination. Methods: A polystyrene calorimeter about 1.5 cm diameter embedded with small thermistors was characterized in a 6 MV photon beam from a clinical accelerator at 5 nominal dose rates from 0.8 to 4 Gy/min. Irradiations were delivered with beam on/off cycles first at 60 s and then at 20 s. Two sets of phantom conditions were evaluated: 1) in a 30 cm diameter polyethylene cylinder, and 2) in 10 cm depth of a 30 cm water phantom. The temperature waveforms were recorded and analyzed for temperature rise, arriving at a dose to polystyrene. This value is compared with the result of measurements under identical conditions using an ionization chamber calibrated for absorbed dose to water. Monte Carlo simulations were performed on the measurement systems to estimate such a ratio. Results: The ratio of the dose determined by the calorimeter to the dose reported by the ionization chamber was aggregated from all 5 dose rates. The 60 s results show a much elevated response in both phantoms compared to their respective expected results based on simulation. This deviation was reduced when the on/off cycles were shortened to 20 s. This behavior was possibly due to the heat conduction effects in the small calorimeter body. Finite element modeling is being conducted to simulate this effect. Conclusion: A small solid plastic calorimeter offers the convenience of a portable absorbed dose standard based on direct measurement of energy deposition, but comes at the expense of heat transfer complications which need to be characterized. This work offers preliminary evidence of the behavior and quantitative assessment of the issues to be resolved in future investigations.

  7. SIFT: A method to verify the IMRT fluence delivered during patient treatment using an electronic portal imaging device

    International Nuclear Information System (INIS)

    Vieira, Sandra C.; Dirkx, Maarten L.P.; Heijmen, Ben J.M.; Boer, Hans C.J. de

    2004-01-01

    Purpose: Radiotherapy patients are increasingly treated with intensity-modulated radiotherapy (IMRT) and high tumor doses. As part of our quality control program to ensure accurate dose delivery, a new method was investigated that enables the verification of the IMRT fluence delivered during patient treatment using an electronic portal imaging device (EPID), irrespective of changes in patient geometry. Methods and materials: Each IMRT treatment field is split into a static field and a modulated field, which are delivered in sequence. Images are acquired for both fields using an EPID. The portal dose image obtained for the static field is used to determine changes in patient geometry between the planning CT scan and the time of treatment delivery. With knowledge of these changes, the delivered IMRT fluence can be verified using the portal dose image of the modulated field. This method, called split IMRT field technique (SIFT), was validated first for several phantom geometries, followed by clinical implementation for a number of patients treated with IMRT. Results: The split IMRT field technique allows for an accurate verification of the delivered IMRT fluence (generally within 1% [standard deviation]), even if large interfraction changes in patient geometry occur. For interfraction radiological path length changes of 10 cm, deliberately introduced errors in the delivered fluence could still be detected to within 1% accuracy. Application of SIFT requires only a minor increase in treatment time relative to the standard IMRT delivery. Conclusions: A new technique to verify the delivered IMRT fluence from EPID images, which is independent of changes in the patient geometry, has been developed. SIFT has been clinically implemented for daily verification of IMRT treatment delivery

  8. Current in-pile absorbed dose measurements at the Boris Kidric Institute of nuclear sciences - Vinca, Status report

    Energy Technology Data Exchange (ETDEWEB)

    Draganic, G I [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1966-11-15

    So far in-pile absorbed dose measurements have been limited only to experiments in the RA reactor at the Boris Kidric Institute of Nuclear Sciences at Vinca (6.5 D{sub 2}O moderated and 2% enriched uranium). The methods used for absorbed dose and neutron flux measurements were 1,2 discussed in some earlier reports at the IAEA meetings. The purpose of the present report is to illustrate the further development of methods of determining in-pile absorbed doses (author)

  9. The effect of incremental gamma-ray doses and incremental neutron fluences upon the performance of self-biased sup 1 sup 0 B-coated high-purity epitaxial GaAs thermal neutron detectors

    CERN Document Server

    Gersch, H K; Simpson, P A

    2002-01-01

    High-purity epitaxial GaAs sup 1 sup 0 B-coated thermal neutron detectors advantageously operate at room temperature without externally applied voltage. Sample detectors were systematically irradiated at fixed grid locations near the core of a 2 MW research reactor to determine their operational neutron dose threshold. Reactor pool locations were assigned so that fast and thermal neutron fluxes to the devices were similar. Neutron fluences ranged between 10 sup 1 sup 1 and 10 sup 1 sup 4 n/cm sup 2. GaAs detectors were exposed to exponential fluences of base ten. Ten detector designs were irradiated and studied, differentiated between p-i-n diodes and Schottky barrier diodes. The irradiated sup 1 sup 0 B-coated detectors were tested for neutron detection sensitivity in a thermalized neutron beam. Little damage was observed for detectors irradiated at neutron fluences of 10 sup 1 sup 2 n/cm sup 2 and below, but signals noticeably degraded at fluences of 10 sup 1 sup 3 n/cm sup 2. Catastrophic damage was appare...

  10. Absorbed dose conversion coefficients for embryo and foetus in neutron fields

    International Nuclear Information System (INIS)

    Chen, J.

    2007-01-01

    The Monte Carlo code MCNPX has been used to determine mean absorbed doses to the embryo and foetus when the mother is exposed to neutron fields. There are situations, such as on-board aircraft, where high-energy neutrons are often peaked in top down (TOP) direction. In addition to previous publications for standard irradiation geometries, this study provides absorbed dose conversion coefficients for the embryo of 8 weeks and the foetus of 3, 6 or 9 months at TOP irradiation geometry. The conversion coefficients are compared with the coefficients in isotropic irradiation (ISO). With increasing neutron energies, the conversion coefficients in TOP irradiation become dominant. A set of conversion coefficients is constructed from the higher value in either ISO or TOP irradiation at a given neutron energy. In cases where the irradiation geometry is not adequately known, this set of conversion coefficients can be used in a conservative dose assessment for embryo and foetus in neutron fields. (authors)

  11. Evaluation of absorbed radiation dose in mammography using Monte Carlo simulation; Avaliacao da dose absorvida em mamografia usando simulacao Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Bruno L.; Tomal, Alessandra [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Instituto de Fisica Gleb Wataghin

    2016-07-01

    Mammography is the main tool for breast cancer diagnosis, and it is based on the use of X-rays to obtain images. However, the glandular tissue present within the breast is highly sensitive to ionizing radiation, and therefore requires strict quality control in order to minimize the absorbed dose. The quantification of the absorbed dose in the breast tissue can be done by using Monte Carlo simulation, which allows a detailed study of the deposition of energy in different regions of the breast. Besides, the results obtained from the simulation can be associated with experimental data and provide values of dose interest, such as the dose deposited in glandular tissue. (author)

  12. Dose in water or dose in tissue. Still a theme of debate; Dosis en agua o dosis en tejido-todavia un tema de debate

    Energy Technology Data Exchange (ETDEWEB)

    Andreo, P.

    2015-07-01

    It is shown that the method used so Siebers to convert to Dw Dt, or vice versa, is incorrect. Due to the substantial difference between the electron fluence in water and various tissues, an additional correction for creep, several percent for some bone tissues, which is ignored in the method Siebers needed. Correction is necessary even if an environment that clinically adopted dose in tissue due to normalization of TPS because the beams are always calibrated in terms of absorbed dose in water. (Author)

  13. Evaluation of the absorbed dose in odontological computerized tomography; Avaliacao da dose absorvida em tomografia computadorizada odontologica

    Energy Technology Data Exchange (ETDEWEB)

    Legnani, Adriano; Schelin, Hugo R; Rocha, Anna Silvia P.S. da, E-mail: schelin@utfpr.edu.b, E-mail: anna@utfpr.edu.b [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Khoury, Helen J., E-mail: khoury@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2011-10-26

    This paper evaluated the absorbed dose at the surface entry known as 'cone beam computed tomography' (CBCT) in odontological computerized tomography. Examination were simulated with CBCT for measurements of dose. A phantom were filled with water, becoming scatter object of radiation. Thermoluminescent dosemeters were positioned on points correspondent to eyes and salivary glands

  14. The effect of dose enhancement near metal interfaces on synthetic diamond based X-ray dosimeters

    Science.gov (United States)

    Alamoudi, D.; Lohstroh, A.; Albarakaty, H.

    2017-11-01

    This study investigates the effects of dose enhancement on the photocurrent performance at metallic interfaces in synthetic diamond detectors based X-ray dosimeters as a function of bias voltages. Monte Carlo (MC) simulations with the BEAMnrc code were carried out to simulate the dose enhancement factor (DEF) and compared against the equivalent photocurrent ratio from experimental investigations. The MC simulation results show that the sensitive region for the absorbed dose distribution covers a few micrometers distances from the interface. Experimentally, two single crystals (SC) and one polycrystalline (PC) synthetic diamond samples were fabricated into detectors with carbon based electrodes by boron and carbon ion implantation. Subsequently; the samples were each mounted inside a tissue equivalent encapsulation to minimize unintended fluence perturbation. Dose enhancement was generated by placing copper, lead or gold near the active volume of the detectors using 50 kVp and 100 kVp X-rays relevant for medical dosimetry. The results show enhancement in the detectors' photocurrent performance when different metals are butted up to the diamond bulk as expected. The variation in the photocurrent measurement depends on the type of diamond samples, their electrodes' fabrication and the applied bias voltages indicating that the dose enhancement near the detector may modify their electronic performance.

  15. Patient-specific IMRT verification using independent fluence-based dose calculation software: experimental benchmarking and initial clinical experience

    International Nuclear Information System (INIS)

    Georg, Dietmar; Stock, Markus; Kroupa, Bernhard; Olofsson, Joergen; Nyholm, Tufve; Ahnesjoe, Anders; Karlsson, Mikael

    2007-01-01

    Experimental methods are commonly used for patient-specific intensity-modulated radiotherapy (IMRT) verification. The purpose of this study was to investigate the accuracy and performance of independent dose calculation software (denoted as 'MUV' (monitor unit verification)) for patient-specific quality assurance (QA). 52 patients receiving step-and-shoot IMRT were considered. IMRT plans were recalculated by the treatment planning systems (TPS) in a dedicated QA phantom, in which an experimental 1D and 2D verification (0.3 cm 3 ionization chamber; films) was performed. Additionally, an independent dose calculation was performed. The fluence-based algorithm of MUV accounts for collimator transmission, rounded leaf ends, tongue-and-groove effect, backscatter to the monitor chamber and scatter from the flattening filter. The dose calculation utilizes a pencil beam model based on a beam quality index. DICOM RT files from patient plans, exported from the TPS, were directly used as patient-specific input data in MUV. For composite IMRT plans, average deviations in the high dose region between ionization chamber measurements and point dose calculations performed with the TPS and MUV were 1.6 ± 1.2% and 0.5 ± 1.1% (1 S.D.). The dose deviations between MUV and TPS slightly depended on the distance from the isocentre position. For individual intensity-modulated beams (total 367), an average deviation of 1.1 ± 2.9% was determined between calculations performed with the TPS and with MUV, with maximum deviations up to 14%. However, absolute dose deviations were mostly less than 3 cGy. Based on the current results, we aim to apply a confidence limit of 3% (with respect to the prescribed dose) or 6 cGy for routine IMRT verification. For off-axis points at distances larger than 5 cm and for low dose regions, we consider 5% dose deviation or 10 cGy acceptable. The time needed for an independent calculation compares very favourably with the net time for an experimental approach

  16. Application of fluence field modulation to proton computed tomography for proton therapy imaging.

    Science.gov (United States)

    Dedes, G; De Angelis, L; Rit, S; Hansen, D; Belka, C; Bashkirov, V; Johnson, R P; Coutrakon, G; Schubert, K E; Schulte, R W; Parodi, K; Landry, G

    2017-07-12

    This simulation study presents the application of fluence field modulated computed tomography, initially developed for x-ray CT, to proton computed tomography (pCT). By using pencil beam (PB) scanning, fluence modulated pCT (FMpCT) may achieve variable image quality in a pCT image and imaging dose reduction. Three virtual phantoms, a uniform cylinder and two patients, were studied using Monte Carlo simulations of an ideal list-mode pCT scanner. Regions of interest (ROI) were selected for high image quality and only PBs intercepting them preserved full fluence (FF). Image quality was investigated in terms of accuracy (mean) and noise (standard deviation) of the reconstructed proton relative stopping power compared to reference values. Dose calculation accuracy on FMpCT images was evaluated in terms of dose volume histograms (DVH), range difference (RD) for beam-eye-view (BEV) dose profiles and gamma evaluation. Pseudo FMpCT scans were created from broad beam experimental data acquired with a list-mode pCT prototype. FMpCT noise in ROIs was equivalent to FF images and accuracy better than  -1.3%(-0.7%) by using 1% of FF for the cylinder (patients). Integral imaging dose reduction of 37% and 56% was achieved for the two patients for that level of modulation. Corresponding DVHs from proton dose calculation on FMpCT images agreed to those from reference images and 96% of BEV profiles had RD below 2 mm, compared to only 1% for uniform 1% of FF. Gamma pass rates (2%, 2 mm) were 98% for FMpCT while for uniform 1% of FF they were as low as 59%. Applying FMpCT to preliminary experimental data showed that low noise levels and accuracy could be preserved in a ROI, down to 30% modulation. We have shown, using both virtual and experimental pCT scans, that FMpCT is potentially feasible and may allow a means of imaging dose reduction for a pCT scanner operating in PB scanning mode. This may be of particular importance to proton therapy given the low integral dose found

  17. Estimation of absorbed and effective dose in {sup 18}F-FDG em PET- CT exams for diagnosis of lung cancer; Estimativa de dose absorvida e efetiva em exames de {sup 18}F-FDG em PET- CT para diagnostico de cancer de pulmao

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Guilherme Neto de Pinho; Santana, Priscila do Carmo, E-mail: guinpc1@ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Anatomia e Imagem; Oliveira, Paulo Marcio Campos de; Reis, Lucas Paixao dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-04-15

    This paper presents an evaluation of tissues and organs absorbed doses as well as the effective dose resulting from PET-CT scans performed with {sup 18}F-FDG radiopharmaceutical for lung cancer diagnosis in whole body scans. The ICRP-106 biokinetic model was used to estimate the absorbed and effective doses from the radiopharmaceutical for both male and female patient according to the characteristics of anthropomorphic Alderson Rando® simulators. Computer Tomography doses were evaluated using thermoluminescent detectors inserted in the same anthropomorphic simulators. Optimization protocols for image acquisition and the use of automatic exposure control were used in order to reduce patient doses, taking into account the equipment model and its system. The effective dose in female patients was 5.8 mSv. The effective dose in male patients was 8.4 mSv. The dose values estimated for the {sup 18}F-FDG PET-CT scan are below the values described in the literature. This is because the CT was not used for diagnostic but for morphological mapping. (author)

  18. Spectral fluence of neutrons generated by radiotherapeutic Linacs

    International Nuclear Information System (INIS)

    Kralik, Miloslav; Solc, Jaroslav; Smoldasova, Jana; Vondracek, Vladimir; Farkasova, Estera; Ticha, Ivana

    2015-01-01

    Spectral fluences of neutrons generated in the heads of the radiotherapeutic linacs Varian Clinac 2100 C/D and Siemens ARTISTE were measured by means of the Bonner spheres spectrometer whose active detector of thermal neutrons was replaced by an activation detector, i.e. a tablet made of pure manganese. Measurements with different collimator settings reveal an interesting dependence of neutron fluence on the area defined by the collimator jaws. The determined neutron spectral fluences were used to derive ambient dose equivalent rate along the treatment coach. To clarify at which components of the linac neutrons are mainly created, the measurements were complemented with MCNPX calculations based on a realistic model of the Varian Clinac. (authors)

  19. On the absorbed dose determination method in high energy photon beams

    International Nuclear Information System (INIS)

    Scarlat, F.; Scarisoreanu, A.; Oane, M.; Mitru, E.; Avadanei, C.

    2008-01-01

    The absorbed dose determination method in water, based on standards of air kerma or exposure in high energy photon beams generated by electron with energies in the range of 1 MeV to 50 MeV is presented herein. The method is based on IAEA-398, AAPM TG-51, DIN 6800-2, IAEA-381, IAEA-277 and NACP-80 recommendations. The dosimetry equipment is composed of UNIDOS T 10005 electrometer and different ionization chambers calibrated in air kerma method in a Co 60 beam. Starting from the general formalism showed in IAEA-381, the determination of absorbed dose in water, under reference conditions in high energy photon beams, is given. This method was adopted for the secondary standard dosimetry laboratory (SSDL) in NILPRP-Bucharest

  20. The development of fetal dosimetry and its application to a-bomb survivors exposed in utero

    International Nuclear Information System (INIS)

    Chen, J.

    2012-01-01

    The cohort of the atomic bomb survivors of Hiroshima and Nagasaki comprises the major basis for investigations of health effects induced by ionising radiation in humans. To study the health effects associated with radiation exposure before birth, fetal dosimetry is needed if significant differences exist between the fetal absorbed dose and the mother's uterine dose. Combining total neutron and gamma ray free-in-air fluences at 1 m above ground with fluence-to-absorbed dose conversion coefficients, fetal doses were calculated for various exposure orientations at the ground distance of 1500 m from the hypo-centres in Hiroshima and Nagasaki. The results showed that the mother's uterine dose can serve as a good surrogate for the dose of the embryo and fetus in the first trimester. However, significant differences exist between doses of the fetus of different ages. If the mother's uterine dose were used as a surrogate, doses to the fetus in the last two trimesters could be overestimated by more than 20 % for exposure orientations facing towards and away from the hypo-centre while significantly underestimated for lateral positions relative to the hypo-centre. In newer fetal models, the brain is modelled for all fetal ages. Brain doses to the 3-month fetus are generally higher than those to an embryo and fetus of other ages. In most cases, brain absorbed doses differ significantly from the doses to the entire fetal body. In order to accurately assess radiation effects to the fetal brain, it is necessary to determine brain doses separately. (author)

  1. Evaluation of the absorbed dose in odontological computerized tomography; Avaliacao da dose absorvida em tomografia computadorizada odontologica

    Energy Technology Data Exchange (ETDEWEB)

    Legnani, Adriano; Schelin, Hugo R.; Rocha, Anna Silvia P.S. da, E-mail: schelin@utfpr.edu.b, E-mail: anna@utfpr.edu.b [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Khoury, Helen J., E-mail: khoury@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2011-10-26

    This paper evaluated the absorbed dose at the surface entry known as 'cone beam computed tomography' (CBCT) in odontological computerized tomography. Examination were simulated with CBCT for measurements of dose. A phantom were filled with water, becoming scatter object of radiation. Thermoluminescent dosemeters were positioned on points correspondent to eyes and salivary glands

  2. Effects of dose fractionation on the response of alanine dosimetry

    International Nuclear Information System (INIS)

    Lundahl, Brad; Logar, John; Desrosiers, Marc; Puhl, James

    2014-01-01

    Alanine dosimetry is well established as a transfer standard and is becoming more prevalently used in routine dosimetry systems for radiation processing. Many routine measurement applications in radiation processing involve absorbed dose measurements resulting from fractioned exposures to ionizing radiation. Fractioning of absorbed dose is identified as an influence quantity (ISO/ASTM, 2013). This paper reports on study results of absorbed dose fractioning characteristics of alanine for gamma and high energy electron beam radiation sources. The results of this study indicate a radiation response difference due to absorbed dose fractioning in response can be observed after four fractionations for high-energy electron beams and no difference up to seven fractions for gamma rays using an ANOVA evaluation method. - Highlights: • Fractioning effects signaled in electron beam using an ANOVA at 6 equal increments. • Fractioning effects not signaled in gamma using an ANOVA up to 7 equal increments. • Insensitivity of alanine to dose fractioning indicates nominal impact on calibration

  3. Radiation absorbed dose to the lens in dacryoscintigraphy with /sup 99m/TcO4-1

    International Nuclear Information System (INIS)

    Robertson, J.S.; Brown, M.L.; Colvard, D.M.

    1979-01-01

    Calculations of the radiation dose to the lens for /sup 99m/TcO 4 - in dacryoscintigraphy are developed in some detail. The results indicate that the absorbed dose to the germinal epithelium of the lens is 2.2 x 10 -5 to 1.4 x 10 -4 rad/μCi (5.9 x 10 -12 to 3.8 x 10 -11 Gy/Bq) /sup 99m/TcO 4 - under physiological conditions. With blockage of the lacrimal drainage apparatus, the dose to the lens could increase to 4 x 10 -3 rad/μCi

  4. Estimation of organ-absorbed radiation doses during 64-detector CT coronary angiography using different acquisition techniques and heart rates: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Kosuke; Koshida, Kichiro; Kawashima, Hiroko (Dept. of Quantum Medical Technology, Faculty of Health Sciences, Kanazawa Univ., Kanazawa (Japan)), email: matsuk@mhs.mp.kanazawa-u.ac.jp; Noto, Kimiya; Takata, Tadanori; Yamamoto, Tomoyuki (Dept. of Radiological Technology, Kanazawa Univ. Hospital, Kanazawa (Japan)); Shimono, Tetsunori (Dept. of Radiology, Hoshigaoka Koseinenkin Hospital, Hirakata (Japan)); Matsui, Osamu (Dept. of Radiology, Faculty of Medicine, Kanazawa Univ., Kanazawa (Japan))

    2011-07-15

    Background: Though appropriate image acquisition parameters allow an effective dose below 1 mSv for CT coronary angiography (CTCA) performed with the latest dual-source CT scanners, a single-source 64-detector CT procedure results in a significant radiation dose due to its technical limitations. Therefore, estimating the radiation doses absorbed by an organ during 64-detector CTCA is important. Purpose: To estimate the radiation doses absorbed by organs located in the chest region during 64-detector CTCA using different acquisition techniques and heart rates. Material and Methods: Absorbed doses for breast, heart, lung, red bone marrow, thymus, and skin were evaluated using an anthropomorphic phantom and radiophotoluminescence glass dosimeters (RPLDs). Electrocardiogram (ECG)-gated helical and ECG-triggered non-helical acquisitions were performed by applying a simulated heart rate of 60 beats per minute (bpm) and ECG-gated helical acquisitions using ECG modulation (ECGM) of the tube current were performed by applying simulated heart rates of 40, 60, and 90 bpm after placing RPLDs on the anatomic location of each organ. The absorbed dose for each organ was calculated by multiplying the calibrated mean dose values of RPLDs with the mass energy coefficient ratio. Results: For all acquisitions, the highest absorbed dose was observed for the heart. When the helical and non-helical acquisitions were performed by applying a simulated heart rate of 60 bpm, the absorbed doses for heart were 215.5, 202.2, and 66.8 mGy for helical, helical with ECGM, and non-helical acquisitions, respectively. When the helical acquisitions using ECGM were performed by applying simulated heart rates of 40, 60, and 90 bpm, the absorbed doses for heart were 178.6, 139.1, and 159.3 mGy, respectively. Conclusion: ECG-triggered non-helical acquisition is recommended to reduce the radiation dose. Also, controlling the patients' heart rate appropriately during ECG-gated helical acquisition with

  5. On-Site Determination and Monitoring of Real-Time Fluence Delivery for an Operating UV Reactor Based on a True Fluence Rate Detector.

    Science.gov (United States)

    Li, Mengkai; Li, Wentao; Qiang, Zhimin; Blatchley, Ernest R

    2017-07-18

    At present, on-site fluence (distribution) determination and monitoring of an operating UV system represent a considerable challenge. The recently developed microfluorescent silica detector (MFSD) is able to measure the approximate true fluence rate (FR) at a fixed position in a UV reactor that can be compared with a FR model directly. Hence it has provided a connection between model calculation and real-time fluence determination. In this study, an on-site determination and monitoring method of fluence delivery for an operating UV reactor was developed. True FR detectors, a UV transmittance (UVT) meter, and a flow rate meter were used for fundamental measurements. The fluence distribution, as well as reduction equivalent fluence (REF), 10th percentile dose in the UV fluence distribution (F 10 ), minimum fluence (F min ), and mean fluence (F mean ) of a test reactor, was calculated in advance by the combined use of computational fluid dynamics and FR field modeling. A field test was carried out on the test reactor for disinfection of a secondary water supply. The estimated real-time REF, F 10 , F min , and F mean decreased 73.6%, 71.4%, 69.6%, and 72.9%, respectively, during a 6-month period, which was attributable to lamp output attenuation and sleeve fouling. The results were analyzed with synchronous data from a previously developed triparameter UV monitoring system and water temperature sensor. This study allowed demonstration of an accurate method for on-site, real-time fluence determination which could be used to enhance the security and public confidence of UV-based water treatment processes.

  6. Proceedings of the workshop 'Absorbed dose in water and air'

    International Nuclear Information System (INIS)

    Rapp, Benjamin; Bordy, Jean-Marc; Camacho Caldeira, Margarida Isabela; Sochor, Vladimir; Celarel, Aurelia; Cenusa, Constentin; Cenusa, Ioan; Donois, Marc; Dusciac, Dorin; Iliescu, Elena; Ostrowsky, Aime; Bercea, Sorin; Blideanu, Valentin; Bordy, Jean-Marc; Steurer, Andrea; Tiefenboeck, Wilhelm

    2017-05-01

    The project 'Absorbed dose in water and air' (Absorb) is aimed at sharing and improving the knowledge on the design of Primary Standards (calorimeter, cavity ionization chambers, free air ionization chambers) for 'dose' measurements in radiation therapy and diagnostic, the harmonization of calibration procedures, the determination of uncertainty and harmonization of uncertainty budgets. Within the framework of this project a workshop was organized at the LNE (Laboratoire National de metrologie et d'Essais) in Paris from February, 29 to March, 2 2016. This report is the proceeding of this workshop. It includes a state of the art of two bilateral collaborations, launched to go beyond the framework of Absorb, between CEA LIST (LNE) LNHB and in one hand IFIN-HH (Romania), and in the other hand IST-LPSR-LMRI (Portugal) to build primary cavity ionization chambers for photons emitted by cobalt-60 and Cesium-137. Absorb is a Joint Research Project of the European Metrology Programme for Innovation and Research (EMPIR) which is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

  7. Calculation of dose conversion factors for doses in the fingernails to organ doses at external gamma irradiation in air

    International Nuclear Information System (INIS)

    Khailov, A.M.; Ivannikov, A.I.; Skvortsov, V.G.; Stepanenko, V.F.; Orlenko, S.P.; Flood, A.B.; Williams, B.B.; Swartz, H.M.

    2015-01-01

    Absorbed doses to fingernails and organs were calculated for a set of homogenous external gamma-ray irradiation geometries in air. The doses were obtained by stochastic modeling of the ionizing particle transport (Monte Carlo method) for a mathematical human phantom with arms and hands placed loosely along the sides of the body. The resulting dose conversion factors for absorbed doses in fingernails can be used to assess the dose distribution and magnitude in practical dose reconstruction problems. For purposes of estimating dose in a large population exposed to radiation in order to triage people for treatment of acute radiation syndrome, the calculated data for a range of energies having a width of from 0.05 to 3.5 MeV were used to convert absorbed doses in fingernails to corresponding doses in organs and the whole body as well as the effective dose. Doses were assessed based on assumed rates of radioactive fallout at different time periods following a nuclear explosion. - Highlights: • Elemental composition and density of nails were determined. • MIRD-type mathematical human phantom with arms and hands was created. • Organ doses and doses to nails were calculated for external photon exposure in air. • Effective dose and nail doses values are close for rotational and soil surface exposures.

  8. Calculation of absorbed dose in water by chemical Fricke dosimetry

    International Nuclear Information System (INIS)

    Rodrigues, Adenilson Paiva; Meireles, Ramiro Conceicao

    2016-01-01

    This work is the result of a laboratory activity performed in Radiological Sciences Laboratory (CRL), linked to the State University of Rio de Janeiro (UERJ). This practice aimed to determine the absorbed dose to water, through the primary calibration method called dosimetry Fricke, which consists of ferrous ions (Fe + 2) to ferric (Fe + 3), generated by water radiolysis products which is the structural change of water molecule caused by ionizing radiation. A spectrophotometer was used to extract data for analysis at a wavelength (λ) 304 and 224 nm with function of measuring the absorbance using bottles with irradiated and nonirradiated Fricke solution. (author)

  9. Electron paramagnetic resonance measurements of absorbed dose in teeth from citizens of Ozyorsk

    Energy Technology Data Exchange (ETDEWEB)

    Wieser, A.; Semiochkina, N. [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Institute of Radiation Protection, Neuherberg (Germany); Vasilenko, E.; Aladova, E.; Smetanin, M. [Southern Urals Biophysics Institute, Ozyorsk (Russian Federation); Fattibene, P. [Istituto Superiore di Sanita, Rome (Italy)

    2014-05-15

    In 1945, within the frame of the Uranium Project for the production of nuclear weapons, the Mayak nuclear facilities were constructed at the Lake Irtyash in the Southern Urals, Russia. The nuclear workers of the Mayak Production Association (MPA), who lived in the city of Ozyorsk, are the focus of epidemiological studies for the assessment of health risks due to protracted exposure to ionising radiation. Electron paramagnetic resonance measurements of absorbed dose in tooth enamel have already been used in the past, in an effort to validate occupational external doses that were evaluated in the Mayak Worker Dosimetry System. In the present study, 229 teeth of Ozyorsk citizens not employed at MPA were investigated for the assessment of external background exposure in Ozyorsk. The annually absorbed dose in tooth enamel from natural background radiation was estimated to be (0.7 ± 0.3) mGy. For citizens living in Ozyorsk during the time of routine noble gas releases of the MPA, which peaked in 1953, the average excess absorbed dose in enamel above natural background was (36 ± 29) mGy, which is consistent with the gamma dose obtained by model calculations. In addition, there were indications of possible accidental gaseous MPA releases that affected the population of Ozyorsk, during the early and late MPA operation periods, before 1951 and after 1960. (orig.)

  10. Evaluation of patient absorbed dose in a PET-CT test

    International Nuclear Information System (INIS)

    Guerra P, F.; Mourao F, A. P.; Santana, P. C.

    2017-10-01

    Images of PET-CT has important diagnostic applications, especially in oncology. This equipment allows overlapping of functional images obtained from the administration of radionuclides and anatomical, generated by X-rays. The PET-CT technique may generate higher doses in patients due to the fact that two diagnostic modalities are used in a single examination. A whole body CT scan is performed and in sequence, a capture of the signal generated by the photons emitted is done. In this study, the absorbed and effective doses generated by the CT scan and incorporated by the administration of the radionuclide were evaluated in 19 organs. To evaluate the CT dose, 32 radiochromic film strips were correctly positioned into the anthropomorphic male phantom. The CT protocol performed was whole-body scanning and a high-resolution lung scan. This protocol is currently used in most services. The calculation of the effective dose from the injected activity in the patient was performed using the ICRP 106 Biokinetic model (ICRP 106, 2008). The activity to be injected may vary according to the patients body mass and with the sensitivity of the detector. The mass of the simulator used is 73.5 kg, then the simulation with and injected activity of 244.76 MBq was used. It was observed that 87.4% of the effective dose in examination PET/CT comes from the CT scans, being 63.8% of the whole body scan and 23.6% of high resolution lung scan. Using activity of 0.09 mCi x kg 18 F-FDG radiopharmaceutical contributes only 12.6% of the final effective dose. As a conclusion, it was observed that the dose in patients submitted to the 18 F-FDG PET-CT examination is high, being of great value efforts for its reduction, such as the use of appropriate image acquisition techniques and promoting the application of the principle of optimization of practice. (Author)

  11. Evaluation of patient absorbed dose in a PET-CT test

    Energy Technology Data Exchange (ETDEWEB)

    Guerra P, F.; Mourao F, A. P. [Federal University of Minas Gerais, Department of Nuclear Engineering, Av. Antonio Carlos 6627, CEP 31270-901, Pampulha, Belo Horizonte, Minas Gerais (Brazil); Santana, P. C., E-mail: fgpaiva92@gmail.com [Federal University of Minas Gerais, Medical School, Av. Prof. Alfredo Balena 190, CEP 30123970, Santa Efigenia, Belo Horizonte, Minas Gerais (Brazil)

    2017-10-15

    Images of PET-CT has important diagnostic applications, especially in oncology. This equipment allows overlapping of functional images obtained from the administration of radionuclides and anatomical, generated by X-rays. The PET-CT technique may generate higher doses in patients due to the fact that two diagnostic modalities are used in a single examination. A whole body CT scan is performed and in sequence, a capture of the signal generated by the photons emitted is done. In this study, the absorbed and effective doses generated by the CT scan and incorporated by the administration of the radionuclide were evaluated in 19 organs. To evaluate the CT dose, 32 radiochromic film strips were correctly positioned into the anthropomorphic male phantom. The CT protocol performed was whole-body scanning and a high-resolution lung scan. This protocol is currently used in most services. The calculation of the effective dose from the injected activity in the patient was performed using the ICRP 106 Biokinetic model (ICRP 106, 2008). The activity to be injected may vary according to the patients body mass and with the sensitivity of the detector. The mass of the simulator used is 73.5 kg, then the simulation with and injected activity of 244.76 MBq was used. It was observed that 87.4% of the effective dose in examination PET/CT comes from the CT scans, being 63.8% of the whole body scan and 23.6% of high resolution lung scan. Using activity of 0.09 mCi x kg {sup 18}F-FDG radiopharmaceutical contributes only 12.6% of the final effective dose. As a conclusion, it was observed that the dose in patients submitted to the {sup 18}F-FDG PET-CT examination is high, being of great value efforts for its reduction, such as the use of appropriate image acquisition techniques and promoting the application of the principle of optimization of practice. (Author)

  12. Determination of high level absorbed dose in a 60Co gamma ray field with ionization chambers

    International Nuclear Information System (INIS)

    Zhongying Li; Benjiang Mao; Lu Zhang

    1995-01-01

    This paper relates to the principles and methods for determining the absorbed dose of high energy photons radiation with ionization chambers, and its shows the doserate results of high level 60 Co γ-rays in water measured with Farmer chambers. The results with two kinds of chambers at a same point are consistent within 0.3%, and the total uncertainty is less than ± 4%. In the domestic intercomparison on determining high level absorbed dose in which 12 laboratories participated, the deviation of our result from the mean result of the intercomparison is -0.04% [Chen Yundong (1992). Summing up report on a high level absorbed dose intercomparison (in Chinese)]. (author)

  13. Poster - 52: Smoothing constraints in Modulated Photon Radiotherapy (XMRT) fluence map optimization

    International Nuclear Information System (INIS)

    McGeachy, Philip; Villarreal-Barajas, Jose Eduardo; Zinchenko, Yuriy; Khan, Rao

    2016-01-01

    Purpose: Modulated Photon Radiotherapy (XMRT), which simultaneously optimizes photon beamlet energy (6 and 18 MV) and fluence, has recently shown dosimetric improvement in comparison to conventional IMRT. That said, the degree of smoothness of resulting fluence maps (FMs) has yet to be investigated and could impact the deliverability of XMRT. This study looks at investigating FM smoothness and imposing smoothing constraint in the fluence map optimization. Methods: Smoothing constraints were modeled in the XMRT algorithm with the sum of positive gradient (SPG) technique. XMRT solutions, with and without SPG constraints, were generated for a clinical prostate scan using standard dosimetric prescriptions, constraints, and a seven coplanar beam arrangement. The smoothness, with and without SPG constraints, was assessed by looking at the absolute and relative maximum SPG scores for each fluence map. Dose volume histograms were utilized when evaluating impact on the dose distribution. Results: Imposing SPG constraints reduced the absolute and relative maximum SPG values by factors of up to 5 and 2, respectively, when compared with their non-SPG constrained counterparts. This leads to a more seamless conversion of FMS to their respective MLC sequences. This improved smoothness resulted in an increase to organ at risk (OAR) dose, however the increase is not clinically significant. Conclusions: For a clinical prostate case, there was a noticeable improvement in the smoothness of the XMRT FMs when SPG constraints were applied with a minor increase in dose to OARs. This increase in OAR dose is not clinically meaningful.

  14. Poster - 52: Smoothing constraints in Modulated Photon Radiotherapy (XMRT) fluence map optimization

    Energy Technology Data Exchange (ETDEWEB)

    McGeachy, Philip; Villarreal-Barajas, Jose Eduardo; Zinchenko, Yuriy; Khan, Rao [Department of Medical Physics, CancerCare Manitoba, Winnipeg, MB, CAN, Department of Physics and Astronomy, University of Calgary, Calgary, AB, CAN, Department of Mathematics and Statistics, University of Calgary, Calgary, AB, CAN, Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO (United States)

    2016-08-15

    Purpose: Modulated Photon Radiotherapy (XMRT), which simultaneously optimizes photon beamlet energy (6 and 18 MV) and fluence, has recently shown dosimetric improvement in comparison to conventional IMRT. That said, the degree of smoothness of resulting fluence maps (FMs) has yet to be investigated and could impact the deliverability of XMRT. This study looks at investigating FM smoothness and imposing smoothing constraint in the fluence map optimization. Methods: Smoothing constraints were modeled in the XMRT algorithm with the sum of positive gradient (SPG) technique. XMRT solutions, with and without SPG constraints, were generated for a clinical prostate scan using standard dosimetric prescriptions, constraints, and a seven coplanar beam arrangement. The smoothness, with and without SPG constraints, was assessed by looking at the absolute and relative maximum SPG scores for each fluence map. Dose volume histograms were utilized when evaluating impact on the dose distribution. Results: Imposing SPG constraints reduced the absolute and relative maximum SPG values by factors of up to 5 and 2, respectively, when compared with their non-SPG constrained counterparts. This leads to a more seamless conversion of FMS to their respective MLC sequences. This improved smoothness resulted in an increase to organ at risk (OAR) dose, however the increase is not clinically significant. Conclusions: For a clinical prostate case, there was a noticeable improvement in the smoothness of the XMRT FMs when SPG constraints were applied with a minor increase in dose to OARs. This increase in OAR dose is not clinically meaningful.

  15. The use of Fricke dosimeter to determine the absorbed dose from brachytherapy equipment in the Northeastern Brazil

    International Nuclear Information System (INIS)

    Souza, Vivianne Lucia B.; Cunha, Manuela S.; Figueiredo, Marcela D.C.; Santos, Carla D.A.; Rodrigues, Kelia R.G.; Lira, Gabriela B.S.; Silva, Danubia B.; Melo, Roberto T.

    2011-01-01

    This paper describes the practical results of an assessment of the situation of brachytherapy services throughout the Northeast. A Fricke dosimetry system capable of verifying the dose absorbed in water, prepared by researchers from the Regional Center of Nuclear Sciences was brought to public hospitals in the Northeast. The system not only evaluates if the applied (measured) dose is close to the calculated (prescribed) dose, but is also capable of verifying human errors and/or mechanical or the International Atomic Energy Agency (IAEA) standards regarding the percentage of allowed difference between the prescribed dose and dose measurement. (author)

  16. Three-dimensional determination of absorbed dose by spectrophotometric analysis of ferrous-sulphate agarose gel

    International Nuclear Information System (INIS)

    Gambarini, G.; Gomarasca, G.; Marchesini, R.; Pecci, A.; Pirola, L.; Tomatis, S.

    1999-01-01

    We describe a technique to obtain three-dimensional (3-D) imaging of an absorbed dose by optical transmittance measurements of phantoms composed by agarose gel in which a ferrous sulphate and xylenol orange solution are incorporated. The analysis of gel samples is performed by acquiring transmittance images with a system based on a CCD camera provided with an interference filter matching the optical absorption peak of interest. The proposed technique for 3-D measurements of an absorbed dose is based on the imaging of phantoms composed of sets of properly piled up gel slices. The slice thickness was optimized in order to obtain a good image contrast as well as a good in-depth spatial resolution. To test the technique, a phantom has been irradiated with a collimated γ-beam and then analysed. Proper software was adapted in order to visualise the images of all slices and to attain the 2-D profiles of the dose absorbed by each slice

  17. Comparison of absorbed dose in the cervix carcinoma therapy by brachytherapy of high dose rate using the conventional planning and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Silva, Aneli Oliveira da

    2010-01-01

    This study aims to compare the doses received for patients submitted to brachytherapy High Dose Rate (HDR) brachytherapy, a method of treatment of the cervix carcinoma, performed in the planning system PLATO BPS with the doses obtained by Monte Carlo simulation using the radiation transport code MCNP 5 and one female anthropomorphic phantom based on voxel, the FAX. The implementation of HDR brachytherapy treatment for the cervix carcinoma consists of the insertion of an intrauterine probe and an intravaginal probe (ring or ovoid) and then two radiographs are obtained, anteroposterior (AP) and lateral (LAT) to confirm the position of the applicators in the patient and to allow the treatment planning and the determination of the absorbed dose at points of interest: rectum, bladder, sigmoid and point A, which corresponds anatomically to the crossings of the uterine arteries with ureters The absorbed doses obtained with the code MCNP 5, with the exception of the absorbed dose in the rectum and sigmoid for the simulation considering a point source of 192 Ir, are lower than the absorbed doses from PLATO BPS calculations because the MCNP 5 considers the chemical compositions and densities of FAX body, not considering the medium as water. When considering the Monte Carlo simulation for a source with dimensions equal to that used in the brachytherapy irradiator used in this study, the values of calculated absorbed dose to the bladder, to the rectum, to the right point A and to the left point A were respectively lower than those determined by the treatment planning system in 33.29, 5.01, 22.93 and 19.04%. These values are almost all larger than the maximum acceptable deviation between patient planned and administered doses (5 %). With regard to the rectum and bladder, which are organs that must be protected, the present results are in favor of the radiological protection of patients. The point A, that is on the isodose of 100%, used to tumor treatment, the results indicate

  18. WE-AB-209-10: Optimizing the Delivery of Sequential Fluence Maps for Efficient VMAT Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Craft, D [Massachusetts General Hospital, Cambridge, MA (United States); Balvert, M [Tilburg University, Tilburg (Netherlands)

    2016-06-15

    Purpose: To develop an optimization model and solution approach for computing MLC leaf trajectories and dose rates for high quality matching of a set of optimized fluence maps to be delivered sequentially around a patient in a VMAT treatment. Methods: We formulate the fluence map matching problem as a nonlinear optimization problem where time is discretized but dose rates and leaf positions are continuous variables. For a given allotted time, which is allocated across the fluence maps based on the complexity of each fluence map, the optimization problem searches for the best leaf trajectories and dose rates such that the original fluence maps are closely recreated. Constraints include maximum leaf speed, maximum dose rate, and leaf collision avoidance, as well as the constraint that the ending leaf positions for one map are the starting leaf positions for the next map. The resulting model is non-convex but smooth, and therefore we solve it by local searches from a variety of starting positions. We improve solution time by a custom decomposition approach which allows us to decouple the rows of the fluence maps and solve each leaf pair individually. This decomposition also makes the problem easily parallelized. Results: We demonstrate method on a prostate case and a head-and-neck case and show that one can recreate fluence maps to high degree of fidelity in modest total delivery time (minutes). Conclusion: We present a VMAT sequencing method that reproduces optimal fluence maps by searching over a vast number of possible leaf trajectories. By varying the total allotted time given, this approach is the first of its kind to allow users to produce VMAT solutions that span the range of wide-field coarse VMAT deliveries to narrow-field high-MU sliding window-like approaches.

  19. Functional results of radioiodine therapy with a 300-GY absorbed dose in Graves' disease

    Energy Technology Data Exchange (ETDEWEB)

    Willemsen, U.F. (Dept. of Nuclear Medicine, Dept. of Radiology, Muenchen (Germany)); Knesewitsch, P. (Dept. of Nuclear Medicine, Dept. of Radiology, Muenchen (Germany)); Kreisig, T. (Dept. of Nuclear Medicine, Dept. of Radiology, Muenchen (Germany)); Pickardt, C.R. (Dept. of Internal Medicine, Muenchen Univ. (Germany)); Kirsch, C.M. (Dept. of Nuclear Medicine, Dept. of Radiology, Muenchen (Germany))

    1993-11-01

    The aim of this study was to assess the results of high-dose radioiodine therapy given to 43 patients with recurrent hyperthyroidism due to Graves' disease between 1986 and 1992. We chose an intrathyroidal absorbed dose of 300 Gy and determined the applied activity individually, which ranged from 240 to 3120 MBq with a median of 752 MBq. Hperthyroidism was eliminated in 86% of cases after 3 months and in 100% after 12 months. No patient required a second radioiodine treatment. The incidnece of hyperthyroidism was 63% after 3 months and 93% after 18 months. Neither the pretherapeutic thyroid-stimulating immunoglobulin level nor the degree of co-existing endocrine ophthalmopathy was correlated with the time at which hypothyroidism developed. Patients with previous radioiodine therapy developed hypothyroidism earlier than patients with previous thyroid surgery. The results show that ablative radioiodine therapy with a 300-Gy absorbed dose is a very effective treatment of hyperthyroidism in Graves' disease, but it should be restricted to patients with recurrent hyperthyroidism combined with severe co-existing disorders or episodes of unfavourable reactions to antithyroid drugs. (orig.)

  20. Standardization of high-dose measurement of electron and gamma ray absorbed doses and dose rates

    International Nuclear Information System (INIS)

    McLaughlin, W.L.

    1985-01-01

    Intense electron beams and gamma radiation fields are used for sterilizing medical devices, treating municipal wastes, processing industrial goods, controlling parasites and pathogens, and extending the shelf-life of foods. Quality control of such radiation processes depends largely on maintaining measurement quality assurance through sound dosimetry procedures in the research leading to each process, in the commissioning of that process, and in the routine dose monitoring practices. This affords documentation as to whether satisfactory dose uniformity is maintained throughout the product and throughout the process. Therefore, dosimetry at high doses and dose rates must in many radiation processes be standardized carefully, so that 'dosimetry release' of a product is verified. This standardization is initiated through preliminary dosimetry intercomparison studies such as those sponsored recently by the IAEA. This is followed by establishing periodic exercises in traceability to national or international standards of absorbed dose and dose rate. Traceability is achieved by careful selection of dosimetry methods and proven reference dosimeters capable of giving sufficiently accurate and precise 'transfer' dose assessments: (1) they must be calibrated or have well-established radiation-yield indices; (2) their radiation response characteristics must be reproducible and cover the dose range of interest; (3) they must withstand the rigours of back-and-forth mailing between a central standardizing laboratory and radiation processing facilities, without excessive errors arising due to instabilities, dosimeter batch non-uniformities, and environmental and handling stresses. (author)

  1. Variations in absorbed doses from 59Fe in different diseases

    International Nuclear Information System (INIS)

    Roth, P.; Werner, E.; Henrichs, K.; Elsasser, U.; Kaul, A.

    1986-01-01

    The biokinetics of radiopharmaceuticals administered in vivo may vary considerably with changes in organ functions. They studied the variations in absorbed doses from 59 Fe in 207 patients with different diseases, in whom ferrokinetic investigations were performed for diagnostic purposes. Radiation doses to the bone marrow were highest in patients with deserythropoietic anemias (mean 38 nSv/Bq, range 19 - 57 nSv/Bq) and in hemolytic anemias (mean 21 nSv/Bq, range 7 - 35 nSv/Bq), whereas lower and rather constant values were found in other diseases (mean values between 9 and 13 nSv/Bq). The highest organ doses, the greatest differences with respect to diagnosis and also the largest variations within each group of patients were found for liver and spleen (e. g. in aplastic anemia; liver: 66 nSv/Bq, range 29 - 104 nSv/Bq; spleen: 57 nSv/Bq, range 34 - 98 nSv/Bq. In iron deficiency; liver: 13 nSv/Bq range 12 - 14 nSv/q; spleen: 19 nSv/Bq, range 18 - 20 nSv/Bq). Lower organ doses and smaller variations within and between the groups of patients were found for the gonads (means 3 - 7 nSv/Bq), the kidneys (means 10 - 13 nSv/Bq), the bone (means 4 - 7 nSv/Bq), the lung (means 8 - 12 nSv/Bq), and the total body (means 6 - 8 nSv/Bq). In patients with chronic bleeding absorbed doses decrease concomitantly to the extent of blood loss. The D/sub E/ is not markedly affected by the variations in organ doses but is fairly constant for different diseases. 16 references, 1 figure, 3 tables

  2. Intercomparison of absorbed dose to water and air-kerma based dosimetry protocols for photon and electron beams

    International Nuclear Information System (INIS)

    Huq, M.S.

    2002-01-01

    Full text: During the last three decades the International Atomic Energy Agency (IAEA), the American Association of Physicists in Medicine (AAPM) and organizations from various countries have published Codes of Practice (CoP) and dosimetry protocols for the calibration of high-energy photon and electron beams. They are based on the air-kerma or exposure calibration factor of an ionization chamber in a 60 Co gamma ray beam and formalism for the determination of absorbed dose to water in reference conditions. In recent years, the IAEA (IAEA TRS-398) and the AAPM (AAPM TG-51) have published new external beam dosimetry protocols that are based on the use of an ionization chamber calibrated in terms of absorbed dose to water in a standards laboratory's reference quality beam. These two new protocols follow those by the German Standard DIN, the British IPSM and the IAEA CoP for plane-parallel chambers, which have discussed and implemented the procedures for the determination of absorbed dose-to-water based on standards of absorbed dose-to-water. Since the publication of these protocols and CoPs, many comparisons, theoretical as well as experimental, between them have been published in the literature providing valuable information about the sources of similarities and discrepancies that exist among them. For example, the differences in the basic data for photon and electron beams included in the various IAEA CoPs are very small for the second edition of TRS-277 for photons, TRS-381 for electrons and TRS-398. In these cases the data changes posed by the adoption of TRS-398 are within about ±0.3% for the most commonly used energies. When implementing TRS-398 in these cases, the main difference will arise from the transition from K air to D w standards. For example, experimental comparison of absorbed doses between TRS-398 and TRS-277 for photons show an average difference of about 0.3% for most commonly used energies with a maximum difference of about 1% at a TPR 20

  3. Temporal shaping of nanosecond CO2 laser pulses in multiphoton saturable absorbers

    International Nuclear Information System (INIS)

    Haglund, R.F. Jr.

    1981-01-01

    It was shown that substantial temporal distortion of nanosecond 10.6 μm laser pulses occurs in traversing multiphoton saturable absorbers. The risetime and pulse delay effects appear to depend both on fluence and wavelength, and to be qualitatively consistent with predictions of a simple two-level absorption model

  4. Determination of conversion factors of kerma and fluence to ambient dose equivalent for X-rays generated between 50 kVp to 125 kVp

    International Nuclear Information System (INIS)

    Nogueira, Maria do Socorro

    1997-01-01

    The ambient dose equivalent was determined experimentally on the interval of energy of X ray applied in diagnostic radiology. A PMMA sphere was used to simulate the trunk human (phantom), based on the definition of the report ICRU 39. The absorbed dose in different positions in the phantom was determined using LiF-TLD 100. The X ray spectra were measured with a high-purity germanium detector (HP Ge). It was also determined the HVL and the effective energy in this energy range. The conversion coefficient of the K air and Φ to H * (d) were determined to 10, 50 and 60 mm deep in the PMMA sphere. The obtained values were compared with data of the literature. The maximum uncertainty obtained for the coefficients was 7.2%. All parameters were also determined to the X ray quality of the incident and transmitted beam by the patient, according to the recommendation of the standard DIN 6872. The conversion factor was calculated for those situations where the X-ray beam is transmitted by a layer and Pb and it is necessary to estimate the effective dose, as in the case of shielding project of radiology diagnosis room. (author)

  5. Calibration procedure for thermoluminescent dosemeters in water absorbed doses for Iridium-192 high dose rate sources

    International Nuclear Information System (INIS)

    Reyes Cac, Franky Eduardo

    2004-10-01

    Thermoluminescent dosimeters are used in brachytherapy services quality assurance programs, with the aim of guaranteeing the correct radiation dose supplied to cancer patients, as well as with the purpose of evaluating new clinical procedures. This work describes a methodology for thermoluminescent dosimeters calibration in terms of absorbed dose to water for 192 Ir high dose rate sources. The reference dose used is measured with an ionization chamber previously calibrated for 192 Ir energy quality, applying the methodology proposed by Toelli. This methodology aims to standardizing the procedure, in a similar form to that used for external radiotherapy. The work evolves the adaptation of the TRS-277 Code of the International Atomic Energy Agency, for small and big cavities, through the introduction for non-uniform experimental factor, for the absorbed dose in the neighborhood of small brachytherapy sources. In order to simulate a water medium around the source during the experimental work, an acrylic phantom was used. It guarantees the reproducibility of the ionization chamber and the thermoluminescent dosimeter's location in relation to the radiation source. The values obtained with the ionization chamber and the thermoluminescent dosimeters, exposed to a 192 Ir high dose rate source, were compared and correction factors for different source-detector distances were determined for the thermoluminescent dosimeters. A numeric function was generated relating the correction factors and the source-detector distance. These correction factors are in fact the thermoluminescent dosimeter calibration factors for the 192 Ir source considered. As a possible application of this calibration methodology for thermoluminescent dosimeters, a practical range of source-detector distances is proposed for quality control of 192 Ir high dose rate sources. (author)

  6. Evaluation of the Analytical Anisotropic Algorithm (AAA) in dose calculation for fields with non-uniform fluences considering heterogeneity correction; Avaliacao do Algoritmo Analitico Anisotropico (AAA) no calculo de dose para campos com fluencia nao uniforme considerando correcao de heterogeneidade

    Energy Technology Data Exchange (ETDEWEB)

    Bornatto, P.; Funchal, M.; Bruning, F.; Toledo, H.; Lyra, J.; Fernandes, T.; Toledo, F.; Marciao, C., E-mail: pricila_bornatto@yahoo.com.br [Hospital Erasto Gaertner (LPCC), Curitiba, PR (Brazil). Departamento de Radioterapia

    2014-08-15

    The purpose of this study is to evaluate the calculation of dose distribution AAA (Varian Medical Systems) for fields with non-uniform fluences considering heterogeneity correction. Five different phantoms were used with different density materials. These phantoms were scanned in the CT BrightSpeed (©GE Healthcare) upon the array of detectors MAPCHECK2 TM (Sun Nuclear Corporation) and irradiated in a linear accelerator 600 CD (Varian Medical Systems) 6MV and rate dose 400MU/min with isocentric setup. The fluences used were exported from IMRT plans, calculated by ECLIPSE™ planning system (Varian Medical Systems), and a 10x10 cm{sup 2} field to assess the heterogeneity correction for uniform fluence. The measured dose distribution was compared to the calculated by Gamma analysis with approval criteria of 3% / 3 mm and 10% threshold. The evaluation was performed using the software SNCPatient (Sun Nuclear Corporation) and considering absolute dose normalized at maximum. The phantoms best performers were those with low density materials, with an average of 99.2% approval. Already phantoms with plates of higher density material presented various fluences below 95% of the points approved. The average value reached 94.3%. It was observed a dependency between fluency and approved percentage points, whereas for the same fluency, 100% of the points have been approved in all phantoms. The approval criteria for IMRT plans recommended in most centers is 3% / 3mm with at least 95% of points approved, it can be concluded that, under these conditions, the IMRT plans with heterogeneity correction can be performed , however the quality control must be careful because the difficulty of the system to accurately predict the dose distribution in certain situations. (author)

  7. Absorbed doses received by patients submitted to chest radiographs in hospitals of the city of Sao Paulo, Brazil; Doses absorvidas pelos pacientes submetidos a radiografias toracicas em hospitais do municipio de Sao Paulo

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Marcelo Baptista de

    2000-07-01

    Medical irradiation contributes with a significant amount to the dose received by the population. Here, this contribution was evaluated in a survey of absorbed doses received by patients submitted to chest radiological examinations (postero-anterior (PA) and lateral (LAT) projections) in hospitals of the city of Sao Paulo. Due to the variety of equipment and procedures used in radiological examinations, a selection of hospitals was made (12, totalizing 27 X-ray facilities), taking into account their representativeness as medical institutions in the city, in terms of characteristics and number of radiographs carried out. An anthropomorphic phantom, provided with thermoluminescent dosemeters (TLD-1 00), was irradiated simulating the patient, and the radiographic image quality was evaluated. Absorbed doses were determined to the thoracic region (entrance and exit skin and lung doses), and to some important organs from the radiation protection point of view (lens of the eye, thyroid and gonads). The great variation on the exposure parameters (kV, mA.s, beam size) leads to a large interval of entrance skin doses-ESD (coefficients of variation, CV, of 60% and 76%, for PA and LAT projections, respectively, were found) and of organ doses (CV of 60% and 46%. for thyroid and lung respectively). Mean values of ESD for LAT and PA projections were 0.22 and 0.98 mGy, respectively. The average absorbed doses per exam (PA and LAT) to thyroid and lung, 0.15 and 0.24 mGy respectively,showed that the thyroid was irradiated by the primary beam in many cases. Values of lens of the eye and gonad absorbed doses were below 30 {mu}Gy. Comparison of the lung doses obtained in this study with values in the literature, calculated by Monte Carlo simulation, showed good agreement. On the other hand, the comparison shows significant differences in the dose values to organs outside the chest region (thyroid, lens of eye and gonads). The effective dose calculated for a chest examination, PA and

  8. Comparison of radiation absorbed dose in target organs in maxillofacial imaging with panoramic, conventional linear tomography, cone beam computed tomography and computed tomography

    Directory of Open Access Journals (Sweden)

    Panjnoush M.

    2009-12-01

    Full Text Available "nBackground and Aim: The objective of this study was to measure and compare the tissue absorbed dose in thyroid gland, salivary glands, eye and skin in maxillofacial imaging with panoramic, conventional linear tomography, cone beam computed tomography (CBCT and computed tomography (CT."nMaterials and Methods: Thermoluminescent dosimeters (TLD were implanted in 14 sites of RANDO phantom to measure average tissue absorbed dose in thyroid gland, parotid glands, submandibular glands, sublingual gland, lenses and buccal skin. The Promax (PLANMECA, Helsinki, Finland unit was selected for Panoramic, conventional linear tomography and cone beam computed tomography examinations and spiral Hispeed/Fxi (General Electric,USA was selected for CT examination. The average tissue absorbed doses were used for the calculation of the equivalent and effective doses in each organ."nResults: The average absorbed dose for Panoramic ranged from 0.038 mGY (Buccal skin to 0.308 mGY (submandibular gland, linear tomography ranged from 0.048 mGY (Lens to 0.510 mGY (submandibular gland,CBCT ranged from 0.322 mGY (thyroid glad to 1.144 mGY (Parotid gland and in CT ranged from 2.495 mGY (sublingual gland to 3.424 mGY (submandibular gland. Total effective dose in CBCT is 5 times greater than Panoramic and 4 times greater than linear tomography, and in CT, 30 and 22 times greater than Panoramic and linear tomography, respectively. Total effective dose in CT is 6 times greater than CBCT."nConclusion: For obtaining 3-dimensional (3D information in maxillofacial region, CBCT delivers the lower dose than CT, and should be preferred over a medical CT imaging. Furthermore, during maxillofacial imaging, salivary glands receive the highest dose of radiation.

  9. Absorbed dose determination in kilovoltage X-ray synchrotron radiation using alanine dosimeters.

    Science.gov (United States)

    Butler, D J; Lye, J E; Wright, T E; Crossley, D; Sharpe, P H G; Stevenson, A W; Livingstone, J; Crosbie, J C

    2016-12-01

    Alanine dosimeters from the National Physical Laboratory (NPL) in the UK were irradiated using kilovoltage synchrotron radiation at the imaging and medical beam line (IMBL) at the Australian Synchrotron. A 20 × 20 mm 2 area was irradiated by scanning the phantom containing the alanine through the 1 mm × 20 mm beam at a constant velocity. The polychromatic beam had an average energy of 95 keV and nominal absorbed dose to water rate of 250 Gy/s. The absorbed dose to water in the solid water phantom was first determined using a PTW Model 31014 PinPoint ionization chamber traceable to a graphite calorimeter. The alanine was read out at NPL using correction factors determined for 60 Co, traceable to NPL standards, and a published energy correction was applied to correct for the effect of the synchrotron beam quality. The ratio of the doses determined by alanine at NPL and those determined at the synchrotron was 0.975 (standard uncertainty 0.042) when alanine energy correction factors published by Waldeland et al. (Waldeland E, Hole E O, Sagstuen E and Malinen E, Med. Phys. 2010, 37, 3569) were used, and 0.996 (standard uncertainty 0.031) when factors by Anton et al. (Anton M, Büermann L., Phys Med Biol. 2015 60 6113-29) were used. The results provide additional verification of the IMBL dosimetry.

  10. A first order approximation of the tumor absorbed dose prior to treatment with Sr-89

    International Nuclear Information System (INIS)

    Manetou, A.; Toubanakis, N.; Lyra, M.; Lymouris, G.

    1994-01-01

    A new technique developed for the estimation of the absorbed dose prior to treatment with Sr-89 is presented. This technique implies that patient undergoes bone scanning with Tc-99m-MDP, two days before the administration of Sr-89. A number of sequential quantitative images are to be obtained over the first 8 hours after the Tc-99m-MDP injection and data are used to derive St-89 time retention curve. For the development of this technique a simplified model for the kinetics of both Sr-89 and Tc-99m-MDP was assumed. Data on the time retention of the two radiopharmaceuticals for a compartment including bone surface and bone space of trabecular and cortical bone for normal adults were combined together. A linear relationship was derived between the time required for the same percentage uptake of the two radiopharmaceuticals after single injection. The absorbed dose in the principal metastases and normal bone, of the same type and volume with the metastases, for two patients who were treated with Sr-89 for metastasized prostatic carcinoma are reported. (authors)

  11. Comparison of sources of exit fluence variation for IMRT

    International Nuclear Information System (INIS)

    Gardner, Joseph K; Gordon, J James; Wang Song; Siebers, Jeffrey V; Clews, Luke; Greer, Peter B

    2009-01-01

    The fluence exiting a patient during beam delivery can be used as treatment delivery quality assurance, either by direct comparison with expected exit fluences or by backprojection to reconstruct the patient dose. Multiple possible sources of measured exit fluence deviations exist, including changes in the beam delivery and changes in the patient anatomy. The purpose of this work is to compare the deviations caused by these sources. Machine delivery-related variability is measured by acquiring multiple dosimetric portal images (DPIs) of several test fields without a patient/phantom in the field over a time period of 2 months. Patient anatomy-related sources of fluence variability are simulated by computing transmission DPIs for a prostate patient using the same incident fluence for 11 different computed tomography (CT) images of the patient anatomy. The standard deviation (SD) and maximum deviation of the exit fluence, averaged over 5 mm x 5 mm square areas, is calculated for each test set. Machine delivery fluence SDs as large as 1% are observed for a sample patient field and as large as 2.5% for a picket-fence dMLC test field. Simulations indicate that day-to-day patient anatomy variations induce exit fluence SDs as large as 3.5%. The largest observed machine delivery deviations are 4% for the sample patient field and 7% for the picket-fence field, while the largest difference for the patient anatomy-related source is 8.5%. Since daily changes in patient anatomy can result in substantial exit fluence deviations, care should be taken when applying fluence back-projection to ensure that such deviations are properly attributed to their source. (note)

  12. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluence, are extracted by fits to a classic saturable absorber model. Further, we observe THz pulse......We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  13. Absorbed Dose Distribution in a Pulse Radiolysis Optical Cell

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    When a liquid solution in an optical cell is irradiated by an intense pulsed electron beam, it may be important in the chemical analysis of the solution to know the distribution of energy deposited throughout the cell. For the present work, absorbed dose distributions were measured by thin...... radiochromic dye film dosimeters placed at various depths in a quartz glass pulse radiolysis cell. The cell was irradiated with 30 ns pulses from a field-emission electron accelerator having a broad spectrum with a maximum energy of ≈MeV. The measured three-dimensional dose distributions showed sharp gradients...... in dose at the largest penetration depths in the cell and at the extreme lateral edges of the cell interior near the optical windows. This method of measurement was convenient because of the high spatial resolution capability of the detector and the linearity and absence of dose-rate dependence of its...

  14. Photon dose conversion coefficients for the human teeth in standard irradiation geometries

    Energy Technology Data Exchange (ETDEWEB)

    Ulanovsky, A; Wieser, A; Zankl, M; Jacob, P

    2005-07-01

    Photon dose conversion coefficients for the human tooth materials are computed in energy range from 0.01 to 10 MeV by the Monte Carlo method. The voxel phantom Golem of the human body with newly defined tooth region and a modified version of the EGS4 code have been used to compute the coefficients for 30 tooth cells with different locations and materials. The dose responses are calculated for cells representing buccal and lingual enamel layers. The computed coefficients demonstrate a strong dependence on energy and geometry of the radiation source and a weaker dependence on location of the enamel voxels. For isotropic and rotational radiation fields the enamel dose does not show a significant dependence on tooth sample locations. The computed coefficients are used to convert from absorbed dose in teeth to organ dose or to integral air kerma. Examples of integral conversion factors from enamel dose to air kerma are given for several photon fluences specific for the Mayak reprocessing plant in Russia. The integral conversion factors are strongly affected by the energy and angular distributions of photon fluence, which are important characteristics of an exposure scenario for reconstruction of individual occupational doses. (orig.)

  15. Calorimeter measurements of absorbed doses at the heavy water enriched uranium reactor

    International Nuclear Information System (INIS)

    Markovic, V.

    1961-12-01

    Application of calorimetry measurements of absorbed doses was imposed by the need of good knowledge of the absorbed dose values in the reactor experimental channels. Other methods are considered less reliable. The work was done in two phases: calorimetry measurements at lower reactor power (13-80 kW) by isothermal calorimeter, and differential calorimeter constructions for measurements at higher power levels (up to 1 MW). This report includes the following four annexes, papers: Isothermal calorimeter for reactor radiation monitoring, to be published; Calorimeter dosimetry of reactor radiation, presented at the Symposium about nuclear fuel held in april 1961; Radiation dosimetry of the reactor RA at Vinca, published in the Bull. Inst. Nucl. Sci. 1961; Differential calorimeter for reactor radiation dosimetry

  16. Test measurements on a secco white-lead containing model samples to assess the effects of exposure to low-fluence UV laser radiation

    International Nuclear Information System (INIS)

    Raimondi, Valentina; Andreotti, Alessia; Colombini, Maria Perla; Cucci, Costanza; Cuzman, Oana; Galeotti, Monica; Lognoli, David; Palombi, Lorenzo; Picollo, Marcello; Tiano, Piero

    2015-01-01

    Highlights: • A set of a secco model samples was prepared using white lead and four different organic binders (animal glue and whole egg, whole egg, skimmed milk, egg-oil tempera). • The samples were irradiated with low-fluence UV laser pulses (0.1–1 mJ/cm 2 ). • The effects of laser irradiation were analysed by using different techniques. • The analysis did not point out changes due to low-fluence laser irradiation. • High fluence (88 mJ/cm 2 ) laser radiation instead yielded a chromatic change ascribed to the inorganic component. - Abstract: Laser-induced fluorescence technique is widely used for diagnostic purposes in several applications and its use could be of advantage for non-invasive on-site characterisation of pigments or other compounds in wall paintings. However, it is well known that long-time exposure to UV and VIS radiation can cause damage to wall paintings. Several studies have investigated the effects of lighting, e.g., in museums: however, the effects of low-fluence laser radiation have not been studied much so far. This paper investigates the effects of UV laser radiation using fluences in the range of 0.1 mJ/cm 2 –1 mJ/cm 2 on a set of a secco model samples prepared with lead white and different type of binders (animal glue and whole egg, whole egg, skimmed milk, egg-oil tempera). The samples were irradiated using a Nd:YAG laser (emission wavelength at 355 nm; pulse width: 5 ns) by applying laser fluences between 0.1 mJ/cm 2 and 1 mJ/cm 2 and a number of laser pulses between 1 and 500. The samples were characterised before and after laser irradiation by using several techniques (colorimetry, optical microscopy, fibre optical reflectance spectroscopy, FT-IR spectroscopy Attenuated Total Reflectance microscopy and gas chromatography/mass spectrometry), to detect variations in the morphological and physico-chemical properties. The results did not point out significant changes in the sample properties after irradiation in the proposed

  17. Aspects of pre-dose and other luminescence phenomena in quartz absorbed dose estimation

    International Nuclear Information System (INIS)

    Adamiec, G.

    2000-01-01

    The understanding of all luminescence processes occurring in quartz is of paramount importance in the further development of robust absorbed dose estimation techniques (for the purpose of dating and retrospective dosimetry). The findings presented in this thesis, aid future improvements of absorbed dose estimation techniques using quartz by presenting investigations in the following areas: 1) interpretation of measurement results, 2) numerical modelling of luminescence in quartz, 3) phenomena needing inclusion in future physical models of luminescence. In the first part, the variability of properties of single quartz grains is examined. Through empirical and theoretical considerations, investigations are made of various problems of measurements of luminescence using multi-grain aliquots, and specifically areas where the heterogeneity of the sample at the inter-grain level may be misinterpreted at the multi-grain-aliquot level. The results obtained suggest that the heterogeneity of samples is often overlooked, and that such differences can have a profound influence on the interpretation of measurement results. Discussed are the shape of TL glow curves, OSL decay curves, dose response curves (including consequences for using certain signals as proxies for others), normalisation procedures and D E estimation techniques. Further, a numerical model of luminescence is proposed, which includes multiple R-centres and is used to describe the pre-dose sensitisation in quartz. The numerical model exhibits a broad-scale behaviour observed experimentally in a sample of annealed quartz. The shapes of TAC for lower (20 Gy) and higher doses (1 kGy) and the evolution with temperature of the isothermal sensitisation curves are qualitatively matched for the empirical and numerical systems. In the third area, a preliminary investigation of the properties of the '110 deg. C peak' in the 550 nm emission band, in annealed quartz is presented. These properties are in sharp contrast with

  18. Supplementary comparison CCRI(I)-S2 of standards for absorbed dose to water in 60Co gamma radiation at radiation processing dose levels

    DEFF Research Database (Denmark)

    Burns, D. T.; Allisy-Roberts, P. J.; Desrosiers, M. F.

    2011-01-01

    Eight national standards for absorbed dose to water in 60Co gamma radiation at the dose levels used in radiation processing have been compared over the range from 1 kGy to 30 kGy using the alanine dosimeters of the NIST and the NPL as the transfer dosimeters. The comparison was organized...... by the Bureau International des Poids et Mesures, who also participated at the lowest dose level using their radiotherapy-level standard for the same quantity. The national standards are in general agreement within the standard uncertainties, which are in the range from 1 to 2 parts in 102. Evidence of a dose...

  19. Fetus absorbed dose evaluation in head and neck radiotherapy procedures of pregnant patients

    International Nuclear Information System (INIS)

    Camargo da C, E.; Ribeiro da R, L. A.; Santos B, D. V.

    2014-08-01

    Each year a considerable amount of pregnant women needs to be submitted to radiotherapeutic procedures to combat malignant tumors. Radiation therapy is often a treatment of choice for these patients. It is possible to use shielding and beam positioning such that the potential dose to the fetus can be minimized. In this work the head and neck cancer treatment of a pregnant patient was experimentally simulated. The patient was simulated by an anthropomorphic Alderson phantom and the absorbed dose to the fetus was evaluated using micro-rod TLD-100 detectors in two conditions, namely protecting the patients abdomen with a 7 cm lead layer and using no abdomen shielding. The aim of this experiment was to evaluate the efficiency of the abdomen protection in reducing the fetus absorbed dose. Irradiations were performed with a Trilogy linear accelerator using x-rays of 6 MV. A total dose of 50 Gy to the target volume was delivered. The fetus doses evaluated with and without the lead shielding were, respectively, 0.52±0.039 and (0.88±0.052) c Gy, corresponding to a dose reduction of 59%. The dose (0.52±0.039) c Gy is within the zone of biological tolerance for the fetus. (Author)

  20. Fetus absorbed dose evaluation in head and neck radiotherapy procedures of pregnant patients

    Energy Technology Data Exchange (ETDEWEB)

    Camargo da C, E.; Ribeiro da R, L. A.; Santos B, D. V., E-mail: etieli@ird.gov.br [Instituto de Radioprotecao e Dosimetria / CNEN, Av. Salvador Allende s/n, Barra de Tijuca, 22783-127 Rio de Janeiro (Brazil)

    2014-08-15

    Each year a considerable amount of pregnant women needs to be submitted to radiotherapeutic procedures to combat malignant tumors. Radiation therapy is often a treatment of choice for these patients. It is possible to use shielding and beam positioning such that the potential dose to the fetus can be minimized. In this work the head and neck cancer treatment of a pregnant patient was experimentally simulated. The patient was simulated by an anthropomorphic Alderson phantom and the absorbed dose to the fetus was evaluated using micro-rod TLD-100 detectors in two conditions, namely protecting the patients abdomen with a 7 cm lead layer and using no abdomen shielding. The aim of this experiment was to evaluate the efficiency of the abdomen protection in reducing the fetus absorbed dose. Irradiations were performed with a Trilogy linear accelerator using x-rays of 6 MV. A total dose of 50 Gy to the target volume was delivered. The fetus doses evaluated with and without the lead shielding were, respectively, 0.52±0.039 and (0.88±0.052) c Gy, corresponding to a dose reduction of 59%. The dose (0.52±0.039) c Gy is within the zone of biological tolerance for the fetus. (Author)

  1. SU-F-207-05: Excess Heat Corrections in a Prototype Calorimeter for Direct Realization of CT Absorbed Dose to Phantom

    International Nuclear Information System (INIS)

    Chen-Mayer, H; Tosh, R

    2015-01-01

    Purpose: To reconcile air kerma and calorimetry measurements in a prototype calorimeter for obtaining absorbed dose in diagnostic CT beams. While corrections for thermal artifacts are routine and generally small in calorimetry of radiotherapy beams, large differences in relative stopping powers of calorimeter materials at the lower energies typical of CT beams greatly magnify their effects. Work-to-date on the problem attempts to reconcile laboratory measurements with modeling output from Monte Carlo and finite-element analysis of heat transfer. Methods: Small thermistor beads were embedded in a polystyrene (PS) core element of 1 cm diameter, which was inserted into a cylindrical HDPE phantom of 30 cm diameter and subjected to radiation in a diagnostic CT x-ray imaging system. Resistance changes in the thermistors due to radiation heating were monitored via lock-in amplifier. Multiple 3-second exposures were recorded at 8 different dose-rates from the CT system, and least-squares fits to experimental data were compared to an expected thermal response obtained by finite-element analysis incorporating source terms based on semi-empirical modeling and Monte Carlo simulation. Results: Experimental waveforms exhibited large thermal artifacts with fast time constants, associated with excess heat in wires and glass, and smaller steps attributable to radiation heating of the core material. Preliminary finite-element analysis follows the transient component of the signal qualitatively, but predicts a slower decay of temperature spikes. This was supplemented by non-linear least-squares fits incorporating semi-empirical formulae for heat transfer, which were used to obtain dose-to-PS in reasonable agreement with the output of Monte Carlo calculations that converts air kerma to absorbed dose. Conclusion: Discrepancies between the finite-element analysis and our experimental data testify to the very significant heat transfer correction required for absorbed dose calorimetry of

  2. SU-F-207-05: Excess Heat Corrections in a Prototype Calorimeter for Direct Realization of CT Absorbed Dose to Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Chen-Mayer, H; Tosh, R [NIST, Gaithersburg, MD (United States)

    2015-06-15

    Purpose: To reconcile air kerma and calorimetry measurements in a prototype calorimeter for obtaining absorbed dose in diagnostic CT beams. While corrections for thermal artifacts are routine and generally small in calorimetry of radiotherapy beams, large differences in relative stopping powers of calorimeter materials at the lower energies typical of CT beams greatly magnify their effects. Work-to-date on the problem attempts to reconcile laboratory measurements with modeling output from Monte Carlo and finite-element analysis of heat transfer. Methods: Small thermistor beads were embedded in a polystyrene (PS) core element of 1 cm diameter, which was inserted into a cylindrical HDPE phantom of 30 cm diameter and subjected to radiation in a diagnostic CT x-ray imaging system. Resistance changes in the thermistors due to radiation heating were monitored via lock-in amplifier. Multiple 3-second exposures were recorded at 8 different dose-rates from the CT system, and least-squares fits to experimental data were compared to an expected thermal response obtained by finite-element analysis incorporating source terms based on semi-empirical modeling and Monte Carlo simulation. Results: Experimental waveforms exhibited large thermal artifacts with fast time constants, associated with excess heat in wires and glass, and smaller steps attributable to radiation heating of the core material. Preliminary finite-element analysis follows the transient component of the signal qualitatively, but predicts a slower decay of temperature spikes. This was supplemented by non-linear least-squares fits incorporating semi-empirical formulae for heat transfer, which were used to obtain dose-to-PS in reasonable agreement with the output of Monte Carlo calculations that converts air kerma to absorbed dose. Conclusion: Discrepancies between the finite-element analysis and our experimental data testify to the very significant heat transfer correction required for absorbed dose calorimetry of

  3. Estimation of the total absorbed dose by quartz in retrospective conditions

    International Nuclear Information System (INIS)

    Correcher, V.; Delgado, A.

    2003-01-01

    The estimation of the total absorbed dose is of great interest in areas affected by a radiological accident when no conventional dosimetric systems are available. This paper reports about the usual methodology employed in dose reconstruction from the thermoluminescence (TL) properties of natural quartz, extracted from selected ceramic materials (12 bricks) picked up in the Chernobyl area. It has been possible to evaluate doses under 50mGy after more than 11 years later since the radiological accident happened. The main advance of this fact is the reduction of the commonly accepted limit dose estimation more than 20 times employing luminescence methods. (Author) 11 refs

  4. Development of the 60Co gamma-ray standard field for therapy-level dosimeter calibration in terms of absorbed dose to water (ND,W)

    International Nuclear Information System (INIS)

    Fukumura, Akifumi; Mizuno, Hideyuki; Fukahori, Mai; Sakata, Suoh

    2013-01-01

    A primary standard for the absorbed dose rate to water in a 60 Co gamma-ray field was established at National Metrology Institute of Japan (NMIJ) in fiscal year 2011. Then, a 60 Co gamma-ray standard field for therapy-level dosimeter calibration in terms of absorbed dose to water was developed at National Institute of Radiological Sciences (NIRS) as a secondary standard dosimetry laboratory (SSDL). The results of an International Atomic Energy Agency (IAEA)/World Health Organization (WHO) TLD SSDL audit demonstrated that there was good agreement between NIRS stated absorbed dose to water and IAEA measurements. The IAEA guide based on the International Organization for Standardization (ISO) standard was used to estimate the relative expanded uncertainty of the calibration factor for a therapy-level Farmer type ionization chamber in terms of absorbed dose to water (N D,W ) with the new field. The uncertainty of N D,W was estimated to be 1.1% (k=2), which corresponds to approximately one third of the value determined in the existing air kerma field. The dissemination of traceability of the calibration factor determined in the new field is expected to diminish the uncertainty of dose delivered to patients significantly. (author)

  5. Model of the absorbed dose on a small sphere into a gamma irradiation field

    International Nuclear Information System (INIS)

    Mangussi, J.

    2009-01-01

    Several models of the absorbed dose calculated as the energy deposited by the secondary electrons on a small volume sphere are presented. The calculations use the Compton scattering of a uniform photon beam in water, the photon attenuation and the electron stopping power are included. The sphere total absorbed dose is due to the stopping of the electrons generated in three regions: into the sphere volume, ahead and behind the sphere volume. Calculations are performed for spheres of different radius and placed at various depth of the vacuum - water interface. (author)

  6. SU-F-T-289: MLC Fluence Sonogram Based Delivery Quality Assurance for Bilateral Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Thiyagarajan, Rajesh; Karrthick, KP; Kataria, Tejinder; Mahendran, Ramu; Selvan, Tamil; Duraikannu, Palani [Division of Radiation Oncology, Medanta The Medicity, Gurgaon, Haryana (India); Raj, Nambi [Department of Physics, School of Advanced sciences, VIT University, Vellore (India); Arunai, N

    2016-06-15

    Purpose: Performing DQA for Bilateral (B-L) breast tomotherapy is a challenging task due to the limitation of any commercially available detector array or film. Aim of this study is to perform DQA for B-L breast tomotherapy plan using MLC fluence sinogram. Methods: Treatment plan was generated on Tomotherapy system for B-L breast tumour. B-L breast targets were given 50.4 Gy prescribed over 28 fractions. Plan is generated with 6 MV photon beam & pitch was set to 0.3. As the width of the total target is 39 cm (left & right) length is 20 cm. DQA plan delivered without any phantom on the mega voltage computed tomography (MCVT) detector system. The pulses recorded by MVCT system were exported to the delivery analysis software (Tomotherapy Inc.) for reconstruction. The detector signals are reconstructed to a sonogram and converted to MLC fluence sonogram. The MLC fluence sinogram compared with the planned fluence sinogram. Also point dose measured with cheese phantom and ionization chamber to verify the absolute dose component Results: Planned fluence sinogram and reconstructed MLC fluence sinogram were compared using Gamma metric. MLC positional difference and intensity of the beamlet were used as parameters to evaluate gamma. 3 mm positional difference and 3% beamlet intensity difference were used set for gamma calculation. A total of 26784 non-zero beamlets were included in the analysis out of which 161 beamlets had gamma more than 1. The gamma passing rate found to be 99.4%. Point dose measurements were within 1.3% of the calculated dose. Conclusion: MLC fluence sinogram based delivery quality assurance performed for bilateral breast irradiation. This would be a suitable alternate for large volume targets like bilateral breast, Total body irradiation etc. However conventional method of DQA should be used to validate this method periodically.

  7. International comparison of calibration standards for exposure and absorbed dose

    International Nuclear Information System (INIS)

    Horakova, I.; Wagner, R.

    1990-01-01

    A comparison was performed of the primary calibration standards for 60 Co gamma radiation dose from Czechoslovakia (UDZ CSAV, Prague), Austria (OEFZS/BEV Seibersdorf) and Hungary (OMH Budapest) using ND 1005 (absolute measurement) and V-415 (by means of N x ) graphite ionization chambers. BEV achieved agreement better than 0.1%, OMH 0.35%. Good agreement was also achieved for the values of exposure obtained in absolute values and those obtained via N x , this for the ND 1005/8105 chamber. The first ever international comparison involving Czechoslovakia was also performed of the unit of absorbed gamma radiation in a water and/or graphite phantom. The participants included Czechoslovakia (UDZ CSAV Prague), the USSR (VNIIFTRI Moscow) and Austria (OEFZS/BEV Seibersdorf). In all measurements, the agreement was better than 1%, which, in view of the differences in methodologies (VNIIFTRI, BEV: calorimetry, UDZ, UVVVR: ionometry) and the overall inaccuracies in determining the absorbed dose values, is a good result. (author)

  8. Absorbed-dose beam quality conversion factors for cylindrical chambers in high energy photon beams.

    Science.gov (United States)

    Seuntjens, J P; Ross, C K; Shortt, K R; Rogers, D W

    2000-12-01

    Recent working groups of the AAPM [Almond et al., Med. Phys. 26, 1847 (1999)] and the IAEA (Andreo et al., Draft V.7 of "An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water," IAEA, 2000) have described guidelines to base reference dosimetry of high energy photon beams on absorbed dose to water standards. In these protocols use is made of the absorbed-dose beam quality conversion factor, kQ which scales an absorbed-dose calibration factor at the reference quality 60Co to a quality Q, and which is calculated based on state-of-the-art ion chamber theory and data. In this paper we present the measurement and analysis of beam quality conversion factors kQ for cylindrical chambers in high-energy photon beams. At least three chambers of six different types were calibrated against the Canadian primary standard for absorbed dose based on a sealed water calorimeter at 60Co [TPR10(20)=0.572, %dd(10)x=58.4], 10 MV [TPR10(20)=0.682, %dd(10)x=69.6), 20 MV (TPR10(20)=0.758, %dd(10)x= 80.5] and 30 MV [TPR10(20) = 0.794, %dd(10)x= 88.4]. The uncertainty on the calorimetric determination of kQ for a single chamber is typically 0.36% and the overall 1sigma uncertainty on a set of chambers of the same type is typically 0.45%. The maximum deviation between a measured kQ and the TG-51 protocol value is 0.8%. The overall rms deviation between measurement and the TG-51 values, based on 20 chambers at the three energies, is 0.41%. When the effect of a 1 mm PMMA waterproofing sleeve is taken into account in the calculations, the maximum deviation is 1.1% and the overall rms deviation between measurement and calculation 0.48%. When the beam is specified using TPR10(20), and measurements are compared with kQ values calculated using the version of TG-21 with corrected formalism and data, differences are up to 1.6% when no sleeve corrections are taken into account. For the NE2571 and the NE2611A chamber types, for which the most literature data are

  9. Proton and photon absorbed-dose conversion coefficients for embryo and foetus from top-down irradiation geometry

    International Nuclear Information System (INIS)

    Chen, J.

    2007-01-01

    Absorbed-dose conversion coefficients are calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months when the mother's body is exposed to protons and photons from top-down (TOP) direction. It provides data sets in addition to other standard irradiation geometries published previously. The TOP-irradiation geometry is considered here, because high-energy particles are often peaked from the TOP direction onboard aircraft. The results show that absorbed-doses from high-energy particles could be underestimated significantly if isotropic (ISO) irradiation geometry is assumed. For protons of 100 GeV, absorbed-doses from TOP irradiation are ∼2.3-2.9 times higher than the doses from ISO irradiation for different foetal ages. For 10 GeV photons, foetal doses from TOP irradiation are ∼6.8-12 times higher than the doses from ISO irradiation. The coefficients from TOP-irradiation geometry are given in wide energy ranges, from 100 MeV to 100 GeV for protons and from 50 V to 10 GeV for photons. They can, therefore, be used in various applications whenever exposure from the TOP-irradiation direction is concerned. (authors)

  10. Absorbed Dose Rate Due to Intake of Natural Radionuclides by Tilapia Fish (Tilapia nilotica,Linnaeus, 1758) Estimated Near Uranium Mining at Caetite, Bahia, Brazil

    International Nuclear Information System (INIS)

    Pereira, Wagner de S; Kelecom, Alphonse; Azevedo Py Junior, Delcy de

    2008-01-01

    The uranium mining at Caetite (Uranium Concentrate Unit--URA) is in its operational phase. Aiming to estimate the radiological environmental impact of the URA, a monitoring program is underway. In order to preserve the biota of the deleterious effects from radiation and to act in a pro-active way as expected from a licensing body, the present work aims to use an environmental protection methodology based on the calculation of absorbed dose rate in biota. Thus, selected target organism was the Tilapia fish (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210). As, in Brazil there are no radiation exposure limits adopted for biota the value proposed by the Department of Energy (DOE) of the United States of 3.5x10 3 μGy y -1 has been used. The derived absorbed dose rate calculated for Tilapia was 2.51x10 0 μGy y -1 , that is less than 0.1% of the dose limit established by DOE. The critical radionuclide was Ra-226, with 56% of the absorbed dose rate, followed by U-238 with 34% and Th-232 with 9%. This value of 0.1% of the limit allows to state that, in the operational conditions analyzed, natural radionuclides do not represent a radiological problem to biota

  11. Effect of radiation quality on radical formation in ion-irradiated solid alanine

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Hitoshi; Ichikawa, Tsuneki; Yoshida, Hiroshi [Hokkaido Univ., Sapporo (Japan); Namba, Hideki; Taguchi, Mitsumasa; Kojima, Takuji

    1997-03-01

    Radical formation in solid alanine irradiated with H{sup +} and He{sup +} ions of 0.5-3.0 MeV and with heavy ions of hundreds of MeV was examined by the ESR method. Radical yield is constant below a critical fluence, and the yield decreases above the fluence. The critical fluence for the H{sup +} and He{sup +} ions is about 10{sup 12} ions cm{sup -2}, while the critical fluence for the heavy ions is 10{sup 10}-10{sup 11} ions cm{sup -2}. G-value of the radical formation (radicals per 100 eV absorbed dose) is obtained from the constant yield at the low fluences. The G-value depends on the radiation quality. This dependence is ascribed to the difference of local dose in the ion tracks. The fluence-yield curves were simulated with a model assuming cylindrical shape of ion tracks and dose-yield relationship for {gamma}-irradiation. This model well explains the fluence-yield curves for the ion irradiations. (author)

  12. Tumoral fibrosis effect on the radiation absorbed dose of 177Lu-Tyr3-octreotate-gold nanoparticles and 177Lu-Tyr3-octreotate radiopharmaceuticals

    International Nuclear Information System (INIS)

    Zambrano R, O. D.

    2015-01-01

    In this work was comparatively evaluated the effect of tumoral fibrosis in the radiation absorbed dose of the radiopharmaceutical 177 Lu-Tyr 3 -octreotate with and without gold nanoparticles. For this, was used an experimental array of tumoral fibrosis and computer models based on Monte Carlo calculations to simulate tumoral micro environments without fibrosis and with fibrosis. The computer simulation code Penelope (Penetration Energy Loss of Positron and Electrons) and MCNP (Monte Carlo N-particle Transport Code System) which are based on the Monte Carlo methodology were used to create the computer models for the simulation of the transport of particles (emitted by 177 Lu) in the micro environments (without fibrosis and with fibrosis) with the purpose of calculating the radiation absorbed dose in the interstitial space and in the nucleus of cancer cells. The first computational model consisted of multiple concentric spheres (as onion shells) with the radioactive source homogeneously distributed in the shell between 5 and 10 μm in diameter which represents the internalization of the radioactive source into the cell cytoplasm as it occurs in target specific radiotherapy. The concentric spheres were useful to calculate the radiation absorbed dose in depth in the models without fibrosis and with fibrosis. Furthermore, there were constructed other computer models using two different codes that simulate the transport of radiation (Penelope and MCNP). These models consist of seven spheres that represent cancer cells (HeLa cells) of 10 μm in diameter and each one of them contain another smaller sphere in the center that represents the cell nucleus. A comparison was done of the radiation absorbed dose in the nucleus of the cells, calculated with both codes, Penelope and MCNP. The radioactive source ( 177 Lu) used for the simulations was given to the codes by means of a convoluted spectrum of the most important beta particles (high percentage emission). To this spectrum

  13. Average fetal depth in utero: data for estimation of fetal absorbed radiation dose

    International Nuclear Information System (INIS)

    Ragozzino, M.W.; Breckle, R.; Hill, L.M.; Gray, J.E.

    1986-01-01

    To estimate fetal absorbed dose from radiographic examinations, the depth from the anterior maternal surface to the midline of the fetal skull and abdomen was measured by ultrasound in 97 pregnant women. The relationships between fetal depth, fetal presentation, and maternal parameters of height, weight, anteroposterior (AP) thickness, gestational age, placental location, and bladder volume were analyzed. Maternal AP thickness (MAP) can be estimated from gestational age, maternal height, and maternal weight. Fetal midskull and abdominal depths were nearly equal. Fetal depth normalized to MAP was independent or nearly independent of maternal parameters and fetal presentation. These data enable a reasonable estimation of absorbed dose to fetal brain, abdomen, and whole body

  14. Measurement and modeling of gamma-absorbed doses due to atmospheric releases from Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    Bowen, B.M.; Chen, A.I.; Olsen, W.A.; Van Etten, D.M.

    1985-01-01

    Short-term gamma-absorbed doses were measured by one high-pressure ionization chamber (HPIC) at an azimuth of 12 0 from the Los Alamos Meson Physics Facility (LAMPF) stack during the January 1 through February 8 operating cycle. Two HPICs were in the field during the September 8 through December 31 operating cycle, one north and the other north-northeast of the LAMPF stack, but they did not provide reliable data. Meteorological data were also measured at both East Gate and LAMPF. Airborne emission data were taken at the stack. Daily model predictions, based on the integration of modeled 15-min periods, were made for the first LAMPF operating cycle and were compared with the measured data. A comparison of the predicted and measured daily gamma doses due to LAMPF emissions is presented. There is very good correlation between measured and predicted values. During 39-day operating cycles, the model predicted an absorbed dose of 10.3 mrad compared with the 8.8 mrad that was measured, an overprediction of 17%

  15. Tissue effects of Ho:YAG laser with varying fluences and pulse widths

    Science.gov (United States)

    Vari, Sandor G.; van der Veen, Maurits J.; Pergadia, Vani R.; Shi, Wei-Qiang; Duffy, J. T.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1994-02-01

    We investigated the effect of varying fluence and pulse width on the ablation rate and consequent thermal damage of the Ho:YAG (2.130 micrometers ) laser. The rate of ablation on fresh bovine knee joint tissues, fibrous cartilage, hyaline cartilage, and bone in saline was determined after varying the fluence (160 - 640 J/cm2) and pulse width (150, 250, 450 microsecond(s) ec, FWHM) at a repetition rate of 2 Hz. A 400/440 micrometers fiber was used. The ablation rate increased linearly with the fluence. In fibrocartilage, different pulse durations generated significant changes in the ablation rates, but showed minor effects on hyaline cartilage and bone. The heat of ablation for all three tissue types decreased after lengthening the pulse.

  16. High conduction neutron absorber to simulate fast reactor environment in an existing test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Larry R. Greenwood; James R. Parry

    2014-06-22

    A new metal matrix composite material has been developed to serve as a thermal neutron absorber for testing fast reactor fuels and materials in an existing pressurized water reactor. The performance of this material was evaluated by placing neutron fluence monitors within shrouded and unshrouded holders and irradiating for up to four cycles. The monitor wires were analyzed by gamma and X-ray spectrometry to determine the activities of the activation products. Adjusted neutron fluences were calculated and grouped into three bins—thermal, epithermal, and fast—to evaluate the spectral shift created by the new material. A comparison of shrouded and unshrouded fluence monitors shows a thermal fluence decrease of ~11 % for the shielded monitors. Radioisotope activity and mass for each of the major activation products is given to provide insight into the evolution of thermal absorption cross-section during irradiation. The thermal neutron absorption capability of the composite material appears to diminish at total neutron fluence levels of ~8 × 1025 n/m2. Calculated values for dpa in excess of 2.0 were obtained for two common structural materials (iron and nickel) of interest for future fast flux experiments.

  17. Irradiation induced creep in graphite with respect to the flux effect and the high fluence behaviour

    International Nuclear Information System (INIS)

    Cundy, M.R.

    1984-01-01

    In accelerated irradiation creep tests, performed in the HFR Petten, in a fast neutron flux of about 2x10 4 cm -2 s -1 and at temperatures of 300 and 500 0 C, a fast neutron fluence in excess of 20x10 21 cm -2 (EDN) has been attained so far. As a supplement to this, an analogous creep test was conducted in a fast neutron flux lower by a factor of four which is more typical for the service conditions in a HTR, with a maximum fast fluence of only 4x10 21 cm -2 (EDN). This experiment was aimed at answering the question if, for equal fast fluence, enhanced irradiation creep and Wigner dimensional change would take place in a reduced fast neutron flux. This problem has more generally been addressed to as the ''flux effect'' or the ''equivalent temperature concept''. (orig./IHOE)

  18. Standardized methods to verify absorbed dose in irradiated food for insect control. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    2001-03-01

    Irradiation to control insect infestation of food is increasingly accepted and applied, especially as a phytosanitary treatment of food as an alternative to fumigation. However, unlike other processes for insect control, irradiation does not always result in immediate insect death. Thus, it is conceivable that fresh and dried fruits and tree nuts, which have been correctly irradiated to meet insect disinfestation/quarantine requirements, may still contain live insects at the time of importation. There is, however, a movement by plant quarantine authorities away from inspecting to ensure the absence of live insects in imported consignments towards examining through administrative procedures that a treatment required by law has been given. Nevertheless, there is a need to provide plant quarantine inspectors with a reliable objective method to verify that a minimum absorbed dose of radiation was given to supplement administrative procedures. Such an objective method is expected to bolster the confidence of the inspectors in clearing the consignment without delay and to facilitate trade in irradiated commodities. The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture initiated a co-ordinated research project (CRP) in 1994 to generate data on the verification of absorbed dose of irradiation in fresh, dried fruits and tree nuts for insect disinfestation/quarantine purposes. A standardized label dose indicator available commercially was used to verify the minimum/maximum absorbed dose of the irradiated commodities for these purposes as required by regulations in certain countries. It appears that such a label dose indicator with certain modifications could be made available to assist national authorities and the food industry to verify the absorbed dose of irradiation to facilitate trade in such irradiated commodities. This TECDOC reports on the accomplishments of this co-ordinated research project and includes the papers presented by the participants

  19. Direct determination of the absorbed dose to water from 125I low dose-rate brachytherapy seeds using the new absorbed dose primary standard developed at ENEA-INMRI

    International Nuclear Information System (INIS)

    Toni, M.P.; Pimpinella, M.; Pinto, M.; Quini, M.; Cappadozzi, G.; Silvestri, C.; Bottauscio, O.

    2012-01-01

    Low-intensity radioactive sources emitting low-energy photons are used in the clinic for low dose-rate brachytherapy treatments of tumours. The dosimetry of these sources is based on reference air kerma rate measurements. The absorbed dose rate to water at the reference depth d 0 = 1 cm, D w , 1 cm, is then obtained by a conversion procedure with a large relative standard uncertainty of about 5%. This paper describes a primary standard developed at ENEA-INMRI to directly measure D w , 1 cm due to LDR sources. The standard is based on a large-angle and variable-volume ionization chamber, embedded in a graphite phantom and operating under 'wall-less air chamber' conditions. A set of correction and conversion factors, based on experiments and Monte Carlo simulations, are determined to obtain the value of D w , 1 cm from measurements of increment of ionization current with increasing chamber volume. The relative standard uncertainty on D w , 1 cm is 2.6%, which is appreciably lower than the current uncertainty. Characteristics of the standard, its associated uncertainty budget, and some experimental results are given for 125 I BEBIG I25.S16.C brachytherapy seeds. Finally, results of the experimental determination of the dose-rate constant 1 cm, traceable to the D w , 1 cm and the low-energy air kerma ENEA-INMRI standards, are given. The relative standard uncertainty on 1 cm is 2.9%, appreciably lower than the typical uncertainty (4.8%) of the values available in the literature. (authors)

  20. Doses determination in UCCA treatments with LDR brachytherapy using Monte Carlo methods

    International Nuclear Information System (INIS)

    Benites R, J. L.; Vega C, H. R.

    2017-10-01

    Using Monte Carlo methods, with the code MCNP5, a gynecological mannequin and a vaginal cylinder were modeled. The spatial distribution of absorbed dose rate in uterine cervical cancer (UCCA) treatments was determined under the modality of manual brachytherapy of low dose rate (B-LDR). The design of the model included the gynecological liquid water mannequin, a vaginal cylinder applicator of Lucite (PMMA) with hemisphere termination. The applicator was formed by a vaginal cylinder 10.3 cm long and 2 cm in diameter. This cylinder was mounted on a stainless steel tube 15.2 cm long by 0.6 cm in diameter. A linear array of four radioactive sources of Cesium 137 was inserted into the tube. 13 water cells of 0.5 cm in diameter were modeled around the vaginal cylinder and the absorbed dose was calculated in these. The distribution of the fluence of gamma photons in the mesh was calculated. It was found that the distribution of the absorbed dose is symmetric for cells located in the upper and lower part of the vaginal cylinder. The values of the absorbed dose rate were estimated for the date of manufacture of the sources. This result allows the use of the law of radioactive decay to determine the dose rate at any date of a gynecological treatment of B-LDR. (Author)

  1. A first order approximation of the tumor absorbed dose prior to treatment with Sr-89

    Energy Technology Data Exchange (ETDEWEB)

    Manetou, A [NIMITS Hospital, Medical Physics Unit, Athens (Greece); Toubanakis, N; Lyra, M; Lymouris, G [Areteion University Hospital, Radiology Department, Athens (Greece)

    1994-12-31

    A new technique developed for the estimation of the absorbed dose prior to treatment with Sr-89 is presented. This technique implies that patient undergoes bone scanning with Tc-99m-MDP, two days before the administration of Sr-89. A number of sequential quantitative images are to be obtained over the first 8 hours after the Tc-99m-MDP injection and data are used to derive St-89 time retention curve. For the development of this technique a simplified model for the kinetics of both Sr-89 and Tc-99m-MDP was assumed. Data on the time retention of the two radiopharmaceuticals for a compartment including bone surface and bone space of trabecular and cortical bone for normal adults were combined together. A linear relationship was derived between the time required for the same percentage uptake of the two radiopharmaceuticals after single injection. The absorbed dose in the principal metastases and normal bone, of the same type and volume with the metastases, for two patients who were treated with Sr-89 for metastasized prostatic carcinoma are reported. (authors). 23 refs,3 figs, 2 tabs.

  2. Calculation of absorbed doses in sphere volumes around the Mammosite using the Monte Carlo simulation code MCNPX

    International Nuclear Information System (INIS)

    Rojas C, E. L.

    2008-01-01

    The objective of this study is to investigate the changes observed in the absorbed doses in mammary gland tissue when irradiated with a equipment of high dose rate known as Mammosite and introducing material resources contrary to the tissue that constitutes the mammary gland. The modeling study is performed with the code MCNPX, 2005 version, the equipment and the mammary gland and calculating the absorbed doses in tissue when introduced small volumes of air or calcium in the system. (Author)

  3. SU-F-T-261: Reconstruction of Initial Photon Fluence Based On EPID Images

    Energy Technology Data Exchange (ETDEWEB)

    Seliger, T; Engenhart-Cabillic, R [Philipp University of Marburg, Marburg (Germany); Czarnecki, D; Maeder, U; Zink, K [Technische Hochschule Mittelhessen - University of Applied Sciences, Giessen (Germany); Kussaether, R [MedCom GmbH, Darmstadt (Germany); Poppe, B [University Hospital for Medical Radiation Physics, Pius-Hospital, Medical Campus, Carl von Ossietzky University of Oldenburg (Germany)

    2016-06-15

    Purpose: Verifying an algorithm to reconstruct relative initial photon fluence for clinical use. Clinical EPID and CT images were acquired to reconstruct an external photon radiation treatment field. The reconstructed initial photon fluence could be used to verify the treatment or calculate the applied dose to the patient. Methods: The acquired EPID images were corrected for scatter caused by the patient and the EPID with an iterative reconstruction algorithm. The transmitted photon fluence behind the patient was calculated subsequently. Based on the transmitted fluence the initial photon fluence was calculated using a back-projection algorithm which takes the patient geometry and its energy dependent linear attenuation into account. This attenuation was gained from the acquired cone-beam CT or the planning CT by calculating a water-equivalent radiological thickness for each irradiation direction. To verify the algorithm an inhomogeneous phantom consisting of three inhomogeneities was irradiated by a static 6 MV photon field and compared to a reference flood field image. Results: The mean deviation between the reconstructed relative photon fluence for the inhomogeneous phantom and the flood field EPID image was 3% rising up to 7% for off-axis fluence. This was probably caused by the used clinical EPID calibration, which flattens the inhomogeneous fluence profile of the beam. Conclusion: In this clinical experiment the algorithm achieved good results in the center of the field while it showed high deviation of the lateral fluence. This could be reduced by optimizing the EPID calibration, considering the off-axis differential energy response. In further progress this and other aspects of the EPID, eg. field size dependency, CT and dose calibration have to be studied to realize a clinical acceptable accuracy of 2%.

  4. Test measurements on a secco white-lead containing model samples to assess the effects of exposure to low-fluence UV laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Raimondi, Valentina, E-mail: v.raimondi@ifac.cnr.it [‘Nello Carrara’ Applied Physics Institute - National Research Council of Italy (CNR-IFAC), Firenze (Italy); Andreotti, Alessia; Colombini, Maria Perla [Chemistry and Industrial Chemistry Department (DCCI) - University of Pisa, Pisa (Italy); Cucci, Costanza [‘Nello Carrara’ Applied Physics Institute - National Research Council of Italy (CNR-IFAC), Firenze (Italy); Cuzman, Oana [Institute for the Conservation and Promotion of Cultural Heritage - National Research Council (CNR-ICVBC), Firenze (Italy); Galeotti, Monica [Opificio delle Pietre Dure (OPD), Firenze (Italy); Lognoli, David; Palombi, Lorenzo; Picollo, Marcello [‘Nello Carrara’ Applied Physics Institute - National Research Council of Italy (CNR-IFAC), Firenze (Italy); Tiano, Piero [Institute for the Conservation and Promotion of Cultural Heritage - National Research Council (CNR-ICVBC), Firenze (Italy)

    2015-05-15

    Highlights: • A set of a secco model samples was prepared using white lead and four different organic binders (animal glue and whole egg, whole egg, skimmed milk, egg-oil tempera). • The samples were irradiated with low-fluence UV laser pulses (0.1–1 mJ/cm{sup 2}). • The effects of laser irradiation were analysed by using different techniques. • The analysis did not point out changes due to low-fluence laser irradiation. • High fluence (88 mJ/cm{sup 2}) laser radiation instead yielded a chromatic change ascribed to the inorganic component. - Abstract: Laser-induced fluorescence technique is widely used for diagnostic purposes in several applications and its use could be of advantage for non-invasive on-site characterisation of pigments or other compounds in wall paintings. However, it is well known that long-time exposure to UV and VIS radiation can cause damage to wall paintings. Several studies have investigated the effects of lighting, e.g., in museums: however, the effects of low-fluence laser radiation have not been studied much so far. This paper investigates the effects of UV laser radiation using fluences in the range of 0.1 mJ/cm{sup 2}–1 mJ/cm{sup 2} on a set of a secco model samples prepared with lead white and different type of binders (animal glue and whole egg, whole egg, skimmed milk, egg-oil tempera). The samples were irradiated using a Nd:YAG laser (emission wavelength at 355 nm; pulse width: 5 ns) by applying laser fluences between 0.1 mJ/cm{sup 2} and 1 mJ/cm{sup 2} and a number of laser pulses between 1 and 500. The samples were characterised before and after laser irradiation by using several techniques (colorimetry, optical microscopy, fibre optical reflectance spectroscopy, FT-IR spectroscopy Attenuated Total Reflectance microscopy and gas chromatography/mass spectrometry), to detect variations in the morphological and physico-chemical properties. The results did not point out significant changes in the sample properties after

  5. A comparison of 2D and 3D kidney absorbed dose measures in patients receiving 177Lu-DOTATATE

    Directory of Open Access Journals (Sweden)

    Kathy Willowson

    2018-06-01

    Full Text Available Objective(s: To investigate and compare quantitative accuracy of kidney absorbed dose measures made from both 2D and 3D imaging in patients receiving 177LuDOTATATE (Lutate for treatment of neuroendocrine tumours (NETs. Methods: Patients receiving Lutate therapy underwent both whole body planar imaging and SPECT/CT imaging over the kidneys at time points 0.5, 4, 24, and 96-120 hours after injection. Planar data were corrected for attenuation using transmission data, and were converted to units of absolute activity via two methods, using either a calibration standard in the field of view or relative to pre-voiding image total counts. Hand drawn regions of interest were used to generate time activity curves and kidney absorbed dose estimates in OLINDA-EXM. Fully quantitative SPECT data were generated using CT-derived corrections for both scatter and attenuation, before correction for dead time and application of a camera specific sensitivity factor to convert data to units of absolute activity. Volumes of interest were defined for kidney using the co-registered x-ray CT, before time activity curves and absorbed dose measures were generated in OLINDA-EXM, both with and without corrections made to the model for patient specific kidney volumes. Quantitative SPECT data were also used to derive dose maps through dose kernel convolution (DKC, which was treated as the gold standard. Results: A total of 50 studies were analysed, corresponding to various cycles of treatment from 21 patients. Planar absorbed dose estimates were consistently higher than SPECT derived estimates by, on average, a factor of 3. Conclusion: Quantitative SPECT is considered the gold standard approach for organ specific dosimetry however often relies on in house software. As such planar methods for estimating absorbed dose are much more widely available, and in particular, are often the only source of reference in previously published data. For the case of Lutate dosimetry, planar

  6. Comparison of absorbed-dose-to-water units for Co-60 and high-energy x-rays between PTB and LNE-LNHB

    International Nuclear Information System (INIS)

    Delaunay, F.; Gouriou, J.; Le Roy, M.; Ostrowsky, A.; Sommier, L.; Vermesse, D.; Kapsch, R.P.; Illemann, J.; Krauss, A.

    2012-01-01

    During the Euramet project JRP7 'External Beam Cancer Therapy', PTB and LNE-LNHB used primary standards to determine the absorbed dose to water under IMRT conditions (in small fields). PTB used a water calorimeter to determine the absorbed-dose-to-water references in 6 MV and 10 MV beams for field sizes of 10 cm * 10 cm and 3 cm * 3 cm while LNE-LNHB used graphite calorimeters in 6MV and 12MV beams for field sizes of 10 cm * 10 cm, 4 cm * 4 cm and 2 cm * 2 cm. The purpose of this study is to compare PTB and LNE-LNHB new absorbed-dose-to-water references. LNE-LNHB sent an Exradin A1SL ionization chamber traceable to its primary standard to the PTB for calibration in 60 Co and in linac beams and PTB sent a PTW 31010 ionization chamber traceable to its primary standard to LNE-LNHB for calibration in 60 Co and in linac beams. Calculated Sw,air will be used as beam quality specifier for the ionization chamber comparison at different field sizes. The standard uncertainties (k = 1) of PTB and LNE-LNHB calibration coefficients lie respectively between 0.25% ( 60 Co) and 0.40% (linac) and between 0.29% and 0.46%. PTB and LNE-LNHB absorbed-dose-to-water references developed for this project, based respectively on water calorimetry and on graphite calorimetry, agree within 1.5 standard deviations for field size of 10 cm * 10 cm down to 2 cm * 2 cm and for beams of 6 MV to 10 MV. (authors)

  7. Comparison of the standards of absorbed dose to water of the VNIIFTRI, Russia and the BIPM for 60Co γ rays

    International Nuclear Information System (INIS)

    Allisy-Roberts, P.J.; Burns, D.T.; Berlyand, V.; Bregadze, Y.; Korostin, S.

    2003-09-01

    A comparison of the standards of absorbed dose to water of the All-Russian Scientific Research Institute for Physical-Technical and Radio-technical Measurements (VNIIFTRI), Russia and of the Bureau International des Poids et Mesures (BIPM) has been made in 60 Co gamma radiation. The results show that the VNIIFTRI and the BIPM standards for absorbed dose to water are in agreement, yielding a mean ratio of 0.9967 for the calibration factors of the transfer chambers, the difference from unity being within the combined standard uncertainty (0.0043) for this result. (authors)

  8. Sensors of absorbed dose of ionizing radiation based on mosfet

    Directory of Open Access Journals (Sweden)

    Perevertaylo V. L.

    2010-10-01

    Full Text Available The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  9. Calculation of absorbed dose of anchorage-dependent cells from internal beta-rays irradiation

    International Nuclear Information System (INIS)

    Chen Jianwei; Huang Gang; Li Shijun

    2001-01-01

    Objective: To elicit the formula of internal dosimetry in anchorage-dependent cells by beta-emitting radionuclides from uniformly distributed volume sources. Methods: By means of the definition of absorbed dose and the MIRD (Medical International Radiation Dose) scheme the formula of internal dosimetry was reasonably deduced. Firstly, studying the systems of suspension culture cells. Then, taking account of the speciality of the systems of the anchorage-dependent cells and the directions of irradiation, the absorbed dose of anchorage -dependent cells was calculated by the accumulated radioactivity, beta-ray energy, and the volume of the cultured systems. Results: The formula of internal dosimetry of suspension culture cells and anchorage-dependent cells were achieved. At the same time, the formula of internal dosimetry of suspension culture cells was compared with that of MIRD and was confirmed accurate. Conclusion: The formula of internal dosimetry is concise, reliable and accurate

  10. Radiation absorbed dose estimate for Rb-82 using in vivo measurements in man

    International Nuclear Information System (INIS)

    Ryan, J.; Harper, P.; Stark, V.; Peterson, E.; Lathrop, K.

    1984-01-01

    Radiation absorbed doses from intravenous Rb-82 (t 1/2 = 75 sec) were calculated by conjugate counting in 2 healthy adult men aged 27 and 23. Following an i.v. injection of a carefully calibrated amount of Rb-82, an organ of interest was imaged with a gamma camera equipped with a rotating tungsten collimator and data were collected in 10 second frames. Counts in the region of interest were corrected for adjacent background. Imaging was repeated from the opposite side of the body after a second injection. A calibrated reference source of Ge-68 placed on the body over the organ was similarly imaged in the absence of the rubidium activity. The integrated time activity curve in uCi-hours was obtained by comparing the observed kidney net conjugate counts with the reference source conjugate counts which represented a known number of uCi-hours. The organ self doses to the kidneys, liver, lungs, heart, and testes were determined by this technique which eliminated the effects of attenuation. Total absorbed doses to organs from all sources were calculated using the MIRD formulation and the averages of the 2 determinations (mrads/mCi) are as follows: heart (walls) 6.6; kidneys 31.3; liver 4.4; lungs 7.3; testes (1 subject only) 2.4; red marrow 1.7; and whole body 1.9. The highest dose is to the kidneys, but in an older subject (68 yr old man) the measured self dose to the left kidney was 16 mrads/mCi. These data are consistent with the decline in renal blood flow which occurs with increasing age and decreases renal exposure in older patients at increased risk of acute coronary disease who undergo myocardial perfusion imaging with Rb-82

  11. Towards a determination of the absorbed dose to water in water for low-energy photon-emitting brachytherapy seeds

    International Nuclear Information System (INIS)

    Schneider, T.; Lange, B.; Selbach, H.J.

    2007-01-01

    An accurate determination of the dose produced by brachytherapy seeds emitting low-energy photons is an important component of the radiotherapeutic process. As yet, the output of these seeds has usually been specified in terms of the air kerma rate. The desired quantity in radiation therapy is, however, the absorbed dose to water inside a water phantom, for which primary standards are not available. For this reason, developments are under way in the Physikalisch - Technische Bundesanstalt to establish a primary standard to determine the absorbed dose to water within a phantom. As a fundamental step towards this aim, a method will be introduced in this publication to determine the water kerma inside a graphite phantom housing an extrapolation chamber. Experimental results will be presented and compared with water kerma values obtained from air kerma measurements in free air and applying a conversion factor to water kerma for the conditions of the experiment. First estimates indicate that the relative uncertainty is of the order of 1% (k 1). (authors)

  12. Absorbed dose by thyroid in case of nuclear accidents

    International Nuclear Information System (INIS)

    Campos, Laelia; Attie, Marcia Regina Pereira; Amaral, Ademir

    2011-01-01

    Radioisotopes of iodine are produced in abundance in nuclear fission reactions, and great amounts of radioiodine may be released into the environment in case of a nuclear reactor accident. Thyroid gland is among the most radiosensitive organs due to its capacity to concentrate iodine. The aim of this work was to evaluate the importance of contributions of internally deposited iodines ( 131 I, 132 I, 133 I, 134 I and 135 I) to the dose absorbed to thyroid follicle and to the whole organ, after internal contamination by those isotopes. For internal dose calculation, the code of particles transport MCNP4C was employed. The results showed that, in case of nuclear accidents, the contribution of short-lived iodines for total dose is about 45% for thyroid of newborn and about 40% for thyroid of adult. Thus, these contributions should not be neglected in a prospective evaluation of risks associated to internal contamination by radioactive iodine. (author)

  13. Evaluation of the absorbed dose to the lungs due to Xe{sup 133} and Tc{sup 99m} (MAA); Evaluacion de la dosis absorbida en los pulmones debido al Xe{sup 133} y Tc{sup 99m} (MAA)

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez A, M.; Murillo C, F.; Castillo D, C.; Sifuentes D, Y.; Sanchez S, P. [Universidad Nacional de Trujillo, Av. Juan Pablo II s/n, Trujillo (Peru); Rojas P, E. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima (Peru); Marquez P, F., E-mail: marvva@hotmail.com [Instituto Nacional de Enfermedades Neoplasicas, Av. Angamos 2520, Lima (Peru)

    2015-10-15

    The absorbed dose in lungs of an adult patient has been evaluated using the biokinetics of radiopharmaceuticals containing Xe{sup 133} or Tc{sup 99m} (MAA). The absorbed dose was calculated using the MIRD formalism, and the Cristy-and Eckerman lungs model. The absorbed dose in the lungs due to {sup 133}Xe is 0.00104 mGy/MBq. Here, the absorbed dose due to remaining tissue, included in the {sup 133}Xe biokinetics is not significant. The absorbed dose in the lungs, due Tc{sup 99m} (MAA), is 0.065 mGy/MBq. Approximately, 4.6% of the absorbed dose is due to organs like liver, kidneys, bladder, and the rest of tissues, included in the Tc{sup 99m} biokinetics. Here, the absorbed dose is very significant to be overlooked. The dose contribution is mainly due to photons emitted by the liver. (Author)

  14. Assessment of Absorbed Dose in Persons close to the Patients during 192Ir brachytherapy for Cervical Cancer

    International Nuclear Information System (INIS)

    Jung, Joo Young; Kang, Se Sik

    2010-01-01

    According to the 2007 Annual Report of the National Cancer Registry, cervical cancer showed an occurring frequency of 7th in female cancers and 4rd in females with an age of 35-64 years. Both radiotherapy and chemotherapy are mainly used for the treatment of cervical cancer. In case of radiotherapy, brachytherapy using radioisotopes in conjunction with external-beam radiation therapy (EBRT) using a linear accelerator is used in most cases to improve the outcome of cancer treatment. Brachytherapy, one of the cervical cancer radiotherapies, is a method that can minimize the damage of normal tissues restricting absorbed dose to uterus. It is, however, necessary to conduct a quantitative assessment on brachytherapy because it may cause radiation exposure to medical care providers during the radiotherapy. Therefore, the study provides the basic research data regarding brachytherapy for cervical cancer, estimating the absorbed dose in persons close to the patients using a mathematical phantom during 192Ir brachytherapy for cervical cancer

  15. Absorbed Dose Rate Due to Intake of Natural Radionuclides by Tilapia Fish (Tilapia nilotica,Linnaeus, 1758) Estimated Near Uranium Mining at Caetité, Bahia, Brazil

    Science.gov (United States)

    Pereira, Wagner de S.; Kelecom, Alphonse; Py Júnior, Delcy de Azevedo

    2008-08-01

    The uranium mining at Caetité (Uranium Concentrate Unit—URA) is in its operational phase. Aiming to estimate the radiological environmental impact of the URA, a monitoring program is underway. In order to preserve the biota of the deleterious effects from radiation and to act in a pro-active way as expected from a licensing body, the present work aims to use an environmental protection methodology based on the calculation of absorbed dose rate in biota. Thus, selected target organism was the Tilapia fish (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210). As, in Brazil there are no radiation exposure limits adopted for biota the value proposed by the Department of Energy (DOE) of the United States of 3.5×103 μGy y-1 has been used. The derived absorbed dose rate calculated for Tilapia was 2.51×100 μGy y-1, that is less than 0.1% of the dose limit established by DOE. The critical radionuclide was Ra-226, with 56% of the absorbed dose rate, followed by U-238 with 34% and Th-232 with 9%. This value of 0.1% of the limit allows to state that, in the operational conditions analyzed, natural radionuclides do not represent a radiological problem to biota.

  16. Selective fallopian tube catheterisation in female infertility: clinical results and absorbed radiation dose

    International Nuclear Information System (INIS)

    Nakamura, K.; Ishiguchi, T.; Maekoshi, H.; Ando, Y.; Tsuzaka, M.; Tamiya, T.; Suganuma, N.; Ishigaki, T.

    1996-01-01

    Clinical results of fluoroscopic fallopian tube catheterisation and absorbed radiation doses during the procedure were evaluated in 30 infertility patients with unilateral or bilateral tubal obstruction documented on hysterosalpingography. The staged technique consisted of contrast injection through an intrauterine catheter with a vacuum cup device, ostial salpingography with the wedged catheter, and selective salpingography with a coaxial microcatheter. Of 45 fallopian tubes examined, 35 (78 %) were demonstrated by the procedure, and at least one tube was newly demonstrated in 26 patients (87 %). Six of these patients conceived spontaneously in the follow-up period of 1-11 months. Four pregnancies were intrauterine and 2 were ectopic. This technique provided accurate and detailed information in the diagnosis and treatment of tubal obstruction in infertility patients. The absorbed radiation dose to the ovary in the average standardised procedure was estimated to be 0.9 cGy. Further improvement in the X-ray equipment and technique is required to reduce the radiation dose. (orig.). With 3 figs., 3 tabs

  17. Radiation-absorbed doses and energy imparted from panoramic tomography, cephalometric radiography, and occlusal film radiography in children

    International Nuclear Information System (INIS)

    Bankvall, G.; Hakansson, H.A.

    1982-01-01

    The absorbed doses and energy imparted from radiographic examinations of children, using panoramic tomography (PTG), cephalometric radiography (CPR), and maxillary frontal occlusal overview (FOO), were examined. The absorbed dose at various sites of the head were measured with TL dosimeters in a phantom and in patients. The energy imparted was calculated from measurements of areal exposure using a planparallel ionization chamber. The maximum absorbed doses for panoramic tomography were located around the lateral rotation center, for cephalometric radiography in the left (tube side) parotid region, and for frontal occlusal radiography in the nose. The absorbed doses in the eyes, thyroid gland, and skin are discussed and compared with previous reports and, for the most part, are found to be in agreement. The mean energy imparted from all three examination methods is 5 mJ with about 57 percent from panoramic, 33 percent from cephalometric, and 10 percent from frontal occlusal examinations. The energy imparted from cephalometric radiography can be reduced to about 10 percent with the use of an improved examination technique, leaving panoramic tomography responsible for contributing about 80 percent of the total energy imparted

  18. Estimation of absorbed doses from paediatric cone-beam CT scans: MOSFET measurements and Monte Carlo simulations.

    Science.gov (United States)

    Kim, Sangroh; Yoshizumi, Terry T; Toncheva, Greta; Frush, Donald P; Yin, Fang-Fang

    2010-03-01

    The purpose of this study was to establish a dose estimation tool with Monte Carlo (MC) simulations. A 5-y-old paediatric anthropomorphic phantom was computed tomography (CT) scanned to create a voxelised phantom and used as an input for the abdominal cone-beam CT in a BEAMnrc/EGSnrc MC system. An X-ray tube model of the Varian On-Board Imager((R)) was built in the MC system. To validate the model, the absorbed doses at each organ location for standard-dose and low-dose modes were measured in the physical phantom with MOSFET detectors; effective doses were also calculated. In the results, the MC simulations were comparable to the MOSFET measurements. This voxelised phantom approach could produce a more accurate dose estimation than the stylised phantom method. This model can be easily applied to multi-detector CT dosimetry.

  19. Improving solar radiation absorbance of high refractory sintered ceramics by fs Ti:sapphire laser surface treatment

    International Nuclear Information System (INIS)

    Cappelli, E.; Orlando, S.; Sciti, D.; Bellucci, A.; Lettino, A.; Trucchi, D.M.

    2014-01-01

    Samples of high refractory pressure-less sintered carbide ceramics (HfC based), polished by mechanical grinding to a surface roughness R a ∼ 40 nm, have been surface treated, in vacuum, by fs Ti:sapphire laser, operating at 800 nm wavelength, 1000 Hz repetition rate and 100 fs pulse duration, at fluence varying in the range (∼6–25 J/cm 2 ), to optimize their solar radiation absorbance, in such a way that they could operate as absorber material in an innovative conversion module of solar radiation into electrical energy. To this aim, an area of approximately 9.6 cm 2 was treated by the fs laser beam. The beam strikes perpendicular to the sample, placed on a stage set in motion in the x, y, z-directions, thus generating a scanning pattern of parallel lines. The experimental conditions of laser treatment (energy fluence, speed of transition, overlapping and lateral step distance) were varied in order to optimize the radiation absorption properties of the patterned surface. In laser treated samples the absorption value is increased by about 15%, compared to the original untreated surface, up to a value of final absorbance of about 95%, all over the range of solar radiation spectrum (from UV to IR). The morphological and chemical effects of the treatment have been evaluated by SEM–EDS analysis. At very high fluence, we obtained the characteristic ablation craters and local material decomposition, while at lower fluence (in any case above the threshold) typical periodic nano-structures have been obtained, exploitable for their modified optical properties.

  20. Fluence complexity for IMRT field and simplification of IMRT verification

    International Nuclear Information System (INIS)

    Hanushova, Tereza; Vondarchek, Vladimir

    2013-01-01

    Intensity Modulated Radiation Therapy (IMRT) requires dosimetric verification of each patient’s plan, which is time consuming. This work deals with the idea of minimizing the number of fields for control, or even replacing plan verification by machine quality assurance (QA). We propose methods for estimation of fluence complexity in an IMRT field based on dose gradients and investigate the relation between results of gamma analysis and this quantity. If there is a relation, it might be possible to only verify the most complex field of a plan. We determine the average fluence complexity in clinical fields and design a test fluence corresponding to this amount of complexity which might be used in daily QA and potentially replace patient-related verification. Its applicability is assessed in clinical practice. The relation between fluence complexity and results of gamma analysis has been confirmed for plans but not for single fields. There is an agreement between the suggested test fluence and clinical fields in the average gamma parameter. A critical value of average gamma has been specified for the test fluence as a criterion for distinguishing between poorly and well deliverable plans. It will not be possible to only verify the most complex field of a plan but verification of individual plans could be replaced by a morning check of the suggested test fluence, together with a well-established set of QA tests. (Author)

  1. SHIELDOSE, Doses from Electron and Proton Irradiation in Space Vehicle Al Shields

    International Nuclear Information System (INIS)

    Seltzer, Stephen

    1986-01-01

    1 - Description of problem or function: The ability to predict absorbed dose within a spacecraft due to a specified radiation environment is important for design and planning considerations pertaining to the reliability of electronic components and to the radiological safety of on-board personnel. This computer code SHIELDOSE evaluates the absorbed dose as a function of depth in aluminum shielding material of spacecraft, given the electron and proton fluences encountered in orbit. 2 - Method of solution: It makes use of pre-calculated, monoenergetic depth-dose data for an isotropic, broad-beam fluence of radiation incident on uniform aluminum plane media. Such data are particularly suitable for routine dose predictions in situations where the geometrical and compositional complexities of the spacecraft are not known. Furthermore, restricting our consideration to these rather simple geometries has allowed for the development of accurate electron and electron-Bremsstrahlung data sets based on detailed transport calculations rather than on more approximate methods. The present version of SHIELDOSE calculates, for arbitrary proton and electron incident spectra, the dose absorbed in small volumes of the detector materials Al, H 2 O (tissue-equivalent detector), Si and SiO 2 , in the following aluminum shield geometries: (1) in a semi- infinite plane medium, as a function of depth; (2) at the transmission surface of a plane slab, as a function of slab thickness; and (3) at the center of a solid sphere, as a function of sphere radius. 3 - Restrictions on the complexity of the problem: - No. of depth Z for which dose calculation is desired (IMAX) ≤50; - No. of prints used in the numerical evaluation of the integral over the incident proton spectrum (NPTSP) ≤301; - No. of points used in the numerical evaluation of the internal over the incident electron spectrum (NPTSE) ≤101; - No. of energy for which the solar-flare-proton spectrum is read in (JSMAX), incident

  2. Absorbed dose to water comparison between NE 2561 and NE 2671 chambers using IAEA, HPA and NACP protocols for gamma ray beam

    International Nuclear Information System (INIS)

    Mohd Taufik Dolah; Noriah Mod Ali; Taiman Kadni

    2002-01-01

    The aim of this study to evaluate the performance of NE 2571 chamber in comparison with NE 2561 chamber in determination of the absorbed dose to water in gamma ray beam. In this study NE 2561 is taking as a reference standard chamber while NE 2571 as a working standard. Irradiation of chamber (alternately) was performed at a reference depth, 5 cm, inside the IAEA water phantom. Both chambers were exposed to 13 difference exposures of gamma rays. The values of absorbed dose to water were then determined using IAEA, HPA and NACP protocols. Deviations of absorbed dose determined by NE 2561 and NE 2571 were calculated for each protocol. result obtained in terms of [protocol, μ (mean deviation) ± σ s e (standard error)] were (IAEA, 1.12 ± 0.04], [HPA, 0.09 ± 0.04], and [NCP, 0.09 ± 0.04]. It can be concluded that NE 2571 shown acceptable performance as it is within acceptable limit ± 3%. (Author)

  3. Preparation of super absorbent by irradiation polymerization

    International Nuclear Information System (INIS)

    Hua Fengjun; Tan Chunhong; Qian Mengping

    1995-01-01

    A kind of absorbent is prepared by gamma-rays irradiated by reversed-phase suspension polymerization. Drying particles have 1400 (g/g) absorbency in de-ionic water. Effects of reactive conditions, e.g.: dose-rate, dose, monomer concentration, degree of monomer neutralization and crosslinking agents on absorbency in de-ionic water are discussed. The cause of absorbing de-ionic water by polymer is related to its network structure and ionic equilibrium in particle. Accordingly, a suit reactive condition is chosen for preparation of hydro gel spheres

  4. Comparison of ESD and major organ absorbed doses of 5 year old standard guidekines and clinical exposure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, A Ram; Ahn, Sung Min [Dept. of Radiological Science, The Graduate School, Gachon University, Incheon (Korea, Republic of); Lee, In Ja [Dept. of Radiologic technology, Dongnam health University, Suwon (Korea, Republic of)

    2017-09-15

    Pediatrics are more sensibility to radiation than adults and because they are organs that are not completely grown, they have a life expectancy that can be adversely affected by exposure. Therefore, the management of exposure dose is more important than the case of adult. The purpose of this study was to determine the suitability of the 10 year old phantom for the 5 year old pediatric's recommendation and the incident surface dose, and to measure the organ absorbed dose. This study is compared the organ absorbed dose and the entrance surface dose in the clinical conditions at 5 and 10 years old pediatric. Clinical 5 year old condition was slightly higher than recommendation condition and 10 year old condition was very high. In addition, recommendation condition ESD was found to be 43% higher than the ESD of the 5 year old group and the ESD of the 10 year old group was 126% higher than that of the 5 year old group. The recommended ESD at 5 years old and the ESD according to clinical imaging conditions were 31.6%. There was no significant difference between the 5 year old recommended exposure conditions and the organ absorbed dose due to clinical exposure conditions, but there was a large difference between the Chest and Pelvic. However, it was found that there was a remarkable difference when comparing the organ absorbed dose by 10 year clinical exposure conditions. Therefore, more detailed standard exposure dose for the recommended dose of pediatric should be studied.

  5. Comparison of ESD and major organ absorbed doses of 5 year old standard guidekines and clinical exposure conditions

    International Nuclear Information System (INIS)

    Kang, A Ram; Ahn, Sung Min; Lee, In Ja

    2017-01-01

    Pediatrics are more sensibility to radiation than adults and because they are organs that are not completely grown, they have a life expectancy that can be adversely affected by exposure. Therefore, the management of exposure dose is more important than the case of adult. The purpose of this study was to determine the suitability of the 10 year old phantom for the 5 year old pediatric's recommendation and the incident surface dose, and to measure the organ absorbed dose. This study is compared the organ absorbed dose and the entrance surface dose in the clinical conditions at 5 and 10 years old pediatric. Clinical 5 year old condition was slightly higher than recommendation condition and 10 year old condition was very high. In addition, recommendation condition ESD was found to be 43% higher than the ESD of the 5 year old group and the ESD of the 10 year old group was 126% higher than that of the 5 year old group. The recommended ESD at 5 years old and the ESD according to clinical imaging conditions were 31.6%. There was no significant difference between the 5 year old recommended exposure conditions and the organ absorbed dose due to clinical exposure conditions, but there was a large difference between the Chest and Pelvic. However, it was found that there was a remarkable difference when comparing the organ absorbed dose by 10 year clinical exposure conditions. Therefore, more detailed standard exposure dose for the recommended dose of pediatric should be studied

  6. Investigation of absorbed radiation dose in refraction-enhanced breast tomosynthesis by a Laue case analyser

    International Nuclear Information System (INIS)

    Sato, H.; Ando, M.; Shimao, D.

    2011-01-01

    An early diagnosis system for breast cancer using refraction-enhanced breast tomosynthesis is under development. Tomograms of breast specimens based on refraction-contrast were demonstrated using the simplest shift-and-add tomosynthesis algorithm. Raw projection image data of breast specimens for tomosynthesis were acquired for a total of 51 views over an angle of 50 deg., in increments of 1 deg., by rotating the object. The incident X ray was monochromatic synchrotron radiation with 20 keV. The purpose of this study was to estimate the absorbed dose of a new X-ray imaging method. As breast cancer almost always arises in glandular breast tissue, the average absorbed dose in such glandular tissue should be measured to estimate the radiation risk associated with mammography. The absorbed dose of the mammary gland due to monochromatic X rays was calculated by the Monte Carlo method, and the optimal X ray energy range for refraction-enhanced breast tomosynthesis was investigated through actual measurements. Compared with the conventional method, it was found to be below one-sixth per inspection. (authors)

  7. Absorbed dose estimates from a single measurement one to three days after the administration of 177Lu-DOTATATE/-TOC.

    Science.gov (United States)

    Hänscheid, Heribert; Lapa, Constantin; Buck, Andreas K; Lassmann, Michael; Werner, Rudolf A

    2017-01-01

    To retrospectively analyze the accuracy of absorbed dose estimates from a single measurement of the activity concentrations in tumors and relevant organs one to three days after the administration of 177 Lu-DOTA-TATE/TOC assuming tissue specific effective half-lives. Activity kinetics in 54 kidneys, 30 neuroendocrine tumor lesions, 25 livers, and 27 spleens were deduced from series of planar images in 29 patients. After adaptation of mono- or bi-exponential fit functions to the measured data, it was analyzed for each fit function how precise the time integral can be estimated from fixed tissue-specific half-lives and a single measurement at 24, 48, or 72 h after the administration. For the kidneys, assuming a fixed tissue-specific half-life of 50 h, the deviations of the estimate from the actual integral were median (5 % percentile, 95 % percentile): -3 °% (-15 %>; +16 °%) for measurements after 24 h, +2 %> (-9 %>; +12 %>) for measurements after 48 h, and 0 % (-2 %; +12 %) for measurements after 72 h. The corresponding values for the other tissues, assuming fixed tissue-specific half-lives of 67 h for liver and spleen and 77 h for tumors, were +2 % (-25 %; +20 %) for measurements after 24 h, +2 °% (-16 %>; +17 %>) for measurements after 48 h, and +2 %> (-11 %>; +10 %>) for measurements after 72 h. Especially for the kidneys, which often represent the dose limiting organ, but also for liver, spleen, and neuroendocrine tumors, a meaningful absorbed dose estimate is possible from a single measurement after 2, more preferably 3 days after the administration of 177 Lu-DOTA-TATE/-TOC assuming fixed tissue specific effective half-lives. Schattauer GmbH.

  8. Determination of absorbed dose to water from a miniature kilovoltage x-ray source using a parallel-plate ionization chamber

    Science.gov (United States)

    Watson, Peter G. F.; Popovic, Marija; Seuntjens, Jan

    2018-01-01

    Electronic brachytherapy sources are widely accepted as alternatives to radionuclide-based systems. Yet, formal dosimetry standards for these devices to independently complement the dose protocol provided by the manufacturer are lacking. This article presents a formalism for calculating and independently verifying the absorbed dose to water from a kV x-ray source (The INTRABEAM System) measured in a water phantom with an ionization chamber calibrated in terms of air-kerma. This formalism uses a Monte Carlo (MC) calculated chamber conversion factor, CQ , to convert air-kerma in a reference beam to absorbed dose to water in the measurement beam. In this work CQ was determined for a PTW 34013 parallel-plate ionization chamber. Our results show that CQ was sensitive to the chamber plate separation tolerance, with differences of up to 15%. CQ was also found to have a depth dependence which varied with chamber plate separation (0 to 10% variation for the smallest and largest cavity height, over 3 to 30 mm depth). However for all chamber dimensions investigated, CQ was found to be significantly larger than the manufacturer reported value, suggesting that the manufacturer recommended method of dose calculation could be underestimating the dose to water.

  9. Evaluation of dose to tooth enamel from medical diagnostic X-ray examinations at Mayak PA

    Energy Technology Data Exchange (ETDEWEB)

    Wieser, A., E-mail: wieser@helmholtz-muenchen.de [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Institute of Radiation Protection, D-85764 Neuherberg (Germany); Vasilenko, E. [Mayak Production Association, 456780 Ozyorsk (Russian Federation); Zankl, M.; Greiter, M.; Ulanovsky, A. [Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Institute of Radiation Protection, D-85764 Neuherberg (Germany); Sabayev, A.; Knyazev, V.; Zahrov, P. [Mayak Production Association, 456780 Ozyorsk (Russian Federation)

    2011-09-15

    The nuclear workers of the Mayak Production Association had regular check-ups including medical diagnostic X-ray examinations since start of the production lines in 1948. Doses from diagnostic examinations need to be considered in reconstruction of occupational doses of the workers with electron paramagnetic resonance (EPR) of tooth enamel. The numbers and types of examinations of an individual worker can be assessed from the Mayak PA archives but no information was available on doses delivered to teeth by a single specific examination. Of the twenty one applied examination procedures only three affected the teeth, these being X-ray examinations of teeth, skull and cervical spine. For these three kinds of examinations operational procedures and operating modes of X-ray units were compiled from the archive and photon spectra were obtained from a catalog of spectral data for diagnostic X-rays. Entrance doses in air kerma were calculated using the fluence of photon spectra and absorbed dose in tooth enamel for various tooth positions and exposure geometry was then calculated using dose conversion coefficients obtained from Monte Carlo simulations. Doses were calculated for examinations in 1948-2000. Except for examination of the skull, absorbed doses in enamel of incisors were found to be about twice as large as in enamel of molars. In the period before 1970 the largest mean absorbed doses in tooth enamel were due to X-ray examination of teeth, with 64 mGy and 34 mGy calculated for incisors and molars, respectively. In the same period the lowest mean doses were due to X-ray examination of the skull, with 11 mGy and 12 mGy calculated for incisors and molars, respectively. In the period from 1970 to 2000, largest mean doses in enamel were due to X-ray examination of cervical spine, with 23 mGy and 12 mGy calculated for incisors and molars, respectively.

  10. Determination of the absorbed dose rate to a person exposed to a spent source of {sup 60}Co for radiotherapy; Determinacion de la rapidez de dosis absorbida a una persona expuesta a una fuente gastada de {sup 60}Co para radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Garcia M, T.; Angeles C, A.; Benitez, J. A.; Ruiz C, M. A., E-mail: teodoro.garcia@inin.gob.mx [ININ, Departamento de Proteccion Radiologica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    In this work the analysis of absorbed dose rate to a person in made due to the exposure to a spent source of {sup 60}Co of radiotherapy, which has been removed from its shielding clandestinely to sell the shielding as scrap. During the removal of the source of their shielding the people were necessarily exposed to the field of gamma radiation. The activity of the source is considered to be 2595 Ci at the exposure time and to determine the rate of absorbed dose to different organs and the velocity of effective absorbed dose to which the person (s) who manipulated the source of {sup 60}Co were considered three plausible scenarios of manipulation of the source , through modeling with MCNP5. For the execution of the scenarios and the determination of the absorbed doses, two different phantoms are considered. The results obtained for each scenario show that the dose rates to which the people who manipulated the source without the shielding were exposed are extremely high, and in short time the lethal dose is reached. (Author)

  11. Fluence-rate effects on irradiation embrittlement and composition and temperature effects on annealing/reirradiation sensitivity

    International Nuclear Information System (INIS)

    Hawthorne, J.R.; Hiser, A.L.

    1988-01-01

    Recent MEA investigation on the effect of neutron fluence rate on radiation-induced embrittlement accrual and the contributions of metallurgical variables to postirradiation annealing and re-irradiation behavior are reviewed. Studies of fluence-rate effects involved experiments in the UBR test reactor and separately, radiation sensitivity determinations for the decommissioned Gundremmingen (KRB-A) vessel material. Annealing-reirradiation studies employed 399 0 C and 454 0 C heat treatments. Material composition is shown to play a major role in postirradiation annealing recovery. Results illustrate effects of variable copper and variable nickel contents on recoveray of steel plate having low phosphorus levels. Composition effects on recovery were also observed for prototypic welds depicting high/low copper and high/low nickel contents and three flux types. The welds, in addition, indicate major differences in re-irradiation sensitivity. The UBR investigations revealed a significant difference in fluence rate sensitivity between the ASTM A 302-B reference plate and a submerged-arc (S/A) Linde 80 weld. Studies of the Gundremmingen reactor vessel, representing a joint USA-FRG-UK undertaking revealed an anomaly in strong vs. weak test orientation radiation sensitivity. (orig./HP)

  12. Effect of He+ fluence on surface morphology and ion-irradiation induced defect evolution in 7075 aluminum alloys

    Science.gov (United States)

    Ni, Kai; Ma, Qian; Wan, Hao; Yang, Bin; Ge, Junjie; Zhang, Lingyu; Si, Naichao

    2018-02-01

    The evolution of microstructure for 7075 aluminum alloys with 50 Kev helium ions irradiation were studied by using optical microscopy (OM), scanning electron microscopy (SEM), x-ray diffraction (XRD) and transmission electron microscopy (TEM). The fluences of 1 × 1015, 1 × 1016 and 1 × 1017 ions cm-2 were selected, and irradiation experiments were conducted at room temperatures. The transmission process of He+ ions was simulated by using SRIM software, including distribution of ion ranges, energy losses and atomic displacements. Experimental results show that irradiated pits and micro-cracks were observed on irradiation sample surface, and the size of constituent particles (not including Mg2Si) decreased with the increasing dose. The x-ray diffraction results of the pair of peaks is better resolved in irradiated samples might indicate that the stressed structure consequence due to crystal defects (vacancies and interstitials) after He+ implantation. TEM observation indicated that the density of MgZn2 phase was significantly reduced after helium ion irradiation which is harmful to strength. Besides, the development of compressive stress produced a large amount of dislocation defects in the 1015 ions cm-2 sample. Moreover, higher fluence irradiation produced more dislocations in sample. At fluence of 1016 ions cm-2, dislocation wall formed by dislocation slip and aggregation in the interior of grains, leading to the refinement of these grains. As fluence increased to 1017 ions cm-2, dislocation loops were observed in pinned dislocation. Moreover, dislocation as effective defect sink, irradiation-induced vacancy defects aggregated to these sinks, and resulted in the formation of helium bubbles in dislocation.

  13. Incase of Same Region Treatment by using a Tomotherapy and a Linear Accelerator Absorbed Dose Evaluation of Normal Tissues and a Tumor

    International Nuclear Information System (INIS)

    Cheon, Geum Seong; Kim, Chang Uk; Kim, Hoi Nam; Heo, Gyeong Hun; Song, Jin Ho; Hong, Joo Yeong; Jeong, Jae Yong

    2010-01-01

    Treating same region with different modalities there is a limit to evaluate the total absorbed dose of normal tissues. The reason is that it does not support to communication each modalities yet. In this article, it evaluates absorbed dose of the patients who had been treated same region by a tomotherapy and a linear accelerator. After reconstructing anatomic structure with a anthropomorphic phantom, administrate 45 Gy to a tumor in linac plan system as well as prescribe 15 Gy in tomotherapy plan system for make an ideal treatment plan. After the plan which made by tomoplan system transfers to the oncentra plan system for reproduce plan under the same condition and realize total treatment plan with summation 45 Gy linac treatment plan. To evaluate the absorbed dose of two different modalities, do a comparative study both a simple summation dose values and integration dose values. Then compare and analyze absorbed dose of normal tissues and a tumor with the patients who had been exposured radiation by above two different modalities. The result of compared data, in case of minimum dose, there are big different dose values in spleen (12.4%). On the other hand, in case of the maximum dose, it reports big different in a small bowel (10.2%) and a cord (5.8%) in head and neck cancer patients, there presents that oral (20.3%), right lens (7.7%) in minimum dose value. About maximum dose, it represents that spinal (22.5), brain stem (12%), optic chiasm (8.9%), Rt lens (11.5%), mandible (8.1%), pituitary gland (6.2%). In case of Rt abdominal cancer patients, there represents big different minimum dose as Lt kidney (20.3%), stomach (8.1%) about pelvic cancer patients, it reports there are big different in minimum dose as a bladder (15.2%) as well as big different value in maximum dose as a small bowel (5.6%), a bladder (5.5%) in addition, making treatment plan it is able us to get. In case of comparing both simple summation absorbed dose and integration absorbed dose, the

  14. Analysis of surface absorbed dose in X-ray grating interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhili, E-mail: wangnsrl@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Wu, Zhao; Gao, Kun; Wang, Dajiang; Chen, Heng; Wang, Shenghao [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Wu, Ziyu, E-mail: wuzy@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2014-10-15

    Highlights: • Theoretical framework for dose estimation in X-ray grating interferometry. • Potential dose reduction of X-ray grating interferometry compared to conventional radiography. • Guidelines for optimization of X-ray grating interferometry for dose-sensitive applications. • Measure to compare various existing X-ray phase contrast imaging techniques. - Abstract: X-ray phase contrast imaging using grating interferometry has shown increased contrast over conventional absorption imaging, and therefore the great potential of dose reduction. The extent of the dose reduction depends on the geometry of grating interferometry, the photon energy, the properties of the sample under investigation and the utilized detector. These factors also determine the capability of grating interferometry to distinguish between different tissues with a specified statistical certainty in a single raw image. In this contribution, the required photon number for imaging and the resulting surface absorbed dose are determined in X-ray grating interferometry, using a two-component imaging object model. The presented results confirm that compared to conventional radiography, phase contrast imaging using grating interferometry indeed has the potential of dose reduction. And the extent of dose reduction is strongly dependent on the imaging conditions. Those results provide a theoretical framework for dose estimation under given imaging conditions before experimental trials, and general guidelines for optimization of grating interferometry for those dose-sensitive applications.

  15. Analysis of surface absorbed dose in X-ray grating interferometry

    International Nuclear Information System (INIS)

    Wang, Zhili; Wu, Zhao; Gao, Kun; Wang, Dajiang; Chen, Heng; Wang, Shenghao; Wu, Ziyu

    2014-01-01

    Highlights: • Theoretical framework for dose estimation in X-ray grating interferometry. • Potential dose reduction of X-ray grating interferometry compared to conventional radiography. • Guidelines for optimization of X-ray grating interferometry for dose-sensitive applications. • Measure to compare various existing X-ray phase contrast imaging techniques. - Abstract: X-ray phase contrast imaging using grating interferometry has shown increased contrast over conventional absorption imaging, and therefore the great potential of dose reduction. The extent of the dose reduction depends on the geometry of grating interferometry, the photon energy, the properties of the sample under investigation and the utilized detector. These factors also determine the capability of grating interferometry to distinguish between different tissues with a specified statistical certainty in a single raw image. In this contribution, the required photon number for imaging and the resulting surface absorbed dose are determined in X-ray grating interferometry, using a two-component imaging object model. The presented results confirm that compared to conventional radiography, phase contrast imaging using grating interferometry indeed has the potential of dose reduction. And the extent of dose reduction is strongly dependent on the imaging conditions. Those results provide a theoretical framework for dose estimation under given imaging conditions before experimental trials, and general guidelines for optimization of grating interferometry for those dose-sensitive applications

  16. Response functions for computing absorbed dose to skeletal tissues from neutron irradiation

    Science.gov (United States)

    Bahadori, Amir A.; Johnson, Perry; Jokisch, Derek W.; Eckerman, Keith F.; Bolch, Wesley E.

    2011-11-01

    Spongiosa in the adult human skeleton consists of three tissues—active marrow (AM), inactive marrow (IM) and trabecularized mineral bone (TB). AM is considered to be the target tissue for assessment of both long-term leukemia risk and acute marrow toxicity following radiation exposure. The total shallow marrow (TM50), defined as all tissues lying within the first 50 µm of the bone surfaces, is considered to be the radiation target tissue of relevance for radiogenic bone cancer induction. For irradiation by sources external to the body, kerma to homogeneous spongiosa has been used as a surrogate for absorbed dose to both of these tissues, as direct dose calculations are not possible using computational phantoms with homogenized spongiosa. Recent micro-CT imaging of a 40 year old male cadaver has allowed for the accurate modeling of the fine microscopic structure of spongiosa in many regions of the adult skeleton (Hough et al 2011 Phys. Med. Biol. 56 2309-46). This microstructure, along with associated masses and tissue compositions, was used to compute specific absorbed fraction (SAF) values for protons originating in axial and appendicular bone sites (Jokisch et al 2011 Phys. Med. Biol. 56 6857-72). These proton SAFs, bone masses, tissue compositions and proton production cross sections, were subsequently used to construct neutron dose-response functions (DRFs) for both AM and TM50 targets in each bone of the reference adult male. Kerma conditions were assumed for other resultant charged particles. For comparison, AM, TM50 and spongiosa kerma coefficients were also calculated. At low incident neutron energies, AM kerma coefficients for neutrons correlate well with values of the AM DRF, while total marrow (TM) kerma coefficients correlate well with values of the TM50 DRF. At high incident neutron energies, all kerma coefficients and DRFs tend to converge as charged-particle equilibrium is established across the bone site. In the range of 10 eV to 100 Me

  17. Fraction of a dose absorbed estimation for structurally diverse low solubility compounds.

    Science.gov (United States)

    Sugano, Kiyohiko

    2011-02-28

    The purpose of the present study was to investigate the prediction accuracy of the fully mechanistic gastrointestinal unified theoretical (GUT) framework for in vivo oral absorption of low solubility drugs. Solubility in biorelevant media, molecular weight, logP(oct), pK(a), Caco-2 permeability, dose and particle size were used as the input parameters. To neglect the effect of the low stomach pH on dissolution of a drug, the fraction of a dose absorbed (Fa%) of undissociable and free acids were used. In addition, Fa% of free base drugs with the high pH stomach was also included to increase the number of model drugs. In total twenty nine structurally diverse compounds were used as the model drugs. Fa% data at several doses and particle sizes in humans and dogs were collated from the literature (total 110 Fa% data). In approximately 80% cases, the prediction error was within 2 fold, suggesting that the GUT framework has practical predictability for drug discovery, but not for drug development. The GUT framework appropriately captured the dose and particle size dependency of Fa% as the particle drifting effect was taken into account. It should be noted that the present validation results cannot be applied for salt form cases and other special formulations such as solid dispersions and emulsion formulations. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Development of a TPC for energy and fluence references in low energies neutronic fields (from 8 keV to 5 MeV)

    International Nuclear Information System (INIS)

    Maire, Donovan

    2015-01-01

    . This ionization non-linearity study is linked to current radiobiology topics on absorbed dose mechanism. (author)

  19. Estimation of dose distribution in occupationally exposed individuals to FDG-18F

    International Nuclear Information System (INIS)

    Lacerda, Isabelle V. Batista de; Cabral, Manuela O. Monteiro; Vieira, Jose Wilson

    2014-01-01

    The use of unsealed radiation sources in nuclear medicine can lead to important incorporation of radionuclides, especially for occupationally exposed individuals (OEIs) during production and handling of radiopharmaceuticals. In this study, computer simulation was proposed as an alternative methodology for evaluation of the absorbed dose distribution and for the effective dose value in OEIs. For this purpose, the Exposure Computational Model (ECM) which is named as FSUP (Female Adult Mesh - supine) were used. This ECM is composed of: voxel phantom FASH (Female Adult MeSH) in the supine position, the MC code EGSnrc and an algorithm simulator of general internal source. This algorithm was modified to adapt to specific needs of the positron emission from FDG- 18 F. The obtained results are presented as absorbed dose/accumulated activity. To obtain the absorbed dose distribution it was necessary to use accumulative activity data from the in vivo bioassay. The absorbed dose distribution and the value of estimated effective dose in this study did not exceed the limits for occupational exposure. Therefore, the creation of a database with the distribution of accumulated activity is suggested in order to estimate the absorbed dose in radiosensitive organs and the effective dose for OEI in similar environment. (author)

  20. SU-E-T-436: Fluence-Based Trajectory Optimization for Non-Coplanar VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, G; Bamber, JC; Bedford, JL [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London (United Kingdom); Evans, PM [Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford (United Kingdom); Saran, FH; Mandeville, HC [The Royal Marsden NHS Foundation Trust, Sutton (United Kingdom)

    2015-06-15

    Purpose: To investigate a fluence-based trajectory optimization technique for non-coplanar VMAT for brain cancer. Methods: Single-arc non-coplanar VMAT trajectories were determined using a heuristic technique for five patients. Organ at risk (OAR) volume intersected during raytracing was minimized for two cases: absolute volume and the sum of relative volumes weighted by OAR importance. These trajectories and coplanar VMAT formed starting points for the fluence-based optimization method. Iterative least squares optimization was performed on control points 24° apart in gantry rotation. Optimization minimized the root-mean-square (RMS) deviation of PTV dose from the prescription (relative importance 100), maximum dose to the brainstem (10), optic chiasm (5), globes (5) and optic nerves (5), plus mean dose to the lenses (5), hippocampi (3), temporal lobes (2), cochleae (1) and brain excluding other regions of interest (1). Control point couch rotations were varied in steps of up to 10° and accepted if the cost function improved. Final treatment plans were optimized with the same objectives in an in-house planning system and evaluated using a composite metric - the sum of optimization metrics weighted by importance. Results: The composite metric decreased with fluence-based optimization in 14 of the 15 plans. In the remaining case its overall value, and the PTV and OAR components, were unchanged but the balance of OAR sparing differed. PTV RMS deviation was improved in 13 cases and unchanged in two. The OAR component was reduced in 13 plans. In one case the OAR component increased but the composite metric decreased - a 4 Gy increase in OAR metrics was balanced by a reduction in PTV RMS deviation from 2.8% to 2.6%. Conclusion: Fluence-based trajectory optimization improved plan quality as defined by the composite metric. While dose differences were case specific, fluence-based optimization improved both PTV and OAR dosimetry in 80% of cases.

  1. Fluence compensated photoacoustic tomography in small animals (Conference Presentation)

    Science.gov (United States)

    Hussain, Altaf; Pool, Martin; Daoudi, Khalid; de Vries, Liesbeth G.; Steenbergen, Wiendelt

    2017-03-01

    Light fluence inside turbid media can be experimentally mapped by measuring ultrasonically modulated light (Acousto-optics). To demonstrate the feasibility of fluence corrected Photoacoustic (PA) imaging, we have realized a tri-modality (i.e. photoacoustic, acousto-optic and ultrasound) tomographic small animal imaging system. Wherein PA imaging provides high resolution map of absorbed optical energy density, Acousto-optics yields the fluence distribution map in the corresponding PA imaging plane and Ultrasound provides morphological information. Further, normalization of the PA image with the acousto-optically measured fluence map results in an image that directly represents the optical absorption. Human epidermal growth factor receptor 2 (HER2) is commonly found overexpressed in human cancers, among which breast cancers, resulting in a more aggressive tumor phenotype. Identification of HER2-expression is clinically relevant, because cancers overexpressing this marker are amenable to HER2-directed therapies, among which antibodies trastuzumab and pertuzumab. Here, we investigate the feasibility and advantage of acousto-optically assisted fluence compensated PA imaging over PA imaging alone in visualizing and quantifying HER2 expression. For this experiment, nude mice were xenografted with human breast cancer cell lines SKBR3 and BT474 (both HER2 overexpressing), as well as HER2-negative MDA-MB-231. To visualize HER2 expression in these mice, HER2 monoclonal antibody pertuzumab (Perjeta®, Roche), was conjugated to near-infrared dye IRDye 800CW (800CW, LICOR Biosciences) at a ratio of 1∶2 antibody to 800CW. When xenograft tumors measured ≥ 100 mm3, mice received 100 µg 800CW-pertuzumab intravenously. Three days post injection, mice were scanned for fluorescence signal with an IVIS scanner. After fluorescence scans, mice were euthanized and imaged in our PA tomographic imaging system.

  2. Comparison of the standards of absorbed dose to water of the VNIIFTRI, Russia and the BIPM for {sup 60}Co {gamma} rays

    Energy Technology Data Exchange (ETDEWEB)

    Allisy-Roberts, P.J.; Burns, D.T. [Bureau International des Poids et Mesures (BIPM), 92 - Sevres (France); Berlyand, V.; Bregadze, Y.; Korostin, S. [All-Russian Scientific Research Institute for Physical-Technical and Radiotechnical Measurements, Moscow (Russian Federation)

    2003-09-15

    A comparison of the standards of absorbed dose to water of the All-Russian Scientific Research Institute for Physical-Technical and Radio-technical Measurements (VNIIFTRI), Russia and of the Bureau International des Poids et Mesures (BIPM) has been made in {sup 60}Co gamma radiation. The results show that the VNIIFTRI and the BIPM standards for absorbed dose to water are in agreement, yielding a mean ratio of 0.9967 for the calibration factors of the transfer chambers, the difference from unity being within the combined standard uncertainty (0.0043) for this result. (authors)

  3. Determination of the Absorbed Doses in Shanks of Interventional Radiologists

    International Nuclear Information System (INIS)

    Golnik, N.; Szczepanski, K.; Tulik, P.; Obryk, B.

    2008-01-01

    Complicated procedures of interventional radiology require usually a much longer investigation time, comparing to the conventional radiography. Moreover, interventional radiology procedures require the presence of the medical staff next to the patient in order to perform the procedure. This results in higher risk for health professionals. Even though these persons reasonably keep away from the primary X ray beam, they are under the effects of scatter radiation due to the interaction of the primary beam with the patient. The protection aprons, thyroid protectors and shielding glasses are used in order to minimize the doses for the staff, but lower parts of legs remain usually unprotected and the absorbed doses in shanks are not recorded. The paper presents the measured values of the absorbed dose in lower extremities of medical staff, involved in the procedures of interventional radiology, completed with the measurements of air kerma under the patient table. Measurements were performed in one of big hospitals in Warsaw during all the procedures performed in six weeks. Majority of the procedures constituted angioplasty or angioplasty with vascular stenting, uterine fibroid embolization and cholangiography. In the angioplasty procedure, imaging techniques are used to guide a balloon-tipped catheter into an artery and advance it to where the vessel is narrow or blocked. The balloon is then inflated to open the vessel, deflated and removed. In vascular stenting, which is often performed with angioplasty, a small wire mesh tube (a stent) is permanently placed in the newly opened artery to help it remain open. In a uterine fibroid embolization procedure, the image guidance is used in order to place an embolic agent (synthetic material) inside one or more of the blood vessels that supply the fibroid tumors with blood. As a result, these vessels become occluded, or closed off, and the fibroid tissue shrinks. Percutaneous transhepatic cholangiography is a way of examining

  4. The international protocol for the dosimetry of external radiotherapy beams based on standards of absorbed dose to water

    International Nuclear Information System (INIS)

    Andreo, P.

    2001-01-01

    An International Code of Practice (CoP, or dosimetry protocol) for external beam radiotherapy dosimetry based on standards of absorbed dose to water has been published by the IAEA on behalf of IAEA, WHO, PAHO and ESTRO. The CoP provides a systematic and internationally unified approach for the determination of the absorbed dose to water in reference conditions with radiotherapy beams. The development of absorbed-dose-to-water standards for high-energy photons and electrons offers the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. Many laboratories already provide calibrations at the radiation quality of 60Co gamma-rays and some have extended calibrations to high-energy photon and electron beams. The dosimetry of kilovoltage x-rays, as well as that of proton and ion beams can also be based on these standards. Thus, a coherent dosimetry system based on the same formalism is achieved for practically all radiotherapy beams. The practical use of the CoP as simple. The document is formed by a set of different CoPs for each radiation type, which include detailed procedures and worksheets. All CoPs are based on ND,w chamber calibrations at a reference beam quality Qo, together with radiation beam quality correction factors kQ preferably measured directly for the user's chamber in a standards laboratory. Calculated values of kQ are provided together with their uncertainty estimates. Beam quality specifiers are 60Co, TPR20,10 (high-energy photons), R50 (electrons), HVL and kV (x-rays) and Rres (protons and ions) [es

  5. Comparison of embrittlement trend curves to high fluence surveillance results

    International Nuclear Information System (INIS)

    Bogaert, A.S.; Gerard, R.; Chaouadi, R.

    2011-01-01

    In the regulatory justification of the integrity of the reactor pressure vessels (RPV) for long term operation, use is made of predictive formulas (also called trend curves) to evaluate the RPV embrittlement (expressed in terms of RTNDT shifts) in function of fluence, chemical composition and in some cases temperature, neutron flux or product form. It has been shown recently that some of the existing or proposed trend curves tend to underpredict high dose embrittlement. Due to the scarcity of representative surveillance data at high dose, some test reactor results were used in these evaluations and raise the issue of representativeness of the accelerated test reactor irradiations (dose rate effects). In Belgium the surveillance capsules withdrawal schedule was modified in the nineties in order to obtain results corresponding to 60 years of operation or more with the initial surveillance program. Some of these results are already available and offer a good opportunity to test the validity of the predictive formulas at high dose. In addition, advanced surveillance methods are used in Belgium like the Master Curve, increased tensile tests, and microstructural investigations. These techniques made it possible to show the conservatism of the regulatory approach and to demonstrate increased margins, especially for the first generation units. In this paper the surveillance results are compared to different predictive formulas, as well as to an engineering hardening model developed at SCK.CEN. Generally accepted property-to-property correlations are critically revisited. Conclusions are made on the reliability and applicability of the embrittlement trend curves. (authors)

  6. Absorbed doses profiles vs Synovia tissue depth for the Y-90 and P-32 used in radiosynoviortesis treatment

    International Nuclear Information System (INIS)

    Torres B, M.B.; Ayra P, F.E.; Garcia R, E.; Cornejo D, N.; Yoriyaz, H.

    2006-01-01

    The radiosynoviortesis treatment has been used during more of 40 years as an alternative to the chemical and surgical synovectomy to alleviate the pain and to reduce the inflammation in suffered patients of rheumatic arthropathies, haemophilic arthropathies and other articulation disorders. It consists on the injection of radioactive isotopes inside a synovial cavity. For to evaluate the dosimetry of the radiosynoviortesis treatment is of great interest to know the absorbed dose in the volume of the target (synovia). The precise calculation of the absorbed dose in the inflamed synovia it is difficult, for numerous reasons, since the same one will depend on the thickness of the synovial membrane, the size of the articular space, the structure of the synovial membrane, the distribution in the articulation, the nature of the articular liquid, etc. Also the presence of the bone and the articular cartilage, components also of the articulation, it even complicated more the calculations. The method used to evaluate the dosimetry in radioactive synovectomy is known as the Monte Carlo method. The objective of our work consists on estimating with the Monte Carlo code MCNP4B the absorbed dose of the Y-90 and the P-32 in the depth of the synovial tissue. The results are presented as absorbed dose for injected millicurie (Gy/mCi) versus depth of synovial tissue. The simulation one carries out keeping in mind several synovia areas, of 50 cm 2 to 250 cm 2 keeping in mind three states of progression of the illness. Those obtained values of absorbed dose using the MCNP4B code will allow to introduce in our country an optimized method of dose prescription to the patient, to treat the rheumatic arthritis in medium and big articulations using the Y-90 and the P-32, eliminating the fixed doses and fixed radionuclides for each articulation like it happens in many clinics of Europe, as well as the empiric doses. (Author)

  7. Calibration of GafChromic EBT3 for absorbed dose measurements in 5 MeV proton beam and 60Co γ-rays

    International Nuclear Information System (INIS)

    Vadrucci, M.; Ronsivalle, C.; Marracino, F.; Montereali, R. M.; Picardi, L.; Piccinini, M.; Vincenti, M. A.; Esposito, G.; De Angelis, C.; Cherubini, R.; Pimpinella, M.

    2015-01-01

    Purpose: To study EBT3 GafChromic film in low-energy protons, and for comparison purposes, in a reference 60 Co beam in order to use it as a calibrated dosimetry system in the proton irradiation facility under construction within the framework of the Oncological Therapy with Protons (TOP)-Intensity Modulated Proton Linear Accelerator for RadioTherapy (IMPLART) Project at ENEA-Frascati, Italy. Methods: EBT3 film samples were irradiated at the Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Legnaro, Italy, with a 5 MeV proton beam generated by a 7 MV Van de Graaff CN accelerator. The nominal dose rates used were 2.1 Gy/min and 40 Gy/min. The delivered dose was determined by measuring the particle fluence and the energy spectrum in air with silicon surface barrier detector monitors. A preliminary study of the EBT3 film beam quality dependence in low-energy protons was conducted by passively degrading the beam energy. EBT3 films were also irradiated at ENEA-National Institute of Ionizing Radiation Metrology with gamma radiation produced by a 60 Co source characterized by an absorbed dose to water rate of 0.26 Gy/min as measured by a calibrated Farmer type ionization chamber. EBT3 film calibration curves were determined by means of a set of 40 film pieces irradiated to various doses ranging from 0.5 Gy to 30 Gy absorbed dose to water. An EPSON Expression 11000XL color scanner in transmission mode was used for film analysis. Scanner response stability, intrafilm uniformity, and interfilm reproducibility were verified. Optical absorption spectra measurements were performed on unirradiated and irradiated EBT3 films to choose the most sensitive color channel to the dose range used. Results: EBT3 GafChromic films show an under response up to about 33% for low-energy protons with respect to 60 Co gamma radiation, which is consistent with the linear energy transfer dependence already observed with higher energy protons, and a negligible dose-rate dependence in

  8. A comparison of Australian and Canadian calibration coefficients for air kerma and absorbed dose to water for 60Co gamma radiation.

    Science.gov (United States)

    Shortt, K R; Huntley, R B; Kotler, L H; Boas, J F; Webb, D V

    2006-06-01

    Australian and Canadian calibration coefficients for air kerma and absorbed dose to water for 60Co gamma radiation have been compared using transfer standard ionization chambers of types NE 2561 and NE 2611A. Whilst the primary standards of air kerma are similar, both being thick-walled graphite cavity chambers but employing different methods to evaluate the Awall correction, the primary standards of absorbed dose to water are quite different. The Australian standard is based on measurements made with a graphite calorimeter, whereas the Canadian standard uses a sealed water calorimeter. The comparison result, expressed as a ratio of calibration coefficients R=N(ARPANSA)/N(NRC), is 1.0006 with a combined standard uncertainty of 0.35% for the air kerma standards and 1.0052 with a combined standard uncertainty of 0.47% for the absorbed dose to water standards. This demonstrates the agreement of the Australian and Canadian radiation dosimetry standards. The results are also consistent with independent comparisons of each laboratory with the BIPM reference standards. A 'trilateral' analysis confirms the present determination of the relationship between the standards, within the 0.09% random component of the combined standard uncertainty for the three comparisons.

  9. Absorbed dose determination in high energy photon beams using new IAEA TRS - 398 Code of Practice

    International Nuclear Information System (INIS)

    Suriyapee, S.; Srimanoroath, S.; Jumpangern, C.

    2002-01-01

    The absorbed dose calibration of 6 and 10 MV X-ray beams from Varian Clinac 1800 at King Chulalongkorn Memorial Hospital Bangkok, Thailand were performed using cylindrical chamber 0.6 cc NE2571 Serial No. 1633 with graphite wall and Delrin build up cap and lonex Dosemaster NE 2590 Serial No. 223. The absorbed dose determination followed the IAEA code of practice TRS-277. The new IAEA code of practice TRS-398 have been studied to compare the result with the IAEA TRS-277

  10. Calibration of ionization chambers and determination of the absorbed doses

    International Nuclear Information System (INIS)

    RANDRIANTSEHENO, H.F

    1996-01-01

    In order to further improve the accuracy of dosimetric measurements in radiation therapy, the IAEA and WHO supported the establishment of Secondary Standard Dosimetry Laboratory (SSDLs). These SSDLs bridge the gap between the primary measurement standards and the user of ionizing radiation by providing the latter with calibrations against the SSDLs' secondary standards and by giving technical advice and assistance. However, a properly calibrated dosimeter is just necessary first condition for the determination of the dose. It has been demonstrated that the success or failure of radiation treatment depends on the absorbed dose delivered to the tumour and that this should not vary by more than a few per cent from described values. [fr

  11. Radiation doses and correlated late effects in diagnostic radiology

    International Nuclear Information System (INIS)

    Gustafsson, M.

    1980-04-01

    Patient irradiation in diagnostic radiology was estimated from measurements of absorbed doses in different organs, assessment of the energy imparted and retrospective calculations based on literature data. Possible late biological effects, with special aspects on children, were surveyed. The dose to the lens of the eye and the possibility of shielding in carotid angiography was studied as was the absorbed dose to the thyroid gland at cardiac catheterization and angiocardiography in children. Calculations of the mean bone marrow dose and gonad doses were performed in children with chronic skeletal disease revealing large contributions from examinations of organs other than the skeleton. The dose distribution in the breast in mammography was investigated. Comparison of the energy imparted in common roentgen examinations in 1960 and 1975 showed an unexpected low decrease in spite of technical improvements. Reasons for the failing decrease are discussed. The energy imparted to children in urological examinations was reduced significantly due to introduction of high sensitivity screens and omission of dose demanding projections. Contributions to the possible late effects were estimated on the basis of the organ doses assessed. (author)

  12. Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This document provides guidance in determining absorbed-dose distributions in products, materials or substances irradiated in gamma, X-ray (bremsstrahlung) and electron beam facilities. Note 1—For irradiation of food and the radiation sterilization of health care products, other specific ISO and ISO/ASTM standards containing dose mapping requirements exist. For food irradiation, see ISO/ASTM 51204, Practice for Dosimetry in Gamma Irradiation Facilities for Food Processing and ISO/ASTM 51431, Practice for Dosimetry in Electron and Bremsstrahlung Irradiation Facilities for Food Processing. For the radiation sterilization of health care products, see ISO 11137: 1995, Sterilization of Health Care Products Requirements for Validation and Routine Control Radiation Sterilization. In those areas covered by ISO 11137, that standard takes precedence. ISO/ASTM Practice 51608, ISO/ASTM Practice 51649, and ISO/ASTM Practice 51702 also contain dose mapping requirements. 1.2 Methods of analyzing the dose map data ar...

  13. Regression models in the determination of the absorbed dose with extrapolation chamber for ophthalmological applicators

    International Nuclear Information System (INIS)

    Alvarez R, J.T.; Morales P, R.

    1992-06-01

    The absorbed dose for equivalent soft tissue is determined,it is imparted by ophthalmologic applicators, ( 90 Sr/ 90 Y, 1850 MBq) using an extrapolation chamber of variable electrodes; when estimating the slope of the extrapolation curve using a simple lineal regression model is observed that the dose values are underestimated from 17.7 percent up to a 20.4 percent in relation to the estimate of this dose by means of a regression model polynomial two grade, at the same time are observed an improvement in the standard error for the quadratic model until in 50%. Finally the global uncertainty of the dose is presented, taking into account the reproducibility of the experimental arrangement. As conclusion it can infers that in experimental arrangements where the source is to contact with the extrapolation chamber, it was recommended to substitute the lineal regression model by the quadratic regression model, in the determination of the slope of the extrapolation curve, for more exact and accurate measurements of the absorbed dose. (Author)

  14. Analysis of absorbed dose in cervical spine scanning by computerized tomography using simulator objects

    International Nuclear Information System (INIS)

    Lyra, Maria Henriqueta Freire

    2015-01-01

    The Computed tomography (CT) has become an important diagnostic tool after the continued development of Multidetector CT (MDCT), which allows faster acquisition of images with better quality than the previous technology. However, there is an increased radiation exposure, especially in examinations that require more than one acquisition, as dynamic exams and enhancement studies in order to discriminate low contrast soft tissue injury from normal tissue. Cervical spine MDCT examinations are used for diagnosis of soft tissue and vascular changes, fractures, dysplasia and other diseases with instability, which guide the patient treatment and rehabilitation. This study aims at checking the absorbed dose range in the thyroid and other organs during MDCT scan of cervical spine, with and without bismuth thyroid shield. In this experiment a cervical spine MDCT scan was performed on anthropomorphic phantoms, from the occipital to the first thoracic vertebra, using a 64 and a 16 – channel CT scanners. Thermoluminescent dosimeters were used to obtain the absorbed dose in thyroid, lenses, magnum foramen and breasts of the phantom. The results show that the thyroid received the highest dose, 60.0 mGy, in the female phantom, according to the incidence of the primary X-ray beam. The absorbed doses in these tests showed significant differences in the evaluated organs, p value < 0.005, except for the magnum foramen and breasts. With the bismuth thyroid shield applied on the female phantom, the doses in the thyroid and in the lenses were reduced by 27% and 52%, respectively. On the other hand, a reduction of 23.3% in the thyroid and increasing of 49.0% in the lens were measured on the male phantom. (author)

  15. Influence of thyroid volume reduction on absorbed dose in "1"3"1I therapy studied by using Geant4 Monte Carlo simulation

    International Nuclear Information System (INIS)

    Rahman, Ziaur; Arshed, Waheed; Ahmed, Waheed; Mirza, Sikander M.; Mirza, Nasir M.

    2014-01-01

    A simulation study has been performed to quantify the effect of volume reduction on the thyroid absorbed dose per decay and to investigate the variation of energy deposition per decay due to β- and γ-activity of "1"3"1I with volume/mass of thyroid, for water, ICRP- and ICRU-soft tissue taken as thyroid material. A Monte Carlo model of the thyroid, in the Geant4 radiation transport simulation toolkit was constructed to compute the β- and γ-absorbed dose in the simulated thyroid phantom for various values of its volume. The effect of the size and shape of the thyroid on energy deposition per decay has also been studied by using spherical, ellipsoidal and cylindrical models for the thyroid and varying its volume in 1-25 cm"3 range. The relative differences of Geant4 results for different models with each other and MCNP results lie well below 1.870%. The maximum relative difference among the Geant4 estimated results for water with ICRP and ICRU soft tissues is not more than 0.225%. S-values for ellipsoidal, spherical and cylindrical thyroid models were estimated and the relative difference with published results lies within 3.095%. The absorbed fraction values for beta particles show a good agreement with published values within 2.105% deviation. The Geant4 based simulation results of absorbed fractions for gammas again show a good agreement with the corresponding MCNP and EGS4 results (± 6.667%) but have 29.032% higher values than that of MIRD calculated values. Consistent with previous studies, the reduction of the thyroid volume is found to have a substantial effect on the absorbed dose. Geant4 simulations confirm dose dependence on the volume/mass of thyroid in agreement with MCNP and EGS4 computed values but are substantially different from MIRD8 data. Therefore, inclusion of size/mass dependence is indicated for "1"3"1I radiotherapy of the thyroid. (authors)

  16. Probability model for worst case solar proton event fluences

    International Nuclear Information System (INIS)

    Xapsos, M.A.; Summers, G.P.; Barth, J.L.; Stassinopoulos, E.G.; Burke, E.A.

    1999-01-01

    The effects that solar proton events have on microelectronics and solar arrays are important considerations for spacecraft in geostationary orbits, polar orbits and on interplanetary missions. A predictive model of worst case solar proton event fluences is presented. It allows the expected worst case event fluence to be calculated for a given confidence level and for periods of time corresponding to space missions. The proton energy range is from >1 to >300 MeV, so that the model is useful for a variety of radiation effects applications. For each proton energy threshold, the maximum entropy principle is used to select the initial distribution of solar proton event fluences. This turns out to be a truncated power law, i.e., a power law for smaller event fluences that smoothly approaches zero at a maximum fluence. The strong agreement of the distribution with satellite data for the last three solar cycles indicates this description captures the essential features of a solar proton event fluence distribution. Extreme value theory is then applied to the initial distribution of events to obtain the model of worst case fluences

  17. Estimation of eye absorbed doses in head & neck radiotherapy practices using thermoluminescent detectors

    Directory of Open Access Journals (Sweden)

    Gh Bagheri

    2011-09-01

    Full Text Available  Determination of eye absorbed dose during head & neck radiotherapy is essential to estimate the risk of cataract. Dose measurements were made in 20 head & neck cancer patients undergoing 60Co radiotherapy using LiF(MCP thermoluminescent dosimeters. Head & neck cancer radiotherapy was delivered by fields using SAD & SSD techniques. For each patient, 3 TLD chips were placed on each eye. Head & neck dose was about 700-6000 cGy in 8-28 equal fractions. The range of eye dose is estimated to be (3.49-639.1 mGy with a mean of maximum dose (98.114 mGy, which is about 3 % of head & neck dose. Maximum eye dose was observed for distsnces of about 3 cm from edge of the field to eye.

  18. External Auditing on Absorbed Dose Using a Solid Water Phantom for Domestic Radiotherapy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Heon; Kim, Jung In; Park, Jong Min; Park, Yang Kyun; Ye, Sung Joon [Medical Research Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cho, Kun Woo; Cho, Woon Kap [Radiation Research, Korean Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lim, Chun Il [Korea Food and Drug Administration, Seoul (Korea, Republic of)

    2010-11-15

    We report the results of an external audit on the absorbed dose of radiotherapy beams independently performed by third parties. For this effort, we developed a method to measure the absorbed dose to water in an easy and convenient setup of solid water phantom. In 2008, 12 radiotherapy centers voluntarily participated in the external auditing program and 47 beams of X-ray and electron were independently calibrated by the third party's American Association of Physicists in Medicine (AAPM) task group (TG)-51 protocol. Even though the AAPM TG-51 protocol recommended the use of water, water as a phantom has a few disadvantages, especially in a busy clinic. Instead, we used solid water phantom due to its reproducibility and convenience in terms of setup and transport. Dose conversion factors between solid water and water were determined for photon and electron beams of various energies by using a scaling method and experimental measurements. Most of the beams (74%) were within {+-}2% of the deviation from the third party's protocol. However, two of 20 X-ray beams and three of 27 electron beams were out of the tolerance ({+-}3%), including two beams with a >10% deviation. X-ray beams of higher than 6 MV had no conversion factors, while a 6 MV absorbed dose to a solid water phantom was 0.4% less than the dose to water. The electron dose conversion factors between the solid water phantom and water were determined: The higher the electron energy, the less is the conversion factor. The total uncertainty of the TG-51 protocol measurement using a solid water phantom was determined to be {+-}1.5%. The developed method was successfully applied for the external auditing program, which could be evolved into a credential program of multi-institutional clinical trials. This dosimetry saved time for measuring doses as well as decreased the uncertainty of measurement possibly resulting from the reference setup in water.

  19. Electron fluence to dose equivalent conversion factors calculated with EGS3 for electrons and positrons with energies from 100 keV to 20 GeV

    International Nuclear Information System (INIS)

    Rogers, D.W.O.

    1983-01-01

    At NRC the general purpose Monte-Carlo electron-photon transport code EGS3 is being applied to a variety of radiation dosimetry problems. To test its accuracy at low energies a detailed set of depth-dose curves for electrons and photons has been generated and compared to previous calculations. It was found that by changing the default step-size algorithm in EGS3, significant changes were obtained for incident electron beam cases. It was found that restricting the step-size to a 4% energy loss was appropriate below incident electron beam energies of 10 MeV. With this change, the calculated depth-dose curves were found to be in reasonable agreement with other calculations right down to incident electron energies of 100 keV although small (less than or equal to 10%) but persistent discrepancies with the NBS code ETRAN were obtained. EGS3 predicts higher initial dose and shorter range than ETRAN. These discrepancies are typical of a wide range of energies as is the better agreement with the results of Nahum. Data is presented for the electron fluence to maximal dose equivalent in a 30 cm thick slab of ICRU 4-element tissue irradiated by broad parallel beams of electrons incident normal to the surface. On their own, these values only give an indication of the dose equivalent expected from a spectrum of electrons since one needs to fold the spectrum maximal dose equivalent value. Calculations have also been done for incident positron beams. Despite the large statistical uncertainties, maximal dose equivalent although their values are 5 to 10% lower in a band around 10 MeV

  20. Uncertainty analysis in the determination of absorbed dose in water by Fricke chemical dosimetry; Analise das incertezas na determinacao da dose absorvida na agua por dosimetria quimica Fricke

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Fabia; Aguirre, Eder Aguirre, E-mail: fabiavasco@hotmail.com, E-mail: ederuni01@gmail.com [Fundacao do Cancer, Rio de Janeiro, RJ (Brazil); Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2016-07-01

    This work studies the calculations of uncertainties and the level of confidence that involves the process for obtaining the dose absorbed in water using the method of Fricke dosimetry, developed at Laboratorio de Ciencias Radiologicas (LCR). Measurements of absorbance of samples Fricke, irradiated and non-irradiated is going to use in order to calculate the respective sensitivity coefficients, along with the expressions of the calculation of Fricke dose and the absorbed dose in water. Those expressions are used for calculating the others sensitivity coefficients from the input variable. It is going to use the combined uncertainty and the expanded uncertainty, with a level of confidence of 95.45%, in order to report the uncertainties of the measurement. (author)

  1. Sci-Sat AM: Brachy - 03: Feasibility study of the determination of absorbed dose to water using a fricke based system.

    Science.gov (United States)

    Gamal, I El; Cojocaru, C; Ross, C; Marchington, D; McEwen, M

    2012-07-01

    By measuring the dose to water directly a metrology standard, independent of air kerma, can be developed to make the basis of HDR brachytherapy dosimetry consistent with current dosimetry methods for external radiation beams. The Fricke dosimeter system, a liquid chemical dosimeter, provides a means of measuring the absorbed dose rate to water directly by measuring the radiation-induced change in absorption of the Fricke solution. In an attempt to measure the absorbed dose to water directly for a 192 Ir HDR brachytherapy source a ring shaped Fricke holder was constructed from PMMA, essentially following the work of Austerlitz et al. (Med. Phys. 2008). Benchmark measurements conducted in a 60 Co beam yielded a standard uncertainty in the absorption reading of 0.16 %, comparable with previous results in the literature. Measurements of the standard uncertainty of the control (unirradiated) solution using the holder yielded 0.2 %, indicating good process control and minimal contamination from the holder itself. However, it was found that the holder sealing method (to allow measurements in a water phantom) significantly contaminated the Fricke solution, resulting in an excessive background reading. Irradiations were therefore conducted in air to determine the feasibility of the procedure. Irradiations with a 17 GBq source gave a standard uncertainty of approximately 0.5 %, indicating that the target uncertainty of 1.5% for the measurement of absorbed dose to water using a Fricke-based primary standard is achievable. This would be comparable with calorimeter-based systems currently being developed. © 2012 American Association of Physicists in Medicine.

  2. Determination of Radon Level in Drinking Water in Mehriz Villages and Evaluation the Annual Effective Absorbed Dose

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2015-03-01

    Results: Radon concentrations of samples ranged from 0.187 BqL-1 to 14.8 BqL-1.These results were related to samples No.12 and 9 and also to aqueducts of Tang-e-chenar and Malekabad village respectively. Based on the amount of radon in the sample, the lowest annual effective absorbed dose through drinking water or breathing(In an environment where water was used was 0.0005msv/y and the maximum amount was 0.04msv/y. Conclusion: Apart from samples No.9 and 16 that were elated to the aqueduct of Malekabad village and a private well in Dare Miankoohvillagehaving48 persons as total population, Radon concentrations of other samples used by people of Mehriz villages as drinking water was low and less than permitted limit set by the Environmental Protection Agency of United States of America.

  3. Estimation of dose distribution in occupationally exposed individuals to FDG-{sup 18}F

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Isabelle V. Batista de; Cabral, Manuela O. Monteiro; Vieira, Jose Wilson, E-mail: ilacerda.bolsista@cnen.gov.br, E-mail: manuela.omc@gmail.com [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Oliveira, Mercia Liane de; Andrade Lima, Fernando R. de, E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2014-07-01

    The use of unsealed radiation sources in nuclear medicine can lead to important incorporation of radionuclides, especially for occupationally exposed individuals (OEIs) during production and handling of radiopharmaceuticals. In this study, computer simulation was proposed as an alternative methodology for evaluation of the absorbed dose distribution and for the effective dose value in OEIs. For this purpose, the Exposure Computational Model (ECM) which is named as FSUP (Female Adult Mesh - supine) were used. This ECM is composed of: voxel phantom FASH (Female Adult MeSH) in the supine position, the MC code EGSnrc and an algorithm simulator of general internal source. This algorithm was modified to adapt to specific needs of the positron emission from FDG-{sup 18}F. The obtained results are presented as absorbed dose/accumulated activity. To obtain the absorbed dose distribution it was necessary to use accumulative activity data from the in vivo bioassay. The absorbed dose distribution and the value of estimated effective dose in this study did not exceed the limits for occupational exposure. Therefore, the creation of a database with the distribution of accumulated activity is suggested in order to estimate the absorbed dose in radiosensitive organs and the effective dose for OEI in similar environment. (author)

  4. Absorbed dose distributions in patients with bone metastases from hormone refractory prostate cancer treated with Re-186 HEDP

    International Nuclear Information System (INIS)

    Denis Bacelar, A.M.; Dearnaley, D.P.; Divoli, A.; Chittenden, S.; Du, Y.; Flux, G.D.; O'Sullivan, J.M.

    2015-01-01

    Full text of publication follows. Aim: intravenous administration of Re-186 hydroxyethylidene-diphosphonate (HEDP) is used for metastatic bone pain palliation in hormone refractory prostate cancer patients. Dosimetry for bone seeking radionuclides is challenging due to the complex structure with osteoblastic, osteolytic and mixed lesions. The aim of this study was to perform image-based patient-specific 3D convolution dosimetry to obtain a distribution of the absorbed doses to each lesion and estimate inter- and intra-patient variations. Materials and methods: 28 patients received a fixed 5 GBq activity of Re-186 HEDP followed by peripheral blood stem cell rescue at 14 days in a phase II trial. A FORTE dual-headed gamma camera was used to acquire sequential Single-Photon-Emission Computed Tomography (SPECT) data of the thorax and pelvis area at 1, 4, 24, 48 and 72 hours following administration. The projection data were reconstructed using filtered-back projection and were corrected for attenuation and scatter. Voxelised cumulated activity distributions were obtained with two different methods. First, the scans were co-registered and the time-activity curves were obtained on a voxel-by-voxel basis. Second, the clearance curve was obtained from the mean number of counts in each individual lesion and used to scale the uptake distribution taken at 24 hours. The calibration factors required for image quantification were obtained from a phantom experiment. An in-house developed EGSnrc Monte Carlo code was used for the calculation of dose voxel kernels for soft-tissue and cortical/trabecular bone used to perform convolution dosimetry. Cumulative dose-volume histograms were produced and mean absorbed doses calculated for each spinal and pelvic lesion. Results: preliminary results show that the lesion mean absorbed doses ranged from 25 to 55 Gy when the medium was soft tissue and decreased by 40% if bone was considered. The use of the cumulated activity distribution

  5. Radiance and particle fluence

    International Nuclear Information System (INIS)

    Papiez, L.; Battista, J.J.

    1994-01-01

    The International Commission on Radiological Units and Measurements (ICRU) has defined fluence in terms of the number of the radiation particles crossing a small sampling sphere. A second definition has been proposed in which the length of track segments contained within any sampling volume are used to calculate the incident fluence. This approach is often used in Monte Carlo simulations of individual particle tracks, allowing the fluence to be scored in small volumes of any shape. In this paper we stress that the second definition generalizes the classical (ICRU) concept of fluence. We also identify the assumptions inherent in the two definitions of fluence and prove their equivalence for the case of straight-line particle trajectories. (author)

  6. Verification of absorbed dose rates in reference beta radiation fields: measurements with an extrapolation chamber and radiochromic film

    International Nuclear Information System (INIS)

    Reynaldo, S. R.; Benavente C, J. A.; Da Silva, T. A.

    2015-10-01

    Beta Secondary Standard 2 (Bss 2) provides beta radiation fields with certified values of absorbed dose to tissue and the derived operational radiation protection quantities. As part of the quality assurance, metrology laboratories are required to verify the reliability of the Bss-2 system by performing additional verification measurements. In the CDTN Calibration Laboratory, the absorbed dose rates and their angular variation in the 90 Sr/ 90 Y and 85 Kr beta radiation fields were studied. Measurements were done with a 23392 model PTW extrapolation chamber and with Gafchromic radiochromic films on a PMMA slab phantom. In comparison to the certificate values provided by the Bss-2, absorbed dose rates measured with the extrapolation chamber differed from -1.4 to 2.9% for the 90 Sr/ 90 Y and -0.3% for the 85 Kr fields; their angular variation showed differences lower than 2% for incidence angles up to 40-degrees and it reached 11% for higher angles, when compared to ISO values. Measurements with the radiochromic film showed an asymmetry of the radiation field that is caused by a misalignment. Differences between the angular variations of absorbed dose rates determined by both dosimetry systems suggested that some correction factors for the extrapolation chamber that were not considered should be determined. (Author)

  7. Absorbed dose rate due to intake of natural radionuclides by Tilapia fish (Tilapia nilotica, Linnaeus, 1758) estimated near uranium anomaly at Santa Quiteria, Ceara, Brazil

    International Nuclear Information System (INIS)

    Pereira, Wagner de; Kelecom, Alphonse; Py Junior, Delcy de Azevedo

    2007-01-01

    The uranium mining at Santa Quiteria (Santa Quiteria Unit - USQ) is in its environmental licensing phase. Aiming to estimate the radiological environmental impact of the USQ, a monitoring program is underway. However, radioprotection of biota is not explicitly mentioned in Brazilian norms. In order to preserve the biota of the deleterious effects from radiation and to behave in a pro-active way as expected by licensing organs, the present work aims to use an environmental protection methodology, based on the calculation of absorbed dose rate in biota. Thus, selected biomarker was the fish tilapia (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210). Since there are no exposition limits for biota, in Brazil, the value proposed by the Department of Energy (DOE) of the United States of 3.5 x 10 3 μGy/y has been used. The derived absorbed dose rate calculated for tilapia was 2.76 x 10 0 μGy/y, that is less than 0.1 % of the limit established by DOE. The critical radionuclide was U-238, with 99% of the absorbed dose rate. This value of 0.1% of the limit allows to state that in pre-operational conditions analyzed natural radionuclides do not represent a radiological problem to the biota. (author)

  8. Absorbed dose rate due to intake of natural radionuclides by Tilapia fish (Tilapia nilotica, Linnaeus, 1758) estimated near uranium anomaly at Santa Quiteria, Ceara, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wagner de [Industrias Nucleares do Brasil S.A. (INB), Pocos de Caldas, MG (Brazil). Coordenacao de Protecao Radiologica. Unidade de Tratamento de Minerios], E-mail: wspereira@inb.gov.br; Kelecom, Alphonse [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Programa de Pos-graduacao em Ciencia Ambiental; Py Junior, Delcy de Azevedo [Industrias Nucleares do Brasil S.A. (INB), Caetite, BA (Brazil). Coordenacao de Protecao Radiologica. Unidade de Concentrado de Uranio], E-mail: Delcy@inb.gov.br

    2007-07-01

    The uranium mining at Santa Quiteria (Santa Quiteria Unit - USQ) is in its environmental licensing phase. Aiming to estimate the radiological environmental impact of the USQ, a monitoring program is underway. However, radioprotection of biota is not explicitly mentioned in Brazilian norms. In order to preserve the biota of the deleterious effects from radiation and to behave in a pro-active way as expected by licensing organs, the present work aims to use an environmental protection methodology, based on the calculation of absorbed dose rate in biota. Thus, selected biomarker was the fish tilapia (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210). Since there are no exposition limits for biota, in Brazil, the value proposed by the Department of Energy (DOE) of the United States of 3.5 x 10{sup 3} {mu}Gy/y has been used. The derived absorbed dose rate calculated for tilapia was 2.76 x 10{sup 0} {mu}Gy/y, that is less than 0.1 % of the limit established by DOE. The critical radionuclide was U-238, with 99% of the absorbed dose rate. This value of 0.1% of the limit allows to state that in pre-operational conditions analyzed natural radionuclides do not represent a radiological problem to the biota. (author)

  9. Organ-specific external dose coefficients and protective apron transmission factors for historical dose reconstruction for medical personnel.

    Science.gov (United States)

    Simon, Steven L

    2011-07-01

    While radiation absorbed dose (Gy) to the skin or other organs is sometimes estimated for patients from diagnostic radiologic examinations or therapeutic procedures, rarely is occupationally-received radiation absorbed dose to individual organs/tissues estimated for medical personnel; e.g., radiologic technologists or radiologists. Generally, for medical personnel, equivalent or effective radiation doses are estimated for compliance purposes. In the very few cases when organ doses to medical personnel are reconstructed, the data is usually for the purpose of epidemiologic studies; e.g., a study of historical doses and risks to a cohort of about 110,000 radiologic technologists presently underway at the U.S. National Cancer Institute. While ICRP and ICRU have published organ-specific external dose conversion coefficients (DCCs) (i.e., absorbed dose to organs and tissues per unit air kerma and dose equivalent per unit air kerma), those factors have been published primarily for mono-energetic photons at selected energies. This presents two related problems for historical dose reconstruction, both of which are addressed here. It is necessary to derive conversion factor values for (1) continuous distributions of energy typical of diagnostic medical x-rays (bremsstrahlung radiation), and (2) energies of particular radioisotopes used in medical procedures, neither of which are presented in published tables. For derivation of DCCs for bremsstrahlung radiation, combinations of x-ray tube potentials and filtrations were derived for different time periods based on a review of relevant literature. Three peak tube potentials (70 kV, 80 kV, and 90 kV) with four different amounts of beam filtration were determined to be applicable for historic dose reconstruction. The probabilities of these machine settings were assigned to each of the four time periods (earlier than 1949, 1949-1954, 1955-1968, and after 1968). Continuous functions were fit to each set of discrete values of the

  10. Characterization of an absorbed dose standard in water through ionometric methods

    International Nuclear Information System (INIS)

    Vargas V, M.X.

    2003-01-01

    In this work the unit of absorbed dose at the Secondary Standard Dosimetry Laboratory (SSDL) of Mexico, is characterized by means of the development of a primary standard of absorbed dose to water, D agua . The main purpose is to diminish the uncertainty in the service of dosimetric calibration of ionization chambers (employed in radiotherapy of extemal beams) that offers this laboratory. This thesis is composed of seven chapters: In Chapter 1 the position and justification of the problem is described, as well as the general and specific objectives. In Chapter 2, a presentation of the main quantities and units used in dosimetry is made, in accordance with the recommendations of the International Commission on Radiation Units and Measurements (ICRU) that establish the necessity to have a coherent system with the international system of units and dosimetric quantities. The concepts of equilibrium and transient equilibrium of charged particles (TCPE) are also presented, which are used later in the quantitative determination of D agua . Finally, since the proposed standard of D agua is of ionometric type, an explanation of the Bragg-Gray and Spencer-Attix cavity theories is made. These theories are the foundation of this type of standards. On the other hand, to guarantee the complete validity of the conditions demanded by these theories it is necessary to introduce correction factors. These factors are determined in Chapters 5 and 6. Since for the calculation of the correction factors Monte Carlo (MC) method is used in an important way, in Chapter 3 the fundamental concepts of this method are presented; in particular the principles of the code MCNP4C [Briesmeister 2000] are detailed, making emphasis on the basis of electron transport and variance reduction techniques used in this thesis. Because a phenomenological approach is carried out in the development of the standard of D agua , in Chapter 4 the characteristics of the Picker C/9 unit, the ionization chamber type

  11. Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase

    International Nuclear Information System (INIS)

    De la Mora, Eugenio; Lovett, Janet E.; Blanford, Christopher F.; Garman, Elspeth F.; Valderrama, Brenda; Rudino-Pinera, Enrique

    2012-01-01

    Radiation-induced reduction, radiolysis of copper sites and the effect of pH value together with the concomitant geometrical distortions of the active centres were analysed in several fungal (C. gallica) laccase structures collected at cryotemperature. This study emphasizes the importance of careful interpretation when the crystallographic structure of a metalloprotein is described. X-ray radiation induces two main effects at metal centres contained in protein crystals: radiation-induced reduction and radiolysis and a resulting decrease in metal occupancy. In blue multicopper oxidases (BMCOs), the geometry of the active centres and the metal-to-ligand distances change depending on the oxidation states of the Cu atoms, suggesting that these alterations are catalytically relevant to the binding, activation and reduction of O 2 . In this work, the X-ray-determined three-dimensional structure of laccase from the basidiomycete Coriolopsis gallica (Cg L), a high catalytic potential BMCO, is described. By combining spectroscopic techniques (UV–Vis, EPR and XAS) and X-ray crystallography, structural changes at and around the active copper centres were related to pH and absorbed X-ray dose (energy deposited per unit mass). Depletion of two of the four active Cu atoms as well as low occupancies of the remaining Cu atoms, together with different conformations of the metal centres, were observed at both acidic pH and high absorbed dose, correlating with more reduced states of the active coppers. These observations provide additional evidence to support the role of flexibility of copper sites during O 2 reduction. This study supports previous observations indicating that interpretations regarding redox state and metal coordination need to take radiation effects explicitly into account

  12. Monte Carlo Estimation of Absorbed Dose Distributions Obtained from Heterogeneous 106Ru Eye Plaques.

    Science.gov (United States)

    Zaragoza, Francisco J; Eichmann, Marion; Flühs, Dirk; Sauerwein, Wolfgang; Brualla, Lorenzo

    2017-09-01

    The distribution of the emitter substance in 106 Ru eye plaques is usually assumed to be homogeneous for treatment planning purposes. However, this distribution is never homogeneous, and it widely differs from plaque to plaque due to manufacturing factors. By Monte Carlo simulation of radiation transport, we study the absorbed dose distribution obtained from the specific CCA1364 and CCB1256 106 Ru plaques, whose actual emitter distributions were measured. The idealized, homogeneous CCA and CCB plaques are also simulated. The largest discrepancy in depth dose distribution observed between the heterogeneous and the homogeneous plaques was 7.9 and 23.7% for the CCA and CCB plaques, respectively. In terms of isodose lines, the line referring to 100% of the reference dose penetrates 0.2 and 1.8 mm deeper in the case of heterogeneous CCA and CCB plaques, respectively, with respect to the homogeneous counterpart. The observed differences in absorbed dose distributions obtained from heterogeneous and homogeneous plaques are clinically irrelevant if the plaques are used with a lateral safety margin of at least 2 mm. However, these differences may be relevant if the plaques are used in eccentric positioning.

  13. Determination of the conversion coefficient for ambient dose equivalent, H(10), from air kerma measurements

    International Nuclear Information System (INIS)

    Gonzalez J, F.; Alvarez R, J. T.

    2015-09-01

    Namely the operational magnitudes can be determined by the product of a conversion coefficient by exposure air kerma or fluence, etc. In particular in Mexico for the first time is determined the conversion coefficient (Cc) for operational magnitude Environmental Dose Equivalent H(10) by thermoluminescence dosimetry (TLD) technique. First 30 TLD-100 dosimeters are calibrated in terms of air kerma, then these dosimeters are irradiated inside a sphere ICRU type of PMMA and with the aid of theory cavity the absorbed dose in PMMA is determined at a depth of 10 mm within the sphere D PMMA (10), subsequently absorbed dose to ICRU tissue is corrected and the dose equivalent H(10) is determined. The Cc is determined as the ratio of H(10)/K a obtaining a value of 1.20 Sv Gy -1 with a u c = 3.66%, this being consistent with the published value in ISO-4037-3 of 1.20 Sv Gy -1 with a u c = 2%. (Author)

  14. Computational assessment of effective dose and patient specific doses for kilovoltage stereotactic radiosurgery of wet age-related macular degeneration

    Science.gov (United States)

    Hanlon, Justin Mitchell

    Age-related macular degeneration (AMD) is a leading cause of vision loss and a major health problem for people over the age of 50 in industrialized nations. The current standard of care, ranibizumab, is used to help slow and in some cases stabilize the process of AMD, but requires frequent invasive injections into the eye. Interest continues for stereotactic radiosurgery (SRS), an option that provides a non-invasive treatment for the wet form of AMD, through the development of the IRay(TM) (Oraya Therapeutics, Inc., Newark, CA). The goal of this modality is to destroy choroidal neovascularization beneath the pigment epithelium via delivery of three 100 kVp photon beams entering through the sclera and overlapping on the macula delivering up to 24 Gy of therapeutic dose over a span of approximately 5 minutes. The divergent x-ray beams targeting the fovea are robotically positioned and the eye is gently immobilized by a suction-enabled contact lens. Device development requires assessment of patient effective dose, reference patient mean absorbed doses to radiosensitive tissues, and patient specific doses to the lens and optic nerve. A series of head phantoms, including both reference and patient specific, was derived from CT data and employed in conjunction with the MCNPX 2.5.0 radiation transport code to simulate treatment and evaluate absorbed doses to potential tissues-at-risk. The reference phantoms were used to evaluate effective dose and mean absorbed doses to several radiosensitive tissues. The optic nerve was modeled with changeable positions based on individual patient variability seen in a review of head CT scans gathered. Patient specific phantoms were used to determine the effect of varying anatomy and gaze. The results showed that absorbed doses to the non-targeted tissues were below the threshold levels for serious complications; specifically the development of radiogenic cataracts and radiation induced optic neuropathy (RON). The effective dose

  15. Test measurements on a secco white-lead containing model samples to assess the effects of exposure to low-fluence UV laser radiation

    Science.gov (United States)

    Raimondi, Valentina; Andreotti, Alessia; Colombini, Maria Perla; Cucci, Costanza; Cuzman, Oana; Galeotti, Monica; Lognoli, David; Palombi, Lorenzo; Picollo, Marcello; Tiano, Piero

    2015-05-01

    Laser-induced fluorescence technique is widely used for diagnostic purposes in several applications and its use could be of advantage for non-invasive on-site characterisation of pigments or other compounds in wall paintings. However, it is well known that long-time exposure to UV and VIS radiation can cause damage to wall paintings. Several studies have investigated the effects of lighting, e.g., in museums: however, the effects of low-fluence laser radiation have not been studied much so far. This paper investigates the effects of UV laser radiation using fluences in the range of 0.1 mJ/cm2-1 mJ/cm2 on a set of a secco model samples prepared with lead white and different type of binders (animal glue and whole egg, whole egg, skimmed milk, egg-oil tempera). The samples were irradiated using a Nd:YAG laser (emission wavelength at 355 nm; pulse width: 5 ns) by applying laser fluences between 0.1 mJ/cm2 and 1 mJ/cm2 and a number of laser pulses between 1 and 500. The samples were characterised before and after laser irradiation by using several techniques (colorimetry, optical microscopy, fibre optical reflectance spectroscopy, FT-IR spectroscopy Attenuated Total Reflectance microscopy and gas chromatography/mass spectrometry), to detect variations in the morphological and physico-chemical properties. The results did not point out significant changes in the sample properties after irradiation in the proposed range of laser fluences.

  16. Realization of fluence field modulated CT on a clinical TomoTherapy megavoltage CT system

    International Nuclear Information System (INIS)

    Szczykutowicz, Timothy P; Hermus, James; Geurts, Mark; Smilowitz, Jennifer

    2015-01-01

    The multi-leaf collimator (MLC) assembly present on TomoTherapy (Accuray, Madison WI) radiation therapy (RT) and mega voltage CT machines is well suited to perform fluence field modulated CT (FFMCT). In addition, there is a demand in the RT environment for FFMCT imaging techniques, specifically volume of interest (VOI) imaging.A clinical TomoTherapy machine was programmed to perform VOI. Four different size ROIs were placed at varying distances from isocenter. Projections intersecting the VOI received ‘full dose’ while those not intersecting the VOI received 30% of the dose (i.e. the incident fluence for non VOI projections was 30% of the incident fluence for projections intersecting the VOI). Additional scans without fluence field modulation were acquired at ‘full’ and 30% dose. The noise (pixel standard deviation) and mean CT number were measured inside the VOI region and compared between the three scans. Dose maps were generated using a dedicated TomoTherapy treatment planning dose calculator.The VOI-FFMCT technique produced an image noise 1.05, 1.00, 1.03, and 1.05 times higher than the ‘full dose’ scan for ROI sizes of 10 cm, 13 cm, 10 cm, and 6 cm respectively within the VOI region. The VOI-FFMCT technique required a total imaging dose equal to 0.61, 0.69, 0.60, and 0.50 times the ‘full dose’ acquisition dose for ROI sizes of 10 cm, 13 cm, 10 cm, and 6 cm respectively within the VOI region.Noise levels can be almost unchanged within clinically relevant VOIs sizes for RT applications while the integral imaging dose to the patient can be decreased, and/or the image quality in RT can be dramatically increased with no change in dose relative to non-FFMCT RT imaging. The ability to shift dose away from regions unimportant for clinical evaluation in order to improve image quality or reduce imaging dose has been demonstrated. This paper demonstrates that FFMCT can be performed using the MLC on a clinical TomoTherapy machine for the

  17. Three-dimensional electron-beam dose calculations

    International Nuclear Information System (INIS)

    Shiu, A.S.

    1988-01-01

    The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron-beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements were incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. A pencil-beam redefinition model was developed for the calculation of electron-beam dose distributions in three dimensions

  18. Gain and time resolution of 45 μm thin Low Gain Avalanche Detectors before and after irradiation up to a fluence of 1015 neq/cm2

    International Nuclear Information System (INIS)

    Lange, J.; Cavallaro, E.; Förster, F.; Grinstein, S.; Carulla, M.; Flores, D.; Hidalgo, S.; Merlos, A.; Pellegrini, G.; Quirion, D.; Chytka, L.; Komarek, T.; Nozka, L.; Davis, P.M.; Kramberger, G.; Mandić, I.; Sykora, T.

    2017-01-01

    Low Gain Avalanche Detectors (LGADs) are silicon sensors with a built-in charge multiplication layer providing a gain of typically 10 to 50. Due to the combination of high signal-to-noise ratio and short rise time, thin LGADs provide good time resolutions. LGADs with an active thickness of about 45 μm were produced at CNM Barcelona. Their gains and time resolutions were studied in beam tests for two different multiplication layer implantation doses, as well as before and after irradiation with neutrons up to 10 15 n eq /cm 2 . The gain showed the expected decrease at a fixed voltage for a lower initial implantation dose, as well as for a higher fluence due to effective acceptor removal in the multiplication layer. Time resolutions below 30 ps were obtained at the highest applied voltages for both implantation doses before irradiation. Also after an intermediate fluence of 3×10 14 n eq /cm 2 , similar values were measured since a higher applicable reverse bias voltage could recover most of the pre-irradiation gain. At 10 15 n eq /cm 2 , the time resolution at the maximum applicable voltage of 620 V during the beam test was measured to be 57 ps since the voltage stability was not good enough to compensate for the gain layer loss. The time resolutions were found to follow approximately a universal function of gain for all implantation doses and fluences.

  19. Annual absorbed dose rate at the surface of 38 hot and mineral springs in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Bahreyni Toosi, M.; Orougi, M.H.; Sadeghzadeh, A.; Aghamir, A.; Jomehzadeh, A.; Zare, H. [Mashhad Univ. of Medical Sciences, Medical Physics Dep., Faculty of Medicine (Iran, Islamic Republic of)

    2006-07-01

    Full text of publication follows: Measurement of background radiation is very important from different points of view especially to human health. In some cases exposure rate near hot and mineral springs are higher than those of normal areas. The high background radiation of hot and mineral springs is primarily due to the presence of very high amounts of Ra 226 and its decay products. In this research, environmental gamma radiation of hot and mineral springs in Khorasan, Mazandaran and Sareeyn town in Ardabil province have been measured. Equipment used in this work included: a survey meter (R.D.S. -110), a tripod and an aluminium frame to hold the survey meter horizontally.R.D.S. -110 is a microprocessor controlled detector. This survey meter has been designed for monitoring X and rays and radiation. Measurements were carried out at one meter above water level in the vicinity of hot and mineral springs. Dose rates were recorded for one hour. The average of all recorded dose rates over one hour period was taken as the exposure rate for each station. The results indicate that in Khorasan province the highest and lowest annual absorbed dose rates were equal to 10.80 mSv/y at Shanigarmab and 0.52 mSv/y at Nasradin source respectively. In Mazandaran province maximum and minimum exposure rates equal to 54.4 and 0.53 mSv/y were obtained at the surface of Talleshmahalleh and Ghormerz sources. Exposure rates at the vicinity of Sarein sources were not very different and ranged from 1.39 to 1.59 mSv/y. The results indicate that in Khorasan province Shahingarmab hot spring has the highest annual absorbed dose rate (10.80 mSv/y) and Nasraddin in Sarbisheh has the lowest level of radiation (0.62 mSv/y). In Mazandaran province Taleshmahalleh hot mineral spring has the highest annual absorbed dose rate (54.41 mSv/y) and Ghormerz mineral spring has the lowest radiation level (0.53 mSv/y). Also in Sareeyn (in Ardabil province) Abechashm source has the highest annual absorbed dose

  20. The effect of iodine uptake on radiation dose absorbed by patient tissues in contrast enhanced CT imaging. Implications for CT dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Perisinakis, Kostas; Damilakis, John [University of Crete, Department of Medical Physics, Medical School, Heraklion, Crete (Greece); University Hospital of Heraklion, Department of Medical Physics, Heraklion, Crete (Greece); Tzedakis, Antonis; Papadakis, Antonios E. [University Hospital of Heraklion, Department of Medical Physics, Heraklion, Crete (Greece); Spanakis, Kostas [University Hospital of Heraklion, Department of Radiology, Heraklion, Crete (Greece); Hatzidakis, Adam [University Hospital of Heraklion, Department of Radiology, Heraklion, Crete (Greece); University of Crete, Department of Radiology, Medical School, Heraklion, Crete (Greece)

    2018-01-15

    To investigate the effect of iodine uptake on tissue/organ absorbed doses from CT exposure and its implications in CT dosimetry. The contrast-induced CT number increase of several radiosensitive tissues was retrospectively determined in 120 CT examinations involving both non-enhanced and contrast-enhanced CT imaging. CT images of a phantom containing aqueous solutions of varying iodine concentration were obtained. Plots of the CT number increase against iodine concentration were produced. The clinically occurring iodine tissue uptake was quantified by attributing recorded CT number increase to a certain concentration of aqueous iodine solution. Clinically occurring iodine uptake was represented in mathematical anthropomorphic phantoms. Standard 120 kV CT exposures were simulated using Monte Carlo methods and resulting organ doses were derived for non-enhanced and iodine contrast-enhanced CT imaging. The mean iodine uptake range during contrast-enhanced CT imaging was found to be 0.02-0.46% w/w for the investigated tissues, while the maximum value recorded was 0.82% w/w. For the same CT exposure, iodinated tissues were found to receive higher radiation dose than non-iodinated tissues, with dose increase exceeding 100% for tissues with high iodine uptake. Administration of iodinated contrast medium considerably increases radiation dose to tissues from CT exposure. (orig.)

  1. Radiation absorbed dose to the human fetal thyroid

    International Nuclear Information System (INIS)

    Watson, E.E.

    1992-01-01

    The embryo/fetus is recognized to be particularly susceptible to damage from exposure to radiation. Many advisory groups have studied available information concerning radiation doses and radiation effects with the goal of reducing the risk to the embryo/fetus. Of particular interest are radioactive isotopes of iodine. Radioiodine taken into the body of a pregnant woman presents a possible hazard for the embryo/fetus. The fetal thyroid begins to concentrate iodine at about 13 weeks after conception and continues to do so throughout gestation. At term, the organic iodine concentration in the fetal blood is about 75% of that in the mother's blood. This paper presents a review the models that have been proposed for the calculation of the dose to the fetal thyroid from radioisotopes of iodine taken into the body of the pregnant woman as sodium iodide. A somewhat different model has been proposed, and estimates of the radiation dose to the fetal thyroid calculated from this model are given for each month of pregnancy from 123 I , 124 I , 125 I , and 131 I

  2. Neutron physics calculation for WWER-1000 absorber element lifetime determination

    International Nuclear Information System (INIS)

    Kurakin, K.Yu.; Kushmanov, S.A.

    2009-01-01

    Absorber element with compound absorber has been operating in WWER-1000 power units since 1995. AE design meets operating organizations requirements for reliability, service life (to 10 years) and safety functions. Extension of AE service life up to 20 - 30 years by the complex of calculation and experimental work is an important problem of WWER new designs development. The paper deals with the issues related to calculation determination of main factors that influence AE service life limitation - neutron flux and fluence onto absorbing and structural materials during extended service life. (Authors)

  3. The design of a calorimetric standard of ionising radiation absorbed dose

    International Nuclear Information System (INIS)

    Huntley, R.B.

    1981-05-01

    The design of a calorimetric working standard of ionising radiation absorbed dose is discussed. A brief history of the appropriate quantities and units of measurement is given. Detailed design considerations follow a summary of the relevant literature. The methods to be used to relate results to national standards of measurement are indicated, including the need for various correction factors. A status report is given on the construction and testing program

  4. Image quality and absorbed dose comparison of single- and dual-source cone-beam computed tomography.

    Science.gov (United States)

    Miura, Hideharu; Ozawa, Shuichi; Okazue, Toshiya; Kawakubo, Atsushi; Yamada, Kiyoshi; Nagata, Yasushi

    2018-04-17

    Dual-source cone-beam computed tomography (DCBCT) is currently available in the Vero4DRT image-guided radiotherapy system. We evaluated the image quality and absorbed dose for DCBCT and compared the values with those for single-source CBCT (SCBCT). Image uniformity, Hounsfield unit (HU) linearity, image contrast, and spatial resolution were evaluated using a Catphan phantom. The rotation angle for acquiring SCBCT and DCBCT images is 215° and 115°, respectively. The image uniformity was calculated using measurements obtained at the center and four peripheral positions. The HUs of seven materials inserted into the phantom were measured to evaluate HU linearity and image contrast. The Catphan phantom was scanned with a conventional CT scanner to measure the reference HU for each material. The spatial resolution was calculated using high-resolution pattern modules. Image quality was analyzed using ImageJ software ver. 1.49. The absorbed dose was measured using a 0.6-cm 3 ionization chamber with a 16-cm-diameter cylindrical phantom, at the center and four peripheral positions of the phantom, and calculated using weighted cone-beam CT dose index (CBCTDI w ). Compared with that of SCBCT, the image uniformity of DCBCT was slightly reduced. A strong linear correlation existed between the measured HU for DCBCT and the reference HU, although the linear regression slope was different from that of the reference HU. DCBCT had poorer image contrast than did SCBCT, particularly with a high-contrast material. There was no significant difference between the spatial resolutions of SCBCT and DCBCT. The absorbed dose for DCBCT was higher than that for SCBCT, because in DCBCT, the two x-ray projections overlap between 45° and 70°. We found that the image quality was poorer and the absorbed dose was higher for DCBCT than for SCBCT in the Vero4DRT. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of

  5. Environmental and biological monitoring in the estimation of absorbed doses of pesticides.

    Science.gov (United States)

    Aprea, Maria Cristina

    2012-04-25

    Exposure to pesticides affects most of the population, not only persons occupationally exposed. In a context of high variability of exposure, biological monitoring is important because of the various routes by which exposure can occur and because it assesses both occupational and non-occupational exposure. The main aim of this paper was to critically compare estimates of absorbed dose measured by environmental and biological monitoring in situations in which they could both be applied. The combination of exposure measurements and biological monitoring was found to provide extremely important information on the behaviour of employees, and on the proper use and effectiveness of personal protection equipment. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. ESR spectroscopy for detecting gamma-irradiated dried vegetables and estimating absorbed doses

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Joong-Ho; Chung, Hyung-Wook; Byun, Myung-Woo

    2000-03-01

    In view of an increasing demand for food irradiation technology, the development of a reliable means of detection for the control of irradiated foods has become necessary. Various vegetable food materials (dried cabbage, carrot, chunggyungchae, garlic, onion, and green onion), which can be legally irradiated in Korea, were subjected to a detection study using ESR spectroscopy. Correlation coefficients (R{sup 2}) between absorbed doses (2.5-15 kGy) and their corresponding ESR signals were identified from ESR signals. Pre-established threshold values were successfully applied to the detection of 54 coded unknown samples of dried clean vegetables (chunggyungchae, Brassica camestris var. chinensis), both non-irradiated and irradiated. The ESR signals of irradiated chunggyungchae decreased over a longer storage time, however, even after 6 months of ambient storage, these signals were still distinguishable from those of non-irradiated samples. The most successful estimates of absorbed dose (5 and 8 kGy) were obtained immediately after irradiation using a quadratic fit with average values of 4.85 and 8.65 kGy being calculated. (author)

  7. Three-dimensional absorbed dose determinations by N.M.R. analysis of phantom-dosemeters

    International Nuclear Information System (INIS)

    Gambarini, G.; Birattari, C.; Fumagalli, M.L.; Vai, A.; Monti, D.; Salvadori, P.; Facchielli, L.; Sichirollo, A.E.

    1996-01-01

    Magnetic resonance imaging of a tissue-equivalent phantom is a promising technique for three-dimensional determination of absorbed dose from ionizing radiation. A reliable method of determining the spatial distribution of absorbed dose is indispensable for the planning of treatment in the presently developed radiotherapy techniques aimed at obtaining high energy selectively delivered to cancerous tissues, with low dose delivered to the surrounding healthy tissue. Aqueous gels infused with the Fricke dosemeter (i.e. with a ferrous sulphate solution), as proposed in 1984 by Gore et al., have shown interesting characteristics and, in spite of some drawbacks that cause a few limitations to their utilisation, they have shown the feasibility of three-dimensional dose determinations by nuclear magnetic resonance (NMR) imaging. Fricke-infused agarose gels with various compositions have been analysed, considering the requirements of the new radiotherapy techniques, in particular Boron Neutron Capture Therapy (B.N.C.T.) and proton therapy. Special attention was paid to obtain good tissue equivalence for every radiation type of interest. In particular, the tissue equivalence for thermal neutrons, which is a not simple problem, has also been satisfactorily attained. The responses of gel-dosemeters having the various chosen compositions have been analysed, by mean of NMR instrumentation. Spectrophotometric measurements have also been performed, to verify the consistence of the results. (author)

  8. Clinical dosimetry with plastic scintillators - Almost energy independent, direct absorbed dose reading with high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Quast, U; Fluehs, D [Department of Radiotherapy, Essen (Germany). Div. of Clinical Radiation Physics; Fluehs, D; Kolanoski, H [Dortmund Univ. (Germany). Inst. fuer Physik

    1996-08-01

    Clinical dosimetry is still far behind the goal to measure any spatial or temporal distribution of absorbed dose fast and precise without disturbing the physical situation by the dosimetry procedure. NE 102A plastic scintillators overcome this border. These tissue substituting dosemeter probes open a wide range of new clinical applications of dosimetry. This versatile new dosimetry system enables fast measurement of the absorbed dose to water in water also in regions with a steep dose gradient, close to interfaces, or in partly shielded regions. It allows direct reading dosimetry in the energy range of all clinically used external photon and electron beams, or around all branchytherapy sources. Thin detector arrays permit fast and high resolution measurements in quality assurance, such as in-vivo dosimetry or even afterloading dose monitoring. A main field of application is the dosimetric treatment planning, the individual optimization of brachytherapy applicators. Thus, plastic scintillator dosemeters cover optimally all difficult fields of clinical dosimetry. An overview about its characteristics and applications is given here. 20 refs, 1 fig.

  9. The TL fluence response to heavy charged particles using the track interaction model and track structure information

    International Nuclear Information System (INIS)

    Rodriguez-Villafuerte, M.; Avila, O.

    2002-01-01

    The extended track interaction model, ETIM, has recently been proposed to explain the TLD-100 fluence response of peak 5 to heavy ions. This model includes the track structure information through the use of the luminescent-centre occupation probability obtained from radial dose distributions produced by the ions as they travel through the dosemeter. In this work an implementation of ETIM using Monte Carlo techniques is presented. The simulation was applied to calculate the response of peak 5 of both sensitised and normal TLD-100 crystals to 2.6 and 6.8 MeV 4 He ions. The simulation shows that the TL-fluence response has a strong dependence on ion energy, in disagreement with experimental observations. In spite of this, good agreement between the simulated TL-fluence response calculated for the 6.8 MeV 4 He radial distributions and the experimental data for the two energies was achieved. (author)

  10. Absorbed Doses and Risk Estimates of (211)At-MX35 F(ab')2 in Intraperitoneal Therapy of Ovarian Cancer Patients

    DEFF Research Database (Denmark)

    Cederkrantz, Elin; Andersson, Håkan; Bernhardt, Peter

    2015-01-01

    dose associated with i.p. administration of (211)At-MX35 F(ab')2. METHODS AND MATERIALS: Patients in clinical remission after salvage chemotherapy for peritoneal recurrence of ovarian cancer underwent i.p. infusion of (211)At-MX35 F(ab')2. Potassium perchlorate was given to block unwanted accumulation...... 100 MBq/L, organ equivalent doses were less than 10% of the estimated tolerance dose. CONCLUSION: Intraperitoneal (211)At-MX35 F(ab')2 treatment is potentially a well-tolerated therapy for locally confined microscopic ovarian cancer. Absorbed doses to normal organs are low, but because the effective...

  11. Intermediate and fast neutron absorbed doses in fast neutron field at the RB reactor

    International Nuclear Information System (INIS)

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1987-10-01

    The experimental fuel channel EFC is created as one of the fast neutron fields at the RB reactor. The intermediate and fast neutron spectra in EFC are measured by activation technique. The intermediate and fast neutron absorbed doses are computed on the basis of these experimental results. At the end the obtained doses are compared. (author)

  12. Effects of body habitus on internal radiation dose calculations using the 5-year-old anthropomorphic male models

    DEFF Research Database (Denmark)

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-01-01

    Xtended general purpose Monte Carlo transport code and calculated the absorbed dose and effective dose of five 18F-labelled radiotracers for children of various habitus. For most organs, the S-value of F-18 presents stronger statistical correlations with body weight, standing height and sitting height than BMI...... and SSR. The self-absorbed fraction and self-absorbed S-values of F-18 and the absorbed dose and effective dose of 18F-labelled radiotracers present with the strongest statistical correlations with body weight. For 18F-Amino acids, 18F-Brain receptor substances, 18F-FDG, 18F-L-DOPA and 18F-FBPA, the mean...... absolute effective dose differences between phantoms of different habitus and fixed reference models are 11.4%, 11.3%, 10.8%, 13.3% and 11.4%, respectively. Total body weight, standing height and sitting height have considerable effects on human internal dosimetry. Radiation dose calculations...

  13. Evaluation of {sup 99}Mo/{sup 99m}Tc generator columns after irradiation with different absorbed doses

    Energy Technology Data Exchange (ETDEWEB)

    Fukumori, Neuza T.O.; Mengatti, Jair; Matsuda, Margareth M.N., E-mail: ntfukumo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The {sup 99}Mo/{sup 99m}Tc generator is widely used in nuclear medicine and it consists of a glass column containing Teflon® strips and alumina in which {sup 99}Mo produced by {sup 235}U fission is adsorbed. The {sup 99}mTcO4- eluate shall meet the sterile and pyrogen free conditions for injectable radiopharmaceuticals as determined by the Good Manufacturing Practices. The purpose of this study was to evaluate the feasibility of using gamma radiation in the sterilization of the {sup 99}Mo/{sup 99m}Tc generator column and the influence on the elution efficiency. Alumina-containing columns were irradiated with 10, 15, 25 and 50 kGy absorbed doses. Alumina samples and control (non-irradiated) were submitted to X-ray diffraction and the combined use of scanning electron microscopy and elemental analysis. Teflon® samples were evaluated by thermogravimetry (TGA) and differential scanning calorimetry (DSC). X-ray diffractograms and micrographies with elemental analysis showed no significant changes in the crystalline structure of the alumina because it was stable α-Al{sub 2}O{sub 3}. TGA demonstrated that higher doses showed changes in lower temperatures and times than the control material. For DSC the higher the absorbed dose, the greater the polymer chain breakage and crosslinking in the material. The generator system without radioactivity was set up with the irradiated columns and the eluates demonstrated to be sterile and pyrogen free. The effects of different absorbed doses on the generator column, although some reported changes in the materials, demonstrated that the sterilization of the columns by irradiation with gamma rays as an alternative to wet heat sterilization is feasible from a technical and financial point of view. (author)

  14. Comparison of absorbed dose of two protocols of tomographic scanning in PET/CT exams

    International Nuclear Information System (INIS)

    Paiva, F.G.

    2017-01-01

    Positron Emission Tomography (PET) associated with Computed Tomography (CT) allows the fusion of functional and anatomical images. When compared to other diagnostic techniques, PET-CT subjects patients to higher levels of radiation, because two modalities are used in a single exam. In this study, the doses absorbed in 19 patient organs from the tomographic scan were evaluated. Radiochromic films were correctly positioned in the Alderson anthropomorphic simulator, male version. For evaluation, two whole body scan protocols were compared. For evaluation, two whole body scan protocols were compared. An increase of up to 600% in the absorbed dose in the pituitary was observed when the protocols were compared, with the lowest observed increase of approximately 160% for the liver. It is concluded that the dose from CT in patients submitted to PET-CT scanning is higher in the protocol used for diagnosis. Considering the high cost of PET-CT exam, in many cases it is preferable that the CT examination is of diagnostic quality, and not only for anatomical mapping, an argument based on the Principle of Justification

  15. Verification of absorbed dose rates in reference beta radiation fields: measurements with an extrapolation chamber and radiochromic film

    Energy Technology Data Exchange (ETDEWEB)

    Reynaldo, S. R. [Development Centre of Nuclear Technology, Posgraduate Course in Science and Technology of Radiations, Minerals and Materials / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Benavente C, J. A.; Da Silva, T. A., E-mail: sirr@cdtn.br [Development Centre of Nuclear Technology / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Beta Secondary Standard 2 (Bss 2) provides beta radiation fields with certified values of absorbed dose to tissue and the derived operational radiation protection quantities. As part of the quality assurance, metrology laboratories are required to verify the reliability of the Bss-2 system by performing additional verification measurements. In the CDTN Calibration Laboratory, the absorbed dose rates and their angular variation in the {sup 90}Sr/{sup 90}Y and {sup 85}Kr beta radiation fields were studied. Measurements were done with a 23392 model PTW extrapolation chamber and with Gafchromic radiochromic films on a PMMA slab phantom. In comparison to the certificate values provided by the Bss-2, absorbed dose rates measured with the extrapolation chamber differed from -1.4 to 2.9% for the {sup 90}Sr/{sup 90}Y and -0.3% for the {sup 85}Kr fields; their angular variation showed differences lower than 2% for incidence angles up to 40-degrees and it reached 11% for higher angles, when compared to ISO values. Measurements with the radiochromic film showed an asymmetry of the radiation field that is caused by a misalignment. Differences between the angular variations of absorbed dose rates determined by both dosimetry systems suggested that some correction factors for the extrapolation chamber that were not considered should be determined. (Author)

  16. Dose absorbed in adults and children thyroid due to the I123 using the dosimetry MIRD and Marinelli

    International Nuclear Information System (INIS)

    Vasquez, M.; Castillo, C.; Cabrera, C.; Sarachaga, R.; Castaneda, J.; Diaz, E.

    2014-08-01

    Using the dosimetry MIRD, and representation Cristy-Eckerman in the thyroid gland and organs of their bio-kinetics when I 123 (Iodine) is used, the study demonstrates that the absorbed dose by the gland of an adult, children, and newly born, is their auto-dose, independent of the compartments number of their bio-kinetics. The dosimetric contributions of the organs of their bio-kinetics are insignificant. Their results are not significantly different to those obtained by the formalism MARINELLI (auto-dose) when it uses a sphere like glandular representation. In consequence, the kinetic model corresponding to the glandular representation decreases to a compartment, where the gland can also be represented like a sphere. (Author)

  17. Absorbed dose/melting heat dependence studies for the PVDF homopolymer

    International Nuclear Information System (INIS)

    Batista, Adriana S.M.; Gual, Maritza R.; Pereira, Claubia

    2013-01-01

    Differential Scanning Calorimetry (DSC) of gamma irradiated Poly (vinylidene Fluoride) [PVDF] homopolymer has been studied in connection with the use of material in industrial high gamma dose measurement. Interaction between gamma radiation and PVDF leads to the radio-induction of C=O and conjugated C=C bonds, as it can be inferred from previous infrared (FTIR) and ultraviolet-visible (UV-Vis) spectrometric data. These induced defects result in a decrease of the polymer crystallinity that can be followed with DSC scans, by measuring the latent heat during the melting transition (Hmelt). After a systematic investigation, we have found that Hmelt is unambiguously related to the delivered doses ranging from 100 to 2,000 kGy of gamma radiation. One the other hand, further fading investigation analysis has proved that the Hmelt x Dose relationship can be fitted by an exponential function that remains constant for several months. Both the very large range of dose measurement and also the possibility of evaluating high gamma doses until five months after irradiation make PVDF homopolymers very good candidates to be investigated as commercial high gamma dose dosimeters. The high gamma dose irradiation facilities in Brazil used to develop high dose dosimeters are all devoted to industrial and medical purposes. Therefore, in view of the uncertainties involved in the dose measurements related to the electronic equilibrium correction factors and backscattering in the isodose curves used at the irradiation setup, a validation process is required to correctly evaluate the delivered absorbed doses. The sample irradiations were performed with a Co-60 source, at 12kGy/h and 2,592 kGy/h, in the high gamma dose facilities at Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Belo Horizonte, Brazil. The comparison of the curve of the Hmelt vs Dose is presented in this paper. (author)

  18. Reconstruction of absorbed dose by methods biological dosimetry inhabitans living in Semipalatinsk Nuclear Test Site

    International Nuclear Information System (INIS)

    Abildinova, G.

    2010-01-01

    As a result perennial overland and atmospheric test the nucleus weapon on Semipalatinsk nucler test site (NTS) about 1,2 ml person were subjected to frequentative sharp and chronic irradiation in different range of doses. Besides a significant number of battle radioactive matters tests with radionuclei dispersion on soil surface and an atmosphere was realized also. All this activity has caused the significant radioactive contamination and damage to an environment, and the local population has received extra exposure to radiation. These circumstances have essentially complicated the economy development of the given region. Aim: Reconstruction of absorbed dose by modern methods biological dosimetry beside inhabitants living in region of influence Semipalatinsk NTS. The cytogenetically examination of population Semipalatinsk region, living in different zones radiation risk: s. Dolon, s. Sarzhal, s. Mostik. Installed that total frequency of chromosome aberrations forms 4,8/100; 2,1/100; 2,5/100 cells, accordingly. High level of chromosome aberrations is conditioned to account radiations markers - acentric fragments (2,1/100 cells in s. Dolon; 1,09/100 cells in s. Sarzhal; 0,79/100 cells in s. Mostik); dysenteric and ring chromosomes (0,6; 0,2; 0,11) and stable type chromosome aberrations (1,02; 0,3; 1,0, accordingly). Frequency and spectrum of chromosome aberrations are indicative of significant mutation action ionizing radiations on chromosome device of somatic cells. Studied dependency an cytogenetically of effects from dose of irradiation within before 0,5 Gr in vitro for calibrated curve standard when undertaking reconstruction efficient dose at the time of irradiations examined group of population. Dependency is described the model a*cos(x) 1 + sin (x), where x - correlation a dysenteric and ring chromosomes to acentric fragments. Dependence of cytogenetic parameters upon ESR-doses had been studied. Had been received dependences: for the total frequency of

  19. Effects of laser fluence on silicon modification by four-beam laser interference

    International Nuclear Information System (INIS)

    Zhao, Le; Li, Dayou; Wang, Zuobin; Yue, Yong; Zhang, Jinjin; Yu, Miao; Li, Siwei

    2015-01-01

    This paper discusses the effects of laser fluence on silicon modification by four-beam laser interference. In this work, four-beam laser interference was used to pattern single crystal silicon wafers for the fabrication of surface structures, and the number of laser pulses was applied to the process in air. By controlling the parameters of laser irradiation, different shapes of silicon structures were fabricated. The results were obtained with the single laser fluence of 354 mJ/cm 2 , 495 mJ/cm 2 , and 637 mJ/cm 2 , the pulse repetition rate of 10 Hz, the laser exposure pulses of 30, 100, and 300, the laser wavelength of 1064 nm, and the pulse duration of 7–9 ns. The effects of the heat transfer and the radiation of laser interference plasma on silicon wafer surfaces were investigated. The equations of heat flow and radiation effects of laser plasma of interfering patterns in a four-beam laser interference distribution were proposed to describe their impacts on silicon wafer surfaces. The experimental results have shown that the laser fluence has to be properly selected for the fabrication of well-defined surface structures in a four-beam laser interference process. Laser interference patterns can directly fabricate different shape structures for their corresponding applications

  20. Quantification of micronuclei in blood lymphocytes of patients exposed to gamma radiation for dose absorbed assessment; Quantificacao de micronucleos em linfocitos de pacientes expostas a radiacao gama para a avaliacao da dose absorvida

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Isvania Maria Serafim da Silva

    2003-02-15

    Dose assessment in an important step to evaluate biological effects as a result of individual exposure to ionizing radiation. The use of cytogenetic dosimetry based on the quantification of micronuclei in lymphocytes is very important to complement physical dosimetry, since the measurement of absorbed dose cannot be always performed. In this research, the quantification of micronuclei was carried out in order to evaluate absorbed dose as a result of radiotherapy with {sup 60}Co, using peripheral blood samples from 5 patients with cervical uterine cancer. For this purpose, an aliquot of whole blood from the individual patients was added in culture medium RPMI 1640 supplemented with fetal calf serum and phytohaemagglutinin. The culture was incubated for 44 hours. Henceforth, cytochalasin B was added to block the dividing lymphocytes in cytokinesis. The culture was returned to the incubator for further of 28 hours. Thus, cells were harvested, processed and analyzed. Values obtained considering micronuclei frequency after pelvis irradiation with absorption of 0,08 Gy and 1,8 Gy were, respectively, 0,0021 and 0,052. These results are in agreement with some recent researches that provided some standard values related to micronuclei frequency induced by gamma radiation exposure in different exposed areas for the human body. The results presented in this report emphasizes biological dosimetry as an important tool for dose assessment of either total or partial-body exposure to ionizing radiation, mainly in retrospective dose investigation. (author)