WorldWideScience

Sample records for flow-through wave tank

  1. Solitons in a wave tank

    Science.gov (United States)

    Olsen, M.; Smith, H.; Scott, A. C.

    1984-09-01

    A wave tank experiment (first described by the nineteenth-century engineer and naval architect John Scott Russell) relates a linear eigenvalue problem from elementary quantum mechanics to a striking feature of modern nonlinear wave theory: multiple generation of solitons. The tank experiment is intended for lecture demonstrations.

  2. Solitons in a wave tank

    DEFF Research Database (Denmark)

    Olsen, M.; Smith, H.; Scott, Alwyn C.

    1984-01-01

    A wave tank experiment (first described by the nineteenth-century engineer and naval architect John Scott Russell) relates a linear eigenvalue problem from elementary quantum mechanics to a striking feature of modern nonlinear wave theory: multiple generation of solitons. The tank experiment...

  3. Wave turbulence in annular wave tank

    Science.gov (United States)

    Onorato, Miguel; Stramignoni, Ettore

    2014-05-01

    We perform experiments in an annular wind wave tank at the Dipartimento di Fisica, Universita' di Torino. The external diameter of the tank is 5 meters while the internal one is 1 meter. The tank is equipped by two air fans which can lead to a wind of maximum 5 m/s. The present set up is capable of studying the generation of waves and the development of wind wave spectra for large duration. We have performed different tests including different wind speeds. For large wind speed we observe the formation of spectra consistent with Kolmogorv-Zakharov predictions.

  4. High-frequency sound wave propagation in binary gas mixtures flowing through microchannels

    Science.gov (United States)

    Bisi, M.; Lorenzani, S.

    2016-05-01

    The propagation of high-frequency sound waves in binary gas mixtures flowing through microchannels is investigated by using the linearized Boltzmann equation based on a Bhatnagar-Gross-Krook (BGK)-type approach and diffuse reflection boundary conditions. The results presented refer to mixtures whose constituents have comparable molecular mass (like Ne-Ar) as well as to disparate-mass gas mixtures (composed of very heavy plus very light molecules, like He-Xe). The sound wave propagation model considered in the present paper allows to analyze the precise nature of the forced-sound modes excited in different gas mixtures.

  5. Interfacial wave patterns and their transitions in gas-liquid two-phase flow through horizontal ducts

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The interfacial wave patterns and their transition characteristics in gas-liquid two-phase flow through rectangular and circular horizontal conduits are investigated.The interfacial waves were traced and recorded by using conductance probes.With the experimental observation and the analysis,some kinds of different interfacial waves were distinguished and dfined,and then the interfacial wave patterns were given,which were compared with previous results.The interfacial wave transition mechanism between each interfacial wave pattern was discussed and a set of transition equations were presented to predict the interfacial wave pattern transitions.The repdictive results are in good agreement with the experimental data.

  6. Rogue waves in a wave tank: experiments and modeling

    Directory of Open Access Journals (Sweden)

    A. Lechuga

    2013-07-01

    Full Text Available In past decades theoretical studies have been carried out with the double aim of improving the knowledge of rogue wave main characteristics and of attempting to predict its sudden appearance. As an effort on this topic we tried the generation of rogue waves in a water wave tank using a symmetric spectrum (Akhmediev et al., 2011a as input on the wave maker. To go on further the next step has been to apply a theoretical model to the envelope of these waves. After some considerations the best model has been an analogue of the Ginzburg–Landau equation.

  7. Generation of rogue waves in a wave tank

    Science.gov (United States)

    Lechuga, A.

    2012-04-01

    Rogue waves have been reported as causing damages and ship accidents all over the oceans of the world. For this reason in the past decades theoretical studies have been carried out with the double aim of improving the knowledge of their main characteristics and of attempting to predict its sudden appearance. As an effort on this line we are trying to generate them in a water tank. The description of the procedure to do that is the objective of this presentation. After Akhmediev et al. (2011) we use a symmetric spectrum as input on the wave maker to produce waves with a rate(Maximun wave height/ significant wave height) of 2.33 and a kurtosis of 4.77, clearly between the limits of rogue waves. As it was pointed out by Janssen (2003), Onorato et al. (2006) and Kharif, Pelinovsky and Slunyaev (2009) modulation instability is enhanced when waves depart from Gaussian statistics (i.e. big kurtosis) and therefore both numbers enforce the criterion that we are generating genuine rogue waves. The same is confirmed by Shemer (2010) and Dudley et al.(2009) from a different perspective. If besides being symmetrical the spectrum is triangular, following Akhmediev(2011),the generated waves are even more conspicuously rogue waves.

  8. A Numerical Wave Tank for Nonlinear Waves with Passive Absorption

    Institute of Scientific and Technical Information of China (English)

    周宗仁; 尹彰; 石瑞祥

    2001-01-01

    A numerical wave tank with passive absorption for irregular waves is considered in this paper. Waves with spectralshapes corresponding to that of the Mitsuyasu-Bretschneider type are used as the initial condition at one end of theflume. An absorbing boundary is imposed at the other end of the wave flume to minimize reflection. By use of aLagrangian description for the surface elevation, and finite difference for approximation of the time derivative, the problem is then solved by the boundary element method. The effects of the absorbing boundary are investigated by varyingthe values of the absorption coefficient μ, and studying the time histories of the surface elevations "recorded" on pre-se-lected locations.

  9. Estimation of Flow through Offshore Breakwater Gaps Generated by Wave Overtopping.

    Science.gov (United States)

    1980-12-01

    the shoreline, Cde, has a recommended value of Cde = 1.0. a Breakwater Ace= Cross fl- Sectional Area Gap ]j2mnr hi bi~ Gap Flow hb Difference _. in...Mean Water Overtopping Levels End Flow Shoreline Figure 4. An offshore breakwater system. 13 Note that in this first approximation of breakwater gap ... flow that the waves are assumed to approach approximately normal to the breakwaters and shoreline, so the longshore current can be neglected. Other

  10. An investigation of the influence of acoustic waves on the liquid flow through a porous material.

    Science.gov (United States)

    Poesio, Pietro; Ooms, Gijs; Barake, Sander; van der Bas, Fred

    2002-05-01

    An experimental and theoretical investigation has been made of the influence of high-frequency acoustic waves on the flow of a liquid through a porous material. The experiments have been performed on Berea sandstone cores. Two acoustic horns were used with frequencies of 20 and 40 kHz, and with maximum power output of 2 and 0.7 kW, respectively. Also, a temperature measurement of the flowing liquid inside the core was made. A high external pressure was applied in order to avoid cavitation. The acoustic waves were found to produce a significant effect on the pressure gradient at constant liquid flow rate through the core samples. During the application of acoustic waves the pressure gradient inside the core decreases. This effect turned out to be due to the decrease of the liquid viscosity caused by an increase in liquid temperature as a result of the acoustic energy dissipation inside the porous material. Also, a theoretical model has been developed to calculate the dissipation effect on the viscosity and on the pressure gradient. The model predictions are in reasonable agreement with the experimental data.

  11. Shoaling Large Amplitude Internal Solitary Waves in a Laboratory Tank

    Science.gov (United States)

    Allshouse, Michael; Larue, Conner; Swinney, Harry

    2014-11-01

    The shoaling of internal solitary waves onto the continental shelf can change both the wave dynamics and the state of the environment. Previous observations have demonstrated that these waves can trap fluid and transport it over long distances. Through the use of a camshaft-based wavemaker, we produce large amplitude shoaling waves in a stratified fluid in a laboratory tank. Simulations of solitary waves are used to guide the tuning of the wave generator to approximate solitary waves; thus nonlinear waves can be produced within the 4m long tank. PIV and synthetic schlieren measurements are made to study the transport of fluid by the wave as it moves up a sloping boundary. The results are then compared to numerical simulations and analyzed using finite time Lyapunov exponent calculations. This Lagrangian analysis provides an objective measure of barriers surrounding trapped regions in the flow. Supported by ONR MURI Grant N000141110701 (WHOI).

  12. Rogue waves in a water tank: Experiments and modeling

    Science.gov (United States)

    Lechuga, Antonio

    2013-04-01

    Recently many rogue waves have been reported as the main cause of ship incidents on the sea. One of the main characteristics of rogue waves is its elusiveness: they present unexpectedly and disappear in the same wave. Some authors (Zakharov and al.2010) are attempting to find the probability of their appearances apart from studyingthe mechanism of the formation. As an effort on this topic we tried the generation of rogue waves in a water wave tank using a symmetric spectrum(Akhmediev et al. 2011) as input on the wave maker. The produced waves were clearly rogue waves with a rate (maximum wave height/ Significant wave height) of 2.33 and a kurtosis of 4.77 (Janssen 2003, Onorato 2006). These results were already presented (Lechuga 2012). Similar waves (in pattern aspect, but without being extreme waves) were described as crossing waves in a water tank(Shemer and Lichter1988). To go on further the next step has been to apply a theoretical model to the envelope of these waves. After some considerations the best model has been an analogue of the Ginzburg-Landau equation. This apparently amazing result is easily explained: We know that the Ginzburg-Landau model is related to some regular structures on the surface of a liquid and also in plasmas, electric and magnetic fields and other media. Another important characteristic of the model is that their solutions are invariants with respectto the translation group. The main aim of this presentation is to extract conclusions of the model and the comparison with the measured waves in the water tank.The nonlinear structure of waves and their regularity make suitable the use of the Ginzburg-Landau model to the envelope of generated waves in the tank,so giving us a powerful tool to cope with the results of our experiment.

  13. Generation and Properties of Freak Waves in A Numerical Wave Tank

    Institute of Scientific and Technical Information of China (English)

    韩涛; 张庆河; 庞红犁; 秦崇仁

    2004-01-01

    Freak waves are generated based on the mechanism of wave focusing in a 2D numerical wave tank. To set up the nonlinear numerical wave tank, the Boundary Element Method is used to solve potential flow equations incorporated with fully nonlinear free surface boundary conditions. The nonlinear properties of freak waves, such as high frequency components and wave profile asymmetry, are discussed. The kinematic data, which can be useful for the evaluation of the wave forces exerted on structures to avoid underestimation of linear predictions, are obtained, and discussed, from the simulated results of freak waves.

  14. Development of A Fully Nonlinear Numerical Wave Tank

    Institute of Scientific and Technical Information of China (English)

    陈永平; 李志伟; 张长宽

    2004-01-01

    A fully nonlinear numerical wave tank (NWT) based on the solution of the σ-transformed Navier-Stokes equation is developed in this study. The numerical wave is generated from the inflow boundary, where the surface elevation and/or velocity are specified by use of the analytical solution or the laboratory data. The Sommerfeld/Orlanski radiation condition in conjunction with an artificial damping zone is applied to reduce wave reflection from the outflow boundary. The whole numerical solution procedures are split into three steps, i.e., advection, diffusion and propagation, and a new method,the Lagrange-Euler Method, instead of the MAC or VOF method, is introduced to solve the free surface elevation at the new time step. Several typical wave cases, including solitary waves, regular waves and irregular waves, are simulated in the wave tank. The robustness and accuracy of the NWT are verified by the good agreement between the numerical results and the linear or nonlinear analytical solutions. This research will be further developed by study of wave-wave, wave-current, wave-structure or wave-jet interaction in the future.

  15. Simulation of Fully Nonlinear 3-D Numerical Wave Tank

    Institute of Scientific and Technical Information of China (English)

    张晓兔; 滕斌; 宁德志

    2004-01-01

    A fully nonlinear numerical wave tank (NWT) has been simulated by use of a three-dimensional higher order boundary element method (HOBEM) in the time domain. Within the frame of potential flow and the adoption of simply Rankine source, the resulting boundary integral equation is repeatedly solved at each time step and the fully nonlinear free surface boundary conditions are integrated with time to update its position and boundary values. A smooth technique is also adopted in order to eliminate the possible saw-tooth numerical instabilities. The incident wave at the uptank is given as theoretical wave in this paper. The outgoing waves are absorbed inside a damping zone by spatially varying artificial damping on the free surface at the wave tank end. The numerical results show that the NWT developed by these approaches has a high accuracy and good numerical stability.

  16. A 2-D NUMERICAL IRREGULAR WAVE TANK AND ITS VERIFICATION

    Institute of Scientific and Technical Information of China (English)

    LI Ben-xia; YU Xi-ping; YU Yu-xiu

    2005-01-01

    A two-dimensional numerical irregular wave tank based on the potential wave theory was developed.A source term was used inside the domain to generate waves, and outgoing waves were dissipated by sponge layers and transmitted by radiation boundary.The σ-coordinate transformation was introduced to map the time-dependent irregular physical domain to a fixed regular computational domain, and thus the free surface and bottom boundary conditions could be implemented precisely.The model was verified by simulating the nonlinear regular and irregular wave propagation on constant-depth water, as well as regular waves reflected from a vertical wall, and satisfactory agreement between numerical results and analytical solutions was obtained.The present numerical model is proved to be an effective tool for a long-duration simulation of coastal wave dynamics where the wave reflection is significant.

  17. Potential dominance of oscillating crescent waves in finite width tanks

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Madsen, Per A.

    2005-01-01

    Recently, it has been proposed that the emergence of previously observed oscillating crescent water wave patterns, created by class II (three-dimensional) instabilities which are in principle not dominant, could in fact be explained as an artifact of a finite width tank, combined with a suppression...

  18. Asymmetry of wind waves studied in a laboratory tank

    Science.gov (United States)

    Ileykin, L. A.; Donelan, M. A.; Mellen, R. H.; McLaughlin, D. J.

    1995-03-01

    Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves.

  19. Asymmetry of wind waves studied in a laboratory tank

    Directory of Open Access Journals (Sweden)

    I. A. Leykin

    1995-01-01

    Full Text Available Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves. At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976. The phase shift between o. harmonics is found and shown to increase with the asymmetry of the waves.

  20. Oblique Water Wave Scattering by Bottom Undulation in a Two-layer Fluid Flowing Through a Channel

    Institute of Scientific and Technical Information of China (English)

    Smrutiranjan Mohapatra; Swaroop Nandan Bora

    2012-01-01

    The problem of oblique wave (internal wave) propagation over a small deformation in a channel flow consisting of two layers was considered.The upper fluid was assumed to be bounded above by a rigid lid,which is an approximation for the free surface,and the lower one was bounded below by an impermeable bottom surface having a small deformation; the channel was unbounded in the horizontal directions.Assuming irrotational motion,the perturbation technique was employed to calculate the first-order corrections of the velocity potential in the two fluids by using Green's integral theorem suitably with the introduction of appropriate Green's functions.Those functions help in calculating the reflection and transmission coefficients in terms of integrals involving the shape function c(x) representing the bottom deformation.Three-dimensional linear water wave theory was utilized for formulating the relevant boundary value problem.Two special examples of bottom deformation were considered to validate the results.Consideration of a patch of sinusoidal ripples (having the same wave number) shows that the reflection coefficient is an oscillatory function of the ratio of twice the x-component of the wave number to the ripple wave number.When this ratio approaches one,the theory predicts a resonant interaction between the bed and the interface,and the reflection coefficient becomes a multiple of the number of tipples.High reflection of incident wave energy occurs if this number is large.Similar results were observed for a patch of sinusoidal tipples having different wave numbers.It was also observed that for small angles of incidence,the reflected energy is greater compared to other angles of incidence up to π / 4.These theoretical observations are supported by graphical results.

  1. Surface wave modelling and simulation for wave tanks and coastal areas

    OpenAIRE

    Groesen, van, E.; Bunnik, T.; Andonowati

    2011-01-01

    For testing ships and offshore structures in hydrodynamic laboratories, the sea and ocean states should be represented as realistic as possible in the wave tanks in which the scaled experiments are executed. To support efficient testing, accurate software that determines and translates the required wave maker motion into the downstream waves is very helpful. This paper describes an efficient hybrid spatial-spectral code that can deal with simulations above flat and varying bottom. The accurac...

  2. Surface wave modelling and simulation for wave tanks and coastal areas

    NARCIS (Netherlands)

    Groesen, van E. (Brenny); Bunnik, T.; Andonowati,

    2011-01-01

    For testing ships and offshore structures in hydrodynamic laboratories, the sea and ocean states should be represented as realistic as possible in the wave tanks in which the scaled experiments are executed. To support efficient testing, accurate software that determines and translates the required

  3. Aerodynamic Simulation of the MARINTEK Braceless Semisubmersible Wave Tank Tests

    Science.gov (United States)

    Stewart, Gordon; Muskulus, Michael

    2016-09-01

    Model scale experiments of floating offshore wind turbines are important for both platform design for the industry as well as numerical model validation for the research community. An important consideration in the wave tank testing of offshore wind turbines are scaling effects, especially the tension between accurate scaling of both hydrodynamic and aerodynamic forces. The recent MARINTEK braceless semisubmersible wave tank experiment utilizes a novel aerodynamic force actuator to decouple the scaling of the aerodynamic forces. This actuator consists of an array of motors that pull on cables to provide aerodynamic forces that are calculated by a blade-element momentum code in real time as the experiment is conducted. This type of system has the advantage of supplying realistically scaled aerodynamic forces that include dynamic forces from platform motion, but does not provide the insights into the accuracy of the aerodynamic models that an actual model-scale rotor could provide. The modeling of this system presents an interesting challenge, as there are two ways to simulate the aerodynamics; either by using the turbulent wind fields as inputs to the aerodynamic model of the design code, or by surpassing the aerodynamic model and using the forces applied to the experimental turbine as direct inputs to the simulation. This paper investigates the best practices of modeling this type of novel aerodynamic actuator using a modified wind turbine simulation tool, and demonstrates that bypassing the dynamic aerodynamics solver of design codes can lead to erroneous results.

  4. Nonlinear wave transmission and pressure on the fixed truncated breakwater using NURBS numerical wave tank

    OpenAIRE

    Abbasnia,Arash; Ghiasi,Mahmoud

    2014-01-01

    Fully nonlinear wave interaction with a fixed breakwater is investigated in a numerical wave tank (NWT). The potential theory and high-order boundary element method are used to solve the boundary value problem. Time domain simulation by a mixed Eulerian-Lagrangian (MEL) formulation and high-order boundary integral method based on non uniform rational B-spline (NURBS) formulation is employed to solve the equations. At each time step, Laplace equation is solved in Eulerian frame and fully non-l...

  5. The worst moment of superposed surge wave in upstream series double surge tanks of hydropower station

    Science.gov (United States)

    Teng, Y.; Yang, J. D.; Guo, W. C.; Chen, J. P.

    2016-11-01

    It is a consensus to consider the superposed working conditions when calculating the surge wave in surge tank of hydropower station with long diversion tunnel. For the hydropower station with single surge tank, the method of determining the worst superposed moment is mature. However, for the hydropower station with upstream series double surge tanks, research in this field is still blank. Based on an engineering project, this paper investigated the worst moments and the control superposed working conditions about the maximum surge level and the minimum surge level of upstream series double surge tanks using numerical simulation. In addition, the incidence relations between the worst moment of superposed surge wave and the different areal array and distance between the two surge tanks are also carried out. The results showed that: With the decrease of the distance between auxiliary surge tank and upstream reservoir, the maximum values of the highest surge levels in the two surge tanks always reach close to but a little earlier than the bigger one time when the inflowing discharges of the two surge tanks reach the maximum. It is similar to the minimum values of lowest surge levels in the two surge tanks which also reach close to but a little later than the bigger one time when the outflowing discharges of the two surges reach the maximum. Moreover, the closer the area of auxiliary surge tank to the area of main surge tank is, the closer the worst moment to the bigger one time when inflow or outflow of the two surges reach the maximum will become.

  6. Run-up on a structure due to second-order waves and current in a numerical wave tank

    DEFF Research Database (Denmark)

    Buchmann, Bjarne; Skourup, Jesper; Cheung, Kwok Fai

    1998-01-01

    A numerical wave tank is considered in which the interaction between waves, current and a structure is simulated by a 3D boundary element model in the time domain. Through a Taylor series expansion and a perturbation procedure the model is formulated to second order in wave steepness and to first...... order in current speed. The boundary-value problem is separated into a known incident wave field and an unknown scattered wave field, the latter being absorbed at the radiation boundaries using active wave absorption. The present paper focuses on the wave run-up on a structure in waves and current....... For the simulations a bottom mounted vertical circular cylinder is chosen. The numerical results show good agreement with previous analytical and numerical solutions for second-order wave diffraction without a current and first-order wave diffraction with a collinear current. The inclusion of a current...

  7. Two Dimensional Fully Nonlinear Numerical Wave Tank Based on the BEM

    Institute of Scientific and Technical Information of China (English)

    Zhe Sun; Yongjie Pang; Hongwei Li

    2012-01-01

    The development of a two dimensional numerical wave tank (NWT) with a rocker or piston type wavemaker based on the high order boundary element method (BEM) and mixed Eulerian-Lagrangian (MEL) is examined.The cauchy principle value (CPV) integral is calculated by a special Gauss type quadrature and a change of variable.In addition the explicit truncated Taylor expansion formula is employed in the time-stepping process.A modified double nodes method is assumed to tackle the comer problem,as well as the damping zone technique is used to absorb the propagation of the free surface wave at the end of the tank.A variety of waves are generated by the NWT,for example; a monochromatic wave,solitary wave and irregular wave.The results confirm the NWT model is efficient and stable.

  8. Evaluation of Hydrodynmic Coefficients of Ships Oscillating in A Numerical Wave Tank

    Institute of Scientific and Technical Information of China (English)

    ZHU Ren-chuan; MIAO Guo-ping; GUO Hai-qiang; YU Jian-wei

    2009-01-01

    A technique for the evaluation of the hydrodynamic coefficients of ships is outlined for ship oscillating in a numerical wave tank,which is established on Computational Fluid Dynamics (CFD) theories.The numerical simulation of ship sections and bodies forced oscillating in the tank are carried out.The added mass and damping coefficients are obtained by the decomposition of the computational results,which agree well with the corresponding ones of potential theories.

  9. Analysis of nonlinear shallow water waves in a tank by concentrated mass model

    Science.gov (United States)

    Ishikawa, Satoshi; Kondou, Takahiro; Matsuzaki, Kenichiro; Yamamura, Satoshi

    2016-06-01

    The sloshing of liquid in a tank is an important engineering problem. For example, liquid storage tanks in industrial facilities can be damaged by earthquakes, and conversely liquid tanks, called tuned liquid damper, are often used as passive mechanical dampers. The water depth is less often than the horizontal length of the tank. In this case, shallow water wave theory can be applied, and the results indicate that the surface waveform in a shallow excited tank exhibits complex behavior caused by nonlinearity and dispersion of the liquid. This study aims to establish a practical analytical model for this phenomenon. A model is proposed that consists of masses, connecting nonlinear springs, connecting dampers, base support dampers, and base support springs. The characteristics of the connecting nonlinear springs are derived from the static and dynamic pressures. The advantages of the proposed model are that nonlinear dispersion is considered and that the problem of non-uniform water depth can be addressed. To confirm the validity of the model, numerical results obtained from the model are compared with theoretical values of the natural frequencies of rectangular and triangular tanks. Numerical results are also compared with experimental results for a rectangular tank. All computational results agree well with the theoretical and experimental results. Therefore, it is concluded that the proposed model is valid for the numerical analysis of nonlinear shallow water wave problems.

  10. EFFECTS OF CHEMICAL DISPERSANTS AND MINERAL FINES ON CRUDE OIL DISPERSION IN A WAVE TANK UNDER BREAKING WAVES

    Science.gov (United States)

    The interaction of chemical dispersants and suspended sediments with crude oil influences the fate and transport of oil spills in coastal waters. A wave tank study was conducted to investigate the effects of chemical dispersants and mineral fines on the dispersion of oil and the ...

  11. EFFECTS OF CHEMICAL DISPERSANTS AND MINERAL FINES ON CRUDE OIL DISPERSION IN A WAVE TANK UNDER BREAKING WAVES

    Science.gov (United States)

    The interaction of chemical dispersants and suspended sediments with crude oil influences the fate and transport of oil spills in coastal waters. A wave tank study was conducted to investigate the effects of chemical dispersants and mineral fines on the dispersion of oil and the ...

  12. NONLINEAR WAVE INDUCED BY AN ACCELERATING CYLINDRICAL TANK

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a method of solving Lagrangian version of governing equations that allows boundary conditions at the free surface to be satisfied exactly, which is a three-dimensional generalization of a method first put forward by Stoker. Analytical expressions of nonlinear hydrodynamic pressure up to the third order and of free surface displacement up to the fourth order of an accelerating cylindrical tank were obtained. Here only the motions of objects in their early stage after initial impulses was considered. As a justification of the method, the importment special case when the ratio of tank diameter to fluid depth tends to infinity was taken as an exainple, which shows that the linear hydrodynamic pressure obtained agrees completely with Westergaard or von Karman's classical result.

  13. Numerical Investigation on the Generation and Propagation of Irregular Waves in A Two-Dimensional Wave Tank

    Institute of Scientific and Technical Information of China (English)

    Ruey-syan SHIH; Chung-ren CHOU; John Z. YIM

    2004-01-01

    The modeling of generation and subsequent propagation of irregular waves in a numerical wave flume is performed by mean of the boundary element method. Random waves are generated by a piston-type wave generator at one end of the flume with the Mitsuyasu-Bretschneider spectrum used as the target spectrum for the generation. An artificial absorbing beach is placed at the other end of the flume to minimize wave reflection. Surface fluctuations are described by use of the Lagrangian description, and finite difference is adopted for the approximation of time derivative. To monitor the developments of the waves, a number of pseudo wave gauges are installed along the tank. Through comparison of the spectra from those gauges with the target spectrum, satisfactory results can be obtained from the present numerical scheme.

  14. Second-order theory for coupling 2D numerical and physical wave tanks: Derivation, evaluation and experimental validation

    DEFF Research Database (Denmark)

    Yang, Zhiwen; Liu, Shuxue; Bingham, Harry B.

    2013-01-01

    of regular waves, and the re-reflection control on the wave paddle is also not included. In order to validate the solution methodology further, a series of nonlinear, periodic waves based on stream function theory are generated in a physical wave tank using a piston-type wavemaker. These experiments show......A full second-order theory for coupling numerical and physical wave tanks is presented. The ad hoc unified wave generation approach developed by Zhang et al. [Zhang, H., Schäffer, H.A., Jakobsen, K.P., 2007. Deterministic combination of numerical and physical coastal wave models. Coast. Eng. 54...... nonlinear wave generation in the physical wave tank based on target numerical solutions. The performance and efficiency of the new model is first evaluated theoretically based on second order Stokes waves. Due to the complexity of the problem, the proposed method has been truncated at 2D and the treatment...

  15. The maximum sloshing wave height evaluation in cylindrical metallic tanks by numerical means

    Directory of Open Access Journals (Sweden)

    Manser Walid Samir

    2017-01-01

    Full Text Available The metallic cylindrical storage tanks are very common structures in the field of civil engineering; These facilities are especially used in the industry in which they are used to store all kinds of products-which are for the most toxic or flammable. The tanks are also used in the storing of drinking water. When earthquakes, these structures must be strictly maintained in order to avoid that they lose their precious contents causing reactions that can cause more damage than the earthquake itself. In this study, the effects of the liquid height, the geometric parameters of tanks in the variation of the maximum sloshing wave height are studied: For this purpose, the software ANSYS V11.0 is used for modelling the tanks, the results found are compared with thus given in the Euro code 8

  16. Surface Gravity Waves: Resonance in a Fish Tank

    Science.gov (United States)

    Sinick, Scott J.; Lynch, John J.

    2010-01-01

    In this work, an inexpensive 10-gallon glass aquarium was used to study wave motion in water. The waves travel at speeds comparable to a person walking ([approximately]1 m/s). The scale of the motion allows for distances to be measured with a meterstick and for times to be measured with a stopwatch. For a wide range of water depths, standing waves…

  17. Surface Gravity Waves: Resonance in a Fish Tank

    Science.gov (United States)

    Sinick, Scott J.; Lynch, John J.

    2010-01-01

    In this work, an inexpensive 10-gallon glass aquarium was used to study wave motion in water. The waves travel at speeds comparable to a person walking ([approximately]1 m/s). The scale of the motion allows for distances to be measured with a meterstick and for times to be measured with a stopwatch. For a wide range of water depths, standing waves…

  18. Standard practice for measuring the ultrasonic velocity in polyethylene tank walls using lateral longitudinal (LCR) waves

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice covers a procedure for measuring the ultrasonic velocities in the outer wall of polyethylene storage tanks. An angle beam lateral longitudinal (LCR) wave is excited with wedges along a circumferential chord of the tank wall. A digital ultrasonic flaw detector is used with sending-receiving search units in through transmission mode. The observed velocity is temperature corrected and compared to the expected velocity for a new, unexposed sample of material which is the same as the material being evaluated. The difference between the observed and temperature corrected velocities determines the degree of UV exposure of the tank. 1.2 The practice is intended for application to the outer surfaces of the wall of polyethylene tanks. Degradation typically occurs in an outer layer approximately 3.2-mm (0.125-in.) thick. Since the technique does not interrogate the inside wall of the tank, wall thickness is not a consideration other than to be aware of possible guided (Lamb) wave effects or reflection...

  19. Second-order coupling of numerical and physical wave tanks for 2D irregular waves. Part II: Experimental validation in two-dimensions

    DEFF Research Database (Denmark)

    Yang, Zhiwen; Liu, Shuxue; Bingham, Harry B.

    2014-01-01

    This paper provides an experimental validation of the second-order coupling theory outlined by Yang et al. (Z. Yang, S. Liu, H.B. Bingham and J. Li., 2013. Second-order coupling of numerical and physical wave tanks for 2D irregular waves. Part I: Formulation, implementation and numerical properties...... to an unwanted spurious freely propagating second harmonic that is substantially reduced when compared to an identical wave paddle operating with a first-order coupling signal. Using nonlinear regular (monochromatic), bichromatic and irregular wave cases as well as varying coupled wave tank bathymetries, both...... these aspects are verified over a broad range of wave frequencies and shown to be extensively applicable to physical wave tanks. (C) 2014 Elsevier B.V. All rights reserved....

  20. Second-order coupling of numerical and physical wave tanks for 2D irregular waves. Part I: Formulation, implementation and numerical properties

    DEFF Research Database (Denmark)

    Yang, Zhiwen; Liu, Shuxue; Bingham, Harry B.

    2014-01-01

    In this series of two papers, we report on the irregular wave extension of the second-order coupling theory of numerical and physical wave model described in [Z. Yang, S. Liu, H.B. Bingham and J. Li. Second-order theory for coupling numerical and physical wave tanks: Derivation, evaluation...

  1. Oil Droplet Size Distribution and Optical Properties During Wave Tank Simulated Oil Spills

    Science.gov (United States)

    Conmy, R. N.; Venosa, A.; Courtenay, S.; King, T.; Robinson, B.; Ryan, S.

    2013-12-01

    Fate and transport of spilled petroleum oils in aquatic environments is highly dependent upon oil droplet behavior which is a function of chemical composition, dispersibility (natural and chemically-enhanced) and droplet size distribution (DSD) of the oil. DSD is influenced by mixing energy, temperature, salinity, pressure, presence of dissolved and particulate materials, flow rate of release, and application of dispersants. To better understand DSD and droplet behavior under varying physical conditions, flask-scale experiments are often insufficient. Rather, wave tank simulations allow for scaling to field conditions. Presented here are experiment results from the Bedford Institute of Oceanography wave tank facility, where chemically-dispersed (Corexit 9500; DOR = 1:20) Louisiana Sweet crude, IFO-120 and ANS crude oil were exposed to mixing energies to achieve dispersant effectiveness observed in the field. Oil plumes were simulated, both surface and subsea releases with varying water temperature and flow rate. Fluorometers (Chelsea Technologies Group AQUATracka, Turner Designs Cyclops, WET Labs Inc ECO) and particle size analyzers (Sequoia LISST) were used to track the dispersed plumes in the tank and characterize oil droplets. Sensors were validated with known oil volumes (down to 300 ppb) and measured Total Petroleum Hydrocarbons (TPH) and Benzene-Toluene-Ethylbenzene-Xylene (BTEX) values. This work has large implications for tracking surface and deep sea oil plumes with fluorescence and particle size analyzers, improved weathering and biodegradation estimates, and understanding the fate and transport of spill oil.

  2. Inertial Wave Excitation and Wave Attractors in an Annular Tank: DNS

    Science.gov (United States)

    Klein, Marten; Ghasemi, Abouzar; Harlander, Uwe; Will, Andreas

    2014-05-01

    Rotation is the most relevant aspect of geophysical fluid dynamics, manifesting itself by the Coriolis force. Small perturbations to the state of rigid body rotation can excite inertial waves (waves restored by Coriolis force) with frequencies in the range 0 kinematic viscosity ν. The whole vessel rotates with a mean angular velocity Ω0 around its axis of symmetry. Ekman numbers investigated are 1 ≠« E = ν(Ω0H2)-1 ≥ 10-5. Similarly to [1-5] we perturb the system by longitudinal libration, Ω(t) = Ω0(1 + ɛsinωt), where ω > 0 denotes the frequency and 0 < ɛ < 1 the amplitude of libration. Three-dimensional direct numerical simulations (3-D DNS) of the set-up were conducted in order to resolve different excitation mechanisms. We used an incompressible Navier-Stokes solver with the equations formulated for volume fluxes in generalized curvilinear coordinates. Under some constraints the scheme conserves three quantities of Hamiltonian mechanics: mass, momentum and kinetic energy. To separate between possible excitation mechanisms we investigated configurations that cannot be accessed in the laboratory, e.g., axially periodic geometries and cases with libration of different walls. For ɛ ≤ 0.3 we found qualitative agreement of wave attractor patterns obtained by numerical simulations, ray tracing and measurements in the laboratory for all libration frequencies investigated. We adapted boundary layer theory for the librating walls to estimate inertial wave excitation, in particular, the relation to libration frequency and amplitude, as well as the effect of the inclination angle α of the frustum. By comparison with numerical simulations we found that wave energy in the bulk obeys a similar dependency on frequency as the energy in the boundary layer over the librating wall. References [1] A. Tilgner, Phys. Rev. E (1999), vol. 59(2), pp. 1769-1794. [2] J. Boisson, C. Lamriben, L. R. M. Maas, P.-P. Cortet and F. Moisy, Phys. Fluids (2012), vol. 24, 076602

  3. Fundamental studies on ocean wave focusing. 2nd Report. ; Experiments in a wave tank. Kaiyoha shuha lens no kisoteki kenkyu. 2. ; Suisojikken

    Energy Technology Data Exchange (ETDEWEB)

    Murashige, S. (The University of Tokyo, Tokyo (Japan)); Kinoshita, T. (The University of Tokyo, Tokyo (Japan). Institute of Industrial Science); Suzuki, T. (Hazama Gumi Ltd., Tokyo (Japan))

    1991-06-01

    By using the slender ship the previous report, it was demonstrated possible to design, by utilizing an array of submerged circular cylinders, an ocean wave focusing lens, higher in performance than the conventional submerged focusing flat plate. Then by preparing a submerged focusing flat plate and submerged focusing circular cylinder array Fresnel lens, 20m in length, the present report showed the test result against both regular waves and irregular waves in a rectangular parallelpiped water tank, 50m in length, 30m in breadth and 2.4m in depth. The test was design conditioned to be 20m in overall length of lens, 16m in focal distance, 1.2Hz in wave frequency and 0.12m in submerged depth. As a result, the submerged focusing circular cylinder array Fresnel lens was higher in both wave and power amplification ratio against both the regular waves and irregular waves. With heightening, the incident wave was known to lower in amplification ratio. Through testing in a two-dimensional water tank, the breaking limit of waves, passing above the submerged flat plate or circular cylinder array, was known to be given by H{sub i}/h{sub p} or H{sub i}/h{sub c}{approx equal}0.38, where H{sub i}, h{sub p} and h{sub c} are incident wave height, submerged depth of plate and submerged depth of cylinder array, respectively. 12 refs., 20 figs.

  4. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lawson, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Li, Y. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Previsic, M. [Re Vision Consulting, Sacramento, CA (United States); Epler, J. [Re Vision Consulting, Sacramento, CA (United States); Lou, J. [Oregon State Univ., Corvallis, OR (United States)

    2015-01-01

    The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

  5. Measuring air–sea gas-exchange velocities in a large-scale annular wind–wave tank

    OpenAIRE

    E. Mesarchaki; C. Kräuter; K. E. Krall; Bopp, M; Helleis, F.; Williams, J.; Jähne, B.

    2015-01-01

    In this study we present gas-exchange measurements conducted in a large-scale wind–wave tank. Fourteen chemical species spanning a wide range of solubility (dimensionless solubility, α = 0.4 to 5470) and diffusivity (Schmidt number in water, Scw = 594 to 1194) were examined under various turbulent (u10 = 0.73 to 13.2 m s−1) conditions. Additional experiments were performed under different surfactant modulated (two different concentration levels of Triton X-100) surface...

  6. Computed Flow Through An Artificial Heart Valve

    Science.gov (United States)

    Rogers, Stewart E.; Kwak, Dochan; Kiris, Cetin; Chang, I-Dee

    1994-01-01

    Report discusses computations of blood flow through prosthetic tilting disk valve. Computational procedure developed in simulation used to design better artificial hearts and valves by reducing or eliminating following adverse flow characteristics: large pressure losses, which prevent hearts from working efficiently; separated and secondary flows, which causes clotting; and high turbulent shear stresses, which damages red blood cells. Report reiterates and expands upon part of NASA technical memorandum "Computed Flow Through an Artificial Heart and Valve" (ARC-12983). Also based partly on research described in "Numerical Simulation of Flow Through an Artificial Heart" (ARC-12478).

  7. Stability of Armour Units in Flow Through a Layer

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; C. Thompson, Alex

    1984-01-01

    As part of a program to study the hydraulics of wave attack on rubble mound breakwaters tests were made on model armour units in a steady flow through a layer laid on a slope. The flow angle has little effect on stability for dolosse or rock layers. The head drop at failure across each type...... of layer is similar but the dolosse layer is more permeable and fails as a whole. There was no viscous scale effect. These results and earlier tests in oscillating flow suggest a 'reservoir' effect is important in the stability in steep waves....

  8. Workbook for predicting pressure wave and fragment effects of exploding propellant tanks and gas storage vessels

    Science.gov (United States)

    Baker, W. E.; Kulesz, J. J.; Ricker, R. E.; Bessey, R. L.; Westine, P. S.; Parr, V. B.; Oldham, G. A.

    1975-01-01

    Technology needed to predict damage and hazards from explosions of propellant tanks and bursts of pressure vessels, both near and far from these explosions is introduced. Data are summarized in graphs, tables, and nomographs.

  9. On the equivalence of unidirectional rogue waves detected in periodic simulations and reproduced in numerical wave tanks

    OpenAIRE

    Ducrozet, Guillaume; BONNEFOY, Félicien; Ferrant, Pierre

    2016-01-01

    International audience; This paper deals with the reproduction of unidirectional extreme events in a numerical wave basin. From a rogue wave measurement at a given location , experiments or numerical simulations are conducted with the same wave profiles using reproduction procedures. Although it is recognized that many different physical mechanisms may be at play in freak wave formation, reproduction procedures generally use frequency focusing to generate these high waves. This paper intends ...

  10. Numerical modelling of disintegration of basin-scale internal waves in a tank filled with stratified water

    Directory of Open Access Journals (Sweden)

    N. Stashchuk

    2005-01-01

    Full Text Available We present the results of numerical experiments performed with the use of a fully non-linear non-hydrostatic numerical model to study the baroclinic response of a long narrow tank filled with stratified water to an initially tilted interface. Upon release, the system starts to oscillate with an eigen frequency corresponding to basin-scale baroclinic gravitational seiches. Field observations suggest that the disintegration of basin-scale internal waves into packets of solitary waves, shear instabilities, billows and spots of mixed water are important mechanisms for the transfer of energy within stratified lakes. Laboratory experiments performed by D. A. Horn, J. Imberger and G. N. Ivey (JFM, 2001 reproduced several regimes, which include damped linear waves and solitary waves. The generation of billows and shear instabilities induced by the basin-scale wave was, however, not sufficiently studied. The developed numerical model computes a variety of flows, which were not observed with the experimental set-up. In particular, the model results showed that under conditions of low dissipation, the regimes of billows and supercritical flows may transform into a solitary wave regime. The obtained results can help in the interpretation of numerous observations of mixing processes in real lakes.

  11. Risk assessment and consequence modeling of BLEVE explosion wave phenomenon of LPG spherical tank in a refinery

    Directory of Open Access Journals (Sweden)

    Mohammad Kamaei

    2016-06-01

    Full Text Available Introduction: Although human industrial activities are as a part of efforts to achieve greater prosperity, the risks related to these activities are also expanding. Hazard identification and risk assessment in the oil and gas industries are essential to reduce the frequency and severity of accidents and minimize damage to people and property before their occurrence. The aim of this study was to evaluate the liquefied and pressurized petroleum gas spherical tanks in a refinery and assessing the risks of Boiling Liquid Expanding Vapor Explosion (BLEVE phenomenon. Material and Method: In this study, the risks of BLEVE phenomenon were assessed, using the Bowtie method. The consequences of explosion wave phenomenon and the resulting wave quantity and its impacts on the neighboring machineries and equipment were analyzed. PHAST software version 6.54 has been used for modeling the BLEVE phenomenon. Result: In this evaluation, generally five causes and two consequences were identified for BLEVE phenomenon. In order to reduce its consequences, forty-three controlling measures were introduced to prevent the BLEVE phenomenon and the impacts of 31 control measures were identified. According to the conducted analysis, it was found that the spherical tank blast wave caused by LPG can lead to explosion of close located tanks which can create a chain of explosions. Conclusion: The results of modeling and risk assessment can be used to identify the BLEVE phenomenon causes and its effects on nearby people and equipment. Based on these results, preventive controlling measures can be implemented and also be determined by adopting proper design and layout, margin of safety for personnel, equipment and accessories.

  12. Magma flow through elastic-walled dikes

    NARCIS (Netherlands)

    Bokhove, O.; Woods, A.W.; Boer, de A.

    2005-01-01

    A convection–diffusion model for the averaged flow of a viscous, incompressible magma through an elastic medium is considered. The magma flows through a dike from a magma reservoir to the Earth’s surface; only changes in dike width and velocity over large vertical length scales relative to the chara

  13. Modeling of Cavitating Flow through Waterjet Propulsors

    Science.gov (United States)

    2015-02-18

    break down due to massive suction side flow separation (stall). In Figure 3, photographs from tunnel testing and computed results are shown. The...128, pp. 1308-1323. Mishra C. & Peles, Y. (2005) "Cavitation in flow through a micro- orifice inside a silicon micro- channel,’ Phvs. Fluids 17

  14. Sloshing waves in a heated viscoelastic fluid layer in an excited rectangular tank

    Energy Technology Data Exchange (ETDEWEB)

    Sirwah, Magdy A.

    2014-10-03

    In this paper, we have investigated the motion of a heated viscoelastic fluid layer in a rectangular tank that is subjected to a horizontal periodic oscillation. The mathematical model of the current problem is communicated with the linearized Navier–Stokes equation of the viscoelastic fluid and heat equation together with the boundary conditions that are solved by means of Laplace transform. Time domain solutions are consequently computed by using Durbin's numerical inverse Laplace transform scheme. Various numerical results are provided and thereby illustrated graphically to show the effects of the physical parameters on the free-surface elevation time histories and heat distribution. The numerical applications revealed that increasing the Reynolds number as well as the relaxation time parameter leads to a wider range of variation of the free-surface elevation, especially for the short time history. - Highlights: • A heated viscoelastic fluid layer in a rectangular tank. • The tank is subjected to a horizontal periodic oscillation. • The system of equations is solved by means of Laplace transform. • The inversion of the Laplace transform is carried out using a numerical approach. • Numerical results are provided to illustrate the effects of the parameters.

  15. Bioaugmentation of flow-through sand filters

    DEFF Research Database (Denmark)

    Samuelsen, Elin Djurhuus

    Global applications of pesticides in agricultural production have led to the detection of trace amounts of pesticides in groundwater resources in levels exceeding the EU threshold limit for drinking water of 0.1 µg L-1. Pesticide-polluted groundwater may be remediated by inoculating waterworks sand...... for degradation performances in flow-through sand columns, with the aim of identifying a suitable inoculant strain for future environmental applications. Another aim was to identify a suitable genetic marker to monitor phenoxy acid degradation in strain Sphingobium sp. PM2. We were not able to link motility...... and biofilm formation to the strains´ ability to adhere to sand. Nevertheless, a correlation was found between cell surface hydrophobicity and adhesion and overall degradation performances in flow-through sand columns. We identified S phingobium sp. PM2 as a promising inoculant strain, displaying efficient...

  16. Numerical simulation of flow through orifice meters

    Science.gov (United States)

    Barry, J. J.; Sheikholeslami, M. Z.; Patel, B. R.

    1992-05-01

    The FLUENT and FLUENT/BFC computer programs have been used to numerically model turbulent flow through orifice meters. These simulations were based on solution of the Navier-Stokes equations incorporating a k-epsilon turbulence model. For ideal installations, trends in the discharge coefficient with Reynolds number, beta ratio, and surface roughness have been reproduced, and the value of the discharge coefficient has been computed to within 2 percent. Nonideal installations have also been simulated, including the effects of expanders, reducers, valves, and bends. Detailed modeling of flow through a bend has yielded results in good agreement with experimental data. The trend in discharge coefficient shifts for orifice meters downstream of bends has been predicted reasonably well.

  17. Generation of linear and nonlinear waves in numerical wave tank using clustering technique-volume of fluid method

    Institute of Scientific and Technical Information of China (English)

    H.SAGHI; M.J.KETABDARI; S.BOOSHI

    2012-01-01

    A two-dimensional (2D) numerical model is developed for the wave simulation and propagation in a wave flume.The fluid flow is assumed to be viscous and incompressible,and the Navier-Stokes and continuity equations are used as the governing equations.The standard κ-ε model is used to model the turbulent flow.The NavierStokes equations are discretized using the staggered grid finite difference method and solved by the simplified marker and cell (SMAC) method. Waves are generated and propagated using a piston type wave maker. An open boundary condition is used at the end of the numerical flume.Some standard tests,such as the lid-driven cavity,the constant unidirectional velocity field,the shearing flow,and the dam-break on the dry bed,are performed to valid the model.To demonstrate the capability and accuracy of the present method,the results of generated waves are compared with available wave theories.Finally,the clustering technique (CT) is used for the mesh generation,and the best condition is suggested.

  18. Workbook for Predicting Pressure Wave and Fragment Effect of Exploding Propellent Tanks and Gas Storage Vessels

    Science.gov (United States)

    1975-11-01

    infermtrilon Is presented in the form of grasphs, tablas , and nouwraphs to allow easy esileuilaisu without reoourse to diffiult matthemnatical onsiililatlom...34Blast Wave Interactions from Multiple Fxplosions." Paper No. XII , Proceedinas of the Conference on Mechanisms of Explosion and Blast Waves, J

  19. Towards aeroacoustic sound generation by flow through porous media.

    Science.gov (United States)

    Hasert, Manuel; Bernsdorf, Joerg; Roller, Sabine

    2011-06-28

    In this work, we present single-step aeroacoustic calculations using the Lattice Boltzmann method (LBM). Our application case consists of the prediction of an acoustic field radiating from the outlet of a porous media silencer. It has been proved that the LBM is able to simulate acoustic wave generation and propagation. Our particular aim is to validate the LBM for aeroacoustics in porous media. As a validation case, we consider a spinning vortex pair emitting sound waves as the vortices rotate around a common centre. Non-reflective boundary conditions based on characteristics have been adopted from Navier-Stokes methods and are validated using the time evolution of a Gaussian pulse. We show preliminary results of the flow through the porous medium.

  20. Submersible optical sensors exposed to chemically dispersed crude oil: wave tank simulations for improved oil spill monitoring.

    Science.gov (United States)

    Conmy, Robyn N; Coble, Paula G; Farr, James; Wood, A Michelle; Lee, Kenneth; Pegau, W Scott; Walsh, Ian D; Koch, Corey R; Abercrombie, Mary I; Miles, M Scott; Lewis, Marlon R; Ryan, Scott A; Robinson, Brian J; King, Thomas L; Kelble, Christopher R; Lacoste, Jordanna

    2014-01-01

    In situ fluorometers were deployed during the Deepwater Horizon (DWH) Gulf of Mexico oil spill to track the subsea oil plume. Uncertainties regarding instrument specifications and capabilities necessitated performance testing of sensors exposed to simulated, dispersed oil plumes. Dynamic ranges of the Chelsea Technologies Group AQUAtracka, Turner Designs Cyclops, Satlantic SUNA and WET Labs, Inc. ECO, exposed to fresh and artificially weathered crude oil, were determined. Sensors were standardized against known oil volumes and total petroleum hydrocarbons and benzene-toluene-ethylbenzene-xylene measurements-both collected during spills, providing oil estimates during wave tank dilution experiments. All sensors estimated oil concentrations down to 300 ppb oil, refuting previous reports. Sensor performance results assist interpretation of DWH oil spill data and formulating future protocols.

  1. A miniature Marine Aerosol Reference Tank (miniMART) as a compact breaking wave analogue

    Science.gov (United States)

    Stokes, M. Dale; Deane, Grant; Collins, Douglas B.; Cappa, Christopher; Bertram, Timothy; Dommer, Abigail; Schill, Steven; Forestieri, Sara; Survilo, Mathew

    2016-09-01

    In order to understand the processes governing the production of marine aerosols, repeatable, controlled methods for their generation are required. A new system, the miniature Marine Aerosol Reference Tank (miniMART), has been designed after the success of the original MART system, to approximate a small oceanic spilling breaker by producing an evolving bubble plume and surface foam patch. The smaller tank utilizes an intermittently plunging jet of water produced by a rotating water wheel, into an approximately 6 L reservoir to simulate bubble plume and foam formation and generate aerosols. This system produces bubble plumes characteristic of small whitecaps without the large external pump inherent in the original MART design. Without the pump it is possible to easily culture delicate planktonic and microbial communities in the bulk water during experiments while continuously producing aerosols for study. However, due to the reduced volume and smaller plunging jet, the absolute numbers of particles generated are approximately an order of magnitude less than in the original MART design.

  2. Comments on compressible flow through butterfly valves

    Science.gov (United States)

    Blakenship, John G.

    In the flow analysis of process piping systems, it is desirable to treat control valves in the same way as elbow, reducers, expansions, and other pressure loss elements. In a recently reported research program, the compressible flow characteristics of butterfly valves were investigated. Fisher Controls International, Inc., manufacturer of a wide range of control valves, publishes coefficients that can be used to calculate flow characteristics for the full range of valve movement. The use is described of the manufacturer's data to calculate flow parameters as reported by the researchers who investigated compressible flow through butterfly valves. The manufacturer's data produced consistent results and can be used to predict choked flow and the pressure loss for unchoked flow.

  3. Bioaugmentation of flow-through sand filters

    DEFF Research Database (Denmark)

    Samuelsen, Elin Djurhuus

    Global applications of pesticides in agricultural production have led to the detection of trace amounts of pesticides in groundwater resources in levels exceeding the EU threshold limit for drinking water of 0.1 µg L-1. Pesticide-polluted groundwater may be remediated by inoculating waterworks sand...... filters with specific degrading bacteria. However, degradation efficiency is often hampered by poor adhesion and a lack of sustained catabolic activity of the introduced bacteria. The overall objective of this thesis was to investigate the significance of selected bacterial surface properties...... coincided with efficient mineralisation/degradation, and proposed the tfdC gene as a suitable marker for monitoring phenoxy acid degradation in strain PM2. Furthermore, when testing strain PM2s degradation performance in flow-through sand columns, we found that strain PM2 was able to sustain induced...

  4. Inertial capture in flow through porous media

    Science.gov (United States)

    Andrade, J. S., Jr.; Araújo, A. D.; Vasconcelos, T. F.; Herrmann, H. J.

    2008-08-01

    We investigate through numerical calculation of non-Brownian particles transported by a fluid in a porous medium, the influence of geometry and inertial effects on the capture efficiency of the solid matrix. In the case of a periodic array of cylinders and under the action of gravity, our results reveal that δ ˜ St, where δ is the particle capture efficiency, and St is the Stokes number. In the absence of gravity, we observe a typical second order transition between non-trapping and trapping of particles that can be expressed as δ ˜ ( St - St c ) α , with an exponent α ≈ 0.5, where St c is the critical Stokes number. We also perform simulations for flow through a random porous structure and confirm that its capture behavior is consistent with the simple periodic model.

  5. Air flow through smooth and rough cracks

    Energy Technology Data Exchange (ETDEWEB)

    Kula, H.-G.; Sharples, S. [Sheffield Univ. (United Kingdom). Dept. of Building Science

    1994-12-31

    A series of laboratory experiments are described which investigated the effect of surface roughness on the air flow characteristics of simple, straight-through, no-bend cracks with smooth and rough internal surfaces. The crack thicknesses used in the study were 1.0, 1.5 and 2.0mm. The crack lengths, in the direction of flow, were 50.8mm and 76.2mm. For the rough cracks the roughness was simulated with two different grades of commercially available energy-cloth (grade 60 and 100). The experimental results were satisfactorily fitted to a quadratic relationship between {Delta}p and Q of the form {Delta}p = AQ + BQ{sup 2} for both the smooth and rough crack data. The effect of roughness on the reduction of air flowing through a crack is also discussed. (author)

  6. Modelling of gas flow through metallic foams

    Energy Technology Data Exchange (ETDEWEB)

    Crosnier, S. [CEA Grenoble, Dept. de Thermohydraulique et de Physique, 38 (France); Riva, R. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Bador, B.; Blet, V.

    2003-09-01

    The transport and distribution of gases (hydrogen at the anode and air at the cathode) and water over the front surfaces of the electrodes in contact with electrolyte membrane are of great importance for the enhancement of efficiency of the Proton Exchange Membrane Fuel Cells (PEMFC). The use of metallic foam as a flow distributor in comparison with grooved plate (formed by parallel channels) commonly used in commercial fuel cells may be advantageous since this porous material has a porosity close to unity and then high specific surface area. In fact, the potentially active surface area is generally considered to be almost equal to the front surface area of the electrodes. In order to ensure a homogeneous flow distribution all over the active surface of such devices, a good understanding of gas flow through these particular porous media is necessary. For that purpose, studying of two-phase flow (oxygen, hydrogen and water) through metallic foams must be undertaken. This is carried out in the present work but, in a first step, only for single-phase flow, since the behaviour of two-phase flow derives from the first one. Novels hydraulic models have then been developed in the literature these last years. However, these models do not take into account the viscous dissipation of the flow along the walls bordering the porous media. Unfortunately, metallic foam used as distributors in fuel cell have thigh thickness (of the order of the millimeter), that shedding a doubt on the validity of the latter assumption. In this paper, we review the different hydraulic models in order to discuss the relevance and the limits of each to describe single-phase flow through foams which could be used as distributor in a fuel cell. For that purpose, numerical solutions obtained using modified MC3D-REPO package originally developed for the modelling of multicomponent two-phase flows in granular porous media have been compared to experimental data measured on a dedicated hydraulic device

  7. Computation of flow through Venturi meters

    Energy Technology Data Exchange (ETDEWEB)

    Sattery, J.A.; Reader-Harris, M.J.

    1997-07-01

    The computational fluid dynamics (CFD) work on Venturi meters reported in this paper was part of a large project for Shell Exploration and Production to investigate the application of Venturi meters to gas flow measurement. The majority of the experimental findings were reported in 'Unpredicted behaviour of Venturi flowmeters in gas at high Reynolds numbers' presented in the 1996 North Sea Flow Metering Workshop. CFD has been used to model the flow through Venturi tubes and thereby gain understanding of how the discharge coefficient is affected by the vital parameters of diameter ratio, pipe Reynolds number and roughness. It has also been used to calculate the effect of manufacturing tolerance. The discharge coefficients obtained from the calibration of Venturi meters have been used to validate the CFD predictions. The CFD results have also been compared with experimental results from the 1950s and 1960s with surprisingly good agreement. This work forms the basis of further possible research using CFD on the effect of upstream and Venturi surface roughness on the performance of these meters. The knowledge gained on the effect of surface roughness may also be applicable to ultrasonic flowmeters. (author)

  8. Computation of flow through the oesophagogastric junction

    Institute of Scientific and Technical Information of China (English)

    Barry P McMahon; Karl D Odie; Kenneth W Moloney; Hans Gregersen

    2007-01-01

    Whilst methods exist to indirectly measure the effects of increased flow or gastro-oesophageal refluxing,they cannot quantitatively measure the amount of acid travelling back up into the oesophagus during reflux, nor can they indicate the flow rate through the oesophagogastric junction (OGJ). Since OGJ dysfunction affects flow it seems most appropriate to describe the geometry of the OGJ and its effect on the flow.A device known as the functional lumen imaging probe (FLIP) has been shown to reliably measure the geometry of and pressure changes in the OGJ. FLIP cannot directly measure flow but the data gathered from the probe can be used to model flow through the junction by using computational flow dynamics (CFD).CFD uses a set of equations known as the Navier-Stokes equations to predict flow patterns and is a technique widely used in engineering. These equations are complex and require appropriate assumptions to provide simplifications before useful data can be obtained. With the assumption that the cross-sectional areas obtained via FLIP are circular, the radii of these circles can be obtained. A cubic interpolation scheme can then be applied to give a high-resolution geometry for the OGJ.In the case of modelling a reflux scenario, it can be seen that at the narrowest section a jet of fluid squirts into the oesophagus at a higher velocity than the fluid surrounding it. This jet has a maximum velocity of almost 2 ms-1 that occurs where the OGJ is at its narrowest. This simple prediction of acid 'squirting' into the oesophagus illustrates how the use of numerical methods can be used to develop a better understanding of the OGJ. This initial work using CFD shows some considerable promise for the future.

  9. Tanks and Tank Troops

    Science.gov (United States)

    1982-03-01

    operational in the Bundeswehr. These include the well-known U.S. M113 APC, the HS-30 APC, developed by the Swiss company Hispano- Suiza , as well as the...powered by the Leyland L-60 engine, and the French AMX-30, powered by the Hispano- Suiza HS-110 engine. The new Japanese STB-6 tank (ඒ") is...of all foreign series-produced tank engines. A complete tank engine replacement can be performed in four hours. The Hispano- Suiza HS-110 engine

  10. Flow through the nasal cavity of the spiny dogfish, Squalus acanthias

    Science.gov (United States)

    Timm-Davis, L. L.; Fish, F. E.

    2015-12-01

    The nasal cavity of spiny dogfish is a blind capsule with no internal connection to the oral cavity. Water is envisioned to flow through the cavity in a smooth, continuous flow pattern; however, this assumption is based on previous descriptions of the morphology of the olfactory cavity. No experimentation on the flow through the internal nasal cavity has been reported. Morphology of the head of the spiny dogfish ( Squalus acanthias) does not suggest a close external connection between the oral and nasal systems. However, dye visualization showed that there was flow through the nasal apparatus and from the excurrent nostril to the mouth when respiratory flows were simulated. The hydrodynamic flow through the nasal cavity was observed from flow tank experiments. The dorsum of the nasal cavity of shark heads from dead animals was exposed by dissection and a glass plate was glued over of the exposed cavity. When the head was placed in a flow, dye was observed to be drawn passively into the cavity showing a complex, three-dimensional hydrodynamic flow. Dye entered the incurrent nostril, flowed through the nasal lamellae, crossed over and under the nasal valve, and circulated around the nasal valve before exiting the excurrent nostril. When the nasal valve was removed, the dye became stagnant and back flowed out through the incurrent nostril. The single nasal valve has a hydrodynamic function that organizes a coherent flow of water through the cavity without disruption. The results suggest that the morphology of the nasal apparatus in concert with respiratory flow and ambient flows from active swimming can be used to draw water through the olfactory cavity of the shark.

  11. Low-Hysteresis Flow-Through Wind-Tunnel Balance

    Science.gov (United States)

    Kunz, N.; Luna, P. M.; Roberts, A. C.; Smith, R. C.; Horne, W. L.; Smith, K. M.

    1992-01-01

    Improved flow-through wind-tunnel balance includes features minimizing both spurious force readings caused by internal pressurized flow and mechanical hysteresis. Symmetrical forces caused by internal flow cancelled.

  12. Integrated Microfluidic Flow-Through Microbial Fuel Cells

    Science.gov (United States)

    Jiang, Huawei; Ali, Md. Azahar; Xu, Zhen; Halverson, Larry J.; Dong, Liang

    2017-01-01

    This paper reports on a miniaturized microbial fuel cell with a microfluidic flow-through configuration: a porous anolyte chamber is formed by filling a microfluidic chamber with three-dimensional graphene foam as anode, allowing nutritional medium to flow through the chamber to intimately interact with the colonized microbes on the scaffolds of the anode. No nutritional media flow over the anode. This allows sustaining high levels of nutrient utilization, minimizing consumption of nutritional substrates, and reducing response time of electricity generation owing to fast mass transport through pressure-driven flow and rapid diffusion of nutrients within the anode. The device provides a volume power density of 745 μW/cm3 and a surface power density of 89.4 μW/cm2 using Shewanella oneidensis as a model biocatalyst without any optimization of bacterial culture. The medium consumption and the response time of the flow-through device are reduced by 16.4 times and 4.2 times, respectively, compared to the non-flow-through counterpart with its freeway space volume six times the volume of graphene foam anode. The graphene foam enabled microfluidic flow-through approach will allow efficient microbial conversion of carbon-containing bioconvertible substrates to electricity with smaller space, less medium consumption, and shorter start-up time. PMID:28120875

  13. Florfenicol residues in Rainbow Trout after oral dosing in recirculating and flow-through culture systems

    Science.gov (United States)

    Meinertz, Jeffery R.; Hess, Karina R.; Bernady, Jeffry A.; Gaikowski, M. P.; Whitsel, Melissa; Endris, R. G.

    2014-01-01

    Aquaflor is a feed premix for fish containing the broad spectrum antibacterial agent florfenicol (FFC) incorporated at a ratio of 50% (w/w). To enhance the effectiveness of FFC for salmonids infected with certain isolates of Flavobacterium psychrophilum causing coldwater disease, the FFC dose must be increased from the standard 10 mg·kg−1 body weight (BW)·d−1 for 10 consecutive days. A residue depletion study was conducted to determine whether FFC residues remaining in the fillet tissue after treating fish at an increased dose would be safe for human consumption. Groups of Rainbow Trout Oncorhynchus mykiss (total n = 144; weight range, 126–617 g) were treated with FFC at 20 mg·kg−1 BW·d−1 for 10 d in a flow-through system (FTS) and a recirculating aquaculture system (RAS) each with a water temperature of ∼13°C. The two-tank RAS included a nontreated tank containing 77 fish. Fish were taken from each tank (treated tank, n = 16; nontreated tank, n = 8) at 6, 12, 24, 48, 72, 120, 240, 360, and 480 h posttreatment. Florfenicol amine (FFA) concentrations (the FFC marker residue) in skin-on fillets from treated fish were greatest at 12 h posttreatment (11.58 μg/g) in the RAS and were greatest at 6 h posttreatment (11.09 μg/g) in the FTS. The half-lives for FFA in skin-on fillets from the RAS and FTS were 20.3 and 19.7 h, respectively. Assimilation of FFC residues in the fillets of nontreated fish sharing the RAS with FFC-treated fish was minimal. Florfenicol water concentrations peaked in the RAS-treated tank and nontreated tanks at 10 h (453 μg/L) and 11 h (442 μg/L) posttreatment, respectively. Monitoring of nitrite concentrations throughout the study indicated the nitrogen oxidation efficiency of the RAS biofilter was minimally impacted by the FFC treatment.

  14. The Application of 3-D Numerical Simulation to Calculating the Waves in Surge Tanks%CFD在调压室涌浪水位模拟中的应用

    Institute of Scientific and Technical Information of China (English)

    刘飞; 杨建东; 李进平

    2011-01-01

    While a hydropower station is in its transition process, the unsteady flow in the tailrace surge tank has been simulated by using the method of CFD. In this paper, the surge wave and the bottom plate pressure difference are the focus of concern in the 3-D numerical simulation. Three turbulence models have been used to simulate the unsteady flow. We can illustrate the differences between the three turbulence models while they are used to simulate the transition process. Based on the advantage that the 3-D numerical simulation can capture the information of internal flow field, we are also able to explore the situation of free surface and flow regime in the surge tank through the entire wave process.%对某水电站的尾水隧洞及下游调压室过渡过程中的非恒定流流态进行三维数值模拟,着重观测调压室内涌浪波动及调压室内底板压差变化过程。采用3种湍流模型对下游调压室及尾水隧洞进行了模拟,将调压室涌浪波动过程与调压室底板压差变化过程的三维计算结果与物理模型实验、一维数值计算的相应结果予以对比分析,阐明了不同湍流模型对过渡过程模拟的影响。结合三维模拟能捕捉流场内部流态的优势,探讨了涌浪波动过程中调压室水面波动过程及水流流态。

  15. Stationary and oscillatory flow through coarse porous media

    NARCIS (Netherlands)

    Van Gent, M.R.A.

    1993-01-01

    Measurements in a U-tube tunnel were carried out to study flow through coarse granular material. Tests with stationary flow and tests with oscillatory flow were done to study the differences between both. The coefficients from the extended Forchheimer equation, which is supposed to describe non-stat

  16. Towards unified drag laws for inertial flow through fibrous materials

    NARCIS (Netherlands)

    Yazdchi, K.; Luding, S.

    2012-01-01

    We give a comprehensive survey of published experimental, numerical and theoretical work on the drag law correlations for fluidized beds and flow through porous media, together with an attempt of systematization. Ranges of validity as well as limitations of commonly used relations (i.e. the Ergun an

  17. Boundary control of fluid flow through porous media

    DEFF Research Database (Denmark)

    Hasan, Agus; Foss, Bjarne; Sagatun, Svein Ivar

    2010-01-01

    The flow of fluids through porous media can be described by the Boussinesq’s equation with mixed boundary conditions; a Neumann’s boundary condition and a nonlinear boundary condition. The nonlinear boundary condition provides a means to control the fluid flow through porous media. In this paper,......, some stabilizing controllers are constructed for various cases using Lyapunov design....

  18. Flow-through microsensor array based on semipermeable dialysis tubing

    Science.gov (United States)

    Bohm, Sebastian; Olthuis, Wouter; Bergveld, Piet

    1999-11-01

    In this contribution, a flow-through potentiometric micro sensor is described which is based on semi-permeable tubing. Basically the proposed ion selective electrodes are of the liquid membrane type having an internal electrolyte. Sensors were constructed by guiding 0.3 mm diameter dialysis tube from an artificial kidney through a cavity, precision machined in PerspexTM.

  19. Blood Flow through an Open-Celled Foam

    Science.gov (United States)

    Ortega, Jason; Maitland, Duncan

    2011-11-01

    The Hazen-Dupuit-Darcy (HDD) equation is commonly used in engineering applications to model the pressure gradient of flow through a porous media. One major advantage of this equation is that it simplifies the complex geometric details of the porous media into two coefficients: the permeability, K, and form factor, C. However through this simplification, the flow details within the porous media are no longer accessible, making it difficult to study the phenomena that contribute to changes in K and C due to clotting of blood flow. To obtain a more detailed understanding of blood flow through a porous media, a direct assessment of the complex interstitial geometry and flow is required. In this study, we solve the Navier-Stokes equations for Newtonian and non-Newtonian blood flow through an open-celled foam geometry obtained from a micro-CT scan. The nominal strut size of the foam sample is of O(10e-5) m and the corresponding Reynolds number based upon this length ranges up to O(10). Fitting the pressure gradient vs. Darcy velocity data with the HDD equation demonstrates that both viscous and inertial forces play an important role in the flow through the foam at these Reynolds numbers. Recirculation zones are observed to form in the wake of the pore struts, producing regions of flow characterized by both low shear rates and long fluid residence times, factors of which have been shown in previous studies to promote blood clotting.

  20. Hydraulic flow through a channel contraction: multiple steady states

    NARCIS (Netherlands)

    Akers, B.; Bokhove, O.

    2008-01-01

    We have investigated shallow water flows through a channel with a contraction by experimental and theoretical means. The horizontal channel consists of a sluice gate and an upstream channel of constant width $b_0$ ending in a linear contraction of minimum width $b_c$. Experimentally, we observe upst

  1. Hydraulic flow through a contraction: multiple steady states

    NARCIS (Netherlands)

    Akers, B.; Bokhove, O.

    2007-01-01

    We consider shallow water flows through a channel with a contraction by experimental and theoretical means. The horizontal channel consists of a sluice gate and an upstream channel of constant width $b_0$ ending in a linear contraction of minimum width $b_c$. Experimentally, we observe upstream stea

  2. Observations of Gas-Liquid Flows Through Contractions in Microgravity

    Science.gov (United States)

    McQuillen, John

    1996-01-01

    Tests were conducted for an air-water flow through two sudden contractions aboard the NASA DC-9 low gravity aircraft. Flow rate, residual accelerations, void fraction, film thickness, and pressure drop data were recorded and flow visualization at 250 images per second were recorded. Some preliminary results based on the flow visualization data are presented for bubbly, slug and annular flow.

  3. Unsteady flow through in-vitro models of the glottis

    NARCIS (Netherlands)

    Hofmans, G.C.J.; Groot, G.; Ranucci, M.; Graziani, G.; Hirschberg, A.

    2003-01-01

    The unsteady two-dimensional flow through fixed rigid in vitro models of the glottis is studied in some detail to validate a more accurate model based on the prediction of boundary-layer separation. The study is restricted to the flow phenomena occurring within the glottis and does not include effec

  4. Flow Through a Laboratory Sediment Sample by Computer Simulation Modeling

    Science.gov (United States)

    2006-09-07

    Flow through a laboratory sediment sample by computer simulation modeling R.B. Pandeya’b*, Allen H. Reeda, Edward Braithwaitea, Ray Seyfarth0, J.F...through a laboratory sediment sample by computer simulation modeling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  5. FAST Model Calibration and Validation of the OC5- DeepCwind Floating Offshore Wind System Against Wave Tank Test Data: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Fabian F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-09

    During the course of the Offshore Code Comparison Collaboration, Continued, with Correlation (OC5) project, which focused on the validation of numerical methods through comparison against tank test data, the authors created a numerical FAST model of the 1:50-scale DeepCwind semisubmersible system that was tested at the Maritime Research Institute Netherlands ocean basin in 2013. This paper discusses several model calibration studies that were conducted to identify model adjustments that improve the agreement between the numerical simulations and the experimental test data. These calibration studies cover wind-field-specific parameters (coherence, turbulence), hydrodynamic and aerodynamic modeling approaches, as well as rotor model (blade-pitch and blade-mass imbalances) and tower model (structural tower damping coefficient) adjustments. These calibration studies were conducted based on relatively simple calibration load cases (wave only/wind only). The agreement between the final FAST model and experimental measurements is then assessed based on more-complex combined wind and wave validation cases.

  6. Influencing Factors for the Lamb Wave Detection of Tank Bottom Defects%储罐底板缺陷兰姆波检测的影响因素

    Institute of Scientific and Technical Information of China (English)

    禹化民; 王维斌; 吕小青; 朱子东; 刘清松; 庞笑

    2015-01-01

    The problem of corrosion inspection of the oil and gas storage tank bottom in service has not been effectively resolved due to the influence of factors such as test conditions and the contents.In this article,the Lamb waves of mainly A0 and S0 modes have been inspired by using the variable angle probe based on ultrasonic Lamb wave mode and dispersion property.The experiment was carried out on the reference plate of tank bottom magnetic flux leakage testing to study the influences of wave structure to the Lamb wave detection and the relationship between the cross-sectional area of defects and the echo signals amplitudes.The optimal angle of excitation is determined for a certain thickness of the steel plate and the experimental results are analyzed from the acoustic vibration displacement distribution and energy density distribution.The study has shown that under certain conditions of the operating frequency,the wave structure is an important factor of affecting Lamb wave detection.Besides,defect echo signal amplitude becomes larger with increasing cross-sectional area . The results show that different modes for the same types of defects have different sensitivity to changes in cross-sectional area and the depth of detects and the degree of sensitivity to changes in cross-sectional area and the depth of detects is different for the same types of defect mode.%由于检测条件、储罐内容物等因素的影响,在役油气储罐底板腐蚀检测问题尚未得到有效解决。基于超声兰姆波的多模态及频散特性,利用可变角度探头分别激发出含 A0和 S0两种模态的兰姆波进行检测试验。通过在储罐底板漏磁检测标准试板上进行检测,研究了波结构对兰姆波检测的影响以及缺陷横截面积与回波信号幅度的关系。针对板厚为6.8 mm 的钢板确定了最佳入射角,并从兰姆波振动位移和能流密度分布的角度对试验所得结果进行了分析。结果表明:在工作

  7. Think Tanks

    Science.gov (United States)

    2001-01-01

    A new inspection robot from Solex Robotics Systems was designed to eliminate hazardous inspections of petroleum and chemical storage tanks. The submersible robot, named Maverick, is used to inspect the bottoms of tanks, keeping the tanks operational during inspection. Maverick is able to provide services that will make manual tank inspections obsolete. While the inspection is conducted, Maverick's remote human operators remain safe outside of the tank. The risk to human health and life is now virtually eliminated. The risk to the environment is also minimal because there is a reduced chance of spillage from emptying and cleaning the tanks, where previously, tons of pollutants were released through the process of draining and refilling.

  8. Analysis of Stokes flow through periodic permeable tubules

    Directory of Open Access Journals (Sweden)

    A.M. Siddiqui

    2017-03-01

    Full Text Available This article reports the detailed analysis of the Stokes flow through permeable tubes. The objective of this investigation was to search for exact solutions to the Stokes flow and thereby observe the effects on radial flow component, provided the permeability on the tubular surface is an elementary trigonometric function. Mathematical expressions for the pressure distribution, velocity components, volume flux, average wall shear stress and leakage flux are presented explicitly. Graphical analysis of the fluid flow is presented for a set of parametric values. Important conclusions are drawn for Stokes flow through tubes with low as well as high permeability. The classical Poiseuille flow is presented as a limiting case of this immense study of Stokes flow.

  9. Computed Flow Through An Artificial Heart And Valve

    Science.gov (United States)

    Rogers, Stuart E.; Kwak, Dochan; Kiris, Cetin; Chang, I-Dee

    1994-01-01

    NASA technical memorandum discusses computations of flow of blood through artificial heart and through tilting-disk artificial heart valve. Represents further progress in research described in "Numerical Simulation of Flow Through an Artificial Heart" (ARC-12478). One purpose of research to exploit advanced techniques of computational fluid dynamics and capabilities of supercomputers to gain understanding of complicated internal flows of viscous, essentially incompressible fluids like blood. Another to use understanding to design better artificial hearts and valves.

  10. Spatial statistics for predicting flow through a rock fracture

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, K.J.

    1989-03-01

    Fluid flow through a single rock fracture depends on the shape of the space between the upper and lower pieces of rock which define the fracture. In this thesis, the normalized flow through a fracture, i.e. the equivalent permeability of a fracture, is predicted in terms of spatial statistics computed from the arrangement of voids, i.e. open spaces, and contact areas within the fracture. Patterns of voids and contact areas, with complexity typical of experimental data, are simulated by clipping a correlated Gaussian process defined on a N by N pixel square region. The voids have constant aperture; the distance between the upper and lower surfaces which define the fracture is either zero or a constant. Local flow is assumed to be proportional to local aperture cubed times local pressure gradient. The flow through a pattern of voids and contact areas is solved using a finite-difference method. After solving for the flow through simulated 10 by 10 by 30 pixel patterns of voids and contact areas, a model to predict equivalent permeability is developed. The first model is for patterns with 80% voids where all voids have the same aperture. The equivalent permeability of a pattern is predicted in terms of spatial statistics computed from the arrangement of voids and contact areas within the pattern. Four spatial statistics are examined. The change point statistic measures how often adjacent pixel alternate from void to contact area (or vice versa ) in the rows of the patterns which are parallel to the overall flow direction. 37 refs., 66 figs., 41 tabs.

  11. Adhesion to model surfaces in a flow through system

    Energy Technology Data Exchange (ETDEWEB)

    Habeger, C.F.; Linhart, R.V.; Adair, J.H. [Univ. of Florida, Gainesville, FL (United States)

    1995-12-31

    A hydrodynamic method for measuring the adhesion of particles to a surface has been designed. By using hydrodynamic flow to remove particles from a model surface, the adhesive strength of particles to the surface can be measured using a flow-through cell. The hydrodynamic force required to displace a particle is calculated using the cell dimensions and the flow rate in Poiseuille`s equation.

  12. Porcine skin flow-through diffusion cell system.

    Science.gov (United States)

    Baynes, R E

    2001-11-01

    Porcine Skin Flow-Through Diffusion Cell System (Ronald E. Baynes, North Carolina State University, Raleigh, North Carolina). Porcine skin can be used in a diffusion cell apparatus to study the rate and extent of absorption of topically applied chemicals through the skin. Although the skin of a number of animals can be used in this system, that of the pig most closely approximates human skin anatomically and physiologically.

  13. Numerical modeling of a compressible multiphase flow through a nozzle

    Science.gov (United States)

    Niedzielska, Urszula; Rabinovitch, Jason; Blanquart, Guillaume

    2012-11-01

    New thermodynamic cycles developed for more efficient low temperature resource utilization can increase the net power production from geothermal resources and sensible waste heat recovery by 20-40%, compared to the traditional organic Rankine cycle. These improved systems consist of a pump, a liquid heat exchanger, a two-phase turbine, and a condenser. The two-phase turbine is used to extract energy from a high speed multiphase fluid and consists of a nozzle and an axial impulse rotor. In order to model and optimize the fluid flow through this part of the system an analysis of two-phase flow through a specially designed convergent-divergent nozzle has to be conducted. To characterize the flow behavior, a quasi-one-dimensional steady-state model of the multiphase fluid flow through a nozzle has been constructed. A numerical code capturing dense compressible multiphase flow under subsonic and supersonic conditions and the coupling between both liquid and gas phases has been developed. The output of the code delivers data vital for the performance optimization of the two-phase nozzle.

  14. SPH numerical simulation of fluid flow through a porous media

    Science.gov (United States)

    Klapp-Escribano, Jaime; Mayoral-Villa, Estela; Rodriguez-Meza, Mario Alberto; de La Cruz-Sanchez, Eduardo; di G Sigalotti, Leonardo; Inin-Abacus Collaboration; Ivic Collaboration

    2013-11-01

    We have tested an improved a method for 3D SPH simulations of fluid flow through a porous media using an implementation of this method with the Dual-Physics code. This improvement makes it possible to simulate many particles (of the order of several million) in reasonable computer times because its execution on GPUs processors makes it possible to reduce considerably the simulation cost for large systems. Modifications in the initial configuration have been implemented in order to simulate different arrays and geometries for the porous media. The basic tests were reproduced and the performance was analyzed. Our 3D simulations of fluid flow through a saturated homogeneous porous media shows a discharge velocity proportional to the hydraulic gradient reproducing Darcy's law at small body forces. The results are comparable with values obtained in previous work and published in the literature for simulations of flow through periodic porous media. Our simulations for a non saturated porous media produce adequate qualitative results showing that a non steady state is generated. The relaxation time for these systems were obtained. Work partially supported by Cinvestav-ABACUS, CONACyT grant EDOMEX-2011-C01-165873.

  15. Comparison of laboratory batch and flow-through microcosm bioassays.

    Science.gov (United States)

    Clément, Bernard J P; Delhaye, Hélène L; Triffault-Bouchet, Gaëlle G

    2014-10-01

    Since 1997, we have been developing a protocol for ecotoxicological bioassays in 2-L laboratory microcosms and have applied it to the study of various pollutants and ecotoxicological risk assessment scenarios in the area of urban facilities and transport infrastructures. The effects on five different organisms (micro-algae, duckweeds, daphnids, amphipods, chironomids) are assessed using biological responses such as growth, emergence (chironomids), reproduction (daphnids) and survival, with a duration of exposure of 3 weeks. This bioassay has mainly been used as a batch bioassay, i.e., the water was not renewed during the test. A flow-through microcosm bioassay has been developed recently, with the assumption that conditions for the biota should be improved, variability reduced, and the range of exposure patterns enlarged (e.g., the possibility of maintaining constant exposure in the water column). This paper compares the results obtained in batch and flow-through microcosm bioassays, using cadmium as a model toxicant. As expected, the stabilization of physico-chemical parameters, increased organism fitness and reduced variability were observed in the flow-through microcosm bioassay.

  16. Observing Behavior of Fluid Flow through Carbon Nanotube Arrays

    Science.gov (United States)

    Jensen, Anna T.

    This work establishes a platform technique for visualizing fluid transport through Anoidisc Alumina Oxide (AAO) membranes, which can be applied to Carbon Nanotube (CNT) arrays, and allow for the testing of the effects of other parameters on flow. Arrays of CNTs have shown significant promise for delivering biomolecules into cells with high efficiency while maintaining cell viability. In these applications, biomolecules flow through CNT arrays manufactured in our lab using Template-Based Chemical Vapor Deposition. By culturing cells on the opposite side of the array, they can be used to transfect biomolecules into cells. In this research, it was discovered that the transfection rate was dependent on the type of biomolecule being delivered into the cells. It was also inferred that the number of CNTs the cells covered would affect the transfection rate. In order to characterize flow through the CNT arrays, an experiment was designed and conducted to test the effect of changing the number of active CNTs. Preliminary testing showed the occurrence of an unknown error in the CNT array manufacturing process which prevented material from flowing through the CNT arrays. As a result, the study was modified to characterize flow through AAO membranes, which serve as the template for the CNTs. To accomplish this, a flow device was developed which restricted flow to a predefined circular area. Three different diameters were tested 6 mm, 4 mm, and 2 mm. Flow data was taken using fluorescent dye, as it diffused through the AAO into a volume of water on the opposite side, fluorescent intensity would increase. This data was plotted against time and used to model flow for the three tested diameters. The results indicated that the total time for diffusion increased as the diameters decreased. However, the relationship between the number of exposed pores and the flow time were not directly related, meaning the amount of flow through one pore changes with the total number of exposed

  17. Parallel Simulation of 3-D Turbulent Flow Through Hydraulic Machinery

    Institute of Scientific and Technical Information of China (English)

    徐宇; 吴玉林

    2003-01-01

    Parallel calculational methods were used to analyze incompressible turbulent flow through hydraulic machinery. Two parallel methods were used to simulate the complex flow field. The space decomposition method divides the computational domain into several sub-ranges. Parallel discrete event simulation divides the whole task into several parts according to their functions. The simulation results were compared with the serial simulation results and particle image velocimetry (PIV) experimental results. The results give the distribution and configuration of the complex vortices and illustrate the effectiveness of the parallel algorithms for numerical simulation of turbulent flows.

  18. A procedure for the calculation of flow through axisymmetric ducts

    Directory of Open Access Journals (Sweden)

    P. S. Heyns

    1983-03-01

    Full Text Available A procedure for the calculation of flow through axisymmetric ducts as are typically found in turbomachines, is presented. The procedure is based on a streamline curvature method with the governing equations formulated along quasi-orthogonals in the flow field. This formulation allows the procedure to be used for segments of a duct wherein the flow direction is predominantly radial. It is assumed that the flow on specific stream surfaces is isentropic, but normal entropy gradients may exist because of processes which took place upstream of the duct.

  19. Herschel-Bulkley fluid flow through narrow tubes

    CERN Document Server

    Nallapu, Santhosh

    2014-01-01

    A two-fluid model of Herschel-Bulkley fluid flow through tubes of small diameters is studied. It is assumed that the core region consists of Herschel-Bulkley fluid and Newtonian fluid in the peripheral region. The analytical solutions for velocity, flow flux, effective viscosity, core hematocrit and mean hematocrit have been derived and the effects of various relevant parameters on these flow variables have been studied. It has been observed that the effective viscosity and mean hematocrit increase with yield stress, power-law index, hematocrit and tube radius. Further, the core hematocrit decreases with hematocrit and tube radius.

  20. Forced—Flow Convection for Liquid Methanol Flowing through Microchannels

    Institute of Scientific and Technical Information of China (English)

    X.F.Peng; B.X.Wang

    1993-01-01

    Experiments were conducted to investigate the single phase forced-flow convection of methanol flowing through microchannels with rectangular cross-section.The fully-developed turbulent convection regime was found to be initiated at about Re=1000-1500,The fully developed turbulent heat transfer can be predicted by the well-known Dittus-Boelter correlation with mere modification of the original empirical constant coefficient 0.023 to 0.00805.The transition and laminar heat transfer behaviors in microchannels are highly peculiar and complicated,and heavily affected by liquid temperature,velocity and microchannel size.

  1. Capillary Micro-Flow Through a Fiber Bundle(Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    ZHU Ying-dan; WANG Ji-hui; TAN Hua; GAO Guo-qiang

    2004-01-01

    The present work considered the capillary micro-flow through a fiber bundle. The resin heights in the fiber bundle as a function of time were used to determine the experimental values of capillary pressure and the permeability by the nonlinear regression fitting method. The fitting curves showed a good agreement with experiments. However, these values of capillary pressure from short- time experiments were much lower than the theoretical results from the Yang-Laplace Equation. More accurate capillary pressure was predicted from the presented long-run experiment.

  2. Methodology of inclusions removing from steel flowing through the tundish

    Directory of Open Access Journals (Sweden)

    M. Warzecha

    2017-01-01

    Full Text Available Obtaining high quality steels mainly depends on the quantity of non-metallic inclusions contained into it and this, in turn, to a large extent on the structure of the flow in the tundish. Optimization of the flow of liquid steel through the tundish makes it possible to control the trajectory of inclusions and thereby to improve the conditions of their outflow into the slag layer. The following article presents an analysis of research opportunities of the inclusions distribution and removing process from the steel flowing through the tundish, resulting in reconstruction of the own research facility.

  3. Wave groups in uni-directional surface-wave models

    NARCIS (Netherlands)

    Groesen, van E.

    1998-01-01

    Uni-directional wave models are used to study wave groups that appear in wave tanks of hydrodynamic laboratories; characteristic for waves in such tanks is that the wave length is rather small, comparable to the depth of the layer. In second-order theory, the resulting Nonlinear Schrödinger (NLS) eq

  4. Nitrogen tank

    CERN Multimedia

    2006-01-01

    Wanted The technical file about the pressure vessel RP-270 It concerns the Nitrogen tank, 60m3, 22 bars, built in 1979, and installed at Point-2 for the former L3 experiment. If you are in possession of this file, or have any files about an equivalent tank (probably between registered No. RP-260 and -272), please contact Marc Tavlet, the ALICE Glimos.

  5. Nitrogen tank

    CERN Document Server

    2006-01-01

    Wanted The technical file about the pressure vessel RP-270 It concerns the Nitrogen tank, 60m3, 22 bars, built in 1979, and installed at Point-2 for the former L3 experiment. If you are in possession of this file, or have any files about an equivalent tank (probably between registered No. RP-260 and -272), please contact Marc Tavlet, the ALICE Glimos.

  6. Flow Through PCR Module of BioBriefcase

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo, E S; Wheeler, E K; Hindson, B; Nasarabadi, S; Vrankovich, G; Bell, P; Bailey, C; Sheppod, T; Christian, A

    2005-09-19

    The BioBriefcase is an integrated briefcase-sized aerosol collection and analysis system for autonomous monitoring of the environment, which is currently being jointly developed by Lawrence Livermore and Sandia National Laboratories. This poster presents results from the polymerase chain reaction (PCR) module of the system. The DNA must be purified after exiting the aerosol collector to prevent inhibition of the enzymatic reaction. Traditional solid-phase extraction results in a large loss of sample. In this flow-through system, we perform sample purification, concentration and amplification in one reactor, which minimizes the loss of material. The sample from the aerosol collector is mixed with a denaturation solution prior to flowing through a capillary packed with silica beads. The DNA adheres to the silica beads allowing the environmental contaminants to be flushed to waste while effectively concentrating the DNA on the silica matrix. The adhered DNA is amplified while on the surface of the silica beads, resulting in a lower limit of detection than an equivalent eluted sample. Thus, this system is beneficial since more DNA is available for amplification, less reagents are utilized, and contamination risks are reduced.

  7. Thermal loading in flow-through electroporation microfluidic devices.

    Science.gov (United States)

    del Rosal, Blanca; Sun, Chen; Loufakis, Despina Nelie; Lu, Chang; Jaque, Daniel

    2013-08-01

    Thermal loading effects in flow-through electroporation microfluidic devices have been systematically investigated by using dye-based ratiometric luminescence thermometry. Fluorescence measurements have revealed the crucial role played by both the applied electric field and flow rate on the induced temperature increments at the electroporation sections of the devices. It has been found that Joule heating could raise the intra-channel temperature up to cytotoxic levels (>45 °C) only when conditions of low flow rates and high applied voltages are applied. Nevertheless, when flow rates and electric fields are set to those used in real electroporation experiments we have found that local heating is not larger than a few degrees, i.e. temperature is kept within the safe range (electroporation devices from which the heat affected area can be elucidated. Experimental data have been found to be in excellent agreement with numerical simulations that have also revealed the presence of a non-homogeneous temperature distribution along the electroporation channel whose magnitude is critically dependent on both applied electric field and flow rate. Results included in this work will allow for full control over the electroporation conditions in flow-through microfluidic devices.

  8. Automated growth of metal-organic framework coatings on flow-through functional supports.

    Science.gov (United States)

    Maya, F; Palomino Cabello, C; Clavijo, S; Estela, J M; Cerdà, V; Turnes Palomino, G

    2015-05-11

    A fully automated method for the controlled growth of metal-organic framework coatings on flow-through functional supports is reported. The obtained hybrid flow-through supports show high performance for the automated extraction of water pollutants.

  9. Multiple sample flow through immunomagnetic separator for concentrating pathogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Rotariu, Ovidiu [School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen (United Kingdom); Ogden, Iain D [Department of Medical Microbiology, University of Aberdeen, Aberdeen (United Kingdom); MacRae, Marion [Department of Medical Microbiology, University of Aberdeen, Aberdeen (United Kingdom); Udrea, Laura Elena [National Institute of R-D for Technical Physics I.F.T. Iasi, Mangeron 47 Blvd., Iasi (Romania); Strachan, Norval J C [School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen (United Kingdom)

    2005-06-21

    The standard method of immunomagnetic separation for isolating pathogenic bacteria from food and environmental matrices processes 1 ml volumes. Pathogens present at low levels (<0.5 pathogenic bacteria/g) will not be consistently detected by this method. Here a multiple sample flow through immunomagnetic separator has been designed and tested to process large volume samples (50 to 250 ml). Preliminary results show >97% recovery of polydisperse magnetic particles (diameter range 1 to 8 {mu}m) containing 29-33% w/w Fe{sub 3}O{sub 4} content. Between 70 and 130 times more of the pathogenic bacteria Escherichia coli O157 is recovered from PBS compared with the standard 1 ml method. Also, the recovery of E. coli O157 from beef mince homogenates, after a 4 h incubation at 42 deg. C, is between 80 and 180 times higher than the standard 1 ml method.

  10. Simulation of blood flow through an artificial heart

    Science.gov (United States)

    Kiris, Cetin; Chang, I-Dee; Rogers, Stuart E.; Kwak, Dochan

    1991-01-01

    A numerical simulation of the incompressible viscous flow through a prosthetic tilting disk heart valve is presented in order to demonstrate the current capability to model unsteady flows with moving boundaries. Both steady state and unsteady flow calculations are done by solving the incompressible Navier-Stokes equations in 3-D generalized curvilinear coordinates. In order to handle the moving boundary problems, the chimera grid embedding scheme which decomposes a complex computational domain into several simple subdomains is used. An algebraic turbulence model for internal flows is incorporated to reach the physiological values of Reynolds number. Good agreement is obtained between the numerical results and experimental measurements. It is found that the tilting disk valve causes large regions of separated flow, and regions of high shear.

  11. Effects of non Newtonian spiral blood flow through arterial stenosis

    Science.gov (United States)

    Hasan, Md. Mahmudul; Maruf, Mahbub Alam; Ali, Mohammad

    2016-07-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system. A numerical investigation is carried out to analyze the effect of spiral blood flow through an axisymmetric three dimensional artery having 75% stenosis at the center. Blood is assumed as a Non-Newtonian fluid. Standard k-ω model is used for the simulation with the Reynolds number of 1000. A parabolic velocity profile with spiral flow is used as inlet boundary condition. The peak values of all velocity components are found just after stenosis. But total pressure gradually decreases at downstream. Spiral flow of blood has significant effects on tangential component of velocity. However, the effect is mild for radial and axial velocity components. The peak value of wall shear stress is at the stenosis zone and decreases rapidly in downstream. The effect of spiral flow is significant for turbulent kinetic energy. Detailed investigation and relevant pathological issues are delineated throughout the paper.

  12. AXISYMMETRIC FLOW THROUGH A PERMEABLE NEAR-SPHERE

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    An analytical approach is described for the axisymmetric flow through a permeable near-sphere with a modification to boundary conditions in order to account permeability. The Stokes equation was solved by a regular perturbation technique up to the second order correction in epsilon representing the deviation from the radius of nondeformed sphere. The drag and the flow rate were calculated and the results were evaluated from the point of geometry and the permeability of the surface. An attempt also was made to apply the theory to the filter feeding problem. The filter appendages of small ecologically important aquatic organisms were modeled as axisymmetric permeable bodies, therefore a rough model for this problem was considered here as an oblate spheroid or near-sphere.

  13. Simulation of uncompressible fluid flow through a porous media

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A. [Instituto Politecnico Nacional (SEPI-ESIQIE-IPN), Unidad Profesional Zacatenco, Laboratorio de Analisis Met. (Edif. ' Z' y Edif. ' 6' P.B.), Mexico City (Mexico)], E-mail: adaramil@yahoo.com.mx; Gonzalez, J.L. [Instituto Politecnico Nacional (SEPI-ESIQIE-IPN), Unidad Profesional Zacatenco, Laboratorio de Analisis Met. (Edif. ' Z' y Edif. ' 6' P.B.), Mexico City (Mexico); Carrillo, F. [Instituto Politecnico Nacional (SEPI-CICATA-IPN), Unidad Altamira Tamaulipas, Mexico (Mexico); Lopez, S. [Instituto Mexicano del Petroleo (I.M.P.-D.F.), Mexico (Mexico)

    2009-02-28

    Recently, a great interest has been focused for investigations about transport phenomena in disordered systems. One of the most treated topics is fluid flow through anisotropic materials due to the importance in many industrial processes like fluid flow in filters, membranes, walls, oil reservoirs, etc. In this work is described the formulation of a 2D mathematical model to simulate the fluid flow behavior through a porous media (PM) based on the solution of the continuity equation as a function of the Darcy's law for a percolation system; which was reproduced using computational techniques reproduced using a random distribution of the porous media properties (porosity, permeability and saturation). The model displays the filling of a partially saturated porous media with a new injected fluid showing the non-defined advance front and dispersion of fluids phenomena.

  14. Flow-through biological conversion of lignocellulosic biomass

    Science.gov (United States)

    Herring, Christopher D.; Liu, Chaogang; Bardsley, John

    2014-07-01

    The present invention is directed to a process for biologically converting carbohydrates from lignocellulosic biomass comprising the steps of: suspending lignocellulosic biomass in a flow-through reactor, passing a reaction solution into the reactor, wherein the solution is absorbed into the biomass substrate and at least a portion of the solution migrates through said biomass substrate to a liquid reservoir, recirculating the reaction solution in the liquid reservoir at least once to be absorbed into and migrate through the biomass substrate again. The biological converting of the may involve hydrolyzing cellulose, hemicellulose, or a combination thereof to form oligosaccharides, monomelic sugars, or a combination thereof; fermenting oligosaccharides, monomelic sugars, or a combination thereof to produce ethanol, or a combination thereof. The process can further comprise removing the reaction solution and processing the solution to separate the ethanol produced from non-fermented solids.

  15. Hydraulic Analogy for Isentropic Flow Through a Nozzle

    Directory of Open Access Journals (Sweden)

    J. S. Rao

    1983-04-01

    Full Text Available Modelling aspects of isentropic compressible gas flow using hydraulic analogy are discussed. Subsonic and supersonic flows through a typical nozzle are simulated as free surface incompressible water flow in an equivalent 2-D model on a water table. The results are first compared for the well known classical analogy in order to estimate experimental errors. Correction factors for pressure and temperature, to account for non-ideal compressible gas flow are presented and the results obtained on the water table are modified and compared with gas dynamic solution. Within the experimental errors, it is shown that the hydraulic analogy can be used as an effective tool for the study of two dimensional isentropic flows of gases.

  16. Turbulent combustion flow through variable cross section channel

    Energy Technology Data Exchange (ETDEWEB)

    Rogov, B.V.; Sokolova, I.A.

    1999-07-01

    The object of this study is to develop a new evolutionary numerical method for solving direct task of Laval nozzle, which provides non-iterative calculations of chemical reacting turbulent flows with detailed kinetic chemistry. The numerical scheme of fourth order along the normal coordinate and second order along the streamwise one is derived for calculation of difference-differential equations of the second order and the first order. Marching method provides the possibility of computing field flow in subsonic section of nozzle and near an expansion. Critical mass consumption is calculated with controlled accuracy. After critical cross section of nozzle a combined marching method with global iterations over axial pressure (only) makes it possible to overcome ill posedness of mixed supersonic flow and calculate the whole flow field near and after critical cross section. Numerical results are demonstrated on turbulent burning hydrogen-oxygen flow through Laval nozzle with curvature of wall K{sub w} = 0.5.

  17. Forest of octree DSMC simulations of flow through porous media

    Science.gov (United States)

    Jambunathan, Revathi; Levin, Deborah A.

    2016-11-01

    In this work, a linear space filling Morton Z-curve is employed to represent the three dimensional octree structure in an array. The advantages and implementation of this linearized octree for the Direct Simulation Monte Carlo (DSMC) method is demonstrated. A hybrid MPI-CUDA multi-GPU solver is used to model gas flow through two types of immersed bodies, a fractal-like spherical aggregate and a fibrous microstructure of a Morgan carbon Felt material. The permeability of this material is calculated by modeling the diffusion of argon gas and the calculated continuum permeability values match very well with other published data. Strong scaling has shown that the multi-GPU octree -based DSMC solve is 85% effcient with 16 GPUs for a large-scale problem.

  18. Flow-through biological conversion of lignocellulosic biomass

    Science.gov (United States)

    Herring, Christopher D.; Liu, Chaogang; Bardsley, John

    2014-07-01

    The present invention is directed to a process for biologically converting carbohydrates from lignocellulosic biomass comprising the steps of: suspending lignocellulosic biomass in a flow-through reactor, passing a reaction solution into the reactor, wherein the solution is absorbed into the biomass substrate and at least a portion of the solution migrates through said biomass substrate to a liquid reservoir, recirculating the reaction solution in the liquid reservoir at least once to be absorbed into and migrate through the biomass substrate again. The biological converting of the may involve hydrolyzing cellulose, hemicellulose, or a combination thereof to form oligosaccharides, monomelic sugars, or a combination thereof; fermenting oligosaccharides, monomelic sugars, or a combination thereof to produce ethanol, or a combination thereof. The process can further comprise removing the reaction solution and processing the solution to separate the ethanol produced from non-fermented solids.

  19. Fluid mechanics relevant to flow through pretreatment of cellulosic biomass.

    Science.gov (United States)

    Archambault-Léger, Véronique; Lynd, Lee R

    2014-04-01

    The present study investigates fluid mechanical properties of cellulosic feedstocks relevant to flow through (FT) pretreatment for biological conversion of cellulosic biomass. The results inform identifying conditions for which FT pretreatment can be implemented in a practical context. Measurements of pressure drop across packed beds, viscous compaction and water absorption are reported for milled and not milled sugarcane bagasse, switchgrass and poplar, and important factors impacting viscous flow are deduced. Using biomass knife-milled to pass through a 2mm sieve, the observed pressure drop was highest for bagasse, intermediate for switchgrass and lowest for poplar. The highest pressure drop was associated with the presence of more fine particles, greater viscous compaction and the degree of water absorption. Using bagasse without particle size reduction, the instability of the reactor during pretreatment above 140kg/m(3) sets an upper bound on the allowable concentration for continuous stable flow.

  20. FEWA: a Finite Element model of Water flow through Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Huff, D.D.

    1983-11-01

    This report documents the implementation and demonstration of a Finite Element model of Water flow through Aquifers (FEWA). The particular features of FEWA are its versatility and flexibility to deal with as many real-world problems as possible. Point as well as distributed sources/sinks are included to represent recharges/pumpings and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Source/sink strength over each element and node, hydraulic head at each Dirichlet boundary node, and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution method for the matrix equation approximating the partial differential equation of groundwater flow. FEWA also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. It is then demonstrated by two examples of how the model can be applied to heterogeneous and anisotropic aquifers with transient boundary conditions, time-dependent sources/sinks, and confining aquitards for a confined aquifer of variable thickness and for a free surface problem in an unconfined aquifer, respectively. 20 references, 25 figures, 8 tables.

  1. Resistance coefficient during ice slurry flow through pipe sudden constriction

    Directory of Open Access Journals (Sweden)

    Ł. Mika

    2010-07-01

    Full Text Available Due to the adverse environmental effects of some commonly-used refrigerants, efforts are still underway to find new cooling mediumsthat would be safer to the ozone layer and would not increase the greenhouse effect. Ice slurry as a new ecological coolant suits theprocesses requiring the preservation of constant and equal temperature in the cooling process of the full section of the cooled solid. Thanks to that, ice slurry can find a wide potential application in such branches of industry, as heat treatment, materials engineering, or foundry. In this paper, flow systems which are commonly used in fittings elements such as diameter’s reductions in ice slurry pipelines, are experimentally investigated. In the study reported in this paper, the consideration was given to the specific features of the slurry flow in which the flow qualities depend mainly on the volume fraction of solid particles. The results of the experimental studies on the flow resistance, presented herein, enabled to determine the resistance coefficient during the ice slurry flow through the pipe sudden constriction. The volume fraction of solid particles in the slurry ranged from 5 to 30%. The recommended and non-recommended range of the Reynolds number for the ice slurry flow through the pipe sudden constriction were presented in this paper. The experimental studies were conducted on a few variants of the most common reductions of copper pipes. Further studies on the determination of the resistance coefficient in the remaining fittings elements of the pipeline were recommended in the paper as well as the further theoretical studies intended to determine the theoretical relations to calculate the resistance coefficient in all the fittings elements in the pipeline (on the basis of the experimental studies and to elaborate the calculation pattern of the entire ice slurry system.

  2. Unsteady flow through in-vitro models of the glottis

    Science.gov (United States)

    Hofmans, G. C. J.; Groot, G.; Ranucci, M.; Graziani, G.; Hirschberg, A.

    2003-03-01

    The unsteady two-dimensional flow through fixed rigid in vitro models of the glottis is studied in some detail to validate a more accurate model based on the prediction of boundary-layer separation. The study is restricted to the flow phenomena occurring within the glottis and does not include effects of vocal-fold movement on the flow. Pressure measurements have been carried out for a transient flow through a rigid scale model of the glottis. The rigid model with a fixed geometry driven by an unsteady pressure is used in order to achieve a high accuracy in the specification of the geometry of the glottis. The experimental study is focused on flow phenomena as they might occur in the glottis, such as the asymmetry of the flow due to the Coanda effect and the transition to turbulent flow. It was found that both effects need a relatively long time to establish themselves and are therefore unlikely to occur during the production of normal voiced speech when the glottis closes completely during part of the oscillation cycle. It is shown that when the flow is still laminar and symmetric the prediction of the boundary-layer model and the measurement of the pressure drop from the throat of the glottis to the exit of the glottis agree within 40%. Results of the boundary-layer model are compared with a two-dimensional vortex-blob method for viscous flow. The difference between the results of the simpiflied boundary-layer model and the experimental results is explained by an additional pressure difference between the separation point and the far field within the jet downstream of the separation point. The influence of the movement of the vocal folds on our conclusions is still unclear.

  3. A Marine Aerosol Reference Tank system as a breaking wave analogue for the production of foam and sea-spray aerosols

    Directory of Open Access Journals (Sweden)

    M. D. Stokes

    2013-04-01

    Full Text Available In order to better understand the processes governing the production of marine aerosols a repeatable, controlled method for their generation is required. The Marine Aerosol Reference Tank (MART has been designed to closely approximate oceanic conditions by producing an evolving bubble plume and surface foam patch. The tank utilizes an intermittently plunging sheet of water and large volume tank reservoir to simulate turbulence, plume and foam formation, and the water flow is monitored volumetrically and acoustically to ensure the repeatability of conditions.

  4. Underground Storage Tanks - Storage Tank Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  5. Compressible air flow through a collapsing liquid cavity

    CERN Document Server

    Gordillo, Stephan Gekle \\and José Manuel

    2010-01-01

    We present a multiscale approach to simulate the impact of a solid object on a liquid surface: upon impact a thin liquid sheet is thrown upwards all around the rim of the impactor while in its wake a large surface cavity forms. Under the influence of hydrostatic pressure the cavity immediately starts to collapse and eventually closes in a single point from which a thin, needle-like jet is ejected. Existing numerical treatments of liquid impact either consider the surrounding air as an incompressible fluid or neglect air effects altogether. In contrast, our approach couples a boundary-integral method for the liquid with a Roe scheme for the gas domain and is thus able to handle the fully \\emph{compressible} gas stream that is pushed out of the collapsing impact cavity. Taking into account air compressibility is crucial, since, as we show in this work, the impact crater collapses so violently that the air flow through the cavity neck attains supersonic velocities already at cavity diameters larger than 1 mm. Ou...

  6. Experimental study of pedestrian flow through a T-junction

    CERN Document Server

    Zhang, Jun; Schadschneider, Andreas; Seyfried, Armin

    2012-01-01

    In this study, series of experiments under laboratory conditions were carried out to investigate pedestrian flow through a T-junction, i.e., two branches merging into the main stream. The whole duration of the experiments was recorded by video cameras and the trajectories of each pedestrian were extracted using the software Petrack from these videos. The Voronoi method is used to resolve the fine structure of the fundamental diagram and spatial dependence of the measured quantities from trajectories. In our study, only the data in the stationary state are used by analyzing the time series of density and velocity. The density, velocity and specific flow profiles are obtained by refining the size of the measurement area (here 10 cm \\times 10 cm are adopted). With such a high resolution, the spatial distribution of density, velocity and specific flow can be obtained separately and the regions with higher value can be observed intuitively. Finally, the fundamental diagrams of T-junction flow is compared in three ...

  7. Flow through flexible cylinders inspired by the endothelial glycocalyx

    Science.gov (United States)

    Cooper, Lauren; Fovargue, Daniel; Miller, Laura

    2009-11-01

    Inspired by the recent shift in hypertension research, we present a new computational model to better examine blood flow induced shear stress in the endothelial surface layer (ESL). The ESL is the luminal side barrier between blood and the endothelial cells that line the vessel wall and has been of interest due to its function as a mechanotransducer.footnotetextSquire, J. M., Chew, M., Nneji, G., Neal, C., Barry, J. & Michel, C. C., 2001. Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J. Struct. Bio. 136, 239-255. Further, it is believed that shear stress seen by the ESL, induced by blood flow, is converted to chemical responses such as blood pressure regulation. We utilize the Immersed Boundary method to simulate blood flow through a vessel and examine the shear stress at the ESL over different heights and flexibilities. We compare our results in the Reynolds number regime of a canine capillary with previous computational modelsfootnotetextWeinbaum, S., Tarbell, J., Damiano, E., 2000. The Structure and Function of the Endothelial Glycocalyx Layer. Pfl"ugers Arch. -- Eur. J. Physiol. 440, 653--666. and experimental results.

  8. Numerical analysis of extensional flow through the pharyngeal duct

    Science.gov (United States)

    Preciado-Méndez, M.; Salinas-Vázquez, M.; Vicente, W.; Brito-de la Fuente, E.; Ascanio, G.

    2017-01-01

    The flow through the pharynx from the glossopalatal junction (GPJ) to the upper esophageal sphincter (UES) has been numerically investigated with a non-Newtonian fluid obeying the power-law with similar rheological indices to a contrast medium used in videofluroscopy. For that purpose, a three-dimensional model of the transport of food bolus along the pharynx has been proposed using the immersed boundaries method, which allow representing the shape of the pharynx using Cartesian grids. The pharyngeal wall has been considered to be an elastic membrane. Flow fields in terms of the axial velocity, pressure, shear rate and strain rate were obtained. Results show that the highest velocity concentrates in the central stream as the fluid enters into the pharynx. In addition, as the flow quits the pharynx, a recirculation zone appears inside the cavity, resulting in low velocity zone, which increases with the coefficient of elasticity. A strong dependence on the coefficient of elasticity was observed on the pressure fields; so that as such a coefficient increases, the pressure in the pharyngeal wall will increase. It has been also observed that the bolus head travels faster than the bolus tail, which indicates that the bolus is not only subjected to shear but also to elongation. Results from this work can be further used for a rheological characterization (shear and extension) of oral nutritional supplements for patients suffering from swallowing disorders.

  9. Numerical Analysis of Flow through Shrouded Turbine Cascade

    Directory of Open Access Journals (Sweden)

    S. Thanigaiarasu

    2013-10-01

    Full Text Available The aim of the work is to estimate the secondary flow losses through the gap between the shrouded turbine rotor blades. Aerodynamic losses occurring in flow such as profile, secondary flow and leakage were analyzed. The numerical results of flow over a single shrouded turbine rotor blade, cascade analysis of two shrouded turbine rotor blade with zero gap and leakage analysis through the 2mm z-gap of the shrouded turbine rotor blade are presented. First, a single shrouded turbine rotor blade was analyzed and the pressure coefficient on the surface of the blade at midsection of blade is taken as reference. For this, the geometry of a shrouded HP turbine rotor is chosen. GAMBIT software is used for designing and analyzed using FLUENT software. Secondly cascade analysis was also carried out using the same procedure and the pressure coefficient is compared with the reference pressure coefficient profile and found that changes in the pressure coefficient on the blade surface. Finally the two shrouded turbine rotor blades with 2mm z-gap between the shrouds are created and analyzed using the same procedure and the pressure coefficient was compared with the reference pressure coefficient profile and found that decrease in the pressure coefficient on the blade surface near the shroud is because of the leakage of flow through the z-gap between the shrouds. The leakage lessens the end wall boundary layer separation near shroud of the turbine rotor blade with 2mm z-gap.

  10. Numerical calculation of periodic viscous flow through a circular hole

    Science.gov (United States)

    Notomi, T.; Namba, M.

    1992-08-01

    Periodic viscous flows through a circular hole driven by fluctuating far field pressure are studied numerically. The time dependent incompressible Navier-Stokes equations formulated with orthogonal curvilinear co-ordinates are solved by using a finite difference method. The flow patterns and acoustic impedance of the circular hole are investigated for various combinations of the pressure/viscous force ratio, frequency and hole edge thickness. Numerical calculations revealed some interesting facts, as follows. First, the flow patterns are classified into three regimes by fluctuating pressure amplitude and frequency: flows with no laminar separation (high-frequency-low-pressure range), flows with attached separation bubble (intermediate frequency and pressure range) and flows with detached vortex rings (low-frequency-high-pressure range). Second, the flow resistance of the circular hole is proportional to the acoustic particle velocity but independent of the viscosity of the fluid, and almost invariant with the frequency for the low-frequency-high-pressure range. On the other hand, for the high-frequency-low-pressure range, the flow resistance is independent of the periodic pressure amplitude and varies directly with the 2/3 power of the frequency. Finally, the predicted circular hole impedance is in good agreement with the experimental data for the orifice impedance of Ingard and Ising.

  11. Subcooled choked flow through steam generator tube cracks

    Science.gov (United States)

    Wolf, Brian J.

    The work presented here describes an experimental investigation into the choked flow of initially subcooled water through simulated steam generator tube cracks at pressures up to 6.9 MPa. The study of such flow is relevant to the prediction of leak flow rates from a nuclear reactor primary side to secondary side through cracks in steam generator tubes. An experimental approach to measuring such flow is de- scribed. Experimental results from data found in literature as well as the data collected in this work are compared with predictions from presented models as well as predictions from the thermal-hydraulic system code RELAP5. It is found that the homogeneous equilibrium model underpredicts choked flow rates of subcooled water through slits and artificial steam generator tube cracks. Additional modeling of thermal non-equilibrium improves the predictibility of choking mass flux for homogeneous models, however they fail to account for the characteristics of the two-phase pressure drop. An integral modeling approach is enhanced using a correlation developed from the data herein. Also, an assessment of the thermal-hydraulics code RELAP5 is performed and it’s applicability to predict choking flow rates through steam generator tube cracks is addressed. This assessment determined that the Henry & Fauske model, as coded in RELAP5, is best suited for modeling choked flow through steam generator tube cracks. Finally, an approach to applying choked flow data that is not at the same thermo-dynamic conditions as a prototype is developed.

  12. Heat flow through the sea bottom around the Yucatan Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Khutorskoy, M.D.; Kononov, V.I.; Polyak, B.G. (Geological Inst., Moscow (USSR)); Fernandez, R. (Centro de Investigacion Cientifica y Educacion Superior de Ensenada, Baja California (Mexico)); Matveev, V.G.; Rot, A.A. (Polytechnical Inst., Kuybyshev (USSR))

    1990-02-10

    Heat flow studies were conducted in January-February 1987, off the Atlantic Coast of Mexico on board the R/V Akademik Nikolai Strakhov. Two areas were surveyed, one transecting the Salt Dome Province and the Campeche Canyon, in the Gulf of Mexico, and the other, on the eastern flank of the Yucatan Peninsula. Conductive heat flow through the bottom sediments was determined as the product of vertical temperature gradient and in situ thermal conductivity, measured with a thermal probe using a multithermistor array and real-time processing capabilities. Forward two-dimensional modeling allows one to estimate heat flow variations at both sites from local disturbances and to obtain average heat flow values of 51 mW/m{sup 2} for the transect within the Gulf of Mexico and 38 and 69 mW/m{sup 2} for two basins within the Yucatan area. Sea bottom relief has a predominant effect over other environmental factors in the scatter of heat flow determination in the Gulf of Mexico.

  13. Computational Simulation of Blood Flow through Bileaflet Heart Valve Prostheses

    Science.gov (United States)

    Healy, Timothy; Sotiropoulos, Fotis; Yoganathan, Ajit

    2001-11-01

    Non-physiologic flow patterns and levels of turbulence caused by contemporary bileaflet mechanical heart valve (MHV) designs are believed to be partially responsible for thromboembolic complications caused by these valves. Presently, computer-based flow assessment is not employed as a design tool. Rather, CFD is used to understand flow dynamics under highly-specialized circumstances after a design has been selected and tested experimentally. The absence of CFD from the design-screening process is most likely due to undeveloped tools specific to the heart valve problem. CFD tools for assessing MHV flow performance should be efficient at simulating the fluid-structure interaction and the resulting leaflet motion. As the first stage in the development of MHV simulation tools, a high-accuracy Chimera solver was developed and tested for laminar flow through two bileaflet MHV designs. Steady and time-dependent simulations were performed providing the highest resolution simulations of three-dimensional MHV flow fields to date. Flow structures and time-dependent flow phenomena were investigated and interpreted in the context of the clinical performance of each design studied.

  14. Investigation of the compressible flow through the tip-section turbine blade cascade with supersonic inlet

    Science.gov (United States)

    Luxa, Martin; Příhoda, Jaromír; Šimurda, David; Straka, Petr; Synáč, Jaroslav

    2016-04-01

    The contribution deals with the experimental and numerical investigation of compressible flow through the tip-section turbine blade cascade with the blade 54″ long. Experimental investigations by means of optical (interferometry and schlieren method) and pneumatic measurements provide more information about the behaviour and nature of basic phenomena occurring in the profile cascade flow field. The numerical simulation was carried out by means of the EARSM turbulence model according to Hellsten [5] completed by the bypass transition model with the algebraic equation for the intermittency coefficient proposed by Straka and Příhoda [6] and implemented into the in-house numerical code. The investigation was focused particularly on the effect of shock waves on the shear layer development including the laminar/turbulent transition. Interactions of shock waves with shear layers on both sides of the blade result usually in the transition in attached and/ or separated flow and so to the considerable impact to the flow structure and energy losses in the blade cascade.

  15. A Mathematical Study on Three Layered Oscillatory Blood Flow Through Stenosed Arteries

    Institute of Scientific and Technical Information of China (English)

    Dharmendra Tripathi

    2012-01-01

    A mathematical model is constructed to examine the characteristics of three layered blood flow through the oscillatory cylindrical tube (stenosed arteries).The proposed model basically consists three layers of blood (viscous fluids with different viscosities) named as core layer (red blood cells),intermediate layer (platelets/white blood cells) and peripheral layer (plasma).The analysis was restricted to propagation of small-amplitude harmonic waves,generated due to blood flow whose wave length is larger compared to the radius of the arterial segment.The impacts of viscosity of fluid in peripheral layer and intermediate layer on the interfaces,average flow rate,mechanical efficiency,trapping and reflux are discussed with the help of numerical and computational results.This model is the generalized form of the preceding models.On the basis of present discussion,it is found that the size of intermediate and peripheral layers reduces in expanded region and enhances in contracted region with the increasing viscosity of fluid in peripheral layer,whereas,opposite effect is observed for viscosity of fluid in intermediate layer.Final conclusion is that the average flow rate and mechanical efficiency increase with the increasing viscosity of fluid in both layers,however,the effects of the viscosity of fluid in both layers on trapping and reflux are opposite to each other.

  16. Water Tank with Capillary Air/Liquid Separation

    Science.gov (United States)

    Ungar, Eugene K.; Smith, Frederick; Edeen, Gregg; Almlie, Jay C.

    2010-01-01

    A bladderless water tank (see figure) has been developed that contains capillary devices that allow it to be filled and emptied, as needed, in microgravity. When filled with water, the tank shields human occupants of a spacecraft against cosmic radiation. A membrane that is permeable by air but is hydrophobic (neither wettable nor permeable by liquid water) covers one inside surface of the tank. Grooves between the surface and the membrane allow air to flow through vent holes in the surface as the tank is filled or drained. A margin of wettable surface surrounds the edges of the membrane, and all the other inside tank surfaces are also wettable. A fill/drain port is located in one corner of the tank and is covered with a hydrophilic membrane. As filling begins, water runs from the hydrophilic membrane into the corner fillets of the tank walls. Continued filling in the absence of gravity will result in a single contiguous air bubble that will be vented through the hydrophobic membrane. The bubble will be reduced in size until it becomes spherical and smaller than the tank thickness. Draining the tank reverses the process. Air is introduced through the hydrophobic membrane, and liquid continuity is maintained with the fill/drain port through the corner fillets. Even after the tank is emptied, as long as the suction pressure on the hydrophilic membrane does not exceed its bubble point, no air will be drawn into the liquid line.

  17. Feed tank transfer requirements

    Energy Technology Data Exchange (ETDEWEB)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

  18. Current challenges in quantifying preferential flow through the vadose zone

    Science.gov (United States)

    Koestel, John; Larsbo, Mats; Jarvis, Nick

    2017-04-01

    In this presentation, we give an overview of current challenges in quantifying preferential flow through the vadose zone. A review of the literature suggests that current generation models do not fully reflect the present state of process understanding and empirical knowledge of preferential flow. We believe that the development of improved models will be stimulated by the increasingly widespread application of novel imaging technologies as well as future advances in computational power and numerical techniques. One of the main challenges in this respect is to bridge the large gap between the scales at which preferential flow occurs (pore to Darcy scales) and the scale of interest for management (fields, catchments, regions). Studies at the pore scale are being supported by the development of 3-D non-invasive imaging and numerical simulation techniques. These studies are leading to a better understanding of how macropore network topology and initial/boundary conditions control key state variables like matric potential and thus the strength of preferential flow. Extrapolation of this knowledge to larger scales would require support from theoretical frameworks such as key concepts from percolation and network theory, since we lack measurement technologies to quantify macropore networks at these large scales. Linked hydro-geophysical measurement techniques that produce highly spatially and temporally resolved data enable investigation of the larger-scale heterogeneities that can generate preferential flow patterns at pedon, hillslope and field scales. At larger regional and global scales, improved methods of data-mining and analyses of large datasets (machine learning) may help in parameterizing models as well as lead to new insights into the relationships between soil susceptibility to preferential flow and site attributes (climate, land uses, soil types).

  19. Large eddy simulation of the flow through a swirl generator

    Energy Technology Data Exchange (ETDEWEB)

    Conway, Stephen

    1998-12-01

    The advances made in computer technology over recent years have led to a great increase in the engineering problems that can be studied using CFD. The computation of flows over and through complex geometries at relatively high Reynolds numbers is becoming more common using the Large Eddy Simulation (LES) technique. Direct numerical simulations of such flows is still beyond the capacity of todays fastest supercomputers, requiring excessive computational times and memory. In addition, traditional Reynolds Averaged Navier Stokes (RANS) methods are known to have limited applicability in a wide range of engineering flow situations. In this thesis LES has been used to simulate the flow through a cascade of guidance vanes, more commonly known as a swirl generator, positioned at the inlet to a gas turbine combustion chamber. This flow case is of interest because of the complex flow phenomena which occur within the swirl generator, which include compressibility effects, different types of flow instabilities, transition, laminar and turbulent separation and near wall turbulence. It is also of interest because it fits very well into the range of engineering applications that can be studied using LES. Two computational grids with different resolutions and two subgrid scale stress models were used in the study. The effects of separation and transition are investigated. A vortex shedding frequency from the guidance vanes is determined which is seen to be dependent on the angle of incident air flow. Interaction between the movement of the separation region and the shedding frequency is also noted. Such vortex shedding phenomena can directly affect the quality of fuel and air mixing within the combustion chamber and can in some cases induce vibrations in the gas turbine structure. Comparisons between the results obtained using different grid resolutions with an implicit and a dynamic divergence (DDM) subgrid scale stress models are also made 32 refs, 35 figs, 2 tabs

  20. Experimental studies on the flow through soft tubes and channels

    Indian Academy of Sciences (India)

    V Kumaran

    2015-05-01

    Experiments conducted in channels/tubes with height/diameter less than 1 mm with soft walls made of polymer gels show that the transition Reynolds number could be significantly lower than the corresponding value of 1200 for a rigid channel or 2100 for a rigid tube. Experiments conducted with very viscous fluids show that there could be an instability even at zero Reynolds number provided the surface is sufficiently soft. Linear stability studies show that the transition Reynolds number is linearly proportional to the wall shear modulus in the low Reynolds number limit, and it increases as the 1/2 and 3/4 power of the shear modulus for the ‘inviscid’ and ‘wall mode’ instabilities at high Reynolds number. While the inviscid instability is similar to that in the flow in a rigid channel, the mechanisms of the viscous and wall mode instabilities are qualitatively different. These involve the transfer of energy from the mean flow to the fluctuations due to the shear work done at the interface. The experimental results for the viscous instability mechanism are in quantitative agreement with theoretical predictions. At high Reynolds number, the instability mechanism has characteristics similar to the wall mode instability. The experimental transition Reynolds number is smaller, by a factor of about 10, than the theoretical prediction for the parabolic flow through rigid tubes and channels. However, if the modification in the tube shape due to the pressure gradient, and the consequent modification in the velocity profile and pressure gradient, are incorporated, there is quantitative agreement between theoretical predictions and experimental results. The transition has important practical consequences, since there is a significant enhancement of mixing after transition.

  1. Recent trends in energy flows through the Arctic climate system

    Science.gov (United States)

    Mayer, Michael; Haimberger, Leo

    2016-04-01

    While Arctic climate change can be diagnosed in many parameters, a comprehensive assessment of long-term changes and low frequency variability in the coupled Arctic energy budget still remains challenging due to the complex physical processes involved and the lack of observations. Here we draw on strongly improved observational capabilities of the past 15 years and employ observed radiative fluxes from CERES along with state-of-the-art atmospheric as well as coupled ocean-ice reanalyses to explore recent changes in energy flows through the Arctic climate system. Various estimates of ice volume and ocean heat content trends imply that the energy imbalance of the Arctic climate system was >1 Wm-2 during the 2000-2015 period, where most of the extra heat warmed the ocean and a comparatively small fraction was used to melt sea ice. The energy imbalance was partly fed by enhanced oceanic heat transports into the Arctic, especially in the mid 2000s. Seasonal trends of net radiation show a very clear signal of the ice-albedo feedback. Stronger radiative energy input during summer means increased seasonal oceanic heat uptake and accelerated sea ice melt. In return, lower minimum sea ice extent and higher SSTs lead to enhanced heat release from the ocean during fall season. These results are consistent with modeling studies finding an enhancement of the annual cycle of surface energy exchanges in a warming Arctic. Moreover, stronger heat fluxes from the ocean to the atmosphere in fall tend to warm the arctic boundary layer and reduce meridional temperature gradients, thereby reducing atmospheric energy transports into the polar cap. Although the observed results are a robust finding, extended high-quality datasets are needed to reliably separate trends from low frequency variability.

  2. Numerical Simulation of Unsteady Blood Flow through Capillary Networks.

    Science.gov (United States)

    Davis, J M; Pozrikidis, C

    2011-08-01

    A numerical method is implemented for computing unsteady blood flow through a branching capillary network. The evolution of the discharge hematocrit along each capillary segment is computed by integrating in time a one-dimensional convection equation using a finite-difference method. The convection velocity is determined by the local and instantaneous effective capillary blood viscosity, while the tube to discharge hematocrit ratio is deduced from available correlations. Boundary conditions for the discharge hematocrit at divergent bifurcations arise from the partitioning law proposed by Klitzman and Johnson involving a dimensionless exponent, q≥1. When q=1, the cells are partitioned in proportion to the flow rate; as q tends to infinity, the cells are channeled into the branch with the highest flow rate. Simulations are performed for a tree-like, perfectly symmetric or randomly perturbed capillary network with m generations. When the tree involves more than a few generations, a supercritical Hopf bifurcation occurs at a critical value of q, yielding spontaneous self-sustained oscillations in the absence of external forcing. A phase diagram in the m-q plane is presented to establish conditions for unsteady flow, and the effect of various geometrical and physical parameters is examined. For a given network tree order, m, oscillations can be induced for a sufficiently high value of q by increasing the apparent intrinsic viscosity, decreasing the ratio of the vessel diameter from one generation to the next, or by decreasing the diameter of the terminal vessels. With other parameters fixed, oscillations are inhibited by increasing m. The results of the continuum model are in excellent agreement with the predictions of a discrete model where the motion of individual cells is followed from inlet to outlet.

  3. Modeling of Unsteady Flow through the Canals by Semiexact Method

    Directory of Open Access Journals (Sweden)

    Farshad Ehsani

    2014-01-01

    Full Text Available The study of free-surface and pressurized water flows in channels has many interesting application, one of the most important being the modeling of the phenomena in the area of natural water systems (rivers, estuaries as well as in that of man-made systems (canals, pipes. For the development of major river engineering projects, such as flood prevention and flood control, there is an essential need to have an instrument that be able to model and predict the consequences of any possible phenomenon on the environment and in particular the new hydraulic characteristics of the system. The basic equations expressing hydraulic principles were formulated in the 19th century by Barre de Saint Venant and Valentin Joseph Boussinesq. The original hydraulic model of the Saint Venant equations is written in the form of a system of two partial differential equations and it is derived under the assumption that the flow is one-dimensional, the cross-sectional velocity is uniform, the streamline curvature is small and the pressure distribution is hydrostatic. The St. Venant equations must be solved with continuity equation at the same time. Until now no analytical solution for Saint Venant equations is presented. In this paper the Saint Venant equations and continuity equation are solved with homotopy perturbation method (HPM and comparison by explicit forward finite difference method (FDM. For decreasing the present error between HPM and FDM, the st.venant equations and continuity equation are solved by HAM. The homotopy analysis method (HAM contains the auxiliary parameter ħ that allows us to adjust and control the convergence region of solution series. The study has highlighted the efficiency and capability of HAM in solving Saint Venant equations and modeling of unsteady flow through the rectangular canal that is the goal of this paper and other kinds of canals.

  4. FY2016 ILAW Glass Corrosion Testing with the Single-Pass Flow-Through Method

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Asmussen, Robert M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parruzot, Benjamin PG [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cordova, Elsa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leavy, Ian I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephenson, John R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McElroy, Erin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-21

    The inventory of immobilized low-activity waste (ILAW) produced at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will be disposed of at the near-surface, on-site Integrated Disposal Facility (IDF). When groundwater comes into contact with the waste form, the glass will corrode and radionuclides will be released into the near-field environment. Because the release of the radionuclides is dependent on the dissolution rate of the glass, it is important that the performance assessment (PA) model accounts for the dissolution rate of the glass as a function of various chemical conditions. To accomplish this, an IDF PA model based on Transition State Theory (TST) can be employed. The model is able to account for changes in temperature, exposed surface area, and pH of the contacting solution as well as the effect of silicon concentrations in solution, specifically the activity of orthosilicic acid (H4SiO4), whose concentration is directly linked to the glass dissolution rate. In addition, the IDF PA model accounts for the alkali-ion exchange process as sodium is leached from the glass and into solution. The effect of temperature, pH, H4SiO4 activity, and the rate of ion-exchange can be parameterized and implemented directly into the PA rate law model. The rate law parameters are derived from laboratory tests with the single-pass flow-through (SPFT) method. To date, rate law parameters have been determined for seven ILAW glass compositions, thus additional rate law parameters on a wider range of compositions will supplement the existing body of data for PA maintenance activities. The data provided in this report can be used by ILAW glass scientists to further the understanding of ILAW glass behavior, by IDF PA modelers to use the rate law parameters in PA modeling efforts, and by Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program.

  5. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each...

  6. Influence of Reynolds number on coalescence of droplets with particle in flow through a tube at low Reynolds number

    Science.gov (United States)

    Muraoka, Masahiro; Yatagawa, Yuta; Kumagai, Yuki

    2016-07-01

    The coalescence of droplets in flow through a tube at low Reynolds number is potentially useful for different purposes including the handling of fluids, control of chemical reaction, and in drug delivery systems. The phenomenon is also the basis for analyzing the flow of multiphase fluids through porous media such as in enhanced oil recovery and the breaking of emulsions in porous coalescers. With regard to examples of studies on the creeping motion of droplets in a flow through a tube, Hetsroni G. et al.[1] theoretically examined the motion of a spherical droplet or bubble with small d/D, where d is the undeformed diameter of the droplet or bubble, and D is the tube diameter. Higdon J.J.L. and Muldowney G.P. [2] numerically obtained the resistance functions for a spherical particle, droplet, and bubble. Olbricht, W.L. and Kung D.M.[3] and Aul R.W. and Olbricht, W.L.[4] mainly investigated the coalescence time of droplets. Aul R.W. and Olbricht W.L. proposed a semi-theoretical formula of the coalescence time. Based on the formula by them, Muraoka, M. et al.[5] proposed other semi-theoretical formulas of the coalescence time in terms of the resistance experienced by the liquid droplet in creeping flow through a tube. The latter formulas take the eccentricity of the following droplets into consideration. In the present study, a glass tube of inner diameter 2.0mm, outer diameter 7.0mm, and length 1500 mm was used as the test tube. Silicon oil with a kinematic viscosity of 3000cSt was employed as the test fluid of the droplet. A mixture of glycerol and pure water was used as the surrounding fluid of the creeping flow through a tube. A large volumetric syringe pump was used to maintain steady flow through the tube at a designated average velocity. The test tube was immersed in temperature-controlled water contained in a tank to maintain constant temperature of the system. The droplets were injected into the test tube. The behaviors of the droplets were monitored by a

  7. AX Tank Farm tank removal study

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    1999-02-24

    This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  8. Dual diaphragm tank with telltale drain

    Science.gov (United States)

    Tuthill, Wallace C., Jr. (Inventor)

    1991-01-01

    A fluid storage and expulsion system comprising a tank with an internal flexible diaphragm assembly of dual diaphragms in back-to-back relationship, at least one of which is provided with a patterned surface having fine edges such that the diaphragms are in contact along said edges without mating contact of surface areas to thereby form fluid channels which extend outwardly to the peripheral edges of the diaphragms is described. The interior wall of the tank at the juncture of tank sections is formed with a circumferential annular recess comprising an outer annular recess portion which forms a fluid collection chamber and an inner annular recess portion which accommodates the peripheral edge portions of the diaphragms and a sealing ring in clamped sealing relation therebetween. The sealing ring is perforated with radially extending passages which allow any fluid leaking or diffusing past a diaphragm to flow through the fluid channels between the diaphragms to the fluid collection chamber. Ports connectable to pressure fittings are provided in the tank sections for admission of fluids to opposite sides of the diaphragm assembly. A drain passage through the tank wall to the fluid collection chamber permits detection, analysis and removal of fluids in the collection chamber.

  9. A Study of the Gas Flow through a LNG Safety Valve

    Institute of Scientific and Technical Information of China (English)

    Heuy-Dong Kim; Jun-Hee Lee; Kyung-Am Park; Toshiaki Setoguchi; Shigeru Matsuo

    2006-01-01

    A safety valve functions to control an upper limit of pressure inside the LNG line of transportation.If the pressure inside the safety valve nozzle exceeds a pre-determined value on the valve sheet which plugs the nozzle,an excess of LNG discharges through the gap between the nozzle exit and valve sheet.In this situation,the forces acting on the valve sheet are gasdynamic forces generated by the discharge of LNG and mechanical forces supported by the spring behind the valve sheet.The flow through the gap is very complicated,involving vortices,flow separation,and shock waves.These affect adversely on the system accompanying with noise and vibration.The present study aims at understanding the flow physics of safety valve.A computational work using the twodimensional,axisymmetric,compressible Navier-Stokes equations is carried out to simulate the gas flow between the nozzle exit and valve sheet,and compared with the theoretical results.It has been found that there exists a distance between nozzle exit and valve sheet in which the thrust coefficient at the valve sheet increases abruptly.

  10. A flow-through chromatography process for influenza A and B virus purification.

    Science.gov (United States)

    Weigel, Thomas; Solomaier, Thomas; Peuker, Alessa; Pathapati, Trinath; Wolff, Michael W; Reichl, Udo

    2014-10-01

    Vaccination is still the most efficient measure to protect against influenza virus infections. Besides the seasonal wave of influenza, pandemic outbreaks of bird or swine flu represent a high threat to human population. With the establishment of cell culture-based processes, there is a growing demand for robust, economic and efficient downstream processes for influenza virus purification. This study focused on the development of an economic flow-through chromatographic process avoiding virus strain sensitive capture steps. Therefore, a three-step process consisting of anion exchange chromatography (AEC), Benzonase(®) treatment, and size exclusion chromatography with a ligand-activated core (LCC) was established, and tested for purification of two influenza A virus strains and one influenza B virus strain. The process resulted in high virus yields (≥68%) with protein contamination levels fulfilling requirements of the European Pharmacopeia for production of influenza vaccines for human use. DNA was depleted by ≥98.7% for all strains. The measured DNA concentrations per dose were close to the required limits of 10ng DNA per dose set by the European Pharmacopeia. In addition, the added Benzonase(®) could be successfully removed from the product fraction. Overall, the presented downstream process could potentially represent a simple, robust and economic platform technology for production of cell culture-derived influenza vaccines. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A modelling approach to establish experimental parameters of a flow-through titration

    NARCIS (Netherlands)

    Reijnders, H.F.R.; Staden, J.J. van; Eelderink, G.H.B; Griepink, B.

    1980-01-01

    A flow-through titrimeter with optical detection and the flow-through titration of sulphate have been studied by using control engineering methods. Qualitative chemical descriptions and systems analysis yield a model covering different precipitation rates of barium sulphate. The validity of the mode

  12. Tank 241-BX-106: Tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.D.

    1995-03-06

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, and WHC 222-S Laboratory. Scope of this plan is to provide guidance for sampling and analysis of samples for tank 241-BX-106. (Waste from this tank shall be transferred to a double-shell tank.)

  13. Experimental investigation of flow through planar double divergent nozzles

    Science.gov (United States)

    Arora, Rajat; Vaidyanathan, Aravind

    2015-07-01

    Dual bell nozzle is one of the feasible and cost effective techniques for altitude adaptation. Planar double divergent nozzle with a rectangular cross section was designed for two different NPR's to simulate and investigate the flow regimes similar to those inside the dual bell nozzle. Measurements involved flow visualization using Schlieren technique and wall static pressure measurements. The flow transition between the two nozzles at the respective inflection points and the formation of recirculation region due to flow separation was analyzed in detail. Cold flow tests were performed on the double divergent nozzle in the over-expanded conditions to study the shock wave characteristics. The results obtained from the two independent double divergent nozzles were compared with those obtained from a single divergent nozzle of the same area ratio. From the experiments it was observed that inflection angle played a key role in defining the type of shock structures existing inside the double divergent nozzles.

  14. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked...

  15. AX Tank Farm tank removal study

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    1998-10-14

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  16. AX Tank Farm tank removal study

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    1998-10-14

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  17. A Study of the Gas Flow through Air Jet Loom

    Institute of Scientific and Technical Information of China (English)

    Heuy-Dong Kim; Chae-Min Lim; Ho-Joon Lee; Doo-Hwan Chun

    2007-01-01

    Air jet loom, as one of the shuttleless looms, transports a yarn into warps using viscosity and kinetic energy of an air jet. Performance of this picking system depends on the ability of instantaneous inhalation/exhaust, configuration of nozzle, operation characteristics of a check valve, etc. In the recent past, many studies have been reported on the air jet discharged from a nozzle exit, but studies for understanding the flow field characteristics associated with shear layer and shock wave/boundary layer interaction in the nozzle were not conducted enough. In this paper, a computational study was performed to explain the flow field in the air jet nozzle with an acceleration tube and validated with previous experimental data available. The results obtained from the computational study show that, in the supersonic flow regime, the flow field depends significantly on the length of acceleration tube. As nozzle pressure ratio increases, drag force acting on the string also increases. For a longer acceleration tube, the total pressure loss is large, owing to the frictional loss.

  18. HANFORD TANK CLEANUP UPDATE

    Energy Technology Data Exchange (ETDEWEB)

    BERRIOCHOA MV

    2011-04-07

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  19. Hanstholm phase 2B. Offshore wave energy test 1994 - 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The wave power converter consists of a float 2.5 meter in diameter, connected by a rope to a seabed-mounted piston pump, installed on 25 meter deep water 2,5 km offshore Hanstholm, Denmark. The converter is designed to absorb an average maximum power of 1 kW. Measured data in real sea conditions are compared to results based on computer simulations and previous tank testing. Losses caused by rope elasticity and hysteresis, friction in the pump and back flow through the valves are assessed. The economic perspectives of a large wave power plant are presented, based on a revised prototype incorporating the results and experience gained during the test period. The wave energy conversion test `Hanstholm phase 2B` has showed, that it it technically possible to exploit the offshore wave energy resource. This source of energy could become attractive for commercial enterprise. The wave power converter demonstrated a reliable performance over a period of nine months. It produced energy under all wave conditions and survived storm waves of 9,6 m. A 300 MW wave power plant in the Danish part of the North sea is estimated to produce electricity at a cost between 2,1 - 2,4 DKK/kWh. The electrical transmission to shore contribute to approximately 20% of the cost. New data predict a potential of 23 kW per meter wave front. The energy plan Energy 21 proposed by the Danish Department of Energy, includes a scenario incorporating wave energy in the energy system year 2030. A strategy for the development of wave energy, has been proposed as part of the project OWEC-1 supported by the European Joule R and D programme. A proposal for future Danish initiatives to develop second generation point absorber systems is outlined. (ARW) 29 refs.

  20. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many t...

  1. Global warming: Design of a flow-through shallow lake mesocosm climate experiment

    DEFF Research Database (Denmark)

    2005-01-01

    design details, operating characteristics, and background information on a currently operating experimental flow-through mesocosm system that allows investigation of the interactions between simulated climate warming and eutrophication and their impacts on biological structure and ecosystem processes...

  2. Global warming: Design of a flow-through shallow lake mesocosm climate experiment

    DEFF Research Database (Denmark)

    2005-01-01

    design details, operating characteristics, and background information on a currently operating experimental flow-through mesocosm system that allows investigation of the interactions between simulated climate warming and eutrophication and their impacts on biological structure and ecosystem processes...

  3. Dynamics of electrochemical flows 2 Electrochemical flows-through porous electrode

    CERN Document Server

    Xu, Chengjun

    2013-01-01

    The electrolyte (comprising of solute ions and solvents) flow-through the porous media is frequently encountered in nature or in many engineering applications, such as the electrochemical systems, manufacturing of composites, geothermal engineering, soil pollution. In this study, we provide a new general theory for the electrochemical flows-through porous media. We use static method and set up two representative elementary volumes (REVs). One is the macroscopic REV of the mixture of the porous media and the electrolyte, while the other is the microscopic REV in the electrolyte fluid. The establishment of two REVs enables us to investigate the details of transports of mass, heat, electric flied, or momentum in the process of the electrochemical flows-through porous electrode. In this work, the macroscopic governing equations are derived from the conservation laws in the macroscopic REV to describe the electrochemical flows-through porous media. At first, we define the porosity by the volume and surface and div...

  4. Theoretical comparison between solar combisystems based on bikini tanks and tank-in-tank solar combisystems

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon; Bales, Chris

    2008-01-01

    Theoretical investigations have shown that solar combisystems based on bikini tanks for low energy houses perform better than solar domestic hot water systems based on mantle tanks. Tank-in-tank solar combisystems are also attractive from a thermal performance point of view. In this paper......, theoretical comparisons between solar combisystems based on bikini tanks and tank-in-tank solar combisystems are presented....

  5. Tank characterization report: Tank 241-C-109

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.; Borshiem, G.L.; Jensen, L.

    1993-09-01

    Single-shell tank 241-C-109 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in September 1992. Analyses of materials obtained from tank 241-C-109 were conducted to support the resolution of the ferrocyanide unreviewed safety question (USQ) and to support Hanford Federal Facility Agreement and consent Order (Tri- Party Agreement) Milestone M-10-00. This report describes this analysis.

  6. Preheating Cold Gas Thruster Flow Through a Thermal Energy Storage Conversion System

    Science.gov (United States)

    2013-01-01

    Journal Article 3. DATES COVERED (From - To) January 2013- October 2013 4. TITLE AND SUBTITLE Preheating Cold Gas Thruster Flow Through a Thermal Energy... Gas Thruster Flow through a Thermal Energy Storage Conversion System Michael R. Reid1 United States Air Force, Colorado Springs, CO, 80840 David B...specific impulse relative to a cold gas flow. Electric propulsion systems, the primary competitor to solar thermal propulsion systems, rely on the rather

  7. Critical flow and pressure ratio data for LOX flowing through nozzles

    Science.gov (United States)

    Hendricks, R. C.; Simoneau, R. J.; Barrows, R. F.

    1975-01-01

    LOX and LN2 data for two-phase critical flow through nozzles have been acquired with precision control. The principal measured parameters were inlet conditions, critical flow rate and critical flow pressure ratio. The data conclusively demonstrate that the principle of corresponding states can be applied to two-phase choked flow through nozzles. These data also demonstrate that the proper normalizing parameters have been developed and current theories can provide an adequate means for extrapolating to other fluids.

  8. Tank evaluation system shielded annular tank application

    Energy Technology Data Exchange (ETDEWEB)

    Freier, D.A.

    1988-10-04

    TEST (Tank Evaluation SysTem) is a research project utilizing neutron interrogation techniques to analyze the content of nuclear poisons and moderators in tank shielding. TEST experiments were performed on an experimental SAT (Shielded Annular Tank) at the Rocky Flats Plant. The purpose of these experiments was threefold: (1) to assess TEST application to SATs, (2) to determine if Nuclear Safety inspection criteria could be met, and (3) to perform a preliminary calibration of TEST for SATs. Several experiments were performed, including measurements of 11 tank shielding configurations, source-simulated holdup experiments, analysis of three detector modes, resolution studies, and TEST scanner geometry experiments. 1 ref., 21 figs., 4 tabs.

  9. Membraneless flow battery leveraging flow-through heterogeneous porous media for improved power density and reduced crossover

    CERN Document Server

    Suss, Matthew E; Gilson, Laura; Buie, Cullen R; Bazant, Martin Z

    2016-01-01

    A key factor preventing the market penetration of renewable, intermittent energy sources, such as solar, wind and wave, is the lack of cost-effective energy storage options to counteract intermittency. Here, we propose and demonstrate a novel flow battery architecture that replaces traditional ion-exchange membranes with less expensive heterogeneous flow-through porous media. We present an experimentally-validated model which demonstrates that our architecture promises reduced crossover of reactive species compared to typical membraneless systems employing co-laminar flows in open channels. In addition, our prototype battery exhibits significantly improved power density (0.925 W/cm2) and maximum current density (3 A/cm2) compared to previous membraneless systems.

  10. Think tanks in Denmark

    DEFF Research Database (Denmark)

    Ørsten, Mark; Nørgaard Kristensen, Nete

    2016-01-01

    outside the media. The study shows that the two largest and oldest think tanks in Denmark, the liberal think tank CEPOS and the social democratic think tank ECLM, are very active and observable in the media; that the media’s distribution of attention to these think tanks, to some extent, confirms a re......Though think tanks have a long history internationally, they have especially in recent years come to play an increasingly important role in both policy-formulation and public debate. In this article, we analyse the growing presence of think tanks in a Danish context during the 2000s and the first...... half of the 2010s, because in this national setting think tanks are still a relatively new phenomenon. Based on theories of mediatization and de-corporatization, we present 1) an analysis of the visibility of selected Danish think tanks in the media and 2) an analysis of their political networks...

  11. Tank 241-TX-118 tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, B.C.

    1994-12-09

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-118.

  12. Tank 241-TX-105 tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, B.C.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-105.

  13. Tank 241-BX-104 tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, B.C.

    1994-12-14

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-BX-104.

  14. Tank 241-AZ-101 tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.D.

    1995-02-06

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, A revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process. Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information``. This document satisfies that requirement for Tank 241-AZ-101 (AZ-101) sampling activities. Tank AZ-101 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The contents of Tank AZ-101, as of October 31, 1994, consisted of 3,630 kL (960 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-101 is expected to have two primary layers. The bottom layer is composed of 132 kL of sludge, and the top layer is composed of 3,500 kL of supernatant, with a total tank waste depth of approximately 8.87 meters.

  15. Tank 241-AZ-102 tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.D.

    1995-02-06

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, a revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process ... Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information``. This document satisfies that requirement for tank 241-AZ-102 (AZ-102) sampling activities. Tank AZ-102 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The current contents of Tank AZ-102, as of October 31, 1994, consisted of 3,600 kL (950 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-102 is expected to have two primary layers. The bottom layer is composed of 360 kL of sludge, and the top layer is composed of 3,240 kL of supernatant, with a total tank waste depth of approximately 8.9 meters.

  16. WWTP Process Tank Modelling

    DEFF Research Database (Denmark)

    Laursen, Jesper

    hydrofoil shaped propellers. These two sub-processes deliver the main part of the supplied energy to the activated sludge tank, and for this reason they are important for the mixing conditions in the tank. For other important processes occurring in the activated sludge tank, existing models and measurements...

  17. Feed tank transfer requirements

    Energy Technology Data Exchange (ETDEWEB)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B.

  18. A Millimeter-wave CMOS VCO Using Distributed LC Tank%采用分布式谐振回路的毫米波 CMOS压控振荡器

    Institute of Scientific and Technical Information of China (English)

    孙凯; 张健; 刘昱; 李志强; 陈延湖

    2015-01-01

    设计了一款应用于毫米波频率综合器的压控振荡器(Voltage Controlled Oscillator ,VCO).振荡器谐振回路采用分布式电感电容结构,相比传统结构可以提高振荡频率,降低振荡所需的环路增益;优化谐振网络中电容的设计,提高调谐范围;电磁仿真毫米波段电感,提高品质因数,降低相位噪声.电路设计采用SM IC 40 nm 1P6M RF CMOS工艺.仿真结果表明,频率调谐范围为56.1~61.2 GHz(5.1 GHz ,8.7%),振荡中心频率处的相位噪声为-88dBc/Hz@1MHz.电源电压0.8V下,电路功耗为3.3mW.芯片核心面积为0.0135mm2.%A voltage controlled oscillator (VCO) was designed for millimeter‐wave band frequency synthesizer .The oscillation frequency was enhanced and the minimum required loop gain was decreased compared to the conventional structure by using the distributed LC tank . Frequency tuning range was enhanced by optimizing the design of capacitance in the LC tank . Differential inductor was designed and modeled for millimeter‐wave band using electromagnetic simulator .The quality factor and phase noise was improved due to the proposed inductor .The design is based on SMIC 40 nm 1P6M RF CMOS process .Post‐simulation shows that the VCO has a tuning range of 5 .1 GHz (8 .7% ) from 56 .1 GHz to 61 .2 GHz .The phase noise is‐88 dBc/Hz at 1 M Hz offset at the center frequency . The VCO consumes 3 .3 mW from a 0 .8 V power supply and the chip area is 0 .013 5 mm2 .

  19. Comparing flow-through and static ice cave models for Shoshone Ice Cave

    Directory of Open Access Journals (Sweden)

    Kaj E. Williams

    2015-05-01

    Full Text Available In this paper we suggest a new ice cave type: the “flow-through” ice cave. In a flow-through ice cave external winds blow into the cave and wet cave walls chill the incoming air to the wet-bulb temperature, thereby achieving extra cooling of the cave air. We have investigated an ice cave in Idaho, located in a lava tube that is reported to have airflow through porous wet end-walls and could therefore be a flow-through cave. We have instrumented the site and collected data for one year. In order to determine the actual ice cave type present at Shoshone, we have constructed numerical models for static and flow-through caves (dynamic is not relevant here. The models are driven with exterior measurements of air temperature, relative humidity and wind speed. The model output is interior air temperature and relative humidity. We then compare the output of both models to the measured interior air temperatures and relative humidity. While both the flow-through and static cave models are capable of preserving ice year-round (a net zero or positive ice mass balance, both models show very different cave air temperature and relative humidity output. We find the empirical data support a hybrid model of the static and flow-through models: permitting a static ice cave to have incoming air chilled to the wet-bulb temperature fits the data best for the Shoshone Ice Cave.

  20. The chromatographic performance of flow-through particles: A computational fluid dynamics study.

    Science.gov (United States)

    Smits, Wim; Nakanishi, Kazuki; Desmet, Gert

    2016-01-15

    The performance of flow-through particles has been studied by computational fluid dynamics. Computational fluid dynamics simulations was used to calculate the flow behaviour around and inside the particles rather than estimate it. The obtained flow field has been used to accurately simulate plate heights generated by flow-through particles and compare them to standard fully porous particles. The effects of particle size, particle porosity and microparticle size on the intra-particle flow and plate heights is investigated. It is shown that the intra-particle flow generates mass transfer enhancement which lowers the total plate height. An empirical model is proposed for the mass transfer enhancement and it is compared to previously proposed models. Kinetic plots are constructed for the flow-through particles. Counter-intuitively, columns packed with flow-through particles have a higher flow resistance which counters the advantages of lower plate heights. Flow-through particles offer no significant gain in kinetic performance over fully porous particles.

  1. Think Tanks in Europe

    DEFF Research Database (Denmark)

    Kelstrup, Jesper Dahl

    The emergence of more think tanks in recent decades has spawned some interest in how they function and impact policy-making in the European Union and its member states. So far however few empirical studies of think tanks have been carried out and think tanks have mainly been studied...... in their national contexts. Questions regarding patterns and differences in think tank organisations and functions across countries have largely been left unanswered. This paper advances a definition and research design that uses different expert roles to categorise think tanks. A sample of 34 think tanks from...... Brussels, Denmark and Germany are categorised according to different expert roles in a pilot analysis. As the analysis is sensitive to the interpretation and weight given to different indicators, besides from picturing the think tank landscape, the analysis is intended to trigger a discussion of how...

  2. Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover

    Science.gov (United States)

    Scheidegger, Brianne, T.; Burke, Kenneth A.; Jakupca, Ian J.

    2012-01-01

    This paper describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the rover s hotel loads. This work represents the first attempt at a ground demonstration of this new technology aboard a mobile test platform. Development and demonstration were supported by the Office of the Chief Technologist s Space Power Systems Project and the Advanced Exploration System Modular Power Systems Project.

  3. 33 CFR 157.15 - Slop tanks in tank vessels.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number....

  4. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank...

  5. Scale-up from batch to flow-through wet milling process for injectable depot formulation.

    Science.gov (United States)

    Lehocký, Róbert; Pěček, Daniel; Štěpánek, František

    2016-12-01

    Injectable depot formulations are aimed at providing long-term sustained release of a drug into systemic circulation, thus reducing plasma level fluctuations and improving patient compliance. The particle size distribution of the formulation in the form of suspension is a key parameter that controls the release rate. In this work, the process of wet stirred media milling (ball milling) of a poorly water-soluble substance has been investigated with two main aims: (i) to determine the parametric sensitivity of milling kinetics; and (ii) to develop scale-up methodology for process transfer from batch to flow-through arrangement. Ball milling experiments were performed in two types of ball mills, a batch mill with a 30ml maximum working volume, and a flow-through mill with a 250ml maximum working volume. Milling parameters were investigated in detail by methodologies of QbD to map the parametric space. Specifically, the effects of ball size, ball fill level, and rpm on the particle breakage kinetics were systematically investigated at both mills, with an additional parameter (flow-rate) in the case of the flow-through mill. The breakage rate was found to follow power-law kinetics with respect to dimensionless time, with an asymptotic d50 particle size in the range of 200-300nm. In the case of the flow-through mill, the number of theoretical passes through the mill was found to be an important scale-up parameter.

  6. Calculating residual flows through a multiple-inlet system: the conundrum of the tidal period

    NARCIS (Netherlands)

    Duran Matute, M.; Gerkema, T.

    2015-01-01

    The concept of residual, i.e., tidally-averaged,flows through a multiple inlet system is reappraised. Theevaluation of the residual through-flow depends on the timeinterval over which is integrated, in other words, on how onedefines the tidal period. It is demonstrated that this definitionis

  7. Nonequilibrium capillarity effects in two-phase flow through porous media at different scales

    NARCIS (Netherlands)

    Bottero, S.; Hassanizadeh, S.M.; Kleingeld, P.J.; Heimovaara, T.J.

    2011-01-01

    A series of primary drainage experiments was carried out in order to investigate nonequilibrium capillarity effects in two-phase flow through porous media. Experiments were performed with tetrachloroethylene (PCE) and water as immiscible fluids in a sand column 21 cm long. Four drainage experiments

  8. Capillary Micro-flow Through a Fiber Bundle(Part 2)

    Institute of Scientific and Technical Information of China (English)

    ZHU Yingdan; WANG Jihui; TAN Hua; GAO Guoqiang

    2005-01-01

    A numerical model was proposed to simulate the capillary micro-flow through a fiber bundle.The capillary pressure was predicted by the Young-Laplace equation and the corresponding optimal values of permeability were found by a trial-and-error method. The empirical Kozeny constants which are dependent on fiber volume fraction were recommended for the prediction of permeability.

  9. Nonequilibrium capillarity effects in two‐phase flow through porous media at different scales

    NARCIS (Netherlands)

    Bottero, S.; Hassanizadeh, S.M.; Kleingeld, P.J.; Heimovaara, T.J.

    2011-01-01

    A series of primary drainage experiments was carried out in order to investigate nonequilibrium capillarity effects in two‐phase flow through porous media. Experiments were performed with tetrachloroethylene (PCE) and water as immiscible fluids in a sand column 21 cm long. Four drainage experiments

  10. Fuel Tank Technology

    Science.gov (United States)

    1989-11-01

    structures b) - Equal thermic inertia c) - Equal fluid volume d) - Equal pressure variation on both wings at the change of the room temperature - This...individual fuel sections. Each fuel section is further ccmpartmentated by metall tank shear walls and tank floors into three individual fuel cells to...plate Dy a stretch forming process, and the metallic tank floors . The air intake segments extend from one bulkhead to the other, thus reducing assembly

  11. Identifiability of sorption parameters in stirred flow-through reactor experiments and their identification with a Bayesian approach.

    Science.gov (United States)

    Nicoulaud-Gouin, V; Garcia-Sanchez, L; Giacalone, M; Attard, J C; Martin-Garin, A; Bois, F Y

    2016-10-01

    This paper addresses the methodological conditions -particularly experimental design and statistical inference- ensuring the identifiability of sorption parameters from breakthrough curves measured during stirred flow-through reactor experiments also known as continuous flow stirred-tank reactor (CSTR) experiments. The equilibrium-kinetic (EK) sorption model was selected as nonequilibrium parameterization embedding the Kd approach. Parameter identifiability was studied formally on the equations governing outlet concentrations. It was also studied numerically on 6 simulated CSTR experiments on a soil with known equilibrium-kinetic sorption parameters. EK sorption parameters can not be identified from a single breakthrough curve of a CSTR experiment, because Kd,1 and k(-) were diagnosed collinear. For pairs of CSTR experiments, Bayesian inference allowed to select the correct models of sorption and error among sorption alternatives. Bayesian inference was conducted with SAMCAT software (Sensitivity Analysis and Markov Chain simulations Applied to Transfer models) which launched the simulations through the embedded simulation engine GNU-MCSim, and automated their configuration and post-processing. Experimental designs consisting in varying flow rates between experiments reaching equilibrium at contamination stage were found optimal, because they simultaneously gave accurate sorption parameters and predictions. Bayesian results were comparable to maximum likehood method but they avoided convergence problems, the marginal likelihood allowed to compare all models, and credible interval gave directly the uncertainty of sorption parameters θ. Although these findings are limited to the specific conditions studied here, in particular the considered sorption model, the chosen parameter values and error structure, they help in the conception and analysis of future CSTR experiments with radionuclides whose kinetic behaviour is suspected.

  12. Fuel reprocessing tank

    Energy Technology Data Exchange (ETDEWEB)

    Gonda, Sumitora

    1998-10-09

    A tank of the present invention for spent fuels comprises a stainless steel tank main body for storing a highly corrosive dissolving solution, a steam jet pump disposed to the inside of the tank main body for transferring the dissolving solution to the outside of the tank main body and pipelines connecting them. With such a constitution, abnormal abrasion and drag of mechanical parts are less caused. In addition, a cleaning nozzle and a cleaning liquid pipeline which eliminates clogging of a sucking port of the steam jet pump if clogging is caused by sludges are disposed thereby enabling to avoid possibility of clogging. (T.M.)

  13. Hanford tanks initiative plan

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, K.E.

    1997-07-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy`s Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System`s tank waste retrieval Program.

  14. Innovative optronics for the new PUMA tank

    Science.gov (United States)

    Fritze, J.; Münzberg, M.; Schlemmer, H.

    2010-04-01

    The new PUMA tank is equipped with a fully stabilized 360° periscope. The thermal imager in the periscope is identical to the imager in the gunner sight. All optronic images of the cameras can be fed on every electronic display within the tank. The thermal imagers operate with a long wave 384x288 MCT starring focal plane array. The high quantum efficiency of MCT provides low NETD values at short integration times. The thermal imager has an image resolution of 768x576 pixels by means of a micro scanner. The MCT detector operates at high temperatures above 75K with high stability in noise and correctibility and offers high reliability (MTTF) values for the complete camera in a very compact design. The paper discusses the principle and functionality of the optronic combination of direct view optical channel, thermal imager and visible camera and discusses in detail the performances of the subcomponents with respect to demands for new tank applications.

  15. Efficient Generation of Freak Waves in Laboratory

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the present study, Kriebel's method is improved to generate freak waves in laboratory. The improved method superposes a random wave train with two transient wave trains to simulate freak wave events in a wave tank. The freak waves are more nonlinear than what generated with Kriebel's method of the same energy. It can also generate freak waves to satisfy all the qualifications of the adopted definition with less energy than Kriebel's and can hardly influence the significant wave height.

  16. Rainwater tank drowning.

    Science.gov (United States)

    Byard, Roger W

    2008-11-01

    Drowning remains a significant cause of accidental death in young children. The site of drowning varies among communities and is influenced by cultural and geographic factors, including the availability of particular water sources. The drowning deaths of a twin two-year-old brother and sister in a rainwater tank are reported to demonstrate specific issues that may arise. Ladders, vegetation and trellises may provide access to tanks and should be removed. Secure child-proof access points should also be installed, particularly on in-ground tanks (given the ready accessibility of the latter). As there has been a recent trend in Australia to install more domestic rainwater tanks, the number of childhood rainwater tank drownings and near-drownings will need to be monitored by forensic pathologists and child death review committees to ensure that this has not led to the introduction of a new hazard into the home environment.

  17. Tank characterization reference guide

    Energy Technology Data Exchange (ETDEWEB)

    De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J. [Los Alamos Technical Associates, Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-09-01

    Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research.

  18. Lattice Boltzmann model for incompressible axisymmetric thermal flows through porous media.

    Science.gov (United States)

    Grissa, Kods; Chaabane, Raoudha; Lataoui, Zied; Benselama, Adel; Bertin, Yves; Jemni, Abdelmajid

    2016-10-01

    The present work proposes a simple lattice Boltzmann model for incompressible axisymmetric thermal flows through porous media. By incorporating forces and source terms into the lattice Boltzmann equation, the incompressible Navier-Stokes equations are recovered through the Chapman-Enskog expansion. It is found that the added terms are just the extra terms in the governing equations for the axisymmetric thermal flows through porous media compared with the Navier-Stokes equations. Four numerical simulations are performed to validate this model. Good agreement is obtained between the present work and the analytic solutions and/or the results of previous studies. This proves its efficacy and simplicity regarding other methods. Also, this approach provides guidance for problems with more physical phenomena and complicated force forms.

  19. An analytical solution for transient radial flow through unsaturated fractured porous media

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu; Pan, Lehua

    2004-02-13

    This paper presents analytical solutions for one-dimensional radial transient flow through horizontal, unsaturated fractured rock formation. In these solutions, unsaturated flow through fractured media is described by a linearized Richards' equation, while fracture-matrix interaction is handled using the dual-continuum concept. Although linearizing Richards' equation requires a specially correlated relationship between relative permeability and capillary pressure functions for both fractures and matrix, these specially formed relative permeability and capillary pressure functions are still physically meaningful. These analytical solutions can thus be used to describe the transient behavior of unsaturated flow in fractured media under the described model conditions. They can also be useful in verifying numerical simulation results, which, as demonstrated in this paper, are otherwise difficult to validate.

  20. Information Flow Through Stages of Complex Engineering Design Projects: A Dynamic Network Analysis Approach

    DEFF Research Database (Denmark)

    Parraguez, Pedro; Eppinger, Steven D.; Maier, Anja

    2015-01-01

    information flows between activities in complex engineering design projects; 2) we show how the network of information flows in a large-scale engineering project evolved over time and how network analysis yields several managerial insights; and 3) we provide a useful new representation of the engineering...... design process and thus support theory-building toward the evolution of information flows through systems engineering stages. Implications include guidance on how to analyze and predict information flows as well as better planning of information flows in engineering design projects according......The pattern of information flow through the network of interdependent design activities is thought to be an important determinant of engineering design process results. A previously unexplored aspect of such patterns relates to the temporal dynamics of information transfer between activities...

  1. A flow-through hydrothermal cell for in situ neutron diffraction studies of phase transformations

    Science.gov (United States)

    O'Neill, Brian; Tenailleau, Christophe; Nogthai, Yung; Studer, Andrew; Brugger, Joël; Pring, Allan

    2006-11-01

    A flow-through hydrothermal cell for the in situ neutron diffraction study of crystallisation and phase transitions has been developed. It can be used for kinetic studies on materials that exhibit structural transformations under hydrothermal conditions. It is specifically designed for use on the medium-resolution powder diffractometer (MRPD) at ANSTO, Lucas Heights, Sydney. But it is planned to adapt the design for the Polaris beamline at ISIS and the new high-intensity powder diffractometer (Wombat) at the new Australian reactor Opal. The cell will operate in a flow-through mode over the temperature range from 25-300 °C and up to pressures of 100 bar. The first results of a successful transformation of pentlandite (Fe,Ni) 9S 8 to violarite (Fe,Ni) 3S 4 under mild conditions (pH∼4) at 120 °C and 3 bar using in situ neutron diffraction measurements are presented.

  2. Development of a micro flow-through cell for high field NMR spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd Michael; McIntyre, Sarah K.

    2011-05-01

    A highly transportable micro flow-through detection cell for nuclear magnetic resonance (NMR) spectroscopy has been designed, fabricated and tested. This flow-through cell allows for the direct coupling between liquid chromatography (LC) and gel permeation chromatography (GPC) resulting in the possibility of hyphenated LC-NMR and GPC-NMR. The advantage of the present flow cell design is that it is independent and unconnected to the detection probe electronics, is compatible with existing commercial high resolution NMR probes, and as such can be easily implemented at any NMR facility. Two different volumes were fabricated corresponding to between {approx}3.8 and 10 {micro}L detection volume. Examples of the performance of the cell on different NMR instruments, and using different NMR detection probes were demonstrated.

  3. Convective Heat-Transfer Characteristics of Laminar Flow Through Smooth- and Rough-Wall Microchannels

    Science.gov (United States)

    Natrajan, V. K.; Christensen, K. T.

    2009-11-01

    The convective heat-transfer behavior of laminar flow through smooth- and rough-wall microchannels is investigated by performing non-intrusive measurements of fluid temperature using a microscale adaptation of two-color laser-induced fluorescent thermometry for flow through a heated copper microchannel testbed of hydraulic diameter Dh=600,μm. These measurements, in concert with pressure-drop measurements, are performed for a smooth-wall case and two different rough-wall cases with roughness that is reminiscent of the surface irregularities one might encounter due to imperfect fabrication methods. Pressure-drop measurements reveal the onset of transition above Recr=1800 for the smooth-wall case and deviation from laminar behavior at progressively lower Re with increasing surface roughness. The local Nusselt number (Nu) for smooth-wall flow over the range 200flow.

  4. Heat Transfer Augmentation in Developing Flow Through a Ribbed Square Duct

    Institute of Scientific and Technical Information of China (English)

    Khan R K; Ali M.A.T; Akhanda M.A.R

    2006-01-01

    An experimental study is conducted to investigate the heat transfer augmentation in developing turbulent flow through a ribbed square duct. The duct is made of 16mm thick bakelite sheet. The bottom surface of the ribbed wall having rib pitch to height ratio of 10 is heated by passing a c current to the heater placed under it. The uniform heating is controlled using a digital temperature controller and a variac. The results of ribbed duct are compared with the results of a smooth duct under the same experimental conditions. It is observed that the heat transfer augmentation in ribbed duct is better than that of the smooth duct. At Re=5.0 × 104 , the mean temperature of air flowing through the ribbed duct increases by 2.45 percent over the smooth duct, whereas in the ribbed duct Nusselt number increases by 15.14 percent than that of the smooth duct with a 6 percent increase in pressure drop.

  5. Computation of rotordynamic coefficients associated with leakage steam flow through labyrinth seal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.Z.; Liu, Y.Z.; Chen, H.P. [Shanghai Jiaotong University, Thermal Fluid Flow and Turbomachinery Lab., School of Mechanical Engineering, Shanghai (China); Jiang, P.N. [Shanghai Turbine Company, Department of R and D, Shanghai (China)

    2007-08-15

    A mathematical model of calculating rotordynamic coefficients associated with leakage steam flow through labyrinth seals was presented. Particular attention was given to incorporating thermal properties of the steam fluid into prediction of leakage flow and subsequent derivation of rotordynamic coefficients, which quantitatively characterize influence of aerodynamic forcing of the leakage steam flow on the rotordynamics. By using perturbation analysis, we determined periodic and analytic solutions of the continuity and circumferential momentum equations for the time-dependent flow induced by non-axisymmetric rotation of the rotor encompassed by a labyrinth seal. Pressure distributions along labyrinth seal cavities and rotordynamic coefficients were compared at the same condition for air and steam flows. Influence of steam flow through the labyrinth seal cavities on rotordynamic coefficients was analyzed in terms of inlet pressure, inlet swirl velocity and rotor speed. (orig.)

  6. Non-Newtonian model study for blood flow through a tapered artery with a stenosis

    Directory of Open Access Journals (Sweden)

    Noreen Sher Akbar

    2016-03-01

    Full Text Available The blood flow through a tapered artery with a stenosis is analyzed, assuming the blood as tangent hyperbolic fluid model. The resulting nonlinear implicit system of partial differential equations is solved analytically with the help of perturbation method. The expressions for shear stress, velocity, flow rate, wall shear stress and longitudinal impedance are obtained. The variations of power law index m, Weissenberg number We, shape of stenosis n and stenosis size δ are discussed different type of tapered arteries.

  7. Effect of sample size on the fluid flow through a single fractured granitoid

    Institute of Scientific and Technical Information of China (English)

    Kunal Kumar Singh; Devendra Narain Singh; Ranjith Pathegama Gamage

    2016-01-01

    Most of deep geological engineered structures, such as rock caverns, nuclear waste disposal repositories, metro rail tunnels, multi-layer underground parking, are constructed within hard crystalline rocks because of their high quality and low matrix permeability. In such rocks, fluid flows mainly through fractures. Quantification of fractures along with the behavior of the fluid flow through them, at different scales, becomes quite important. Earlier studies have revealed the influence of sample size on the confining stressepermeability relationship and it has been demonstrated that permeability of the fractured rock mass decreases with an increase in sample size. However, most of the researchers have employed numerical simulations to model fluid flow through the fracture/fracture network, or laboratory investigations on intact rock samples with diameter ranging between 38 mm and 45 cm and the diameter-to-length ratio of 1:2 using different experimental methods. Also, the confining stress, s3, has been considered to be less than 30 MPa and the effect of fracture roughness has been ignored. In the present study, an extension of the previous studies on “laboratory simulation of flow through single fractured granite” was conducted, in which consistent fluid flow experiments were performed on cy-lindrical samples of granitoids of two different sizes (38 mm and 54 mm in diameters), containing a“rough walled single fracture”. These experiments were performed under varied confining pressure (s3 ¼ 5e40 MPa), fluid pressure (fp ? 25 MPa), and fracture roughness. The results indicate that a nonlinear relationship exists between the discharge, Q, and the effective confining pressure, sef ., and Q decreases with an increase in sef .. Also, the effects of sample size and fracture roughness do not persist when sef . ? 20 MPa. It is expected that such a study will be quite useful in correlating and extrapolating the laboratory scale investigations to in-situ scale and

  8. A Study of A Flow through Small Apertures(2nd Report, Experiments on The Velocity Field)

    OpenAIRE

    福冨, 清; 長谷川, 富市; 中野, 裕二; 鳴海, 敬倫; Hasegawa, Tomiichi; Narumi, Takatsune

    1987-01-01

    The velocity field of an inlet and outlet flow through small orifices was experimentally examined. The velocity along the center line near the orifices was measured with a laser doppler anemometer, stream lines in the whole flow region were photographed, and the following points were clarified : (1) The center line velocities of liquid paraffin agree with the theoretical value of Stokes flow in the region of Reynolds numbers below 10. (2) With distilled water, a diverging angle of the issuing...

  9. Permeameter studies of water flow through cement and clay borehole seals in granite, basalt and tuff

    Energy Technology Data Exchange (ETDEWEB)

    South, D.L.; Daemen, J.J.K.

    1986-10-01

    Boreholes near a repository must be sealed to prevent rapid migration of radionuclide-contaminated water to the accessible environment. The objective of this research is to assess the performance of borehole seals under laboratory conditions, particularly with regard to varying stress fields. Flow through a sealed borehole is compared with flow through intact rock. Cement or bentonite seals have been tested in granite, basalt, and welded tuff. The main conclusion is that under laboratory conditions, existing commercial materials can form high quality seals. Triaxial stress changes about a borehole do not significantly affect seal performance if the rock is stiffer than the seal. Temperature but especially moisture variations (drying) significantly degrade the quality of cement seals. Performance partially recovers upon resaturation. A skillfully sealed borehole may be as impermeable as the host rock. Analysis of the influence of relative seal-rock permeabilities shows that a plug with permeability one order of magnitude greater than that of the rock results in a flow increase through the hole and surrounding rock of only 1-1/2 times compared to the undisturbed rock. Since a borehole is only a small part of the total rock mass, the total effect is even less pronounced. The simplest and most effective way to decrease flow through a rock-seal system is to increase the seal length, assuming it can be guaranteed that no dominant by-pass flowpath through the rock exists.

  10. Experimental investigations of the steady flow through an idealized model of a femoral artery bypass

    Directory of Open Access Journals (Sweden)

    Giurgea Corina

    2014-03-01

    Full Text Available The present paper presents the steps taken by the authors in the first stage of an experimental program within a larger national research project whose objective is to characterize the flow through a femoral artery bypass with a view to finding solutions for its optimization. The objective of the stage is to investigate by means of the PIV method the stationary flow through a bypass model with an idealized geometry. A bypass assembly which reunites the idealized geometry models of the proximal and distal anastomoses, and which respects the lengths of a femoral artery bypass was constructed on the basis of data for a real patient provided by medical investigations. With the aim of testing the model and the established experimental set-up with regard to their suitability for the assessment of the velocity field associated to the steady flow through the bypass, three zones that can restore the whole distal anastomosis were PIV investigated. The measurements were taken in the conditions of maintained inflow at the bypass entry of 0.9 l / min (Re = 600. The article presents comparatively the flow spectra and the velocity fields for each zone obtained in two situations: with the femoral artery completely occluded and completely open.

  11. The Advantages of Non-Flow-Through Fuel Cell Power Systems for Aerospace Applications

    Science.gov (United States)

    Hoberecht, Mark; Burke, Kenneth; Jakupca, Ian

    2011-01-01

    NASA has been developing proton-exchange-membrane (PEM) fuel cell power systems for the past decade, as an upgraded technology to the alkaline fuel cells which presently provide power for the Shuttle Orbiter. All fuel cell power systems consist of one or more fuel cell stacks in combination with appropriate balance-of-plant hardware. Traditional PEM fuel cells are characterized as flow-through, in which recirculating reactant streams remove product water from the fuel cell stack. NASA recently embarked on the development of non-flow-through fuel cell systems, in which reactants are dead-ended into the fuel cell stack and product water is removed by internal wicks. This simplifies the fuel cell power system by eliminating the need for pumps to provide reactant circulation, and mechanical water separators to remove the product water from the recirculating reactant streams. By eliminating these mechanical components, the resulting fuel cell power system has lower mass, volume, and parasitic power requirements, along with higher reliability and longer life. These improved non-flow-through fuel cell power systems therefore offer significant advantages for many aerospace applications.

  12. Microfluidic Flow-Through Reactor with Electrochemical Sensor Array for Real-Time Pcr

    Science.gov (United States)

    Teh, Huey-Fang; Ramalingam, Naveen; Gong, Hai-Qing; Tan, Swee-Ngin

    We developed an integrated microfluidic flow-through EC-PCR (EC-PCR) microdevice for the concurrent DNA amplification, PCR products EC detection and PCR products quantification instead of the current available fluorescence detection scheme. The microfluidic flow-through EC-PCR microdevice was fabricated with the state-of-the-art microfabrication technology, by bonding a bottom glass substrate having a microelectrode array to a top glass cover having the microchannels made of PDMS material. Both the amplification of the target DNA sequence and the subsequent EC detection of the PCR products were carried out concurrently on the integrated device by real-time monitoring. The underlying principle of the microfluidic flow-through EC-PCR method was based on the changes of current signal of methylene blue (MB), which worked as an electrochemically active species DNA intercalator in the PCR mixture, during the amplification process at the extension phase. The results shown in this work indicated that the nucleic acid analysis could be performed in a fast thermal cycling and true real-time quantitative electrochemical detection. The signal variation trends of the EC detection and the fluorescence detection were the same in our verification measurements for both methods, which suggested that the EC detection method was feasible for this application.

  13. Computation of Flow Through Water-Control Structures Using Program DAMFLO.2

    Science.gov (United States)

    Sanders, Curtis L.; Feaster, Toby D.

    2004-01-01

    As part of its mission to collect, analyze, and store streamflow data, the U.S. Geological Survey computes flow through several dam structures throughout the country. Flows are computed using hydraulic equations that describe flow through sluice and Tainter gates, crest gates, lock gates, spillways, locks, pumps, and siphons, which are calibrated using flow measurements. The program DAMFLO.2 was written to compute, tabulate, and plot flow through dam structures using data that describe the physical properties of dams and various hydraulic parameters and ratings that use time-varying data, such as lake elevations or gate openings. The program uses electronic computer files of time-varying data, such as lake elevation or gate openings, retrieved from the U.S. Geological Survey Automated Data Processing System. Computed time-varying flow data from DAMFLO.2 are output in flat files, which can be entered into the Automated Data Processing System database. All computations are made in units of feet and seconds. DAMFLO.2 uses the procedures and language developed by the SAS Institute Inc.

  14. Slip flow through a converging microchannel: experiments and 3D simulations

    Science.gov (United States)

    Varade, Vijay; Agrawal, Amit; Pradeep, A. M.

    2015-02-01

    An experimental and 3D numerical study of gaseous slip flow through a converging microchannel is presented in this paper. The measurements reported are with nitrogen gas flowing through the microchannel with convergence angles (4°, 8° and 12°), hydraulic diameters (118, 147 and 177 µm) and lengths (10, 20 and 30 mm). The measurements cover the entire slip flow regime and a part of the continuum and transition regimes (the Knudsen number is between 0.0004 and 0.14); the flow is laminar (the Reynolds number is between 0.5 and 1015). The static pressure drop is measured for various mass flow rates. The overall pressure drop increases with a decrease in the convergence angle and has a relatively large contribution of the viscous component. The numerical solutions of the Navier-Stokes equations with Maxwell’s slip boundary condition explore two different flow behaviors: uniform centerline velocity with linear pressure variation in the initial and the middle part of the microchannel and flow acceleration with nonlinear pressure variation in the last part of the microchannel. The centerline velocity and the wall shear stress increase with a decrease in the convergence angle. The concept of a characteristic length scale for a converging microchannel is also explored. The location of the characteristic length is a function of the Knudsen number and approaches the microchannel outlet with rarefaction. These results on gaseous slip flow through converging microchannels are observed to be considerably different than continuum flow.

  15. Tank 241-C-203: Tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.D.

    1995-03-06

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, and WHC 222-S Laboratory. Scope of this plan is to provide guidance for sampling and analysis of samples for tank 241-C-203.

  16. Tank 241-C-204 Tank Characterization Plan

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.D. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-03-06

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, and WHC 222-S Laboratory. Scope of this plan is to provide guidance for sampling and analysis of samples for tank 241-C-204.

  17. Tank 241-SX-115 tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, L.M.

    1995-04-24

    This document is a plan which serves as the contractual agreement between the Characterization Project, Sampling Operations, and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-SX-115.

  18. Tank 241-TY-104 Tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.D. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-02-15

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, and WHC 222-C Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-TY-104.

  19. Early Mobilization after Free-flap Transfer to the Lower Extremities: Preferential Use of Flow-through Anastomosis

    Directory of Open Access Journals (Sweden)

    Shimpei Miyamoto, MD

    2014-03-01

    Conclusions: This study demonstrates that early mobilization after free-flap transfer to the lower extremity is made possible by flow-through anastomosis for both arteries and veins. Flow-through flaps have stable circulation from the acute phase and can tolerate early dangling and ambulation.

  20. Rain waves-wind waves interaction application to scatterometry

    Science.gov (United States)

    Kharif, C.; Giovanangeli, J. P.; Bliven, L.

    1989-01-01

    Modulation of a rain wave pattern by longer waves has been studied. An analytical model taking into account capillarity effects and obliquity of short waves has been developed. Modulation rates in wave number and amplitude have been computed. Experiments were carried out in a wave tank. First results agree with theoretical models, but higher values of modulation rates are measured. These results could be taken into account for understanding the radar response from the sea surface during rain.

  1. 解读TANKED

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    品牌为重、创造为先,Tanked racing用不走“寻常路”给国内众多同行们生动地上了一课。通过持续近四年的高速成长,Tanked racingE成为中国头盔业翘楚,然而Tanked racing并不局限于此,因为未来的舞台还很大。

  2. Ocean Technology Development Tank

    Data.gov (United States)

    Federal Laboratory Consortium — The new SWFSC laboratory in La Jolla incorporates a large sea- and fresh-water Ocean Technology Development Tank. This world-class facility expands NOAA's ability to...

  3. Sonar Tank Area

    Data.gov (United States)

    Federal Laboratory Consortium — The Sonar Tank Facility permits low cost initial 'wet' testing and check out prior to full scale deployment at sea. It can manage controlled conditions calibration...

  4. Tank waste characterization basis

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.M.

    1996-08-09

    This document describes the issues requiring characterization information, the process of determining high priority tanks to obtain information, and the outcome of the prioritization process. In addition, this document provides the reasoning for establishing and revising priorities and plans.

  5. Making Waves: Seismic Waves Activities and Demonstrations

    Science.gov (United States)

    Braile, S. J.; Braile, L. W.

    2011-12-01

    The nature and propagation of seismic waves are fundamental concepts necessary for understanding the exploration of Earth's interior structure and properties, plate tectonics, earthquakes, and seismic hazards. Investigating seismic waves is also an engaging approach to learning basic principles of the physics of waves and wave propagation. Several effective educational activities and demonstrations are available for teaching about seismic waves, including the stretching of a spring to demonstrate elasticity; slinky wave propagation activities for compressional, shear, Rayleigh and Love waves; the human wave activity to demonstrate P- and S- waves in solids and liquids; waves in water in a simple wave tank; seismic wave computer animations; simple shake table demonstrations of model building responses to seismic waves to illustrate earthquake damage to structures; processing and analysis of seismograms using free and easy to use software; and seismic wave simulation software for viewing wave propagation in a spherical Earth. The use of multiple methods for teaching about seismic waves is useful because it provides reinforcement of the fundamental concepts, is adaptable to variable classroom situations and diverse learning styles, and allows one or more methods to be used for authentic assessment. The methods described here have been used effectively with a broad range of audiences, including K-12 students and teachers, undergraduate students in introductory geosciences courses, and geosciences majors.

  6. A numerical study of the breaking of modulated waves generated at a wave maker

    NARCIS (Netherlands)

    Andonowati,; Kusumawinahyu, W.M; Groesen, van E.

    2006-01-01

    This paper is concerned with breaking criteria for generated waves. An input in the form of a time signal is prescribed to a wave maker located at one end of a wave tank as used in hydrodynamic laboratories. The motion of this wave maker produces waves propagating into initially still water in the t

  7. 49 CFR 179.401 - Individual specification requirements applicable to inner tanks for cryogenic liquid tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... to inner tanks for cryogenic liquid tank car tanks. 179.401 Section 179.401 Transportation Other... TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid... requirements applicable to inner tanks for cryogenic liquid tank car tanks. ...

  8. Improved HPC method for nonlinear wave tank

    DEFF Research Database (Denmark)

    Zhu, Wenbo; Greco, Marilena; Shao, Yanlin

    2017-01-01

    The recently developed Harmonic Polynomial Cell (HPC) method has been proved to be a promising choice for solving potential-flow Boundary Value Problem (BVP). In this paper, a flux method is proposed to consistently deal with the Neumann boundary condition of the original HPC method and enhance...

  9. TANK CAR CONSTRUCTION REFINMENT

    Directory of Open Access Journals (Sweden)

    A. N. Soberzhansjkyj

    2010-06-01

    Full Text Available The increase of volume and load-carrying capacity of tank cars is an urgent task for improving the efficiency of transportation of liquid bulk cargoes. Variants of the constructive and technical approaches, which allow increasing the specified indices, are considered. After the analysis the most rational constructive scheme meeting the modern requirements for tank cars and allowing to raise their productivity is chosen.

  10. TANK 5 SAMPLING

    Energy Technology Data Exchange (ETDEWEB)

    Vrettos, N; William Cheng, W; Thomas Nance, T

    2007-11-26

    Tank 5 at the Savannah River Site has been used to store high level waste and is currently undergoing waste removal processes in preparation for tank closure. Samples were taken from two locations to determine the contents in support of Documented Safety Analysis (DSA) development for chemical cleaning. These samples were obtained through the use of the Drop Core Sampler and the Snowbank Sampler developed by the Engineered Equipment & Systems (EES) group of the Savannah River National Laboratory (SRNL).

  11. TANK 5 SAMPLING

    Energy Technology Data Exchange (ETDEWEB)

    Vrettos, N; William Cheng, W; Thomas Nance, T

    2007-11-26

    Tank 5 at the Savannah River Site has been used to store high level waste and is currently undergoing waste removal processes in preparation for tank closure. Samples were taken from two locations to determine the contents in support of Documented Safety Analysis (DSA) development for chemical cleaning. These samples were obtained through the use of the Drop Core Sampler and the Snowbank Sampler developed by the Engineered Equipment & Systems (EES) group of the Savannah River National Laboratory (SRNL).

  12. Stability of fluid flow through deformable tubes and channels: An overview

    Indian Academy of Sciences (India)

    V Shankar

    2015-05-01

    The aim of this paper is to provide a systematic overview of the study of instabilities in flow past deformable solid surfaces, with particular emphasis on internal flows through tubes and channels. The subject is certainly more than five decades old, and arguably began with Kramer’s pioneering experiments on drag reduction by compliant surfaces. This was immediately followed by the theoretical studies of Benjamin and Landhal in the early 1960s. Most earlier theoretical studies were focused on stability of external flows such as boundary layers, and used relatively simple wall models composed of spring-backed plates. There has been a resurgence in the field since the mid-1980s, and more attention was focused on internal flows through deformable tubes and channels. The wall deformation was described by both phenomenological spring-backed plate models and continuum linear viscoelastic solid models. All these studies predict several types of instabilities in flow past deformable surfaces. This paper will attempt to place the various theoretical results in perspective, and to classify the instabilities predicted by various studies. Recent studies have also emphasized the importance of using a frame-invariant constitutive model, such as the neo-Hookean model, for the solid deformation. Until recently, however, the field has been dominated by theoretical and numerical studies, with very little experimental observations to corroborate the theoretical predictions. Recent experiments in flow through deformable tubes and channels indeed show instability at Reynolds number much lower than their rigid counterparts, and the experimental observations are in qualitative agreement with some of the theoretical predictions. There have also been a few studies on the non-linear aspects of the instability using the weakly non-linear formulation to determine the nature of the bifurcation at the linear instability. A brief discussion on weakly nonlinear analyses is also provided in

  13. Technical Progress Report on Single Pass Flow Through Tests of Ceramic Waste Forms for Plutonium Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P; Roberts, S; Bourcier, W

    2000-12-01

    This report updates work on measurements of the dissolution rates of single-phase and multi-phase ceramic waste forms in flow-through reactors at Lawrence Livermore National Laboratory. Previous results were reported in Bourcier (1999). Two types of tests are in progress: (1) tests of baseline pyrochlore-based multiphase ceramics; and (2) tests of single-phase pyrochlore, zirconolite, and brannerite (the three phases that will contain most of the actinides). Tests of the multi-phase material are all being run at 25 C. The single-phase tests are being run at 25, 50, and 75 C. All tests are being performed at ambient pressure. The as-made bulk compositions of the ceramics are given in Table 1. The single pass flow-through test procedure [Knauss, 1986 No.140] allows the powdered ceramic to react with pH buffer solutions traveling upward vertically through the powder. Gentle rocking during the course of the experiment keeps the powder suspended and avoids clumping, and allows the system to behave as a continuously stirred reactor. For each test, a cell is loaded with approximately one gram of the appropriate size fraction of powdered ceramic and reacted with a buffer solution of the desired pH. The buffer solution compositions are given in Table 2. All the ceramics tested were cold pressed and sintered at 1350 C in air, except brannerite, which was sintered at 1350 C in a CO/CO{sub 2} gas mixture. They were then crushed, sieved, rinsed repeatedly in alcohol and distilled water, and the desired particle size fraction collected for the single pass flow-through tests (SPFT). The surface area of the ceramics measured by BET ranged from 0.1-0.35 m{sup 2}/g. The measured surface area values, average particle size, and sample weights for each ceramic test are given in the Appendices.

  14. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.

    Science.gov (United States)

    Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system.

  15. Spatial distribution of seepage at a flow-through lake: Lake Hampen, Western Denmark

    DEFF Research Database (Denmark)

    Kidmose, Jacob Baarstrøm; Engesgaard, Peter Knudegaard; Nilsson, Bertel;

    2011-01-01

    The spatial distribution of seepage at a flow-through lake in western Denmark was investigated at multiple scales with integrated use of a seepage meter, lake–groundwater gradients, stable isotope fractionation (d18O), chlorofl uorocarbon (CFC) apparent ages, land-based and off -shore geophysical...... that corroborates the interpretation of lake water recharging off shore and moving down gradient. Inclusion of lake bed heterogeneity in the model improved the comparison of simulated and observed discharge to the lake. The apparent age of the discharging groundwater to the lake was determined by CFCs, resulting...

  16. NUMERICAL SIMULATION OF TURBULENT FLOW THROUGH THROAT-TYPE ENERGY-DISSIPATORS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The flow through the throat-type energy-dissi-pators is calculated by using an axis-symmetrical K-ε turbu-lence model. The velocity field, the pressure field and the dis-tributions of turbulent energy and its dissipation rate are ac-quired. The energy dissipation through the throat-type ener-gy-dissipators can be seen in detail. The calculated pressuredistribution is compared with the measured and in good agree-ment. The results are useful to understand deeply the flowcharacteristics of the throat-type energy-dissipators.

  17. Effect of sample size on the fluid flow through a single fractured granitoid

    Directory of Open Access Journals (Sweden)

    Kunal Kumar Singh

    2016-06-01

    Full Text Available Most of deep geological engineered structures, such as rock caverns, nuclear waste disposal repositories, metro rail tunnels, multi-layer underground parking, are constructed within hard crystalline rocks because of their high quality and low matrix permeability. In such rocks, fluid flows mainly through fractures. Quantification of fractures along with the behavior of the fluid flow through them, at different scales, becomes quite important. Earlier studies have revealed the influence of sample size on the confining stress–permeability relationship and it has been demonstrated that permeability of the fractured rock mass decreases with an increase in sample size. However, most of the researchers have employed numerical simulations to model fluid flow through the fracture/fracture network, or laboratory investigations on intact rock samples with diameter ranging between 38 mm and 45 cm and the diameter-to-length ratio of 1:2 using different experimental methods. Also, the confining stress, σ3, has been considered to be less than 30 MPa and the effect of fracture roughness has been ignored. In the present study, an extension of the previous studies on “laboratory simulation of flow through single fractured granite” was conducted, in which consistent fluid flow experiments were performed on cylindrical samples of granitoids of two different sizes (38 mm and 54 mm in diameters, containing a “rough walled single fracture”. These experiments were performed under varied confining pressure (σ3 = 5–40 MPa, fluid pressure (fp ≤ 25 MPa, and fracture roughness. The results indicate that a nonlinear relationship exists between the discharge, Q, and the effective confining pressure, σeff., and Q decreases with an increase in σeff.. Also, the effects of sample size and fracture roughness do not persist when σeff. ≥ 20 MPa. It is expected that such a study will be quite useful in correlating and extrapolating the laboratory

  18. Unsteady hydromagnetic Couette flow through a porous medium in a rotating system

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper investigates the unsteady hydromagnetic Couette fluid flow through a porous medium between two infinite horizontal plates induced by the non-torsional oscillations of one of the plates in a rotating system using boundary layer approximation.The fluid is assumed to be Newtonian and incompressible.Laplace transform technique is adopted to obtain a unified solution of the velocity fields.Such a flow model is of great interest,not only for its theoretical significance,but also for its wide applicatio...

  19. Investor Behavior and Flow-through Capability in the US Stock Market.

    Science.gov (United States)

    Cano, Carlos; Jareño, Francisco; Tolentino, Marta

    2016-01-01

    This paper analyzes investor behavior depending on the flow-through capability (FTC) in the US stock market, because investors seek protection from inflation rate changes, and the FTC (a firm's ability to transmit inflation shocks to the prices of its products and services) is a key factor in investment decisions. Our estimates of the FTC of firms listed on the US stock exchange at the sector level are significantly different among industries, and we demonstrate a direct relationship between changes in stock prices (at the sector level) and FTC. These results would be relevant because they have important implications on investor behavior.

  20. Getting Out Of A Tight Spot: Physics Of Flow Through Porous Materials

    Science.gov (United States)

    Datta, Sujit Sankar

    We study the physics of flow through porous materials in two different ways: by directly visualizing flow through a model three-dimensional (3D) porous medium, and by investigating the deformability of fluid-filled microcapsules having porous shells. In the first part of this thesis, we develop an experimental approach to directly visualize fluid flow through a 3D porous medium. We use this to investigate drainage, the displacement of a wetting fluid from a porous medium by a non-wetting fluid, as well as secondary imbibition, the subsequent displacement of the non-wetting fluid by the wetting fluid. We characterize the intricate morphologies of the non-wetting fluid ganglia left trapped within the pore space, and show how the ganglia configurations vary with the wetting fluid flow rate. We then visualize the spatial fluctuations in the fluid flow, both for single- and multi-phase flow. We use our measurements to quantify the strong variability in the flow velocities, as well as the pore-scale correlations in the flow. Finally, we use our experimental approach to study the simultaneous flow of both a wetting and a non-wetting fluid through a porous medium, and elucidate the flow instabilities that arise for sufficiently large flow rates. In the second part of this thesis, we study the mechanical properties of porous spherical microcapsules. We first introduce emulsions, and describe how their rheology depends on the microscopic interactions between the drops comprising them. We then study the formation and buckling of one class of microcapsule -- nanoparticle-coated emulsion drops. We also use double emulsions, drops within drops, as templates to form another class of microcapsule -- drops coated with thin, porous, polymer shells. We investigate how, under sufficient osmotic pressure, these microcapsules buckle, and show how the inhomogeneity in the shell structure can guide the folding pathway taken by a microcapsule as it buckles. Finally, we study the expansion

  1. Oxygen Transfer Model for a Flow-Through Hollow-Fiber Membrane Biofilm Reactor

    DEFF Research Database (Denmark)

    Gilmore, K. R.; Little, J. C.; Smets, Barth F.

    2009-01-01

    A mechanistic oxygen transfer model was developed and applied to a flow-through hollow-fiber membrane-aerated biofilm reactor. Model results are compared to conventional clean water test results as well as performance data obtained when an actively nitrifying biofilm was present on the fibers....... With the biofilm present, oxygen transfer efficiencies between 30 and 55% were calculated from the measured data including the outlet gas oxygen concentration, ammonia consumption stoichiometry, and oxidized nitrogen production stoichiometry, all of which were in reasonable agreement. The mechanistic model...

  2. Removal of biological stains from aqueous solution using a flow-through decontamination procedure.

    Science.gov (United States)

    Lunn, G; Klausmeyer, P J; Sansone, E B

    1994-01-01

    Chromatography columns filled with Amberlite XAD-16 were used to decontaminate, using a continuous flow-through procedure, aqueous solutions of the following biological stains: acridine orange, alcian blue 8GX, alizarin red S, azure A, azure B, brilliant blue G, brilliant blue R, Congo red, cresyl violet acetate, crystal violet, eosin B, eosin Y, erythrosin B, ethidium bromide, Giemsa stain, Janus green B, methylene blue, neutral red, nigrosin, orcein, propidium iodide, rose Bengal, safranine O, toluidine blue O, and trypan blue. Adsorption was most efficient for stains of lower molecular weight (removing stains from aqueous solution.

  3. Use of surface enhanced blocking (SEB electrodes for microbial cell lysis in flow-through devices.

    Directory of Open Access Journals (Sweden)

    Abdossamad Talebpour

    Full Text Available By simultaneously subjecting microbial cells to high amplitude pulsed electric fields and flash heating of the cell suspension fluid, effective release of intracellular contents was achieved. The synergistic effect of the applied electric field and elevated temperature on cell lysis in a flow-through device was demonstrated for Gram-negative and Gram-positive bacteria, and Mycobacterium species. The resulting lysate is suitable for downstream nucleic acid amplification and detection without requiring further preparation. The lysis chamber employs surface enhanced blocking electrodes which possess an etched micro-structured surface and a thin layer of dielectric metal oxide which provides a large effective area and blocks transmission of electrical current. The surface enhanced blocking electrodes enable simultaneous suppression of the rapid onset of electric field screening in the bulk of the cell suspension medium and avoidance of undesired electrochemical processes at the electrode-electrolyte interface. In addition the blocking layer ensures the robustness of the cell lysis device in applications involving prolonged flow-through processing of the microbial cells.

  4. Numerical Simulation of Water Flow through the Bottom End Piece of a Nuclear Fuel Assembly

    Science.gov (United States)

    Navarro, Moysés A.; Santos, André A. C. Dos

    An experimental and numerical study was conducted on the pressure loss of flows through the bottom end piece of a nuclear fuel assembly. To determine an optimized numerical methodology using the commercial CFD code, CFX 10.0, a series of preliminary simulations of water flows through perforated plates in a square ducts were performed. A perforated plate is a predominant geometry of the bottom end piece, responsible for the majority of the flow's pressure drop. The numerical pressure loss applying an optimized mesh and the k-ɛ turbulence model showed good agreement when compared with a conventional methodology (Idelchik). Numerical results for the standard bottom end piece were obtained applying the previously determined mesh criteria and the k-ɛ turbulence model with some geometric simplifications. The agreement between the numerical simulations and experimental results can be considered satisfactory but suggests further numerical investigations with the bottom piece under real conditions of the experiment, without the geometric simplifications and with a gap between the piece and the wall of the flow channel. Additionally, other turbulence models should be appraised for this complex geometry.

  5. Computation of incompressible viscous flows through artificial heart devices with moving boundaries

    Science.gov (United States)

    Kiris, Cetin; Rogers, Stuart; Kwak, Dochan; Chang, I.-DEE

    1991-01-01

    The extension of computational fluid dynamics techniques to artificial heart flow simulations is illustrated. Unsteady incompressible Navier-Stokes equations written in 3-D generalized curvilinear coordinates are solved iteratively at each physical time step until the incompressibility condition is satisfied. The solution method is based on the pseudo compressibility approach and uses an implicit upwind differencing scheme together with the Gauss-Seidel line relaxation method. The efficiency and robustness of the time accurate formulation of the algorithm are tested by computing the flow through model geometries. A channel flow with a moving indentation is computed and validated with experimental measurements and other numerical solutions. In order to handle the geometric complexity and the moving boundary problems, a zonal method and an overlapping grid embedding scheme are used, respectively. Steady state solutions for the flow through a tilting disk heart valve was compared against experimental measurements. Good agreement was obtained. The flow computation during the valve opening and closing is carried out to illustrate the moving boundary capability.

  6. A numerical study of steady flow through a curved tube with wavy walls

    Science.gov (United States)

    Prince, Chekema; Gu, Mingyao; Peterson, Sean

    2011-11-01

    Flow through curved tubes has been studied for nearly a century owing to the practical industrial applications and general academic interest. More recently, interest in curved tubes has resurfaced due to the ubiquity of curvature in the vasculature and the resulting need to accurately model arterial vessels. Previous studies have focused primarily on circular cross sections and the roles of the Dean number and curvature ratio on the flow physics. In this study we examine the effect of wavy walls, that is, axially aligned ribs extending the length of the tube, on steady flow through mildly and finite curved tubes using computational fluid dynamics. Analytical work on the subject has been limited to low Dean numbers and small bump heights, thus we primarily focus on the impact of higher Dean number with large protrusions on the flow physics. The results are compared with those in circular cross section tubes at the same Dean number. Particular attention is paid to flow characteristics of interest in the vasculature, such as wall shear stress, that have been shown to stimulate biochemical pathways that trigger cell growth.

  7. Flow-Through Electroporation of HL-60 White Blood Cell Suspensions using Nanoporous Membrane Electrodes.

    Science.gov (United States)

    Chen, Zhiqiang; Akenhead, Michael A; Sun, Xinghua; Sapper, Harrison; Shin, Hainsworth Y; Hinds, Bruce J

    2016-08-01

    A flow-through electroporation system, based on a novel nanoporous membrane/electrode design, for the delivery of cell wall-impermeant molecules into model leukocytes, HL-60 promyelocytes, was demonstrated. The ability to apply low voltages to cell populations, with nm-scale concentrated electric field in a periodic array, contributes to high cell viability. With applied biases of 1-4V, delivery of target molecules was achieved with 90% viability and up to 65% transfection efficiency. More importantly, the system allowed electrophoretic pumping of molecules from a microscale reservoir across the membrane/electrode system into a microfluidic flow channel for transfection of cells, a design that can reduce reagent amount by eightfold compared to current strategies. The flow-through system, which forces intimate membrane/electrode contact by using a 10μm channel height, can be easily scaled-up by adjusting the microfluidic channel geometry and/or the applied voltage pulse frequency to control cell residence times at the cell membrane/electrode interface. The demonstrated system shows promise in clinical applications where low-cost, high cell viability and high volume transfection methods are needed without the risk of viral vectors. In particular genetic modification of freely mobile white blood cells to either target disease cells or to express desired protein/enzyme biomolecules is an important target platform enabled by this device system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Computer Simulation of Turbulent Flow through a Hydraulic Turbine Draft Tube

    Institute of Scientific and Technical Information of China (English)

    HU Ying; CHENG Heming; WANG Quanlong; YU Zhikun

    2006-01-01

    Based on the Navier-Stokes equations and the standard k-ε turbulence model, this paper presents the derivation of the governing equations for the turbulent flow field in a draft tube. The mathematical model for the turbulent flow through a draft tube is set up when the boundary conditions, including the inlet boundary conditions, the outlet boundary conditions and the wall boundary conditions, have been implemented. The governing equations are formulated in a discrete form on a staggered grid system by the finite volume method. The second-order central difference approximation and hybrid scheme are used for discretization. The computation and analysis on internal flow through a draft tube have been carried out by using the simplec algorithm and cfx-tasc flow software so as to obtain the simulated flow fields. The calculation results at the design operating condition for the draft tube are presented in this paper. Thereby, an effective method for simulating the internal flow field in a draft tube has been explored.

  9. Energy dissipation rate limits for flow through rough channels and tidal flow across topography

    CERN Document Server

    Kerswell, R R

    2016-01-01

    An upper bound on the energy dissipation rate per unit mass, $\\epsilon$, for pressure-driven flow through a channel with rough walls is derived for the first time. For large Reynolds numbers, $Re$, the bound - $\\epsilon \\,\\leq \\, c\\, U^3/h$ where $U$ is the mean flow through the channel, $h$ the channel height and $c$ a numerical prefactor - is independent of $Re$ (i.e. the viscosity) as in the smooth channel case but the numerical prefactor $c$, which is only a function of the surface heights and surface gradients (i.e. not higher derivatives), is increased. Crucially, this new bound captures the correct scaling law of what is observed in rough pipes and demonstrates that while a smooth pipe is a singular limit of the Navier-Stokes equations (data suggests $\\epsilon \\, \\sim \\, 1/(\\log Re)^2\\, U^3/h$ as $Re \\rightarrow \\infty$), it is a regular limit for current bounding techniques. As an application, the bound is extended to oscillatory flow to estimate the energy dissipation rate for tidal flow across botto...

  10. A 3D velocimetry study of the flow through prosthetic heart valves

    Science.gov (United States)

    Ledesma, R.; Zenit, R.; Pulos, G.; Sanchez, E.; Juarez, A.

    2006-11-01

    Blood damage commonly appears in medical valve prothesis. It is a mayor concern for the designers and surgeons. It is well known that this damage and other complications result from the modified fluid dynamics through the replacement valve. To evaluate the performance of prosthetic heart valves, it is necessary to study the flow through them. To conduct this study , we have built a flow channel that emulates cardiac conditions and allows optical access such that a 3D-PIV velocimetry system could be used. The experiments are aimed to reconstruct the downstream structure of the flow through a mechanical and a bio-material tricuspid heart valve prothesis. Preliminary results show that the observed coherent structures can be related with haemolysis and trombosis, illnesses commonly found in valve prothesis recipients. The mean flow, the levels of strain rate and the turbulence intensity generated by the valves can also be directly related to blood damage. In general, bio-material made valves tend to reduce these complications.

  11. Separation of a binary mixture of pesticides in fruits using a flow-through optosensor.

    Science.gov (United States)

    Llorent-Martínez, E J; Delgado-Blanca, I; Ruiz-Medina, A; Ortega-Barrales, P

    2013-10-15

    A flow-through optosensor is here proposed for the determination of mixtures of two widely used pesticides, carbendazim and o-phenylphenol, in fruits. The pesticides are separated on-line using an additional amount of solid support, C18 silica gel, in the flow-through cell. The resolution is performed due to the different retention/desorption kinetics of the analytes when interacting with the C18 microbeads. Therefore, both separation and determination are integrated in the same cell, considerably simplifying the system. In addition, the use of Sequential Injection Analysis provides a high degree of automation and minimum wastes generation. After the analytes are separated, their native fluorescence is measured, obtaining linearity in the 2.0-30 and 1.1-20 mg kg(-1) ranges for carbendazim and o-phenylphenol. The detection limits are 0.60 and 0.33 mg kg(-1) for carbendazim and o-phenylphenol respectively. The proposed method fulfills the maximum residue limits (MRLs) established in Europe and USA for these pesticides in cherries, pineapple, and mango: 5-10 mg kg(-1). In order to demonstrate the suitability of the method, several samples have been analyzed and the obtained results compared with a chromatographic method.

  12. Numerical analysis of viscous flow through fibrous media: a model for glomerular basement membrane permeability.

    Science.gov (United States)

    Palassini, M; Remuzzi, A

    1998-01-01

    Viscous flow through fibrous media is characterized macroscopically by the Darcy permeability (KD). The relationship between KD and the microscopic structure of the medium has been the subject of experimental and theoretical investigations. Calculations of KD based on the solution of the hydrodynamic flow at fiber scale exist in literature only for two-dimensional arrays of parallel fibers. We considered a fiber matrix consisting of a three-dimensional periodic array of cylindrical fibers with uniform radius (r) and length connected in a tetrahedral structure. According to recent ultrastructural studies, this array of fibers can represent a model for the glomerular basement membrane (GBM). The Stokes flow through the periodic array was simulated using a Galerkin finite element method. The dimensionless ratio K* = KD/r2 was determined for values of the fractional solid volume (phi) in the range 0.005 equation only for phi > 0.4. Among the other theoretical analysis considered, only that of Spielman and Goren (Environ. Sci. Technol. 2: 279-287, 1968) gives satisfactory agreement in the whole range of phi considered. These results can be useful to model combined transport of water and macromolecules through the GBM for the estimation of the radius and length of extracellular protein fibrils.

  13. Constant gradient PFG sequence and automated cumulant analysis for quantifying dispersion in flow through porous media

    Science.gov (United States)

    Scheven, U. M.

    2013-12-01

    This paper describes a new variant of established stimulated echo pulse sequences, and an analytical method for determining diffusion or dispersion coefficients for Gaussian or non-Gaussian displacement distributions. The unipolar displacement encoding PFGSTE sequence uses trapezoidal gradient pulses of equal amplitude g and equal ramp rates throughout while sampling positive and negative halves of q-space. Usefully, the equal gradient amplitudes and gradient ramp rates help to reduce the impact of experimental artefacts caused by residual amplifier transients, eddy currents, or ferromagnetic hysteresis in components of the NMR magnet. The pulse sequence was validated with measurements of diffusion in water and of dispersion in flow through a packing of spheres. The analytical method introduced here permits the robust determination of the variance of non-Gaussian, dispersive displacement distributions. The noise sensitivity of the analytical method is shown to be negligible, using a demonstration experiment with a non-Gaussian longitudinal displacement distribution, measured on flow through a packing of mono-sized spheres.

  14. An ultra-high temperature flow-through capillary device for bacterial spore lysis.

    Science.gov (United States)

    Hukari, Kyle W; Patel, Kamlesh D; Renzi, Ronald F; West, Jay A A

    2010-08-01

    Rapid and specific characterization of bacterial endospores is dependent on the ability to rupture the cell wall to enable analysis of the intracellular components. In particular, bacterial spores from the bacillus genus are inherently robust and very difficult to lyze or solubilize. Standard protocols for spore inactivation include chemical treatment, sonication, pressure, and thermal lysis. Although these protocols are effective for the inactivation of these agents, they are less well suited for sample preparation for analysis using proteomic and genomic approaches. To overcome this difficulty, we have designed a simple capillary device to perform thermal lysis of bacterial spores. Using this device, we were able to super heat (195 degrees C) an ethylene glycol lysis buffer to perform rapid flow-through rupture and solubilization of bacterial endospores. We demonstrated that the lysates from this preparation method are compatible with CGE as well as DNA amplification analysis. We further demonstrated the flow-through lysing device could be directly coupled to a miniaturized electrophoresis instrument for integrated sample preparation and analysis. In this arrangement, we were enabled to perform sample lysis, fluorescent dye labeling, and protein electrophoresis analysis of bacterial spores in less than 10 min. The described sample preparation device is rapid, simple, inexpensive, and easily integratable with various microfluidic devices.

  15. Numerical Investigation of Oxygenated and Deoxygenated Blood Flow through a Tapered Stenosed Arteries in Magnetic Field.

    Science.gov (United States)

    Abdollahzadeh Jamalabadi, M Y; Akbari Bidokhti, Amin Ali; Khak Rah, Hamid; Vaezi, Siavash; Hooshmand, Payam

    2016-01-01

    Current paper is focused on transient modeling of blood flow through a tapered stenosed arteries surrounded a by solenoid under the presence of heat transfer. The oxygenated and deoxygenated blood are considered here by the Newtonian and Non-Newtonian fluid (power law and Carreau-Yasuda) models. The governing equations of bio magnetic fluid flow for an incompressible, laminar, homogeneous, non-Newtonian are solved by finite volume method with SIMPLE algorithm for structured grid. Both magnetization and electric current source terms are well thought-out in momentum and energy equations. The effects of fluid viscosity model, Hartmann number, and magnetic number on wall shear stress, shearing stress at the stenosis throat and maximum temperature of the system are investigated and are optimized. The current study results are in agreement with some of the existing findings in the literature and are useful in thermal and mechanical design of spatially varying magnets to control the drug delivery and biomagnetic fluid flows through tapered arteries.

  16. Simulation of Fluid Flows through the Irradiation Test Rig for DUPIC Mini-element

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Yoon, Churl; Lee, Chul Yong; Song, Kee Chan

    2006-02-15

    The flow characteristic of the irradiation test rigs has been investigated by using a commercial CFD code, CFX-5.7(Ansys Inc.). The test rigs had been developed and fabricated to irradiate the DUPIC mini-elements in the HANARO research reactor of the Korea Atomic Energy Research Institute. First, the fluid flow through the DUPIC-2 test rig was calculated and compared with an experimental data. The computed pressure drops across the DUPIC-2 test rig match well with the experimental data. Then, a CFD analysis has been performed for the fluid flow through the newly-designed DUPIC-6 test rig. As results of the prediction, it is estimated that the mass flow rate is 8.0 kg/s under the pressure drop across the DUPIC-6 test rig of 215.5 kPa. The corresponding the maximum vibration displacement is expected to be around 50 {open_square}m, which satisfies the license limit with large margin.

  17. Beyond Poiseuille: Over-limiting Fluid Flows through Macroscopically Long Carbon Nanochannels

    Science.gov (United States)

    Sinha Ray, S.; Yarin, A. L.

    2009-11-01

    Nanotubes and nanochannels have tremendous potential in various fields like drug delivery, DNA segregation, capillary electrophoresis etc. Except coelectrospinning all the methods result in nanotubes sufficiently small in diameter (1-100 nm) but not longer than several micron precluding easy manipulation making them almost unsuitable for installing in nanofluidic devices for studying fluid flow characteristics. In this work we developed macroscopically long (˜1 cm) carbon nanochannels and studied flow characteristics in them. Then, we demonstrated that bi-layer flows of liquid and gas can result in an over-limiting regime, where a higher flow rate of liquid can be achieved as compared to the case when the same liquid flows through the same tube subjected to the same pressure drop and occupies the whole bore. This paradoxical result is because the less viscous gas layer can flow much faster than the underlying liquid layer and entrain the latter via a significant shear stress. The present results show that the over-limiting liquid flows through nanotubes, seemingly resembling a deviation from the no-slip condition, in reality are entrained by a rapidly moving gas layer in bi-layer liquid/gas flows. This quasi-slip phenomenon happens in relatively large nanotubes (˜500 nm) where the no-slip condition holds with sufficient accuracy, which can be beneficial in micro- and nanofluidics, nanoreactors and drug delivery systems, which are the current goals of this team.

  18. Evaluation of a universal flow-through model for predicting and designing phosphorus removal structures.

    Science.gov (United States)

    Penn, Chad; Bowen, James; McGrath, Joshua; Nairn, Robert; Fox, Garey; Brown, Glenn; Wilson, Stuart; Gill, Clinton

    2016-05-01

    Phosphorus (P) removal structures have been shown to decrease dissolved P loss from agricultural and urban areas which may reduce the threat of eutrophication. In order to design or quantify performance of these structures, the relationship between discrete and cumulative removal with cumulative P loading must be determined, either by individual flow-through experiments or model prediction. A model was previously developed for predicting P removal with P sorption materials (PSMs) under flow-through conditions, as a function of inflow P concentration, retention time (RT), and PSM characteristics. The objective of this study was to compare model results to measured P removal data from several PSM under a range of conditions (P concentrations and RT) and scales ranging from laboratory to field. Materials tested included acid mine drainage residuals (AMDRs), treated and non-treated electric arc furnace (EAF) steel slag at different size fractions, and flue gas desulfurization (FGD) gypsum. Equations for P removal curves and cumulative P removed were not significantly different between predicted and actual values for any of the 23 scenarios examined. However, the model did tend to slightly over-predict cumulative P removal for calcium-based PSMs. The ability of the model to predict P removal for various materials, RTs, and P concentrations in both controlled settings and field structures validate its use in design and quantification of these structures. This ability to predict P removal without constant monitoring is vital to widespread adoption of P removal structures, especially for meeting discharge regulations and nutrient trading programs.

  19. Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades

    Science.gov (United States)

    Lee, J.K.; Roig, L.C.; Jenter, H.L.; Visser, H.M.

    2004-01-01

    Hydraulic data collected in a flume fitted with pans of sawgrass were analyzed to determine the vertically averaged drag coefficient as a function of vegetation characteristics. The drag coefficient is required for modeling flow through emergent vegetation at low Reynolds numbers in the Florida Everglades. Parameters of the vegetation, such as the stem population per unit bed area and the average stem/leaf width, were measured for five fixed vegetation layers. The vertically averaged vegetation parameters for each experiment were then computed by weighted average over the submerged portion of the vegetation. Only laminar flow through emergent vegetation was considered, because this is the dominant flow regime of the inland Everglades. A functional form for the vegetation drag coefficient was determined by linear regression of the logarithmic transforms of measured resistance force and Reynolds number. The coefficients of the drag coefficient function were then determined for the Everglades, using extensive flow and vegetation measurements taken in the field. The Everglades data show that the stem spacing and the Reynolds number are important parameters for the determination of vegetation drag coefficient. ?? 2004 Elsevier B.V. All rights reserved.

  20. Simultaneous measurements of velocity and deformation in flows through compliant diaphragms

    Science.gov (United States)

    Amatya, D. M.; Longmire, E. K.

    2010-02-01

    Flow through a circular orifice in a deformable diaphragm mounted in a pipe was studied experimentally as a simple yet suitable case for validating numerical fluid/structure interaction (FSI) codes including structures with significant deformation and strain. The flow was characterized using pressure taps, particle image velocimetry (PIV), and hot-film anemometry while deformation of the compliant diaphragm was determined directly from PIV images. The diaphragm material properties were measured independently by a uniaxial tensile testing machine. The diaphragm material modulus, orifice diameter, and pipe Reynolds number were varied over ranges appropriate for simulations of flows through heart valves. Pipe Reynolds numbers ranged from 600 (laminar upstream condition) to 8800 (turbulent upstream condition). The pressure drop across the diaphragm resulted in a concave deformation for all cases studied. For the range of Reynolds number tested, the Euler number decreased with increasing Reynolds number as a result of orifice expansion. The flow immediately downstream of compliant diaphragms was jet-like with strong inward radial velocity components and vena contracta. Laminar low Reynolds number flow (Re=600) through both rigid and compliant diaphragms yielded early and regular roll up of coherent vortex rings at a fixed frequency in contrast to turbulent higher Reynolds number flow (Re=3900), which yielded a broad range of vortex passage frequencies. Expansion of the compliant orifice for Re=3900 resulted in an initially broader slower jet with delayed shear layer development compared with the equivalent rigid case.

  1. In-tank fluid sloshing effects during earthquakes: A preliminary computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.E.; Rezvani, M.A.

    1995-04-01

    Hundreds of underground radioactive waste storage tanks are located at Department of Energy (DOE) sites. At present, no technique for evaluating the pressure loads due to the impact of earthquake generated waves on the side walls and dome of the tanks is known if the wave breaks back on itself. This paper presents the results of two-dimensional Computational Fluid Dynamics (CFD) calculations of the motion of waves in a generic rectangular tank as the result of accelerations recorded during an earthquake. The advantages and limitations of this technique and methods for avoiding the limitations will be discussed.

  2. A Study on Solute Dispersion in a Three Layer Blood-like Liquid Flowing through a Rigid Artery

    National Research Council Canada - National Science Library

    Sudip Debnath; Apu Kumar Saha; Ashis Kumar Roy

    2017-01-01

    The unsteady dispersion of a solute has been discussed by the method of generalized dispersion technique in a blood-like liquid flowing through a pipe under the combined effects of finite yield stress...

  3. Two-phase pulsatile flows through porous conical tubes of small diameters. Modelisation of the blood microcirculation.

    Science.gov (United States)

    Zeggwagh, G; Bellet, D

    1987-01-01

    A theoretical study concerning two-component fluid pulsating flow through porous conical ducts is presented. The model corresponds to blood flows through small diameter porous conical vessels. This approach is based on a finite difference method. The physical hypothesis used were based on findings from simultaneous visualization methods. The influence of geometrical, hydrodynamical and structural parameters is systematically examined and related to velocity profiles, hydrostatic pressure.

  4. Material selection for Multi-Function Waste Tank Facility tanks

    Energy Technology Data Exchange (ETDEWEB)

    Larrick, A.P.; Blackburn, L.D.; Brehm, W.F.; Carlos, W.C.; Hauptmann, J.P. [Westinghouse Hanford Co., Richland, WA (United States); Danielson, M.J.; Westerman, R.E. [Pacific Northwest Lab., Richland, WA (United States); Divine, J.R. [ChemMet Ltd., West Richland, WA (United States); Foster, G.M. [ICF Kaiser Hanford Co., Richland, WA (United States)

    1995-03-01

    This paper briefly summarizes the history of the materials selection for the US Department of Energy`s high-level waste carbon steel storage tanks. It also provides an evaluation of the materials for the construction of new tanks at the evaluation of the materials for the construction of new tanks at the Multi-Function Waste Tank Facility. The evaluation included a materials matrix that summarized the critical design, fabrication, construction, and corrosion resistance requirements: assessed. each requirement: and cataloged the advantages and disadvantages of each material. This evaluation is based on the mission of the Multi-Function Waste Tank Facility. On the basis of the compositions of the wastes stored in Hanford waste tanks, it is recommended that tanks for the Multi-Function Waste Tank Facility be constructed of ASME SA 515, Grade 70, carbon steel.

  5. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Friis-Madsen, Erik

    2006-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57!27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world’s first offshore wave energy...

  6. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter Bak; Friis-Madsen, Erik

    2004-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57 x 27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world's first offshore wave energy...

  7. One-heater flow-through polymerase chain reaction device by heat pipes cooling.

    Science.gov (United States)

    Chen, Jyh Jian; Liao, Ming Huei; Li, Kun Tze; Shen, Chia Ming

    2015-01-01

    This study describes a novel microfluidic reactor capable of flow-through polymerase chain reactions (PCR). For one-heater PCR devices in previous studies, comprehensive simulations and experiments for the chip geometry and the heater arrangement were usually needed before the fabrication of the device. In order to improve the flexibility of the one-heater PCR device, two heat pipes with one fan are used to create the requisite temperature regions in our device. With the integration of one heater onto the chip, the high temperature required for the denaturation stage can be generated at the chip center. By arranging the heat pipes on the opposite sides of the chip, the low temperature needed for the annealing stage is easy to regulate. Numerical calculations and thermal measurements have shown that the temperature distribution in the five-temperature-region PCR chip would be suitable for DNA amplification. In order to ensure temperature uniformity at specific reaction regions, the Re of the sample flow is less than 1. When the microchannel width increases and then decreases gradually between the denaturation and annealing regions, the extension region located in the enlarged part of the channel can be observed numerically and experimentally. From the simulations, the residence time at the extension region with the enlarged channel is 4.25 times longer than that without an enlarged channel at a flow rate of 2 μl/min. The treated surfaces of the flow-through microchannel are characterized using the water contact angle, while the effects of the hydrophilicity of the treated polydimethylsiloxane (PDMS) microchannels on PCR efficiency are determined using gel electrophoresis. By increasing the hydrophilicity of the channel surface after immersing the PDMS substrates into Tween 20 (20%) or BSA (1 mg/ml) solutions, efficient amplifications of DNA segments were proved to occur in our chip device. To our knowledge, our group is the first to introduce heat pipes into

  8. Dwelling Water Tanks in Diyarbakir

    Directory of Open Access Journals (Sweden)

    Ali Ceylan

    2008-02-01

    Full Text Available BACKGROUND: In this connection, the object of this study has been to identify and compare the microbiological contamination and residue chlorine levels in the main network water that is taken from the Dicle Dam and distributed in Diyarbakir Province Centre and in the tanks of dwellings that use this water as well as the effects of the maintenance, hygiene, and physical conditions of these tanks on microbiological contamination. METHODS: Water samples were taken from both the tank input side network water and tank output side tank waters of 200 dwellings with water tanks in Diyarbakir city centre (tank entrance network side water for 200 and tank output side tank water for 200 within the framework of the research study. RESULTS: Coliform bacteria were detected in 35% of the tank entrance side network water samples and in 52.0% percent of the tank output side water samples. Faecal coliform bacteria were not detected in tank entrance side network water samples, but they existed in 2.5% of the tank output side water samples. Free residue chlorine level was found to be over 0.2 ppm in 67% of tank entrance side network water samples and in 35% of the tank output side water samples. Coliform bacteria were detected in 95.5% of the tank entrance side network water samples, of which free residue chlorine level were below 0.2 ppm. Total germ growth was detected in 52.0% of the tank entrance side network water samples and in 67.5% of the tank output side water samples. The most frequently isolated bacteria both in tank entrance side network and tank output side water samples were found to be Bacillus spp. Bacillus type bacteria were found in 48% of tank entrance side network water samples and 57.5% of the tank output side water samples. Filamentous fungi were prevalent in 8% of all the samples examined within the study and the most commonly isolated filamentous fungi were Aspergillus spp (5.5% and Penicillum spp (2.5%. Water tanks of dwellings contain more

  9. Inerting ballast tanks

    Energy Technology Data Exchange (ETDEWEB)

    Baes, Gabriel L.; Bronneberg, Jos [SBM Offshore, AA Schiedam (Netherlands); Barros, Maria A.S.D. de [Universidade Estadual de Maringa (UEM), PR (Brazil)

    2012-07-01

    This report expands upon the work conducted by SBM Offshore to develop a tank preservation treatment, which is intended to achieve a service life of 30 years. This work focuses on the corrosion problems, in the ballast tanks, based on new built hulls, both for the Gas Exploration Market, the FLNG - Floating Liquefied Natural Gas, and for the Oil Exploration market - FPSO's - Floating Production Storage and offloading Units. Herein, the corrosion rate input comes from the various references related to the process of nitrogen injection, which is expected to extend the vessel's time life. The essential elements of this solution comprise the deoxygenation process, corrosion models, coating effects, tests from laboratory, shipboard tests, corrosion institutes and regulations applicable to the operation. The best corrosion protection system for ballast tanks area combines a coating system and an inert gas system. The condition of the tanks will be dependent upon the level of protection applied to the steel structure, including, but not limited to coating, cathodic protection, etc. There is a need for products which extend the life time. It is not sufficient, only have good theoretical base for the corrosion and an excellent treatment system. In addition, the design of the ships structure must also eliminate the presence of local stress concentrations which can result in fatigue cracking and rupture of the protective coating barrier starting the corrosion. As a direct result of this, more problems in corrosion can be mitigated, vessels can have a better corrosion performance with less maintenance and repairs to coating systems in ballast tanks. Furthermore ships will be positively impacted operationally due to less frequent dry docking. There is a huge potential in the application of inert gas to combat the corrosion rate inside the ballast tanks, one of the most corrosive environments on earth. This application can have a direct impact on vessel structure

  10. TANK SPACE OPTIONS REPORT

    Energy Technology Data Exchange (ETDEWEB)

    WILLIS WL; AHRENDT MR

    2009-08-11

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  11. Fuel Cell Manufacturing Diagnostic Techniques: IR Thermography with Reactive Flow through Excitation

    Energy Technology Data Exchange (ETDEWEB)

    Manak, A. J.; Ulsh, M.; Bender, G.

    2012-01-01

    While design and material considerations for PEMFCs have a large impact on cost, it is also necessary to consider a transition to high volume production of fuel cell systems, including MEA components, to enable economies of scale and reduce per unit cost. One of the critical manufacturing tasks is developing and deploying techniques to provide in‐process measurement of fuel cell components for quality control. This effort requires a subsidiary task: The study of the effect of manufacturing defects on performance and durability with the objective to establish validated manufacturing tolerances for fuel cell components. This work focuses on the development of a potential quality control method for gas diffusion electrodes (GDEs). The method consists of infrared (IR) thermography combined with reactive flow through (RFT) excitation. Detection of catalyst loading reduction defects in GDE catalyst layers will be presented.

  12. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes.

    Science.gov (United States)

    Huang, Hubiao; Song, Zhigong; Wei, Ning; Shi, Li; Mao, Yiyin; Ying, Yulong; Sun, Luwei; Xu, Zhiping; Peng, Xinsheng

    2013-01-01

    Pressure-driven ultrafiltration membranes are important in separation applications. Advanced filtration membranes with high permeance and enhanced rejection must be developed to meet rising worldwide demand. Here we report nanostrand-channelled graphene oxide ultrafiltration membranes with a network of nanochannels with a narrow size distribution (3-5 nm) and superior separation performance. This permeance offers a 10-fold enhancement without sacrificing the rejection rate compared with that of graphene oxide membranes, and is more than 100 times higher than that of commercial ultrafiltration membranes with similar rejection. The flow enhancement is attributed to the porous structure and significantly reduced channel length. An abnormal pressure-dependent separation behaviour is also reported, where the elastic deformation of nanochannels offers tunable permeation and rejection. The water flow through these hydrophilic graphene oxide nanochannels is identified as viscous. This nanostrand-channelling approach is also extendable to other laminate membranes, providing potential for accelerating separation and water-purification processes.

  13. The energetics of flow through a rapidly oscillating tube with slowly varying amplitude.

    Science.gov (United States)

    Whittaker, Robert J; Heil, Matthias; Waters, Sarah L

    2011-07-28

    Motivated by the problem of self-excited oscillations in fluid-filled collapsible tubes, we examine the flow structure and energy budget of flow through an elastic-walled tube. Specifically, we consider the case in which a background axial flow is perturbed by prescribed small-amplitude high-frequency long-wavelength oscillations of the tube wall, with a slowly growing or decaying amplitude. We use a multiple-scale analysis to show that, at leading order, we recover the constant-amplitude equations derived by Whittaker et al. (Whittaker et al. 2010 J. Fluid Mech. 648, 83-121. (doi:10.1017/S0022112009992904)) with the effects of growth or decay entering only at first order. We also quantify the effects on the flow structure and energy budget. Finally, we discuss how our results are needed to understand and predict an instability that can lead to self-excited oscillations in collapsible-tube systems.

  14. Flow frictional characteristics of microencapsulated phase change material suspensions flowing through rectangular minichannels

    Institute of Scientific and Technical Information of China (English)

    RAO; Yu; Frank; Dammel; Peter; Stephan; LIN; Guiping

    2006-01-01

    An experimental investigation was conducted on the laminar flow frictional characteristics of suspensions with microencapsulated phase change material (MEPCM) in water flowing through rectangular copper minichannels. The MEPCM was provided at an average particle size of 4.97 μm, and was mixed with distilled water to form suspensions with various mass concentrations ranging from 0 to 20%. The experiment was performed to explore the effect of MEPCM mass concentration on friction factor and pressure drop in the minichannels. The Reynolds number ranged from 200 to 2000 to provide laminar and transitional flows. It was found that the experimental data for the suspensions with 0 and 5% concentration agree well with the existing theoretical data for an incompressible, fully developed, laminar Newtonian flow. For the suspensions with mass concentrations higher than 10%, there is an obvious increase in friction factor and pressure drop in comparison with laminar Newtonian flow.

  15. Adsorption interference in mixtures of trace contaminants flowing through activated carbon adsorber beds

    Science.gov (United States)

    Madey, R.; Photinos, P. J.

    1980-01-01

    Adsorption interference in binary and ternary mixtures of trace contaminants in a helium carrier gas flowing through activated carbon adsorber beds are studied. The isothermal transmission, which is the ratio of the outlet to the inlet concentration, of each component is measured. Interference between co-adsorbing gases occurs when the components are adsorbed strongly. Displacement of one component by another is manifested by a transmission greater than unity for the displaced component over some range of eluted volume. Interference is evidenced not only by a reduction of the adsorption capacity of each component in the mixture in comparison with the value obtained in a single-component experiment, but also by a change in the slope of the transmission curve of each component experiment.

  16. Dynamical behaviour of non newtonian spiral blood flow through arterial stenosis

    Science.gov (United States)

    Ali, Mohammad; Mahmudul Hasan, Md.; Alam Maruf, Mahbub

    2017-04-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system. A numerical investigation is carried out to analyze the effects of spiral blood flow through an axisymmetric three dimensional artery having 75% stenosis at the center. Blood is assumed as a non-Newtonian fluid. Standard k-ω model is used for the simulation with the Reynolds number of 1000. A parabolic velocity profile with spiral flow is used as inlet boundary condition. The peak values of all velocity components are found just after stenosis. But total pressure gradually decreases at downstream. Spiral flow of blood has significant effects on tangential component of velocity. However, the effect is mild for radial and axial velocity components. The peak value of wall shear stress is at the stenosis zone and decreases rapidly in downstream. The effect of spiral flow is significant for turbulent kinetic energy. Detailed investigation and relevant pathological issues are delineated throughout the paper.

  17. Dynamic Flow-through Methods for Metal Fractionation in Environmental Solid Samples

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald; Petersen, Roongrat

    occurring processes always take place under dynamic conditions, recent trends have been focused on the development of alternative flow-through dynamic methods aimed at mimicking environmental events more correctly than their classical extraction counterparts. In this lecture particular emphasis is paid......Accummulation of metal ions in different compartments of the biosphere and their possible mobilization under changing environmental conditions induce a pertubation of the ecosystem and may cause adverse health effects. Nowadays, it is widely recognized that the information on total content...... the ecotoxicological significance of metal ions in solid environmental samples. The background of end-over-end fractionation for releasing metal species bound to particular soil phases is initially discussed, its relevant features and limitations being thoroughly described. However, taking into account that naturally...

  18. Macropore-mesopore model of water flow through aggregated porous media

    Energy Technology Data Exchange (ETDEWEB)

    Fong, L.; Appelbaum, H.R.

    1980-12-01

    A combined, one-dimensional, macropore-mesopore, hydrologic model was developed for simulating water flow through soils for analysis of data related to water and chemical flow in soils. Flows within the macroporous system as well as interactive flows between macroporous and mesoporous systems were modeled. Computer subroutines were written and incorporated into the existing one-dimensional Terrestrial Ecosystem Hydrologic Model (TEHM) developed at ORNL. Simulation showed that macropore flow effects are important during heavy precipitation and are more significant in soils of comparatively low hydraulic conductivity (5 to 10 cm/d). Increased drainage and decreased lateral flow result from the addition of the macropore model. The effect was more pronounced in soils of large macroporosity. Preliminary results indicate that the model is insensitive to geometrical properties of macropores.

  19. Dynamic flow-through approaches for metal fractionation in environmentally relevant solid samples

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald; Chomchoei, Roongrat

    2005-01-01

    In the recent decades, batchwise equilibrium-based single or sequential extraction schemes have been consolidated as analytical tools for fractionation analyses to assess the ecotoxicological significance of metal ions in solid environmental samples. However, taking into account that naturally...... occurring processes always take place under dynamic conditions, recent trends have been focused on the development of alternative methods aimed at mimicking environmental events more correctly than their classical extraction counterparts. The present review details the state-of-the-art and the fundamental...... generations of flow-injection analysis. Special attention is also paid to a novel, robust, non-invasive approach for on-site continuous sampling of soil solutions, capitalizing on flow-through microdialysis, which presents itself as an appealing complementary approach to the conventional lysimeter experiments...

  20. Mathematical model for blood flow through a bifurcated artery using couple stress fluid.

    Science.gov (United States)

    Srinivasacharya, D; Madhava Rao, G

    2016-08-01

    In this article, the blood flow through a bifurcated artery with mild stenosis is investigated taking blood as couple stress fluid. The artery configuring bifurcation is assumed to be symmetric about the axis of the artery and straight cylinders of finite length. The governing equations are non-dimensionalized and coordinate transformation is used to convert the irregular boundary to a regular boundary. The resulting system of equations is solved numerically using the finite difference method. The variation of shear stress, flow rate and impedance near the apex with pertinent parameters are studied graphically. It has been noticed that shear stress, flow rate and impedance have been changing suddenly with all the parameters on both sides of the apex. This occurs because of the backflow of the streaming blood at the onset of the lateral junction and secondary flow near the apex in the daughter artery.

  1. Optical principle of pH measurement for detection of auxin flow through cellular membrane

    Science.gov (United States)

    Podrazky, Ondrej; Mrazek, Jan; Seidl, Miroslav; Kasik, Ivan; Tobiska, Petr; Matejec, Vlastimil; Martan, Tomas; Aubrecht, Jan

    2007-05-01

    The paper shows an approach to the determination of pH changes of solutions with a fine spatial resolution by means of fiber-optic tapers and fluorescence detection. This approach can be adopted for the determination of auxin flow through celluar membranes. Spectral absorption and fluorescence of pH transducers, namely of fluorescein, carboxyfluorescein, 6,8-dihydroxy-1,3-pyrenedisulfonic acid disodium salt and 2',7'-bis(2-carbonylethyl)-5(6)-carboxyfluorescein, were tested. The approach, based on the determination of a shift of the maxima of their fluorescence peaks, was employed for processing the measured fluorescence data in bulk solutions. Suitable tapered fiber probes were prepared and in vitro demonstrated for pH monitoring in a pH range from 6 to 7.

  2. Determining heat transfer coefficients in radial flow through a polyethylene packed

    Directory of Open Access Journals (Sweden)

    Luís Patiño

    2010-07-01

    Full Text Available A numerical-experimental methodology was used for determining interstitial heat transfer coefficients in water flowing through po-rous media where it was not in heat balance with the solid phase. Heat transfer coefficients were obtained through the single blow transient test method, combining experimental test equipment results with a mathematical model’s numerical solution. The partial differential equation system produced by the mathematical model was resolved by a numerical finite volume method-ba-sed methodology. Experimental tests and numerical solutions were satisfactorily carried out for different values from the fluid’s surface speed from the entrance to the bed and for different porosity values, finding that Nusselt numbers increased when Reynolds numbers also increased and that Nusselt numbers increased when porosity decreased. A 650 Reynolds number and 0.375 porosity gave a Nusselt number of up to 2.8.

  3. A fast algorithm for simulating multiphase flows through periodic geometries of arbitrary shape

    CERN Document Server

    Marple, Gary; Gillman, Adrianna; Veerapaneni, Shravan

    2015-01-01

    This paper presents a new boundary integral equation (BIE) method for simulating particulate and multiphase flows through periodic channels of arbitrary smooth shape in two dimensions. The authors consider a particular system---multiple vesicles suspended in a periodic channel of arbitrary shape---to describe the numerical method and test its performance. Rather than relying on the periodic Green's function as classical BIE methods do, the method combines the free-space Green's function with a small auxiliary basis, and imposes periodicity as an extra linear condition. As a result, we can exploit existing free-space solver libraries, quadratures, and fast algorithms, and handle a large number of vesicles in a geometrically complex channel. Spectral accuracy in space is achieved using the periodic trapezoid rule and product quadratures, while a first-order semi-implicit scheme evolves particles by treating the vesicle-channel interactions explicitly. New constraint-correction formulas are introduced that prese...

  4. Oil-in-water emulsions flow through constricted micro-capillarities

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Oswaldo Robles; Carvalho, Marcio da Silveira [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering

    2010-07-01

    The effect of the oil concentration and the drop size distribution on the characteristics of the flow of an emulsion through a constricted capillary was experimentally analyzed and quantified by the ratio of the pressure drop of the continuous phase flow to the pressure drop of the emulsion flow, at the same flow rate. The results confirm that the ratio between the capillary constriction diameter and the oil drop size is one of the most important parameters for this flow. For large oil drop size emulsions, the deformation of the drop as it flows through the constriction leads to a high extra pressure drop at low capillary numbers. For small oil drop size emulsions, the extra pressure drop is a function of the viscosity ratio and the disperse phase concentration. (author)

  5. Discussion on Flow-Through Phenomena in the Air Gauge Cascade

    Directory of Open Access Journals (Sweden)

    Jermak Czesław Janusz

    2017-03-01

    Full Text Available In the paper, the flow-through phenomena in the air gauge are under discussion form the thermodynamic and gasodynamic perspective. The main elements of the cascade are considered the inlet nozzle (restriction, measuring chamber and the measuring nozzle with the measuring slot (displacement between the nozzle head and measured surface. The purpose of the analysis was to point out the impact on the metrological characteristics of the air gauge. In particular, attention was paid to the airflow through the measuring slot. Here, the complex phenomena take place, among others the supersonic areas and a “bubble ring,” which cause discontinuity and hysteresis in the static characteristic. On the other hand, the air stream expansion after the restriction (inlet nozzle is observed in the measuring chamber. The point of the above discussion was to work out some recommendation on the nozzles geometry and the localization of the back-pressure measuring point in the chamber.

  6. Radiation Effects in Flow through Porous Medium over a Rotating Disk with Variable Fluid Properties

    Directory of Open Access Journals (Sweden)

    Shalini Jain

    2016-01-01

    Full Text Available The present study investigates the radiation effects in flow through porous medium over a permeable rotating disk with velocity slip and temperature jump. Fluid properties density (ρ, viscosity (μ, and thermal conductivity (κ are taken to be dependent on temperature. Particular case considering these fluid properties’ constant is also discussed. The governing partial differential equations are converted into nonlinear normal differential equation using similarity alterations. Transformed system of equations is solved numerically by using Runge-Kutta method with shooting technique. Effects of various parameters such as porosity parameter K, suction parameter Ws, rotational Reynolds number Re, Knudsen number Kn, Prandtl number Pr, radiation parameter N, and relative temperature difference parameter ε on velocity profiles along radial, tangential, and axial direction and temperature distribution are investigated for both variable fluid properties and constant fluid properties. Results obtained are analyzed and depicted through graphs and table.

  7. The WUW ML bundle detector A flow through detector for alpha-emitters

    CERN Document Server

    Wenzel, U; Lochny, M

    1999-01-01

    Using conventional laboratory ware, we designed and manufactured a flow through cell for monitoring alpha-bearing solutions. The cell consists of a bundle of thermoplastic, transparent tubes coated with a thin layer of the meltable scintillator MELTILEX sup T sup M at the inner surface. With appropriate energy windows set, the detector can suppress beta-particles to a great extent due to its geometrical dimensions. For pure alpha-solutions, the detection limits are 5 Bq/ml, for composite nuclide mixtures, the detector is capable to monitor the decontamination of medium active waste (<=10 sup 7 Bq/ml) down to 100 Bq alpha/g solution. At a throughput of 1 ml/s, the pressure build-up amounts to approx 2 bar. We have developed a quality control program to ensure the regularity of the individual bundle loops.

  8. The analysis of MHD blood flows through porous arteries using a locally modified homogenous nanofluids model.

    Science.gov (United States)

    Akbarzadeh, Pooria

    2016-05-12

    In this paper, magneto-hydrodynamic blood flows through porous arteries are numerically simulated using a locally modified homogenous nanofluids model. Blood is taken into account as the third-grade non-Newtonian fluid containing nanoparticles. In the modified nanofluids model, the viscosity, density, and thermal conductivity of the solid-liquid mixture (nanofluids) which are commonly utilized as an effective value, are locally combined with the prevalent single-phase model. The modified governing equations are solved numerically using Newton's method and a block tridiagonal matrix solver. The results are compared to the prevalent nanofluids single-phase model. In addition, the efficacies of important physical parameters such as pressure gradient, Brownian motion parameter, thermophoresis parameter, magnetic-field parameter, porosity parameter, and etc. on temperature, velocity and nanoparticles concentration profiles are examined.

  9. Variably-saturated Flow Through Mine Waste Rock in a Permafrost Environment

    Science.gov (United States)

    Neuner, M.; Gupton, M.; Smith, L.; Blowes, D.; Sego, D.

    2007-12-01

    Mining in northern Canada creates waste rock piles with the potential of generating acid rock drainage (ARD). Test piles fifteen meters high and smaller-scale collection lysimeters have been constructed to investigate infiltration and variably-saturated water flow through heterogeneous material in a region of continuous permafrost. Data collection includes time domain and frequency domain reflectrometry, lysimetry, tensiometers, electrical conductivity sensors, and flow gauges. Capillarity-driven flow travels slower than seasonal frost and thaw propagation, resulting in wetting fronts that freeze and are remobilized in the following summer period. In addition, highly permeable zones of waste rock can transmit water at rates as high as meters per hour, under certain conditions. Results from the research may be incorporated into mine closure strategies to minimize contaminant loading in cold climates.

  10. Gas separation by the molecular exchange flow through micropores of the membrane

    Science.gov (United States)

    Matsumoto, Michiaki; Nakaye, Shoeji; Sugimoto, Hiroshi

    2016-11-01

    A model gas separator that makes use of the molecular exchange flow through porous membrane of 18 cm2 area is fabricated. The gas separator performance is tested for helium-neon mixture. The separator divides a continuous flow of gas mixture into two flows of different gases. The difference of mole percentage is around 8 % at the volumetric feed flow rate of 1 sccm. In the present system, the molecular exchange flow is induced in two Knudsen pumps, where the mixed cellulose ester membrane is used as the thermal transpiration material. The experiment demonstrates the capability of these pumps to increase the concentration of heavy and light molecules, respectively, from the feed mixture.

  11. Experimental And Analytical Study Of Heat Transfer And Fluid Flow Through Aluminum Foams

    Science.gov (United States)

    Mancin, Simone; Zilio, Claudio; Rossetto, Luisa; Cavallini, Alberto

    2010-05-01

    This paper aims at investigating the air heat transfer and fluid flow through eight Aluminum open cell foam samples with different number of pores per linear inch (PPI ranging between 5 and 40), almost constant porosity (around 0.92-0.93) and different foam core heights (20 and 40 mm). The experimental heat transfer coefficient and pressure drop measurements have been collected in a test rig built at Dipartimento di Fisica Tecnica of the University of Padova. Three different heat fluxes have been imposed: 25.0, 32.5 and 40.0 kW m-2 and the air mass flow rate has been varied between 0.005 and 0.025 kg s-1, with air approach velocity between 2 and 5 m s-1. The effect of the foam height on the heat transfer has been experimentally analysed. Finally, the pressure drop measurements have been compared against an analytical model suggested in the open literature.

  12. Mathematical modelling of blood flow through a tapered overlapping stenosed artery with variable viscosity

    CERN Document Server

    Shit, G C; Sinha, A

    2012-01-01

    This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the action of an externally applied magnetic field. The fluid (blood) medium is assumed to be porous in nature. The variable viscosity of blood depending on hematocrit (percentage volume of erythrocytes) is taken into account in order to improve resemblance to the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions is solved by using a well known Frobenius method. The analytical expressions for velocity component, volumetric flow rate, wall shear stress and pressure gradient are obtained. The numerical values are extracted from these analytical expressions and are presented graphically. It is observed that the influence of hematocrit, magnetic field and the shape of artery have important impact on the velocity profile, pressure gradient and wall shear stress. Moreover, the effect of primary stenosis on the secondary one has been sig...

  13. THE APPLICATION OF LASERS IN MEASUREMENT OF FLUID FLOW THROUGH DRILLING BIT NOZZLES

    Directory of Open Access Journals (Sweden)

    Radenko Drakulić

    1993-12-01

    Full Text Available Two optical methods based on laser and video technology and digital signal and image processing techniques - Laser Doppler velocimetry (LDV and Particle image velocimetry (PIV were applied in highly accurate fluid flow measurement. Their application in jet velocity measurement of flows through drilling bit nozzles is presented. The role of nozzles in drilling technology together with procedures and tests performed on their optimization are reviewed. In addition, some experimental results for circular nozzle obtained both with LDV and PIV are elaborated. The experimental set-up and the testing procedure arc briefly discussed, as well as potential improvements in the design. Possible other applications of LDV and PIV in the domain of petroleum engineering are suggested (the paper is published in Croatian.

  14. On the Symmetry of Molecular Flows Through the Pipe of an Arbitrary Shape (I) Diffusive Reflection

    Science.gov (United States)

    Kusumoto, Yoshiro

    Molecular gas flows through the pipe of an arbitrary shape is mathematically considered based on a diffusive reflection model. To avoid a perpetual motion, the magnitude of the molecular flow rate must remain invariant under the exchange of inlet and outlet pressures. For this flow symmetry, the cosine law reflection at the pipe wall was found to be sufficient and necessary, on the assumption that the molecular flux is conserved in a collision with the wall. It was also shown that a spontaneous flow occurs in a hemispherical apparatus, if the reflection obeys the n-th power of cosine law with n other than unity. This apparatus could work as a molecular pump with no moving parts.

  15. Mathematical Modelling of Blood Flow through a Tapered Overlapping Stenosed Artery with Variable Viscosity

    Directory of Open Access Journals (Sweden)

    G. C. Shit

    2014-01-01

    Full Text Available This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the action of an externally applied magnetic field. The fluid (blood medium is assumed to be porous in nature. The variable viscosity of blood depending on hematocrit (percentage volume of erythrocytes is taken into account in order to improve resemblance to the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions is solved by using a well known Frobenius method. The analytical expressions for velocity component, volumetric flow rate, wall shear stress and pressure gradient are obtained. The numerical values are extracted from these analytical expressions and are presented graphically. It is observed that the influence of hematocrit, magnetic field and the shape of artery have important impact on the velocity profile, pressure gradient and wall shear stress. Moreover, the effect of primary stenosis on the secondary one has been significantly observed.

  16. MHD mixed convection flow through a diverging channel with heated circular obstacle

    Science.gov (United States)

    Alam, Md. S.; Shaha, J.; Khan, M. A. H.; Nasrin, R.

    2016-07-01

    A numerical study of steady MHD mixed convection heat transfer and fluid flow through a diverging channel with heated circular obstacle is carried out in this paper. The circular obstacle placed at the centre of the channel is hot with temperature Th. The top and bottom walls are non-adiabatic. The basic nonlinear governing partial differential equations are transformed into dimensionless ordinary differential equations using similarity transformations. These equations have been solved numerically for different values of the governing parameters, namely Reynolds number (Re), Hartmann number (Ha), Richardson number (Ri) and Prandtl number (Pr) using finite element method. The streamlines, isotherms, average Nusselt number and average temperature of the fluid for various relevant dimensionless parameters are displayed graphically. The study revealed that the flow and thermal fields in the diverging channel depend significantly on the heated body. In addition, it is observed that the magnetic field acts to increase the rate of heat transfer within the channel.

  17. A Flow-through Exposure System for Evaluating Suspended Sediments Effects on Aquatic Life.

    Science.gov (United States)

    Suedel, Burton C; Wilkens, Justin L

    2017-01-09

    This paper describes the Fish Larvae and Egg Exposure System (FLEES). The flow-through exposure system is used to investigate the effects of suspended sediment on various aquatic species and life stages in the laboratory by using pumps and automating delivery of sediment and water to simulate suspension of sediment. FLEES data are used to develop exposure-response curves between the effects on aquatic organisms and suspended sediment concentrations at the desired exposure duration. The effects data are used to evaluate management practices used to reduce the interactions between aquatic organisms and anthropogenic causes of suspended sediments. The FLEES is capable of generating total suspended solids (TSS) concentrations as low as 30 to as high as 800 mg/L, making this system an ideal choice for evaluating the effects of TSS resulting from many activities including simulating low ambient levels of TSS to evaluating sources of suspended sediments from dredging operations, vessel traffic, freshets, and storms.

  18. Measurement and Determination of Friction Characteristic of Air Flow through Porous Media

    Directory of Open Access Journals (Sweden)

    Wei Zhong

    2015-03-01

    Full Text Available Sintered metal porous media currently plays an important role in air bearing systems. When flowing through porous media, the flow properties are generally represented by incompressible Darcy-Forchheimer regime or Ergun regime. In this study, a modified Ergun equation, which includes air compressibility effects, is developed to describe friction characteristic. Experimental and theoretical investigations on friction characteristic are conducted with a series of metal-sintered porous media. Re = 10 is selected as the boundary for a viscous drag region and a form drag region. Experimental data are first used to determine the coefficient α in the viscous drag region, and then the coefficient β in the form drag region, rather than both simultaneously. Also, the theoretical mass flow rate in terms of the modified Ergun equation provides close approximations to the experimental data. Finally, it is also known that both the air compressibility and inertial effects can obviously enhance the pressure drop.

  19. A water balance model to estimate flow through the Old and Middle River corridor

    Science.gov (United States)

    Andrews, Stephen W.; Gross, Edward S.; Hutton, Paul H.

    2016-01-01

    We applied a water balance model to predict tidally averaged (subtidal) flows through the Old River and Middle River corridor in the Sacramento–San Joaquin Delta. We reviewed the dynamics that govern subtidal flows and water levels and adopted a simplified representation. In this water balance approach, we estimated ungaged flows as linear functions of known (or specified) flows. We assumed that subtidal storage within the control volume varies because of fortnightly variation in subtidal water level, Delta inflow, and barometric pressure. The water balance model effectively predicts subtidal flows and approaches the accuracy of a 1–D Delta hydrodynamic model. We explore the potential to improve the approach by representing more complex dynamics and identify possible future improvements.

  20. The proper longshore current in a wave basin

    NARCIS (Netherlands)

    Visser, P.J.

    1982-01-01

    This report describes the investigation into a method how to obtain the proper longshore current in a wave basin. In this method the basin geometry is optimized and the proper recirculation flow through openings in the wave guides is determined by minimizing the circulation flow between the wave gui

  1. Treatment of hydrocarbon contamination under flow through conditions by using magnetite catalyzed chemical oxidation.

    Science.gov (United States)

    Usman, M; Faure, P; Lorgeoux, C; Ruby, C; Hanna, K

    2013-01-01

    Soil pollution by hydrocarbons (aromatic and aliphatic hydrocarbons) is a major environmental issue. Various treatments have been used to remove them from contaminated soils. In our previous studies, the ability of magnetite has been successfully explored to catalyze chemical oxidation for hydrocarbon remediation in batch slurry system. In the present laboratory study, column experiments were performed to evaluate the efficiency of magnetite catalyzed Fenton-like (FL) and activated persulfate (AP) oxidation for hydrocarbon degradation. Flow-through column experiments are intended to provide a better representation of field conditions. Organic extracts isolated from three different soils (an oil-contaminated soil from petrochemical industrial site and two soils polluted by polycyclic aromatic hydrocarbon (PAH) originating from coking plant sites) were spiked on sand. After solvent evaporation, spiked sand was packed in column and was subjected to oxidation using magnetite as catalyst. Oxidant solution was injected at a flow rate of 0.1 mL min(-1) under water-saturated conditions. Organic analyses were performed by GC-mass spectrometry, GC-flame ionization detector, and micro-Fourier transform infrared spectroscopy. Significant abatement of both types of hydrocarbons (60-70 %) was achieved after chemical oxidation (FL and AP) of organic extracts. No significant by-products were formed during oxidation experiment, underscoring the complete degradation of hydrocarbons. No selective degradation was observed for FL with almost similar efficiency towards all hydrocarbons. However, AP showed less reactivity towards higher molecular weight PAHs and aromatic oxygenated compounds. Results of this study demonstrated that magnetite-catalyzed chemical oxidation can effectively degrade both aromatic and aliphatic hydrocarbons (enhanced available contaminants) under flow-through conditions.

  2. Flow-through SIP - A novel stable isotope probing approach limiting cross-feeding

    Science.gov (United States)

    Mooshammer, Maria; Kitzinger, Katharina; Schintlmeister, Arno; Kjedal, Henrik; Nielsen, Jeppe Lund; Nielsen, Per; Wagner, Michael

    2017-04-01

    Stable isotope probing (SIP) is a widely applied tool to link specific microbial populations to metabolic processes in the environment without the prerequisite of cultivation, which has greatly advanced our understanding of the role of microorganisms in biogeochemical cycling. SIP relies on tracing specific isotopically labeled substrates (e.g., 13C, 15N, 18O) into cellular biomarkers, such as DNA, RNA or phospholipid fatty acids, and is considered to be a robust technique to identify microbial populations that assimilate the labeled substrate. However, cross-feeding can occur when labeled metabolites are released from a primary consumer and then used by other microorganisms. This leads to erroneous identification of organisms that are not directly responsible for the process of interest, but are rather connected to primary consumers via a microbial food web. Here, we introduce a new approach that has the potential to eliminate the effect of cross-feeding in SIP studies and can thus also be used to distinguish primary consumers from other members of microbial food webs. In this approach, a monolayer of microbial cells are placed on a filter membrane, and labeled substrates are supplied by a continuous flow. By means of flow-through, labeled metabolites and degradation products are constantly removed, preventing secondary consumption of the substrate. We present results from a proof-of-concept experiment using nitrifiers from activated sludge as model system, in which we used fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes for identification of nitrifiers in combination with nanoscale secondary ion mass spectrometry (NanoSIMS) for visualization of isotope incorporation at the single-cell level. Our results show that flow-through SIP is a promising approach to significantly reduce cross-feeding and secondary substrate consumption in SIP experiments.

  3. An investigation of bimodal jet trajectory in flow through scaled models of the human vocal tract

    Science.gov (United States)

    Erath, Byron D.; Plesniak, Michael W.

    2006-05-01

    Pulsatile two-dimensional flow through static divergent models of the human vocal folds is investigated. Although the motivation for this study is speech production, the results are generally applicable to a variety of engineering flows involving pulsatile flow through diffusers. Model glottal divergence angles of 10, 20, and 40° represent various geometries encountered in one phonation cycle. Frequency and amplitude of the flow oscillations are scaled with physiological Reynolds and Strouhal numbers typical of human phonation. Glottal velocity trajectories are measured along the anterior-posterior midline by using phase-averaged particle image velocimetry to acquire 1,000 realizations at ten discrete instances in the phonation cycle. The angular deflection of the glottal jet from the streamwise direction (symmetric configuration) is quantified for each realization. A bimodal flow configuration is observed for divergence angles of 10 and 20°, with the flow eventually skewing and attaching to the vocal fold walls. The deflection of the flow toward the vocal fold walls occurs when the forcing function reaches maximum velocity and zero acceleration. For a divergence angle of 40°, the flow never attaches to the vocal fold walls; however, there is increased variability in the glottal jet after the forcing function reaches maximum velocity and zero acceleration. The variation in the jet trajectory as a function of divergence angle is explained by performance maps of diffuser flow regimes. The smaller angle cases are in the unstable transitory stall regime while the 40° divergent case is in the fully developed two-dimensional stall regime. Very small geometric variations in model size and surface finish significantly affect the flow behavior. The bimodal, or flip-flopping, glottal jet behavior is expected to influence the dipole contribution to sound production.

  4. An investigation of bimodal jet trajectory in flow through scaled models of the human vocal tract

    Energy Technology Data Exchange (ETDEWEB)

    Erath, Byron D.; Plesniak, Michael W. [Purdue University, School of Mechanical Engineering, Indiana (United States)

    2006-05-15

    Pulsatile two-dimensional flow through static divergent models of the human vocal folds is investigated. Although the motivation for this study is speech production, the results are generally applicable to a variety of engineering flows involving pulsatile flow through diffusers. Model glottal divergence angles of 10, 20, and 40 represent various geometries encountered in one phonation cycle. Frequency and amplitude of the flow oscillations are scaled with physiological Reynolds and Strouhal numbers typical of human phonation. Glottal velocity trajectories are measured along the anterior-posterior midline by using phase-averaged particle image velocimetry to acquire 1,000 realizations at ten discrete instances in the phonation cycle. The angular deflection of the glottal jet from the streamwise direction (symmetric configuration) is quantified for each realization. A bimodal flow configuration is observed for divergence angles of 10 and 20 , with the flow eventually skewing and attaching to the vocal fold walls. The deflection of the flow toward the vocal fold walls occurs when the forcing function reaches maximum velocity and zero acceleration. For a divergence angle of 40 , the flow never attaches to the vocal fold walls; however, there is increased variability in the glottal jet after the forcing function reaches maximum velocity and zero acceleration. The variation in the jet trajectory as a function of divergence angle is explained by performance maps of diffuser flow regimes. The smaller angle cases are in the unstable transitory stall regime while the 40 divergent case is in the fully developed two-dimensional stall regime. Very small geometric variations in model size and surface finish significantly affect the flow behavior. The bimodal, or flip-flopping, glottal jet behavior is expected to influence the dipole contribution to sound production. (orig.)

  5. Multiplex flow-through immunoassay formats for screening of mycotoxins in a variety of food matrices.

    Science.gov (United States)

    Ediage, E Njumbe; Di Mavungu, J Diana; Goryacheva, I Y; Van Peteghem, C; De Saeger, S

    2012-04-01

    Two multi-analyte flow-through immunoassay formats for rapid detection of mycotoxins in a variety of food matrices (peanut cake, maize, and cassava flour) were developed and evaluated. The selected food matrices are typical staple foods and export products for most low-income communities around the world. The assay formats included gel-based and membrane-based flow-through assays and were based on the principle of indirect enzyme-linked immunosorbent assay. Using the same immunoreagents, the performance characteristics of both assays were compared. To the best of our knowledge, this is the first report on such a comparison. The gel-based format was developed to screen for ochratoxin A, fumonisin B(1), deoxynivalenol, and zearalenone detection at cut-off values of 3, 1,250, 1,000, and 200 μg kg(-1), respectively, while the membrane-based format can be used to screen ochratoxin A, aflatoxin B(1,) deoxynivalenol, and zearalenone at the following cut-offs: 3, 5, 700, and 175 μg kg(-1), respectively. The applicability of these assay formats was demonstrated by evaluating the performance characteristics of both tests through performing multiple experiments on different days. Both assays were further evaluated by analyzing naturally contaminated samples in the laboratory and also in the field under tropical conditions (Cameroon, West Africa). The false-negative rate with both formats was less than 5%, which is in good agreement with Commission Decision 2002/657/EC regarding the performance of analytical methods intended for screening purposes.

  6. Analysis of Transitional and Turbulent Flow Through the FDA Benchmark Nozzle Model Using Laser Doppler Velocimetry.

    Science.gov (United States)

    Taylor, Joshua O; Good, Bryan C; Paterno, Anthony V; Hariharan, Prasanna; Deutsch, Steven; Malinauskas, Richard A; Manning, Keefe B

    2016-09-01

    Transitional and turbulent flow through a simplified medical device model is analyzed as part of the FDA's Critical Path Initiative, designed to improve the process of bringing medical products to market. Computational predictions are often used in the development of devices and reliable in vitro data is needed to validate computational results, particularly estimations of the Reynolds stresses that could play a role in damaging blood elements. The high spatial resolution of laser Doppler velocimetry (LDV) is used to collect two component velocity data within the FDA benchmark nozzle model. Two flow conditions are used to produce flow encompassing laminar, transitional, and turbulent regimes, and viscous stresses, principal Reynolds stresses, and turbulence intensities are calculated from the measured LDV velocities. Axial velocities and viscous stresses are compared to data from a prior inter-laboratory study conducted with particle image velocimetry. Large velocity gradients are observed near the wall in the nozzle throat and in the jet shear layer located in the expansion downstream of the throat, with axial velocity changing as much as 4.5 m/s over 200 μm. Additionally, maximum Reynolds shear stresses of 1000-2000 Pa are calculated in the high shear regions, which are an order of magnitude higher than the peak viscous shear stresses (<100 Pa). It is important to consider the effects of both viscous and turbulent stresses when simulating flow through medical devices. Reynolds stresses above commonly accepted hemolysis thresholds are measured in the nozzle model, indicating that hemolysis may occur under certain flow conditions. As such, the presented turbulence quantities from LDV, which are also available for download at https://fdacfd.nci.nih.gov/ , provide an ideal validation test for computational simulations that seek to characterize the flow field and to predict hemolysis within the FDA nozzle geometry.

  7. An evaluation of the resistance to flow through the patient valves of twelve adult manual resuscitators.

    Science.gov (United States)

    Hess, D; Simmons, M

    1992-05-01

    What is the inspiratory and expiratory resistance to flow through the patient valves of adult manual resuscitators? We evaluated the resistance to flow through the patient valves of 12 adult resuscitators (Ambu, Code Blue, DMR, Hope 4, Hospitak, Hudson, Intertech, Laerdal, Mercury, Respironics, SPUR, Vitalograph). Expiratory resistance was evaluated by directing a flow of oxygen through the valve in the direction that the patient expires. Inspiratory resistance was evaluated by directing oxygen through the valve in the direction of flow when the bag is squeezed. Flow was controlled by a Timeter 0-75 flowmeter, and measured using a calibrated Timeter RT-200. Flows of 10, 20, 30, 40, 50, 60, 70, 80, and 90 L/min were used. Resistive back pressure of the resuscitator valves was measured using a calibrated Timeter RT-200. Resistance was calculated by dividing back pressure by flow. Five measurements were made at each flow setting for each resuscitator. Significant differences in back pressures and resistances existed between the resuscitators for both expiratory and inspiratory flows (p less than 0.001 in each case). Significant interaction effects also existed between resuscitator brands and flows (p less than 0.001 in each case). At an expiratory flow of 50 L/min, all resuscitators except the Hospitak and Vitalograph produced a back pressure less than 5 cm H2O (the International Standards Organization standard). At an inspiratory flow of 50 L/min, all resuscitators but the Hospitak, Mercury, and Vitalograph produced a back pressure less than 5 cm H2O. Significant differences existed in the back pressures produced due to the flow resistance through the patient valves of these resuscitators, and these might be considered excessive in some cases. Because this was a bench study, further work is needed to determine the clinical importance of these findings.

  8. Improved Polyurethane Storage Tank Performance

    Science.gov (United States)

    2014-06-30

    Figure 5.2.4 – Teen / Twenty Berm Bays from Tank 11 Corner Improved Polyurethane Storage Tank Performance Page 63 of 197 FY2009 Final Technical...5.3.9 Pump Discharge Pressure Measurement Improved Polyurethane Storage Tank Performance Page 76 of 197 FY2009 Final Technical Report...chamber pressure Improved Polyurethane Storage Tank Performance Page 173 of 197 FY2009 Final Technical Report Seaman Corporation could not be

  9. Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program

    Science.gov (United States)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.

    2017-01-01

    Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.

  10. Freak waves in counterpropagating wave systems

    Science.gov (United States)

    Støle-Hentschel, Susanne; Rye, Lisa; Raustøl, Anne; Trulsen, Karsten

    2016-04-01

    The kurtosis of unimodal and counterpropagating bimodal wave systems is compared by means of laboratory experiments and simulations. Both give strong evidence that a bimodal wave system with waves travelling in opposite directions has reduced kurtosis compared to the corresponding unidirectional case. We thus anticipate reduced probability of freak waves in counterpropagating waves. The laboratory tests were performed with a JONSWAP wavefield in a long and narrow flume. The unimodal case was run with a damping beach in one end, while the bimodality was created by inserting a reflecting wall. The simulations were carried out with a numerical wave tank based on a Higher order spectral method employing partially or non-reflecting boundary conditions.

  11. Do Fish Enhance Tank Mixing?

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Laursen, Jesper; Craig, Steven R.

    2005-01-01

    The design of fish rearing tanks represents a critical stage in the development of optimal aquaculture systems, especially in the context of recirculating systems. Poor hydrodynamics can compromise water quality, waste management and the physiology and behaviour of fish, and thence, production...... potential and operational profitability. The hydrodynamic performance of tanks, therefore, represents an important parameter during the tank design process. Because there are significant complexities in combining the rigid principles of hydrodynamics with the stochastic behaviour of fish, however, most data...... upon tank hydrokinetics has been derived using tanks void of fish. Clearly, the presence of randomly moving objects, such as fish, in a water column will influence not only tank volumes by displacing water, but due to their activity, water dynamics and associated in-tank processes. In order...

  12. Strontium and cesium release mechanisms during unsaturated flow through waste-weathered Hanford sediments

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hyun-Shik; Um, Wooyong; Rod, Kenton A.; Serne, R. Jeffrey; Thompson, Aaron; Perdrial, Nicolas; Steefel, Carl I.; Chorover, Jon

    2011-10-01

    Leaching behavior of Sr and Cs in the vadose zone of Hanford site (WA, USA) was studied with laboratory-weathered sediments mimicking realistic conditions beneath the leaking radioactive waste storage tanks. Unsaturated column leaching experiments were conducted using background Hanford pore water focused on first 200 pore volumes. The weathered sediments were prepared by 6 months reaction with a synthetic Hanford tank waste leachate containing Sr and Cs (10-5 and 10-3 molal representative of LO- and HI-sediment, respectively) as surrogates for 90Sr and 137Cs. The mineral composition of the weathered sediments showed that zeolite (chabazite-type) and feldspathoid (sodalite-type) were the major byproducts but different contents depending on the weathering conditions. Reactive transport modeling indicated that Cs leaching was controlled by ion-exchange, while Sr release was affected primarily by dissolution of the secondary minerals. The later release of K, Al, and Si from the HI-column indicated the additional dissolution of a more crystalline mineral (cancrinite-type). A two-site ion-exchange model successfully simulated the Cs release from the LO-column. However, a three-site ion-exchange model was needed for the HI-column. The study implied that the weathering conditions greatly impact the speciation of the secondary minerals and leaching behavior of sequestrated Sr and Cs.

  13. Application of chemical oxidation to remediate HCH-contaminated soil under batch and flow through conditions.

    Science.gov (United States)

    Usman, Muhammad; Tascone, Oriane; Rybnikova, Victoria; Faure, Pierre; Hanna, Khalil

    2017-06-01

    This is the first study describing the chemical oxidation of hexachlorocyclohexanes (HCHs) in contaminated soil under water saturated and unsaturated flow through conditions. Soil contaminated with β-HCH (45 mg kg(-1)) and γ-HCH (lindane, 25 mg kg(-1)) was sampled from former lindane waste storage site. Efficiency of following treatments was tested at circumneutral pH: H2O2 alone, H2O2/Fe(II), Na2S2O8 alone, Na2S2O8/Fe(II), and KMnO4. Experimental conditions (oxidant dose, liquid/solid ratio, and soil granulometry) were first optimized in batch experiments. Obtained results revealed that increasing dose of H2O2 improved the oxidation efficiency while in Na2S2O8 system, maximum HCHs were removed at 300 mM. However, oxidation efficiency was slightly improved by Fe(II)-activation. Increasing the solid/liquid ratio decreased HCH removal in soil samples crushed to 500 μm while an opposite trend was observed for 2-mm samples. Dynamic column experiments showed that oxidation efficiency followed the order KMnO4 > Na2S2O8/Fe(II) > Na2S2O8 whatever the flow condition, whereas the removal extent declined at higher flow rate (e.g., ~50% by KMnO4 at 0.5 mL/min as compared to ~30% at 2 mL/min). Both HCH removal and oxidant decomposition extents were found higher in saturated columns than the unsaturated ones. While no significant change in relative abundance of soil mineral constituents was observed before and after chemical oxidation, more than 60% of extractable organic matter was lost after chemical oxidation, thereby underscoring the non-selective behavior of chemical oxidation in soil. Due to the complexity of soil system, chemical oxidation has rarely been reported under flow through conditions, and therefore our findings will have promising implications in developing remediation techniques under dynamic conditions closer to field applications.

  14. Client flow through the Women, Infants, and Children Public Health Program.

    Science.gov (United States)

    Brotman, B A; Bumgarner, M; Prime, P

    1998-01-01

    The Women, Infants, and Children (WIC) Program, managed by the county boards of health, provides nutrition, limited physical examinations, and food vouchers for pregnant women and for children with nutritional deficiencies. Because federal guidelines for the WIC program leave little maneuvering room to improve the delivery of services, we analyzed the client flow through a WIC clinic in the Atlanta metropolitan area to determine how that flow could be managed more efficiently. The challenge facing the WIC clinic was to increase the efficiency of their operation in an environment characterized by resource constraints, rigid regulations, and dysfunctional client behavior. In a limited physical space, the WIC clinic was expected to provide a number of sequential services to a client population that failed to arrive or arrived late 40 percent-50 percent of the time. The provision of services was further complicated by walk-ins, which were not only common but, according to federal guidelines, also must be accommodated. To analyze the clinic's problem, we used the General Purpose Simulation System for personal computer (GPSS/PC) to simulate client flow through the clinic. Estimates of the average amount of time a client spent in the clinic as well as average waiting times at each station and clerk and nurse utilization rates were generated assuming a variety of staffing levels. For comparison purposes, each version of the model was run with a 20-minute time lag before a late appointment was filled, and then a one-minute lag. The data used for the simulation were collected by clinic personnel during February 1994. It included the number of clerks and nurses available; the waiting time to see clerks and nurses for walk-ins and appointments; the waiting time to get WIC vouchers; the number of appointments met; the number of appointments missed; and the total time in the clinic for walk-ins and appointments. In all three versions of the model that were estimated, the results

  15. Numerical Simulation of Steady and Pulsatile Flow Through Vascular Stenoses and Comparisons with Experiments Using Phase Contrast Magnetic Resonance Imaging

    Science.gov (United States)

    Behrens, Geoffrey; Agarwal, Ramesh; Moghaddam, Abbas N.; Choi, Eric T.; Amini, Amir A.

    2003-11-01

    A commercially available numerical flow solver "FLUENT" is employed in simulation of blood flow through vascular stenoses. Fluid properties are set to match those of the blood mimicking fluid used in flow phantom experiments at the Washington University School of Medicine. Computational results are compared for steady flow through axisymmetric and three-dimensional phantoms modeling mild to severe stenonses with the data collected using Phase Contrast Magnetic Resonance Imaging (PC-MRI) technique by colleagues in the CVIA laboratory at Washington University School of Medicine. Computations are also performed for pulsatile flow through vascular stenoses. Comparisons of PC-MRI and FLUENT output data show qualitative agreement in streamline patterns and good quantitative agreement for pressure drop across the stenoses.

  16. 27 CFR 25.145 - Tanks, vehicles, and vessels.

    Science.gov (United States)

    2010-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Marks, Brands, and Labels § 25.145 Tanks, vehicles, and... mark each tank, tank car, tank truck, tank ship, barge, or deep tank of a vessel in accordance...

  17. Uptake and accumulation of naphthalene by the Oyster ostrea edulis, in a flow-through system

    Energy Technology Data Exchange (ETDEWEB)

    Riley, R.T.; Mix, M.C.; Schaffer, R.L.; Bunting, D.L.

    1981-01-01

    A flow-through system was used to follow naphthalene and naphthalene metabolite accumulation in the seawater and in the tissue of the oyster Ostrea edulis. After 72 h, 82.5% of the naphthalene carbon was recovered from the system. Glucose was added to seawater to stimulate the pathways of glucose metabolism in the oysters Streptomycin (100 ppm) reduced microbial oxidation of naphthalene and glucose, and reduced bacterial growth. However, even in the presence of streptomycin, microbial oxidation of naphthalene was considerable. The main oxidation product recovered from seawater was /sup 14/CO/sub 2/. Radioactivity was also associated with compounds which separated by TLC with 2- and 1- naphthol. The pattern of naphthalene uptake and accumulation in oyster tissues was relatively constant after only a few hours of exposure to naphthalene. The potential of tissues to accumulate naphthalene was shown to be a function of multiple variables such as nutritional state, lipid concentration, length of exposure to naphthalene, and the external naphthalene concentration. Carbon-14-labeled metabolites derived from /sup 14/C-naphthalene were consistently recovered from digests of the oyster tissues. Non-CO/sub 2/ alkaline-soluble substances were the primary metabolites. Hexane-extractable substances, which separated by TLC with known standards of 2- and 1- naphthol, were consistently recovered from seawater and tissue digests. It was not possible to conclude that these metabolites were a result of naphthalene metabolism by oyster enzyme systems.

  18. A generalized lattice Boltzmann model for flow through tight porous media with Klinkenberg's effect

    CERN Document Server

    Chen, Li; Kang, Qinjun; Hyman, Jeffrey De'Haven; Viswanathan, Hari S; Tao, Wen-Quan

    2014-01-01

    Gas slippage occurs when the mean free path of the gas molecules is in the order of the characteristic pore size of a porous medium. This phenomenon leads to the Klinkenberg's effect where the measured permeability of a gas (apparent permeability) is higher than that of the liquid (intrinsic permeability). A generalized lattice Boltzmann model is proposed for flow through porous media that includes Klinkenberg's effect, which is based on the model of Guo et al. (Z.L. Guo et al., Phys.Rev.E 65, 046308 (2002)). The second-order Beskok and Karniadakis-Civan's correlation (A. Beskok and G. Karniadakis, Microscale Thermophysical Engineering 3, 43-47 (1999), F. Civan, Transp Porous Med 82, 375-384 (2010)) is adopted to calculate the apparent permeability based on intrinsic permeability and Knudsen number. Fluid flow between two parallel plates filled with porous media is simulated to validate model. Simulations performed in a heterogeneous porous medium with components of different porosity and permeability indicat...

  19. Numerical Study of Turbulent Pulsatile Blood Flow through Stenosed Artery Using Fluid-Solid Interaction

    Directory of Open Access Journals (Sweden)

    Mehdi Jahangiri

    2015-01-01

    Full Text Available The turbulent pulsatile blood flow through stenosed arteries considering the elastic property of the wall is investigated numerically. During the numerical model validation both standard k-ε model and RNG K-ε model are used. Compared with the RNG K-ε model, the standard K-ε model shows better agreement with previous experimental results and is better able to show the reverse flow region. Also, compared with experimental data, the results show that, up to 70% stenosis, the flow is laminar and for 80% stenosis the flow becomes turbulent. Assuming laminar or turbulent flow and also rigid or elastic walls, the results are compared with each other. The investigation of time-averaged shear stress and the oscillatory shear index for 80% stenosis show that assuming laminar flow will cause more error than assuming a rigid wall. The results also show that, in turbulent flow compared with laminar flow, the importance of assuming a flexible artery wall is more than assuming a rigid artery wall.

  20. A study of sensing heat flow through thermal walls by using thermoelectric module

    Directory of Open Access Journals (Sweden)

    Sippawit Noppawit

    2015-01-01

    Full Text Available Demands on heat flow detection at a plane wall via a thermoelectric module have drawn researchers’ attention to quantitative understanding in order to properly implement the thermoelectric module in thermal engineering practices. Basic mathematical models of both heat transfer through a plane wall and thermoelectric effects are numerically solved to represent genuine behaviors of heat flow detection by mounting a thermoelectric module at a plane wall. The heat transfer through the plane wall is expected to be detected. It is intriguing from simulation results that the heat rejected at the plane wall is identical to the heat absorbed by the thermoelectric module when the area of the plane wall is the same as that of the thermoelectric module. Furthermore, both the area sizes of the plane walls and the convective heat transfer coefficients at the wall influence amount of the heat absorbed by the thermoelectric module. Those observational data are modeled for development of sensing heat flow through a plane wall by a thermoelectric module in practical uses.

  1. Comparative study of Newtonian physiological blood flow through normal and stenosed carotid artery

    Science.gov (United States)

    Rahman, Mohammad Matiur; Hossain, Md. Anwar; Mamun, Khairuzzaman; Akhter, Most. Nasrin

    2017-06-01

    A numerical simulation is performed to investigate Newtonian physiological flows behavior on three dimensional idealized carotid artery (CA) and single stenosed (75% by area) carotid artery(SCA). The wall vessel is set as rigid during simulation. Bifurcated blood vessel are simulated by using three-dimensional flow analysis. Physiological and parabolic velocity profiles are set out to fix the conditions of inlet boundaries of artery. In other hand, physiological waveform is an important part of compilation and it is successfully done by utilization of Fourier series having sixteen harmonics. The investigation has a Reynolds number range of 94 to 1120. Low Reynolds number k — ω model has been used as governing equation. The investigation has been carried out to characterize the flow behavior of blood in two geometry, namely, (i) Normal carotid artery (CA) and (ii) Stenosed carotid artery (SCA). The Newtonian model has been used to study the physics of fluid. The findings of the two models are thoroughly compared in order to observe there behavioral sequence of flows. The numerical results were presented in terms of velocity, pressure, wall shear stress distributions and cross sectional velocities as well as the streamlines contour. Stenosis disturbs the normal pattern of blood flow through the artery as reduced area. At stenosis region velocity and peak Reynolds number rapidly increase and Reynolds number reach transitional and turbulent region. These flow fluctuation and turbulence have bad effect to the blood vessel which makes to accelerate the progress of stenosis.

  2. Experimental and modeling hydraulic studies of foam drilling fluid flowing through vertical smooth pipes

    Directory of Open Access Journals (Sweden)

    Amit Saxena

    2017-06-01

    Full Text Available Foam has emerged as an efficient drilling fluid for the drilling of low pressure, fractured and matured reservoirs because of its the ability to reduce formation damage, fluid loss, differential sticking etc. However the compressible nature along with its complicated rheology has made its implementation a multifaceted task. Knowledge of the hydrodynamic behavior of drilling fluid within the borehole is the key behind successful implementation of drilling job. However, little effort has been made to develop the hydrodynamic models for the foam flowing with cuttings through pipes of variable diameter. In the present study, hydrodynamics of the foam fluid was investigated through the vertical smooth pipes of different pipe diameters, with variable foam properties in a flow loop system. Effect of cutting loading on pressure drop was also studied. Thus, the present investigation estimates the differential pressure loss across the pipe. The flow loop permits foam flow through 25.4 mm, 38.1 mm and 50.8 mm diameter pipes. The smaller diameter pipes are used to replicate the annular spaces between the drill string and wellbore. The developed model determines the pressure loss along the pipe and the results are compared with a number of existing models. The developed model is able to predict the experimental results more accurately.

  3. Numerical analysis of blood flow through an elliptic stenosis using large eddy simulation.

    Science.gov (United States)

    Jabir, E; Lal, S Anil

    2016-08-01

    The presence of a stenosis caused by the abnormal narrowing of the lumen in the artery tree can cause significant variations in flow parameters of blood. The original flow, which is believed to be laminar in most situations, may turn out to turbulent by the geometric perturbation created by the stenosis. Flow may evolve to fully turbulent or it may relaminarise back according to the intensity of the perturbation. This article reports the numerical simulation of flow through an eccentrically located asymmetric stenosis having elliptical cross section using computational fluid dynamics. Large eddy simulation technique using dynamic Smagorinsky sub-grid scale model is applied to capture the turbulent features of flow. Analysis is carried out for two situations: steady inflow as ideal condition and pulsatile inflow corresponding to the actual physiological condition in common carotid artery. The spatially varying pulsatile inflow waveforms are mathematically derived from instantaneous mass flow measurements available in the literature. Carreau viscosity model is used to estimate the effect of non-Newtonian nature of blood. The present simulations for steady and pulsatile conditions show that post-stenotic flow field undergoes transition to turbulence in all cases. The characteristics of mean and turbulent flow fields have been presented and discussed in detail.

  4. An investigation of sulfate production in clouds using a flow-through chemical reactor model approach

    Science.gov (United States)

    Hong, M. S.; Carmichael, G. R.

    1983-01-01

    A flow-through chemical reactor model is developed to describe the mass transfer and chemical processes that atmospheric gases undergo in clouds. The model includes the simultaneous absorption of SO2, NH3, O3, NO(x), HNO3, CO2 and H2O2, the accompanying dissociation and oxidation reactions in cloud water, considers electrical neutrality, and includes qualitative parameterization of cloud microphysics. The model is used to assess the importance of the oxidation reactions H2O2-S(IV), O3-S(IV), and S(IV)-Mn(2+) catalysis, and the effects of cloud parameters such as drop size, rain intensity, liquid water content, and updraft velocity. Both precipitating and nonprecipitating clouds are studied. Model results predict sulfate production rates varying from 3 percent/hr to 230 percent/hr. The actual rate is highly dependent on the chemical composition of the uptake air and the physical conditions of the cloud. Model results also show that both the H2O2 and the O3 oxidation reactions can be significant.

  5. Removal of Uranium from Contaminated Water by Clay Ceramics in Flow-Through Columns

    Directory of Open Access Journals (Sweden)

    Charles Florez

    2017-10-01

    Full Text Available Uranium contamination of groundwater increasingly concerns rural residents depending on home wells for their drinking water in communities where uranium is a source of contamination. Established technologies to clean up contaminated aquifers are ineffective in large contaminated areas or are prohibitively expensive. Permeable reactive barriers (PRBs are a low-cost alternative to these methods. In this paper, the applicability of clay ceramic pellets was investigated as permeable reactive barriers (PRBs material for the treatment of uranium-contaminated groundwater. Flow-through columns were fabricated and used to mimic the flow path of a contaminant plume through the reactive media. Experiment results show that clay ceramic pellets effectively remove uranium from uranium-contaminated water and also can be a cost-efficient technique for remediating uranium contaminated groundwater by a clay pellet barrier. Using clay ceramic pellets is also a practical treatment method for uranium removal from drinking water and can supply potable water for households in the affected areas.

  6. A Rapid, Multiplexed, High-Throughput Flow-Through Membrane Immunoassay: A Convenient Alternative to ELISA

    Directory of Open Access Journals (Sweden)

    Gonzalo J. Domingo

    2013-04-01

    Full Text Available This paper describes a rapid, high-throughput flow-through membrane immunoassay (FMIA platform. A nitrocellulose membrane was spotted in an array format with multiple capture and control reagents for each sample detection area, and assay steps were carried out by sequential aspiration of sample and reagents through each detection area using a 96-well vacuum manifold. The FMIA provides an alternate assay format with several advantages over ELISA. The high surface area of the membrane permits high label concentration using gold labels, and the small pores and vacuum control provide rapid diffusion to reduce total assay time to ~30 min. All reagents used in the FMIA are compatible with dry storage without refrigeration. The results appear as colored spots on the membrane that can be quantified using a flatbed scanner. We demonstrate the platform for detection of IgM specific to lipopolysaccharides (LPS derived from Salmonella Typhi. The FMIA format provides analytical results comparable to ELISA in less time, provides integrated assay controls, and allows compensation for specimen-to-specimen variability in background, which is a particular challenge for IgM assays.

  7. Laser Doppler anemometry measurements of steady flow through two bi-leaflet prosthetic heart valves

    Directory of Open Access Journals (Sweden)

    Ovandir Bazan

    2013-12-01

    Full Text Available INTRODUCTION: In vitro hydrodynamic characterization of prosthetic heart valves provides important information regarding their operation, especially if performed by noninvasive techniques of anemometry. Once velocity profiles for each valve are provided, it is possible to compare them in terms of hydrodynamic performance. In this first experimental study using laser doppler anemometry with mechanical valves, the simulations were performed at a steady flow workbench. OBJECTIVE: To compare unidimensional velocity profiles at the central plane of two bi-leaflet aortic prosthesis from St. Jude (AGN 21 - 751 and 21 AJ - 501 models exposed to a steady flow regime, on four distinct sections, three downstream and one upstream. METHODS: To provide similar conditions for the flow through each prosthesis by a steady flow workbench (water, flow rate of 17L/min. and, for the same sections and sweeps, to obtain the velocity profiles of each heart valve by unidimensional measurements. RESULTS: It was found that higher velocities correspond to the prosthesis with smaller inner diameter and instabilities of flow are larger as the section of interest is closer to the valve. Regions of recirculation, stagnation of flow, low pressure, and flow peak velocities were also found. CONCLUSIONS: Considering the hydrodynamic aspect and for every section measured, it could be concluded that the prosthesis model AGN 21 - 751 (RegentTM is superior to the 21 AJ - 501 model (Master Series. Based on the results, future studies can choose to focus on specific regions of the these valves.

  8. A random walk simulation of scalar mixing in flows through submerged vegeta-tions

    Institute of Scientific and Technical Information of China (English)

    梁东方

    2014-01-01

    The scalar transport phenomena in vertical two-dimensional flows are studied using the random walk method. The establi-shed Lagrangian model is first applied to study the idealized longitudinal dispersion in open channels, before being used to investi-gate the scalar mixing characteristics of the flows through submerged vegetations. The longitudinal dispersion coefficients of the fully-developed boundary layer flows, with and without vegetations, are calculated based on the positions of the particles. A conve-nient way of incorporating the effects of vegetations is proposed, where all the flow parameters are regarded to be continually distri-buted over the depth. The simulation results show high accuracy of the developed random walk method, and indicate that the new method of accounting for the vegetation effects is appropriate for all the test cases considered. The predicted longitudinal dispersion coefficients agree well with the measurements. The merit of the new method is highlighted by its simplicity and efficiency in com-parison with the conventional method that assumes the discontinuous distribution of the flow parameters over the depth.

  9. Application of program LAURA to thermochemical nonequilibrium flow through a nozzle

    Science.gov (United States)

    Gnoffo, Peter A.

    1991-01-01

    Program LAURA (Langley Aerothermodynamic Upwind Relaxation Algorithm) is an upwind-biased, point-implicit relaxation algorithm for obtaining the numerical solution to the governing equations for 3D viscous hypersonic flows in chemical and thermal nonequilibrium. The algorithm is derived using a finite-volume formulation in which the inviscid components of flux across cell walls are described with a modified Roe's averaging and with second-order corrections based on Yee's Symmetric Total Variation Diminishing scheme. The code has been applied to Problem 8.2 of this workshop for the case of thermochemical nonequilibrium flow through a nozzle. Chemical reaction rates are defined with the model of Park (1987). Thermal nonequilibrium is modeled using a two-temperature approximation in which the vibrational energies of all molecules are assumed to be in equilibrium at a single temperature which is generally different from the translational-rotational temperature. Two grids were used to define the flow for the original problem, with a stagnation temperature of 6500 K. A third case with a stagnation temperature of 10,000 K is also presented. The solution domain includes the converging nozzle, subsonic flow domain in which the gas is substantially in thermochemical equilibrium and the diverging nozzle, hypersonic flow domain in which the gas is substantially in thermochemical nonequilibrium.

  10. Simulation of platelets suspension flowing through a stenosis model using a dissipative particle dynamics approach.

    Science.gov (United States)

    Soares, Joao S; Gao, Chao; Alemu, Yared; Slepian, Marvin; Bluestein, Danny

    2013-11-01

    Stresses on blood cellular constituents induced by blood flow can be represented by a continuum approach down to the μm level; however, the molecular mechanisms of thrombosis and platelet activation and aggregation are on the order of nm. The coupling of the disparate length and time scales between molecular and macroscopic transport phenomena represents a major computational challenge. In order to bridge the gap between macroscopic flow scales and the cellular scales with the goal of depicting and predicting flow induced thrombogenicity, multi-scale approaches based on particle methods are better suited. We present a top-scale model to describe bulk flow of platelet suspensions: we employ dissipative particle dynamics to model viscous flow dynamics and present a novel and general no-slip boundary condition that allows the description of three-dimensional viscous flows through complex geometries. Dissipative phenomena associated with boundary layers and recirculation zones are observed and favorably compared to benchmark viscous flow solutions (Poiseuille and Couette flows). Platelets in suspension, modeled as coarse-grained finite-sized ensembles of bound particles constituting an enclosed deformable membrane with flat ellipsoid shape, show self-orbiting motions in shear flows consistent with Jeffery's orbits, and are transported with the flow, flipping and colliding with the walls and interacting with other platelets.

  11. Fluid-structure interaction analysis of the flow through a stenotic aortic valve

    Science.gov (United States)

    Maleki, Hoda; Labrosse, Michel R.; Durand, Louis-Gilles; Kadem, Lyes

    2009-11-01

    In Europe and North America, aortic stenosis (AS) is the most frequent valvular heart disease and cardiovascular disease after systemic hypertension and coronary artery disease. Understanding blood flow through an aortic stenosis and developing new accurate non-invasive diagnostic parameters is, therefore, of primarily importance. However, simulating such flows is highly challenging. In this study, we considered the interaction between blood flow and the valve leaflets and compared the results obtained in healthy valves with stenotic ones. One effective method to model the interaction between the fluid and the structure is to use Arbitrary Lagrangian-Eulerian (ALE) approach. Our two-dimensional model includes appropriate nonlinear and anisotropic materials. It is loaded during the systolic phase by applying pressure curves to the fluid domain at the inflow. For modeling the calcified stenotic valve, calcium will be added on the aortic side of valve leaflets. Such simulations allow us to determine the effective orifice area of the valve, one of the main parameters used clinically to evaluate the severity of an AS, and to correlate it with changes in the structure of the leaflets.

  12. Flow Through Aerodynamic Torque Converter Installed in New Type Turbofan Engine

    Institute of Scientific and Technical Information of China (English)

    Toshiaki Kanemoto; Dai Sakihama; Seita Seki; Ahmed Mohamed Galal; FengQin Han; YeXiang Xiao

    2007-01-01

    It is desired to increase the core engine speed of the turbofan, to get the best efficiency for the next leap of the engine technology. The conventional mechanism in which the front fan is directly connected to the output shaft of the core engine has a limit of increasing the spool speed because the fan diameter is very large. The authors have proposed a new driving system in which the front fan is driven through the aerodynamic torque converter. The front fan can work at the conventional speed while the core engine runs more efficiently at higher speed. Continuously, in this paper, the flow through the converter is simulated numerically by CFX-5 with the k-εturbulence model of the commercial CFD code. The secondary flow occurred on the hub wall affects markedly the flow condition on the blade surfaces, and the flow along the suction surface of the driver blade separates near the trailing edge, which is deviated to the blade tip by the centrifugal force due to the wheel rotation.

  13. Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris

    2002-11-27

    The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fractured rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.

  14. Influence of magnetic field and Hall currents on blood flow through a stenotic artery

    Institute of Scientific and Technical Information of China (English)

    Kh. S. Mekheimer; M.A. El Kot

    2008-01-01

    A micropolar model for blood simulating magnetohydrodynamic flow through a horizontally nonsymmetric but vertically symmetric artery with a mild stenosis is pre- sented. To estimate the effect of the stenosis shape, a suitable geometry has been consid- ered such that the horizontal shape of the stenosis can easily be changed just by varying a parameter referred to as the shape parameter. Flow parameters, such as velocity, the resistance to flow (the resistance impedance), the wall shear stress distribution in the stenotic region, and its magnitude at the maximum height of the stenosis (stenosis throat), have been computed for different shape parameters, the Hartmann number and the Hall parameter. This shows that the resistance to flow decreases with the increasing values of the parameter determining the stenosis shape and the Hall parameter, while it increases with the increasing Hartmann number. The wall shear stress and the shearing stress on the wall at the maximum height of the stenosis possess an inverse characteristic to the resistance to flow with respect to any given value of the Hartmann number and the Hall parameter. Finally, the effect of the Hartmann number and the Hall parameter on the horizontal velocity is examined.

  15. Effective slip for flow through a channel bounded by lubricant-impregnated grooved surfaces

    Science.gov (United States)

    Sun, Rui; Ng, Chiu-On

    2017-04-01

    This study aims to investigate effective slip arising from pressure-driven flow through a slit channel bounded by lubricant-impregnated grooved surfaces. The problem for flow over longitudinal grooves is solved analytically using the methods of domain decomposition and eigenfunction expansion, while that for flow over transverse grooves is solved numerically using the front tracking method. It is found that the effective slip length and the lubricant flow rate can depend strongly on the geometry of the microstructure, the direction of flow, and the lubricant viscosity. In particular, the effective slip can be effectively enhanced by increasing the thickness of a lubricating film atop the ribs. Under the same conditions, a flow that is parallel to the lubricant-impregnated grooves will have a larger effective slip, but also a larger lubricant flow rate, when compared with the case of flow normal to the grooves. It is also shown that, in the case of transverse grooves, because of the downward displacement of the interface between the working/lubricating fluids, the effective slip length and lubricant flow rate may vary non-monotonically with the groove depth.

  16. Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris

    2002-11-27

    The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fractured rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.

  17. Effects of Surface Wettability and Roughness on the Heat Transfer Performance of Fluid Flowing through Microchannels

    Directory of Open Access Journals (Sweden)

    Jing Cui

    2015-06-01

    Full Text Available The surface characteristics, such as wettability and roughness, play an important role in heat transfer performance in the field of microfluidic flow. In this paper, the process of a hot liquid flowing through a microchannel with cold walls, which possesses different surface wettabilities and microstructures, is simulated by a transient double-distribution function (DDF two-phase thermal lattice Boltzmann BGK (LBGK model. The Shan-Chen multiphase LBGK model is used to describe the flow field and the independent distribution function is introduced to solve the temperature field. The simulation results show that the roughness of the channel wall improves the heat transfer, no matter what the surface wettability is. These simulations reveal that the heat exchange characteristics are directly related to the flow behavior. For the smooth-superhydrophobic-surface flow, a gas film forms that acts as an insulating layer since the thermal conductivity of the gas is relatively small in comparison to that of a liquid. In case of the rough-superhydrophobic-surface flow, the vortex motion of the gas within the grooves significantly enhances the heat exchange between the fluid and wall.

  18. Synthesis of highly monodisperse Ge crystals in a capacitively coupled flow through reactor for photovoltaic applications

    Science.gov (United States)

    Gresback, Ryan; Kortshagen, Uwe

    2006-10-01

    Germanium nanocrystals are interesting candidates for quantum dot-based solar cells. While the band gap of bulk Ge is ˜0.7 eV, the energy gap can be increased due to quantum confinement to ˜ 2eV for Ge particles of ˜3 nm in size. With a single material, Ge nanocrystals of sizes from 3 -15 nm would thus allow to span the entire range of band gaps that is of interest for photovoltaic devices. Moreover, compared to many other quantum dot materials that are currently studied for photovoltaic applications, Ge is perceived as non-toxic and environmentally benign. Ge nanocrystals are synthesized in a tubular, capacitively coupled flow through reactor. Germanium tetrachloride is used as a precursor. It is introduced into the plasma by a flow of argon and hydrogen. At typical pressures of 2 Torr and 40 W of RF power at 13.56 MHz, Ge crystals are generated and reside in the plasma for several tens of milliseconds. The size of the nanocrystals can be controlled in a range from 3-20 nm through the residence time. Particles are highly monodisperse. Organically passivated Ge nanocrystals self-assemble into monolayers when cast from colloidal solutions.

  19. Creeping gaseous flows through elastic tube and annulus micro-configurations

    Science.gov (United States)

    Elbaz, Shai; Jacob, Hila; Gat, Amir

    2016-11-01

    Gaseous flows in elastic micro-configurations is relevant to biological systems (e.g. alveolar ducts in the lungs) as well as to applications such as gas actuated soft micro-robots. We here examine the effect of low-Mach-number compressibility on creeping gaseous axial flows through linearly elastic tube and annulus micro-configurations. For steady flows, the leading-order effects of elasticity on the pressure distribution and mass-flux are obtained. For transient flow in a tube with small deformations, elastic effects are shown to be negligible in leading order due to compressibility. We then examine transient flows in annular configurations where the deformation is significant compared with the gap between the inner and outer cylinders defining the annulus. Both compressibility and elasticity are obtained as dominant terms interacting with viscosity. For a sudden flux impulse, the governing non-linear leading order diffusion equation is initially approximated by a porous-medium-equation of order 2.5 for the pressure square. However, as the fluid expand and the pressure decreases, the governing equation degenerates to a porous-medium-equation of order 2 for the pressure.

  20. Multilayer Numerical Modeling of Flows through Vegetation Using a Mixing-Length Turbulence Model

    Directory of Open Access Journals (Sweden)

    Hector Barrios-Piña

    2014-07-01

    Full Text Available This work focuses on the effects of vegetation on a fluid flow pattern. In this numerical research, we verify the applicability of a simpler turbulence model than the commonly used k-" model to predict the mean flow through vegetation. The novel characteristic of this turbulence model is that the horizontal mixing-length is explicitly calculated and coupled with a multi-layer approach for the vertical mixing-length, within a general three-dimensional eddy-viscosity formulation. This mixing-length turbulence model has been validated in previous works for different kinds of non-vegetated flows. The hydrodynamic numerical model used for simulations is based on the Reynolds-averaged Navier–Stokes equations for shallow water flows, where a vegetation shear stress term is considered to reproduce the effects of drag forces on flow. A second-order approximation is used for spatial discretization and a semi-implicit Lagrangian–Eulerian scheme is used for time discretization. In order to validate the numerical results, we compare them against experimental data reported in the literature. The comparisons are carried out for two cases of study: submerged vegetation and submerged and emergent vegetation, both within an open channel flow.

  1. Transient Heat and Mass Transfer Flow through Salt Water in an Ocean by Inclined Angle

    Science.gov (United States)

    Karim, lfsana; Khan, M. S.; Alam, M. M.; Rouf, M. A.; Ferdows, M.; Tzirtzilakis, E. E.

    2016-12-01

    In the present computational study, the inclined angle effect of unsteady heat and mass transfer flow through salt water in an ocean was studied. The governing equations together with continuity, momentum, salinity and temperature were developed using the boundary layer approximation. Cartesian coordinate system was introduced to interpret the physical model where x-axis chosen along the direction of salt water flow and y-axis is inclined to x-axis. Two angle of inclination was considered such as 90° and 120°. The time dependent governing equations under the initial and boundary conditions were than transformed into the dimensionless form. A numerical solution approach so-called explicit finite difference method (EFDM) was employed to solve the obtained dimensionless equations. Different physical parameter was found in the model such as Prandtl number, Modified Prandtl number, Grashof number, Heat source parameter and Soret number. A stability and convergence analysis was developed in this study to describe the aspects of the finite difference scheme and this analysis is significant due to accuracy of the EFDM approach. The convergence criteria were observed to be in terms of dimensionless parameter as Pr ≥ 0.0128 and Ps ≥ 0.016. The distributions of the temperature and salinity profiles of salt water flow over different time steps were investigated for the effect of different dimensionless parameters and shown graphically.

  2. Friction factor for water flow through packed beds of spherical and non-spherical particles

    Directory of Open Access Journals (Sweden)

    Kaluđerović-Radoičić Tatjana

    2017-01-01

    Full Text Available The aim of this work was the experimental evaluation of different friction factor correlations for water flow through packed beds of spherical and non-spherical particles at ambient temperature. The experiments were performed by measuring the pressure drop across the bed. Packed beds made of monosized glass spherical particles of seven different diameters were used, as well as beds made of 16 fractions of quartz filtration sand obtained by sieving (polydisperse non-spherical particles. The range of bed voidages was 0.359–0.486, while the range of bed particle Reynolds numbers was from 0.3 to 286 for spherical particles and from 0.1 to 50 for non-spherical particles. The obtained results were compared using a number of available literature correlations. In order to improve the correlation results for spherical particles, a new simple equation was proposed in the form of Ergun’s equation, with modified coefficients. The new correlation had a mean absolute deviation between experimental and calculated values of pressure drop of 9.04%. For non-spherical quartz filtration sand particles the best fit was obtained using Ergun’s equation, with a mean absolute deviation of 10.36%. Surface-volume diameter (dSV necessary for correlating the data for filtration sand particles was calculated based on correlations for dV = f(dm and Ψ = f(dm. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. ON172022

  3. Lattice Boltzmann simulation of separation phenomenon in a binary gaseous flow through a microchannel

    CERN Document Server

    Wang, Liang; Guo, Zhaoli

    2016-01-01

    Gas separation of a binary gaseous mixture is one of characteristic phenomena in the micro-scale flows that differ from the conventional size flows. In this work, the separation in a binary gas mixture flows through a microchannel is investigated by the lattice Boltzmann method with a diffuse-bounce-back (DBB) boundary condition. The separation degree and rate are measured in the He--Ar and Ne--Ar systems for different mole fractions, pressure ratios, and Knudsen numbers. The results show that the separation phenomenon in the He--Ar mixture is more obvious than that in the Ne--Ar mixture at the same mole fraction owing to the larger molecular mass ratio. In addition, the increase in the pressure ratio reduces the difference in the molecular velocities between the two species, and the separation phenomenon becomes weaker. However, the gas separation is enhanced with an increase in the Knudsen number. This is because the resulting rarefaction effect reduces the interactions between the gas molecules of the two ...

  4. Velocity measurements of flow through a step stenosis using Magnetic Resonance Imaging

    Science.gov (United States)

    Moser, K. W.; Kutter, E. C.; Georgiadis, J. G.; Buckius, R. O.; Morris, H. D.; Torczynski, J. R.

    Magnetic resonance imaging (MRI) is a versatile noninvasive tool for achieving full-field quantitative visualization of complex fluid flows. The MRI signal results from the interaction of radio-frequency (RF) pulses with nuclear spins exposed to a strong static magnetic field. The two main techniques of MRI velocimetry are time-of-flight and phase contrast techniques. Time-of- flight techniques involve tagging and tracking a material volume of fluid, whereas phase contrast techniques use magnetic field gradients to encode velocity information into the phase of the MRI signal. In this study, both techniques are used to probe the pressure-driven steady flow of water in a pipe with a step stenosis. The velocity measurements were then compared with computational results obtained using the FIDAP software package. The experiments show that the phase contrast method gives more accurate results, with 90% of the measurements within 10% of the local computational fluid dynamics (CFD) velocity predictions at Re=100 and 94% of the measurements within 10% of the local CFD predictions at Re=258. Although the time-of-flight experiments were not as accurate, they provide a good qualitative image of the flow field. Sources of the discrepancies between the MRI data and the CFD results are also discussed, including acceleration and spin flow-through artifacts.

  5. Velocity measurements of flow through a step stenosis using Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Moser, K.W.; Kutter, E.C.; Georgiadis, J.G.; Buckius, R.O. [Illinois Univ., Urbana, IL (United States). Dept. of Mechanical and Industrial Engineering; Morris, H.D. [Biomedical Magnetic Resonance Laboratory University of Illinois at Urbana-Champaign 2100 South Goodwin Avenue Urbana, IL 61801 (United States); Torczynski, J.R. [Engineering Sciences Center, Sandia National Laboratories P.O. Box 5800, Albuquerque, NM 87185-0834 (United States)

    2000-11-01

    Magnetic resonance imaging (MRI) is a versatile noninvasive tool for achieving full-field quantitative visualization of complex fluid flows. The MRI signal results from the interaction of radio-frequency (RF) pulses with nuclear spins exposed to a strong static magnetic field. The two main techniques of MRI velocimetry are time-of-flight and phase contrast techniques. Time-of- flight techniques involve tagging and tracking a material volume of fluid, whereas phase contrast techniques use magnetic field gradients to encode velocity information into the phase of the MRI signal. In this study, both techniques are used to probe the pressure-driven steady flow of water in a pipe with a step stenosis. The velocity measurements were then compared with computational results obtained using the FIDAP software package. The experiments show that the phase contrast method gives more accurate results, with 90% of the measurements within 10% of the local computational fluid dynamics (CFD) velocity predictions at Re=100 and 94% of the measurements within 10% of the local CFD predictions at Re=258. Although the time-of-flight experiments were not as accurate, they provide a good qualitative image of the flow field. Sources of the discrepancies between the MRI data and the CFD results are also discussed, including acceleration and spin flow-through artifacts. (orig.)

  6. Numerical analysis of acoustically driven viscous flow through a circular hole

    Science.gov (United States)

    Notomi, Tetsuo; Namba, Masanobu

    1990-12-01

    Periodic viscous flows through a circular hole driven by fluctuating far field pressure are numerically studied. The time-dependent incompressible Navier-Stokes equations formulated with orthogonal curvilinear coordinates are solved by using a finite difference method. The flow patterns are classified into three regimes by fluctuating pressure amplitude and frequency: flows with no laminar separation (high frequency-low pressure range), flows with attached separation bubble (intermediate frequency and pressure range) and flows with detached vortex ring (low frequency-high pressure range). The flow resistance of the circular hole is proportional to the acoustic particle velocity but independent of the viscosity of the fluid and almost invariant with the frequency for the low frequency-high pressure range. On the other hand, for the high frequency-low pressure range, the flow resistance is independent of the periodic pressure amplitude and varies directly with 2/3 powers of frequency. Finally, the predicted circular hole impedance is in good agreement with Ingard and Ising's (1967) experimental data for the orifice impedance.

  7. Prediction of Losses in Flow Through the Last Stage of LP Steam Turbine

    Institute of Scientific and Technical Information of China (English)

    S. Dykas; W. Wróblewski; H. (L)ukowicz; T. Chmielniak

    2007-01-01

    The aim of presented work was the prediction of the losses in the wet steam flow through the last stage of 200MW steam turbine LP part. To this end, three numerical tools were used. The first method was the streamline curvature method (SCM) used on the meridional plane with losses correlations. The next two methods, TASCflow commercial CFD code and an in-house CFD code, based on the solution of the Reynoldsaveraged Navier-Stokes equations (RANS). Application of three independent numerical tools allowed to make the more reliable losses analysis and made possible to compare applied numerical methods with each other. For the flow modeling in the last stage of LP steam turbine the various two-phase flow models were used and compared. The equilibrium model and non-equilibrium models with homogeneous and/or heterogeneous condensation were considered. The boundary conditions at the inlet and outlet from the stage were selected in such way to get the beginning of the homogeneous condensation process in the stator. It corresponded to the part load of the turbine, i. e. 140MW power and pressure in condenser 2.7kPa.

  8. Low-frequency variability of the exchanged flows through the Strait of Gibraltar during CANIGO

    Science.gov (United States)

    Lafuente, Jesús García.; Delgado, Javier; Vargas, Juan Miguel; Vargas, Manuel; Plaza, Francisco; Sarhan, Tarek

    Time series of the exchanged flows through the Strait of Gibraltar at the eastern section have been estimated from current-meter observations taken between October 1995 and May 1998 within the Canary Islands Azores Gibraltar Observations (CANIGO) project. The inflow exhibits a clear annual signal that peaks in late summer simultaneously with a deepening of the interface. The cycle seems to be driven by the seasonal signal of the density contrast between the surface Atlantic water that forms the inflow and the deep Mediterranean water of the outflow. The outflow and the depth of the interface have predominant semiannual signals and a smaller annual one whose phase agrees with that of the density contrast as well. Local wind stress and atmospheric pressure difference between the Atlantic and the Western Mediterranean to less extent have clear semiannual signal, so that the possibility that the semiannual cycle of the outflow and of the depth of the interface are forced by them was analyzed. The composite Froude number in this section is well below the critical value, suggesting submaximal exchange. Therefore, the conditions in the Alboran basin influence the exchange and some evidence that the size and location of the Western Alboran Gyre contribute to the observed signals, both annual and semiannual, is provided.

  9. Numerical Investigation of Liquid Flow through Micro-channels with Post Patterned Super-hydrophobic Walls

    Science.gov (United States)

    Amin, A.; Maynes, D.; Webb, B. W.

    2009-11-01

    We numerically investigate the effect of post patterned super-hydrophobic surfaces on the drag reduction for laminar liquid flow through micro-channels. Hydrophobic surfaces exhibiting micro-scale structures can significantly reduce the liquid-solid contact area resulting in reduced surface friction. The effects of cavity fraction (the ratio of cavity area to total surface area) and relative module width (ratio of post/cavity repeating length to channel hydraulic diameter) on the slip-length and on the Darcy friction factor-Reynolds number product, fRe, were explored numerically for the post structured hydrophobic walls. The cavity fraction and relative module width vary from 0.5 to 0.9998 and from 0.01 to 1.5, respectively. In general, as both cavity fraction and relative module width increase fRe decreases. The present results are compared with those for surfaces exhibiting rib/cavity patterns that are parallel and perpendicular to the flow direction. At high cavity fractions the post/cavity structuring produces larger slip-length and greater reduction in fRe than either parallel or perpendicular rib/cavity structures. The results are also compared with scaling laws previously published in the literature.

  10. Natural and forced asymmetries in flow through a vocal fold model

    Science.gov (United States)

    Drain, Bethany; Lambert, Lori; Krane, Michael; Wei, Timothy

    2012-11-01

    Much of the complexity and richness of voice production stems from asymmetries in flow through the vocal folds. There are naturally occurring asymmetries, such as the Coanda effect (i . e . deviation of the glottal jet from the centerline as air passes through the nominally symmetric vocal folds). There are also asymmetries which arise from disease or dysfunction of the vocal folds. This study uses DPIV measurements in a dynamically scaled-up human vocal fold model to compare the flow characteristics between symmetric versus asymmetric oscillations. For this study, asymmetries were introduced by running one vocal fold out of phase with the other. Three phase lags, 0 18 and 36, were examined over a range of frequencies corresponding to the physiological frequencies of 50-200 Hz. Control volume analysis was applied and time traces of terms from the conservation of linear momentum equation were generated. This allowed analysis of how differences in the glottal jet flow manifest themselves in the fluid pressure field. In addition, further examination of the Coanda effect in the context of fluid pressure will be discussed. Supported by NIH.

  11. Data-Driven CFD Modeling of Turbulent Flows Through Complex Structures

    CERN Document Server

    Wang, Jian-Xun

    2016-01-01

    The growth of computational resources in the past decades has expanded the application of Computational Fluid Dynamics (CFD) from the traditional fields of aerodynamics and hydrodynamics to a number of new areas. Examples range from the heat and fluid flows in nuclear reactor vessels and in data centers to the turbulence flows through wind turbine farms and coastal vegetation plants. However, in these new applications complex structures are often exist (e.g., rod bundles in reactor vessels and turbines in wind farms), which makes fully resolved, first-principle based CFD modeling prohibitively expensive. This obstacle seriously impairs the predictive capability of CFD models in these applications. On the other hand, a limited amount of measurement data is often available in the systems in the above-mentioned applications. In this work we propose a data-driven, physics-based approach to perform full field inversion on the effects of the complex structures on the flow. This is achieved by assimilating observati...

  12. Preferential paths in yield stress fluid flow through a porous medium

    Science.gov (United States)

    Guasto, Jeffrey; Waisbord, Nicolas; Stoop, Norbert; Dunkel, Jörn

    2016-11-01

    A broad range of biological, geological, and industrial materials with complex rheological properties are subjected to flow through porous media in applications ranging from oil recovery to food manufacturing. In this experimental study, we examine the flow of a model yield stress fluid (Carbopol micro-gel) through a quasi-2D porous medium, fabricated in a microfluidic channel. The flow is driven by applying a precisely-controlled pressure gradient and measured by particle tracking velocimetry, and our observations are complemented by a pore-network model of the yield stress fluid flow. While remaining unyielded at small applied pressure, the micro-gel begins to yield at a critical pressure gradient, exhibiting a single preferential flow path that percolates through the porous medium. As the applied pressure gradient increases, we observe a subsequent coarsening and invasion of the yielded, fluidized network. An examination of both the yielded network topology and pore-scale flow reveal that two cooperative phenomena are involved in sculpting the preferential flow paths: (1) the geometry of the porous microstructure, and (2) the adhesive surface interactions between the micro-gel and substrate. NSF CBET-1511340.

  13. Simulation of flow through nanochannels: a novel multi-scale approach

    Science.gov (United States)

    Jaeger, Frederike; Wray, Alex; Muller, Erich; Poesio, Pietro; Matar, Omar

    2015-11-01

    A novel method for the simulation of flow through nanochannels is proposed. We use molecular dynamics (MD) simulations to determine relations between the pressure, shear and bulk viscosities and the density, as well as the slip length for different fluid-wall combinations. These relations are then plugged into a steady, two-dimensional continuum-scale model that allows the simulation of a compressible (Lennard-Jones) fluid through channels. No restrictive assumptions are made on the nature of the fluid and its flow behaviour (e.g. fully-developed, parabolic velocity profiles for incompressible fluids). Direct comparisons between the MD and the continuum-scale predictions for the channel flow show good agreement. A major advantage of the proposed method is its computational efficiency, which allows for complex flow geometries to be studied whilst still retaining the accuracy of MD-based simulations. Furthermore, through the use of the statistical fluid associating theory (SAFT), more complex fluids can be modelled, providing a computational framework capable of representing realistic experimental set-ups. EPSRC through TSM-CDT (FJ), DPF (AWW), MEMPHIS (EP/K003976/1, OKM), MACIPH (EP/L020564/1, EAM, OKM); Royal Society International Exchange Scheme (PP, OKM).

  14. Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns

    Science.gov (United States)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro

    2001-01-01

    This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.

  15. Gas-Liquid Two-Phase Flows Through Packed Bed Reactors in Microgravity

    Science.gov (United States)

    Motil, Brian J.; Balakotaiah, Vemuri

    2001-01-01

    The simultaneous flow of gas and liquid through a fixed bed of particles occurs in many unit operations of interest to the designers of space-based as well as terrestrial equipment. Examples include separation columns, gas-liquid reactors, humidification, drying, extraction, and leaching. These operations are critical to a wide variety of industries such as petroleum, pharmaceutical, mining, biological, and chemical. NASA recognizes that similar operations will need to be performed in space and on planetary bodies such as Mars if we are to achieve our goals of human exploration and the development of space. The goal of this research is to understand how to apply our current understanding of two-phase fluid flow through fixed-bed reactors to zero- or partial-gravity environments. Previous experiments by NASA have shown that reactors designed to work on Earth do not necessarily function in a similar manner in space. Two experiments, the Water Processor Assembly and the Volatile Removal Assembly have encountered difficulties in predicting and controlling the distribution of the phases (a crucial element in the operation of this type of reactor) as well as the overall pressure drop.

  16. Electro-driven extraction across a polymer inclusion membrane in a flow-through cell.

    Science.gov (United States)

    See, Hong Heng; Stratz, Simone; Hauser, Peter C

    2013-07-26

    A flow-through arrangement for electrodriven extraction across a polymer inclusion membrane was developed. Sample introduction into the donor chamber was continuous, while the acceptor solution was stagnant. By adjustment of the total volume of the donor solution pumped through the cell the best compromise between enrichment factor and extraction time can be set. The enriched extract was analyzed by capillary electrophoresis with contactless conductivity detection. Membranes of 20μm thickness were employed which consisted of 60% cellulose triacetate as base polymer, 20% o-nitrophenyl octyl ether as plasticizer, and 20% Aliquat 336. By passing through 10mL of sample at a flow rate of 1mL/min the model analytes glyphosate (a common herbicide) and its major metabolite aminomethylphosphonic acid could be transported from the aqueous donor solution to the aqueous acceptor solution with efficiencies >87% in 10min at an applied voltage of 1500V. Enrichment factors of 87 and 95 and limits of detection down to 43 and 64pg/mL were obtained for glyphosate and aminomethylphosphonic acid, respectively. The intra- and interday reproducibilities for the extraction of the two compounds from spiked river water were about 6 and 7% respectively when new membranes were used for each experiment. For consecutive extractions of batches of river water with a single piece of membrane a deterioration of recovery by about 16% (after 20 runs) was noted, an effect not observed with purely aqueous standards.

  17. Numerical analysis of the turbulent fluid flow through valves. Geometrical aspects influence at different positions

    Science.gov (United States)

    Rigola, J.; Aljure, D.; Lehmkuhl, O.; Pérez-Segarra, C. D.; Oliva, A.

    2015-08-01

    The aim of this paper is to carry out a group of numerical experiments over the fluid flow through a valve reed, using the CFD&HT code TermoFluids, an unstructured and parallel object-oriented CFD code for accurate and reliable solving of industrial flows. Turbulent flow and its solution is a very complex problem due to there is a non-lineal interaction between viscous and inertial effects further complicated by their rotational nature, together with the three-dimensionality inherent in these types of flow and the non-steady state solutions. In this work, different meshes, geometrical conditions and LES turbulence models (WALE, VMS, QR and SIGMA) are tested and results compared. On the other hand, the fluid flow boundary conditions are obtained by means of the numerical simulation model of hermetic reciprocating compressors tool, NEST-compressor code. The numerical results presented are based on a specific geometry, where the valve gap opening percentage is 11% of hole diameter and Reynolds numbers given by the one-dimensional model is 4.22 × 105, with density meshes of approximately 8 million CVs. Geometrical aspects related with the orifice's shape and its influence on fluid flow behaviour and pressure drop are analysed in detail, furthermore, flow results for different valve openings are also studied.

  18. Investigation and visualization of internal flow through particle aggregates and microbial flocs using particle image velocimetry.

    Science.gov (United States)

    Xiao, Feng; Lam, Kit Ming; Li, Xiao-yan

    2013-05-01

    An advanced particle-tracking and flow-visualization technology, particle image velocimetry (PIV), was utilized to investigate the hydrodynamic properties of large aggregates in water. The laser-based PIV system was used together with a settling column to capture the streamlines around two types of aggregates: latex particle aggregates and activated sludge (AS) flocs. Both types of the aggregates were highly porous and fractal with fractal dimensions of 2.13±0.31 for the latex particle aggregates (1210-2144 μm) and 1.78±0.24 for the AS flocs (1265-3737 μm). The results show that PIV is a powerful flow visualization technique capable of determining flow field details at the micrometer scale around and through settling aggregates and flocs. The PIV streamlines provided direct experimental proof of internal flow through the aggregate interiors. According to the PIV images, fluid collection efficiency ranged from 0.052 to 0.174 for the latex particle aggregates and from 0.008 to 0.126 for AS flocs. AS flocs are apparently less permeable than the particle aggregates, probably due to the extracellular polymeric substances (EPSs) produced by bacteria clogging the pores within the flocs. The internal permeation of fractal aggregates and bio-flocs would enhance flocculation between particles and material transport into the aggregates.

  19. Parametric Studies on Buoyancy Induced Flow through Circular Pipes in Solar water heating system

    Directory of Open Access Journals (Sweden)

    Dr. S. V. Prayagi

    2011-01-01

    Full Text Available Solar energy is the primary source of energy for our planet. The average solar energy reaching the earth in the tropical zone is about 1kWh/m2 giving approximately 5 to 10 kWh/m2 per day. Increased utilization of solar energy in India would result in all around benefits, both in term of cleaner environment and monetary gain.The energy from the sun can be used for various purposes such as water heating, water distillation, refrigeration, drying, power generation etc. The present work deals with solar water heating system in particular. Performance of the solar collectors can be determined using the famous Hottel-Whillier-Bliss equation [1]. The analysis is simple for the forced convection situation, where the flow rate is artificially maintained constant to a desired value and the heat transfer coefficient can easily be predicted using the information available in the literature. However the natural convection situation it is very difficult to analyze as appropriate correlations for predicting the values of induced mass flow rate due to thermosiphon effect and the associated heat transfer coefficient are not available. The aim of the present investigation, therefore, is to establish correlations for heat transfer and flow characteristics for the buoyancy induced flow through inclined tubes in case of solar water heating system in particular. Considering the complexity of the problem, experimental approach is preferred. In order to produce required data, experiments were performed using inclined tubes of various lengths, diameters, inclinations, and different heat inputs.

  20. Bed Slope Effect on Non-uniform Flow through Porous Media

    Science.gov (United States)

    Bhanu Prakasham Reddy, N.; Krishnaiah, S.; Ramakrishna Reddy, M.

    2016-09-01

    The tilting angle or bed slope (φ) effect on piezometric head was studied in a tilting angle converging permeameter for different rate of flows and for different bed slopes or tilting angles (φ) and the equipotential lines of piezometric head are depicted pictorially to establish the suitability of the convergent flow assumption and have a proper insight into the subject of seepage flow. The porosity effect is considered while computing seepage velocity (V), linear parameter, non-linear parameter, increases with decrease of porosity (N) and increases with decrease of angle of inclination. In order to meet the objective of this study, a crushed rock of size 7.30 mm was used as media and water as fluid, to develop curves relating friction factor (FR) and Reynolds number (RR) for different ratios of width using hydraulic radius (R) as characteristic length for different bed slopes or tilting angles (φ). The effect of varying tilting angles (φ) on head loss of fluid flow through porous media when packed between convergent boundaries for different ratios of width (B1/B2) was studied and inferred that tilting angles (φ) have a significant effect on the non uniform flow.

  1. Denitrification in the Mississippi River network controlled by flow through river bedforms

    Science.gov (United States)

    Gomez-Velez, Jesus D.; Harvey, Judson W.; Cardenas, M. Bayani; Kiel, Brian

    2015-12-01

    Increasing nitrogen concentrations in the world's major rivers have led to over-fertilization of sensitive downstream waters. Flow through channel bed and bank sediments acts to remove riverine nitrogen through microbe-mediated denitrification reactions. However, little is understood about where in the channel network this biophysical process is most efficient, why certain channels are more effective nitrogen reactors, and how management practices can enhance the removal of nitrogen in regions where water circulates through sediment and mixes with groundwater--hyporheic zones. Here we present numerical simulations of hyporheic flow and denitrification throughout the Mississippi River network using a hydrogeomorphic model. We find that vertical exchange with sediments beneath the riverbed in hyporheic zones, driven by submerged bedforms, has denitrification potential that far exceeds lateral hyporheic exchange with sediments alongside river channels, driven by river bars and meandering banks. We propose that geomorphic differences along river corridors can explain why denitrification efficiency varies between basins in the Mississippi River network. Our findings suggest that promoting the development of permeable bedforms at the streambed--and thus vertical hyporheic exchange--would be more effective at enhancing river denitrification in large river basins than promoting lateral exchange through induced channel meandering.

  2. Numerical modeling and verification of gas flow through a network of crossed narrow v-grooves

    Science.gov (United States)

    Bejhed, Johan; Nguyen, Hugo; Åstrand, Peter; Eriksson, Anders; Köhler, Johan

    2006-10-01

    The gas flow through a network of crossing thin micro-machined channels has been successfully modeled and simulated. The crossings are formed by two sets of v-grooves that intersect as two silicon wafers are bonded together. The gas is distributed from inlets via a manifold of channels to the narrow v-grooves. The narrow v-grooves could work as a particle filter. The fluidic model is derived from the Navier-Stokes equation and assumes laminar isothermal flow and incorporates small Knudsen number corrections and Poiseuille number calculations. The simulations use the finite element method. Several elements of the full crossing network model are treated separately before lumping them together: the straight v-grooves, a single crossing in an infinite set and a set of exactly four crossings along the flow path. The introduction of a crossing effectively corresponds to a virtual reduction of the length of the flow path, thereby defining a new effective length. The first and last crossings of each flow path together contribute to a pressure drop equal to that from three ordinary crossings. The derived full network model has been compared to previous experimental results on several differently shaped crossed v-groove networks. Within the experimental errors, the model corresponds to the mass flow and pressure drop measurements. The main error source is the uncertainty in v-groove width which has a profound impact on the fluidic behavior.

  3. Suspension model for blood flow through catheterized curved artery with time-variant overlapping stenosis

    Directory of Open Access Journals (Sweden)

    Kh. S. Mekheimer

    2015-09-01

    Full Text Available This paper is concerned with the analysis of a particle-fluid suspension model for the axi-symmetric flow of blood through curved coaxial tubes where the outer tube with mild overlapping stenosis while the inner tube is uniform rigid representing catheter. The governing equations written in rectangular toroidal coordinates and the problem is formulated using a perturbation expansion in terms of a variant of curvature parameter to obtain explicit forms for the axial velocities of fluid and particulate phases, the stream function, the resistance impedance, pressure drop and the wall shear stress distribution also the results were studied for various values of the physical parameters, such as the curvature parameter ε, the radius of catheter σ, the volume fraction density of the particles C, the taper angle ϕ and the maximum height of stenosis δ∗. The obtained results show that there is a significant deference between curvature and non-curvature annulus flows through catheterized stenosed arteries. This study provides a scope for estimating the influence of the problem parameters on different flow characteristics and to ascertain which of the parameters has the most dominating role.

  4. Shape effect of Cu-nanoparticles in unsteady flow through curved artery with catheterized stenosis

    Science.gov (United States)

    Ahmed, Ashfaq; Nadeem, Sohail

    In this study the arterial flow of Cu-nanofluid through catheterized arteries having a balloon angioplasty with time-varying overlapping stenosis is considered. The nanofluid comprises different shaped nanoparticles such as bricks, cylinders and platelets. In the arteries the nature of Cu-blood nanofluid is examined mathematically by considering it as a different shaped nanoparticles inclusion in viscous fluid in toroidal coordinate system. The problem is solved using a perturbation approximation in terms of a variant of curvature parameter (ɛ) to achieve the axial velocity, the stream function, the resistance impedance, and the wall shear stress distribution of nanofluid. Also, the results were obtained from explicit values of the physical parameters, such as the curvature parameter (ɛ), the balloon height (σ∗), the volume fraction (ϕ) and the shape factor of Cu-nanoparticles (m). The obtained results show that there is a notable difference between curvature and non-curvature annulus flows through catheterized stenosed arteries. The Platlets Cu-nanoparticle in the central portion of the tube are not sheared, and the slight velocity gradients are only found in the layers near the wall of artery than Bricks Cylinders Cu-nanoparticles.

  5. Validation of a flow-through sampler for pesticides and polybrominated diphenyl ethers in air

    Science.gov (United States)

    Xiao, Hang; Hung, Hayley; Lei, Ying Duan; Wania, Frank

    At locations without access to the electrical grid, a flow-through sampler (FTS) collects large volumes of air for the analysis of semi-volatile organic compounds (SVOCs). To test its performance under field conditions, an FTS and a traditional pumped high volume air sampler, both using polyurethane foam (PUF) as sampling medium, were co-deployed at the campus of the University of Toronto Scarborough from August 2006 to June 2007. Polybrominated diphenyl ethers (PBDEs) and various pesticides were quantified in the samples taken by both samplers to test the FTS's applicability to relatively non-volatile and slightly polar SVOCs. Air concentrations in samples taken with the FTS over five 2-week periods compare favourably with the average of the concentrations in several 24-h active high volume samples taken during the same period. In particular, time trends, temperature dependence relationships, and isomer ratios show a reasonable agreement between the two sampling techniques. An empirical linear solvation energy relationship for predicting the apparent theoretical plate number of the PUF assembly used in the FTS illustrates the effect of chemical properties, as well as temperature and wind speed, on sampling efficiency. In the absence of electrical power, the FTS can collect SVOCs from large air volumes as reliably and quantitatively as traditional HiVol samplers, although without separating gas and particle phase.

  6. Oxygen transfer characteristics of water and bubble mixture pipe flow through two sudden contractions and expansions

    Institute of Scientific and Technical Information of China (English)

    尹则高; 解绍华; 程东升; 龙翔宇

    2014-01-01

    The dissolved oxygen (DO) concentration is an important index of water quality. This paper studies the dissolved oxygen recovery of the water and bubble mixture pipe flow through two sudden contractions and expansions. A 3-D computational fluid dy- namics model is established to simulate the water and bubble mixture flow with a DO transport model. An experiment is conducted to validate the mathematical model. The mathematical model is used to evaluate the effect of geometric parameters on the head loss coefficient, the relative saturation coefficient and the oxygen absorption efficiency. It is found that the contraction ratio is a signi- ficant influencing factor, other than the relative length and the relative distance. Given the same relative length and relative distance, the head loss coefficient, the relative saturation coefficient and the oxygen absorption efficiency increase with the decrease of the contraction ratio, respectively. Given the same relative length and contraction ratio, the head loss coefficient increases with the in- crease of the relative distance firstly, and then decreases gradually, in contrast, the relative saturation coefficient and the oxygen ab- sorption efficiency decrease with the increase of the relative distance firstly, and then increase gradually, the relative saturation coefficient and the oxygen absorption efficiency are inversely proportional to the head loss coefficient, respectively.

  7. Influence of leakage flow through labyrinth seals on rotordynamics: numerical calculations and experimental measurements

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.Z.; Wang, W.Z.; Chen, H.P. [Shanghai Jiao Tong University, Thermal Fluid Flow and Turbomachinery Lab., The key lab of Ministry of Education, School of Mechanical Engineering, Shanghai (China); Ge, Q.; Yuan, Y. [Shanghai Turbine Company, Department of Research and Development, Shanghai (China)

    2007-08-15

    An extensive investigation of the influence of the leakage flow through a labyrinth seal at supply pressure of 12 bar on the rotordynamics was performed by using numerical calculations and experimental measurements. Toward this end, an experimental rotor setup was established in Shanghai Jiao Tong University. Two labyrinth seals were chosen for comparison, e.g., an interlocking seal and a stepped one. The numerical calculations based on the bulk-flow theory and the perturbation analysis were accomplished. Simultaneous acquisitions of the fluctuating static pressure at the stator wall and the displacement of the whirling rotor were made. The influence of the aerodynamic forcing on the rotor was analyzed in terms of the axial distribution of the mean static pressure, the circumferential distribution of the fluctuating pressure, the fist critical speed and the destabilization rotating speed of the rotor. The experimental results demonstrated that the sinusoidal distribution of the fluctuating static pressure on the stator wall was closely related to the whirling motion of the rotor. The first critical speed of the rotor was reduced by the aerodynamic forcing, resulting in intensified destabilization of the rotor system. Furthermore, the numerical analyses were in good agreement to the experimental measurements. (orig.)

  8. Theoretical study of solar combisystems based on bikini tanks and tank-in-tank stores

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon

    2012-01-01

    Purpose - Low flow bikini solar combisystems and high flow tank-in-tank solar combisystems have been studied theoretically. The aim of the paper is to study which of these two solar combisystem designs is suitable for different houses. The thermal performance of solar combisystems based on the two...... different heat storage types is compared. Design/methodology/approach - The thermal performance of Low flow bikini solar combisystems and high flow tank-in-tank solar combisystems is calculated with the simulation program TRNSYS. Two different TRNSYS models based on measurements were developed and used....... Findings - Based on the calculations it is concluded that low flow solar combisystems based on bikini tanks are promising for low energy buildings, while solar combisystems based on tank-in-tank stores are attractive for the houses with medium heating demand and old houses with high heating demand...

  9. Study on in-service inspection methods for the above-ground oil tanks floors

    Energy Technology Data Exchange (ETDEWEB)

    Min Xiong; Yewei Kang; Mingchun, Lin; Yi Sun [PetroChina Pipeline R and D Center, Langfang (China)

    2009-07-01

    It is very dangerous to the environment when oil tank floors get corrosion or leak during its long-time service. The traditional inspection methods need to shut down a tank and to empty it, then to clean it in order to inspect the floor. Comparing with the traditional methods, the in-service methods can inspect tank floors rapidly without removing product and opening the tank and can save many costs of tank emptying and cleaning. This paper explores three up-to date in-service inspection methods for the oil tank floors which are acoustic emission technology ultrasonic guided wave technology and mobile robot technology. The theoretic foundation and application status of each method is described. The advantage and disadvantage of each in-service detection technology is concluded. At last some proposals are made. (author)

  10. Wind generated rogue waves in an annular wave flume

    CERN Document Server

    Toffoli, A; Salman, H; Monbaliu, J; Frascoli, F; Dafilis, M; Stramignoni, E; Forza, R; Manfrin, M; Onorato, M

    2016-01-01

    We investigate experimentally the statistical properties of a wind-generated wave field and the spontaneous formation of rogue waves in an annular flume. Unlike many experiments on rogue waves, where waves are mechanically generated, here the wave field is forced naturally by wind as it is in the ocean. What is unique about the present experiment is that the annular geometry of the tank makes waves propagating circularly in an {\\it unlimited-fetch} condition. Within this peculiar framework, we discuss the temporal evolution of the statistical properties of the surface elevation. We show that rogue waves and heavy-tail statistics may develop naturally during the growth of the waves just before the wave height reaches a stationary condition. Our results shed new light on the formation of rogue waves in a natural environment.

  11. Wind Generated Rogue Waves in an Annular Wave Flume.

    Science.gov (United States)

    Toffoli, A; Proment, D; Salman, H; Monbaliu, J; Frascoli, F; Dafilis, M; Stramignoni, E; Forza, R; Manfrin, M; Onorato, M

    2017-04-07

    We investigate experimentally the statistical properties of a wind-generated wave field and the spontaneous formation of rogue waves in an annular flume. Unlike many experiments on rogue waves where waves are mechanically generated, here the wave field is forced naturally by wind as it is in the ocean. What is unique about the present experiment is that the annular geometry of the tank makes waves propagating circularly in an unlimited-fetch condition. Within this peculiar framework, we discuss the temporal evolution of the statistical properties of the surface elevation. We show that rogue waves and heavy-tail statistics may develop naturally during the growth of the waves just before the wave height reaches a stationary condition. Our results shed new light on the formation of rogue waves in a natural environment.

  12. Tank characterization data report: Tank 241-C-112

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-09-01

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. Analysis of the process history of the tank as well as studies of simulants provided valuable information about the physical and chemical condition of the waste. This information, in combination with the analysis of the tank waste, sup ports the conclusion that an exothermic reaction in tank 241-C-112 is not plausible. Therefore, the contents of tank 241-C-112 present no imminent threat to the workers at the Hanford Site, the public, or the environment from its forrocyanide inventory. Because an exothermic reaction is not credible, the consequences of this accident scenario, as promulgated by the General Accounting Office, are not applicable.

  13. Numerical modeling of the flow in a cryogenic fuel tank

    Science.gov (United States)

    Greer, Donald Steven

    Developing reusable flight weight cryogenic fuel tanks is one of the technological challenges in designing advanced hypersonic aircraft and the next generation of spacecraft. As an aid in the design of these aircraft, a computational fluid dynamics (CFD) model has been developed specifically for the analysis of flow in a cryogenic fuel tank. The model simulates the transient, two dimensional draining of a fuel tank cross section. The interface between the ullage gas and liquid fuel is modeled as a free surface to enable the calculation of slosh wave dynamics. The drain rate of the liquid fuel is specified as a boundary condition to the model. The ullage gas enters the model to replace the volume of drained liquid. The rate of ullage gas entering the model is calculated from boundary conditions of constant pressure and temperature for the ullage gas. The model employs the full set of Navier-Stokes equations with the exception that viscous dissipation is neglected in the energy equation. The method of solution is an explicit finite difference technique in two dimensional generalized coordinates approximated to second order accuracy in both space and time. The stiffness due to the low Mach number is handled by the method of artificial compressibility. Model comparisons are made to experimental data for free convection to a vertical plate and to free convection inside a horizontal cylinder. Slosh wave dynamics are compared to potential flow calculations for waves inside a square tank. Sample calculations are also performed on a rectangular tank and an eight sided polygon tank to demonstrate the capability of the model.

  14. Tank Characterization Report for Double Shell Tank (DST) 241-AN-107

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, M.R.

    2000-03-23

    This report interprets information about the tank answering a series of six questions covering areas such as information drivers, tank history, tank comparisons, disposal implications, data quality and quantity, and unique aspects of the tank.

  15. Algorithm for direct numerical simulation of emulsion flow through a granular material

    Science.gov (United States)

    Zinchenko, Alexander Z.; Davis, Robert H.

    2008-08-01

    A multipole-accelerated 3D boundary-integral algorithm capable of modelling an emulsion flow through a granular material by direct multiparticle-multidrop simulations in a periodic box is developed and tested. The particles form a random arrangement at high volume fraction rigidly held in space (including the case of an equilibrium packing in mechanical contact). Deformable drops (with non-deformed diameter comparable with the particle size) squeeze between the particles under a specified average pressure gradient. The algorithm includes recent boundary-integral desingularization tools especially important for drop-solid and drop-drop interactions, the Hebeker representation for solid particle contributions, and unstructured surface triangulations with fixed topology. Multipole acceleration, with two levels of mesh node decomposition (entire drop/solid surfaces and "patches"), is a significant improvement over schemes used in previous, purely multidrop simulations; it remains efficient at very high resolutions ( 104- 105 triangular elements per surface) and has no lower limitation on the number of particles or drops. Such resolutions are necessary in the problem to alleviate lubrication difficulties, especially for near-critical squeezing conditions, as well as using ˜104 time steps and an iterative solution at each step, both for contrast and matching viscosities. Examples are shown for squeezing of 25-40 drops through an array of 9-14 solids, with the total volume fraction of 70% for particles and drops. The flow rates for the drop and continuous phases are calculated. Extensive convergence testing with respect to program parameters (triangulation, multipole truncation, etc.) is made.

  16. Information Flow through a Model of the C. elegans Klinotaxis Circuit

    Science.gov (United States)

    Izquierdo, Eduardo J.; Williams, Paul L.; Beer, Randall D.

    2015-01-01

    Understanding how information about external stimuli is transformed into behavior is one of the central goals of neuroscience. Here we characterize the information flow through a complete sensorimotor circuit: from stimulus, to sensory neurons, to interneurons, to motor neurons, to muscles, to motion. Specifically, we apply a recently developed framework for quantifying information flow to a previously published ensemble of models of salt klinotaxis in the nematode worm Caenorhabditis elegans. Despite large variations in the neural parameters of individual circuits, we found that the overall information flow architecture circuit is remarkably consistent across the ensemble. This suggests structural connectivity is not necessarily predictive of effective connectivity. It also suggests information flow analysis captures general principles of operation for the klinotaxis circuit. In addition, information flow analysis reveals several key principles underlying how the models operate: (1) Interneuron class AIY is responsible for integrating information about positive and negative changes in concentration, and exhibits a strong left/right information asymmetry. (2) Gap junctions play a crucial role in the transfer of information responsible for the information symmetry observed in interneuron class AIZ. (3) Neck motor neuron class SMB implements an information gating mechanism that underlies the circuit’s state-dependent response. (4) The neck carries more information about small changes in concentration than about large ones, and more information about positive changes in concentration than about negative ones. Thus, not all directions of movement are equally informative for the worm. Each of these findings corresponds to hypotheses that could potentially be tested in the worm. Knowing the results of these experiments would greatly refine our understanding of the neural circuit underlying klinotaxis. PMID:26465883

  17. Assembly and Stacking of Flow-through Enzymatic Bioelectrodes for High Power Glucose Fuel Cells.

    Science.gov (United States)

    Abreu, Caroline; Nedellec, Yannig; Gross, Andrew J; Ondel, Olivier; Buret, Francois; Goff, Alan Le; Holzinger, Michael; Cosnier, Serge

    2017-07-19

    Bioelectrocatalytic carbon nanotube based pellets comprising redox enzymes were directly integrated in a newly conceived flow-through fuel cell. Porous electrodes and a separating cellulose membrane were housed in a glucose/oxygen biofuel cell design with inlets and outlets allowing the flow of electrolyte through the entire fuel cell. Different flow setups were tested and the optimized single cell setup, exploiting only 5 mmol L(-1) glucose, showed an open circuit voltage (OCV) of 0.663 V and provided 1.03 ± 0.05 mW at 0.34 V. Furthermore, different charge/discharge cycles at 500 Ω and 3 kΩ were applied to optimize long-term stability leading to 3.6 J (1 mW h) of produced electrical energy after 48 h. Under continuous discharge at 6 kΩ, about 0.7 mW h could be produced after a 24 h period. The biofuel cell design further allows a convenient assembly of several glucose biofuel cells in reduced volumes and their connection in parallel or in series. The configuration of two biofuel cells connected in series showed an OCV of 1.35 V and provided 1.82 ± 0.09 mW at 0.675 V, and when connected in parallel, showed an OCV of 0.669 V and provided 1.75 ± 0.09 mW at 0.381 V. The presented design is conceived to stack an unlimited amount of biofuel cells to reach the necessary voltage and power for portable electronic devices without the need for step-up converters or energy managing systems.

  18. An investigation of noise produced by unsteady gas flow through silencer elements

    Science.gov (United States)

    Mawhinney, Graeme Hugh

    This thesis presents an investigation of the noise produced by unsteady gas flow through silencer elements. The central aim of the research project was to produce a tool for assistance in the design of the exhaust systems of diesel powered electrical generator sets, with the modelling techniques developed having a much wider application in reciprocating internal combustion engine exhaust systems. An automotive cylinder head was incorporated in a purpose built test rig to supply exhaust pulses, typical of those found in the exhaust system of four stroke diesel engines, to various experimental exhaust systems. Exhaust silencer elements evaluated included expansion, re- entrant, concentric tube resonator and absorptive elements. Measurements taken on the test rig included, unsteady superposition pressure in the exhaust ducting, cyclically averaged mass flow rate through the system and exhaust noise levels radiated into a semi-anechoic measurement chamber. The entire test rig was modelled using the 1D finite volume method developed previously developed at Queen's University Belfast. Various boundary conditions, developed over the years, were used to model the various silencer elements being evaluated. The 1D gas dynamic simulation thus estimated the mass flux history at the open end of the exhaust system. The mass flux history was then broken into its harmonic components and an acoustic radiation model was developed to model the sound pressure level produced by an acoustic monopole over a reflecting plane. The accuracy of the simulation technique was evaluated by correlation of measured and simulated superposition pressure and noise data. In general correlation of superposition pressure was excellent for all of the silencer elements tested. Predicted sound pressure level radiated from the open end of the exhaust tailpipe was seen to be accurate in the 100 Hz to 1 kHz frequency range for all of the silencer elements tested.

  19. Information Flow through a Model of the C. elegans Klinotaxis Circuit.

    Directory of Open Access Journals (Sweden)

    Eduardo J Izquierdo

    Full Text Available Understanding how information about external stimuli is transformed into behavior is one of the central goals of neuroscience. Here we characterize the information flow through a complete sensorimotor circuit: from stimulus, to sensory neurons, to interneurons, to motor neurons, to muscles, to motion. Specifically, we apply a recently developed framework for quantifying information flow to a previously published ensemble of models of salt klinotaxis in the nematode worm Caenorhabditis elegans. Despite large variations in the neural parameters of individual circuits, we found that the overall information flow architecture circuit is remarkably consistent across the ensemble. This suggests structural connectivity is not necessarily predictive of effective connectivity. It also suggests information flow analysis captures general principles of operation for the klinotaxis circuit. In addition, information flow analysis reveals several key principles underlying how the models operate: (1 Interneuron class AIY is responsible for integrating information about positive and negative changes in concentration, and exhibits a strong left/right information asymmetry. (2 Gap junctions play a crucial role in the transfer of information responsible for the information symmetry observed in interneuron class AIZ. (3 Neck motor neuron class SMB implements an information gating mechanism that underlies the circuit's state-dependent response. (4 The neck carries more information about small changes in concentration than about large ones, and more information about positive changes in concentration than about negative ones. Thus, not all directions of movement are equally informative for the worm. Each of these findings corresponds to hypotheses that could potentially be tested in the worm. Knowing the results of these experiments would greatly refine our understanding of the neural circuit underlying klinotaxis.

  20. Modelling capillary hysteresis effects on preferential flow through melting and cold layered snowpacks

    Science.gov (United States)

    Leroux, Nicolas R.; Pomeroy, John W.

    2017-09-01

    Accurate estimation of the amount and timing of water flux through melting snowpacks is important for runoff prediction in cold regions. Most existing snowmelt models only account for one-dimensional matrix flow and neglect to simulate the formation of preferential flow paths. Consideration of lateral and preferential flows has proven critical to improve the performance of soil and groundwater porous media flow models. A two-dimensional physically-based snowpack model that simulates snowmelt, refreezing of meltwater, heat and water flows, and preferential flow paths is presented. The model assumes thermal equilibrium between solid and liquid phases and uses recent snow physics advances to estimate snowpack hydraulic and thermal properties. For the first time, capillary hysteresis is accounted in a snowmelt model. A finite volume method is applied to solve for the 2D coupled heat and mass transfer equations. The model with capillary hysteresis provided better simulations of water suction at the wet to dry snow interface in a wetting snow sample than did a model that only accounted for the boundary drying curve. Capillary hysteresis also improved simulations of preferential flow path dynamics and the snowpack discharge hydrograph. Simulating preferential flow in a subfreezing snowpack allowed the model to generate ice layers, and increased the vertical exchange of energy, thus modelling a faster warming of the snowpack than would be possible without preferential flow. The model is thus capable of simulating many attributes of heterogeneous natural melting snowpacks. These features not only qualitatively improve water flow simulations, but improve the understanding of snowmelt flow processes for both level and sloping terrain, and illuminate how uncertainty in snowmelt-derived runoff calculations might be reduced through the inclusion of more realistic preferential flow through snowpacks.

  1. Steady and Unsteady Solutions of Non-Isothermal Turbulent Flow through a Curved Duct with Square Cross Section

    National Research Council Canada - National Science Library

    M A Hye; M M Rahman; L Nowsher Ali; S Afrin

    2013-01-01

    ... steady solutions with two- and four-vortex solutions are obtained by the Newton-Raphson iteration method. Then, in order to investigate the non-linear behavior of the unsteady solutions, time evolution calculations as well as power spectrum of the solutions are obtained, and it is found that the steady-state flow turns into periodic flow through ...

  2. 46 CFR 154.420 - Tank design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.420 Section 154.420 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Integral Tanks § 154.420 Tank design. (a) The structure of an integral tank must meet the deep tank scantling...

  3. 46 CFR 154.439 - Tank design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent tank type A must meet the deep tank standard of...

  4. 27 CFR 25.35 - Tanks.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tanks. 25.35 Section 25.35... TREASURY LIQUORS BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask... contents of tanks or containers in lieu of providing each tank or container with a measuring device....

  5. 49 CFR 230.116 - Oil tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Oil tanks. 230.116 Section 230.116 Transportation... Locomotive Tanks § 230.116 Oil tanks. The oil tanks on oil burning steam locomotives shall be maintained free... adjacent to the fuel supply tank or in another safe location; (b) Closes automatically when tripped...

  6. 14 CFR 23.1013 - Oil tanks.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tanks. 23.1013 Section 23.1013... tanks. (a) Installation. Each oil tank must be installed to— (1) Meet the requirements of § 23.967 (a...) Expansion space. Oil tank expansion space must be provided so that— (1) Each oil tank used with...

  7. 49 CFR 238.423 - Fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at...

  8. A Numerical Investigation of the Flow through a New Fast Acting Valve for Diaphragmless Shock Tubes

    Science.gov (United States)

    Gageik, Manuel; Weiss, Alexander; Klioutchnikov, Igor; Olivier, Herbert

    In shock tubes, driver and driven section are usually separated by a diaphragm, which produces nearly ideal shock waves due to its instant rapture. However, known disadvantages of diaphragms motivate the investigation of diaphragmless shock tubes. One of these concepts is to replace a diaphram by a rapidly opening piston.

  9. Accountability Tanks Calibration Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wendelberger, James G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Salazar, William Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Finstad, Casey Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-25

    MET-1 utilizes tanks to store plutonium in solution. The Nuclear Material Control & Accountability group at LANL requires that MET-1 be able to determine the amount of SNM remaining in solution in the tanks for accountability purposes. For this reason it is desired to determine how well various operators may read the volume of liquid left in the tank with the tank measurement device (glass column or slab). The accuracy of the measurement is then compared to the current SAFE-NMCA acceptance criteria for lean and rich plutonium solutions to determine whether or not the criteria are reasonable and may be met.

  10. Development of smart solar tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa

    1999-01-01

    The aim of the project is to develop smart solar tanks. A smart solar tank is a tank in which the domestic water can bee heated both by solar collectors and by an auxiliary energy supply system. The auxiliary energy supply system heats up the hot-water tank from the top and the water volume heated...... by the auxiliary energy supply system is fitted to the hot water consumption and consumption pattern. In periods with a large hot-water demand the volume is large, in periods with a small hot-water demand the volume is small. Based on measurements and calculations the advantage of smart SDHW systems is visualised....

  11. Comparison of venous drainage in flow-through and conventional dorsalis pedis flaps for repair of dorsal foot defects.

    Science.gov (United States)

    Zhao, Ping; Li, Sen

    2015-01-01

    Inadequate venous drainage can lead to congestion and necrosis of flaps used in the repair of defects, thereby elevating the risk of flap failure. In this study, we sought to test the hypothesis that the venous drainage was better in flow-through flaps than in conventional dorsalis pedis free flaps used in the repair of dorsal foot defects. In this retrospective study, we investigated the data of 14 patients who underwent repair with flow-through flaps (n = 7) or conventional flaps (n = 7) for dorsal foot defects, between January 2007 and December 2013. The defects ranged from 6.2 × 11 cm to 9.5 × 16 cm in size. The donor sites were resurfaced using full-thickness free-skin grafts, and after transfer, the flaps were evaluated for postoperative congestion, surviving area, and sensory function. The results showed that the operative time was significantly longer for flow-through flaps than for conventional flaps (6.4 ± 1.7 h vs. 4.3 ± 1.2 h, P = 0.020), mainly due to additional dissection of the first dorsal metatarsal artery required in the case of the former. Necrosis was observed in the case of 4 conventional flaps, but not in the case of flow-through flaps. The flow-through flaps showed significantly lower incidence of congestion and higher survival area proportion than the conventional flaps (P dorsalis pedis flaps have the advantages of lower incidence of necrosis and congestion and better survival over the conventional flaps in the repair of dorsal foot defects, and absence of additional morbidities, but required a longer operative time than conventional flaps.

  12. Cryogenic Liquid Fluctuations in a Motionless Tank

    Directory of Open Access Journals (Sweden)

    Min Vin Ai

    2014-01-01

    Full Text Available The article considers approximate numerical methods to determine own frequencies of cryogenic liquid fluctuations stratification of which changes under any law. The increasing use of cryogenic liquids, liquefied gas, superfluid solutions, and slush liquids in modern mechanical engineering define relevance of a perspective. Interest in the considered problem is also caused by the fact that in cryogenic liquid along with superficial waves there can be internal wave movements penetrating all thickness of liquid in a tank and therefore playing important role in many hydro-dynamic processes.This article considers problems of determining the own frequencies of cryogenic liquid fluctuations, partially filling cylindrical tank of any cross section. It is supposed that the change of the liquid particles density due to thermal stratification of entire liquid mass can proceed continuously under any law. To solve numerically a similar problem, a method of trigonometric series (MTS and a method of final elements (MFE were used. When using the MTS method the unknown solution and variable coefficients of the equation were presented in the form of trigonometric series. Further, after multiplication of series and the subsequent mathematical operations the frequency equation was obtained. Bubnov-Galyorkin's approach was used to obtain solutions by the MFE method. Reliability of received numerical results is confirmed by coincidence with frequency results calculated by analytical formulas of solutions of differential equations with constant frequency of buoyancy.

  13. Tank closure reducing grout

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, T.B.

    1997-04-18

    A reducing grout has been developed for closing high level waste tanks at the Savannah River Site in Aiken, South Carolina. The grout has a low redox potential, which minimizes the mobility of Sr{sup 90}, the radionuclide with the highest dose potential after closure. The grout also has a high pH which reduces the solubility of the plutonium isotopes. The grout has a high compressive strength and low permeability, which enhances its ability to limit the migration of contaminants after closure. The grout was designed and tested by Construction Technology Laboratories, Inc. Placement methods were developed by the Savannah River Site personnel.

  14. [High Pressure Gas Tanks

    Science.gov (United States)

    Quintana, Rolando

    2002-01-01

    Four high-pressure gas tanks, the basis of this study, were especially made by a private contractor and tested before being delivered to NASA Kennedy Space Center. In order to insure 100% reliability of each individual tank the staff at KSC decided to again submit the four tanks under more rigorous tests. These tests were conducted during a period from April 10 through May 8 at KSC. This application further validates the predictive safety model for accident prevention and system failure in the testing of four high-pressure gas tanks at Kennedy Space Center, called Continuous Hazard Tracking and Failure Prediction Methodology (CHTFPM). It is apparent from the variety of barriers available for a hazard control that some barriers will be more successful than others in providing protection. In order to complete the Barrier Analysis of the system, a Task Analysis and a Biomechanical Study were performed to establish the relationship between the degree of biomechanical non-conformities and the anomalies found within the system on particular joints of the body. This relationship was possible to obtain by conducting a Regression Analysis to the previously generated data. From the information derived the body segment with the lowest percentage of non-conformities was the neck flexion with 46.7%. Intense analysis of the system was conducted including Preliminary Hazard Analysis (PHA), Failure Mode and Effect Analysis (FMEA), and Barrier Analysis. These analyses resulted in the identification of occurrences of conditions, which may be becoming hazardous in the given system. These conditions, known as dendritics, may become hazards and could result in an accident, system malfunction, or unacceptable risk conditions. A total of 56 possible dendritics were identified. Work sampling was performed to observe the occurrence each dendritic. The out of control points generated from a Weighted c control chart along with a Pareto analysis indicate that the dendritics "Personnel not

  15. 33 CFR 157.208 - Dedicated Clean Ballast Tanks Operations Manual for foreign tank vessels: Submission.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.208 Dedicated Clean Ballast Tanks Operations Manual for foreign tank...

  16. Tank Waste Remediation System Tank Waste Analysis Plan. FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    Haller, C.S.; Dove, T.H.

    1994-11-01

    This documents lays the groundwork for preparing the implementing the TWRS tank waste analysis planning and reporting for Fiscal Year 1995. This Tank Waste Characterization Plan meets the requirements specified in the Hanford Federal Facility Agreement and Consent Order, better known as the Tri-Party Agreement.

  17. Hanford waste tank cone penetrometer

    Energy Technology Data Exchange (ETDEWEB)

    Seda, R.Y.

    1995-12-01

    A new tool is being developed to characterize tank waste at the Hanford Reservation. This tool, known as the cone penetrometer, is capable of obtaining chemical and physical properties in situ. For the past 50 years, this tool has been used extensively in soil applications and now has been modified for usage in Hanford Underground Storage tanks. These modifications include development of new ``waste`` data models as well as hardware design changes to accommodate the hazardous and radioactive environment of the tanks. The modified cone penetrometer is scheduled to be deployed at Hanford by Fall 1996. At Hanford, the cone penetrometer will be used as an instrumented pipe which measures chemical and physical properties as it pushes through tank waste. Physical data, such as tank waste stratification and mechanical properties, is obtained through three sensors measuring tip pressure, sleeve friction and pore pressure. Chemical data, such as chemical speciation, is measured using a Raman spectroscopy sensor. The sensor package contains other instrumentation as well, including a tip and side temperature sensor, tank bottom detection and an inclinometer. Once the cone penetrometer has reached the bottom of the tank, a moisture probe will be inserted into the pipe. This probe is used to measure waste moisture content, water level, waste surface moisture and tank temperature. This paper discusses the development of this new measurement system. Data from the cone penetrometer will aid in the selection of sampling tools, waste tank retrieval process, and addressing various tank safety issues. This paper will explore various waste models as well as the challenges associated with tank environment.

  18. SINDA/FLUINT Stratified Tank Modeling for Cryrogenic Propellant Tanks

    Science.gov (United States)

    Sakowski, Barbara

    2014-01-01

    A general purpose SINDA/FLUINT (S/F) stratified tank model was created to simulate self-pressurization and axial jet TVS; Stratified layers in the vapor and liquid are modeled using S/F lumps.; The stratified tank model was constructed to permit incorporating the following additional features:, Multiple or singular lumps in the liquid and vapor regions of the tank, Real gases (also mixtures) and compressible liquids, Venting, pressurizing, and draining, Condensation and evaporation/boiling, Wall heat transfer, Elliptical, cylindrical, and spherical tank geometries; Extensive user logic is used to allow detailed tailoring - Don't have to rebuilt everything from scratch!!; Most code input for a specific case is done through the Registers Data Block:, Lump volumes are determined through user input:; Geometric tank dimensions (height, width, etc); Liquid level could be input as either a volume percentage of fill level or actual liquid level height

  19. Static Stress Analysis of Security Injection Tank

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The static structural analysis of the security injection tank is made to make sure whether the tank can withstand concerned loads or not on all conditions conforming to concerned code prescripts and design requirements. The tanks

  20. Oil Storage Facilities - Storage Tank Locations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  1. Validation of a simple method for predicting the disinfection performance in a flow-through contactor.

    Science.gov (United States)

    Pfeiffer, Valentin; Barbeau, Benoit

    2014-02-01

    Despite its shortcomings, the T10 method introduced by the United States Environmental Protection Agency (USEPA) in 1989 is currently the method most frequently used in North America to calculate disinfection performance. Other methods (e.g., the Integrated Disinfection Design Framework, IDDF) have been advanced as replacements, and more recently, the USEPA suggested the Extended T10 and Extended CSTR (Continuous Stirred-Tank Reactor) methods to improve the inactivation calculations within ozone contactors. To develop a method that fully considers the hydraulic behavior of the contactor, two models (Plug Flow with Dispersion and N-CSTR) were successfully fitted with five tracer tests results derived from four Water Treatment Plants and a pilot-scale contactor. A new method based on the N-CSTR model was defined as the Partially Segregated (Pseg) method. The predictions from all the methods mentioned were compared under conditions of poor and good hydraulic performance, low and high disinfectant decay, and different levels of inactivation. These methods were also compared with experimental results from a chlorine pilot-scale contactor used for Escherichia coli inactivation. The T10 and Extended T10 methods led to large over- and under-estimations. The Segregated Flow Analysis (used in the IDDF) also considerably overestimated the inactivation under high disinfectant decay. Only the Extended CSTR and Pseg methods produced realistic and conservative predictions in all cases. Finally, a simple implementation procedure of the Pseg method was suggested for calculation of disinfection performance.

  2. Hemolysis in a laminar flow-through Couette shearing device: an experimental study.

    Science.gov (United States)

    Boehning, Fiete; Mejia, Tzahiry; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2014-09-01

    Reducing hemolysis has been one of the major goals of rotary blood pump development and in the investigational phase, the capability of hemolysis estimation for areas of elevated shear stresses is valuable. The degree of hemolysis is determined by the amplitude of shear stress and the exposure time, but to date, the exact hemolytic behavior at elevated shear stresses and potential thresholds for subcritical shear exposure remain vague. This study provides experimental hemolysis data for a set of shear stresses and exposure times to allow better estimations of hemolysis for blood exposed to elevated shearing. Heparinized porcine blood with a hematocrit of 40% was mechanically damaged in a flow-through laminar Couette shear flow at a temperature of 23°C. Four levels of shear stress, 24, 592, 702, and 842 Pa, were replicated at two exposure times, 54 and 873 ms. For the calculation of the shear stresses, an apparent viscosity of 5 mPas was used, which was verified in an additional measurement of the blood viscosity. The hemolysis measurements were repeated four times, whereby all conditions were measured once within the same day and with blood from the same source. Samples were taken at the inlet and outlet of the shear region and an increase in plasma-free hemoglobin was measured. An index of hemolysis (IH) was thereby calculated giving the ratio of free to total hemoglobin. The results are compared with data from previously published studies using a similar shearing device. Hemolysis was found to increase exponentially with shear stress, but high standard deviations existed at measurements with elevated IH. At short exposure times, the IH remained low at under 0.5% for all shear stress levels. For high exposure times, the IH increased from 0.84% at 592 Pa up to 3.57% at the highest shear stress level. Hemolysis was significant for shear stresses above ∼600 Pa at the high exposure time of 873 ms. Copyright © 2014 International Center for Artificial

  3. Thermal and hydrodynamic characteristics of forced and mixed convection flow through vertical rectangular channels

    Directory of Open Access Journals (Sweden)

    Hanafi Abdalla S.

    2008-01-01

    more pronounced in the case of the mixed convection flow. For the forced convection region, the velocity profile depends only on Re with no difference between the upward and downward flow directions. Whereas, for the case of mixed convection flow, the velocity profile depends on the parameter Gr/Re with a main difference between upward and downward flow. These results are of great importance for any research reactor using plate type fuel elements or for any engineering application in which mixed convection flow through rectangular channel is encountered. .

  4. Selenium removal and mass balance in a constructed flow-through wetland system.

    Science.gov (United States)

    Gao, S; Tanji, K K; Lin, Z Q; Terry, N; Peters, D W

    2003-01-01

    A field study on the removal of Se from agricultural subsurface drainage was conducted from May 1997 to February 2001 in the Tulare Lake Drainage District (TLDD) of San Joaquin Valley, California. A flow-through wetland system was constructed consisting of ten 15- x 76-m unlined cells that were continuously flooded and planted with either a monotype or combination of plants, including sturdy bulrush [Schoenoplectus robustus (Pursh) M.T. Strong], baltic rush (Juncus balticus Willd.), smooth cordgrass (Spartina alterniflora Loisel.), rabbitsfoot grass [Polypogon monspeliensis (L.) Desf.], salt-grass lDistichlis spicata (L.) Greene], cattail (Typha latifolia L.), tule [Schoenoplectus acutus (Muhl. ex Bigelow) A. Löve & D. Löve], and widgeon grass (Ruppia maritima L.). One cell had no vegetation planted. The objectives of this research were to evaluate Se removal efficiency of each wetland cell and to carry out a mass balance on Se. The inflow drainage water to the cells had average annual Se concentrations of 19 to 22 microg L(-1) dominated by selenate [Se(VI), 95%]. Average weekly water residence time varied from about 3 to 15 d for Cells 1 through 7 (target 7 d), 19 to 33 d for Cells 8 and 9 (target 21 d), and 13 to 18 d for Cell 10 (target 14 d). Average weekly Se concentration ratios of outflow to inflow ranged from 0.45 to 0.79 and mass ratio (concentration x water volume) from 0.24 to 0.52 for year 2000, that is, 21 to 55% reduction in Se concentration and 48 to 76% Se removal in mass by the wetland, respectively. The nonvegetated cell showed the least Se removal both in concentration and in mass. The global mass balance showed that on the average about 59% of the total inflow Se was retained within the cells and Se outputs were outflow (35%), seepage (4%), and volatilization (2%). Independent measurements of the Se retained in the cells totaled 53% of the total Se inflow: 33% in the surface (0-20 cm) sediment, 18% in the organic detrital layer above the

  5. Bubble fragmentation in a 2D foam flowing through a porous medium

    Science.gov (United States)

    Meheust, Y.; Géraud, B.; Cantat, I.; Dollet, B.

    2016-12-01

    Foams have been used for decades as displacing fluids for EOR and aquifer remediation, and more recently as carriers of chemical amendments for the remediation of the vadose zone. Apart from various interesting physico-chemical and biochemical properties, foams are better injection fluids due to their low sensitivity to gravity and their peculiar rheology: for foams with bubbles on the order of at least the typical pore size, viscous dissipation arises mostly from the contact zones between the soap films and the walls. In most experimental studies no local information of the foam structure can be obtained, and only global quantities such as the effective viscosity can be measured. In a recent study [1] we investigated foam flows through a two-dimensional porous medium consisting of circular obstacles positioned randomly in a horizontal transparent Hele-Shaw cell. In this experiment we observed bubble fragmentation through lamella division, occurring when bubbles are pinched against obstacles. This phenomenon, observed at the scale of individual bubbles, drastically modifies the bubble size distribution as the foam travels in the porous medium, and, therefore, the rheology of the foam flow. We now present a detailed characterization of this fragmentation process based on experiments, theory and numerical simulations. We measure and characterize the evolution of the bubble size distributions along the porous medium for several flow parameters. The observation of the bubble fragmentation around specific obstacles provides the bubbles fragmentation rates and the fragment size probability density function. These two ingredients and the measurement of the initial bubble size distribution allow modeling the process by a fragmentation equation, which is then solved either analytically (using some simplications) or numerically [2]. The dynamics of the bubble size distribution as inferred from the models is in very good agreement with the experimental data. References :[1

  6. Heating in vascular tissue and flow-through tissue phantoms induced by focused ultrasound

    Science.gov (United States)

    Huang, Jinlan

    High intensity focused ultrasound (HIFU) can be used to control bleeding, both from individual blood vessels as well as from gross damage to the capillary bed. This process, called acoustic hemostasis, is being studied in the hope that such a method would ultimately provide a lifesaving treatment during the so-called "golden hour", a brief grace period after a severe trauma in which prompt therapy can save the life of an injured person. Thermal effects play a major role in occlusion of small vessels and also appear to contribute to the sealing of punctures in major blood vessels. However, aggressive ultrasound-induced tissue heating can also impact healthy tissue and can lead to deleterious mechanical bioeffects. Moreover, the presence of vascularity can limit one's ability to elevate the temperature of blood vessel walls owing to convective heat transport. In an effort to better understand the heating process in tissues with vascular structure we have developed a numerical simulation that couples models for ultrasound propagation, acoustic streaming, ultrasound heating and blood cooling in Newtonian viscous media. The 3-D simulation allows for the study of complicated biological structures and insonation geometries. We have also undertaken a series of in vitro experiments, in non-uniform flow-through tissue phantoms, designed to provide a ground truth verification of the model predictions. The calculated and measured results were compared over a range of values for insonation pressure, insonation time, and flow rate; we show good agreement between predictions and measurements. We then conducted a series of simulations that address two limiting problems of interest: hemostasis in small and large vessels. We employed realistic human tissue properties and considered more complex geometries. Results show that the heating pattern in and around a blood vessel is different for different vessel sizes, flow rates and for varying beam orientations relative to the flow axis

  7. Fourth and eighth grade students' conceptions of energy flow through ecosystems

    Science.gov (United States)

    Arkwright, Ashlie Beals

    This mixed methods status study examined 32 fourth grade students' conceptual understandings of energy flow through ecosystems prior to instruction and 40 eighth grade students' conceptual understandings of the same topic after five years of daily standards-based instruction in science. Specific ecological concepts assessed related to: 1) roles of organisms; 2) the sun as the original energy source for most ecosystems; and 3) interdependency of organisms. Fourth and eighth grade students were assessed using the same three-tiered forced-choice instrument, with accompanying tasks for students to defend their forced-choice selections and rate their level of confidence in making the selections. The instrument was developed for the study by a team of researchers and was based on similar tasks presented in the research literature. Distractor options were embedded in each assessment task using common non-scientific ideas also reported in the research literature. Cronbach's alpha values at or greater than .992 for each task indicated interrater consistency of task answers, and Rasch analysis was employed to establish the reliability of the instrument. Qualitative and quantitative analyses were employed to assess the data. Constant comparative methods were employed to analyze students' written responses, which were coded and grouped into emerging themes. These themes were further developed to characterize students' conceptual understandings. Student open responses also were scored and coded by a team of researchers using a rubric to identify level of scientific understanding. Quantitative analyses included Rasch analysis used to normalize survey data. Independent samples t-tests were then employed to compare students' forced-choice responses to their written responses and to the confidence ratings, as well as to compare fourth and eighth grade students' responses. Findings indicated that eighth grade students generally outperformed the fourth grade on both the forced

  8. Petroleum biodegradation studied in sediment-flow-through systems simulating natural oil seepage in marine sediments

    Science.gov (United States)

    Mishra, Sonakshi; Wefers, Peggy; Steeb, Philip; Schmidt, Mark; Treude, Tina

    2014-05-01

    The natural biodegradation of hydrocarbons depends on several environmental factors like nutrients, salinity, temperature, pressure, redox-conditions and composition of crude oil. Petroleum migrating from depth into marine surface sediments at natural seep sites could be subjected to a sequence of different kind of microbial processes which is controlled by a strong redox gradient within a thin sediment segment. Most studies on microbial degradation of petroleum have focused either only on selected hydrocarbon fractions or on cultured microbes. This study, however, attempts to investigate the natural microbial response of marine sediments to crude oil seepage with detailed analysis of sediment and porewater geochemistry, hydrocarbon degradation products, microbial activity, and microbial genetics. A sediment-oil-flow-through-system was established where crude oil migrated through the bottom of (approximately 30 cm long) intact marine sediment cores simulating a natural seepage scenario. Electron acceptor-rich oxic seawater was provided at the top of the core and anoxic conditions were established at the bottom of the cores. The intact sediment cores had been sampled from the Caspian Sea (near Baku) and the North Alex Mud Volcano in the Mediterranean Sea. The Caspian Sea and the North Alex Mud Volcano are both sites with active transport of hydrocarbons from depth by mud volcano activity. The geochemical changes in the sediment cores during oil seepage were monitored by using microelectrodes and porewater analyses. The geochemical analysis was later followed by hydrocarbon and molecular analyses at the end of the experiment by slicing the cores. First results based on the biogeochemistry of the sediment cores and hydrocarbon analyses are presented here. Porewater profiles of hydrogen sulfide and sulfate during the experimental runs gave first indications of microbial response and sulfate reduction due to the addition of crude oil. The core from North Alex Mud

  9. Physical hydrodynamic propulsion model study on creeping viscous flow through a ciliated porous tube

    Indian Academy of Sciences (India)

    NOREEN SHER AKBAR; ADIL WAHID BUTT; DHARMENDRA TRIPATHI; O ANWAR BÉG

    2017-03-01

    The present investigation focusses on a mathematical study of creeping viscous flow induced by metachronal wave propagation in a horizontal ciliated tube containing porous media. Creeping flow limitations are imposed, i.e. inertial forces are small compared to viscous forces and therefore a very low Reynolds number (Re $\\ll$ 1) is taken into account. The wavelength of metachronal wave is also considered to be very large for cilia movement. The physical problem is linearized and exact solutions are developed for the differential equation problem. Mathematica software is used to compute and illustrate numerical results. The influence of slip parameter and Darcy number on velocity profile, pressure gradient and trapping of bolus are discussed with the aid of graphs. It is found that with increasing magnitude of the slip parameter, the trapped bolus inside the streamlines increases in size. The study is relevant to biological propulsion of medical micromachines in drug delivery.

  10. Physical hydrodynamic propulsion model study on creeping viscous flow through a ciliated porous tube

    Science.gov (United States)

    Akbar, Noreen Sher; Butt, Adil Wahid; Tripathi, Dharmendra; Bég, O. Anwar

    2017-03-01

    The present investigation focusses on a mathematical study of creeping viscous flow induced by metachronal wave propagation in a horizontal ciliated tube containing porous media. Creeping flow limitations are imposed, i.e. inertial forces are small compared to viscous forces and therefore a very low Reynolds number (Re ≪ 1) is taken into account. The wavelength of metachronal wave is also considered to be very large for cilia movement. The physical problem is linearized and exact solutions are developed for the differential equation problem. Mathematica software is used to compute and illustrate numerical results. The influence of slip parameter and Darcy number on velocity profile, pressure gradient and trapping of bolus are discussed with the aid of graphs. It is found that with increasing magnitude of the slip parameter, the trapped bolus inside the streamlines increases in size. The study is relevant to biological propulsion of medical micromachines in drug delivery.

  11. EM modeling of RF drive in DTL tank 4

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, Sergey S. [Los Alamos National Laboratory

    2012-06-19

    A 3-D MicroWave Studio model for the RF drive in the LANSCE DTL tank 4 has been built. Both eigensolver and time-domain modeling are used to evaluate maximal fields in the drive module and RF coupling. The LANSCE DTL tank 4 has recently been experiencing RF problems, which may or may not be related to its replaced RF coupler. This situation stimulated a request by Dan Rees to provide EM modeling of the RF drive in the DTL tank 4 (T4). Jim O'Hara provided a CAD model that was imported into the CST Microwave Studio (MWS) and after some modifications became a part of a simplified MWS model of the T4 RF drive. This technical note describes the model and presents simulation results.

  12. Cleaning Validation of Fermentation Tanks

    DEFF Research Database (Denmark)

    Salo, Satu; Friis, Alan; Wirtanen, Gun

    2008-01-01

    Reliable test methods for checking cleanliness are needed to evaluate and validate the cleaning process of fermentation tanks. Pilot scale tanks were used to test the applicability of various methods for this purpose. The methods found to be suitable for validation of the clenlinees were visula...

  13. Modelling of baffled stirred tanks

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstedt, H.; Lahtinen, M. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1996-12-31

    The three-dimensional flow field of a baffled stirred tank has been calculated using four different turbulence models. The tank is driven by a Rushton-type impeller. The boundary condition for the impeller region has been given as a source term or by calculating the impeller using the sliding mesh technique. Calculated values have been compared with measured data. (author)

  14. Enhanced Waste Tank Level Model

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.

    1999-06-24

    'With the increased sensitivity of waste-level measurements in the H-Area Tanks and with periods of isolation, when no mass transfer occurred for certain tanks, waste-level changes have been recorded with are unexplained.'

  15. Enhanced Waste Tank Level Model

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.

    1999-06-24

    'With the increased sensitivity of waste-level measurements in the H-Area Tanks and with periods of isolation, when no mass transfer occurred for certain tanks, waste-level changes have been recorded with are unexplained.'

  16. Cleaning Validation of Fermentation Tanks

    DEFF Research Database (Denmark)

    Salo, Satu; Friis, Alan; Wirtanen, Gun

    2008-01-01

    Reliable test methods for checking cleanliness are needed to evaluate and validate the cleaning process of fermentation tanks. Pilot scale tanks were used to test the applicability of various methods for this purpose. The methods found to be suitable for validation of the clenlinees were visula o...

  17. Competitive Think Tanks in Europe

    DEFF Research Database (Denmark)

    Kelstrup, Jesper Dahl

    in opportunity structures that are mediated by historically constituted institutions in knowledge regimes. The paper distinguishes between four different strategies, the authoritative, the collaborative, the agenda-setting and the competitive strategy that are distinguished by the relations think tanks have...... to established institutions and power in public policy. On the basis of the hypothesis that more competitive think tanks have emerged due to lower opportunity costs, the paper investigates how ‘competitive’ think tank strategies have been used in Germany, Denmark, the EU-institutions in Brussels...... and in the United Kingdom from 2000 to 2012. The findings contradict the hypothesis that the competitive think tank strategy is the dominant or even a common strategy across the cases under investigation. The competitive strategy is particularly rare among EU and German think tanks. As such the paper challenges...

  18. Surplus yeast tank failing catastrophically

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2016-01-01

    GOOD REASON FOR CAUTION I A large surplus yeast tank shot into the air leaving the floor plate and the contents behind. Although not designed for overpressure, the tank was kept at “very slight overpressure” to suppress nuisance foaming. The brewery was unaware of the hazards of compressed air. T....... The accident described in this article serves to illustrate that care should be taken if a tank originally designed for atmospheric pressure is modified to operate at slight overpressure.......GOOD REASON FOR CAUTION I A large surplus yeast tank shot into the air leaving the floor plate and the contents behind. Although not designed for overpressure, the tank was kept at “very slight overpressure” to suppress nuisance foaming. The brewery was unaware of the hazards of compressed air...

  19. In-tank photo analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vorvick, C.A.; Baird, D.B.; Heasler, P.G. [and others

    1995-09-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) of photographs showing the interior of a single shell tank (SST) at the Hanford site. This report shows that in-tank photos can be used to create a plan-view map of the waste surface inside a tank, and that measuring the elevation of the waste surface from the photos is possible, but not accurate enough to be useful at this time. In-tank photos were acquired for Tanks BX111 and T111. The BX111 photos were used to create the waste surface map and to measure the waste surface elevation. T111 photos were used to measure the waste surface elevation. Uncertainty analyses of the mapping and surface elevation are included to show the accuracy of the calculations for both methods.

  20. Examination of nanoparticles as a drug carrier on blood flow through catheterized composite stenosed artery with permeable walls.

    Science.gov (United States)

    Ijaz, S; Nadeem, S

    2016-09-01

    In this paper, we have discussed the influence of copper nanoparticles on a blood flow through composite stenosed artery with permeable walls. The nature of blood is discussed mathematically by considering it as viscous nanofluid. The study is carried out for a blood vessel under mild stenosis approximations and expressions of the temperature, velocity, resistance impedance to flow, wall shear stress and the pressure gradient is obtained by using corresponding boundary conditions. Results for the effects of permeability on blood flow through composite stenosis have been discussed graphically. The considered analysis also summarizes that the drug copper nanoparticles are efficient to reduce hemodynamics of stenosis and could be helpful to predict important uses for biomedical applications. Results indicate that nanoparticles are helpful as drug carriers to minimize the effects of resistance impedance to blood flow or coagulation factors due to stenosis.

  1. Flow-through synthesis on Teflon-patterned paper to produce peptide arrays for cell-based assays.

    Science.gov (United States)

    Deiss, Frédérique; Matochko, Wadim L; Govindasamy, Natasha; Lin, Edith Y; Derda, Ratmir

    2014-06-16

    A simple method is described for the patterned deposition of Teflon on paper to create an integrated platform for parallel organic synthesis and cell-based assays. Solvent-repelling barriers made of Teflon-impregnated paper confine organic solvents to specific zones of the patterned array and allow for 96 parallel flow-through syntheses on paper. The confinement and flow-through mixing significantly improves the peptide yield and simplifies the automation of this synthesis. The synthesis of 100 peptides ranging from 7 to 14 amino acids in length gave over 60% purity for the majority of the peptides (>95% yield per coupling/deprotection cycle). The resulting peptide arrays were used in cell-based screening to identify 14 potent bioactive peptides that support the adhesion or proliferation of breast cancer cells in a 3D environment. In the future, this technology could be used for the screening of more complex phenotypic responses, such as cell migration or differentiation.

  2. History independence of steady state in simultaneous two-phase flow through two-dimensional porous media.

    Science.gov (United States)

    Erpelding, Marion; Sinha, Santanu; Tallakstad, Ken Tore; Hansen, Alex; Flekkøy, Eirik Grude; Måløy, Knut Jørgen

    2013-11-01

    It is well known that the transient behavior during drainage or imbibition in multiphase flow in porous media strongly depends on the history and initial condition of the system. However, when the steady-state regime is reached and both drainage and imbibition take place at the pore level, the influence of the evolution history and initial preparation is an open question. Here, we present an extensive experimental and numerical work investigating the history dependence of simultaneous steady-state two-phase flow through porous media. Our experimental system consists of a Hele-Shaw cell filled with glass beads which we model numerically by a network of disordered pores transporting two immiscible fluids. From measurements of global pressure evolution, histograms of saturation, and cluster-size distributions, we find that when both phases are flowing through the porous medium, the steady state does not depend on the initial preparation of the system or on the way it has been reached.

  3. A multisyringe flow-through sequential extraction system for on-line monitoring of orthophosphate in soils and sediments

    DEFF Research Database (Denmark)

    Buanuam, Janya; Miró, Manuel; Hansen, Elo Harald

    2007-01-01

    A fully automated flow-through microcolumn fractionation system with on-line post-extraction derivatization is proposed for monitoring of orthophosphate in solid samples of environmental relevance. The system integrates dynamic sequential extraction using 1.0 mol l-1 NH4Cl, 0.1 mol l-1 NaOH and 0.......5 mol l-1 HCl as extractants according to the Hietjles-Lijklema (HL) scheme for fractionation of phosphorus associated with different geological phases, and on-line processing of the extracts via the Molybdenum Blue (MB) reaction by exploiting multisyringe flow injection as the interface between...... the solid containing microcolumn and the flow-through detector. The proposed flow assembly, capitalizing on the features of the multicommutation concept, implies several advantages as compared to fractionation analysis in the batch mode in terms of saving of extractants and MB reagents, shortening...

  4. Supporting document for the Southeast Quadrant historical tank content estimate report for SY-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Gaddis, L.A.; Consort, S.D. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-12-31

    Historical Tank Content Estimate of the Southeast Quadrant provides historical evaluations on a tank by tank basis of the radioactive mixed wastes stored in the underground double-shell tanks of the Hanford 200 East and West Areas. This report summarizes historical information such as waste history, temperature profiles, psychrometric data, tank integrity, inventory estimates and tank level history on a tank by tank basis. Tank Farm aerial photos and in-tank photos of each tank are provided. A brief description of instrumentation methods used for waste tank surveillance are included. Components of the data management effort, such as Waste Status and Transaction Record Summary, Tank Layer Model, Supernatant Mixing Model, Defined Waste Types, and Inventory Estimates which generate these tank content estimates, are also given in this report.

  5. Full potential solution of transonic quasi-3-D flow through a cascade using artificial compressability

    Science.gov (United States)

    Farrell, C.; Adamczyk, J.

    1981-01-01

    The three-dimensional flow in a turbomachinery blade row was approximated by correcting for streamtube convergence and radius change in the throughflow direction. The method is a fully conservative solution of the full potential equation incorporating the finite volume technique on body fitted periodic mesh, with an artificial density imposed in the transonic region to insure stability and the capture of shock waves. Comparison of results for several supercritical blades shows good agreement with their hodograph solutions. Other calculations for these profiles as well as standard NACA blade sections indicate that this is a useful scheme analyzing both the design and off-design performance of turbomachinery blading.

  6. A numerical model for self-compacting concrete flow through reinforced sections. A porous medium analogy

    Energy Technology Data Exchange (ETDEWEB)

    Vasilic, Ksenija

    2016-05-01

    This thesis addresses numerical simulations of self-compacting concrete (SCC) castings and suggests a novel modelling approach that treats reinforcement zones in a formwork as porous media. As a relatively new field in concrete technology, numerical simulations of fresh concrete flow can be a promising aid to optimise casting processes and to avoid on-site casting incidents by predicting the flow behaviour of concrete during the casting process. The simulations of fresh concrete flow generally involve complex mathematical modelling and time-consuming computations. In case of a casting prediction, the simulation time is additionally significantly increased because each reinforcement bar occurring in succession has to be considered one by one. This is particularly problematic when simulating SCC casting, since this type of concrete is typically used for heavily reinforced structural members. However, the wide use of numerical tools for casting prediction in practice is possible only if the tools are user-friendly and simulations are time-saving. In order to shorten simulation time and to come closer to a practical tool for casting prediction, instead to model steel bars one by one, this thesis suggests to model zones with arrays of steel bars as porous media. Consequently, one models the flow of SCC through a reinforcement zone as a free-surface flow of a non-Newtonian fluid, propagating through the medium. By defining characteristic parameters of the porous medium, the influence on the flow and the changed (apparent) behaviour of concrete in the porous matrix can be predicted. This enables modelling of any reinforcement network as a porous zone and thus significantly simplifies and fastens simulations of reinforced components' castings. Within the thesis, a computational model for SCC flow through reinforced sections was developed. This model couples a fluid dynamics model for fresh concrete and the macroscopic approach for the influence of the porous medium

  7. Growth performance of exotic Oreochromis niloticus, exotic Oreochromis niloticus fed with pelleted feeds in flow-through system

    OpenAIRE

    Eyo, A.A.; Okoye, F.C.; Sebiola, D.

    1999-01-01

    Local, exotic and hybrid tilapia fingerlings were fed 45% crude protein diet containing 18% fish meal in a flow through system in triplicate and their growth and food utilization observed for 14 weeks. At the end of the study, the hybrid (Exotic Oreochromis niloticus male x Exotic Oreochromis aureus female) fingerlings had higher growth rate and food conversion ratio (FCR) than the other treatments. This was followed by Exotic Oreochromis niloticus fingerlings. The exotic Oreochromis niloticu...

  8. Solution of the Burger’s Equation for Longitudinal Dispersion Phenomena Occurring in Miscible Phase Flow through Porous Media

    Directory of Open Access Journals (Sweden)

    Monika N. Mehta

    2012-04-01

    Full Text Available An approximate solution of longitudinal dispersion phenomena occurring in two phase miscible fluid flow through porous media has been obtained by using the group theoretic approach. The longitudinal dispersion coefficient is assumed to be directly proportional to the concentration of the fluid for a distance x and at any time t > 0. The graphical representation for the concentration of the fluid for a distance x and at time t > 0 has been obtained using Mat lab coding.

  9. Modeling of the bottom water flow through the Romanche Fracture Zone with a primitive equation model - Part I: Dynamics

    OpenAIRE

    Ferron, Bruno; Mercier, Herle; Treguier, Anne-marie

    2000-01-01

    This paper investigates the dynamics of the Antarctic Bottom Water (AABW) flow through the Romanche Fracture Zone (RFZ) in a primitive equation model with a high horizontal and vertical resolution. Two examples of Rows over simple bathymetries show that a reduced gravity model captures the essential dynamics of the primitive equation model. The reduced gravity model is then used as a tool to identify what are the bathymetric structures (sills, narrows) that mostly constrain the AABW flow thro...

  10. Characterization of the frictional losses and heat transfer of oscillatory viscous flow through wire-mesh regenerators

    OpenAIRE

    A.A. Boroujerdi; M. Esmaeili

    2015-01-01

    In this paper, new relations for calculating heat transfer and pressure drop characteristics of oscillatory flow through wire-mesh screen regenerator such as Darcy permeability, Forchheimer’s inertial coefficient, and heat transfer area per unit volume, as a function of the wire diameter are presented. According to the derived relations, thinner wires have higher pressure drop and higher heat transfer rate. The relations are applicable for all regenerative cryocoolers. Embedding the new relat...

  11. Thermal stability assessment of antibiotics in moderate temperature and subcriticalwater using a pressurized dynamic flow-through system

    OpenAIRE

    Svahn, Ola; Björklund, Erland

    2015-01-01

    Thermal degradation of antibiotics has been studied for decades in a broad range of disciplines including food production, agriculture and analytical chemistry. Yet, there is a lack of thermal stability data for many antibiotics. Here we systematically investigated the thermal stability of ten commonly prescribed antibiotics applying a laborsaving automated inhouse pressurized dynamic flow-through system. The design of the system allowed a fast access to a large number of data at medium to su...

  12. GLOBAL EXISTENCE AND BLOW-UP PHENOMENA OF CLASSICAL SOLUTIONS FOR THE SYSTEM OF COMPRESSIBLE ADIABATIC FLOW THROUGH POROUS MEDIA

    Institute of Scientific and Technical Information of China (English)

    刘法贵; 孔德兴

    2004-01-01

    By means of maximum principle for nonlinear hyperbolic systems,the results given by HSIAO Ling and D.Serre was improved for Cauchy problem of compressible adiabatic flow through porous media,and a complete result on the global existence and the blow-up phenomena of classical solutions of these systems.These results show that the dissipation is strong enough to preserve the smoothness of 'small ' solution.

  13. Tank-automotive robotics

    Science.gov (United States)

    Lane, Gerald R.

    1999-07-01

    To provide an overview of Tank-Automotive Robotics. The briefing will contain program overviews & inter-relationships and technology challenges of TARDEC managed unmanned and robotic ground vehicle programs. Specific emphasis will focus on technology developments/approaches to achieve semi- autonomous operation and inherent chassis mobility features. Programs to be discussed include: DemoIII Experimental Unmanned Vehicle (XUV), Tactical Mobile Robotics (TMR), Intelligent Mobility, Commanders Driver Testbed, Collision Avoidance, International Ground Robotics Competition (ICGRC). Specifically, the paper will discuss unique exterior/outdoor challenges facing the IGRC competing teams and the synergy created between the IGRC and ongoing DoD semi-autonomous Unmanned Ground Vehicle and DoT Intelligent Transportation System programs. Sensor and chassis approaches to meet the IGRC challenges and obstacles will be shown and discussed. Shortfalls in performance to meet the IGRC challenges will be identified.

  14. Disposable lateral flow-through strip for smartphone-camera to quantitatively detect alkaline phosphatase activity in milk.

    Science.gov (United States)

    Yu, Ling; Shi, ZhuanZhuan; Fang, Can; Zhang, YuanYuan; Liu, YingShuai; Li, ChangMing

    2015-07-15

    A disposable lateral flow-through strip was developed for smartphone to fast one-step quantitatively detect alkaline phosphatase (ALP) activity in raw milk. The strip comprises two functional components, a conjugation pad loaded with phosphotyrosine-coated gold nanoparticles (AuNPs@Cys-Try-p) and a testing line coated with anti-phosphotryosine antibody (anti-Tyr-p mAb). The dephosphorylation activity of ALP at the testing zone can be quantitatively assayed by monitoring the accumulated AuNPs-induced color changes by smartphone camera, thus providing a highly convenient portable detection method. A trace amount of ALP as low as 0.1UL(-1) with a linear dynamic range of 0.1-150UL(-1) (R(2)=0.999) in pasteurized milk and raw milk can be one-step detected by the developed flow-through strip within 10min, demonstrating the potential of smartphone-based portable sensing device for pathogen detection. This bio-hazards free lateral flow-through testing strip can be also used to fabricate rapid, sensitive and inexpensive enzyme or immunosensors for broad portable clinic diagnosis and food contamination analysis, particularly in point-of-care and daily food quality inspection. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effects of stocking-density in flow-through system on the mussel Perna perna larval survival

    Directory of Open Access Journals (Sweden)

    Caio Silva Turini

    2014-07-01

    Full Text Available This study evaluated the effects of larval densities, cultured in flow-through system, in the yield and quantity of larvae. The first experiment compared the larval yield of a flow­through system (80 larvae mL-1 and a batch system (8 larvae mL-1, which resulted in a higher yield and number of larvae in the flow­through system, after 23 days. The second experiment compared two larval densities (20 and 45 larvae mL-1 in flow­through system. The densities affected the yield after 15 and 23 days and the larvae final quantity after all tested times (8, 15, and 23 days. After 23 days of larviculture, the yield was highest for 20 larvae mL-1 and the larval number for 45 larvae mL-1. The third experiment also compared two larval densities (100 and 150 larvae mL-1 in flow­through system. The larvae densities did not affect the yield and number of larvae for all tested times (8, 15, and 23 days. In general, the yield has reduced at higher larval densities. Therefore, considering the number of suitable larvae for settlement, the flow-through system was more efficient than the static system. However, in general, we observed reduced yield with high larval stocking-density in flow-through system.

  16. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Periodic retest and inspection of tank cars other... of Tank Cars § 180.519 Periodic retest and inspection of tank cars other than single-unit tank car... devices must be retested periodically as specified in Retest Table 1 of paragraph (b)(5) of this...

  17. Tank characterization report for double shell tank 241-AP-104

    Energy Technology Data Exchange (ETDEWEB)

    Winkelman, W.D., Westinghouse Hanford

    1996-08-07

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-AP-104. This report supports the requirements of Tri-Party Agreement Milestone M-44-09.

  18. Tank vapor mitigation requirements for Hanford Tank Farms

    Energy Technology Data Exchange (ETDEWEB)

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.

  19. Tank characterization report for single shell tank 241-S-107

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.

    1996-09-19

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-S-107. This report supports the requirements of Tri- Party Agreement Milestone M-44-09.

  20. Tank characterization report for single shell tank 241-S-107

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.

    1996-09-19

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-S-107. This report supports the requirements of Tri- Party Agreement Milestone M-44-09.

  1. Tank characterization report for single-shell Tank B-201

    Energy Technology Data Exchange (ETDEWEB)

    Heasler, P.G.; Remund, K.M.; Tingey, J.M.; Baird, D.B.; Ryan, F.M.

    1994-09-01

    The purpose of this report is to characterize the waste in single shell Tank B-201. Characterization includes the determination of the physical, chemical (e.g., concentrations of elements and organic species), and radiological properties of the waste. These determinations are made using analytical results from B-201 core samples as well as historical information about the tank. The main objective is to determine average waste properties: but in some cases, concentrations of analytes as a function of depth were also determined. This report also consolidates the available historical information regarding Tank B-201, arranges the analytical information from the recent core sampling in a useful format, and provides an interpretation of the data within the context of what is known about the tank.

  2. Ecodesign of Liquid Fuel Tanks

    Science.gov (United States)

    Gicevska, Jana; Bazbauers, Gatis; Repele, Mara

    2011-01-01

    The subject of the study is a 10 litre liquid fuel tank made of metal and used for fuel storage and transportation. The study dealt with separate life cycle stages of this product, compared environmental impacts of similar fuel tanks made of metal and plastic, as well as analysed the product's end-of-life cycle stage, studying the waste treatment and disposal scenarios. The aim of this study was to find opportunities for improvement and to develop proposals for the ecodesign of 10 litre liquid fuel tank.

  3. [Death in a relaxation tank].

    Science.gov (United States)

    Rupp, Wolf; Simon, Karl-Heinz; Bohnert, Michael

    2009-01-01

    Complete relaxation can be achieved by floating in a darkened, sound-proof relaxation tank filled with salinated water kept at body temperature. Under these conditions, meditation exercises up to self-hypnosis may lead to deep relaxation with physical and mental revitalization. A user manipulated his tank, presumably to completely cut off all optical and acoustic stimuli and accidentally also covered the ventilation hole. The man was found dead in his relaxation tank. The findings suggested lack of oxygen as the cause of death.

  4. Full potential solution of a transonic quasi-3-D flow through a cascade using artificial compressibility

    Science.gov (United States)

    Farrell, C.; Adamczyk, J.

    1981-01-01

    A reliable method is presented for calculating the flowfield about a cascade of arbitrary 2-D airfoils. The method approximates the three-dimensional flow in a turbomachinery blade row by correcting for streamtube convergence and radius change in the throughflow direction. The method is a fully conservative solution of the full potential equation incorporating the finite volume technique on a body-fitted periodic mesh, with an artificial density imposed in the transonic region to ensure stability and the capture of shock waves. Comparison of results for several supercritical blades shows good agreement with their hodograph solutions. Other calculations for these profiles as well as standard NACA blade sections indicate that this is a useful scheme for analyzing both the design and off-design performance of turbomachinery blading.

  5. Improved quantitative visualization of hypervelocity flow through wavefront estimation based on shadow casting of sinusoidal gratings.

    Science.gov (United States)

    Medhi, Biswajit; Hegde, Gopalakrishna M; Gorthi, Sai Siva; Reddy, Kalidevapura Jagannath; Roy, Debasish; Vasu, Ram Mohan

    2016-08-01

    A simple noninterferometric optical probe is developed to estimate wavefront distortion suffered by a plane wave in its passage through density variations in a hypersonic flow obstructed by a test model in a typical shock tunnel. The probe has a plane light wave trans-illuminating the flow and casting a shadow of a continuous-tone sinusoidal grating. Through a geometrical optics, eikonal approximation to the distorted wavefront, a bilinear approximation to it is related to the location-dependent shift (distortion) suffered by the grating, which can be read out space-continuously from the projected grating image. The processing of the grating shadow is done through an efficient Fourier fringe analysis scheme, either with a windowed or global Fourier transform (WFT and FT). For comparison, wavefront slopes are also estimated from shadows of random-dot patterns, processed through cross correlation. The measured slopes are suitably unwrapped by using a discrete cosine transform (DCT)-based phase unwrapping procedure, and also through iterative procedures. The unwrapped phase information is used in an iterative scheme, for a full quantitative recovery of density distribution in the shock around the model, through refraction tomographic inversion. Hypersonic flow field parameters around a missile-shaped body at a free-stream Mach number of ∼8 measured using this technique are compared with the numerically estimated values. It is shown that, while processing a wavefront with small space-bandwidth product (SBP) the FT inversion gave accurate results with computational efficiency; computation-intensive WFT was needed for similar results when dealing with larger SBP wavefronts.

  6. Testing, Analysis and Control of Wave Dragon, Wave Energy Converter

    DEFF Research Database (Denmark)

    Tedd, James

    of a textbook, a submitted journal paper and three peer-reviewed conference papers. The content can be broadly divided into four topics: experiences gained with the Wave Dragon prototype device; power-production verification; overtopping analysis; and improvements in control. A comprehensive record...... the expected performance. Other sources of generation are presented, including development and tank testing of a novel power absorbing joint. Wave Dragon belongs in the family of overtopping wave energy converters. The energy is captured by waves running up a ramp and overtopping the crest into a reservoir...

  7. 46 CFR 154.446 - Tank design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.446 Tank design. An independent tank type B must meet the calculations under §...

  8. 40 CFR 265.1085 - Standards: Tanks.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Tanks. 265.1085 Section 265... FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 265.1085 Standards: Tanks. (a) The provisions of this section apply to the control of air pollutant emissions from tanks...

  9. 40 CFR 63.685 - Standards: Tanks.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Standards: Tanks. 63.685 Section 63... Standards: Tanks. (a) The provisions of this section apply to the control of air emissions from tanks for.... (b) The owner or operator shall control air emissions from each tank subject to this section...

  10. 27 CFR 24.167 - Tanks.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tanks. 24.167 Section 24... TREASURY LIQUORS WINE Construction and Equipment § 24.167 Tanks. (a) General. All tanks on wine premises... the intended purpose. Each tank used for wine operations will be located, constructed, and equipped...

  11. 7 CFR 58.218 - Surge tanks.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Surge tanks. 58.218 Section 58.218 Agriculture....218 Surge tanks. If surge tanks are used for hot milk, and temperatures of product including foam being held in the surge tank during processing, is not maintained at a minimum of 150 °F, then two...

  12. 14 CFR 25.1013 - Oil tanks.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tanks. 25.1013 Section 25.1013... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1013 Oil tanks. (a) Installation. Each oil tank installation must meet the requirements of § 25.967. (b) Expansion space. Oil tank...

  13. 14 CFR 27.1013 - Oil tanks.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tanks. 27.1013 Section 27.1013... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1013 Oil tanks. Each oil tank must be... space of not less than the greater of 10 percent of the tank capacity or 0.5 gallon, and where used...

  14. 14 CFR 29.1013 - Oil tanks.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tanks. 29.1013 Section 29.1013... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1013 Oil tanks. (a) Installation. Each oil tank installation must meet the requirements of § 29.967. (b) Expansion space. Oil tank...

  15. 40 CFR 264.1084 - Standards: Tanks.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Tanks. 264.1084 Section 264... Emission Standards for Tanks, Surface Impoundments, and Containers § 264.1084 Standards: Tanks. (a) The provisions of this section apply to the control of air pollutant emissions from tanks for which §...

  16. 7 CFR 58.320 - Brine tanks.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Brine tanks. 58.320 Section 58.320 Agriculture....320 Brine tanks. Brine tanks used for the treating of parchment liners shall be constructed of... liners. The tank should also be provided with a satisfactory drainage outlet....

  17. The Politics of Think Tanks in Europe

    DEFF Research Database (Denmark)

    Kelstrup, Jesper Dahl

    of a typology of think tanks, quantitative data and interviews with think tank practitioners, the interplay between state and market dynamics and the development of different types of think tanks is analysed. Although think tanks develop along different institutional trajectories, it is concluded that the Anglo...

  18. Hydraulic linkage of a storm water tank to a karst spring (Gallusquelle)

    Science.gov (United States)

    Tranter, Morgan; Schiperski, Ferry; Zirlewagen, Johannes; Scheytt, Traugott

    2017-03-01

    A significant proportion of the global water supply is ensured by karst aquifers. However, these are often highly vulnerable to contamination. A storm water tank located in the rural karst catchment area of the Gallusquelle spring (Swabian Alb, southwest Germany) about 9.1 km away was identified as a potential source of contamination. A tracer experiment was carried out in order to evaluate this hydraulic connection. For this, 2.5 kg of the fluorescence dye sulforhodamine G was injected directly at the spillway location. The proposed hydraulic connectivity of the storm water tank to the Gallusquelle spring has been confirmed with this experiment. The maximum tracer velocity of 149 m h-1 highlights rapid groundwater flow through karst conduits. The low tracer mass recovery rate of 14.1% is an indication of a retention capacity along the flow path. This was confirmed by a release of withheld tracer triggered by a heavy storm event 16 days after the injection.

  19. Underground Storage Tanks in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Underground storage tank (UST) sites which store petroleum in Iowa. Includes sites which have been reported to DNR, and have active or removed underground storage...

  20. Wave propagation and group velocity

    CERN Document Server

    Brillouin, Léon

    1960-01-01

    Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter

  1. Integral Radiator and Storage Tank

    Science.gov (United States)

    Burke, Kenneth A.; Miller, John R.; Jakupca, Ian; Sargi,Scott

    2007-01-01

    A simplified, lightweight system for dissipating heat of a regenerative fuel- cell system would include a heat pipe with its evaporator end placed at the heat source and its condenser end integrated into the wall of the regenerative fuel cell system gas-storage tanks. The tank walls act as heat-radiating surfaces for cooling the regenerative fuel cell system. The system was conceived for use in outer space, where radiation is the only physical mechanism available for transferring heat to the environment. The system could also be adapted for use on propellant tanks or other large-surface-area structures to convert them to space heat-radiating structures. Typically for a regenerative fuel cell system, the radiator is separate from the gas-storage tanks. By using each tank s surface as a heat-radiating surface, the need for a separate, potentially massive radiator structure is eliminated. In addition to the mass savings, overall volume is reduced because a more compact packaging scheme is possible. The underlying tank wall structure provides ample support for heat pipes that help to distribute the heat over the entire tank surface. The heat pipes are attached to the outer surface of each gas-storage tank by use of a high-thermal conductance, carbon-fiber composite-material wrap. Through proper choice of the composite layup, it is possible to exploit the high longitudinal conductivity of the carbon fibers (greater than the thermal conductivity of copper) to minimize the unevenness of the temperature distribution over the tank surface, thereby helping to maximize the overall heat-transfer efficiency. In a prototype of the system, the heat pipe and the composite wrap contribute an average mass of 340 g/sq m of radiator area. Lightweight space radiator panels have a mass of about 3,000 g/sq m of radiator area, so this technique saves almost 90 percent of the mass of separate radiator panels. In tests, the modified surface of the tank was found to have an emissivity of 0

  2. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    Energy Technology Data Exchange (ETDEWEB)

    Adam B. Sefkow and Samuel A. Cohen

    2009-04-09

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ~ 200-300 λD,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength.

  3. Seismic response analysis of LNG storage tank wall under influence of inner tank%内罐影响下LNG储罐外罐地震响应分析

    Institute of Scientific and Technical Information of China (English)

    周利剑; 黄兢; 王向英; 范远刚

    2012-01-01

    In order to consider the influence of inner tank of LNG storage tank on seismic response of its outer wall, seismic response analysis of the wall of LNG storage tank with and without inner tank was carried out. Results show that the seismic response of the LNG storage tank with inner tank is smaller than that of LNG storage tank without inner one, existence of inner tank is favourable to earthquake resistance of storage tank and the influence of vertical seismic wave on vibration of the storage tank could not be neglected.%为了考虑内罐在不同方向地震动时对LNG(液化天然气)储罐外罐的影响,对有内罐和无内罐情况下LNG储罐外罐进行了地震响应分析.结果表明:有内罐时地震响应比无内罐时小,内罐的存在对LNG储罐抗震有好的影响;竖向地震波对结构振动的影响不能忽视.

  4. Application of the flow-through time-resolved analysis technique to trace element determination in ostracod shells

    Science.gov (United States)

    Börner, Nicole; De Baere, Bart; Francois, Roger; Frenzel, Peter; Schwalb, Antje

    2014-05-01

    Trace element analyses of ostracod shells are a vital tool for paleoenvironmental reconstructions from lake sediments (Börner et al., 2013). Conventional batch dissolution ICP-MS is the most common way for analyzing trace elements in ostracod shells. However, due to dissolution or secondary overgrowth the primary signal may be masked. Resulting variations in trace element composition have been identified to be in the order of a magnitude range. Therefore, the application of the newly developed flow-through technique will be assessed. The flow-through time-resolved analysis technique allows to chemically separate mineral phases of different solubility such as, in particular, original shell calcite from overgrowth calcite, and thus to correct the measurements for the biogenic signal. During a flow-through experiment, eluent is continuously pumped through a sample column, typically a filter in which the ostracod valves are loaded. The gradual dissolution of the substrate is controlled by a combination of eluent type, eluent temperature and eluent flow rate. The dissolved sample then flows directly to a mass spectrometer. The resulting data is a chromatogram, featuring different mineral phases dissolving as time progresses. Hence, the flow-through technique provides a detailed geochemical fingerprint of the substrate and therefore additional data relative to conventional methods. To calibrate this technique for the application to ostracods we use ostracod shells from Southern Tibetan Plateau lakes, which feature an alkaline environment but show highly diverse hydrochemistry. Cleaned as well as uncleaned ostracod shells show similarity in their trace element signals, allowing measurements without prior cleaning of the shells, and thus more time-efficient sample throughput. Measurements of unclean shells are corrected for the biogenic signal using an equation from Klinkhammer et al. (2004). Another advantage is that the measurements can be carried out on single ostracod

  5. Nonlinear water waves with soluble surfactant

    Science.gov (United States)

    Lapham, Gary; Dowling, David; Schultz, William

    1998-11-01

    The hydrodynamic effects of surfactants have fascinated scientists for generations. This presentation describes an experimental investigation into the influence of a soluble surfactant on nonlinear capillary-gravity waves in the frequency range from 12 to 20 Hz. Waves were generated in a plexiglass wave tank (254 cm long, 30.5 cm wide, and 18 cm deep) with a triangular plunger wave maker. The tank was filled with carbon- and particulate-filtered water into which the soluble surfactant Triton-X-100® was added in known amounts. Wave slope was measured nonintrusively with a digital camera running at 225 fps by monitoring the position of light beams which passed up through the bottom of the tank, out through the wavy surface, and onto a white screen. Wave slope data were reduced to determine wave damping and the frequency content of the wave train. Both were influenced by the presence of the surfactant. Interestingly, a subharmonic wave occurring at one-sixth the paddle-driving frequency was found only when surfactant was present and the paddle was driven at amplitudes high enough to produce nonlinear waves in clean water. Although the origins of this subharmonic wave remain unclear, it appears to be a genuine manifestation of the combined effects of the surfactant and nonlinearity.

  6. Direct Drive Wave Energy Buoy

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E. [Columbia Power Technologies, Inc.; Lenee-Bluhm, Pukha [Columbia Power Technologies, Inc.; Prudell, Joseph H. [Columbia Power Technologies, Inc.; Schacher, Alphonse A. [Columbia Power Technologies, Inc.; Hammagren, Erik J. [Columbia Power Technologies, Inc.; Zhang, Zhe [Columbia Power Technologies, Inc.

    2013-07-29

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  7. Experimental Overtopping Investigation for the Wave Dragon

    DEFF Research Database (Denmark)

    Borgarino, Bruno; Kofoed, Jens Peter; Tedd, James

    The present report displays the results from overtopping tests carried on the 1:51.8 Wave Dragon model in September 2007. This tests have been carried on by Bruno Borgarino, James Tedd and Jens Peter Kofoed in the wave tank facilities of Aalborg University. The objective was to provide an updated...

  8. Inspiratory flows through dry powder inhaler in chronic obstructive pulmonary disease: age and gender rather than severity matters

    Directory of Open Access Journals (Sweden)

    L Pekka Malmberg

    2010-08-01

    Full Text Available L Pekka Malmberg1, Paula Rytilä2, Pertti Happonen2, Tari Haahtela11Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland; 2Orion Corporation, Orion Pharma, Espoo, FinlandBackground: Dry powder inhalers (DPIs are inspiratory flow driven and hence flow dependent. Most patients with chronic obstructive pulmonary disease (COPD are elderly and have poor lung function. The factors affecting their inspiratory flows through inhalers are unclear.Objective: To study peak inspiratory flows (PIFs and their determinants through a DPI in COPD patients of varying age and severity.Methods: Flow-volume spirometry was performed in 93 COPD patients. Maximum PIF rates were recorded through an empty Easyhaler® (PIFEH; Orion Corporation, Espoo, Finland, a DPI that provides consistent dose delivery at inhalation rates through the inhaler of 28 L/min or higher.Results: The mean PIFEH was 54 L/min (range 26–95 L/min with a coefficient of variation of 7%. All but two patients were able to generate a flow of ≥28 L/min. In a general linear model, the independent determinants for PIFEH were age (P = 0.02 and gender (P = 0.01, and forced expiratory volume in 1 s (FEV1 expressed as percent predicted was not a significant factor. The regression model accounted only for 18% of the variation in PIFEH.Conclusion: In patients with COPD, age and gender are more important determinants of inspiratory flow through DPIs than the degree of expiratory airway obstruction. Most COPD patients with varying age and severity are able to generate inspiratory flows through the test inhaler that is sufficient for optimal drug delivery to the lower airways.Keywords: COPD, forced expiratory volume, peak inspiratory flow 

  9. Steel slag carbonation in a flow-through reactor system:The role of fluid-flux

    Institute of Scientific and Technical Information of China (English)

    Eleanor J.Berryman; Anthony E.Williams-Jones; Artashes A.Migdisov

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2.As annual steel production continues to grow,the need for effective methods of reducing its carbon footprint increases correspondingly.The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production,in particular its major constituent,lamite {Ca2SiO4},which is a structural analogue of olivine {(MgFe)2SiO4},the main mineral subjected to natural carbonation in peridotites,offers the potential to offset some of these emissions.However,the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood.Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature,fluid flux,and reaction gradient on the dissolution and carbonation of steel slag.The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies.Moreover,they show that fluid flux needs to be optimized in addition to grain size,pressure,and temperature,in order to maximize the efficiency of carbonation.Based on these results,a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation,allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system.

  10. Dissolution Kinetics of Titanium Pyrochlore Ceramics at 90?C by Single-Pass Flow-Through Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Icenhower, Jonathan P.; McGrail, B. Peter; Schaef, Herbert T.; Cordova, Elsa A.

    2000-12-01

    Corrosion resistances of titanium-based ceramics are quantified using single-pass flow-through (SPFT) experiments. The materials tested include simple pyrochlore group (B2Ti2O7, where B=Lu^3+ or Gd^3+) and complex multiphase materials that are either pyrochlore- (PY12) or zirconolite-dominated (BSL3). Experiments are conducted at 90?C over a range of pH-buffered conditions with typical duration of experiments in excess of 120 days. Apparent steady-state dissolution rates at pH=2 determined on the Gd2Ti2O7 and Lu2Ti2O7 samples indicate congruent dissolution, with rates of the former (1.3x10^-3 to 4.3x10^-3) slightly faster than the latter (4.4x10^-4 to 7.0x10^-4 g m^-2 d^-1). Rates for PY12 materials into pH=2 solutions are 5.9x10^-5 to 8.6x10^-5 g m^-2 d^-1. In contrast, experiments with BSL3 material do not reach steady-state conditions, and appear to undergo rapid physical and chemical corrosion into solution. At faster flow-through rates, dissolution rates display a shallow amphoteric behavior, with a minimum (4.6x10^-5 to 5.8x10^-5 g m^-2 d^-1) near pH values of 7. Dissolution rates display a measurable increase (~10X) with increasing flow-through rate indicating the strong influence that chemical affinity asserts on the system. These results step towards an evaluation of the corrosion mechanism and an evaluation of the long-term performance of Pu-bearing titanite engineered materials in the subsurface.

  11. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.

    Directory of Open Access Journals (Sweden)

    M Soltani

    Full Text Available Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor's surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy's law for tissue, and simplified Navier-Stokes equation for blood flow through capillaries are used for simulating interstitial and intravascular flows and Starling's law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model.

  12. Tank 241-C-109 vapor sampling and analysis tank characterization report. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Huckaby, J.L.

    1995-05-31

    This report presents the details of the Hanford waste tank characterization study for tank C-109. The drivers and objectives of the waste tank headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports.

  13. Self-aggregation Phenomenon and Stable Flow Conditions in a Two-Phase Flow Through a Minichannel

    Science.gov (United States)

    Górski, Grzegorz; Litak, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej

    2015-10-01

    By increasing a water flow rate of the two-phase (air-water) flow through a minichannel, both the partitioning of air slugs into air bubbles of different sizes and small air bubbles aggregation into larger air bubbles were identified. These phenomena were studied in detail by using the corresponding sequences of light transmission time series recorded with a laser-phototransistor sensor. To distinguish any instabilities in air slugs along with their break-ups and aggregations, the recurrence plots and recurrence quantification analysis were applied.

  14. Simulation of Variable Viscosity and Jeffrey Fluid Model for Blood Flow Through a Tapered Artery with a Stenosis

    Institute of Scientific and Technical Information of China (English)

    Noreen Sher Akbar; S. Nadeem

    2012-01-01

    Non-Newtonian fluid model for blood flow through a tapered artery with a stenosis and variable viscosity by modeling blood as Jeffrey fluid has been studied in this paper. The Jeffrey fluid has two parameters, the relaxation time A1 and retardation time A2. The governing equations are simplified using the case of mild stenosis. Perturbation method is used to solve the resulting equations. The effects of non-Newtonian nature of blood on velocity profile, temperature profile, wall shear stress, shearing stress at the stenotsis throat and impedance of the artery are discussed. The results for Newtonian fluid are obtained as special case from this model.

  15. A consistent method for finite volume discretization of body forces on collocated grids applied to flow through an actuator disk

    DEFF Research Database (Denmark)

    Troldborg, Niels; Sørensen, Niels N.; Réthoré, Pierre-Elouan;

    2015-01-01

    This paper describes a consistent algorithm for eliminating the numerical wiggles appearing when solving the finite volume discretized Navier-Stokes equations with discrete body forces in a collocated grid arrangement. The proposed method is a modification of the Rhie-Chow algorithm where the force...... in a cell is spread on neighboring cells by applying equivalent pressure jumps at the cell faces. The method shows excellent results when applied for simulating the flow through an actuator disk, which is relevant for wind turbine wake simulations. (c) 2015 Elsevier Ltd. All rights reserved....

  16. Electrogenerative gold recovery from cyanide solutions using a flow-through cell with activated reticulated vitreous carbon.

    Science.gov (United States)

    Yap, Chin Yean; Mohamed, Norita

    2008-10-01

    An electrogenerative flow-through reactor with an activated reticulated vitreous carbon cathode was developed. The influence of palladium-tin activation of the cathode towards gold deposition was studied by cyclic voltammetry. The reactor proved to be efficient in recovering more than 99% of gold within 4 h of operation. The performance of the reactor was evaluated with initial gold concentrations of 10, 100 and 500 mg L-1 and various electrolyte flow rates. Gold recovery was found to be strongly dependent on electrolyte flow rate and initial gold concentration in the cyanide solution under the experimental conditions used.

  17. Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope.

    Science.gov (United States)

    Tam, Johnny; Tiruveedhula, Pavan; Roorda, Austin

    2011-03-02

    Adaptive Optics Scanning Laser Ophthalmoscopy was used to noninvasively acquire videos of single-file flow through live human retinal parafoveal capillaries. Videos were analyzed offline to investigate capillary flow dynamics. Certain capillaries accounted for a clear majority of leukocyte traffic (Leukocyte-Preferred-Paths, LPPs), while other capillaries primarily featured plasma gap flow (Plasma-Gap-Capillaries, PGCs). LPPs may serve as a protective mechanism to prevent inactivated leukocytes from entering exchange capillaries, and PGCs may serve as relief valves to minimize flow disruption due to the presence of a leukocyte in a neighboring LPP.

  18. Impedimetric sensing of the ethanol and water contents in gasohol with a flow-through carbon electrode pair

    Science.gov (United States)

    Kung, Yi; Cheng, Tzong-Jih; Chen, Richie L. C.

    2013-10-01

    The ethanol in gasohol was estimated with a flow-through hydrophobic electrode pair (two identical glassy carbon electrodes, cell constant = 0.3 cm-1). Based on the impedimetric signal at 320 Hz, the important fuel quality parameter can be measured in less than 1 s with sufficient temperature tolerance (20-40 °C) and reproducibility (relative standard deviation ≤ 2% for ten tests). The water content can also be estimated by comparing the impedance data obtained with and without desiccation.

  19. ROBOTIC TANK INSPECTION END EFFECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Landry

    1999-10-01

    The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related subtasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these subtasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these subtasks were derived from the original

  20. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    Energy Technology Data Exchange (ETDEWEB)

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

  1. Characterizing Droplet Formation from Non-Linear Slosh in a Propellant Tank

    Science.gov (United States)

    Brodnick, Jacob; Yang, Hong; West, Jeffrey

    2015-01-01

    The Fluid Dynamics Branch (ER42) at the Marshall Space Flight Center (MSFC) was tasked with characterizing the formation and evolution of liquid droplets resulting from nonlinear propellant slosh in a storage tank. Lateral excitation of propellant tanks can produce high amplitude nonlinear slosh waves through large amplitude excitations and or excitation frequencies near a resonance frequency of the tank. The high amplitude slosh waves become breaking waves upon attaining a certain amplitude or encountering a contracting geometry such as the upper dome section of a spherical tank. Inherent perturbations in the thinning regions of breaking waves result in alternating regions of high and low pressure within the fluid. Droplets form once the force from the local pressure differential becomes larger than the force maintaining the fluid interface shape due to surface tension. Droplets released from breaking waves in a pressurized tank may lead to ullage collapse given the appropriate conditions due to the increased liquid surface area and thus heat transfer between the fluids. The goal of this project is to create an engineering model that describes droplet formation as a function of propellant slosh for use in the evaluation of ullage collapse during a sloshing event. The Volume of Fluid (VOF) model in the production level Computational Fluid Dynamics (CFD) code Loci-Stream was used to predict droplet formation from breaking waves with realistic surface tension characteristics. Various excitation frequencies and amplitudes were investigated at multiple fill levels for a single storage tank to create the engineering model of droplet formation from lateral propellant slosh.

  2. Septic tank additive impacts on microbial populations.

    Science.gov (United States)

    Pradhan, S; Hoover, M T; Clark, G H; Gumpertz, M; Wollum, A G; Cobb, C; Strock, J

    2008-01-01

    Environmental health specialists, other onsite wastewater professionals, scientists, and homeowners have questioned the effectiveness of septic tank additives. This paper describes an independent, third-party, field scale, research study of the effects of three liquid bacterial septic tank additives and a control (no additive) on septic tank microbial populations. Microbial populations were measured quarterly in a field study for 12 months in 48 full-size, functioning septic tanks. Bacterial populations in the 48 septic tanks were statistically analyzed with a mixed linear model. Additive effects were assessed for three septic tank maintenance levels (low, intermediate, and high). Dunnett's t-test for tank bacteria (alpha = .05) indicated that none of the treatments were significantly different, overall, from the control at the statistical level tested. In addition, the additives had no significant effects on septic tank bacterial populations at any of the septic tank maintenance levels. Additional controlled, field-based research iswarranted, however, to address additional additives and experimental conditions.

  3. CHARACTERIZATION OF TANK 17 RESIDUAL WASTE

    Energy Technology Data Exchange (ETDEWEB)

    D' Entremont, P; Thomas Caldwell, T

    1997-09-22

    Plans are to close Tank 17, a type IV waste tank in the F-area Tank Farm, by filling it with pumpable backfills. Most of the waste was removed from the tank in the late 1980s, and the remainder of the waste was removed in a short spray washing campaign that began on 11 April 1997. More details on the planned closure can be found in the Closure Plan for the High-Level Waste (HLW) Tanks and the specific closure module for Tank 17. To show that closure of the tank is environmentally sound, a performance evaluation has been performed for Tank 17. The performance evaluation projected the concentration of contaminants at various locations and times after closure. This report documents the basis for the inventories of contaminants that were used in the Tank 17 performance evaluation.

  4. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  5. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  6. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  7. Investigation of non-specific signals in nanoporous flow-through and flow-over based sensors.

    Science.gov (United States)

    Kumar, Neeraj; Froner, Elena; Guider, Romain; Scarpa, Marina; Bettotti, Paolo

    2014-03-21

    Porous materials are ideal hosts to fabricate high sensitivity devices. Their large specific area and the possibility to modify the type and the strength of the matrix-analyte interactions allow the realization of sensors with finely tailored characteristics. In this article, we investigate how mass transport across the nanoporous structure influences the response due to the non-specific signal by comparing flow-through versus flow-over geometries. We observed a systematic overestimation of the sensitivity for porous substrate devices made of closed-ended pores compared with open-ended pore ones. Our analysis shows that such an effect is due to (unbound) analytes or contaminants that remain trapped within the pores and are not removed by rinsing of the sample. This result was verified by measuring similar samples in both flow through and flow over configurations, as well as their residual response after blockage of all their active sites. We also notice that sensors based on free-standing membranes show similar results independent of the fact that mass transport is induced by either an external pressure source or simply by Brownian motions.

  8. X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Yongkoo; Kneafsey, Timothy J.

    2009-06-01

    We used X-ray computed tomography (CT) to image and quantify the effect of a heterogeneous sand grain-size distribution on the formation and dissociation of methane hydrate, as well as the effect on water flow through the heterogeneous hydrate-bearing sand. A 28 cm long sand column was packed with several segments having vertical and horizontal layers with sands of different grain-size distributions. During the hydrate formation, water redistribution occurred. Observations of water flow through the hydrate-bearing sands showed that water was imbibed more readily into the fine sand, and that higher hydrate saturation increased water imbibition in the coarse sand due to increased capillary strength. Hydrate dissociation induced by depressurization resulted in different flow patterns with the different grain sizes and hydrate saturations, but the relationships between dissociation rates and the grain sizes could not be identified using the CT images. The formation, presence, and dissociation of hydrate in the pore space dramatically impact water saturation and flow in the system.

  9. A simple expression for pressure drops of water and other low molecular liquids in the flow through micro-orifices

    Science.gov (United States)

    Hasegawa, Tomiichi; Ushida, Akiomi; Narumi, Takatsune

    2015-12-01

    Flows are generally divided into two types: shear flows and shear-free elongational (extensional) flows. Both are necessary for a thorough understanding of the flow properties of a fluid. Shear flows are easy to achieve in practice, for example, through Poiseuille or Couette flows. Shear-free elongational flows are experimentally hard to achieve, resulting in an incomplete understanding of the flow properties of fluids in micro-devices. Nevertheless, flows through micro-orifices are useful for probing the properties of elongational flows at high elongational rates; although these flows exhibit shear and elongation, the elongation is dominant and the shear is negligible in the central region of the flows. We previously reported an anomalous reduction in pressure drops in the flows of water, a 50/50 mixture of glycerol and water, and silicone oils through micro-orifices. In the present paper, we rearrange the data presented in the previous paper and reveal a simple relationship where the pressure drop is proportional to the velocity through the micro-orifices, independent of the orifice diameter and the viscosity of the liquids tested. We explain our observations by introducing a "fluid element" model, in which fluid elements are formed on entering the orifice. The model is based on the idea that low molecular liquids, including water, generate strong elongational stress, similar to a polymer solution, in the flow through micro-orifices.

  10. Hydraulic bridges in unsaturated coarse granular media: Influence of bridge size and conductivity on flow through clasts

    Science.gov (United States)

    Jayakody, Jeevan A.; Nicholl, Michael J.

    2016-10-01

    Unsaturated flow in coarse granular media must pass through hydraulic bridges (e.g., pendular water, porous connections) that form a physical connection between adjoining clasts. Previous studies suggest that volumetric flow through a porous clast (Q) will be linearly dependent on the cross-sectional area of the hydraulic bridges, and understate the importance of bridge conductivity. Numerical simulations were performed to explore steady-state flow through a spherical clast with identical bridges located at the top and bottom. The cross-sectional area of the bridges relative to that of the clast (Ar) was varied across six orders of magnitude. The ratio of hydraulic conductivity between bridges and clasts (Kb/Kc) was varied across 12 orders of magnitude to consider resistive, neutral, and conductive bridges. Results show that hydraulic bridges place a primary control on both Q and flux distribution within the clast. For neutral and conductive bridges (Kb/Kc ≥1), Ar is the dominant factor in determining Q, while Kb/Kc is the primary control for resistive bridges (Kb/Kc < 1). For all bridges, Q shows a non-linear dependency on both Ar and Kb/Kc. The intra-clast flow distribution shifts outwards as Ar increases. Conductive bridges promote this process and resistive bridges impede it.

  11. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.

    Science.gov (United States)

    Akbarzadeh, Pooria

    2016-04-01

    In this paper, the unsteady pulsatile magneto-hydrodynamic blood flows through porous arteries concerning the influence of externally imposed periodic body acceleration and a periodic pressure gradient are numerically simulated. Blood is taken into account as the third-grade non-Newtonian fluid. Besides the numerical solution, for small Womersley parameter (such as blood flow through arterioles and capillaries), the analytical perturbation method is used to solve the nonlinear governing equations. Consequently, analytical expressions for the velocity profile, wall shear stress, and blood flow rate are obtained. Excellent agreement between the analytical and numerical predictions is evident. Also, the effects of body acceleration, magnetic field, third-grade non-Newtonian parameter, pressure gradient, and porosity on the flow behaviors are examined. Some important conclusions are that, when the Womersley parameter is low, viscous forces tend to dominate the flow, velocity profiles are parabolic in shape, and the center-line velocity oscillates in phase with the driving pressure gradient. In addition, by increasing the pressure gradient, the mean value of the velocity profile increases and the amplitude of the velocity remains constant. Also, when non-Newtonian effect increases, the amplitude of the velocity profile.

  12. Hydrometallurgical process for the recycling of copper using anodic oxidation of cuprous ammine complexes and flow-through electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, T.; Yaguchi, M.; Koyama, K.; Tanaka, M. [Metals Recycling Group, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Lee, J.-C. [Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), 30 Gajeong-dong, Yuseong-ku, Daejeon 305-350 (Korea)

    2008-01-01

    Flow-through electrolysis for copper electrowinning from cuprous ammine complex was studied in order to develop a hydrometallurgical copper recycling process using an ammoniacal chloride solution, focusing on the anodic oxidation of cuprous to cupric ammine complexes. The current efficiency of this anodic oxidation was 96% at a current density of 200 A m{sup -2} under a batch condition. In a flow-through electrolysis using a sub-liter cell and a carbon felt anode, the anodic current efficiency increased with the flow rate and was typically higher than 97%. This tendency was explained by the backward flow of the cupric ammine complex, which was formed on the anode, through the diaphragm. The anodic overpotential was lower than 0.3 V even at an apparent current density of 1500 A m{sup -2}. A similar current efficiency and overpotential were also achieved in a liter scale cell, which indicates the scale flexibility of this electrolysis. The power consumption requirements for copper electrowinning in this cell were 460 and 770 kWh t{sup -1} at the current densities of 250 and 500 A m{sup -2}, respectively, which were much lower than that of the conventional copper electrowinning despite the longer interpolar distance. (author)

  13. TANK48 CFD MODELING ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.

    2011-05-17

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitative mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single

  14. Evaluation of automated flow-through time-resolved analysis of foraminifera for Mg/Ca paleothermometry

    Science.gov (United States)

    Klinkhammer, G. P.; Haley, B. A.; Mix, A. C.; Benway, H. M.; Cheseby, M.

    2004-12-01

    The primary Mg/Ca ratio of foraminiferal shells is a potentially valuable paleoproxy for sea surface temperature (SST) reconstructions. However, the reliable extraction of this ratio from sedimentary calcite assumes that we can overcome artifacts related to foraminiferal ecology and partial dissolution, as well as contamination by secondary calcite and clay. The standard batch method for Mg/Ca analysis involves cracking, sonicating, and rinsing the tests to remove clay, followed by chemical cleaning, and finally acid-digestion and single-point measurement. This laborious procedure often results in substantial loss of sample (typically 30-60%). We find that even the earliest steps of this procedure can fractionate Mg from Ca, thus biasing the result toward a more variable and often anomalously low Mg/Ca ratio. Moreover, the more rigorous the cleaning, the more calcite is lost, and the more likely it becomes that any residual clay that has not been removed by physical cleaning will increase the ratio. These potentially significant sources of error can be overcome with a flow-through (FT) sequential leaching method that makes time- and labor-intensive pretreatments unnecessary. When combined with time-resolved analysis (FT-TRA) flow-through, performed with a gradually increasing and highly regulated acid strength, produces continuous records of Mg, Sr, Al, and Ca concentrations in the leachate sorted by dissolution susceptibility of the reacting material. Flow-through separates secondary calcite from less susceptible biogenic calcite and clay, and further resolves the biogenic component into primary and more resistant fractions. FT-TRA reliably separates secondary calcite (which is not representative of original life habitats) from the more resistant biogenic calcite (the desired signal) and clay (a contaminant of high Mg/Ca, which also contains Al), and further resolves the biogenic component into primary and more resistant fractions that may reflect habitat or other

  15. Tank Waste Disposal Program redefinition

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

    1991-10-01

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  16. Three-dimensional Numerical Models of Mantle Flow Through the Cocos-Nazca Slab Gap

    Science.gov (United States)

    Jadamec, M.; Fischer, K. M.

    2013-05-01

    , seafloor ages, and geologic history are used to construct the variable thickness of the overriding Caribbean and South American plates (Feng et al., 2007; Muller et al., 2008; Rychert et al., 2008; Abt et al., 2010b; Lekic and Romanowicz, 2011; Yuan et al., 2011). The predicted motion of the Cocos and Nazca plates are compared to observed plate motions (DeMets and Dixon, 1999) and the predicted mantle flow fields are compared to local S wave and teleseismic SK(K)S observations of seismic anisotropy (Abt et al., 2009, 2010a). The direction of Cocos and Nazca surface plate motion is reasonably well reproduced regardless of whether the Cocos and Nazca slabs are a continuous slab at depth or separated by a gap. However, the inclusion of a gap between the Cocos and Nazca slabs has a significant effect on the mantle flow field, reversing the direction of the slab entrained flow beneath the Caribbean plate and resulting in counterclockwise toroidal flow around the southern Cocos slab edge and clockwise toroidal flow around the northern Nazca slab edge. The results have implications for the initiation slab tears and indicate complexity in the coupling between the lithosphere and mantle in subduction zones.

  17. Lightweight Tanks for Storing Liquefied Natural Gas

    Science.gov (United States)

    DeLay, Tom

    2008-01-01

    Single-walled, jacketed aluminum tanks have been conceived for storing liquefied natural gas (LNG) in LNG-fueled motor vehicles. Heretofore, doublewall steel tanks with vacuum between the inner and outer walls have been used for storing LNG. In comparison with the vacuum- insulated steel tanks, the jacketed aluminum tanks weigh less and can be manufactured at lower cost. Costs of using the jacketed aluminum tanks are further reduced in that there is no need for the vacuum pumps heretofore needed to maintain vacuum in the vacuum-insulated tanks.

  18. In-tank recirculating arsenic treatment system

    Science.gov (United States)

    Brady, Patrick V.; Dwyer, Brian P.; Krumhansl, James L.; Chwirka, Joseph D.

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  19. DEVELOPMENT OF A SMART SOLAR TANK

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa

    1999-01-01

    Theoretical and experimental investigations of small SDHW systems based on so-called smart solar tanks are presented. A smart solar tank is a hot water tank in which the domestic water can both be heated by solar collectors and by an auxiliary energy supply system. The auxiliary energy supply....... The investigations showed that the yearly thermal performance of small SDHW systems can be increased by up to about 30 % if a smart solar tank is used instead of a traditional solar combi tank. The thermal increase is strongly influenced by the hot water consumption and consumption pattern. Recommendations...... for future development of smart solar tanks are given....

  20. Liquid level sensor using ultrasonic Lamb waves.

    Science.gov (United States)

    Sakharov, V E; Kuznetsov, S A; Zaitsev, B D; Kuznetsova, I E; Joshi, S G

    2003-06-01

    This paper describes a novel, noninvasive method for measurement of liquid level in closed metal tanks that are under high pressure. It is based on the use of ultrasonic Lamb waves propagating along the tank wall. Contact with liquid substantially changes the characteristics of these waves and this can be used as an indicator of liquid presence. Theoretical analysis shows that the symmetric and antisymmetric Lamb wave modes, both fundamental and higher order, are sensitive to presence of the liquid. The optimal wave frequency depends on the thickness of the tank wall and wall material. A prototype level sensor based on this principle has been developed. It uses two pairs of wedge transducers to generate and detect Lamb waves propagating along the circumference of the gas tank. An operating frequency of 100 kHz is found to be optimal for use with tanks having a wall thickness of 30-50 mm. Prototype sensors developed under this program have been used successfully in oil fields in the far northern region of Russia.