WorldWideScience

Sample records for flow-induced vibration measurement

  1. PIV measurements of acoustic and flow-induced vibration in main stream lines

    International Nuclear Information System (INIS)

    Li, Yanrong; Someya, Satoshi; Okamoto, Koji

    2009-01-01

    Systems with closed side-branches are liable to an excitation of sound, as called cavity tone. In this study, flow-induced acoustic resonances of piping systems containing closed side-branches were investigated experimentally. The present investigation on the coaxial closed side-branches is the first rudimentary study to measure the pressure at the downstream side opening of the cavity by microphone and to visualize the fluid flow in the cross-section by using PIV. High-time-resolved PIV has a possibility to analyze the velocity field and the relation between sound propagation and flow field. The fluid flows at different points in the cavity interact with some phase differences and the relation can be clarified. (author)

  2. CRBRP flow induced vibration program

    Energy Technology Data Exchange (ETDEWEB)

    Novendstern, E H [Westinghouse Advanced Reactor Division, Madison, PA (United States); Grochowski, F A; Yang, T M [General Electric Co., Fast Breeder Reactor Department, Sunnyvale, CA (United States); Ryan, J A; Mulcahy, T M

    1977-12-01

    The program to assure the structural adequacy of Clinch River Breeder Reactor (CRBRP) components during its planned 30 years of operation is described. The program includes (1) an assessment of reactor components relative to their susceptibility to FIV, (2) designing to minimize component excitation due to Fluid induced vibrations (FIV), (3) scale model tests to measure structural response during simulated operating conditions and (4) preoperational tests. An overview of the CRBRP test program is described. Additionally, details of scale model testing of reactor internals and the steam generator is described in more detail. (author)

  3. Flow-Induced Vibration Measurement of an Inner Cladding Tube in a Simulated Dual-Cooled Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kim, Hyung Kyu; Yoon, Kyung Ho; Lee, Young Ho; Kim, Jae Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    To create an internal coolant flow passage in a dual cooled fuel rod, an inner cladding tube cannot have intermediate supports enough to relieve its vibration. Thus it can be suffered from a flow-induced vibration (FIV) more severely than an outer cladding tube which will be supported by series of spacer grids. It may cause a fatigue failure at welding joints on the cladding's end plug or fluid elastic instability of long, slender inner cladding due to decrease of a critical flow velocity. This is one of the challenging technical issues when a dual cooled fuel assembly is to be realized into a conventional reactor core To study an actual vibration phenomenon of a dual cooled fuel rod, FIV tests using a small-scale test bundle are being carried out. Measurement results of inner cladding tube of two typically simulated rods are presented. Causes of the differences in the vibration amplitude and response spectrum of the inner cladding tube in terms of intermediate support condition and pellet stacking are discussed.

  4. Flow induced vibrations of piping

    International Nuclear Information System (INIS)

    Gibert, R.J.; Axisa, F.

    1977-01-01

    In order to design the supports of piping systems, estimations of the vibrations induced by the fluid conveyed through the pipes are generally needed. For that purpose it is necessary to calculate the model parameters of liquid containing pipes. In most computer codes, fluid effects are accounted for just by adding the fluid mass to the structure. This may lead to serious errors. This paper presents a method to take into account these effects, by solving a coupled mechanical-acoustical problem: the computer code TEDEL of the C.E.A /D.E.M.T. System, based on the finite-elements method, has been extended to calculate simultaneously the pressure fluctuations in the fluid and the vibrations of the pipe. By this way the mechanical-acoustical coupled eigenmodes of any piping system can be obtained. These eigenmodes are used to determine the response of the system to various sources. Equations have been written in the hypohesis that acoustical wave lengths remain large compared to the diameter of the pipe. The method has been checked by an experiment performed on the GASCOGNE loop at D.E.M.T. The piping system under test consists of a tube with four elbows. The circuit is ended at each extremity by a large vessel which performs acoustical isolation by generating modes for the pressure. Excitation of the circuit is caused by a valve located near the downstream vessel. This provides an efficient localised broad band acoustical source. The comparison between the test results and the calculations has shown that the low frequency resonant characteristics of the pipe and the vibrational amplitude at various flow-rates can be correctly predicted

  5. Flow induced vibrations of piping

    International Nuclear Information System (INIS)

    Gibert, R.J.; Axisa, F.

    1977-01-01

    In order to design the supports of piping systems, estimations of the vibrations induced by the fluid conveyed through the pipes are generally needed. For that purpose it is necessary to calculate the model parameters of liquid containing pipes. In most computer codes, fluid effects are accounted for just by adding the fuid mass to the structure. This may lead to serious errors.- Inertial effects from the fluid are not correctly evaluated especially in the case of bended or of non-uniform section pipes. Fluid boundary conditions are simply ignored. - In many practical problems fluid compressibility cannot be negelcted, even in the low frequencies domain which corresponds to efficient excitation by turbulent sources of the flow. This paper presents a method to take into account these efects, by solving a coupled mechanical acoustical problem: the computer code TEDEL of the C.E.A./D.E.M.T. System, based on the finite-elements method, has been extended to calculate simultaneously the pressure fluctuations in the fluid and the vibrations of the pipe. (Auth.)

  6. Analysis of flow induced vibration in heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Beek, A.W. van [Institute for Mechanical Constructions TNO, Delft (Netherlands)

    1977-12-01

    A description will be given of three different types of heat exchangers developed by the Dutch Nuclear Industry Group ''Neratoom'' in cooperation with TNO for the sodium-cooled fast breeder reactor SNR-300 at Kalkar. Moreover, the research related with flow induced vibrations carried out by TNO (Organization for Applied Scientific Research) will be presented. The flow induced forces on the tubes of the straight-tube steam generators were measured at the inlet and outlet section where partial crossflow occurs. With the measured flow induced forces the response of a tube was calculated as a function of the tube-to-supportbush clearances taking into account the non-linear damping effects from the sodium. The theoretical results showed that for this particular design no tube impact damage is to be expected which was confirmed later by a full scale experiment. Special attention will be devoted to the steam generator with helical-coil tube-bundles, where the sodium flows in a counter cross-flow over the tube-bundle. Extensive measurements of the power spectra of the flow induced forces were carried out since no information could be found in the literature. The vibration analysis will be presented and vibration modes of the entire bundle will be compared with experimentally obtained results. Finally a description of the vibration tests to be carried out on the intermediate heat exchanger (IHX) will be presented. (author)

  7. Analysis of flow induced vibration in heat exchangers

    International Nuclear Information System (INIS)

    Beek, A.W. van

    1977-01-01

    A description will be given of three different types of heat exchangers developed by the Dutch Nuclear Industry Group ''Neratoom'' in cooperation with TNO for the sodium-cooled fast breeder reactor SNR-300 at Kalkar. Moreover, the research related with flow induced vibrations carried out by TNO (Organization for Applied Scientific Research) will be presented. The flow induced forces on the tubes of the straight-tube steam generators were measured at the inlet and outlet section where partial crossflow occurs. With the measured flow induced forces the response of a tube was calculated as a function of the tube-to-supportbush clearances taking into account the non-linear damping effects from the sodium. The theoretical results showed that for this particular design no tube impact damage is to be expected which was confirmed later by a full scale experiment. Special attention will be devoted to the steam generator with helical-coil tube-bundles, where the sodium flows in a counter cross-flow over the tube-bundle. Extensive measurements of the power spectra of the flow induced forces were carried out since no information could be found in the literature. The vibration analysis will be presented and vibration modes of the entire bundle will be compared with experimentally obtained results. Finally a description of the vibration tests to be carried out on the intermediate heat exchanger (IHX) will be presented. (author)

  8. Fuel Rod Flow-Induced Vibration Overview

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kang, Heung Seok; Kim, Hyung Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    To ensure fuel design safety and structural integrity requires the response prediction of fuel rod to reactor coolant flow excitation. However, there are many obstacles in predicting the response as described. Even if the response can be predicted, the design criteria on wear failure, including correlation with the vibration, may be difficult to establish because of a variety of related parameters, such as material, surface condition and environmental factors. Thus, a prototype test for each new fuel assembly design, i.e. a long-term endurance test, is performed for design validation with respect to flow-induced vibration (FIV) and wear. There are still needs of theoretical prediction methods for the response and anticipated failure. This paper revisits the general aspect on the response prediction, mathematical description, analysis procedure and wear correlation aspect of fuel rod's FIV

  9. Flow induced vibration studies on PFBR control plug components

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, V., E-mail: prakash@igcar.gov.in [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India); Kumar, P. Anup; Anandaraj, M.; Thirumalai, M.; Anandbabu, C.; Rajan, K.K. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Flow induced vibration studies on Prototype Fast Breeder Reactor control plug model carried out. Black-Right-Pointing-Pointer Velocity similitude was followed for the study. Black-Right-Pointing-Pointer Frequencies and amplitude of vibrations of various control plug components measured. Black-Right-Pointing-Pointer Overall values of vibration are well within permissible limits. - Abstract: The construction of Prototype Fast Breeder Reactor (PFBR), a 500 MWe liquid sodium cooled reactor, is in progress at Kalpakkam in India. Control plug (CP) is located right above the core subassemblies in the hot pool. Control plug is an important component as many of the critical reactor parameters are sensed and controlled by the components housed in the control plug assembly. In PFBR primary circuit, components are basically thin walled, slender shells with diameter to thickness ratio ranging from 100 to 650. These components are prone to flow induced vibrations. The existence of free liquid (sodium) surfaces, which is the source of sloshing phenomenon and the operation of primary sodium pump in the primary pool are other potential sources of vibration of reactor components. Control plug is a hollow cylindrical shell structure and provides passages and support for 12 absorber rod drive mechanisms (ARDM) which consists of 9 control and safety rods and 3 diverse safety rods, 210 thermo wells to measure the sodium temperature at the exit of various fuel subassemblies, three failed fuel localization modules (FFLM) and acoustic detectors. It consists of a core cover plate (CCP), which forms the bottom end, two intermediate supports plate, i.e. lower stay plate (LSP) and upper stay plate (USP) and an outer shell. The CCP is located at a distance of 1.3 m from the core top. With such a gap, there will be long free hanging length of the thermocouple sleeves, Delayed neutron detector (DND) sampling tubes and ARDM shroud tubes and hence they are

  10. Flow induced vibrations in liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    1989-01-01

    Flow induced vibrations are well known phenomena in industry. Engineers have to estimate their destructive effects on structures. In the nuclear industry, flow induced vibrations are assessed early in the design process, and the results are incorporated in the design procedures. In many cases, model testing is used to supplement the design process to ensure that detrimental behaviour due to flow induced vibrations will not occur in the component in question. While these procedures attempt to minimize the probability of adverse performance of the various components, there is a problem in the extrapolation of analytical design techniques and/or model testing to actual plant operation. Therefore, sodium tests or vibrational measurements of components in the reactor system are used to provide additional assurance. This report is a general survey of experimental and calculational methods in this area of structural mechanics. The report is addressed to specialists and institutions in industrialized and developing countries who are responsible for the design and operation of liquid metal fast breeder reactors. 92 refs, 90 figs, 8 tabs

  11. PIV measurements of acoustic flow-induced vibration in a rectangular channel with co-axial side branches

    International Nuclear Information System (INIS)

    Li, Yanrong; Someya, Satoshi; Okamoto, Koji

    2010-01-01

    Systems with closed side-branches are liable to an excitation of sound, as called cavity tone. In this study, flow-induced acoustic resonances of piping systems containing closed side-branches were investigated experimentally. The present investigation on the coaxial closed side-branches is the first rudimentary study to measure the pressure at the downstream side opening of the cavity by microphone and to visualize the fluid flow in the cross-section by using PIV. High-time-resolved PIV has a possibility to analyze the velocity field and the relation between sound propagation and flow field. The fluid flows at different points in the cavity interact with some phase differences and the relation can be clarified. (author)

  12. Flow-induced vibration -- 1994. PVP-Volume 273

    International Nuclear Information System (INIS)

    Au-Yang, M.K.; Fujita, K.

    1994-01-01

    Flow-induced vibration is a subject of practical interest to many engineering disciplines, including the power generation, process, and petrochemical industries. In the nuclear industry, flow-induced vibration reaches a higher level of concern because of safety issues and the huge cost associated with down time and site repair. Not surprisingly, during the last 25 years a tremendous amount of effort has been spent in the study of flow-induced vibration phenomena related to nuclear plant components, notably nuclear steam generator tube banks and nuclear fuel bundles. Yet, in spite of this concentrated effort, the industry is still not free from flow-induced vibration-related problems. This explains why in this volume almost half of the papers address the issue of cross-flow induced vibration in tube bundles, with applications to the nuclear steam generator and nuclear fuel bundles in mind. Unlike 10 or 15 years ago, when flow-induced vibration studies almost always involved experimentation and empirical studies, the advent of high-speed computers has enabled numerical calculation and simulation of this complex phenomenon to take place. Separate abstracts were prepared for 27 papers in this volume

  13. Parametric analysis of protective grid flow induced vibration

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jooyoung; Eom, Kyongbo; Jeon, Sangyoun; Suh, Jungmin [KEPCO NF Co., Daejeon (Korea, Republic of)

    2012-10-15

    Protective grid (P-grid) flow-induced vibration in a nuclear power reactor is one of the critical factors for the mechanical integrity of a nuclear fuel. The P-grid is located at the lower most position above the bottom nozzle of the nuclear fuel as shown in Fig. 1, and it is required for not only filtering debris, but also supporting fuel rods. On the other hand, P-grid working conditions installed in a nuclear fuel in a reactor are severe in terms of flow speed, temperature and pressure. Considering such a severe condition of P-grid's functional performance in working environment, excessive vibration could be developed. Furthermore, if the P-grid is exposed to high levels of excessive vibration over a long period of time, fatigue failure could be unavoidable. Therefore, it is important to reduce excessive vibration while maintaining P-grid's own functional performance. KEPCO Nuclear Fuel has developed a test facility - Investigation Flow-induced Vibration (INFINIT) - to study flow-induced vibration caused by flowing coolant at various flow rates. To investigate specific relationships between configuration of P-grid and flow-induced vibration characteristics, several types of the P-grids were tested in INFINIT facility. And, based on the test results through parametric studies, the flow-induced vibration characteristics could be analyzed, and critical design parameters were found.

  14. Flow-induced vibration and fretting-wear damage in a moisture separator reheater

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Taylor, C.E.; Fisher, N.J.

    1996-01-01

    Tube failures due to excessive flow-induced vibration were experienced in the tube bundles of moisture separator reheaters in a BWR nuclear station. This paper presents the results of a root cause analysis and covers recommendations for continued operation and for replacement tube bundles. The following tasks are discussed: tube failure analysis; flow velocity distribution calculations; flow-induced vibration analysis with particular emphasis on finned-tubes; fretting-wear testing of a tube and tube-support material combination under simulated operating conditions; field measurements of flow-induced vibration; and development of vibration specifications for replacement tube bundles. The effect of transient operating conditions and of other operational changes such as tube fouling were considered in the analysis. This paper outlines a typical field problem and illustrates the application of flow-induced vibration technology for the solution of a practical problem

  15. Flow induced vibration in shell and tube heat exchangers

    International Nuclear Information System (INIS)

    Soper, B.M.H.

    1981-01-01

    Assessing heat exchanger designs, from the standpoint of flow induced vibration, is becoming increasingly important as shell side flow velocities are increased in a quest for better thermal performance. This paper reviews the state of the art concerning the main sources of vibration excitation, i.e. vortex shedding resonance, turbulent buffeting, fluidelastic instability and acoustic resonance, as well as the structural dynamics of the tubes. It is concluded that there are many areas which require further investigation but there are sufficient data available at present to design, with reasonable confidence, units that will be free from flow induced vibration. Topics which are considered to be key areas for further work are listed

  16. Scale modeling flow-induced vibrations of reactor components

    International Nuclear Information System (INIS)

    Mulcahy, T.M.

    1982-06-01

    Similitude relationships currently employed in the design of flow-induced vibration scale-model tests of nuclear reactor components are reviewed. Emphasis is given to understanding the origins of the similitude parameters as a basis for discussion of the inevitable distortions which occur in design verification testing of entire reactor systems and in feature testing of individual component designs for the existence of detrimental flow-induced vibration mechanisms. Distortions of similitude parameters made in current test practice are enumerated and selected example tests are described. Also, limitations in the use of specific distortions in model designs are evaluated based on the current understanding of flow-induced vibration mechanisms and structural response

  17. Flow-Induced Vibration of Circular Cylindrical Structures

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shoei-Sheng [Argonne National Lab. (ANL), Argonne, IL (United States). Components Technology Division

    1985-06-01

    Flow-induced vibration is a term to denote those phenomena associated with the response of structures placed in or conveying fluid flow. More specifically, the terra covers those cases in which an interaction develops between fluid-dynamic forces and the inertia, damping or elastic forces in the structures. The study of these phenomena draws on three disciplines: (1) structural mechanics, (2) mechanical vibration, and (3) fluid dynamics. The vibration of circular cylinders subject to flow has been known to man since ancient times; the vibration of a wire at its natural frequency in response to vortex shedding was known in ancient Greece as aeolian tones. But systematic studies of the problem were not made until a century ago when Strouhal established the relationship between vortex shedding frequency and flow velocity for a given cylinder diameter. The early research in this area has beer summarized by Zdravkovich (1985) and Goldstein (1965). Flow-induced structural vibration has been experienced in numerous fields, including the aerospace industry, power generation/transmission (turbine blades, heat exchanger tubes, nuclear reactor components), civil engineering (bridges, building, smoke stacks), and undersea technology. The problems have usually been encountered or created accidentally through improper design. In most cases, a structural or mechanical component, designed to meet specific objectives, develops problems when the undesired effects of flow field have not been accounted for in the design. When a flow-induced vibration problem is noted in the design stage, the engineer has different options to eliminate the detrimental vibration. Unfortunately, in many situations, the problems occur after the components are already in operation; the "fix" usually is very costly. Flow-induced vibration comprises complex and diverse phenomena; subcritical vibration of nuclear fuel assemblies, galloping of transmission lines, flutter of pipes conveying fluid, and whirling

  18. Numerical simulation of flow-induced vibrations in tube bundles

    International Nuclear Information System (INIS)

    Elisabeth Longatte; Zaky Bendjeddou; Mhamed Souli

    2005-01-01

    Full text of publication follows: In many industrial components mechanical structures like rod cluster control assembly, fuel assembly and heat exchanger tube bundles are submitted to complex flows causing possible vibrations and damage. Fluid forces are usually split into two parts: structure motion independent forces and fluid-elastic forces coupled with tube motion and responsible for possible dynamic instability development leading to possible short term failures through high amplitude vibrations. Most classical fluid force identification methods rely on structure response experimental measurements associated with convenient data processes. Owing to recent improvements in Computational Fluid Dynamics (C.F.D.), numerical fluid force identification is now practicable in the presence of industrial configurations. The present paper is devoted to numerical simulation of flow-induced vibrations of tube bundles submitted to single-phase cross flows by using C.F.D. codes. Direct Numerical Simulation (D.N.S.), Arbitrary Lagrange Euler formulation (A.L.E.) and code coupling process are involved to predict fluid forces responsible for tube bundle vibrations in the presence of fluid structure and fluid-elastic coupling effects. In the presence of strong multi-physics coupling, simulation of flow-induced vibrations requires a fluid structure code coupling process. The methodology consists in solving in the same time thermohydraulics and mechanics problems by using an A.L.E. formulation for the fluid computation. The purpose is to take into account coupling between flow and structure motions in order to be able to capture coupling effects. From a numerical point of view, there are three steps in the computation: the fluid problem is solved on the computational domain; fluid forces acting on the moving tube are estimated; finally they are introduced in the structure solver providing the tube displacement that is used to actualize the fluid computational domain. Specific

  19. Analysis of flow-induced vibrations in the PEC design

    International Nuclear Information System (INIS)

    Cornaggia, L.; Reale, M.; Martelli, A.; Zambelli, M.

    1986-01-01

    This paper summarizes the studies performed for the Italian PEC fast reactor test facility with regard to flow-induced vibration problems. Reference is made to the reactor-block, the primary and secondary coolant loops and the emergency loops. Studies in progress and future developments foreseen are also mentioned. (author)

  20. Flow-induced vibration of circular cylindrical structures

    International Nuclear Information System (INIS)

    Chen, S.S.

    1985-06-01

    This report summarizes the flow-induced vibration of circular cylinders in quiescent fluid, axial flow, and crossflow, and applications of the analytical methods and experimental data in design evaluation of various system components consisting of circular cylinders. 219 figs., 30 tabs

  1. Flow-induced vibrations of circular cylindrical structures

    International Nuclear Information System (INIS)

    Chen, S.

    1977-06-01

    The problems of flow-induced vibrations of circular cylindrical structures are reviewed. First, the general method of analysis and classification of structural responses are presented. Then, the presentation is broken up along the lines with stationary fluid, parallel flow, and cross flow. Finally, design considerations and future research needs are pointed out. 234 references

  2. Advancements in flow-induced vibration research and design criteria

    International Nuclear Information System (INIS)

    Pettigrew, M.J.

    2009-01-01

    Two-phase flow exists in many nuclear components and, in particular, steam generators. So far relatively little research work has been done on two-phase flow-induced vibration probably because it is difficult to do. Two-phase flows are not homogeneous and are governed by an additional parameter called void fraction. This can lead to different flow patterns or regimes that can change completely the vibration behaviour. Fluidelastic instability, random turbulence excitation and detailed flow characteristics are being investigated in tube bundles subjected to two-phase cross flow. Fluidelastic instability of a tube bundle preferentially flexible in the flow direction was observed probably for the first time. This is particularly relevant to the problem of in-plane vibration of nuclear steam generator U-tubes and has resulted in changes in our design criteria. Unexpected quasi-periodic excitation forces were also measured in the tube bundle. These are attributed to an alternating wake in the lift direction and to fluctuating momentum flux in the drag direction. Vibration damping due to two-phase flow is very dependent on void fraction and appears directly related to the interface surface area between phases. Maximum damping values correspond to the transitions between flow regimes. Fibre optic probes were developed to measure the characteristics of two-phase flows. These probes are used to take detailed measurements in a triangular array of tubes in cross flow. The results show that the flow tends to stream between the tubes. These studies have yielded interesting results but have raised more questions that could lead to improved design criteria. The more puzzling results will be discussed in this presentation. Some of the dynamic phenomena will be illustrated by animation. (author)

  3. Flow-induced vibrations an engineering guide

    CERN Document Server

    Naudascher, Eduard

    2012-01-01

    Despite their variety, the vibration phenomena from many different engineering fields can be classified into a relatively few basic excitation mechanisms. The classification enables engineers to identify all possible sources of excitation in a given system and to assess potential dangers. This graduate-level text presents a synthesis of research results and practical experience from disparate fields in the form of engineering guidelines. It is particularly geared toward assessing the possible sources of excitation in a flow system, in identifying the actual danger spots, and in finding appropr

  4. Specialists meeting on LMFBR flow induced vibrations. Summary report

    International Nuclear Information System (INIS)

    1977-12-01

    A Specialists' Meeting on LMFBR Flow-Induced Vibrations was held at ANL in the United States which was sponsored by the International Atomic Energy Agency (IAEA) on the recommendations of the International Working Group on Fast Reactors (IWGFR). It was attended by participants from France, the Federal Republic of Germany, Italy, Japan, Netherlands, the United Kingdom, the Union of Soviet Socialist Republics, the United States and the IAEA. The purpose of the meeting was to provide, for the first time, a common forum for the exchange of information on flow-induced vibration programs of the member countries. As this was a first meeting, information was sought in the broad areas of: 1. Design Criteria and Problem Areas in LMFBR Design; 2. Current Design Procedures; and 3. Ongoing Research. A session was devoted to each of the above topics wherein papers were presented and discussed followed by open discussions on the session topic. The objective of the open discussions was to identify, from a review of specific reactor designs, (a) flow induced vibration problem areas (expected and observed) and their potential for occurrence; (b) failure modes and associated design criteria; (c) specific components that are susceptible to flow induced vibration; and (d) probable excitation mechanisms. It was aimed to assess the current state-of-the-art in designing to avoid flow induced vibration with consideration of licensing requirements; to evaluate existing methods of analysis, testing, and surveillance, along with their limitations and to identify areas requiring research and review ongoing research programmes relative to these research needs

  5. Specialists meeting on LMFBR flow induced vibrations. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-12-01

    A Specialists' Meeting on LMFBR Flow-Induced Vibrations was held at ANL in the United States which was sponsored by the International Atomic Energy Agency (IAEA) on the recommendations of the International Working Group on Fast Reactors (IWGFR). It was attended by participants from France, the Federal Republic of Germany, Italy, Japan, Netherlands, the United Kingdom, the Union of Soviet Socialist Republics, the United States and the IAEA. The purpose of the meeting was to provide, for the first time, a common forum for the exchange of information on flow-induced vibration programs of the member countries. As this was a first meeting, information was sought in the broad areas of: 1. Design Criteria and Problem Areas in LMFBR Design; 2. Current Design Procedures; and 3. Ongoing Research. A session was devoted to each of the above topics wherein papers were presented and discussed followed by open discussions on the session topic. The objective of the open discussions was to identify, from a review of specific reactor designs, (a) flow induced vibration problem areas (expected and observed) and their potential for occurrence; (b) failure modes and associated design criteria; (c) specific components that are susceptible to flow induced vibration; and (d) probable excitation mechanisms. It was aimed to assess the current state-of-the-art in designing to avoid flow induced vibration with consideration of licensing requirements; to evaluate existing methods of analysis, testing, and surveillance, along with their limitations and to identify areas requiring research and review ongoing research programmes relative to these research needs.

  6. Two-phase flow induced vibrations in CANDU steam generators

    International Nuclear Information System (INIS)

    Gidi, A.

    2009-01-01

    The U-Bend region of nuclear steam generators tube bundles have suffered from two-phase cross flow induced vibrations. Tubes in this region have experienced high amplitude vibrations leading to catastrophic failures. Turbulent buffeting and fluid-elastic instability has been identified as the main causes. Previous investigations have focused on flow regime and two-phase flow damping ratio. However, tube bundles in steam generators have vapour generated on the surface of the tubes, which might affect the flow regime, void fraction distribution, turbulent intensity levels and tube-flow interaction, all of which have the potential to change the tube vibration response. A cantilevered tube bundle made of electric cartridges heaters was built and tested in a Freon-11 flow loop at McMaster University. Tubes were arranged in a parallel triangular configuration. The bundle was exposed to two-phase cross flows consisting of different combinations of void from two sources, void generated upstream of the bundle and void generated at the surface of the tubes. Tube tip vibration response was measured optically and void fraction was measured by gamma densitometry technique. It was found that tube vibration amplitude in the transverse direction was reduced by a factor of eight for void fraction generated at the tube surfaces only, when compared to the upstream only void generation case. The main explanation for this effect is a reduction in the correlation length of the turbulent buffeting forcing function. Theoretical calculations of the tube vibration response due to turbulent buffeting under the same experimental conditions predicted a similar reduction in tube amplitude. The void fraction for the fluid-elastic instability threshold in the presence of tube bundle void fraction generation was higher than that for the upstream void fraction generation case. The first explanation of this difference is the level of turbulent buffeting forces the tube bundle was exposed to

  7. Flow-induced vibration of helical coil compression springs

    International Nuclear Information System (INIS)

    Stokes, F.E.; King, R.A.

    1983-01-01

    Helical coil compression springs are used in some nuclear fuel assembly designs to maintain holddown and to accommodate thermal expansion. In the reactor environment, the springs are exposed to flowing water, elevated temperatures and pressures, and irradiation. Flow parallel to the longitudinal axis of the spring may excite the spring coils and cause vibration. The purpose of this investigation was to determine the flow-induced vibration (FIV) response characteristics of the helical coil compression springs. Experimental tests indicate that a helical coil spring responds like a single circular cylinder in cross-flow. Two FIV excitation mechanisms control spring vibration. Namely: 1) Turbulent Buffeting causes small amplitude vibration which increases as a function of velocity squared. 2) Vortex Shedding causes large amplitude vibration when the spring natural frequency and Strouhal frequency coincide. Several methods can be used to reduce or to prevent vortex shedding large amplitude vibrations. One method is compressing the spring to a coil pitch-to-diameter ratio of 2 thereby suppressing the vibration amplitude. Another involves modifying the spring geometry to alter its stiffness and frequency characteristics. These changes result in separation of the natural and Strouhal frequencies. With an understanding of how springs respond in the flowing water environment, the spring physical parameters can be designed to avoid large amplitude vibration. (orig.)

  8. Flow induced vibrations in gas tube assembly of centrifuge

    International Nuclear Information System (INIS)

    Alam, M.; Atta, M.A.; Mirza, J.A.; Khan, A.Q.

    1986-01-01

    A centrifuge essentially consists of a rotor rotating at very high speed. Gas tube assembly, located at the center of the rotor, is used to introduce feed gas into the rotor and remove product and waste streams from it. The gas tube assembly is thus a static component, the product and waste scoops of which are lying in the high pressure region of a fluid rotating at very high speed. This can cause flow induced vibrations in the gas tube assembly. Such vibrations affect not only the mechanical stability of the gas tube assembly but may also reduce the separative power of the centrifuge. In a cascade, if some of the centrifuges have gas tube vibration, then cascade performance will be affected. A theoretical analysis of the effect of waste tube vibrations on product and waste flow rates and pressures in the centrifuge is presented. A simple stage consisting of two centrifuges, in which one has tube vibration, is considered for this purpose. The results are compared with experiment. It is shown that waste tube vibration generates oscillations in waste and product flow rates that are observable outside the centrifuge. (author)

  9. A study on mechanical properties and flow-induced vibrations of coil-shaped holddown spring

    International Nuclear Information System (INIS)

    Kim, Kyu-Tae

    2010-01-01

    The fuel assemblies used in the OPR1000s in Korea employ four coil-shaped hold-down springs to exert compressive load at the top of fuel assembly so that the assemblies may not be damaged by preventing its hydraulic-induced lifting-off from its lower seating surface. However, the coolant flow generates the flow-induced vibration at the coil-shaped hold-down springs which may cause wear on the spring surfaces. A hold-own spring may be fractured if torsional stress acting on its worn area exceeds a stress limit, resulting in the loss of hold-down spring force of the fuel assembly. In this paper, flow-induced vibration tests were performed for standard and improved coil type hold-down springs to investigate the effects of these two hold-down spring designs on flow-induced vibration wear. In parallel, a wide spectrum of mechanical tests was performed to obtain vibration-related characteristics of these two hold-down springs, which can be used as input data for the fuel assembly static and dynamic analysis. It is found that the improved hold-down spring design is better against flow-induced vibration wear than the standard one. With the use of the three-dimensional Solidwork model, the stress-related design lifetime of the improved hold-down spring was estimated by extrapolating its wear data measured from the flow-induced vibration tests, which indicates that the improved HD spring design will maintain integrity during the fuel design lifetime in OPR1000s in Korea.

  10. Computer modeling of flow induced in-reactor vibrations

    International Nuclear Information System (INIS)

    Turula, P.; Mulcahy, T.M.

    1977-01-01

    An assessment of the reliability of finite element method computer models, as applied to the computation of flow induced vibration response of components used in nuclear reactors, is presented. The prototype under consideration was the Fast Flux Test Facility reactor being constructed for US-ERDA. Data were available from an extensive test program which used a scale model simulating the hydraulic and structural characteristics of the prototype components, subjected to scaled prototypic flow conditions as well as to laboratory shaker excitations. Corresponding analytical solutions of the component vibration problems were obtained using the NASTRAN computer code. Modal analyses and response analyses were performed. The effect of the surrounding fluid was accounted for. Several possible forcing function definitions were considered. Results indicate that modal computations agree well with experimental data. Response amplitude comparisons are good only under conditions favorable to a clear definition of the structural and hydraulic properties affecting the component motion. 20 refs

  11. Review of leakage-flow-induced vibrations of reactor components

    International Nuclear Information System (INIS)

    Mulcahy, T.M.

    1983-05-01

    The primary-coolant flow paths of a reactor system are usually subject to close scrutiny in a design review to identify potential flow-induced vibration sources. However, secondary-flow paths through narrow gaps in component supports, which parallel the primary-flow path, occasionally are the excitation source for significant vibrations even though the secondary-flow rates are orders of magnitude smaller than the primary-flow rate. These so-called leakage flow problems are reviewed here to identify design features and excitation sources that should be avoided. Also, design rules of thumb are formulated that can be employed to guide a design, but quantitative prediction of component response is found to require scale-model testing

  12. Flow Induced Vibration Program at Argonne National Laboratory

    Science.gov (United States)

    1984-01-01

    The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.

  13. Flow Induced Vibration Program at Argonne National Laboratory

    International Nuclear Information System (INIS)

    1984-01-01

    Argonne National Laboratory has had a Flow Induced Vibration Program since 1967; the Program currently resides in the Laboratory's Components Technology Division. Throughout its existence, the overall objective of the program has been to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities have been funded by the US Atomic Energy Commission (AEC), Energy Research and Development Administration (ERDA), and Department of Energy (DOE). Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology (ECUT) Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, Office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components has been funded by the Clinch River Breeder Reactor Plant (CRBRP) Project Office. Work has also been performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse

  14. Flow induced vibration of the large-sized sodium valve for MONJU

    International Nuclear Information System (INIS)

    Sato, K.

    1977-01-01

    Measurements have been made on the hydraulic characteristics of the large-sized sodium valves in the hydraulic simulation test loop with water as fluid. The following three prototype sodium valves were tested; (1) 22-inch wedge gate type isolation valve, (2) 22-inch butterfly type isolation valve, and (3) 16-inch butterfly type control valve. In the test, accelerations of flow induced vibrations were measured as a function of flow velocity and disk position. The excitation mechanism of the vibrations is not fully interpreted in these tests due to the complexity of the phenomena, but the experimental results suggest that it closely depends on random pressure fluctuations near the valve disk and flow separation at the contracted cross section between the valve seat and the disk. The intensity of flow induced vibrations suddenly increases at a certain critical condition, which depends on the type of valve and is proportional to fluid velocity. (author)

  15. Flow induced vibration of the large-sized sodium valve for MONJU

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K [Sodium Engineering Division, O-arai Engineering Centre, Power Reactor and Nuclear Fuel Development Corporation, Nariata-cho, O-arai Machi, Ibaraki-ken (Japan)

    1977-12-01

    Measurements have been made on the hydraulic characteristics of the large-sized sodium valves in the hydraulic simulation test loop with water as fluid. The following three prototype sodium valves were tested; (1) 22-inch wedge gate type isolation valve, (2) 22-inch butterfly type isolation valve, and (3) 16-inch butterfly type control valve. In the test, accelerations of flow induced vibrations were measured as a function of flow velocity and disk position. The excitation mechanism of the vibrations is not fully interpreted in these tests due to the complexity of the phenomena, but the experimental results suggest that it closely depends on random pressure fluctuations near the valve disk and flow separation at the contracted cross section between the valve seat and the disk. The intensity of flow induced vibrations suddenly increases at a certain critical condition, which depends on the type of valve and is proportional to fluid velocity. (author)

  16. Fatigue failure by in-line flow-induced vibration and fatigue life evaluation

    International Nuclear Information System (INIS)

    Odahara, Satoru; Murakami, Yukitaka; Inoue, Masahiro; Sueoka, Atsuo

    2004-01-01

    The phenomenon of fatigue failure by the In-line flow-induced vibration was studied. A newly water-flow-induced vibration system was made and used to reproduce fatigue failure by flow-induced vibration. A medium carbon steel specimen was fixed to the experimental equipment. A small artificial hole was introduced onto the specimen surface. Fatigue crack initiated from the artificial hole. A small portable strain histogram recorder (Mini Rainflow Corder, MRC) developed in another project of the authors' team was used to acquire the service strain hisogram at a critical point of the specimen and to measure the variation of natural frequency. Cumulative fatigue damage D defined by the Modified Miner Rule was calculated by using the strain histogram at the initial stage of test. The value of D was almost unity in the case of In-line vibration, while the values of D in the case of the Cross-flow vibration ranged from 0.2 to 0.8. (author)

  17. Evaluation of flow-induced vibration of thermometer well for JOYO

    International Nuclear Information System (INIS)

    Isozaki, Kazunori; Tomita, Naoki

    1997-05-01

    Sodium leak accident of MONJU was caused high cycles fatigue damage of thermometer well by flow-induced vibration. It was due to the symmetric vortex shedding which was occurred rear flow of thermometer well. So, Thermometer wells installed in primary and secondary heat transport systems of JOYO were evaluated of flow-induced vibration. Evaluation of flow-induced vibration of thermometer well was done checking of flow-induced vibration base on authorized design report for JOYO, evaluation of summary flow-induced vibration by natural frequency of thermometer well in sodium as cantilever models, and evaluation based on small velocity rule of ASME Code Section III Appendix N-1300. By this result, thermometer wells (12B piping of secondary cooling system) were not satisfied requirement to avoid flow-induced vibration by small velocity rule. Therefore, Detailed vibration characteristic analysis, water flow-induced vibration test, dumping test and evaluation of structural integrity were carried out. These results, vibration amplitude of well on the tip was 0.13 mm (vibration non-dimensional amplitude of 0.015) and peak stress of 2.9 kg/mm 2 is occurred. Thermometer wells (12B piping of secondary cooling system) which occurred peak stress by flow vibration was confirmed enough to satisfy 5.3 kg/mm 2 of design fatigue limit. (author)

  18. Flow-induced vibration in LMFBR steam generators: a state-of-the-art review

    International Nuclear Information System (INIS)

    Shin, Y.S.; Wambsganss, M.W.

    1975-05-01

    This state-of-the-art review identifies and discusses existing methods of flow-induced vibration analysis applicable to steam generators, their limitations, and base-technology needs. Also included are discussions of five different LMFBR steam-generator configurations and important design considerations, failure experiences, possible flow-induced excitation mechanisms, vibration testing, and available methods of vibration analysis. The objectives are to aid LMFBR steam-generator designers in making the best possible evaluation of potential vibration in steam-generator internals, and to provide the basis for development of design guidelines to avoid detrimental flow-induced vibration

  19. Experimental study of flow induced vibration of the planar fuel assembly

    International Nuclear Information System (INIS)

    Wang Jinhua; Bo Hanliang; Jiang Shengyao; Jia Haijun; Zheng Wenxiang; Min Gang; Qu Xinxing

    2005-01-01

    The paper studied the flow-induced vibration of the planar fuel assembly under scour of coolant through experiments, the study includes: the characteristics of the inherent vibration, the response to the flow-induced vibration in rating condition and the confirmation of the critical flow velocity's scope of the flow flexible instability. The velocity distributions in different flow channels formed by fuel plates in the assembly were measured, and the velocity distribution in the same flow channel was also measured. The experimental conclusions includes: the inherent vibration frequency of the planar fuel assembly is different for a little in each direction. The damp ratio corresponding to the assembly each rank's inherent frequency is small, and the damp ratio decreased with the increase of the corresponding inherent frequency. The velocity in different flow channels decreased from outside to inside, and the velocity in the middle channel was the least; the velocity in the same channel decreased from inside to outside, and the velocity in the middle position was the most. The vibration swing of the fuel assembly was small at rating condition, and the vibration swing of the fuel plates was larger than side plates. The vibration of the fuel assembly increased with the increase of the velocity, the vibration of the middle fuel plate were larger than the border fuel plate, and the vibration of the border fuel plate was larger than the side plate. The large scale vibration of the flow flexible instability didn't occur in the velocity scope of 0-18.8 m/s in the experiment, so the critical flow velocity of the flow flexible instability was not in the flow velocity scope of the experiment. (authors)

  20. Scale-model characterization of flow-induced vibrational response of FFTF reactor internals

    International Nuclear Information System (INIS)

    Ryan, J.A.; Mahoney, J.J.

    1980-10-01

    Fast Test Reactor core internal and peripheral components were assessed for flow-induced vibrational characteristics under scaled and simulated prototype flow conditions in the Hydraulic Core Mockup as an integral part of the Fast Test Reactor Vibration Program. The Hydraulic Core Mockup was an 0.285 geometric scale model of the Fast Test Reactor internals designed to simulate prototype vibrational and hydraulic characteristics. Using water to simulate sodium coolant, vibrational characteristics were measured and determined for selected model components over the scaled flow range of 36 to 110%. Additionally, in-situ shaker tests were conducted on selected Hydraulic Core Mockup outlet plenum components to establish modal characteristics. Most components exhibited resonant response at all test flow rates; however, the measured dynamic response was neither abnormal nor anomalously flow-rate dependent, and the predicted prototype components' response were deemed acceptable

  1. FLOW-INDUCED VIBRATION IN PIPES: CHALLENGESS AND SOLUTIONS - A REVIEW

    Directory of Open Access Journals (Sweden)

    M. SIBA

    2016-03-01

    Full Text Available The Flow-induced vibration has recently been the topic of experimental, numerical, and theoretical studies. It was intended to implement better applications for controlling the flow using orifice technique. Having the flow under control, the orifice becomes an instrument for measuring the flow. The flow of all fluid such as water, oil, gas and vapours through an orifice was tested and mathematical models were developed adequately. The basic theme for these enormous studies was the need for the very accurate flow measurements through orifices. All experimental, theoretical, numerical, and analytical studies have agreed that there is more than one avenue to develop, modify, and enhance such measurements. However, one factor that affects the flow measurements is the vibration which was not treated as required until the mid-20th century due to enormous discoveries that damages could be rooted to vibration. Researchers have studied vibration and then proposed mathematical models in conjunction with the pressure and velocity measurements of the flowing fluids and then the effect of the vibration, induced or not induced, has been under continuous investigation. This paper is an attempt to review the previous studies regarding understanding the nature of the vibration and the possible effects of vibration on the flow and on the piping structure in order to limit the damage caused by the vibration. This study shows that the need for more experimental studies and more comprehensive analytical approaches are, in particular, very essential to develop better results.

  2. An inverse method for identification of a distributed random excitation acting on a vibrating structure flow-induced vibration application

    International Nuclear Information System (INIS)

    Perotin, L.; Granger, S.

    1997-01-01

    In order to improve the prediction of wear problems due to flow-induced vibration in PWR components, an inverse method for identifying a distributed random excitation acting on a dynamical system has been developed at EDF. This method, whose applications go far beyond the flow-induced vibration field, has been implemented into the MEIDEE software. This method is presented. (author)

  3. FFTF scale-model characterization of flow-induced vibrational response of reactor internals

    International Nuclear Information System (INIS)

    Ryan, J.A.; Julyk, L.J.

    1977-01-01

    As an integral part of the Fast Test Reactor Vibration Program for Reactor Internals, the flow-induced vibrational characteristics of scaled Fast Test Reactor core internal and peripheral components were assessed under scaled and simulated prototype flow conditions in the Hydraulic Core Mockup. The Hydraulic Core Mockup, a 0.285 geometric scale model, was designed to model the vibrational and hydraulic characteristics of the Fast Test Reactor. Model component vibrational characteristics were measured and determined over a range of 36 percent to 111 percent of the scaled prototype design flow. Selected model and prototype components were shaker tested to establish modal characteristics. The dynamic response of the Hydraulic Core Mockup components exhibited no anomalous flow-rate dependent or modal characteristics, and prototype response predictions were adjudged acceptable

  4. First international symposium on Flow Induced Noise and Vibration Issues and Aspects

    CERN Document Server

    Rosa, Sergio; Franco, Francesco; Guyader, Jean-Louis; Hambric, Stephen; Flinovia - Flow Induced Noise and Vibration Issues and Aspects

    2015-01-01

    Flow induced vibration and noise (FIVN) remains a critical research topic. Even after over 50 years of intensive research, accurate and cost-effective FIVN simulation and measurement techniques remain elusive. This book gathers the latest research from some of the most prominent experts in the field. It describes methods for characterizing wall pressure fluctuations, including subsonic and supersonic turbulent boundary layer flows over smooth and rough surfaces using computational methods like Large Eddy Simulation;
for inferring wall pressure fluctuations using inverse techniques based on panel vibrations or holographic pressure sensor arrays;
for calculating the resulting structural vibrations and radiated sound using traditional finite element methods, as well as advanced methods like Energy Finite Elements;
for using scaling approaches to universally collapse flow-excited vibration and noise spectra; and for computing time histories of structural response, including alternating stresses. This book p...

  5. FFTF scale-model characterization of flow induced vibrational response of reactor internals

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, J A; Julyk, L J [Hanford Engineering Development Laboratory, Richland, WA (United States)

    1977-12-01

    As an integral part of the Fast Test Reactor Vibration Program for Reactor Internals, the flow-induced vibrational characteristics of scaled Fast Test Reactor core internal and peripheral components were assessed under scaled and simulated prototype flow conditions in the Hydraulic Core Mockup. The Hydraulic Core Mockup, a 0.285 geometric scale model, was designed to model the vibrational and hydraulic characteristics of the Fast Test Reactor. Model component vibrational characteristics were measured and determined over a range of 36% to 111% of the scaled prototype design flow. Selected model and prototype components were shaker tested to establish modal characteristics. The dynamic response of the Hydraulic Core Mockup components exhibited no anomalous flow-rate dependent or modal characteristics, and prototype response predictions were adjudged acceptable. (author)

  6. FFTF scale-model characterization of flow induced vibrational response of reactor internals

    International Nuclear Information System (INIS)

    Ryan, J.A.; Julyk, L.J.

    1977-01-01

    As an integral part of the Fast Test Reactor Vibration Program for Reactor Internals, the flow-induced vibrational characteristics of scaled Fast Test Reactor core internal and peripheral components were assessed under scaled and simulated prototype flow conditions in the Hydraulic Core Mockup. The Hydraulic Core Mockup, a 0.285 geometric scale model, was designed to model the vibrational and hydraulic characteristics of the Fast Test Reactor. Model component vibrational characteristics were measured and determined over a range of 36% to 111% of the scaled prototype design flow. Selected model and prototype components were shaker tested to establish modal characteristics. The dynamic response of the Hydraulic Core Mockup components exhibited no anomalous flow-rate dependent or modal characteristics, and prototype response predictions were adjudged acceptable. (author)

  7. Piezoelectric energy harvesting from flow-induced vibration

    International Nuclear Information System (INIS)

    Wang, D-A; Ko, H-H

    2010-01-01

    A new piezoelectric energy harvester for harnessing energy from flow-induced vibration is developed. It converts flow energy into electrical energy by piezoelectric conversion with oscillation of a piezoelectric film. A finite element model is developed in order to estimate the generated voltage of the piezoelectric laminate subjected to a distributed load. Prototypes of the energy harvester are fabricated and tested. Experimental results show that an open circuit output voltage of 2.2 V pp and an instantaneous output power of 0.2 µW are generated when the excitation pressure oscillates with an amplitude of 1.196 kPa and a frequency of about 26 Hz. The solution of the generated voltage based on the finite element model agrees well with the experiments. Based on the finite element model, the effects of the piezoelectric film dimensions, the fluid pressure applied to the harvester and types of piezoelectric layer on the output voltage of the harvester can be investigated.

  8. Dynamic Characteristics of Flow Induced Vibration in a Rotor-Seal System

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2011-01-01

    Full Text Available Flow induced vibration is an important factor affecting the performance of the rotor-seal system. From the point of view of flow induced vibration, the nonlinear models of the rotor-seal system are presented for the analysis of the fluid force, which is induced by the interaction between the unstable fluid flow in the seal and the vibrating rotor. The nonlinear characteristics of flow induced vibration in the rotor-seal system are analyzed, and the nonlinear phenomena in the unbalanced rotor-seal system are investigated using the nonlinear models. Various nonlinear phenomena of flow induced vibration in the rotor-seal system, such as synchronization phenomenon and amplitude mutation, are reproduced.

  9. Effect of angle on flow-induced vibrations of pinniped vibrissae.

    Directory of Open Access Journals (Sweden)

    Christin T Murphy

    Full Text Available Two types of vibrissal surface structures, undulated and smooth, exist among pinnipeds. Most Phocidae have vibrissae with undulated surfaces, while Otariidae, Odobenidae, and a few phocid species possess vibrissae with smooth surfaces. Variations in cross-sectional profile and orientation of the vibrissae also exist between pinniped species. These factors may influence the way that the vibrissae behave when exposed to water flow. This study investigated the effect that vibrissal surface structure and orientation have on flow-induced vibrations of pinniped vibrissae. Laser vibrometry was used to record vibrations along the whisker shaft from the undulated vibrissae of harbor seals (Phoca vitulina and northern elephant seals (Mirounga angustirostris and the smooth vibrissae of California sea lions (Zalophus californianus. Vibrations along the whisker shaft were measured in a flume tank, at three orientations (0°, 45°, 90° to the water flow. The results show that vibration frequency and velocity ranges were similar for both undulated and smooth vibrissae. Angle of orientation, rather than surface structure, had the greatest effect on flow-induced vibrations. Vibration velocity was up to 60 times higher when the wide, flat aspect of the whisker faced into the flow (90°, compared to when the thin edge faced into the flow (0°. Vibration frequency was also dependent on angle of orientation. Peak frequencies were measured up to 270 Hz and were highest at the 0° orientation for all whiskers. Furthermore, CT scanning was used to quantify the three-dimensional structure of pinniped vibrissae that may influence flow interactions. The CT data provide evidence that all vibrissae are flattened in cross-section to some extent and that differences exist in the orientation of this profile with respect to the major curvature of the hair shaft. These data support the hypothesis that a compressed cross-sectional profile may play a key role in reducing self

  10. Study and analysis for the flow-induced vibration of the core barrel of a PWR

    International Nuclear Information System (INIS)

    Yao Weida; Shi Guolin; Jiang Nanyan

    1989-01-01

    The resemblance criteria are derived and a test model is designed by applying the flow-soild coupling theory. After having completed the model analysis of the pressurized water reactor (PWR) core barrel in an 1:10 model, the dynamic characteristics are obtained. In an 1:5 reactor model with a hydraulic closed loop, the hydraulic vibration tests of the core barrel are performed, and the relations between the flow rate and the flow-induced pulse pressure on core barrel, acceleration and strain signals have been measured. The corresponding responses and a group of computational equations for hydraulic vibration are derived from these two experiments. The computational hydraulic vibration responses for core barrel in Qinshan Nuclear Power Plant are in good agreement with the test results, and it shows that the core barrel is safe within its lifetime of 30 years

  11. FIVPET Flow-Induced Vibration Test Report (1) - Candidate Spacer Grid Type I (Optimized H Type)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kang, Heung Seok; Yoon, Kyung Ho; Song, Kee Nam; Kim, Jae Yong

    2006-03-15

    The flow-induced vibration (FIV) test using a 5x5 partial fuel assembly was performed to evaluate mechanical/structural performance of the candidate spacer grid type I (Optimized H shape). From the measured vibration response of the test bundle and the flow parameters, design features of the spacer strap can be analyzed in the point of vibration and hydraulic aspect, and also compared with other spacer strap in simple comparative manner. Furthermore, the FIV test will contributes to understand behaviors of nuclear fuel in operating reactor. The FIV test results will be used to verify the theoretical model of fuel rod and assembly vibration. The aim of this report is to present the results of the FIV test of partial fuel assembly and to introduce the detailed test methodology and analysis procedure. In chapter 2, the overall configuration of test bundle and instrumented tube is remarked and chapter 3 will introduce the test facility (FIVPET) and test section. Chapter 4 deals with overall test condition and procedure, measurement and data acquisition devices, instrumentation equipment and calibration, and error analysis. Finally, test result of vibration and pressure fluctuation is presented and discussed in chapter 5.

  12. Assessment of flow induced vibration in a sodium-sodium heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, V. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India)], E-mail: prakash@igcar.gov.in; Thirumalai, M.; Prabhakar, R.; Vaidyanathan, G. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India)

    2009-01-15

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) is under construction at Kalpakkam. It is a liquid metal sodium cooled pool type fast reactor with all primary components located inside a sodium pool. The heat produced due to fission in the core is transported by primary sodium to the secondary sodium in a sodium to sodium Intermediate Heat Exchanger (IHX), which in turn is transferred to water in the steam generator. PFBR IHX is a shell and tube type heat exchanger with primary sodium on shell side and secondary sodium in the tube side. Since IHX is one of the critical components placed inside the radioactive primary sodium, trouble-free operation of the IHX is very much essential for power plant availability. To validate the design and the adequacy of the support system provided for the IHX, flow induced vibration (FIV) experiments were carried out in a water test loop on a 60 deg. sector model. This paper discusses the flow induced vibration measurements carried out in 60 deg. sector model of IHX, the modeling criteria, the results and conclusion.

  13. Flow induced vibrations in a PWR piping system

    International Nuclear Information System (INIS)

    Seligmann, D.; Guillou, J.

    1995-11-01

    During a recurring bench test of an operating system, high amplitude vibrations have been observed on a safety piping system of a nuclear power plant. Due to the source of the pumps, these vibrations lead to wear damage and it is therefore necessary to estimate the life time of the piping system. This paper describes the methodology used to study the dynamic behaviour and to analyze the damage of a piping system submitted to internal flow. Starting from an experimental modal analysis of the piping system when not i service, we analyse the main parameters of the mechanical behaviour. Following this analysis, we obtain a mechanical model fitting the first experimental modes. On this basis, we build a vibro-acoustical model. This model takes into account the influence of the acoustical pipe length, both above and below the mechanical part, the modelling of acoustical components, the speed of sound. We did not experimentally characterize the pumps. Therefore, we use a numerical model in order to simulate the behaviour of the pumps. This model is based on the theory of the transfer matrix and takes into account the geometric and the hydraulic characteristics of the pump.The modelling of both sources (suction and discharge) connected to the pump is formed by contributions from a source corresponding to the turbulent noise at low frequency, a source at blade passage frequency. This model has been experimentally validated in a laboratory. The final results of the modelling of the complete piping system are in a complete accord with experimental measurements. (author). 3 refs., 7 figs

  14. Two-phase flow induced parametric vibrations in structural systems

    International Nuclear Information System (INIS)

    Hara, Fumio

    1980-01-01

    This paper is divided into two parts concerning piping systems and a nuclear fuel pin system. The significant experimental results concerning the random vibration induced in an L-shaped pipe by air-water two-phase flow and the theoretical analysis of the vibration are described in the first part. It was clarified for the first time that the parametric excitation due to the periodic changes of system mass, centrifugal force and Coriolis force was the mechanism of exciting the vibration. Moreover, the experimental and theoretical analyses of the mechanism of exciting vibration by air-water two-phase flow in a straight, horizontal pipe were carried out, and the first natural frequency of the piping system was strongly related to the dominant frequency of void signals. The experimental results on the vibration of a nuclear fuel pin model in parallel air-water two-phase flow are reported in the latter part. The relations between vibrational strain variance and two-phase flow velocity or pressure fluctuation, and the frequency characteristics of vibrational strain variance were obtained. The theoretical analysis of the dynamic interaction between air-water two-phase flow and a fuel pin structure, and the vibrational instability of fuel pins in alternate air and water slugs or in large bubble flow are also reported. (Kako, I.)

  15. Flow-induced vibration analysis of heat exchanger and steam generator designs

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Sylvestre, Y.; Campagna, A.O.

    1977-08-01

    Tube and shell heat exchange components such as steam generators, heat exchangers and condensers are essential parts of CANDU nuclear power stations. Excessive flow-induced vibration may cause tube failures by fatigue or more likely by fretting-wear. Such failures may lead to station shutdowns that are very undesirable in terms of lost production. Hence good performance and reliability dictate a thorough flow-induced vibration analysis at the design stage. This paper presents our approach and techniques in this respect. (author)

  16. Flow induced vibrations in a PWR piping system

    International Nuclear Information System (INIS)

    Seligmann, D.C.; Guillou, J.P.

    1995-01-01

    In this paper, we present and industrial study of the dynamic behaviour of the piping system of a French 1300 M We nuclear power plant. High-amplitude vibrations had been noticed on a safeguard system during the periodical operation startup tests. These vibrations, due to acoustical pump sources, cause fatigue-damage and it is therefore necessary to propose an estimation of the service-life of the piping and to propose modification of piping system to reduce vibrations. First, we define a mechanical model readjusted according to gauged vibratory speeds and construct a vibro-acoustic coupled model and a pump-behaviour model as a source of excitation. Second, we simulate a modification of the supports. The influence of this modification is analysed by comparison of the root mean square values of vibratory speeds and the stresses between the initial system and the modified system. 3 refs., 7 figs

  17. Flow induced vibration of secondary piping of LMFBR

    International Nuclear Information System (INIS)

    Gibert, R.J.; Axisa, F.

    1977-01-01

    This paper presents a method for evaluating the characteristics of vibrations caused by internal flow in three-dimensional piping systems conveying high density fluids. The excitation of the circuit is mainly caused by the flow singularities, and it is shown that the problem may be reduced to calculate the response of the circuit to an acoustical pressure discontinuity, localised at each flow singularity. The paper is divided into two main parts: First part is devoted to the theoretical formulation of the coupled acoustical-mechanical problem and to its numerical solution by the french computer code TEDEL. Second part describes an experimental test of the method. The tested piping system consists of a stainless steel tube circuit comprising four 909 bends, conveying water. Vibrations are excited by a half closed gate valve. Satisfactory results are obtained concerning both the frequencies of resonance of the circuit and the level of the vibrations observed

  18. A study on the flow induced vibration in two phase flow under heating and non-heating conditions

    International Nuclear Information System (INIS)

    Kim, Dae Hun

    2007-02-01

    Critical heat flux (CHF) enhancement devices, like a spacer grid with mixing vane, cause flow-induced vibration (FIV) due to turbulence made by structural resistance. CHF enhancement and FIV reduction are usually studied separately. The main purpose of this article is to investigate the relationship between CHF and FIV. Information of flow-induced vibration due to wire coil design, is experimentally presented in this study by detecting flow-induced vibration under the two-phase flow condition with wire coil inserts. CHF experiments were performed in an upward vertical annulus tube under controlled vibration conditions to determine the effect of vibration on CHF. FIV was measured in an upward vertical tube with various wire coil inserts using air-water as flow material. CHF experiments were performed at one atmosphere with mechanically controlled vibration. A quartz tube (inner diameter of 17 mm, thickness of 2mm and length of 0.72 m) was used for outer tube and a SUS-304 tube (outer diameter of 6.35 mm, thickness of 0.89 mm and length of 0.7 m) was used for the inner heater. Vibration of the heater tube with an amplitude range of 0.1 mm to 0.5 mm and a frequency range of 10 Hz to 50 Hz was carried out at a mass flux of 115 kg/m 2 s and 215 kg/m 2 s. CHF was enhanced by vibration with a maximum ratio of 16.4 %. CHF was increased with increased amplitude and quality. The CHF correlation was developed with R (coefficient of correlation) of 0.903. FIV measuring experiments were performed at one atmosphere by changing the inserted wire coil type. An acrylic tube was used for the test section with inner diameter of 25 mm, thickness of 10 mm and length of 0.5 m. Four types of wire coil, which have a thickness of between 2 mm and 3 mm and pitch length of between 25 mm and 50 mm, were used. FIV and dynamic pressure were detected in water mass flux range of 100 ∼ 3060 kg/m 2 s and air mass flux range of 5.02 ∼ 60.3 kg/m 2 s. Vibration increased along with mass flux and

  19. CFD simulation of flow-induced vibration of an elastically supported airfoil

    Directory of Open Access Journals (Sweden)

    Šidlof Petr

    2016-01-01

    Full Text Available Flow-induced vibration of lifting or control surfaces in aircraft may lead to catastrophic consequences. Under certain circumstances, the interaction between the airflow and the elastic structure may lead to instability with energy transferred from the airflow to the structure and with exponentially increasing amplitudes of the structure. In the current work, a CFD simulation of an elastically supported NACA0015 airfoil with two degrees of freedom (pitch and plunge coupled with 2D incompressible airflow is presented. The geometry of the airfoil, mass, moment of inertia, location of the centroid, linear and torsional stiffness was matched to properties of a physical airfoil model used for wind-tunnel measurements. The simulations were run within the OpenFOAM computational package. The results of the CFD simulations were compared with the experimental data.

  20. Energy harvesting by means of flow-induced vibrations on aerospace vehicles

    Science.gov (United States)

    Li, Daochun; Wu, Yining; Da Ronch, Andrea; Xiang, Jinwu

    2016-10-01

    This paper reviews the design, implementation, and demonstration of energy harvesting devices that exploit flow-induced vibrations as the main source of energy. Starting with a presentation of various concepts of energy harvesters that are designed to benefit from a general class of flow-induced vibrations, specific attention is then given at those technologies that may offer, today or in the near future, a potential benefit to extend the operational capabilities and to monitor critical parameters of unmanned aerial vehicles. Various phenomena characterized by flow-induced vibrations are discussed, including limit cycle oscillations of plates and wing sections, vortex-induced and galloping oscillations of bluff bodies, vortex-induced vibrations of downstream structures, and atmospheric turbulence and gusts. It was found that linear or linearized modeling approaches are commonly employed to support the design phase of energy harvesters. As a result, highly nonlinear and coupled phenomena that characterize flow-induced vibrations are neglected in the design process. The Authors encourage a shift in the current design paradigm: considering coupled nonlinear phenomena, and adequate modeling tools to support their analysis, from a design limitation to a design opportunity. Special emphasis is placed on identifying designs and implementations applicable to aircraft configurations. Application fields of flow-induced vibrations-based energy harvesters are discussed including power supply for wireless sensor networks and simultaneous energy harvest and control. A large body of work on energy harvesters is included in this review journal. Whereas most of the references claim direct applications to unmanned aerial vehicles, it is apparent that, in most of the cases presented, the working principles and characteristics of the energy harvesters are incompatible with any aerospace applications. Finally, the challenges that hold back the integration of energy harvesting

  1. Flow induced vibrational excitation of nuclear reactor structures

    International Nuclear Information System (INIS)

    Gibert, R.J.

    1979-01-01

    The pressure fluctuations generated by disturbed flows, encountered in nuclear reactors induce vibrations in the structures. In order to make forecastings for these vibrational levels, it is necessary to know the characteristics of the random pressure fluctuations induced in the walls by the main flow peculiarities of the circuits. This knowledge is essentially provided by experimentation which shows that most of the energy from these fluctuations is in the low frequency area. It is also necessary to determine the transfer functions of the fluid-structure coupled system. Given the frequency range of the excitations, a calculation of the characteristics of the first eigenmodes is generally sufficient. This calculation is carried out by finite element codes, the modal dampings being assessed separately. In this paper, emphasis is placed mainly on the analysis of the sources of excitation due to flow peculiarities. Some examples will also be given of assessments of vibrations in real structures (pipes, reactor internals, etc.) and of comparisons with the experimental results obtained on models or on a site [fr

  2. Numerical approximations of flow induced vibrations of vocal folds

    Directory of Open Access Journals (Sweden)

    Sváček Petr

    2017-01-01

    Full Text Available The paper focus on mathematical modelling of incompressible fluid flow interacting with vibrations of an elastic vocal fold. The flow in moving domain is modelled by the incompressible Navier-Stokes equations written in the Arbitrary Lagrangian-Eulerian (ALE form. The channel geometry is an approximation of the human glottal region. The flow model is coupled with a simplified structure model. The problem is mathematically described and the resulting fluid-structure interaction problem is discretized by a stabilized finite element method. A strong coupling algorithm is applied for solution of the coupled fluid-structure problem. The choice of boundary conditions is discussed, particularly the choice of different artificial inlet/outlet boundary conditions is described in details. The numerical results are shown.

  3. Numerical approximations of flow induced vibrations of vocal folds

    Science.gov (United States)

    Sváček, Petr

    The paper focus on mathematical modelling of incompressible fluid flow interacting with vibrations of an elastic vocal fold. The flow in moving domain is modelled by the incompressible Navier-Stokes equations written in the Arbitrary Lagrangian-Eulerian (ALE) form. The channel geometry is an approximation of the human glottal region. The flow model is coupled with a simplified structure model. The problem is mathematically described and the resulting fluid-structure interaction problem is discretized by a stabilized finite element method. A strong coupling algorithm is applied for solution of the coupled fluid-structure problem. The choice of boundary conditions is discussed, particularly the choice of different artificial inlet/outlet boundary conditions is described in details. The numerical results are shown.

  4. Fast reactor flow induced vibration with particular reference to PFR and conceptual CDFR design

    Energy Technology Data Exchange (ETDEWEB)

    Collinson, A E [REML, UKAEA, RNPDE, Risley, Warrington (United Kingdom)

    1977-12-01

    This paper describes development work and basic design criteria as applied to vibration induced by fluid flow for the United Kingdom LMFBR programme. Possible harmful effects that could result from excessive vibration levels are highlighted with the associated excitation mechanisms. Instances of flow-induced vibration encountered in development models and in PFR are described. Basic design requirements and the overall philosophy are considered with respect to PFR and notional CDFRs. Ongoing research objectives are outlined giving some insight into the broad strategy involved. Finally, details are given concerning projects presently in progress along with more long term proposals. (author)

  5. Fast reactor flow induced vibration with particular reference to PFR and conceptual CDFR design

    International Nuclear Information System (INIS)

    Collinson, A.E.

    1977-01-01

    This paper describes development work and basic design criteria as applied to vibration induced by fluid flow for the United Kingdom LMFBR programme. Possible harmful effects that could result from excessive vibration levels are highlighted with the associated excitation mechanisms. Instances of flow-induced vibration encountered in development models and in PFR are described. Basic design requirements and the overall philosophy are considered with respect to PFR and notional CDFRs. Ongoing research objectives are outlined giving some insight into the broad strategy involved. Finally, details are given concerning projects presently in progress along with more long term proposals. (author)

  6. A study on leakage-flow-induced vibrations: Pt. 1

    International Nuclear Information System (INIS)

    Inada, F.; Hayama, S.

    1990-01-01

    The viscous fluid-dynamic forces and the moments acting on the walls of a one-dimensional, narrow, tapered passage when one wall is vibrating in coupled translational and rotational modes are analyzed, and fluid-dynamic mass, damping and stiffness matrices are determined. By this means the mechanism of instability generated from the flow through a narrow passage is examined. In the case of a single-degree-of-freedom translational or rotational system, only diagonal components of the fluid-dynamic matrices are estimated, and it is found that both negative fluid-dynamic damping caused by the phase delay due to the fluid inertia and negative fluid-dynamic stiffness can occur. In the case of a single-degree-of-freedom translational system, if the passage is divergent, both negative fluid-dynamic damping and fluid-dynamic stiffness can occur. In the case of a single-degree-of-freedom rotational system, the area increment ratio of the passage, at which negative fluid-dynamic damping and fluid-dynamic stiffness can occur, changes remarkably with the location of the pivot. In the case of a two-degree-of-freedom translational and rotational system, it is difficult to conclude directly from the fluid-dynamic matrices whether the fluid-dynamic forces stabilize the system or not. (author)

  7. Studies on flow induced vibration of reactivity devices of 700 MWe Indian PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, K.M., E-mail: kmprabha@yahoo.com [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Goyal, P.; Dutta, Anu; Bhasin, V.; Vaze, K.K.; Ghosh, A.K. [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Pillai, Ajith V.; Mathew, Jimmy [Nuclear Power Corporation of India Ltd., Mumbai 400 094 (India)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer FIV studies on internals of heavy water filled calandria of 700 MWe Indian PHWR is presented. Black-Right-Pointing-Pointer This includes CFD and structural dynamic analysis to predict the dynamic behavior of component lying inside calandria. Black-Right-Pointing-Pointer Results of these calculations as well as conclusions from this investigation are presented. Black-Right-Pointing-Pointer It is established that FIV is not a concern in the present design of calandria internals. - Abstract: Component failures due to excessive flow-induced vibration are still affecting the performance and reliability of nuclear power stations. Tube failures due to fretting-wear in nuclear steam generators, and vibration related damage of reactor internals are of particular concern. In the Indian nuclear industry, flow induced vibrations are assessed early in the design process and the results are incorporated in the design procedures. In this paper the details of flow induced vibration studies on internals like liquid zone control unit and poison injection units of heavy water filled calandria of 700 MWe Indian pressurized heavy water reactor is given. This includes computational fluid dynamics studies from which the velocities are extracted for the components lying inside the calandria. With these velocities as input, further studies are performed to predict the dynamic behavior of these components. Results of these calculations as well as conclusions derived from this investigation are presented. Based on the studies it has been established that flow induced vibration is not a concern in the present design of 700 MWe calandria internals.

  8. Effect of top ligament blanking on reducing flow induced vibration of protective grid

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Kyong Bo; Ryu, Joo Young; Kwon, Oh Joon; Park, Joon Kyoo; Jeon, Sang Youn; Suh, Jung Min [KEPCO NF Co., Daejeon (Korea, Republic of)

    2012-10-15

    The protective grid is a Inconel 718 spacer grid located just above the bottom nozzle in many kinds of fuel assemblies for PWR. The purpose of using protective grid is to capture debris before they flow up into the fuel assembly and get trapped by the other grids causing fuel rod damages as well as to provide support at the lower end plugs of fuel rods. Recently, it has been reported that strap failure has occurred in the protective grids and the flow induced vibration of the strap has resulted in the strap fatigue failure. After the root cause of the protective grid failure was found to be the flow induced vibration of the strap, KEPCO NF has made an effort to find the vibration tendencies of grid strap and draw vibration mitigation concepts of the protective grid strap. The vibration tendency and the effect of the vibration mitigation concept of the protective grid which have been found by the results of the loop tests and simulations in KEPCO NF are presented herein.

  9. A new methodology for predicting flow induced vibration in industrial components

    International Nuclear Information System (INIS)

    Gay, N.

    1997-12-01

    Flow induced vibration damage is a major concern for designers and operators of industrial components. For example, nuclear power plant operators have currently to deal with such flow induced vibration problems, in steam generator tube bundles, control rods or nuclear fuel assemblies. Some methodologies have thus been recently proposed to obtain an accurate description of the flow induced vibration phenomena. These methodologies are based on unsteady semi-analytical models for fluid-dynamic forces, associated with non-dimensional fluid force coefficients generally obtained from experiments. The aim is to determine the forces induced by the flow on the structure, and then to take account of these forces to derive the dynamic behaviour of the component under flow excitation. The approach is based on a general model for fluid-dynamic forces, using several non-dimensional parameters that cannot be reached through computation. These parameters are then determined experimentally on simplified test sections, representative of the component, of the flow and of the fluid-elastic coupling phenomena. Predicting computations of the industrial component can then be performed for various operating configurations, by applying laws of similarity. The major physical mechanisms involved in complex fluid-structure interaction phenomena have been understood and modelled. (author)

  10. Mathematical model for cross-flow-induced vibrations of tube rows

    International Nuclear Information System (INIS)

    Chen, S.S.

    1976-09-01

    A mathematical model for flow-induced vibrations in heat exchanger tube banks is presented which includes the effects of vortex shedding, fluidelastic coupling, drag force, and fluid inertia coupling. Once the fluid forces are known, the model can predict the details of complex tube-fluid interactions: (1) natural frequencies and mode shapes of coupled vibrations; (2) critical flow velocities; (3) responses to vortex shedding, drag force, and other types of excitations; and (4) the dominant excitation mechanism at a given flow velocity. The analytical results are in good agreement with the published experimental results

  11. Leakage flow-induced vibrations for variations of a tube-in-tube slip joint

    International Nuclear Information System (INIS)

    Mulcahy, T.M.

    1986-01-01

    Variations in the design of a specific slip joint separating two cantilevered, telescoping tubes conveying water were studied to determine their effect upon the leakage flow-induced vibration self-excitation mechanism known to exist for the original slip joint geometry. The important parameters controlling the self-excitation mechanism were identified, which, along with previous results, allowed the determination of a comprehensive set of design rules to avoid unstable vibrations. This was possible even though a new self-excitation mechanism was found when the engagement of the two tubes was small. 9 refs

  12. A numerical method to calculate flow-induced vibrations in a turbulent flow

    International Nuclear Information System (INIS)

    Sadaoka, Noriyuki; Umegaki, Kikuo

    1993-01-01

    An unsteady fluid force on structures in a turbulent flow can cause their vibration. The phenomenon is the most important among various flow-induced vibrations and it is an important subject in design nuclear plant components such as heat exchangers. A new approach to simulate flow-induced vibrations is introduced. A fully coupled analysis of fluid-structure interaction has been realized in a turbulent flow field by integrating the following calculational steps: (a) solving turbulent flow by a direct simulation method where the ALE (arbitrary Lagrangian Eulerian) type approximation is adopted to take account of structure displacements; (b) estimating fluid force on structures by integrating fluid pressure and shear stress; (c) calculating dynamic response of structures and determining the amount of displacement; (d) regenerate curvilinear grids for new geometry using the boundary-fitted coordinate transformation method. Forced vibration of a circular cylinder in a cross flow were successfully simulated and the synchronization phenomena between Karman-vortices and cylinder vibrations were clearly seen

  13. Study on flow-induced vibration of the fuel rod in HTTR

    International Nuclear Information System (INIS)

    Takase, Kazuyuki

    1988-03-01

    This study was performed in order to investigate flow-induced vibration characteristics of a fuel rod in HTTR (High Temperature engineering Test Reactor) from both an experiment and a numerical simulation. Two kinds of fuel rods were used in this experiment: one was a graphite rod which simulated a specification of the HTTR's fuel rod and the other was an aluminum rod whose weight was a half of the graphite one. The experiment was carried out up to Re = 31000 using air at room temperature and pressure. Air flowed downstream in an annular passage which consisted of the fuel rod and the graphite channel. Numerical simulations by fluid and frequency equations were also carried out. Numerical and experimental results were then compared. The following conclusions were drived: (1) The fuel rod amplitudes increase with the flow rate and with a decrease of the fuel rod weight. (2) The fuel rod amplitudes are obtained by δ/De = 2.22 x 10 -10 Re 1.43 , 9000 ≤ Re ≤ 31000, where δ is a vibration amplitude, De is a hydraulic diameter and Reis Reynolds number. (3) The fuel rod frequencies shift from lower natural frequency to higher as the flow rate increases. (4) The flow-induced vibration behavior of the fuel rod can simulate well by simultaneous equations which used the turbulence model for fluid and the mass model for vibration of the fuel rod. (author)

  14. Experimental Simulation of Flow-Induced Vibration for Developing a Grid-to-Rod Fretting Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngho; Kim, Hyungkyu; Kang, Heungseok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    GTRF margin was calculated based on the fuel reliabilities program of operating power plants. But they have not accumulated sufficient experience under challenging operating conditions to be considered proven solutions. In addition, GTRF behaviors were significantly differed according to the plant types, operating condition and fuel types. So, analytical methods to resolve GTRF degradations are considered as difficult procedures for actual application. One of the most important problems is that it is difficult to evaluate the GTRF resistance of new spacer grid under operating power plant condition. Up to now, as a consequence, compliance with the fretting wear limit (typically 10% of the cladding thickness) is checked a posteriori, through post-irradiation examination. Therefore, in this study, rod simulation method for determining GTRF resistance of new spacer grid was proposed with a specially designed wear tester. This simulator enables us to examine the spacer grid shape effect under relatively short development period. In addition, for developing GTRF model, flow-induced vibration (FIV) was measured with different major variables such as GTR clearance, flow rate, etc. Fretting wear tests of nuclear fuel rods (i. e. grid-to-rod fretting) have been performed to examine the flow rate effect by using a specially designed test section with a simulated primary coolant. Based on above results, developed FIV-wear simulator could be effective to examine the spacer grid shape effect with short development period. Further study will be discussed on the GTR clearance effect with various spacer grid shapes.

  15. Signal analysis of acoustic and flow-induced vibrations of BWR main steam line

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, G., E-mail: gepe@xanum.uam.mx [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Prieto-Guerrero, A. [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Núñez-Carrera, A. [Comisión Nacional de Seguridad Nuclear y Salvaguardias, Doctor Barragán 779, Col. Narvarte, México, D.F. 03020 (Mexico); Vázquez-Rodríguez, A. [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Centeno-Pérez, J. [Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas Unidad Profesional “Adolfo López Mateos”, Av. IPN, s/n, México, D.F. 07738 (Mexico); Espinosa-Martínez, E.-G. [Departamento de Sistemas Energéticos, Universidad Nacional Autónoma de México, México, D.F. 04510 (Mexico); and others

    2016-05-15

    Highlights: • Acoustic and flow-induced vibrations of BWR are analyzed. • BWR performance after extended power uprate is considered. • Effect of acoustic side branches (ASB) is analyzed. • The ASB represents a reduction in the acoustic loads to the steam dryer. • Methodology developed for simultaneous analyzing the signals in the MSL. - Abstract: The aim of this work is the signal analysis of acoustic waves due to phenomenon known as singing in Safety Relief Valves (SRV) of the main steam lines (MSL) in a typical BWR5. The acoustic resonance in SRV standpipes and fluctuating pressure is propagated from SRV to the dryer through the MSL. The signals are analyzed with a novel method based on the Multivariate Empirical Mode Decomposition (M-EMD). The M-EMD algorithm has the potential to find common oscillatory modes (IMF) within multivariate data. Based on this fact, we implement the M-EMD technique to find the oscillatory mode in BWR considering the measurements obtained collected by the strain gauges located around the MSL. These IMF, analyzed simultaneously in time, allow obtaining an estimation of the effects of the multiple-SRV in the MSL. Two scenarios are analyzed: the first is the signal obtained before the installation of the acoustic dampers (ASB), and the second, the signal obtained after installation. The results show the effectiveness of the ASB to damp the strong resonances when the steam flow increases, which represents an important reduction in the acoustic loads to the steam dryer.

  16. Signal analysis of acoustic and flow-induced vibrations of BWR main steam line

    International Nuclear Information System (INIS)

    Espinosa-Paredes, G.; Prieto-Guerrero, A.; Núñez-Carrera, A.; Vázquez-Rodríguez, A.; Centeno-Pérez, J.; Espinosa-Martínez, E.-G.

    2016-01-01

    Highlights: • Acoustic and flow-induced vibrations of BWR are analyzed. • BWR performance after extended power uprate is considered. • Effect of acoustic side branches (ASB) is analyzed. • The ASB represents a reduction in the acoustic loads to the steam dryer. • Methodology developed for simultaneous analyzing the signals in the MSL. - Abstract: The aim of this work is the signal analysis of acoustic waves due to phenomenon known as singing in Safety Relief Valves (SRV) of the main steam lines (MSL) in a typical BWR5. The acoustic resonance in SRV standpipes and fluctuating pressure is propagated from SRV to the dryer through the MSL. The signals are analyzed with a novel method based on the Multivariate Empirical Mode Decomposition (M-EMD). The M-EMD algorithm has the potential to find common oscillatory modes (IMF) within multivariate data. Based on this fact, we implement the M-EMD technique to find the oscillatory mode in BWR considering the measurements obtained collected by the strain gauges located around the MSL. These IMF, analyzed simultaneously in time, allow obtaining an estimation of the effects of the multiple-SRV in the MSL. Two scenarios are analyzed: the first is the signal obtained before the installation of the acoustic dampers (ASB), and the second, the signal obtained after installation. The results show the effectiveness of the ASB to damp the strong resonances when the steam flow increases, which represents an important reduction in the acoustic loads to the steam dryer.

  17. Flow-induced and acoustically induced vibration experience in operating gas-cooled reactors

    International Nuclear Information System (INIS)

    Halvers, L.J.

    1977-03-01

    An overview has been presented of flow-induced and acoustically induced vibration failures that occurred in the past in gas-cooled graphite-moderated reactors, and the importance of this experience for the Gas-Cooled Fast-Breeder Reactor (GCFR) project has been assessed. Until now only failures in CO 2 -cooled reactors have been found. No problems with helium-cooled reactors have been encountered so far. It is shown that most of the failures occurred because flow-induced and acoustically induced dynamic loads were underestimated, while at the same time not enough was known about the influence of environmental parameters on material behavior. All problems encountered were solved. The comparison of the influence of the gas properties on acoustically induced and flow-induced vibration phenomena shows that the interaction between reactor design and the thermodynamic properties of the primary coolant precludes a general preference for either carbon dioxide or helium. The acoustic characteristics of CO 2 and He systems are different, but the difference in dynamic loadings due to the use of one rather than the other remains difficult to predict. A slight preference for helium seems, however, to be justified

  18. Predictive analyses of flow-induced vibration and fretting wear in steam generator tubes

    International Nuclear Information System (INIS)

    Axisa, F.

    1989-01-01

    Maintaining the service life of PWR steam generators under highly reliable conditions requires a complex design to prevent various damaging processes, including those related to flow induced vibration. Predictive analyses have to rely on numerical tools to compute the vibratory response of multi-supported tubes in association with experimental data and semi-empirical relationships for quantifying flow-induced excitation mechanisms and tube damaging processes. In the presence of loose supports tube dynamics becomes highly nonlinear in nature. To deal with such problems CEA and FRAMATOME developed a computer program called GERBOISE. This paper provides a short description of an experimental program currently in progress at CEN Saclay to validate the numerical methods implemented in GERBOISE. According to the results obtained so far reasonable agreement is obtained between experiment and numerical simulation, especially as averaged quantities are concerned

  19. Axial-flow-induced vibration for a rod supported by translational springs at both ends

    International Nuclear Information System (INIS)

    Kang, H.S.; Song, K.N.; Kim, H.K.; Yoon, K.H.

    2003-01-01

    An axial-flow-induced vibration model was proposed for a rod supported by two translational springs at both ends in order to evaluate the sensitivity to spring stiffness on the FIV for a PWR fuel rod. For developing the model, a one-mode approximation was made based on the assumption that the first mode was dominant in vibration behavior of the single span rod. The first natural frequency and mode shape functions for the flow-induced vibration, called the FIV, model were derived by using Lagrange's method. The vibration displacements were calculated by both of the spring-supported rod and the simple-supported (SS) one. As a result, the vibration displacement for the spring-supported (50 kN m -1 ) rod was 15-20% larger than that of the SS rod when the rods are in axial flow of 5-8 m s -1 velocity. The discrepancy between both displacements became much larger as flow velocity increased, and that of the rod having the short span length was larger than that of the rod having the long span length although the displacement value itself of the long span rod was larger than that of the short one. The vibration displacement for the spring-supported rod appeared to decrease with the increase of the spring constant. Since single span beam supported by the two translational springs are focused on in this paper, further study will be needed to reflect more realistic supporting conditions of the PWR fuel rod such as two springs and four dimples and cross or swirling flow caused by the mixing vane of the spacer grid

  20. Flow and flow-induced vibration of a square array of cylinders in steady currents

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ming [School of Computing, Engineering and Mathematics, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751 (Australia); Cheng, Liang; An, Hongwei; Tong, Feifei, E-mail: m.zhao@uws.edu.au [School of Civil, Environmental and Mining Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2015-08-15

    Flow and flow-induced vibration of a square array of cylinders are investigated by two-dimensional numerical simulations. Flow past 36 cylinders in an inline arranged square array and 33 cylinders in a staggered arranged square array is firstly simulated, for Re = 100 and the spacing ratios of L/D = 1.5, 2, 3, 4, 5. Only one vortex street is observed in the wake of the cylinder array when the spacing ratio is 1.5 in the inline arrangement and 1.5 and 2 in the staggered arrangement, indicating that the critical spacing ratio for the single-vortex street mode in the staggered arrangement is higher than that in the inline arrangement. The vortex shedding from the cylinders is suppressed at L/D = 3 for both inline and staggered arrangements. Vortex shedding from each individual cylinder is observed when L/D = 4. Flow-induced vibration of 36 cylinders in an inline square arrangement is studied for a constant Reynolds number of 100, two spacing ratios of 2 and 5, a constant mass ratio of 2.5 and a wide range of reduced velocities. It is found that for a spacing ratio of 2, the vibration of the cylinders in the four downstream columns does not start until the reduced velocity exceeds 4.5. The vibration of the cylinders progresses downstream with increasing reduced velocity. For a spacing ratio of 5, the vibrations of the cylinders in the most upstream column are similar to that of a single cylinder. The vibration amplitudes of the downstream cylinders peak at higher reduced velocities than that of a single cylinder. The maximum possible response amplitudes occur at the most downstream cylinders. (paper)

  1. Flow induced vibration characteristics in 2X3 bundle critical heat flux experiment

    International Nuclear Information System (INIS)

    Kim, Dae Hun; Chang, Soon Heung

    2005-01-01

    Above a certain heat flux, the liquid can no longer permanently wet the heater surface. This situation leads to an inordinate decrease in the surface heat transfer. This heat flux is commonly referred to as the critical heat flux (CHF). The CHF in nuclear reactors is one of the important thermal hydraulic parameters limiting the available power. Flow induced vibration (FIV) is the vibration caused by a fluid flowing around a body. In the fluid flowing system, FIV occurred by structures and flow condition. Many structures in nuclear power plant system are designed to prevent from structure failure due to FIV. Recently, Hibiki and Ishii (1998) carried out an experimental investigation on the effect of flow-induced vibration (FIV) on two-phase flow structure in vertical tube and reported that the FIV drastically changed the void fraction profiles. The void fraction profiles is one of the important parameter for determining CHF. Therefore, the investigation on the effect of FIV on CHF are needed. The research on FIV characteristics detection during CHF experiment in 2X3 bundle using R-134a has been carried out in KAIST. Using the results new FIV correlation in 2-pahse turbulent flow are suggested after finding out relation between CHF and dynamic pressure fluctuation value

  2. Physical and numerical investigation of the flow induced vibration of the hydrofoil

    Science.gov (United States)

    Wu, Q.; Wang, G. Y.; Huang, B.

    2016-11-01

    The objective of this paper is to investigate the flow induced vibration of a flexible hydrofoil in cavitating flows via combined experimental and numerical studies. The experiments are presented for the modified NACA66 hydrofoil made of POM Polyacetate in the closed-loop cavitation tunnel at Beijing Institute of Technology. The high-speed camera and the single point Laser Doppler Vibrometer are applied to analyze the transient flow structures and the corresponding structural vibration characteristics. The hybrid coupled fluid structure interaction model is conducted to couple the incompressible and unsteady Reynolds Averaged Navier-Stokes solver with a simplified two-degree-of-freedom structural model. The k-ω SST turbulence model with the turbulence viscosity correction and the Zwart cavitation model are introduced to the present simulations. The results showed that with the decreasing of the cavitation number, the cavitating flows display incipient cavitation, sheet cavitation, cloud cavitation and supercavitation. The vibration magnitude increases dramatically for the cloud cavitation and decline for the supercavitation. The cloud cavitation development strongly affects the vibration response, which is corresponding to the periodically developing and shedding of the large-scale cloud cavity. The main frequency of the vibration amplitude is accordance with the cavity shedding frequency and other two frequencies of the vibration amplitude are corresponding to the natural frequencies of the bending and twisting modes.

  3. Flow-induced vibration test of an advanced water reactor model. Pt. 1. Turbulence-induced forcing function

    International Nuclear Information System (INIS)

    Au-Yang, M.K.; Brenneman, B.; Raj, D.

    1995-01-01

    A 1:9 scale model of a proposed advanced water reactor was tested for flow-induced vibration. The main objectives of this test were: (1) to derive an empirical equation for the turbulence forcing function which can be applied to the full-sized prototype; (2) to study the effect of viscosity on the turbulence; (3) to verify the ''superposition'' assumption widely used in dynamic analysis of weakly coupled fluid-shell systems; and (4) to measure the shell responses to verify methods and computer programs used in the flow-induced vibration analysis of the prototype. This paper describes objectives (1), (2), and (3); objective (4) will be discussed in a companion paper.The turbulence-induced fluctuating pressure was measured at 49 locations over the surface of a thick-walled, non-responsive scale model of the reactor vessel/core support cylinders. An empirical equation relating the fluctuating pressure, the frequency, and the distance from the inlet nozzle center line was derived to fit the test data. This equation involves only non-dimensional, fluid mechanical parameters that are postulated to represent the full-sized, geometrically similar prototype. While this postulate cannot be verified until similar measurements are taken on the full-sized unit, a similar approach using a 1:6 scale model of a commercial pressurized water reactor was verified in the mid-1970s by field measurements on the full-sized reactor. (orig.)

  4. An advanced tube wear and fatigue workstation to predict flow induced vibrations of steam generator tubes

    International Nuclear Information System (INIS)

    Gay, N.; Baratte, C.; Flesch, B.

    1997-01-01

    Flow induced tube vibration damage is a major concern for designers and operators of nuclear power plant steam generators (SG). The operating flow-induced vibrational behaviour has to be estimated accurately to allow a precise evaluation of the new safety margins in order to optimize the maintenance policy. For this purpose, an industrial 'Tube Wear and Fatigue Workstation', called 'GEVIBUS Workstation' and based on an advanced methodology for predictive analysis of flow-induced vibration of tube bundles subject to cross-flow has been developed at Electricite de France. The GEVIBUS Workstation is an interactive processor linking modules as: thermalhydraulic computation, parametric finite element builder, interface between finite element model, thermalhydraulic code and vibratory response computations, refining modelling of fluid-elastic and random forces, linear and non-linear dynamic response and the coupled fluid-structure system, evaluation of tube damage due to fatigue and wear, graphical outputs. Two practical applications are also presented in the paper; the first simulation refers to an experimental set-up consisting of a straight tube bundle subject to water cross-flow, while the second one deals with an industrial configuration which has been observed in some operating steam generators i.e., top tube support plate degradation. In the first case the GEVIBUS predictions in terms of tube displacement time histories and phase planes have been found in very good agreement with experiment. In the second application the GEVIBUS computation showed that a tube with localized degradation is much more stable than a tube located in an extended degradation zone. Important conclusions are also drawn concerning maintenance. (author)

  5. Flow-induced vibration for light-water reactors. Progress report, April 1978-December 1979

    International Nuclear Information System (INIS)

    Schardt, J.F.

    1980-03-01

    Flow-Induced vibration for Light Water Reactors (FIV for LWRs) is a four-year program designed to improve the FIV performance of light water reactors through the development of design criteria, analytical models for predicting behavior of components, general scaling laws to improve the accuracy of reduced-scale tests, and the identification of high FIV risk areas. The program commenced December 1, 1976, but was suspended on September 30, 1978, due to a shift in Department of Energy (DOE) priorities away from LWR productivity/availability. It was reinitiated as of August 1, 1979. This progress report summarizes the accomplishments achieved during the period from April 1978 to December 1979

  6. Controlling flow-induced vibrations of flood barrier gates with data-driven and finite-element modelling

    NARCIS (Netherlands)

    Erdbrink, C.D.; Krzhizhanovskaya, V.V.; Sloot, P.M.A.; Klijn, F.; Schweckendiek, T.

    2012-01-01

    Operation of flood barrier gates is sometimes hampered by flow-induced vibrations. Although the physics is understood for specific gate types, it remains challenging to judge dynamic gate behaviour for unanticipated conditions. This paper presents a hybrid modelling system for predicting vibrations

  7. Modeling fluid forces and response of a tube bundle in cross-flow induced vibrations

    International Nuclear Information System (INIS)

    Khushnood, Shahab; Khan, Zaffar M.; Malik, M. Afzaal; Koreshi, Zafarullah; Khan, Mahmood Anwar

    2003-01-01

    Flow induced vibrations occur in process heat exchangers, condensers, boilers and nuclear steam generators. Under certain flow conditions and fluid velocities, the fluid forces result in tube vibrations and possible damage of tube, tube sheet or baffle due to fretting and fatigue. Prediction of these forces is an important consideration. The characteristics of vibration depend greatly on the fluid dynamic forces and structure of the tube bundle. It is undesirable for the tube bundles to vibrate excessively under normal operating conditions because tubes wear and eventual leakage can occur leading to costly shutdowns. In this paper modeling of fluid forces and vibration response of a tube in a heat exchanger bundle has been carried out. Experimental validation has been performed on an existing refinery heat exchanger tube bundle. The target tube has been instrumented with an accelerometer and strain gages. The bundle has been studied for pulse, sinusoidal and random excitations. Natural frequencies and damping of the tubes have also been computed. Experimental fluid forces and response shows a reasonable agreement with the predictions. (author)

  8. Study and analysis on the flow induced vibration of the core barrel of PWR

    International Nuclear Information System (INIS)

    Yao Weida; Shi Guolin; Jiang Nanyan; Peng YongYong; Zhang Huijun; Wang Yufen; Xie Yongcheng; Guo Chunhua; Shen Qinping

    1989-01-01

    The deduction of the resemblance criterion and the design of the test model by applying flow-solid coupling theory are described. The model analysis of a core barrel both in the air and stationary water were performed in a 1:10 model, thus obtaining the dynamic characteristic. In a 1:5 reactor model with a hydraulic closed loop, the inner structure and support were modeled for performing hydraulic closed loop, the inner structure and support were modeled for performing hydraulic vibration test of the core barrel. The flow induced pulse pressure of the core barrel and corresponding response were obtained by using miniature pressure capsule, strain gauge and accelerometer. Power spectrum, correlation functions, transfer function and amplitudes under different flow velocities were calculated. The hydraulic vibration test shows that the core barrel will be in safety during its 30-year life time

  9. Numerical study on flow induced vibration characteristics of heat transfer tube

    International Nuclear Information System (INIS)

    Feng Zhipeng; Zang Fenggang; Zhang Yixiong

    2014-01-01

    The model presents a fully coupled approach with solving the fluid flow and the structure vibration simultaneously. The three-dimensional unsteady, viscous, incompressible Navier-Stokes equation and LES turbulence model were solved by the finite volume approach and the heat transfer structure was solved by finite element method combined with moving mesh control technique. The dynamic equilibrium equation was discretized according to the finite element theory and the mesh update was achieved by the dynamic mesh technology. Based on this model, flow induced vibration responses of the tube were thus investigated using response branch, phase angle, Lissajou diagram, trajectory, phase portrait and Poincare section mapping. Meanwhile, the limit cycle and bifurcation of lift coefficient and lateral displacement were analyzed. The results reveal that a quasi-upper branch is found in the fluid-structure interaction system, and there is no bifurcation of lift coefficient and lateral displacement occurred in three-dimensional flexible tube submitted to uniform turbulent flow. (authors)

  10. Advanced non-linear flow-induced vibration and fretting-wear analysis capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Toorani, M.; Pan, L.; Li, R.; Idvorian, N. [Babcock and Wilcox Canada Ltd., Cambridge, Ontario (Canada); Vincent, B.

    2009-07-01

    Fretting wear is a potentially significant degradation mechanism in nuclear steam generators and other shell and tube heat transfer equipment as well. This paper presents an overview of the recently developed code FIVDYNA which is used for the non-linear flow-induced vibration and fretting wear analysis for operating steam generators (OTSG and RSG) and shell-and-tube heat exchangers. FIVDYNA is a non-linear time-history Flow-Induced Vibration (FIV) analysis computer program that has been developed by Babcock and Wilcox Canada to advance the understanding of tube vibration and tube to tube-support interaction. In addition to the dynamic fluid induced forces the program takes into account other tube static forces due to axial and lateral tube preload and thermal interaction loads. The program is capable of predicting the location where the fretting wear is most likely to occur and its magnitude taking into account the support geometry including gaps. FIVDYNA uses the general purpose finite element computer code ABAQUS as its solver. Using ABAQUS gives the user the flexibility to add additional forces to the tube ranging from tube preloads and the support offsets to thermal loads. The forces currently being modeled in FIVDYNA are the random turbulence, steady drag force, fluid-elastic forces, support offset and pre-strain force (axial loads). This program models the vibration of tubes and calculates the structural dynamic characteristics, and interaction forces between the tube and the tube supports. These interaction forces are then used to calculate the work rate at the support and eventually the predicted depth of wear scar on the tube. A very good agreement is found with experiments and also other computer codes. (author)

  11. Flow induced vibrations of piping system (Vibration sources - Mechanical response of the pipes)

    International Nuclear Information System (INIS)

    Gibert, R.J.; Axisa, F.; Villard, B.

    1978-01-01

    In order to design the supports of piping system, an estimation of the vibration induced by the fluid conveyed through the pipes are generally needed. For that purpose it is necessary. To evaluate the power spectra of all the main sources generated by the flow. These sources are located at the singular points of the circuit (enlargements, bends, valves, etc. ...). To calculate the modal parameters of fluid containing pipes. This paper presents: a methodical study of the most current singularities. Inter-correlation spectra of local pressure fluctuation downstream from the singularity and correlation spectra of associated acoustical sources have been measured. A theory of noise generation by unsteady flow in internal acoustics has been developed. All these results are very useful for evaluating the source characteristics in most practical pipes. A comparison between the calculation and the results of an experimental test has shown a good agreement

  12. Application of flow-induced vibration predictive techniques to operating steam generators

    International Nuclear Information System (INIS)

    Sauve, R.G.; Tabatabai, M.; Morandin, G.; Kozluk, M.J.

    1998-01-01

    Analytical techniques for flow-induced vibration (FIV), such as those incorporated in available design tools, are routinely applied to process equipment at the initial design stage. Unfortunately, this does not always apply to the situation when problems, related to FIV, develop in crucial operating equipment, since design uses conservative methods, whereas in-service applications require more realistic assessments. Usually these problems appear in the form of severe through wall fret flaws or fatigue cracks that compromise the integrity of the tubes and possibly the complete unit. It is here where a somewhat different approach must be taken in the evaluation of tube response to FIV. Tube damage from fretting wear or fatigue crack growth must be estimated from actual in situ operating conditions. In this paper, an overview of the predictive methods used in the development and/or qualification of remedial measures for problems that occur in operating process equipment along with applications are described. The steps in the evaluation procedure, from the prediction of flow regimes, the development of the nonlinear computer models and associated fluid forcing functions through to the estimates of tube damage in operating heat exchangers and steam generators are presented. A probabilistic (i.e. Monte Carlo simulation) FIV approach that readily accommodates uncertainties associated with damage predictions is summarized. The efficacy of this approach comes from the fact that probabilistic methods facilitate the incorporation of field data, and that a large number of tubes and possible variations in geometry, process and support conditions, usually present in such equipment, can be addressed effectively. (author)

  13. Investigation of the integrity of u-bend tube bundles subjected to flow-induced vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, M. [University of Guelph, Guelph, Ontario (Canada); Riznic, J. [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)

    2012-07-01

    Maintaining the integrity of nuclear steam generator (SG) tubes in CANDU reactors is a major safety issue since they maintain the physical barrier between the primary and secondary coolants. The integrity of these tubes can be compromised due to flow-induced vibrations in the form of fatigue and fretting wear damage. Wear is a result of the tube impacting and sliding against its loose supports, and it becomes more severe as the tube/support clearance increases. The vibration is caused by fluid flow around these tubes through turbulence and fluidelastic instability mechanisms. Supports are installed to stiffen the structure and to ensure safe and stable operation. The U-bend region is the most critical part since it is subjected to high cross flow. Therefore, special attention is paid to properly supporting this region. However, in some situations, tube support plates (TSP) located on the straight part of the tube may deteriorate to the point where extremely large clearances, or even total wastage of the supports, may result. One possible cause for such a situation is corrosion and/or excessive fretting wear. This loss of TSP may affect the rate of wear in the U-bend portion of the tube due to the increased flexibility in this region. The integrity could be seriously breached as result of a potential support loss. This paper addresses the flow-induced vibrations (FIV) aspect, consequences, and suggested remedies for support degradation. This analysis will include fretting wear producing parameters, such as impact force and normal work rate. Turbulence and fluidelastic instability (FEI) are considered to be the main excitation mechanisms. The investigation is conducted through a numerical simulation of the full Ubend tube bundles including modelling the variable flow distribution, flow excitation, impact, and friction at the supports. (author)

  14. Development of evaluation method on flow-induced vibration and corrosion of components in two-phase flow by coupled analysis. 1. Evaluation of effects of flow-induced vibration on structural material integrity

    International Nuclear Information System (INIS)

    Naitoh, Masanori; Uchida, Shunsuke; Koshizuka, Seiichi; Ninokata, Hisashi; Anahara, Naoki; Dosaki, Koji; Katono, Kenichi; Akiyama, Minoru; Saitoh, Hiroaki

    2007-01-01

    Problems in major components and structural materials in nuclear power plants have often been caused by flow induced vibration, corrosion and their overlapping effects. In order to establish safe and reliable plant operation, it is necessary to predict future problems for structural materials based on combined analyses of flow dynamics and corrosion and to mitigate them before they become serious issues for plant operation. An innovative method for flow induced vibration of structures in two phase flow by combined analyses of three dimensional flow dynamics and structures is to be introduced. (author)

  15. Study of flow induce vibration inside 3.5 inch hard disk drives

    Directory of Open Access Journals (Sweden)

    Wichitpon Seepangmon

    2014-06-01

    Full Text Available This study focused on flow induced vibration of head stack assembly (HSA in a 3.5 inch hard disk drive with 5 disks and 10 read/write heads. We studied the effects of air flow on gimbal flex and resonance on arm. The comparison of vibrations on slider between the normal model and the experiment has been done for verifying the model. The peaks of frequency in experiment match the normal model at 1,040 1,320 and 1,400 Hz respectively. After that, the RNG K-ε turbulence model was used to determine the turbulent air flow of 7,200 rpm hard disk drive. The comparison between the normal model and the model with spoiler was investigated by using, computational fluid dynamics software (ANSYS and FLUENT. The results shown velocity magnitudes at the arm were decreased by 0.725 - 57.689 % and pressure dropped by 74.028 - 87.222 %. The velocity magnitudes at the gimbal flex were decreased by 5.522 - 14.291 % and pressure dropped by 48.440 - 82.947 %. The peak of vibrations on arm and gimbal flex was occurred at the frequency 1200 Hz. The model with spoiler could reduce vibration at arm by 2.56 - 95.601 % and reduce vibration at gimbal flex by 4.065 - 95.503 %. In the conclusion, the model with a spoiler could decrease the vibration at all surface of the arm and gimbal flex due to the velocity and pressure reduction[1][4].

  16. Numerical investigation on flow-induced vibration of a triangular cylinder at a low Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huakun; Zhao, Dongliang; Yang, Wenyu; Yu, Guoliang, E-mail: yugl@sjtu.edu.cn [State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China (China)

    2015-02-01

    Flow-induced vibration (FIV) of a triangular cylinder is numerically investigated at a Reynolds number of Re = 100. The four-step fractional finite element method is employed to solve the two-dimensional (2D) incompressible Navier–Stokes equations. The cylinder is endowed with a two-degree-of-freedom motion with the reduced mass ratio of M{sub r} = 2. Three typical flow incidence angles, α = 0°, 30° and 60°, are examined to identify the effect of incidence angle on the vibration characteristics of the cylinder. For each α, computations are conducted in a wide range of reduced velocities 2 U{sub r} ≤ 18. The numerical results show that at α = 0° and 30°, the responses of the cylinder are dominated by vortex-induced vibration which resembles that of a circular cylinder. At α = 0°, the peak amplitude of transverse vibration is the smallest among the three investigated α, and most of the cylinder motions exhibit a regular figure-eight trajectory. Some single-loop trajectories are observed at α = 30°, where the vibration frequency in the in-line direction is always identical to that in the transverse direction. At α = 60°, the triangular cylinder undergoes a typical transverse galloping with large amplitude and low frequency, and the vibration trajectories appear to be regular or irregular figure-eight patterns, which are strongly affected by the reduced velocity. (paper)

  17. Flow-induced vibration phenomenon in a Mark III TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C K; Whittemore, W L; Kim, B S; Lee, J B; Blevins, R D; Burton, T E [Korea Atomic Energy Research Institute, Seoul (Korea, Republic of); General Atomic Company, San Diego, CA (United States)

    1976-07-01

    The Mark III TRIGA reactor with hexagonal fuel spacing is capable of operating at 2.0 MW. The Mark III at San Diego operated without core cooling problems or vibration at power levels up to 2.0 MW. All Mark III reactors have operated trouble-free up to 1.0 MW. The Mark III TRIGA in Korea was installed in 1972 and operated many months without trouble at 2.0 MW. During this period core changes including addition of new fuel were made. Eighteen months after startup, a coolant flow-induced vibration was observed for the first time at a power of 1.5 MW. A lengthy series of tests showed that it was not possible to establish a core configuration that permitted vibration-free operation for power levels in the range 1.5 - 2.0 MW. Observations during the tests confirmed that standing waves in the reactor tank water coupled the source within the core to the shield structure and surrounding building. Analysis of the data indicates strongly that the source of the vibration is the creation and collapse of bubbles with the core acting as a resonator. A substantially increased flow of coolant through the upper grid plate is expected to eliminate the vibration phenomenon and permit trouble-free operation at power up to 2.0 MW. In an attempt to seek a remedy, both GAC and KAERI have independently developed designs for upper grid plates. KAERI has constructed and installed an interim version of the standard grid plate which was calculated to provide 25% more coolant flow and mounted high so as to provide less restriction to flow around the upper fittings of the fuel elements. A substantial reduction in vibration was observed. No vibration was observed at any power up to 2.0 MW with cooling water at or below 20 C. A slight vibration at 1.8 MW occurred for higher cooling temperatures. The GAC grid plate design provides not only for increasing the flow area but also for streamlining the flow surfaces on the grid plate and possibly also on the top fittings of the fuel elements. It is

  18. Flow-induced vibration phenomenon in a Mark III TRIGA reactor

    International Nuclear Information System (INIS)

    Lee, C.K.; Whittemore, W.L.; Kim, B.S.; Lee, J.B.; Blevins, R.D.; Burton, T.E.

    1976-01-01

    The Mark III TRIGA reactor with hexagonal fuel spacing is capable of operating at 2.0 MW. The Mark III at San Diego operated without core cooling problems or vibration at power levels up to 2.0 MW. All Mark III reactors have operated trouble-free up to 1.0 MW. The Mark III TRIGA in Korea was installed in 1972 and operated many months without trouble at 2.0 MW. During this period core changes including addition of new fuel were made. Eighteen months after startup, a coolant flow-induced vibration was observed for the first time at a power of 1.5 MW. A lengthy series of tests showed that it was not possible to establish a core configuration that permitted vibration-free operation for power levels in the range 1.5 - 2.0 MW. Observations during the tests confirmed that standing waves in the reactor tank water coupled the source within the core to the shield structure and surrounding building. Analysis of the data indicates strongly that the source of the vibration is the creation and collapse of bubbles with the core acting as a resonator. A substantially increased flow of coolant through the upper grid plate is expected to eliminate the vibration phenomenon and permit trouble-free operation at power up to 2.0 MW. In an attempt to seek a remedy, both GAC and KAERI have independently developed designs for upper grid plates. KAERI has constructed and installed an interim version of the standard grid plate which was calculated to provide 25% more coolant flow and mounted high so as to provide less restriction to flow around the upper fittings of the fuel elements. A substantial reduction in vibration was observed. No vibration was observed at any power up to 2.0 MW with cooling water at or below 20 C. A slight vibration at 1.8 MW occurred for higher cooling temperatures. The GAC grid plate design provides not only for increasing the flow area but also for streamlining the flow surfaces on the grid plate and possibly also on the top fittings of the fuel elements. It is

  19. Flow-induced vibration analysis of a helical coil steam generator experiment using large eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Haomin; Solberg, Jerome; Merzari, Elia; Kraus, Adam; Grindeanu, Iulian

    2017-10-01

    This paper describes a numerical study of flow-induced vibration in a helical coil steam generator experiment conducted at Argonne National Laboratory in the 1980s. In the experiment, a half-scale sector model of a steam generator helical coil tube bank was subjected to still and flowing air and water, and the vibrational characteristics were recorded. The research detailed in this document utilizes the multi-physics simulation toolkit SHARP developed at Argonne National Laboratory, in cooperation with Lawrence Livermore National Laboratory, to simulate the experiment. SHARP uses the spectral element code Nek5000 for fluid dynamics analysis and the finite element code DIABLO for structural analysis. The flow around the coil tubes is modeled in Nek5000 by using a large eddy simulation turbulence model. Transient pressure data on the tube surfaces is sampled and transferred to DIABLO for the structural simulation. The structural response is simulated in DIABLO via an implicit time-marching algorithm and a combination of continuum elements and structural shells. Tube vibration data (acceleration and frequency) are sampled and compared with the experimental data. Currently, only one-way coupling is used, which means that pressure loads from the fluid simulation are transferred to the structural simulation but the resulting structural displacements are not fed back to the fluid simulation

  20. Parametric Study and Optimization of a Piezoelectric Energy Harvester from Flow Induced Vibration

    Science.gov (United States)

    Ashok, P.; Jawahar Chandra, C.; Neeraj, P.; Santhosh, B.

    2018-02-01

    Self-powered systems have become the need of the hour and several devices and techniques were proposed in favour of this crisis. Among the various sources, vibrations, being the most practical scenario, is chosen in the present study to investigate for the possibility of harvesting energy. Various methods were devised to trap the energy generated by vibrating bodies, which would otherwise be wasted. One such concept is termed as flow-induced vibration which involves the flow of a fluid across a bluff body that oscillates due to a phenomenon known as vortex shedding. These oscillations can be converted into electrical energy by the use of piezoelectric patches. A two degree of freedom system containing a cylinder as the primary mass and a cantilever beam as the secondary mass attached with a piezoelectric circuit, was considered to model the problem. Three wake oscillator models were studied in order to determine the one which can generate results with high accuracy. It was found that Facchinetti model produced better results than the other two and hence a parametric study was performed to determine the favourable range of the controllable variables of the system. A fitness function was formulated and optimization of the selected parameters was done using genetic algorithm. The parametric optimization led to a considerable improvement in the harvested voltage from the system owing to the high displacement of secondary mass.

  1. CFD simulation on flow induced vibrations in high pressure control and emergency stop turbine valve

    International Nuclear Information System (INIS)

    Lindqvist, H.

    2011-01-01

    During the refuelling outage at Unit 2 of Forsmark NPP in 2009, the high pressure turbine valves were replaced. Three month after recommissioning, an oil pipe connected to one of the actuators was broken. Measurements showed high-frequency vibration levels. The pipe break was suspected to be an effect of highly increased vibrations caused by the new valve. In order to establish the origin of the vibrations, investigations by means of CFD-simulations were made. The simulations showed that the increased vibrations most likely stems from the open cavity that the valves centre consists of. (author)

  2. Flow induced vibration and stability analysis of multi wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Kyung Jae [Agency for Defense Development, Daejeon (Korea, Republic of); Choi, Jong Woon [Korean Intellectual Property Office, Daejeon (Korea, Republic of); Kim, Sung Kyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Song, Oh Seop [Chungnam National Univ., Daejeon (Korea, Republic of)

    2012-12-15

    The free vibration and flow induced flutter instability of cantilever multi wall carbon nanotubes conveying fluid are investigated and the nanotubes are modeled as thin-walled beams. The non-classical effects of the transverse shear, rotary inertia, warping inhibition, and van der Waals forces between two walls are incorporated into the structural model. The governing equations and associated boundary conditions are derived using Hamilton's principle. A numerical analysis is carried out by using the extended Galerkin method, which enables us to obtain more accurate solutions compared to the conventional Galerkin method. Cantilevered carbon nanotubes are damped with decaying amplitude for a flow velocity below a certain critical value. However, beyond this critical flow velocity, flutter instability may occur. The variations in the critical flow velocity with respect to both the radius ratio and length of the carbon nanotubes are investigated and pertinent conclusions are outlined. The differences in the vibration and instability characteristics between the Timoshenko beam theory and Euler beam theory are revealed. A comparative analysis of the natural frequencies and flutter characteristics of MWCNTs and SWCNTs is also performed.

  3. Flow-induced vibration characteristics of the BWR/5-201 jet pump

    International Nuclear Information System (INIS)

    LaCroix, L.V.

    1982-09-01

    A General Electric boiling water reactor BWR/5-201 jet pump was tested for flow-induced vibration (FIV) characteristics in the Large Steam Water Test Facility at Moss Landing, CA, during the period June-July 1978. High level periodic FIV were observed at reactor operating conditions (1027 psia, 532 0 F and prototypical flow rates) for the specific single jet pump assembly tested. High level FIV of similar amplitude and character have been shown capable of damaging jet pump components and associated support hardware if allowed to continue unchecked. High level FIV were effectively suppressed in two special cases tested: (1) lateral load (>500 lb) at the mixer to diffuser slip joint; and (2) a labyrinth seal (5 small, circumferential grooves) on the mixer at the slip joint. Stability criteria for the particular jet pump tested were developed from test data. A cause-effect relationship between the dynamic pressure within the slip joint and the jet pump vibration was established

  4. Experimental validation of the design method to prevent flow-induced vibration in high Reynolds-number

    International Nuclear Information System (INIS)

    Sakai, Takaaki; Yamaguchi, Akira; Morisita, Masaki; Iwata, Koji

    1998-08-01

    The incident of sodium leakage from a main pipe of the secondary heat transport system of Monju fast breeder reactor was caused by the failure of a thermometer well. 'Flow-induced vibration design guide for thermometer wells' (express as 'design guide') was proposed by PNC Working Group to prevent the same cause of the sodium leak incident in future. On this report, applicability of the 'design guide' was estimated to plant conditions in high Reynolds-number(approximately 3x10 5 ∼ 3x10 6 ) involving the supercritical region, by measured data on a vortex synchronized vibration and a turbulence induced vibration. Experiments were performed for cylindrical and taper shaped types of test pieces. As results, reduced velocity (Vr) at onsets of the inline synchronized vibration were evaluated to be grater than 1.0 in the range of experimental conditions. Fluctuating drag and lift coefficients, which were evaluated from power spectrum of turbulence for Vr < 1.0 condition, were 0.01 ∼ 0.05 for drag direction and 0.04 ∼ 0.13 for lift direction. The fluctuating drag and lift coefficients used in the 'design guide' were estimated to be conservative by comparison with these data. Correlation lengths for a cylinder and a taper shaped one in the high Reynolds-number region were estimated to be 1.6 times of the diameter(D) in the maximum case. The measured value of correlation length is enough smaller than the 'design guide' value of 3.0D. Displacement amplitudes of test pieces for Vr < 1.0 conditions were enough smaller (fives times) than calculated values based on the 'design guide'. Consequently, the applicability of the design guide' was confirmed in the range of experiments involving the super critical Reynolds-number region. (author)

  5. Parallel two-phase-flow-induced vibrations in fuel pin model

    International Nuclear Information System (INIS)

    Hara, Fumio; Yamashita, Tadashi

    1978-01-01

    This paper reports the experimental results of vibrations of a fuel pin model -herein meaning the essential form of a fuel pin from the standpoint of vibration- in a parallel air-and-water two-phase flow. The essential part of the experimental apparatus consisted of a flat elastic strip made of stainless steel, both ends of which were firmly supported in a circular channel conveying the two-phase fluid. Vibrational strain of the fuel pin model, pressure fluctuation of the two-phase flow and two-phase-flow void signals were measured. Statistical measures such as power spectral density, variance and correlation function were calculated. The authors obtained (1) the relation between variance of vibrational strain and two-phase-flow velocity, (2) the relation between variance of vibrational strain and two-phase-flow pressure fluctuation, (3) frequency characteristics of variance of vibrational strain against the dominant frequency of the two-phase-flow pressure fluctuation, and (4) frequency characteristics of variance of vibrational strain against the dominant frequency of two-phase-flow void signals. The authors conclude that there exist two kinds of excitation mechanisms in vibrations of a fuel pin model inserted in a parallel air-and-water two-phase flow; namely, (1) parametric excitation, which occurs when the fundamental natural frequency of the fuel pin model is related to the dominant travelling frequency of water slugs in the two-phase flow by the ratio 1/2, 1/1, 3/2 and so on; and (2) vibrational resonance, which occurs when the fundamental frequency coincides with the dominant frequency of the two-phase-flow pressure fluctuation. (auth.)

  6. Proceedings of the 8. international conference on Flow-induced vibration

    International Nuclear Information System (INIS)

    Langre, E. de; Axisa, F.

    2004-01-01

    FIV2004, the eighth of the series of International Conferences on Flow-Induced Vibration initiated at Keswick in 1973, evidences the sustained interest of the scientific and engineering international community for a subject area which incorporates at least two major disciplines: fluid mechanics and structural dynamics. Flow induced vibration (FIV) occur whenever a structure is in contact with a flowing fluid; which is a very common occurrence indeed. FIV can be rightly perceived as very useful and agreeable, in musical instruments, or at the opposite as annoying and even disastrous, in mechanical engineering. In both cases, the subject motivates a large and highly diversified amount of research work, driven either by scientific curiosity or engineering concerns, or both. In this field, empirical knowledge and experience are a precious asset but a certain breadth of perspective gained through a thorough background in theoretical mechanics is also necessary. In other words, to deal successfully with FIV problems, theoretical and pragmatic knowledge must be skillfully interwoven. Having also in mind the impressive progress achieved since the early seventies both in experimental techniques and computer science, it is rather fascinating to realize that we have still to learn so much about so 'elementary' systems as a pipe conveying air or water, or cylindrical rods subjected to cross-flow, to mention just two archetypical systems which are in fact extremely complex and which motivated so many studies already at the time of the first Keswick Conference and which still do at FIV2004. Though such systems are encountered in many industrial components and are rather easily accessible to experiment, they still give rise to many challenging questions concerning the extremely varied dynamical behavior they can display, which remain often insufficiently amenable to prediction. By no means this is to say that the research work devoted to FIV up to now has been made in vain. First

  7. A Study on the Uncertainty of Flow-Induced Vibration in a Cross Flow over Staggered Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-Su; Park, Jong-Woon [Dongguk univ, Gyeong Ju (Korea, Republic of); Choi, Hyeon-Kyeong [HanNam University, Daejeon (Korea, Republic of)

    2015-05-15

    Cross-flow in many support columns of very high temperature reactor (VHTR) lower plenum would have FIV issues under high speed flow jetting from the core. For a group of multiple circular cylinders subjected to a cross-flow, three types of potential vibration mechanisms may exist: (1) Vortex-induced vibration (VIV), (2) Fluid-elastic vibration (FEV) and (3) Turbulence-induced vibration (TIV). Kevalahan studied the free vibration of circular cylinders in a tightly packed periodic square inline array of cylinders. Pandey et al. studied the flue gas flow distribution in the Low Temperature Super Heater (LTSH) tube bundles situated in second pass of a utility boiler and the phenomenon of flow induced vibration. Nakamura et al. studied flow instability of cylinder arrays resembling U-bend tubes in steam generators. The FIV evaluation is usually performed with computational fluid dynamic (CFD) analysis to obtain unknown frequency of oscillation of the multiple objects under turbulent flow and thus the uncertainty residing in the turbulence model used should be quantified. In this paper, potential FIV uncertainty arising from the turbulence phenomena are evaluated for a typical cross flow through staggered tube bundles resembling the VHTR lower plenum support columns. Flow induced vibration (FIV) is one of the important mechanical and fatigue issues in nuclear systems. Especially, cross-flow in many support structures of VHTR lower plenum would have FIV issues under highly turbulent jet flows from the core. The results show that the effect of turbulence parameters on FIV is not negligible and the uncertainty is 5 to 10%. Present method can be applied to future FIV evaluations of nuclear systems. More extensive studies on flow induced vibration in a plant scale by using more rigorous computational methods are under way.

  8. Design and Numerical Simulations of a Flow Induced Vibration Energy Converter for Underwater Mooring Platforms

    Directory of Open Access Journals (Sweden)

    Wenlong Tian

    2017-09-01

    Full Text Available Limited battery energy restricts the duration of the underwater operation of underwater mooring platforms (UMPs. In this paper, a flow-induced vibration energy converter (FIVEC is designed to produce power for the UMPs and extend their operational time. The FIVEC is equipped with a thin plate to capture the kinetic energy in the vortices shed from the surface of the UMP. A magnetic coupling (MC is applied for the non-contacting transmission of the plate torque to the generators so that the friction loss can be minimized. In order to quantify and evaluate the performance of the FIVEC, two-dimensional computational fluid dynamics (CFD simulations are performed. Simulations are based on the Reynolds Averaged Navier-Stokes (RANS equations and the shear stress transport (SST k-ω turbulent model is utilized. The CFD method is firstly validated using existing experimental data. Then the influences of plate length and system damping on the performance of the FIVEC are evaluated. The results show that the device has a maximum averaged power coefficient of 0.0520 (13.86 W in the considered situations. The results also demonstrate the feasibility of this energy converter plan.

  9. Flow-induced vibration for light water reactors. Progress report, January-June 1980

    International Nuclear Information System (INIS)

    De Coster, M.A.

    1981-02-01

    Flow-Induced Vibration for Light Water Reactors (FIV for LWRs) is a four-year program designed to improve the FIV performance of light water reactors through the development of design criteria, analytical models for predicting behavior of components, general scaling laws to improve the accuracy of reduced-scale tests, and the identification of high FIV risk areas. The program is managed by the General Electric Nuclear Power Systems Engineering Department and has three major contributors: General Electric Nuclear Power Systems Engineering Department (NPSED), General Electric Corporate Research and Development (CR and D) and Argonne National Laboratory (ANL). The program commenced December 1, 1976, but was suspended on September 30, 1978, due to a shift in Department of Energy (DOE) priorities away from LWR productivity/availability. It was reinitiated as of August 1, 1979. A second program suspension occurred from March 29, 1980 through May 16, 1980, due to funding limits. This progress report summarizes the accomplishments achieved during the period from Janury 1980 to June 1980

  10. Experimental modeling of flow-induced vibration of multi-span U-tubes in a CANDU steam generator

    International Nuclear Information System (INIS)

    Mohany, A.; Feenstra, P.; Janzen, V.P.; Richard, R.

    2009-01-01

    Flow-induced vibration of the tubes in a nuclear steam generator is a concern for designers who are trying to increase the life span of these units. The dominant excitation mechanisms are fluidelastic instability and random turbulence excitation. The outermost U-bend region of the tubes is of greatest concern because the flow is almost perpendicular to the tube axis and the unsupported span is relatively long. The support system in this region must be well designed in order to minimize fretting wear of the tubes at the support locations. Much of the previous testing was conducted on straight single-span or cantilevered tubes in cross-flow. However, the dynamic response of steam generator multi-span U-tubes with clearance supports is expected to be different. Accurate modeling of the tube dynamics is important to properly simulate the dynamic interaction of the tube and supports. This paper describes a test program that was developed to measure the dynamic response of a bundle of steam generator U-tubes with Anti-Vibration Bar (AVB) supports, subjected to Freon two-phase cross-flow. The tube bundle has similar geometrical conditions to those expected for future CANDU steam generators. Future steam generators will be larger than previous CANDU steam generators, nearly twice the heat transfer area, with significant changes in process conditions in the U-bend region, such as increased steam quality and a broader range of flow velocities. This test program was initiated at AECL to demonstrate that the tube support design for future CANDU steam generators will meet the stringent requirements associated with a 60 year design life. The main objective of the tests is to address the issue of in-plane and out-of-plane fluidelastic instability and random turbulent excitation of a U-tube bundle with Anti-Vibration Bar (AVB) supports. Details of the test rig, measurement techniques and preliminary instrumentation results are described in the paper. (author)

  11. Active control of annular flow-induced vibration of axisymmetric elastic beam by the local gap width control

    International Nuclear Information System (INIS)

    Takada, Shoji; Shintani, Atsuhiko; Ito, Tomohiro; Fujita, Katsuhisa

    2011-01-01

    Flow-induced vibration may occur in the structures such as elastic beams subjected to annular flow in the narrow passage. Once the flow-induced vibration occurs, vibration amplitude becomes larger, consequently it causes a lot of troubles such as fatigue or failure in mechanical structures. In this paper, for the purpose to avoid these troubles, the active control of vibration of an axisymmetric elastic beam subjected to annular flow is investigated. An air-pressured actuator is attached on the surface of the circular cylinder for the vibrational control. As the shape of the actuator changes by control, the gap width in narrow passage changes, which causes the change of the fluid pressure. Therefore, the vibration of the fluid-structure coupled system can be suppressed. The fluid-structure coupled equation based on the Euler-Bernoulli type of partial differential equation and the Navier-Stokes equations is analytically derived including control terms. By applying the optimal control law to the coupled system, the unstable behavior is stabilized. The stability of the coupled system is investigated by eigenvalue analyses of controlled coupled equations. Numerical simulations are performed to investigate the efficiency of the proposed control method. (author)

  12. Experimental studies of flow induced vibrations of the fuel assembly for the PEC reactor

    International Nuclear Information System (INIS)

    Pitimada, D.; Presaghi, M.; Tampone, O.; Cesari, F.

    1977-01-01

    The vibration behaviour of an assembly of seven mock-up fuel bundles of PEC reactor has been investigated. The assembly was excited by a parallel flow of water simulating sodium. The motion of the group (or of a single bundle in the group) has been measured in transverse sections detecting two orthogonal components of displacement. During the experiences the following parameters were varied: bundle foot and pads restraints, flow rate condition, coolant flow outlet conditions at the head of fuel bundles. Experimental data were processed in order to obtain: trajectories of three points of fuel bundle axis, power density spectra of measured vibration amplitudes, correlations between coolant flow rate and vibration amplitude R.M.S. (author)

  13. Flow-induced vibration analysis of Three Mile Island Unit-2 once-through steam generator tubes. Volume 1. Final report

    International Nuclear Information System (INIS)

    Johnson, J.R.; Brown, J.C.; Harris, C.E.; McGuinn, E.J.; Simonis, J.C.; Thoren, D.E.

    1981-06-01

    Tube responses to flow-induced vibration were measured in the top two spans and the tenth span in the B once-through steam generator at Three Mile Island, Unit 2. This program evaluated the effects of flow-induced biration of OTSG tubes during steady-state and transient operation. Twenty-three tubes were instrumented with accelerometers and strain gages in tubes located along the open lane, in the bundle, and at the tenth span. Tube displacements, frequencies, dynamic strains, and mode shapes were determined during steady-state and transient operation. Pressure sensors were installed in the OTSG to measure pressure fluctuations and plant parameters, which were recorded for correlation with tube response. Data analysis results indicate that the steady-state tube response increases with increasing reactor power, with the maximum response (12 mils peak to peak at midspan) at the outer perimeter of the generator in the 16th span

  14. Flow-induced vibration for light water reactors. Progress report, December 1976--May 1977

    International Nuclear Information System (INIS)

    Schardt, J.

    1977-09-01

    The report describes the program objectives, overall work plans, and progress achieved. A description is also given of the related state-of-the-art flow-induced vibration (FIV) technology which represents the starting point of the program. The program has been developed to increase plant availability through substantially reducing downtime caused by FIV failure of components. It is a four-year balanced effort of fundamental studies, analyses, tests of idealized conditions, and realistic tests of reactor components, all leading to the preparation of design guides and criteria for LWR's. The specific goals of the program are to: (1) produce improved FIV design criteria; (2) provide improved analytical methods for predicting behavior of components; (3) provide general scaling laws which will improve the accuracy of reduced-scale tests (required for those situations where it is impossible to predict the FIV response analytically or through full-scale testing); and (4) identify high FIV risk areas. To achieve these goals, the program has been divided into four major tasks: (1) fundamental studies; (2) model and full-size tests; (3) design methods, guides and criteria; and (4) program administration. Task 1 will provide a better understanding of FIV phenomena through a combination of fundamental tests and analyses of geometries common in LWR's and mechanisms which can cause FIV. The studies will systematically vary parameters using relatively small-scale idealized geometries and controlled flow fields. Task 2 will verify and extend the results of Task 1 through the testing of realistic LWR component geometries. Task 3 will develop analytical methods, as well as utilize the results of Tasks 1 and 2 to produce design guides, predictive models, and scaling laws. Task 4 will administrate the program, as well as insure that pressure water reactor (PWR) needs are given proper consideration

  15. Water flow simulation of the flow-induced vibration phenomenon of the thermowell in the prototype-FBR 'Monju'

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Kuroda, Takeshi; Kondo, Masaya; Murata, Hideo

    1996-06-01

    On December 8, 1995 a sodium leak event occurred in the secondary heat transport system (SHTS) of the prototype fast breeder reactor (FBR), Monju, owned and operated by the Power Reactor and Nuclear Fuel Development Corporation (PNC). The direct cause of the leak was a break of a thermowell installed in the loop piping of the SHTS. The break of the thermowell is now believed to have resulted from the flow-induced vibrations due to vortex shedding from the thermowell subjected to a crossflow of sodium. The Japan Atomic Energy Research Institute has conducted a series of water flow model experiments on the flow-induced vibrations of the thermowell to contribute to the post-factor analyses of the event conducted by the Investigation Taskforce on the Sodium Leak Accident in Monju which was established by the Science and Technology Agency (STA) after this event. The experiments were performed for a wide range of experimental conditions including the condition corresponding to the operating condition of the Monju's thermowell and showed the relationship between the vortex shedding pattern and the vibration mode as well as influence of the damping (stability) parameter on the amplitude of vibration. (author)

  16. Flow induced vibration studies for LMFBR in Japan: Past and recent studies of FIV for JOYO and MONJU

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K [Sodium Engineering Division, O-arai Engineering Centre, Power Reactor and Nuclear Fuel, Development Corporation, Narita-cho, O-arai Machi, Ibaraki-ken (Japan)

    1977-12-01

    This paper presents the past and recent studies of flow induced vibration of the reactor components for the experimental fast breeder reactor JOYO and the prototype fast breeder reactor MONJU, in which many suggestive results for the higher flow velocity systems in a future reactor are contained. The fuel subassembly is the most important from the view point of the vibration. Thus, the studies were carried out with a mock-up subassembly for JOYO. In this experiment, statistical analysis results of the vibration characteristics of single core subassembly and the effects of external forced vibration, flow disturbance and fuel pin bundle vibration were reported. The further more detailed investigations are now being performed for MONJU. In addition to the above studies, the vibration failure of a sodium valve is reported. The valve is a 8-inch stop valve in SODIUM FLOW AND HEAT TRANSFER TEST LOOP at O-arai Engineering Center. The failure occurred in 1969 during the performance test of the mechanical pump, and this resulted in a small sodium leak. The cause of the failure was found to be the vibration fatigue of the metal bellows. (author)

  17. IAEA specialist meeting on flow induced vibrations in fast breeder reactors, Paris, France, 22-24 October 1986

    International Nuclear Information System (INIS)

    Perez, M.A.

    1986-10-01

    The Specialists' Meeting on ''Flow Induced Vibrations in FBRs for LMFBR Applications'' was held in Paris under the auspices of the French CEA on 21-24 October 1982. The meeting was sponsored by the IAEA on the recommendation of the 14th Meeting of the IWGFR and was attended by 31 participants from France, the Federal Republic of Germany, India, Italy, Japan, the United Kingdom, the Union of Soviet Socialist Republics, the United States of America and one international organization (IAEA). The meeting was presided over by Pr. R.J. Gibert of France. After the first session on review of national positions in the subject field (7 papers), the meeting was divided into five technical sections as follows: fluid-structures interaction, calculation methods (3 papers); tubes bundles vibration and weir (4 papers); instability (6 papers); induced vibrations in the pumps (2 papers). A separate abstract was prepared for each of these papers

  18. Design specifications to ensure flow-induced vibration and fretting-wear performance in CANDU steam generators and heat exchangers

    International Nuclear Information System (INIS)

    Janzen, V.P.; Han, Y.; Pettigrew, M.J.

    2009-01-01

    Preventing flow-induced vibration and fretting-wear problems in steam generators and heat exchangers requires design specifications that bring together specific guidelines, analysis methods, requirements and appropriate performance criteria. This paper outlines the steps required to generate and support such design specifications for CANDU nuclear steam generators and heat exchangers, and relates them to typical steam-generator design features and computer modeling capabilities. It also describes current issues that are driving changes to flow-induced vibration and fretting-wear specifications that can be applied to the design process for component refurbishment, replacement or new designs. These issues include recent experimental or field evidence for new excitation mechanisms, e.g., the possibility of in-plane fluidelastic instability of U-tubes, the demand for longer reactor and component lifetimes, the need for better predictions of dynamic properties and vibration response, e.g., two-phase random-turbulence excitation, and requirements to consider system 'excursions' or abnormal scenarios, e.g., a main steam line break in the case of steam generators. The paper describes steps being taken to resolve these issues. (author)

  19. Flow-induced vibration and flow characteristics prediction for a sliding roller gate by two-dimensional unsteady CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nak-Geun; Lee, Kye-Bock [Chungbuk National University, Cheongju (Korea, Republic of); Cho, Yong [Korea Water Resources Corporation, Daejeon (Korea, Republic of)

    2017-07-15

    Numerical analysis on the flow induced vibration and flow characteristics in the water gate has been carried out by 2-dimensional unsteady CFD simulation when sea water flows into the port in the river. Effect of gate opening on the frequency and the mean velocity and the vortex shedding under the water gate were studied. The streamlines were compared for various gate openings. To get the frequency spectrum, Fourier transform should be performed. Spectral analysis of the excitation force signals permitted identification of the main characteristics of the interaction process. The results show that the sources of disturbed frequency are the vortex shedding from under the water gate. As the gate opening ratio increases, the predicted vibration frequency decreases. The bottom scouring occurs for large gate opening rather than smaller one. The unstable operation conditions can be estimated by using the CFD results and the Strouhal number results for various gate opening gaps.

  20. Flow-induced vibration and flow characteristics prediction for a sliding roller gate by two-dimensional unsteady CFD simulation

    International Nuclear Information System (INIS)

    Kim, Nak-Geun; Lee, Kye-Bock; Cho, Yong

    2017-01-01

    Numerical analysis on the flow induced vibration and flow characteristics in the water gate has been carried out by 2-dimensional unsteady CFD simulation when sea water flows into the port in the river. Effect of gate opening on the frequency and the mean velocity and the vortex shedding under the water gate were studied. The streamlines were compared for various gate openings. To get the frequency spectrum, Fourier transform should be performed. Spectral analysis of the excitation force signals permitted identification of the main characteristics of the interaction process. The results show that the sources of disturbed frequency are the vortex shedding from under the water gate. As the gate opening ratio increases, the predicted vibration frequency decreases. The bottom scouring occurs for large gate opening rather than smaller one. The unstable operation conditions can be estimated by using the CFD results and the Strouhal number results for various gate opening gaps.

  1. Flow-Induced Pulsation and Vibration in Hydroelectric Machinery Engineer’s Guidebook for Planning, Design and Troubleshooting

    CERN Document Server

    Dörfler, Peter; Coutu, André

    2013-01-01

    Since the 1970’s, an increasing amount of specialized research has focused on the problems created by instability of internal flow in hydroelectric power plants. However, progress in this field is hampered by the inter­disciplinary nature of the subject, between fluid mechanics, structural mechanics and hydraulic transients. Flow-induced Pulsation and Vibration in Hydroelectric Machinery provides a compact guidebook explaining the many different underlying physical mechanisms and their possible effects.   Typical phenomena are described to assist in the proper diagnosis of problems and various key strategies for solution are compared and considered with support from practical experience and real-life examples. The link between state-of the-art CFD computation and notorious practical problems is discussed  and quantitative data is provided on  normal levels of vibration and pulsation so realistic limits can be set for future projects. Current projects are also addressed as the possibilities and limitatio...

  2. Flow induced vibrations of the CLIC X-Band accelerating structures

    CERN Document Server

    Charles, Tessa; Boland, Mark; Riddone, Germana; Samoshkin, Alexandre

    2011-01-01

    Turbulent cooling water in the Compact Linear Collider (CLIC) accelerating structures will inevitably induce some vibrations. The maximum acceptable amplitude of vibrations is small, as vibrations in the accelerating structure could lead to beam jitter and alignment difficulties. A Finite Element Analysis model is needed to identify the conditions under which turbulent instabilities and significant vibrations are induced. Due to the orders of magnitude difference between the fluid motion and the structure’s motion, small vibrations of the structure will not contribute to the turbulence of the cooling fluid. Therefore the resonant conditions of the cooling channels presented in this paper, directly identify the natural frequencies of the accelerating structures to be avoided under normal operating conditions. In this paper a 2D model of the cooling channel is presented finding spots of turbulence being formed from a shear layer instability. This effect is observed through direct visualization and wavelet ana...

  3. Numerical Research about Influence of Blade Outlet Angle on Flow-Induced Noise and Vibration for Centrifugal Pump

    Directory of Open Access Journals (Sweden)

    Ailing Yang

    2014-03-01

    Full Text Available A hybrid numerical method was used to calculate the flow-induced noise and vibration of the centrifugal pump in the paper. The unsteady flows inside the centrifugal pumps with different blade outlet angles were simulated firstly. The unsteady pressure on the inner surface of the volute and the unsteady force applied on the impeller were analyzed. Then the vibration of the volute and sound field were calculated based on an acoustic-vibro-coupling method. The results show that the pump head has increased 7% while the hydraulic efficiency decreased 11.75% as blade outlet angles increased from 18° to 39°. The amplitude of pressure fluctuation at the first blade passing frequency has decreased but increased at the second-order blade passing frequency as the angle growing. The total fluctuation power near volute tongue goes up about 12% every 3° increment of blade outlet angle. The results also show that vibrating-velocity of the volute at second-order blade passing frequency is much higher than at other frequencies, and the velocity increases rapidly as blade outlet angle varies from 18° to 39°. At the same time, the sound pressure level outside the pump has increased about 8.6 dB when the angle increased from 18° to 39°.

  4. Flow induced vibrations of secondary piping of L.M.F.B.R

    International Nuclear Information System (INIS)

    Gibert, R.J.; Axisa, F.

    1977-01-01

    A method for evaluating the characteristics of vibrations caused by internal flow in three-dimensional piping systems conveying high density fluids, is presented. The excitation of the circuit is mainly caused by the flow singularities, and it is shown that the problem may be reduced to calculate the response of the circuit to an acoustical pressure discontinuity, localized at each flow singularity. The theoretical formulation of the coupled acoustical-mechanical problem and its numerical solution by the french computer code TEDEL, are given. An experimental test of the method is described. The tested piping system consists of a stainless steel tube circuit comprising four 90 0 bends, conveying water. Vibrations are excited by a half closed gate valve. Satisfactory results are obtained concerning both the frequencies of resonance of the circuit and the level of the vibrations observed

  5. Evaluation of flow-induced vibration prediction techniques for in-reactor components

    International Nuclear Information System (INIS)

    Mulcahy, T.M.; Turula, P.

    1975-05-01

    Selected in-reactor components of a hydraulic and structural dynamic scale model of the U. S. Energy Research and Development Administration experimental Fast Test Reactor have been studied in an effort to develop and evaluate techniques for predicting vibration behavior of elastic structures exposed to a moving fluid. Existing analysis methods are used to compute the natural frequencies and modal shapes of submerged beam and shell type components. Component response is calculated, assuming as fluid forcing mechanisms both vortex shedding and random excitations characterized by the available hydraulic data. The free and force vibration response predictions are compared with extensive model flow and shaker test data. (U.S.)

  6. Experimental studies on flow-induced vibration to support steam generator design

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Gorman, D.J.

    1977-06-01

    Vibration experiments were done on small tube bundles of triangular and square lattice configurations in both liquid and two-phase (air-water) cross-flow. The effects of flow velocity, simulated steam quality, lattice orientation, tube location and tube frequency were explored. Tube response to random flow turbulence excitation and fluidelastic instability were observed in both liquid and two-phase cross-flow. Fluidelastic instability criteria and random forcing function characterizations are derived from this work. This information may be used in the vibration analysis of shell-and-tube heat exchanger components. (author)

  7. Avoiding leakage flow-induced vibration by a tube-in-tube slip joint

    International Nuclear Information System (INIS)

    Mulcahy, T.M.

    1985-01-01

    Parameters and operating conditions (a stability map) were determined for which a specific slip-joint design did not cause self-excited lateral vibration of the two cantilevered, telescoping tubes forming the joint. The joint design featured a localized annular constriction. Flowrate, modal damping, tube engagement length, and eccentric positioning were among the parameters tested. Interestingly, all self-excited vibrations could be avoided by following a simple design rule: place constrictions only at the downstream end of the annular region between the tubes. Also, overall modal damping decreased with increased flowrate, at least initially, for upstream constrictions while the damping increased for downstream constrictions

  8. Analysis of two-phase flow induced vibrations in perpendiculary supported U-type piping systems

    International Nuclear Information System (INIS)

    Hiramatsu, Tsutomu; Komura, Yoshiaki; Ito, Atsushi.

    1984-01-01

    The perpose of this analysis is to predict the vibration level of a pipe conveying a two-phase flowing fluid. Experiments were carried out with a perpendiculary supported U-type piping system, conveying an air-water two-phase flow in a steady state condition. Fluctuation signals are observed by a void signal sensor, and power spectral densities and probability density functions are obtained from the void signals. Theoretical studies using FEM and an estimation of the exciting forces from the PSD of void signals, provided a good predictional estimation of vibration responses of the piping system. (author)

  9. NIF Ambient Vibration Measurements

    International Nuclear Information System (INIS)

    Noble, C.R.; Hoehler, M.S.; S.C. Sommer

    1999-01-01

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B

  10. Analysis of flow-induced vibration of heat exchanger and steam generator tube bundles using the AECL computer code PIPEAU-2

    International Nuclear Information System (INIS)

    Gorman, D.J.

    1983-12-01

    PIPEAU-2 is a computer code developed at the Chalk River Nuclear Laboratories for the flow-induced vibration analysis of heat exchanger and steam generator tube bundles. It can perform this analysis for straight and 'U' tubes. All the theoretical work underlying the code is analytical rather than numerical in nature. Highly accurate evaluation of the free vibration frequencies and mode shapes is therefore obtained. Using the latest experimentally determined parameters available, the free vibration analysis is followed by a forced vibration analysis. Tube response due to fluid turbulence and vortex shedding is determined, as well as critical fluid velocity associated with fluid-elastic instability

  11. A study on the annular leakage-flow-induced vibrations. 1st report. Stability for translational and rotational single-degree-of-freedom systems

    International Nuclear Information System (INIS)

    Li, Dong-Wei; Kaneko, Shigehiko; Hayama, Shinji

    1999-01-01

    This study reports the stability of annular leakage-flow-induced vibrations. The pressure distribution of fluid between a fixed outer cylinder and a vibrating inner cylinder was obtained in the case of a translationally and rotationally coupled motion of the inner cylinder. The unsteady fluid force acting on the inner cylinder in the case of translational and rotational single-degree-of-freedom vibrations was then expressed in terms proportional to the acceleration, velocity, and displacement. Then the critical flow rate (at which stability was lost) was determined for an annular leakage-flow-induced vibration. Finally, the stability was investigated theoretically. It is known that instability will occur in the case of a divergent passage, but the critical flow rate depends on the passage increment in a limited range: the eccentricity of the passage and the pressure loss factor at the inlet of the passage lower the stability. (author)

  12. Leakage flow-induced vibration of an eccentric tube-in-tube slip joint

    International Nuclear Information System (INIS)

    Mulcahy, T.M.

    1985-08-01

    Eccentricity of a specific slip-joint design separating two cantilevered, telescoping tubes did not create any self-excited lateral vibrations that had not been observed previously for a concentric slip joint. In fact, the eccentricity made instabilities less likely to occur, but only marginally. Most important, design rules previously established to avoid instabilities for the concentric slip joint remain valid for the eccentric slip joint. 6 refs., 9 figs., 2 tabs

  13. Flow-induced vibration and fretting-wear specifications to ensure steam-generator and heat exchanger lifetime performance

    International Nuclear Information System (INIS)

    Janzen, V.P.; Han, Y.; Pettigrew, M.J.

    2008-01-01

    The current interest in refurbishment, life extension and new-build activity has meant a renewed emphasis on technical specifications that will ensure improved reliability and longer life. Preventing vibration and fretting-wear problems in steam generators and heat exchangers requires design specifications that bring together specific guidelines, analysis methods, requirements and appropriate performance criteria. The specifications must be firmly based on experimental data and field inspections. In addition, the specifications must be supported by theoretical analyses and fundamental scaling correlations, to cover conditions and geometries over the wide range applicable to existing components and probable future designs. The specifications are expected to evolve to meet changing industry requirements. This paper outlines the steps required to generate and support design specifications, and relates them to typical steam-generator design features and computer modeling capabilities. It also describes current issues that are driving changes to flow-induced vibration and fretting-wear specifications that can be applied to the design process for component refurbishment, replacement or new designs. These issues include recent experimental or field evidence for new excitation mechanisms, e.g., the possibility of in-plane fluidelastic instability of U-tubes, the demand for longer reactor and component lifetimes, the need for better predictions of dynamic properties and vibration response, e.g., two-phase random-turbulence excitation, and requirements to consider system 'excursions' or abnormal scenarios, e.g., a main steam line break in the case of steam generators. The paper describes steps being taken to resolve these issues. (author)

  14. Performance of a reduced-order FSI model for flow-induced vocal fold vibration

    Science.gov (United States)

    Luo, Haoxiang; Chang, Siyuan; Chen, Ye; Rousseau, Bernard; PhonoSim Team

    2017-11-01

    Vocal fold vibration during speech production involves a three-dimensional unsteady glottal jet flow and three-dimensional nonlinear tissue mechanics. A full 3D fluid-structure interaction (FSI) model is computationally expensive even though it provides most accurate information about the system. On the other hand, an efficient reduced-order FSI model is useful for fast simulation and analysis of the vocal fold dynamics, which can be applied in procedures such as optimization and parameter estimation. In this work, we study performance of a reduced-order model as compared with the corresponding full 3D model in terms of its accuracy in predicting the vibration frequency and deformation mode. In the reduced-order model, we use a 1D flow model coupled with a 3D tissue model that is the same as in the full 3D model. Two different hyperelastic tissue behaviors are assumed. In addition, the vocal fold thickness and subglottal pressure are varied for systematic comparison. The result shows that the reduced-order model provides consistent predictions as the full 3D model across different tissue material assumptions and subglottal pressures. However, the vocal fold thickness has most effect on the model accuracy, especially when the vocal fold is thin.

  15. Theoretical study on flow-induced vibration of a cylindrical weir due to fluid discharge

    International Nuclear Information System (INIS)

    Fujita, Katsuhisa; Ito, Tomohiro; Hirota, Kazuo; Kodama, Tetsuhiko

    1994-01-01

    In a FBR, the inside of the reactor vessel is cooled by liquid sodium. Liquid sodium is supplied to the upper plenum from its bottom and discharges over the top of the cylindrical weir down to the lower plenum. The weir is so thin in order to decrease the thermal stress on it that the fluid--structure interaction becomes predominant. A fluidelastic vibration of the weir due to fluid discharge was discovered in a French FBR. In this study, a theoretical model was developed on the ''fluid--elastic mode'' instability of a cylindrical weir due to fluid discharge from the upper plenum to the lower plenum. In the analysis, the fluctuation of both the discharge flow rate over a weir due to the vibration of the cylindrical shell and the pressure in the lower plenum due to fluid discharge were formulated. Instability criteria was derived from the added damping ratio due to fluid discharge using modal analysis. The natural modes and modal mass of the weir were obtained by the analysis using the FEM code taking the fluid - structure interaction into consideration. The theoretical instability range in terms of the fall height and the flow rate is compared with the experimental results. The theoretical values showed a good agreement with the experimental ones

  16. Fuel Rod Vibration Measurement Method using a Flap and its Verification

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Joo Young; Park, Nam Gyu; Suh, Jung Min; Jeon, Kyeong Lak [KEPCO NF Co., Daejeon (Korea, Republic of)

    2011-10-15

    Flow-induced vibration is a critical factor for the mechanical integrity of a fuel rod. This vibration can cause leaked fuel through the mechanism, such as grid to rod fretting. To minimize the failures caused by flow-induced vibration, a robust design is needed which takes into account vibrational characteristics. That is, the spacer grid design should be developed to avoid any excessive vibration. On the one hand, if fuel rod vibration can be measured, an estimation of the excitation forces, which are a critical cause of rod failure, should be possible. Therefore, by applying an external force, flow-induced vibration can be roughly estimated when the fuel rod vibration model is used. KEPCO Nuclear Fuel developed the test loop to research flow-induced vibration as shown in Fig.1. The investigation flow-induced vibration (INFINIT) - the test facility - can measure the grid strap vibration and pressure drop of a 5x5 small scale fuel bundle. Basically, using a Laser Doppler Vibrometer (LDV), the vibration of a structure immersed in high speed fluid can be measured. Grid strap vibration is easily measured using an LDV. However, it is quite difficult to measure fuel rod vibration because of the round surface shape of the rods. In addition, measuring current method using the LDV, it was only possible to directly measure fuel rod vibration at the first row of the bundle as the rods behind the first row are obscured. To solve this problem, a thin flap, as shown in Fig. 2(a) can be used as a reflecting target, gaining access to rods within the bundle. The flap is attached to the fuel rod, as in Fig. 2(b). As a result, most of the inner rod vibration can be measured. Before using a flap to measure fuel rod vibration, a verification process was needed to show whether the LDV signal from the flap vibration provided equivalent and reliable signals. Therefore, impact testing was carried out on the fuel rod using a flap. The LDV signals were then compared with accelerometer

  17. Using cross correlations of turbulent flow-induced ambient vibrations to estimate the structural impulse response. Application to structural health monitoring.

    Science.gov (United States)

    Sabra, Karim G; Winkel, Eric S; Bourgoyne, Dwayne A; Elbing, Brian R; Ceccio, Steve L; Perlin, Marc; Dowling, David R

    2007-04-01

    It has been demonstrated theoretically and experimentally that an estimate of the impulse response (or Green's function) between two receivers can be obtained from the cross correlation of diffuse wave fields at these two receivers in various environments and frequency ranges: ultrasonics, civil engineering, underwater acoustics, and seismology. This result provides a means for structural monitoring using ambient structure-borne noise only, without the use of active sources. This paper presents experimental results obtained from flow-induced random vibration data recorded by pairs of accelerometers mounted within a flat plate or hydrofoil in the test section of the U.S. Navy's William B. Morgan Large Cavitation Channel. The experiments were conducted at high Reynolds number (Re > 50 million) with the primary excitation source being turbulent boundary layer pressure fluctuations on the upper and lower surfaces of the plate or foil. Identical deterministic time signatures emerge from the noise cross-correlation function computed via robust and simple processing of noise measured on different days by a pair of passive sensors. These time signatures are used to determine and/or monitor the structural response of the test models from a few hundred to a few thousand Hertz.

  18. Study on flow-induced vibration of large-diameter pipings in a sodium-cooled fast reactor. Influence of elbow curvature on velocity fluctuation field

    International Nuclear Information System (INIS)

    Ono, Ayako; Kimura, Nobuyuki; Kamide, Hideki; Tobita, Akira

    2010-02-01

    The main cooling system of Japan Sodium-cooled Fast Reactor (JSFR) consists of two loops to reduce the plant construction cost. In the design of JSFR, sodium coolant velocity is beyond 9m/s in the primary hot leg pipe with large-diameter (1.3m). The maximum Reynolds number in the piping reaches 4.2x10 7 . The hot leg pipe having a 90 degree elbow with curvature ratio of r/D=1.0, so-called 'short elbow', which enables a compact reactor vessel. In sodium cooled fast reactors, the system pressure is so low that thickness of pipings in the cooling system is thinner than that in LWRs. Under such a system condition in the cooling system, the flow-induced vibration (FIV) is concerned at the short elbow. The evaluation of the structural integrity of pipings in JSFR should be conducted based on a mechanistic approach of FIV at the elbow. It is significant to obtain the knowledge of the fluctuation intensity and spectra of velocity and pressure fluctuations in order to grasp the mechanism of the FIV. In this study, water experiments were conducted. Two types of 1/8 scaled elbows with different curvature ratio, r/D=1.0, 1.5, were used to investigate the influence of curvature on velocity fluctuation at the elbow. The velocity fields in the elbows were measured using a high speed PIV method. Unsteady behavior of secondary flow at the elbow outlet and separation flow at the inner wall of elbow were observed in the two types of elbows. It was found that the growth of secondary flow correlated with the flow fluctuation near the inside wall of the elbow. (author)

  19. Flow-induced vibration of steam generator helical tubes subjected to external liquid cross flow and internal two-phase flow

    International Nuclear Information System (INIS)

    Jong Chull Jo; Myung Jo Jhung; Woong Sik Kim; Hho Jung Kim

    2005-01-01

    Full text of publication follows: This paper addresses the potential flow-induced vibration problems in a helically-coiled tube steam generator of integral-type nuclear reactor, of which the tubes are subjected to liquid cross flow externally and multi-phase flow externally. The thermal-hydraulic conditions of both tube side and shell side flow fields are predicted using a general purpose computational fluid dynamics code employing the finite volume element modeling. To get the natural frequency and corresponding mode shape of the helical type tubes with various conditions, a finite element analysis code is used. Based on the results of both helical coiled tube steam generator thermal-hydraulic and coiled tube modal analyses, turbulence-induced vibration and fluid-elastic instability analyses are performed. And then the potential for damages on the tubes due to either turbulence-induced vibration or fluid-elastic instability is assessed. In the assessment, special emphases are put on the detailed investigation for the effects of support conditions, coil diameter, and helix pitch on the modal, vibration amplitude and instability characteristics of tubes, from which a technical information and basis needed for designers and regulatory reviewers can be derived. (authors)

  20. Vibration measurements of automobile catalyst

    Science.gov (United States)

    Aatola, Seppo

    1994-09-01

    Vibration of catalyst cell, which is inside the casing of the catalyst, is difficult to measure with usual measuring instrumentation. When catalyst is in use, there is hot exhaust gas flow though the catalyst cell and temperature of the cell is approximately +900 degree(s)C. Therefore non-contact Laser- Doppler-Vibrometer was used to measure vibration velocity of the catalyst cell. The laser beam was directed towards the cell through pipe which was put through and welded to the casing of the catalyst. The outer end of the pipe was screw down with a tempered class to prevent exhaust gas flow from the pipe. The inner end of the pipe was open and few millimeters away from the measuring point. Catalyst was attached to the engine with two ways, rigidly close to the engine and flexible under the engine. The engine was running in test bench under controlled conditions. Vibration measurements were carried out during constant running speeds of the engine. Vibration signals were captured and analyzed with FFT-analyzer. Vibration of catalyst cell was strongest at running speed of 5000 rpm, from 10 to 20 g (1 g equals 9.81 ms-2), when catalyst was attached rigidly close to the engine. At running speed of 3000 rpm, vibration of catalyst cell was from 2 to 3 g in most cases, when catalyst was attached either rigidly or flexible to the engine. It is estimated that in real life, i.e. when catalyst is attached to car with same engine, vibration of catalyst cell at running speed of 5000 rpm is somewhere between 1 and 10 g. At running speed of 3000 rpm, which may be more often used when driving car (car speed approximately 100 kmh-1), vibration of catalyst cell is probably few g's.

  1. Piping vibrations measured during FFTF startup

    International Nuclear Information System (INIS)

    Anderson, M.J.

    1981-03-01

    An extensive vibration survey was conducted on the Fast Flux Test Facility piping during the plant acceptance test program. The purpose was to verify that both mechanical and flow induced vibration amplitudes were of sufficiently low level so that pipe and pipe support integrity would not be compromised over the plant design lifetime. Excitation sources included main heat transport sodium pumps, reciprocating auxiliary system pumps, EM pumps, and flow oscillations. Pipe sizes varied from one-inch to twenty-eight-inches in diameter. This paper describes the test plan; the instrumentation and procedures utilized; and the test results

  2. Numerical simulation of cross-flow-induced fluidelastic vibration of tube arrays and comparison with experimental results

    International Nuclear Information System (INIS)

    Eisinger, F.L.; Rao, M.S.M.; Steininger, D.A.; Haslinger, K.H.

    1995-01-01

    Tube arrays exposed to air, gas or liquid cross-flow can vibrate due to vortex-shedding, turbulence, or fluidelastic instability. The major emphasis of this paper is on the phenomenon of fluidelastic instability (or fluidelastic vibration). A numerical model is applied to the simulation of fluidelastic vibration of representative tubes in a tube bundle, based on S. S. Chen's unsteady flow theory. The results are validated against published data based on linear cases. The model is then applied to a nonlinear structure of a U-bend tube bundle with clearances at supports, and the computed results compared to those obtained by experimental testing. The numerical studies were performed using the ABAQUS-EPGEN finite element code using a special subroutine incorporating fluidelastic forces. It is shown that the results of both the linear and nonlinear modeling are in good agreement with experimental data

  3. Identifying and mitigating flow-induced vibration in recycle loop gas piping at a centrifugal compressor station

    Energy Technology Data Exchange (ETDEWEB)

    Broerman, Eugene L.; Gatewood, Jason T.; O' Grady, James T. [Southwest Research Institute, San Antonio, TX (United States); Troy, Russell F. [Spectra Energy, Houston, TX (United States); Rand, Charles L.; Stroud, Gary T. [R-S-H Engineering, Monroe, LA (United States)

    2010-07-01

    The South East Supply Header joining Delhi, Louisiana, to Coden, Alabama, was put into service in 2008. During start-up of the mainline compressor station, located near Lucedale, MS, high amplitude vibration was detected on the second elbow downstream of the anti-surge valve/fast stop valve piping tee in the recycle loop piping. The aim of this paper is to present the issue and the solution adopted. An investigation of the high vibration was carried out and was followed by Strouhal and acoustic analyses. A solution to the problem was then proposed and mechanically analyzed. It was found that upfront analyses of these types can give an accurate prediction of the vibration and could have avoided the problem encountered and saved a lot of time and money since the modification costs were about 10 times higher than those for a typical analysis made at the installation design phase would have been.

  4. Study on the annular leakage-flow-induced vibrations. 1st Report. Stability for translational and rotational single-degree-of-freedom systems; Kanjo sukimaryu reiki shindo ni kansuru kenkyu. 1. Heishin oyobi kaiten 1 jiyudokei no anteise

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.W. [Hitachi, Ltd., Tokyo (Japan); Kaneko, S. [The University of Tokyo, Tokyo (Japan); Hayama, S. [Toyama Prefectural University, Toyama (Japan)

    1999-07-25

    This study reports the stability of annular leakage-flow-induced vibrations. The pressure distribution of fluid between a fixed outer cylinder and a vibrating inner cylinder was obtained in the case of a translationally and rotationally coupled motion of the inner cylinder. The unsteady fluid force acting on the inner cylinder in the case of translational and rotational single-degree-of-freedom vibrations was then expressed in terms proportional to the acceleration, velocity, and displacement. Then the critical flow rate (at which stability was lost) was determined for an annular leakage-flow-induced vibration. Finally, the stability was investigated theoretically. It is known that instability will occur in the case of a divergent passage, but the critical flow rate depends on the passage increment in a limited range: the eccentricity of the passage and the pressure loss factor at the inlet of the passage lower the stability. (author)

  5. Impact of flow induced vibration acoustic loads on the design of the Laguna Verde Unit 2 steam dryer

    International Nuclear Information System (INIS)

    Forsyth, D. R.; Wellstein, L. F.; Theuret, R. C.; Han, Y.; Rajakumar, C.; Amador C, C.; Sosa F, W.

    2015-09-01

    Industry experience with Boiling Water Reactors (BWRs) has shown that increasing the steam flow through the main steam lines (MSLs) to implement an extended power up rate (EPU) may lead to amplified acoustic loads on the steam dryer, which may negatively affect the structural integrity of the component. The source of these acoustic loads has been found to be acoustic resonance of the side branches on the MSLs, specifically, coupling of the vortex shedding frequency and natural acoustic frequency of safety relief valves (SRVs). The resonance that results from this coupling can contribute significant acoustic energy into the MSL system, which may propagate upstream into the reactor pressure vessel steam dome and drive structural vibration of steam dryer components. This can lead to high-cycle fatigue issues. Lock-in between the vortex shedding frequency and SRV natural frequency, as well as the ability for acoustic energy to propagate into the MSL system, are a function of many things, including the plant operating conditions, geometry of the MSL/SRV junction, and placement of SRVs with respect to each other on the MSLs. Comision Federal de Electricidad and Westinghouse designed, fabricated, and installed acoustic side branches (ASBs) on the MSLs which effectively act in the system as an energy absorber, where the acoustic standing wave generated in the side-branch is absorbed and dissipated inside the ASB. These ASBs have been very successful in reducing the amount of acoustic energy which propagates into the steam dome. In addition, modifications to the Laguna Verde Nuclear Power Plant Unit 2 steam dryer have been completed to reduce the stress levels in critical locations in the dryer. The objective of this paper is to describe the acoustic side branch concept and the design iterative processes that were undertaken at Laguna Verde Unit 2 to achieve a steam dryer design that meets the guidelines of the American Society of Mechanical Engineers, Boiler and Pressure

  6. Impact of flow induced vibration acoustic loads on the design of the Laguna Verde Unit 2 steam dryer

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, D. R.; Wellstein, L. F.; Theuret, R. C.; Han, Y.; Rajakumar, C. [Westinghouse Electric Company LLC, Cranberry Township, PA 16066 (United States); Amador C, C.; Sosa F, W., E-mail: forsytdr@westinghouse.com [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Km 42.5 Carretera Cardel-Nautla, 91680 Alto Lucero, Veracruz (Mexico)

    2015-09-15

    Industry experience with Boiling Water Reactors (BWRs) has shown that increasing the steam flow through the main steam lines (MSLs) to implement an extended power up rate (EPU) may lead to amplified acoustic loads on the steam dryer, which may negatively affect the structural integrity of the component. The source of these acoustic loads has been found to be acoustic resonance of the side branches on the MSLs, specifically, coupling of the vortex shedding frequency and natural acoustic frequency of safety relief valves (SRVs). The resonance that results from this coupling can contribute significant acoustic energy into the MSL system, which may propagate upstream into the reactor pressure vessel steam dome and drive structural vibration of steam dryer components. This can lead to high-cycle fatigue issues. Lock-in between the vortex shedding frequency and SRV natural frequency, as well as the ability for acoustic energy to propagate into the MSL system, are a function of many things, including the plant operating conditions, geometry of the MSL/SRV junction, and placement of SRVs with respect to each other on the MSLs. Comision Federal de Electricidad and Westinghouse designed, fabricated, and installed acoustic side branches (ASBs) on the MSLs which effectively act in the system as an energy absorber, where the acoustic standing wave generated in the side-branch is absorbed and dissipated inside the ASB. These ASBs have been very successful in reducing the amount of acoustic energy which propagates into the steam dome. In addition, modifications to the Laguna Verde Nuclear Power Plant Unit 2 steam dryer have been completed to reduce the stress levels in critical locations in the dryer. The objective of this paper is to describe the acoustic side branch concept and the design iterative processes that were undertaken at Laguna Verde Unit 2 to achieve a steam dryer design that meets the guidelines of the American Society of Mechanical Engineers, Boiler and Pressure

  7. Visualization investigation of acoustic and flow-induced vibration in main stream lines using a high-time-resolved PIV technique

    International Nuclear Information System (INIS)

    Li, Yanrong; Someya, Satoshi; Okamoto, Koji

    2009-01-01

    Systems with closed side-branches are liable to an excitation of sound, as called cavity tone. It may occur in pipe branches leading to safety valves or to boiler relief valves. The outbreak mechanism of the cavity tone has been known by phase-averaged measurement in previous researches, while the relation between sound propagation and flow field is still unclear due to the difficulty of detecting instantaneous velocity field. High-time-resolved PIV has a possibility to analyze the velocity field and the relation mentioned above. In this study, flow-induced acoustic resonance of piping system containing closed side-branches was investigated experimentally. A high-time-resolved PIV technique was applied to measure a gas-flow in a cavity. Air flow containing oil mist as tracer particles was measured using a high frequency pulse laser and a high speed camera. The present investigation on the coaxial closed side-branches is the first rudimentary study to visualize the fluid flow two-dimensionally in the cross-section by using PIV and to measure the pressure at the downstream side opening of the cavity by microphone. The fluid flows at different points in the cavity interact with some phase differences and the relation was clarified. (author)

  8. Measurement of dynamic interaction between a vibrating fuel element and its support

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, N.J.; Tromp, J.H.; Smith, B.A.W. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada). Chalk River Labs.

    1996-12-01

    Flow-induced vibration of CANDU{reg_sign} fuel can result in fretting damage of the fuel and its support. A WOrk-Rate Measuring Station (WORMS) was developed to measure the relative motion and contact forces between a vibrating fuel element and its support. The fixture consists of a small piece of support structure mounted on a micrometer stage. This arrangement permits position of the support relative to the fuel element to be controlled to within {+-} {micro}m. A piezoelectric triaxial load washer is positioned between the support and micrometer stage to measure contact forces, and a pair of miniature eddy-current displacement probes are mounted on the stage to measure fuel element-to-support relative motion. WORMS has been utilized to measure dynamic contact forces, relative displacements and work-rates between a vibrating fuel element and its support. For these tests, the fuel element was excited with broadband random force excitation to simulate flow-induced vibration due to axial flow. The relationship between fuel element-to-support gap or preload (i.e., interference or negative gap) and dynamic interaction (i.e., relative motion, contact forces and work-rates) was derived. These measurements confirmed numerical simulations of in-reactor interaction predicted earlier using the VIBIC code.

  9. DESIGN OF A VIBRATION AND STRESS MEASUREMENT SYSTEM FOR AN ADVANCED POWER REACTOR 1400 REACTOR VESSEL INTERNALS COMPREHENSIVE VIBRATION ASSESSMENT PROGRAM

    OpenAIRE

    KO, DO-YOUNG; KIM, KYU-HYUNG

    2013-01-01

    In accordance with the US Nuclear Regulatory Commission (US NRC), Regulatory Guide 1.20, the reactor vessel internals comprehensive vibration assessment program (RVI CVAP) has been developed for an Advanced Power Reactor 1400 (APR1400). The purpose of the RVI CVAP is to verify the structural integrity of the reactor internals to flow-induced loads prior to commercial operation. The APR1400 RVI CVAP consists of four programs (analysis, measurement, inspection, and assessment). Thoughtful prepa...

  10. Vibrational measurements in 3-ID-B

    International Nuclear Information System (INIS)

    Sutter, J.; Alp, E.; Barraza, J.; Shu, D.

    1998-04-01

    The authors have undertaken a series of vibrational measurements in hutch 3-ID-B. Their motivation was to compare two different methods of mounting an interferometer for effectiveness in vibrational isolation and stability. In addition they were able to compare the stability of the optical table with and without its eight large bolts inserted

  11. Optical vibration measurement of mechatronics devices

    Science.gov (United States)

    Yanabe, Shigeo

    1993-09-01

    An optical vibration measuring system which enables to detect both linear and angular displacement of 25 nm and 5 prad was developed. The system is mainly composed of a He-Ne laser, a displacement detecting photo-diode and lenses, and has linear and angular displacement magnification mechanism using two different principles of optical lever. The system was applied to measure vibrational characteristics of magnetic head slider of hard disk drives and to measure stator teeth driving velocities of ultrasonic motor.

  12. A novel concept of measuring mass flow rates using flow induced ...

    Indian Academy of Sciences (India)

    Measurement of mass flow rate is important for automatic control of the mass flow rate in .... mass flow rate. The details are as follows. ... Assuming a symmetry plane passing through the thickness of the plate, at the symmetry plane δu∗n,B = 0.

  13. Vibration Measurement with PULSE and DSPACE Equipment

    Directory of Open Access Journals (Sweden)

    Radim KLEČKA

    2009-06-01

    Full Text Available This contribution describes techniques and results of measurement with TIRA vibration generator. A method of experimental modal analysis allows next restore of vibration data. The goal is check validity of head expanders and screw connection. This process is based to using ME’scope environment. Another goal is check possibilities of dSPACE platform to vibration measurement. This task includes design of connection between dSPACE system and power amplifier, creating of graphical user interface and analyzing main configuration parameters to improve quality of drive signal.

  14. Frequency Dependence of Helioseismic Measurements of the Center-to-Limb Effect and Flow-induced Travel-time Shifts

    Science.gov (United States)

    Chen, Ruizhu; Zhao, Junwei

    2018-02-01

    Time–distance helioseismology measures acoustic travel times to infer the structure and flow field of the solar interior; however, both the mean travel times and the travel-time shifts suffer systematic center-to-limb variations, which complicate the interpretation and inversions of the time–distance measurements. In particular, the center-to-limb variation in travel-time shifts (CtoL effect) has a significant impact on the inference of the Sun’s meridional circulation, and needs to be removed from the helioseismic measurements, although the observational properties and the physical cause of the CtoL effect have yet to be investigated. In this study, we measure the CtoL effect in the frequency domain using Doppler-velocity data from the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, and study its properties as a function of disk-centric distance, travel distance, and frequency of acoustic waves. It is found that the CtoL effect has a significant frequency dependence—it reverses sign at a frequency around 5.4 mHz and reaches maximum at around 4.0 mHz before the sign reversal. The tendency of frequency dependence varies with disk-centric distance in a way that both the sign-reversal frequency and the maximum-value frequency decrease closer to the limb. The variation tendency does not change with travel distance, but the variation magnitude is approximately proportional to travel distance. For comparison, the flow-induced travel-time shifts show little frequency dependence. These observational properties provide more clues on the nature of the CtoL effect, and also possibly lead to new ways of effect-removal for a more robust determination of the deep meridional flow.

  15. Bevel Gearbox Fault Diagnosis using Vibration Measurements

    Directory of Open Access Journals (Sweden)

    Hartono Dennis

    2016-01-01

    Full Text Available The use of vibration measurementanalysis has been proven to be effective for gearbox fault diagnosis. However, the complexity of vibration signals observed from a gearbox makes it difficult to accurately detectfaults in the gearbox. This work is based on a comparative studyof several time-frequency signal processing methods that can be used to extract information from transient vibration signals containing useful diagnostic information. Experiments were performed on a bevel gearbox test rig using vibration measurements obtained from accelerometers. Initially, thediscrete wavelet transform was implementedfor vibration signal analysis to extract the frequency content of signal from the relevant frequency region. Several time-frequency signal processing methods werethen incorporated to extract the fault features of vibration signals and their diagnostic performances were compared. It was shown thatthe Short Time Fourier Transform (STFT could not offer a good time resolution to detect the periodicity of the faulty gear tooth due the difficulty in choosing an appropriate window length to capture the impulse signal. The Continuous Wavelet Transform (CWT, on the other hand, was suitable to detection of vibration transients generated by localized fault from a gearbox due to its multi-scale property. However, both methods still require a thorough visual inspection. In contrast, it was shown from the experiments that the diagnostic method using the Cepstrumanalysis could provide a direct indication of the faulty tooth without the need of a thorough visual inspection as required by CWT and STFT.

  16. Optical Measurement of Cable and String Vibration

    Directory of Open Access Journals (Sweden)

    Y. Achkire

    1998-01-01

    Full Text Available This paper describes a non contacting measurement technique for the transverse vibration of small cables and strings using an analog position sensing detector. On the one hand, the sensor is used to monitor the cable vibrations of a small scale mock-up of a cable structure in order to validate the nonlinear cable dynamics model. On the other hand, the optical sensor is used to evaluate the performance of an active tendon control algorithm with guaranteed stability properties. It is demonstrated experimentally, that a force feedback control law based on a collocated force sensor measuring the tension in the cable is feasible and provides active damping in the cable.

  17. Measuring vibrations in fuel channels CNE

    International Nuclear Information System (INIS)

    Martín Ghiselli, A.; Fiori, J.; Sacchi, M.; Villabrille, G.

    2013-01-01

    This paper present a description of implementation and execution of vibration measurements made at the request of NUCLEOELECTRICA ARGENTINA S.A. on the ends of the reactor fuel channels of Embalse Nuclear Power Plant to explore possible differences between the dynamic behavior of empty fuel channel and with full charge of fuel elements inside. (author)

  18. Damage Detection by Laser Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Elena Daniela Birdeanu

    2008-10-01

    Full Text Available The technique based on the vibration analysis by scanning laser Doppler vibrometer is one of the most promising, allowing to extract also small defect and to directly correlate it to local dynamic stiffness and structural integrity. In fact, the measurement capabilities of vibrometers, such as sensitivity, accuracy and reduced intrusively, allow having a very powerful instrument in diagnostic.

  19. Development of monitoring system using acoustic emission for detection of helium gas leakage for primary cooling system and flow-induced vibration for heat transfer tube of heat exchangers for the High Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Tachibana, Yukio; Kunitomi, Kazuhiko; Furusawa, Takayuki; Shinozaki, Masayuki; Satoh, Yoshiyuki; Yanagibashi, Minoru

    1998-10-01

    The High Temperature Engineering Test Reactor (HTTR) uses helium gas for its primary coolant, whose leakage inside reactor containment vessel is considered in design of the HTTR. It is necessary to detect leakage of helium gas at an early stage so that total amount of the leakage should be as small as possible. On the other hand, heat transfer tubes of heat exchangers of the HTTR are designed not to vibrate at normal operation, but the flow-induced vibration is to be monitored to provide against an emergency. Thus monitoring system of acoustic emission for detection of primary coolant leakage and vibration of heat transfer tubes was developed and applied to the HTTR. Before the application to the HTTR, leakage detection test was performed using 1/4 scaled model of outer tube of primary concentric hot gas duct. Result of the test covers detectable minimum leakage rate and effect of difference in gas, pressure, shape of leakage path and distance from the leaking point. Detectable minimum leakage rate was about 5 Ncc/sec. The monitoring system is promising in leakage detection, though countermeasure to noise is to be needed after the HTTR starts operating. (author)

  20. Experimental Study of Pressure Drop and Wall Shear Stress Characteristics of γ /Al2O3-Water Nanofluid in a Circular pipe under Turbulent flow induced vibration.

    Directory of Open Access Journals (Sweden)

    Adil Abbas AL-Moosawy

    2016-09-01

    Full Text Available Experimental study of γ /Al2O3 with mean diameter of less than 50 nm was dispersed in the distilled water that flows through a pipe consist of five sections as work station ,four sections made of carbon steel metal and one sections made of Pyrex glass pipe, with five nanoparticles volume concentrations of 0%,0.1%,0.2%,0.3%,and 0.4% with seven different volume flow rates 100, 200 , 300, 400, 500, 600 ,and 700ℓ/min were investigated to calculated pressure distribution for the cases without rubber ,with 3mm rubber and with 6mm rubber used to support the pipe. Reynolds number was between 20000 and 130000. Frequency value through pipe was measured for all stations of pipe for all cases. The results show that the pressure drop and wall shear stress of the nanofluid increase by increasing the nanoparticles volume concentrations or Reynolds number, the values of frequency through the pipe increase continuously when wall shear stress increases and the ratio of increment increases as nanofluid concentrations increase. Increasing of vibration frequency lead to increasing the friction factor between the pipe and the wall and thus increasing in pressure drop. Several equations between the wall shear stress and frequency for all volume concentration and for three cases without rubber, with rubber has 3mm thickness ,and with rubber has 6mm thickness. Finally, the results led to that γ /Al2O3 could function as a good and alternative conventional working fluid in heat transfer applications. A good agreement is seen between the experimental and those available in the literature

  1. Numerical method to calculate flow-induced vibration in turbulent flow. 3rd Report. Analysis of vortex-induced vibration in an array of elastically supported tubes; Ranryuba ni okeru ryutai kozotai rensei shindo kaiseki shuho no kaihatsu. 3. Kangun ni okeru uzu reiki shindo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Sadaoka, N.; Umegaki, K. [Hitachi, Ltd., Tokyo (Japan)

    1996-01-25

    A vortex-induced vibration of an array of elastically supported tubes is simulated in two-dimension by using a flow-induced vibration analysis program, which was developed in order to evaluate flow-induced vibration in various components such as heat exchangers. From a comparison of calculated results and experimental data, the following points are observed. (1) For the calculated results in a 5 {times} 5 square array, the flow pattern surrounding the first-row tubes is markedly different from that observed in the second-row or third-row tubes. This flow pattern is the same as that obtained from the experiment. (2) All tubes begin to oscillate due to unsteady fluid force and the oscillating mode is different for each row of tubes. These oscillation patterns show the same tendency in the experiments and it is concluded that the developed method can simulate vortex-induced vibration in an array of elastically supported tubes. 19 refs., 10 figs., 1 tab.

  2. Knowledge Discovery from Vibration Measurements

    Directory of Open Access Journals (Sweden)

    Jun Deng

    2014-01-01

    Full Text Available The framework as well as the particular algorithms of pattern recognition process is widely adopted in structural health monitoring (SHM. However, as a part of the overall process of knowledge discovery from data bases (KDD, the results of pattern recognition are only changes and patterns of changes of data features. In this paper, based on the similarity between KDD and SHM and considering the particularity of SHM problems, a four-step framework of SHM is proposed which extends the final goal of SHM from detecting damages to extracting knowledge to facilitate decision making. The purposes and proper methods of each step of this framework are discussed. To demonstrate the proposed SHM framework, a specific SHM method which is composed by the second order structural parameter identification, statistical control chart analysis, and system reliability analysis is then presented. To examine the performance of this SHM method, real sensor data measured from a lab size steel bridge model structure are used. The developed four-step framework of SHM has the potential to clarify the process of SHM to facilitate the further development of SHM techniques.

  3. Spindle vibration and sound field measurement using optical vibrometry

    OpenAIRE

    Tatar, Kourosh

    2008-01-01

    Mechanical systems often produce a considerable amount of vibration and noise. To be able to obtain a complete picture of the dynamic behaviour of these systems, vibration and sound measurements are of significant importance. Optical metrology is well-suited for non-intrusive measurements on complex objects. The development and the use of remote non-contact vibration measurement methods for spindles are described and vibration measurements on thin- walled structures and sound field measuremen...

  4. Blade Vibration Measurement System for Unducted Fans

    Science.gov (United States)

    Marscher, William

    2014-01-01

    With propulsion research programs focused on new levels of efficiency and noise reduction, two avenues for advanced gas turbine technology are emerging: the geared turbofan and ultrahigh bypass ratio fan engines. Both of these candidates are being pursued as collaborative research projects between NASA and the engine manufacturers. The high bypass concept from GE Aviation is an unducted fan that features a bypass ratio of over 30 along with the accompanying benefits in fuel efficiency. This project improved the test and measurement capabilities of the unducted fan blade dynamic response. In the course of this project, Mechanical Solutions, Inc. (MSI) collaborated with GE Aviation to (1) define the requirements for fan blade measurements; (2) leverage MSI's radar-based system for compressor and turbine blade monitoring; and (3) develop, validate, and deliver a noncontacting blade vibration measurement system for unducted fans.

  5. Noise and Vibrations Measurements. External noise and vibrations measurements for offshore SODAR application

    International Nuclear Information System (INIS)

    Ormel, F.T.; Eecen, P.J.; Herman, S.A.

    2003-10-01

    The partners in the WISE project investigate whether application of the SODAR (sonic detection and ranging) measurement technique in wind energy experimental work is feasible as a replacement for cup anemometers, wind direction sensors and tall meteorological masts. In Work Package 2 of the WISE project extensive controlled experiments with the SODAR are performed. For example SODAR measurements are compared with measurements from nearby masts and different brands of SODARs are compared. Part of the work package is the measurement of vibration and noise on an offshore SODAR system. The results of these measurements are presented in this report. ECN performed measurements at an offshore location to investigate the influence of noise and vibrations on the performance of a MiniSODAR measurement system. The aim of the measurements is to quantify the effect of these external noise and vibrations disturbances on the MiniSODAR's performance. Measurements on an identical SODAR system onshore are carried out to compare the disturbances of offshore and onshore external conditions. The effect of background noise on SODAR operation has clearly been established in literature. Therefore, measurements have been performed only to establish the absolute sound pressure levels. This is done at the Measuring Platform Noordwijk (MPN) located in the North Sea, nine kilometres out of the coast at Noordwijk, The Netherlands, and at two locations onshore. At the MPN-platform, the SODAR has been moved from the middle deck to the upper deck to diminish the influence of the diesel generator needed for the electric powering of the island. Although the absolute sound pressure level became higher at the new location, this level became lower at the most important frequencies inside the SODAR, due to the use of absorbing foam. With regards to the sound pressure level the move improved the situation. The sound pressure levels measured offshore were 6 to 15 dB higher than for the two locations

  6. Heterodyne Angle Deviation Interferometry in Vibration and Bubble Measurements

    OpenAIRE

    Ming-Hung Chiu; Jia-Ze Shen; Jian-Ming Huang

    2016-01-01

    We proposed heterodyne angle deviation interferometry (HADI) for angle deviation measurements. The phase shift of an angular sensor (which can be a metal film or a surface plasmon resonance (SPR) prism) is proportional to the deviation angle of the test beam. The method has been demonstrated in bubble and speaker’s vibration measurements in this paper. In the speaker’s vibration measurement, the voltage from the phase channel of a lock-in amplifier includes the vibration level and frequency. ...

  7. EVALUATION AND MEASUREMENT OF HAND-TRANSMITTED VIBRATIONS

    Directory of Open Access Journals (Sweden)

    Iveta MARKOVÁ

    2017-12-01

    Full Text Available The goal of this work is the effect of vibrations on selected professionals through questionnaire survey and implementation of experimental vibration measurements on a hand of employee. The observation of vibration effects was chosen in a company, where products are being shaped with pneumatic instruments and there is a risk of an exposure of vibrations on the employees. In experimental part are described and evaluated questionnaire surveys conducted on selected risk factors. The reason is the realization of work with vibrating tools for a longer time, where some parts do wear-out and therefore there is a higher exposure to oscillation.

  8. Noncontact vibration measurements using magnetoresistive sensing elements

    Science.gov (United States)

    Tomassini, R.; Rossi, G.

    2016-06-01

    Contactless instrumentations is more and more used in turbomachinery testing thanks to the non-intrusive character and the possibility to monitor all the components of the machine at the same time. Performances of blade tip timing (BTT) measurement systems, used for noncontact turbine blade vibration measurements, in terms of uncertainty and resolution are strongly affected by sensor characteristics and processing methods. The sensors used for BTT generate pulses, used for precise measurements of turbine blades time of arrival. Nowadays proximity sensors used in this application are based on optical, capacitive, eddy current and microwave measuring principle. Pressure sensors has been also tried. This paper summarizes the results achieved using a novel instrumentation based on the magnetoresistive sensing elements. The characterization of the novel probe has been already published. The measurement system was validated in test benches and in a real jet-engine comparing different sensor technologies. The whole instrumentation was improved. The work presented in this paper focuses on the current developments. In particular, attention is given to the data processing software and new sensor configurations.

  9. Design of A Vibration and Stress Measurement System for an Advanced Power Reactor 1400 Reactor Vessel Internals Comprehensive Vibration Assessment Program

    International Nuclear Information System (INIS)

    Ko, Doyoung; Kim, Kyuhyung

    2013-01-01

    In accordance with the US Nuclear Regulatory Commission (US NRC), Regulatory Guide 1.20, the reactor vessel internals comprehensive vibration assessment program (RVI CVAP) has been developed for an Advanced Power Reactor 1400 (APR1400). The purpose of the RVI CVAP is to verify the structural integrity of the reactor internals to flow-induced loads prior to commercial operation. The APR1400 RVI CVAP consists of four programs (analysis, measurement, inspection, and assessment). Thoughtful preparation is essential to the measurement program, because data acquisition must be performed only once. The optimized design of a vibration and stress measurement system for the RVI CVAP is essential to verify the integrity of the APR1400 RVI. We successfully designed a vibration and stress measurement system for the APR1400 RVI CVAP based on the design materials, the hydraulic and structural analysis results, and performance tests of transducers in an extreme environment. The measurement system designed in this paper will be utilized for the APR1400 RVI CVAP as part of the first construction project in Korea

  10. DESIGN OF A VIBRATION AND STRESS MEASUREMENT SYSTEM FOR AN ADVANCED POWER REACTOR 1400 REACTOR VESSEL INTERNALS COMPREHENSIVE VIBRATION ASSESSMENT PROGRAM

    Directory of Open Access Journals (Sweden)

    DO-YOUNG KO

    2013-04-01

    Full Text Available In accordance with the US Nuclear Regulatory Commission (US NRC, Regulatory Guide 1.20, the reactor vessel internals comprehensive vibration assessment program (RVI CVAP has been developed for an Advanced Power Reactor 1400 (APR1400. The purpose of the RVI CVAP is to verify the structural integrity of the reactor internals to flow-induced loads prior to commercial operation. The APR1400 RVI CVAP consists of four programs (analysis, measurement, inspection, and assessment. Thoughtful preparation is essential to the measurement program, because data acquisition must be performed only once. The optimized design of a vibration and stress measurement system for the RVI CVAP is essential to verify the integrity of the APR1400 RVI. We successfully designed a vibration and stress measurement system for the APR1400 RVI CVAP based on the design materials, the hydraulic and structural analysis results, and performance tests of transducers in an extreme environment. The measurement system designed in this paper will be utilized for the APR1400 RVI CVAP as part of the first construction project in Korea.

  11. External vibrations measurement of reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, S A [Nuclear Electric plc, Barnwood (United Kingdom); Sugden, J [Magnox Electric, Berkeley (United Kingdom)

    1997-12-31

    The paper outlines the use of External Vibration Monitoring for remote vibration assessment of internal reactor components. The main features of the technique are illustrated by a detailed examination of the specific application to the problem of Heysham 2 Fuel Plug Unit monitoring. (author). 6 figs.

  12. Vibration transfers to measure the performance of vibration isolated platforms on site using background noise excitation

    NARCIS (Netherlands)

    Segerink, Franciscus B.; Korterik, Jeroen P.; Offerhaus, Herman L.

    2011-01-01

    This article demonstrates a quick and easy way of quantifying the performance of a vibration-isolated platform. We measure the vibration transfer from floor to table using background noise excitation from the floor. As no excitation device is needed, our setup only requires two identical sensors (in

  13. Vibration measurements by pulsed digital holographic endoscopy

    Science.gov (United States)

    Schedin, Staffan; Pedrini, Giancarlo; Perez-Lopez, Carlos; Mendoza Santoyo, Fernando

    2005-02-01

    Digital holographic interferometry in combination with a flexible fiber endoscope allows high precision measurements of deformations on hidden objects surfaces, inside cavities and objects with small access apertures. A digital holographic endoscopy system is described with a frequency-doubled, twin oscillator Q-switched pulsed Nd:YAG laser as light source. A sequence of digital hologram pairs are recorded with a maximum repetition rate of 260 ms. Each digital hologram is captured at separate video frames of a CCD-camera. The time separation between the laser pulses from each cavity can be set in the range from 50 to 500 μs. The digital holograms are transferred to a PC via a frame grabber and evaluated quantitatively by the Fourier transform method. The resulting phase fringe pattern has the information needed to evaluate quantitatively the amount of the deformation. Experimental results of vibration measurements of hidden mechanical and biological object surfaces are presented. The quality of the results obtained by mechanical object surfaces is usually higher than for biological surfaces. This can be explained easily by the fact that a biological surface is much more complex than a mechanical surface in the sense that some parts of the surface may reflect the light well whereas other parts may absorb the light. Also, biological surfaces are translucent, which means that part of the light may enter inside the sample where it may be absorbed or reflected.

  14. Vibration measurement of accelerator tube table in ATF

    International Nuclear Information System (INIS)

    Nakayama, Y.; Sugahara, R.; Yamaoka, H.; Masuzawa, M.; Yamashita, S.

    2004-01-01

    Acceleration tube fixed to the table should not be a structure to amplify the vibration. Stability of ground is preferable for accelerator beam operation, and the beam control by extremely high resolution is especially demanded in GLC. Then, we have measured ground motion and table vibration in ATF at KEK. In this paper, some of analyzed results are shown, and we show the characteristics of vibration about the accelerator tube table in ATF. (author)

  15. Research on the nonintrusive measurement of the turbine blade vibration

    Science.gov (United States)

    Zhang, Shi hai; Li, Lu-ping; Rao, Hong-de

    2008-11-01

    It's one of the important ways to monitor the change of dynamic characteristic of turbine blades for ensuring safety operation of turbine unit. Traditional measurement systems for monitoring blade vibration generally use strain gauges attached to the surface of turbine blades, each strain gauge gives out an analogue signal related to blade deformation, it's maximal defect is only a few blades could be monitored which are attached by strain gauge. But the noncontact vibration measurement will be discussed would solve this problem. This paper deals with noncontact vibration measurement on the rotor blades of turbine through experiments. In this paper, the noncontact vibration measurement - Tip Timing Measurement will be presented, and will be improved. The statistics and DFT will be used in the improved measurement. The main advantage of the improved measurement is that only two sensors over the top of blades and one synchronous sensor of the rotor are used to get the exact vibration characteristics of the each blade in a row. In our experiment, we adopt NI Company's DAQ equipment: SCXI1001 and PCI 6221, three optical sensors, base on the graphics program soft LabVIEW to develop the turbine blade monitor system. At the different rotational speed of the rotor (1000r/m and 1200r/m) we do several experiments on the bench of the Turbine characteristic. Its results indicated that the vibration of turbine blade could be real-time monitored and accurately measured by the improved Tip Timing Measurement.

  16. Ground Vibration Attenuation Measurement using Triaxial and Single Axis Accelerometers

    Science.gov (United States)

    Mohammad, A. H.; Yusoff, N. A.; Madun, A.; Tajudin, S. A. A.; Zahari, M. N. H.; Chik, T. N. T.; Rahman, N. A.; Annuar, Y. M. N.

    2018-04-01

    Peak Particle Velocity is one of the important term to show the level of the vibration amplitude especially traveling wave by distance. Vibration measurement using triaxial accelerometer is needed to obtain accurate value of PPV however limited by the size and the available channel of the data acquisition module for detailed measurement. In this paper, an attempt to estimate accurate PPV has been made by using only a triaxial accelerometer together with multiple single axis accelerometer for the ground vibration measurement. A field test was conducted on soft ground using nine single axis accelerometers and a triaxial accelerometer installed at nine receiver location R1 to R9. Based from the obtained result, the method shows convincing similarity between actual PPV with the calculated PPV with error ratio 0.97. With the design method, vibration measurement equipment size can be reduced with fewer channel required.

  17. Measuring the Amount of Mechanical Vibration During Lathe Processing

    Directory of Open Access Journals (Sweden)

    Štefánia SALOKYOVÁ

    2015-06-01

    Full Text Available The article provides basic information regarding the measurement and evaluation of mechanical vibration during the processing of material by lathe work. The lathe processing can be characterized as removing material by precisely defined tools. The results of the experimental part are values of the vibration acceleration amplitude measured by the piezoelectric sensor on the bearing house of the lathe. A set of new knowledge and conclusions is formulated based on the analysis of the created graphical dependencies.

  18. Measurements of ground motion and SSC dipole vibrations

    International Nuclear Information System (INIS)

    Parkhomchuk, V.V.; Shiltsev, V.D.; Weaver, H.J.

    1993-06-01

    The results of seismic ground measurements at the Superconducting Super Collider (SSC) site and investigations of vibrational properties of superconducting dipoles for the SSC are presented. Spectral analysis of the data obtained in the large frequency band from 0.05 Hz to 2000 Hz is done. Resonant behavior and the dipole-to-ground transform ratio are investigated. The influence of measured vibrations on SSC operations is considered

  19. The vibration measurements at the photon factory storage ring building

    International Nuclear Information System (INIS)

    Haga, K.; Nakayama, M.; Masuda, K.; Ishizaki, H.; Kura, M.; Meng, L.; Oku, Y.

    1999-01-01

    The Photon Factory is a 2.5 GeV electron storage ring and has been operating since 1982 as a dedicated SR source. At the Photon Factory, we have been pursuing the various sources of the beam instabilities which deteriorated the SR beam quality in the wide frequency range. Some of the sources were the vibrations of magnets and floor of the ring tunnel, temperature change of the cooling water and the elongation of the storage ring building roof due to sunshine that induced the diurnal motion of the SR beam axis. This article presents the results of the vibration measurements that have been performed at the Photon Factory storage ring building. (1) The vibrations of the ring tunnel floor and the experimental hall floor, comparing with the vibration of the ground surrounding the storage ring building, are same order in the 1 ∼ 5 Hz range, and 1/3 ∼ 1/5 in the 5 ∼ 100 Hz range, in the vertical and the horizontal direction. (2) The effects of the vibration arising from the operating eight air-conditioners can be seen in the Fourier spectrum of the vibration of the ring tunnel floor, experimental floor, Q-magnets and BPM vacuum duct. (3) The vibrations of the Q-magnet and girder at frequencies near their fundamental resonant frequencies have been amplified 100 limes in the lateral direction comparing to the floor vibration. (4) Correlation between the vibration of the BPM vacuum duct and the vibration of the electron beam motion is unknown for the lack of the precise data. (authors)

  20. Measurement of food texture by an acoustic vibration method

    Science.gov (United States)

    Sakurai, Naoki; Taniwaki, Mitsuru; Iwatani, Shin-ichiro; Akimoto, Hidemi

    2011-09-01

    Food texture was measured by a new acoustic vibration method. A piezoelectric sensor sandwiched between a probe and piston was inserted into a food sample by delivery of silicon oil to a cylinder by a pump. Vibration emitted from the food sample on insertion of the probe was monitored by voltage outputs of the sensor. The voltage signals were passed through 19 half octave bands to calculate texture index for each band. The texture index was defined as vibration energy of the probe caused by the food rupture and/or breakage per unit time.

  1. Measurements of ground motion and magnets vibrations at the APS

    International Nuclear Information System (INIS)

    Shil'tsev, V.D.

    1994-01-01

    This article presents results of ground motion and magnets vibrations measurements at the Advanced Photon Source. The experiments were done over wide frequency range 0.05-100 Hz with use of SM-3KV type seismic probes from Budker Institute of Nuclear Physics (Russia). Spectral power densities of vertical and horizontal motions of the APS hall floor and quadrupoles on regular supports were obtained. There were also investigated magnets vibrations induced by designed cooling water flow and spectral characteristics of spatial correlation of the quads vibration at different sectors of the ring. Influence of personnel activity in the hall and traffic under the ring on slow motion of storage ring elements were observed. Amplitudes of vibrations at the APS are compared with results of seismic measurements at some other accelerators. 9 refs.; 10 figs.; 1 tab

  2. Measurements of ground motion and magnet vibrations at the APS

    International Nuclear Information System (INIS)

    Shiltsev, V.

    1996-01-01

    This article presents results of ground motion and magnet vibrations measurements at the Advanced Photon Source. The experiments were done over a wide, frequency range (0-05-100 Hz) with the use of SM-3KV-type seismic probes from the Budker Institute of Nuclear Physics (Russia). Spectral power densities of vertical and horizontal motions of the APS hall floor and quadrupoles on regular supports were obtained. Also investigated were magnet vibrations induced by designed cooling water flow and spectral characteristics of spatial correlation of the quadrupole vibrations at different sectors of the ring. The influence of personnel activity in the hall and traffic under the ring on the slow motion of storage ring elements were observed. Amplitudes of vibrations at the APS are compared with results of seismic measurements at some other accelerators

  3. Study on the annular leakage-flow-induced vibrations. 2nd Report. Stability analysis and experiments for translationally and rotationally coupled two-degree-of-freedom systems; Kanjo sukimaryu reiki shindo ni kansuru kenkyu. 2. heishin kaiten 2 jiyudo renseikei no anteisei kaiseki oyobi jikken

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.W. [Hitachi, Ltd., Tokyo (Japan); Kaneko, S. [The University of Tokyo, Tokyo (Japan); Hayama, S. [Toyama Prefectural University, Toyama (Japan)

    1999-07-25

    In this study, the stability of annular leakage-flow-induced vibrations was investigated theoretically and experimentally for a translationally and rotationally coupled two-degree-of-freedom system. The critical flow rate was both theoretically and experimentally obtained as a function of the passage increment ratio and the eccentricity of the passage. A good agreement between the theoretical and experimental results was obtained. It was discovered both theoretically and from the experiments that instability will occur in the case of a divergent passage: the eccentricity of the passage lowers the stability of the systems. (author)

  4. Transient full-field vibration measurement using spectroscopical stereo photogrammetry.

    Science.gov (United States)

    Yue, Kaiduan; Li, Zhongke; Zhang, Ming; Chen, Shan

    2010-12-20

    Contrasted with other vibration measurement methods, a novel spectroscopical photogrammetric approach is proposed. Two colored light filters and a CCD color camera are used to achieve the function of two traditional cameras. Then a new calibration method is presented. It focuses on the vibrating object rather than the camera and has the advantage of more accuracy than traditional camera calibration. The test results have shown an accuracy of 0.02 mm.

  5. Underground measurements of seismic vibrations at the SSC site

    International Nuclear Information System (INIS)

    Shiltsev, V.D.; Parkhomchuk, V.V.; Weaver, H.J.

    1995-01-01

    The results of underground measurements of seismic vibrations at the tunnel depth of the Superconducting Super Collider (SSC) site are presented. Spectral analysis of the data obtained in the frequency band from 0.05 Hz to 1500 Hz is performed. It is found that amplitudes of ambient ground motion are less than requirements for the Collider, but cultural vibrations are unacceptably large and will cause fast growth of transverse emittance of the SSC beams

  6. Measurement of rabbit eardrum vibration through stroboscopic digital holography

    Energy Technology Data Exchange (ETDEWEB)

    De Greef, Daniël; Dirckx, Joris J. J. [University of Antwerp, Laboratory of BioMedical Physics, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2014-05-27

    In this work, we present a setup for high-power single shot stroboscopic digital holography and demonstrate it in an application on rabbit eardrum vibration measurement. The setup is able to make full-field time-resolved measurements of vibrating surfaces with a precision in the nanometer range in a broad frequency range. The height displacement of the measured object is visualized over the entire surface as a function of time. Vibration magnitude and phase maps can be extracted from these data, the latter proving to be very useful to reveal phase delays across the surface. Such deviations from modal motion indicate energy losses due to internal damping, in contrast to purely elastic mechanics. This is of great interest in middle ear mechanics and finite element modelling. In our setup, short laser pulses are fired at selected instants within the surface vibration period and are recorded by a CCD camera. The timing of the pulses and the exposure of the camera are synchronized to the vibration phase by a microprocessor. The high-power frequency-doubled Nd:YAG laser produces pulses containing up to 5 mJ of energy, which is amply sufficient to record single-shot holograms. As the laser pulse length is 8 ns and the smallest time step of the trigger electronics is 1 μs, vibration measurements of frequencies up to 250 kHz are achievable through this method, provided that the maximum vibration amplitude exceeds a few nanometers. In our application, middle ear mechanics, measuring frequencies extend from 5 Hz to 20 kHz. The experimental setup will be presented, as well as results of measurements on a stretched circular rubber membrane and a rabbit's eardrum. Two of the challenges when measuring biological tissues, such as the eardrum, are low reflectivity and fast dehydration. To increase reflectivity, a coating is applied and to counteract the undesirable effects of tissue dehydration, the measurement setup and software have been optimized for speed without

  7. Experimental investigation of a flow-induced oscillating cylinder with two degrees-of-freedom

    International Nuclear Information System (INIS)

    Someya, Satoshi; Kuwabara, Joji; Li, YanRong; Okamoto, Koji

    2010-01-01

    The phenomenon of flow-induced vibration of bluff bodies has been studied extensively. The vast majority of these studies have concentrated solely on one degree-of-freedom oscillation in the inline or cross-flow directions. Herein, experiments were carried out with a cylinder in a water channel with two degrees-of-freedom. The cylinder was cantilever mounted with a low natural frequency (typically 65 Hz) in the inline and cross-flow directions. The Reynolds number fell in the range 1.17 x 10 3 4 . The oscillating frequency of the cylinder and the surrounding flow were measured simultaneously using high temporal resolution particle image velocimetry (PIV), which is non-intrusive with respect to the flow and has high spatial and temporal resolutions. The vibration of the cylinder was found to be anisotropic. There was a discrepancy between the vibration frequencies in the inline and cross-flow directions, the difference being a function of reduced velocity.

  8. Overhead traveling crane vibration research using experimental wireless measuring system

    Directory of Open Access Journals (Sweden)

    Tomasz HANISZEWSKI

    2013-01-01

    Full Text Available The paper contains an operations and constructions description of theexperimental wireless measuring system for measuring accelerations in bridge cranes,based on PHIDGET 1056 sensors. Developed experimental research and measuringmethodology allows the use of the proposed wireless system on other cranesconstructions. The paper also shows examples of the results of vibration measurementsand FFT spectra, obtained on the basis of accelerations measurements.

  9. High-speed digital holographic interferometry for vibration measurement

    International Nuclear Information System (INIS)

    Pedrini, Giancarlo; Osten, Wolfgang; Gusev, Mikhail E.

    2006-01-01

    A system based on digital holographic interferometry for the measurement of vibrations is presented. A high-power continuous laser(10 W) and a high-speed CCD camera are used. Hundreds of holograms of an object that has been subjected to dynamic deformation are recorded. The acquisition speed and the time of exposure of the detector are determined by the vibration frequency. Two methods are presented for triggering the camera in order to acquire at a given phase of the vibration. The phase of the wavefront is calculated from the recorded holograms by use of a two-dimensional digital Fourier-transform method. The deformation of the object is obtained from the phase. By combination of the deformations recorded at different times it is possible to reconstruct the vibration of the object

  10. Time Synchronized Wireless Sensor Network for Vibration Measurement

    Science.gov (United States)

    Uchimura, Yutaka; Nasu, Tadashi; Takahashi, Motoichi

    Network based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard based TSF counter and sends the measured data with the counter value. TSF based synchronization enables consistency on common clock among different wireless nodes. We consider the scale effect on the synchronization accuracy and the effect is evaluated by stochastic analysis and simulation studies. A new wireless sensing system is developed and the hardware and software specifications are shown. The experiments are conducted in a reinforced concrete building and results show good performance enough for vibration measurement purpose.

  11. Dynamic tire pressure sensor for measuring ground vibration.

    Science.gov (United States)

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L

    2012-11-07

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application.

  12. Vibration measurement with nonlinear converter in the presence of noise

    Science.gov (United States)

    Mozuras, Almantas

    2017-10-01

    Conventional vibration measurement methods use the linear properties of physical converters. These methods are strongly influenced by nonlinear distortions, because ideal linear converters are not available. Practically, any converter can be considered as a linear one, when an output signal is very small. However, the influence of noise increases significantly and signal-to-noise ratio decreases at lower signals. When the output signal is increasing, the nonlinear distortions are also augmenting. If the wide spectrum vibration is measured, conventional methods face a harmonic distortion as well as intermodulation effects. Purpose of this research is to develop a measurement method of wide spectrum vibration by using a converter described by a nonlinear function of type f(x), where x =x(t) denotes the dependence of coordinate x on time t due to the vibration. Parameter x(t) describing the vibration is expressed as Fourier series. The spectral components of the converter output f(x(t)) are determined by using Fourier transform. The obtained system of nonlinear equations is solved using the least squares technique that permits to find x(t) in the presence of noise. This method allows one to carry out the absolute or relative vibration measurements. High resistance to noise is typical for the absolute vibration measurement, but it is necessary to know the Taylor expansion coefficients of the function f(x). If the Taylor expansion is not known, the relative measurement of vibration parameters is also possible, but with lower resistance to noise. This method allows one to eliminate the influence of nonlinear distortions to the measurement results, and consequently to eliminate harmonic distortion and intermodulation effects. The use of nonlinear properties of the converter for measurement gives some advantages related to an increased frequency range of the output signal (consequently increasing the number of equations) that allows one to decrease the noise influence on

  13. Vibration condition measure instrument of motor using MEMS accelerometer

    Science.gov (United States)

    Chen, Jun

    2018-04-01

    In this work, a novel vibration condition measure instrument of motor using a digital micro accelerometer is proposed. In order to reduce the random noise found in the data, the sensor modeling is established and also the Kalman filter (KMF) is developed. According to these data from KMF, the maximum vibration displacement is calculated by the integration algorithm with the DC bias removed. The high performance micro controller unit (MCU) is used in the implementation of controller. By the IIC digital interface port, the data are transmitted from sensor to controller. The hardware circuits of the sensor and micro controller are designed and tested. With the computational formula of maximum displacement and FFT, the high precession results of displacement and frequency are gotten. Finally, the paper presents various experimental results to prove that this instrument is suitable for application in electrical motor vibration measurement.

  14. Vibrations measurement at the Embalse nuclear power plant's electrical generator

    International Nuclear Information System (INIS)

    Salomoni, R.C.; Belinco, C.G.; Pastorini, A.J.; Sacchi, M.A.

    1987-01-01

    After the modifications made at the Embalse nuclear power plant's electrical generator to reduce its vibration level produced by electromagnetic phenomena, it was necessary to perform measurements at the new levels, under different areas and power conditions. To this purpose, a work was performed jointly with the 'Vibrations Team' of the ANSALDO Company (the generator constructor) and the Hydrodynamic Assays Division under the coordination and supervision of the plant's electrical maintenance responsible. This paper includes the main results obtained and the instrumentation criteria and analysis performed. (Author)

  15. Measurement of Piezoelectric Transformer Vibrations by Digital Holography

    Czech Academy of Sciences Publication Activity Database

    Psota, Pavel; Lédl, Vít; Doleček, Roman; Erhart, J.; Kopecký, V.

    2014-01-01

    Roč. 59, č. 9 (2014), s. 1962-1968 ISSN 0885-3010 R&D Projects: GA MŠk(CZ) ED2.1.00/03.0079 Institutional support: RVO:61389021 Keywords : digital holographic * ime-averaged holographic * small amplitude * vibrations amplitude measurement * piezoelectric transformer s Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.512, year: 2014

  16. Uncertainty Quantification for Monitoring of Civil Structures from Vibration Measurements

    Science.gov (United States)

    Döhler, Michael; Mevel, Laurent

    2014-05-01

    Health Monitoring of civil structures can be performed by detecting changes in the modal parameters of a structure, or more directly in the measured vibration signals. For a continuous monitoring the excitation of a structure is usually ambient, thus unknown and assumed to be noise. Hence, all estimates from the vibration measurements are realizations of random variables with inherent uncertainty due to (unknown) process and measurement noise and finite data length. In this talk, a strategy for quantifying the uncertainties of modal parameter estimates from a subspace-based system identification approach is presented and the importance of uncertainty quantification in monitoring approaches is shown. Furthermore, a damage detection method is presented, which is based on the direct comparison of the measured vibration signals without estimating modal parameters, while taking the statistical uncertainty in the signals correctly into account. The usefulness of both strategies is illustrated on data from a progressive damage action on a prestressed concrete bridge. References E. Carden and P. Fanning. Vibration based condition monitoring: a review. Structural Health Monitoring, 3(4):355-377, 2004. M. Döhler and L. Mevel. Efficient multi-order uncertainty computation for stochastic subspace identification. Mechanical Systems and Signal Processing, 38(2):346-366, 2013. M. Döhler, L. Mevel, and F. Hille. Subspace-based damage detection under changes in the ambient excitation statistics. Mechanical Systems and Signal Processing, 45(1):207-224, 2014.

  17. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  18. Damage diagnostic of localized impact erosion by measuring acoustic vibration

    International Nuclear Information System (INIS)

    Futakawa, Masatoshi; Kogawa, Hiroyuki; Ikeda, Yujiro

    2004-01-01

    High power spallation targets for neutron sources are being developed in the world. Mercury target will be installed at the material and life science facility in J-PARC, which will promote innovative science. The mercury target is subject to the pressure wave caused by the proton bombarding mercury. The pressure wave propagation induces the cavitation in mercury that imposes localized impact erosion damage on the target vessel. The impact erosion is a critical issue to decide the lifetime of the target. The electric Magnetic IMpact Testing Machine, MIMTM, was developed to produce the localized impact erosion damage and evaluate the damage formation. Acoustic vibration measurement was carried out to investigate the correlation between the erosion damage and the damage potential derived from acoustic vibration. It was confirmed that the damage potential related with acoustic vibration is useful to predict the damage due to the localized impact erosion and to diagnose the structural integrity. (author)

  19. Sound Power Estimation by Laser Doppler Vibration Measurement Techniques

    Directory of Open Access Journals (Sweden)

    G.M. Revel

    1998-01-01

    Full Text Available The aim of this paper is to propose simple and quick methods for the determination of the sound power emitted by a vibrating surface, by using non-contact vibration measurement techniques. In order to calculate the acoustic power by vibration data processing, two different approaches are presented. The first is based on the method proposed in the Standard ISO/TR 7849, while the second is based on the superposition theorem. A laser-Doppler scanning vibrometer has been employed for vibration measurements. Laser techniques open up new possibilities in this field because of their high spatial resolution and their non-intrusivity. The technique has been applied here to estimate the acoustic power emitted by a loudspeaker diaphragm. Results have been compared with those from a commercial Boundary Element Method (BEM software and experimentally validated by acoustic intensity measurements. Predicted and experimental results seem to be in agreement (differences lower than 1 dB thus showing that the proposed techniques can be employed as rapid solutions for many practical and industrial applications. Uncertainty sources are addressed and their effect is discussed.

  20. Measurement of stress strain and vibrational properties of tendons

    Science.gov (United States)

    Revel, Gian Marco; Scalise, Alessandro; Scalise, Lorenzo

    2003-08-01

    The authors present a new non-intrusive experimental procedure based on laser techniques for the measurement of mechanical properties of tendons. The procedure is based on the measurement of the first resonance frequency of the tendon by laser Doppler vibrometry during in vitro tensile experiments, with the final aim of establishing a measurement procedure to perform the mechanical characterization of tendons by extracting parameters such as the resonance frequency, also achievable during in vivo investigation. The experimental procedure is reported, taking into account the need to simulate the physiological conditions of the Achilles tendon, and the measurement technique used for the non-invasive determination of tendon cross-sectional area during tensile vibration tests at different load levels is described. The test procedure is based on a tensile machine, which measures longitudinal tendons undergoing controlled load conditions. Cross-sectional area is measured using a new non-contact procedure for the measurement of tendon perimeter (repeatability of 99% and accuracy of 2%). For each loading condition, vibration resonance frequency and damping, cross-sectional area and tensile force are measured, allowing thus a mechanical characterization of the tendon. Tendon stress-strain curves are reported. Stress-strain curves have been correlated to the first vibration resonance frequency and damping of the tendon measured using a single-point laser Doppler vibrometer. Moreover, experimental results have been compared with a theoretical model of a vibrating cord showing discrepancies. In vitro tests are reported, demonstrating the validity of the method for the comparison of different aged rabbit tendons.

  1. Testing of Tools for Measurement Vibration in Car

    Directory of Open Access Journals (Sweden)

    Martin JURÁNEK

    2009-06-01

    Full Text Available This work is specialized on testing of several sensors for measurement vibration, that be applicable for measurement on vehicles also behind running. These sensors are connected to PC and universal mobile measuring system cRIO (National Instruments with analog I/O module for measurement vibration, that is described in diploma work: [JURÁNEK 2008]. This system has upped mechanical and heat imunity, small proportions and is therefore acceptable also measurement behind ride vehicles. It compose from two head parts. First is measuring part, composite from instruments cRIO. First part is controlled and monitored by PDA there is connected of wireless (second part hereof system. To system cRIO is possible connect sensors by four BNC connector or after small software change is possible add sensor to other analog modul cRIO. Here will be test several different types of accelerometers (USB sensor company Phidgets, MEMS sensor company Freescale, piezoresistiv and Delta Tron accelerometers company Brüel&Kjær. These sensors is attach to stiff board, board is attach to vibrator and excite by proper signal. Testing will realized with reference to using for measurement in cars. Results will be compared with professional signal analyser LabShop pulse from company Brüel&Kjær.

  2. Autonomous target recognition using remotely sensed surface vibration measurements

    Science.gov (United States)

    Geurts, James; Ruck, Dennis W.; Rogers, Steven K.; Oxley, Mark E.; Barr, Dallas N.

    1993-09-01

    The remotely measured surface vibration signatures of tactical military ground vehicles are investigated for use in target classification and identification friend or foe (IFF) systems. The use of remote surface vibration sensing by a laser radar reduces the effects of partial occlusion, concealment, and camouflage experienced by automatic target recognition systems using traditional imagery in a tactical battlefield environment. Linear Predictive Coding (LPC) efficiently represents the vibration signatures and nearest neighbor classifiers exploit the LPC feature set using a variety of distortion metrics. Nearest neighbor classifiers achieve an 88 percent classification rate in an eight class problem, representing a classification performance increase of thirty percent from previous efforts. A novel confidence figure of merit is implemented to attain a 100 percent classification rate with less than 60 percent rejection. The high classification rates are achieved on a target set which would pose significant problems to traditional image-based recognition systems. The targets are presented to the sensor in a variety of aspects and engine speeds at a range of 1 kilometer. The classification rates achieved demonstrate the benefits of using remote vibration measurement in a ground IFF system. The signature modeling and classification system can also be used to identify rotary and fixed-wing targets.

  3. Vibrating wire apparatus for periodic magnetic structure measurement

    International Nuclear Information System (INIS)

    Temnykh, A.B.

    2003-01-01

    Devices with periodic magnetic structures such as wigglers and undulators are often key elements in synchrotron radiation sources. In applications where the coherence of the emitted radiation is important, magnetic field errors distorting the periodicity of the field can significantly reduce the performance of the devices. Thus, the measurement, localization, and correction of the field errors can be a critical issue. This article presents a new method for magnetic field measurements in periodic magnetic structures. The method uses a vibrating taut wire passing through the magnetic structure, and it involves measurements of the amplitudes and phases of the standing waves excited on the wire by the Lorentz force between an AC current in the wire and the surrounding magnetic field. For certain arrangements of the wire, vibrations in the wire will be excited by only non-periodic magnetic field component, i.e., by the error field. By measuring the phase and amplitude of these waves, one can reconstruct the error field distribution and then correct it. The method was tested on a permanent magnet wiggler with 19.8 cm period and a peak field of ∼7000G. It demonstrated ∼0.6G RMS sensitivity, δB rms /B rms ∼1.2x10 -4 and spatial resolution sufficient to identify poles generating the field error. Good agreement was found between field error measurements obtained with the vibrating wire method and with traditional Hall probe field mapping

  4. Flow-induced decentering and tube support interaction for steam generator tubes: experiment and physical interpretation

    International Nuclear Information System (INIS)

    Gay, N.; Granger, S.

    1992-11-01

    Maintaining PWR components under reliable operating conditions requires a complex design to prevent various damaging processes including flow-induced vibration and wear mechanisms. To improve the prediction of tube/support interaction and wear in PWR components, EDF has undertaken a comprehensive program oriented to both experimental and computational studies. The present paper illustrates one aspect of this program, related to the determination of contact forces between steam generator tubes and anti-vibration bars (AVBs). The dynamic, nonlinear behavior of a U-tube excited by an air cross-flow is investigated on the CLAVECIN experiment. Interesting and rather unexpected results have been obtained, by varying clearances and flow velocities. The paper is focused on four main points: (i) the originality of the experiment with a force measurement device located in flow; (ii) the importance of a refined data processing for accurately measuring contact forces; (iii) the presentation of the unexpected phenomena revealed in the CLAVECIN experiment, i.e. a flow-induced decentering of the tube which changed the initial tube/AVB clearance, and the consequences on tube/support interaction; (iv) the influence of the actual tube/support clearance in flow on wear mechanisms. The work, presented in the second part of this paper, concentrates exclusively on the physical interpretation of the flow-induced decentering phenomenon and on the theoretical analysis of its consequences on dynamic tube/support interaction. We show that the flow-induced decentering phenomenon can be generated by an unstable quasi-static coupling between the flexible tube and the confined flow, in the vicinity of the support system. This phenomenon is not specific to the CLAVECIN tests and it can be expected every time that a movable obstacle is subjected to confined flow. Moreover, in single-sided impacting conditions, the theoretical analysis confirms the linear relation, found in the CLAVECIN tests

  5. Enhancing vibration measurements by Mössbauer effect

    Science.gov (United States)

    Pasquevich, G. A.; Veiga, A.; Zélis, P. Mendoza; Martínez, N.; van Raap, M. Fernández; Sánchez, F. H.

    2014-01-01

    The measurement of the Mössbauer effect in a system excited with a periodic perturbation can provide information about it. For that purpose, the Mössbauer absorption of a source-absorber set which hyperfine parameters are well known, is measured at a constant relative velocity (i.e. at a defined spectral energy). The resulting Mössbauer absorption periodic signal provides information of the sample ac perturbation response. This approach has been used time ago to measure small tympanic vibrations (mechanical perturbations). In this work we present an extension of the vibration experiments, by measuring them at various absorber-source relative velocities within a constant-velocity strategy. As a demonstration test, the frequency response of a piezoelectric diaphragm in the 100 Hz-5 kHz range is obtained with a custom electronic counter. The experiments are performed using a 57Co( Rh) source and a 25-m-thick stainless-steel absorber fixed to a piezoelectric diaphragm. Phase shifts and amplitude vibrations with velocities in the range from 1.5 m/s to 20 mm/s are well characterized, extending the linearity limit well beyond the earlier suggested one of 1 mm/s.

  6. Customized DSP-based vibration measurement for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    LaWhite, N.E.; Cohn, K.E. [Second Wind Inc., Somerville, MA (United States)

    1996-12-31

    As part of its Advanced Distributed Monitoring System (ADMS) project funded by NREL, Second Wind Inc. is developing a new vibration measurement system for use with wind turbines. The system uses low-cost accelerometers originally designed for automobile airbag crash-detection coupled with new software executed on a Digital Signal Processor (DSP) device. The system is envisioned as a means to monitor the mechanical {open_quotes}health{close_quotes} of the wind turbine over its lifetime. In addition the system holds promise as a customized emergency vibration detector. The two goals are very different and it is expected that different software programs will be executed for each function. While a fast Fourier transform (FFT) signature under given operating conditions can yield much information regarding turbine condition, the sampling period and processing requirements make it inappropriate for emergency condition monitoring. This paper briefly reviews the development of prototype DSP and accelerometer hardware. More importantly, it reviews our work to design prototype vibration alarm filters. Two-axis accelerometer test data from the experimental FloWind vertical axis wind turbine is analyzed and used as a development guide. Two levels of signal processing are considered. The first uses narrow band pre-processing filters at key fundamental frequencies such as the 1P, 2P and 3P. The total vibration energy in each frequency band is calculated and evaluated as a possible alarm trigger. In the second level of signal processing, the total vibration energy in each frequency band is further decomposed using the two-axis directional information. Directional statistics are calculated to differentiate between linear translations and circular translations. After analyzing the acceleration statistics for normal and unusual operating conditions, the acceleration processing system described could be used in automatic early detection of fault conditions. 9 figs.

  7. Development of remote vibration measurement technique through turbulent media

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Sung Hoon; Chung, Chin Man; Kim, Min Suk; Park, Seung Kyu; Chung, Heung Jone

    2002-12-01

    The effect of wavefront distortion of laser beam of a LDV(Laser Doppler Vibrometer) in the turbulence media was investigated for application of adaptive optics to LDV. The high-speed tip/tilt adaptive optics system and closed-loop steering algorithm were developed for real-time correction of the direction fluctuation of the laser beam of LDV. The measuring performance of the LDV was improved when the steering system was applied to LDV at the vibration frequency range of 10 Hz - 30 Hz. The high-speed Shack-Hartmann wavefront sensor(400 Hz) was developed to measure the performance of the LDV due to wavefront distortion. The wavefront distortion due to the turbulence media induced low visibility and degraded the performance of the vibrometer. From the experiments, when the wavefront distortion is above 2 wavelengths in the cross section of the laser beam(dia. 20 mm), the vibration signal from laser vibrometer was severely degraded. When the wavefront distortion is smaller than one wave, the vibration signal was good. From the this research, high-speed closed-loop tip/tilt control technique of the laser beam was developed and applied to the laser metrology area. In the future, the adaptive optics system for wavefront correction will be applied to other research area.

  8. A simple optical method for measuring the vibration amplitude of a speaker

    OpenAIRE

    UEDA, Masahiro; YAMAGUCHI, Toshihiko; KAKIUCHI, Hiroki; SUGA, Hiroshi

    1999-01-01

    A simple optical method has been proposed for measuring the vibration amplitude of a speaker vibrating with a frequency of approximately 10 kHz. The method is based on a multiple reflection between a vibrating speaker plane and a mirror parallel to that speaker plane. The multiple reflection can magnify a dispersion of the laser beam caused by the vibration, and easily make a measurement of the amplitude. The measuring sensitivity ranges between sub-microns and 1 mm. A preliminary experim...

  9. Vibration-induced particle formation during yogurt fermentation - Industrial vibration measurements and development of an experimental setup.

    Science.gov (United States)

    Körzendörfer, Adrian; Temme, Philipp; Nöbel, Stefan; Schlücker, Eberhard; Hinrichs, Jörg

    2016-07-01

    The aim of the study was to investigate the effects of vibrations during yogurt fermentation. Machinery such as pumps and switching valves generate vibrations that may disturb the gelation by inducing large particles. Oscillation measurements on an industrial yogurt production line showed that oscillations are transferred from pumps right up to the fermentation tanks. An experimental setup (20L) was developed to study the effect of vibrations systematically. The fermenters were decoupled with air springs to enable reference fermentations under idle conditions. A vibration exciter was used to stimulate the fermenters. Frequency sweeps (25-1005Hz, periodic time 10s) for 20min from pH5.4 induced large particles. The number of visible particles was significantly increased from 35±4 (reference) to 89±9 particles per 100g yogurt. Rheological parameters of the stirred yogurt samples were not influenced by vibrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Honeybee Colony Vibrational Measurements to Highlight the Brood Cycle.

    Directory of Open Access Journals (Sweden)

    Martin Bencsik

    Full Text Available Insect pollination is of great importance to crop production worldwide and honey bees are amongst its chief facilitators. Because of the decline of managed colonies, the use of sensor technology is growing in popularity and it is of interest to develop new methods which can more accurately and less invasively assess honey bee colony status. Our approach is to use accelerometers to measure vibrations in order to provide information on colony activity and development. The accelerometers provide amplitude and frequency information which is recorded every three minutes and analysed for night time only. Vibrational data were validated by comparison to visual inspection data, particularly the brood development. We show a strong correlation between vibrational amplitude data and the brood cycle in the vicinity of the sensor. We have further explored the minimum data that is required, when frequency information is also included, to accurately predict the current point in the brood cycle. Such a technique should enable beekeepers to reduce the frequency with which visual inspections are required, reducing the stress this places on the colony and saving the beekeeper time.

  11. Measurement and Analysis of Horizontal Vibration Response of Pile Foundations

    Directory of Open Access Journals (Sweden)

    A. Boominathan

    2007-01-01

    Full Text Available Pile foundations are frequently used in very loose and weak deposits, in particular soft marine clays deposits to support various industrial structures, power plants, petrochemical complexes, compressor stations and residential multi-storeyed buildings. Under these circumstances, piles are predominantly subjected to horizontal dynamic loads and the pile response to horizontal vibration is very critical due to its low stiffness. Though many analytical methods have been developed to estimate the horizontal vibration response, but they are not well validated with the experimental studies. This paper presents the results of horizontal vibration tests carried out on model aluminium single piles embedded in a simulated Elastic Half Space filled with clay. The influence of various soil and pile parameters such as pile length, modulus of clay, magnitude of dynamic load and frequency of excitation on the horizontal vibration response of single piles was examined. Measurement of various response quantities, such as the load transferred to the pile, pile head displacement and the strain variation along the pile length were done using a Data Acquisition System. It is found that the pile length, modulus of clay and dynamic load, significantly influences the natural frequency and peak amplitude of the soil-pile system. The maximum bending moment occurs at the fundamental frequency of the soil-pile system. The maximum bending moment of long piles is about 2 to 4 times higher than that of short piles and it increases drastically with the increase in the shear modulus of clay for both short and long piles. The active or effective pile length is found to be increasing under dynamic load and empirical equations are proposed to estimate the active pile length under dynamic loads.

  12. On the neutron noise diagnostics of pressurized water reactor control rod vibrations II. Stochastic vibrations

    International Nuclear Information System (INIS)

    Pazsit, I.; Glockler, O.

    1984-01-01

    In an earlier publication, using the theory of neutron fluctuations induced by a vibrating control rod, a complete formal solution of rod vibration diagnostics based on neutron noise measurements was given in terms of Fourier-transformed neutron detector time signals. The suggested procedure was checked in numerical simulation tests where only periodic vibrations could be considered. The procedure and its numerical testing are elaborated for stochastic two-dimensional vibrations. A simple stochastic theory of two-dimensional flow-induced vibrations is given; then the diagnostic method is formulated in the stochastic case, that is, in terms of neutron detector auto- and crosspower spectra. A previously suggested approximate rod localization technique is also formulated in the stochastic case. Applicability of the methods is then investigated in numerical simulation tests, using the proposed model of stochastic two-dimensional vibrations when generating neutron detector spectra that simulate measured data

  13. Experimental Study on the Measurement of Water Bottom Vibration Induced by Underwater Drilling Blasting

    OpenAIRE

    Wenbin, Gu; Jianghai, Chen; Zhenxiong, Wang; Zhihua, Wang; Jianqing, Liu; Ming, Lu

    2015-01-01

    Due to the lack of proper instrumentations and the difficulties in underwater measurements, the studies about water bottom vibration induced by underwater drilling blasting are seldom reported. In order to investigate the propagation and attenuation laws of blasting induced water bottom vibration, a water bottom vibration monitor was developed with consideration of the difficulties in underwater measurements. By means of this equipment, the actual water bottom vibration induced by underwater ...

  14. A Study on the Vibration Measurement and Analysis of Rotating Machine Foundations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Rim; Jeon, Kyu Sik; Suh, Young Pyo; Cho, Chul Hwan; Kim, Sung Taeg; Lee, Myung Kyu [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    To search for the cause of vibration problem of rotating machine in the power plant, first the rotating machine is classified according to their type and each vibration characteristic is reviewed. The criteria for the evaluation of mechanical vibration effect on the structure and human being during the design of machine foundation is described below. The foundation of rotating machine is classified according to its shape and some factors are described which should be considered during dynamic modeling analysis for its correct result. Also the methods of incorporating foundation vibration into mechanical vibration analysis are reviewed. Type of vibration measurement and analysis which is used to find out the dynamic characteristic of structure is described in accordance with its signal processing and measuring method. Measurement of vibration and its analysis when there occurs real vibration troubles in power plant are compared with the results of numerical modeling as case studies. (author). 16 refs., 23 figs.

  15. Vibrations measurement in fast and PWR reactor study

    International Nuclear Information System (INIS)

    Tigeot, Y.; Epstein, A.; Hareux, F.

    1975-01-01

    In the past severe damages have occured in several nuclear reactors, by structural vibrations induced by the primary cooling flow. To avoid this kind of troubles, the SEMT makes studies for two different types of reactors. For the light pressurized water reactors, some tests have been made on the SAFRAN test loop which is a three loop 1/8 scale internal model of a 900 MWe reactor. This study is actually undertaken jointly with Framatome. Elsewhere, measurements have been made on the Phenix fast breeder sodium reactor, and studies are planned for the Super Phenix reactor [fr

  16. The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements

    Science.gov (United States)

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu

    2015-10-01

    Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.

  17. Experimental Study on the Measurement of Water Bottom Vibration Induced by Underwater Drilling Blasting

    Directory of Open Access Journals (Sweden)

    Gu Wenbin

    2015-01-01

    Full Text Available Due to the lack of proper instrumentations and the difficulties in underwater measurements, the studies about water bottom vibration induced by underwater drilling blasting are seldom reported. In order to investigate the propagation and attenuation laws of blasting induced water bottom vibration, a water bottom vibration monitor was developed with consideration of the difficulties in underwater measurements. By means of this equipment, the actual water bottom vibration induced by underwater drilling blasting was measured in a field experiment. It shows that the water bottom vibration monitor could collect vibration signals quite effectively in underwater environments. The followed signal analysis shows that the characteristics of water bottom vibration and land ground vibration induced by the same underwater drilling blasting are quite different due to the different geological environments. The amplitude and frequency band of water bottom vibration both exceed those of land ground vibration. Water bottom vibration is mainly in low-frequency band that induced by blasting impact directly acts on rock. Besides the low-frequency component, land vibration contains another higher frequency band component that induced by followed water hammer wave acts on bank slope.

  18. Development of a distributed polarization-OTDR to measure two vibrations with the same frequency

    Science.gov (United States)

    Pan, Yun; Wang, Feng; Wang, Xiangchuan; Zhang, Mingjiang; Zhou, Ling; Sun, Zhenqing; Zhang, Xuping

    2015-08-01

    A polarization optical time-domain reflectometer (POTDR) can distributedly measure the vibration of fiber by detecting the vibration induced polarization variation only with a polarization analyzer. It has great potential in the monitoring of the border intrusion, structural healthy, anti-stealing of pipeline and so on, because of its simple configuration, fast response speed and distributed measuring ability. However, it is difficult to distinguish two vibrations with the same frequency for POTDR because the signal induced by the first vibration would bury the other vibration induced signal. This paper proposes a simple method to resolve this problem in POTDR by analyzing the phase of the vibration induced signal. The effectiveness of this method in distinguishing two vibrations with the same frequency for POTDR is proved by simulation.

  19. Precision gravity measurement utilizing Accelerex vibrating beam accelerometer technology

    Science.gov (United States)

    Norling, Brian L.

    Tests run using Sundstrand vibrating beam accelerometers to sense microgravity are described. Lunar-solar tidal effects were used as a highly predictable signal which varies by approximately 200 billionths of the full-scale gravitation level. Test runs of 48-h duration were used to evaluate stability, resolution, and noise. Test results on the Accelerex accelerometer show accuracies suitable for precision applications such as gravity mapping and gravity density logging. The test results indicate that Accelerex technology, even with an instrument design and signal processing approach not optimized for microgravity measurement, can achieve 48-nano-g (1 sigma) or better accuracy over a 48-h period. This value includes contributions from instrument noise and random walk, combined bias and scale factor drift, and thermal modeling errors as well as external contributions from sampling noise, test equipment inaccuracies, electrical noise, and cultural noise induced acceleration.

  20. Criteria for accepting piping vibrations measured during FFTF plant startup

    International Nuclear Information System (INIS)

    Huang, S.N.

    1981-03-01

    Piping in the Fast Flux Test Facility is subjected to low-amplitude, high cycle vibration over the plant lifetime. Excitation sources include the mechanical vibration induced by main centrifugal pumps, auxiliary reciprocating pumps, EM pumps and possible flow oscillations. Vibration acceptance criteria must be established which will prevent excessive pipe and support fatigue damage when satified. This paper describes the preparation of such criteria against pipe failure used for acceptance testing of the Fast Flux Test Facility main heat transport piping

  1. Vibration measurements of high-heat-load monochromators for DESY PETRA III extension

    Energy Technology Data Exchange (ETDEWEB)

    Kristiansen, Paw, E-mail: paw.kristiansen@fmb-oxford.com [FMB Oxford Ltd, Unit 1 Ferry Mills, Oxford OX2 0ES (United Kingdom); Horbach, Jan; Döhrmann, Ralph; Heuer, Joachim [DESY, Deutsches Elektronen-Synchrotron Hamburg, Notkestrasse 85, 22607 Hamburg (Germany)

    2015-05-09

    Vibration measurements of a cryocooled double-crystal monochromator are presented. The origins of the vibrations are identified. The minimum achieved vibration of the relative pitch between the two crystals is 48 nrad RMS and the minimum achieved absolute vibration of the second crystal is 82 nrad RMS. The requirement for vibrational stability of beamline optics continues to evolve rapidly to comply with the demands created by the improved brilliance of the third-generation low-emittance storage rings around the world. The challenge is to quantify the performance of the instrument before it is installed at the beamline. In this article, measurement techniques are presented that directly and accurately measure (i) the relative vibration between the two crystals of a double-crystal monochromator (DCM) and (ii) the absolute vibration of the second-crystal cage of a DCM. Excluding a synchrotron beam, the measurements are conducted under in situ conditions, connected to a liquid-nitrogen cryocooler. The investigated DCM utilizes a direct-drive (no gearing) goniometer for the Bragg rotation. The main causes of the DCM vibration are found to be the servoing of the direct-drive goniometer and the flexibility in the crystal cage motion stages. It is found that the investigated DCM can offer relative pitch vibration down to 48 nrad RMS (capacitive sensors, 0–5 kHz bandwidth) and absolute pitch vibration down to 82 nrad RMS (laser interferometer, 0–50 kHz bandwidth), with the Bragg axis brake engaged.

  2. Influence of mechanical vibrations on the field quality measurements of LHC interaction region quadrupole magnets

    CERN Document Server

    Di Marco, J; Schlabach, P; Sylvester, C D; Tompkins, J C; Krzywinski, J

    2000-01-01

    The high gradient quadrupole magnets being developed by the US-LHC Accelerator Project for the LHC Interaction Regions have stringent field quality requirements. The field quality of these magnets will be measured using a rotating coil system presently under development. Mechanical vibrations of the coil during field quality measurements are of concern because such vibrations can introduce systematic errors in measurement results. This paper presents calculations of the expected influence of vibrations on field quality measurements and a technique to measure vibrations present in data acquired with standard "tangential-style" probes. Measured vibrations are reported and compared to simulations. Limits on systematic errors in multipole measurements are discussed along with implications for probe and measurement system design. (3 refs).

  3. Development of the method to measure vibrational stress of small-bore piping with contactless displacement sensor. Accuracy confirmation by vibrational experiment using branch pipe

    International Nuclear Information System (INIS)

    Tsuji, Takashi; Maekawa, Akira; Takahashi, Tsuneo

    2013-01-01

    In nuclear power plants, vibrational stress of piping is measured to prevent its fatigue failures. Easier handling and more efficient performance is desirable for the measurement of vibrational stress. The authors have proposed a method to measure vibrational stress using optical contactless displacement sensors, and have developed a device based on the method. In addition, they downsized the device and improved the method to allow its use for measurements even in narrow spaces in the plants. In this study, vibrational experiment using branch pipes and the device was conducted to confirm the measurement accuracy of the improved method. It was found that the improved method have sufficient accuracy for screening to evaluate the vibrational stress. It was also found that this measurement method was thought to be susceptible to the vibration of main pipe. So a technique was proposed to improve the accuracy of the measurement in this paper. (author)

  4. Vibration measurements at the main gate valves of WWER-440 nuclear power plants

    International Nuclear Information System (INIS)

    Rybak, M.; Matal, O.; Urbanek, M.

    1990-01-01

    The paper summarizes some results of studies concerned with the vibrations of the main gate valves DN 500 during operation of the Dukovany NPP. A diagnostic system for vibration measurements is described. Special attention is paid to the interpretation of the measuring results. Statistical signal analysis is the starting point of deriving parameters for diagostics of impact effects. (author)

  5. Rapid density-measurement system with vibrating-tube densimeter

    International Nuclear Information System (INIS)

    Kayukawa, Yohei; Hasumoto, Masaya; Watanabe, Koichi

    2003-01-01

    Concerning an increasing demand for environmentally friendly refrigerants including hydrocarbons, thermodynamic properties of such new refrigerants, especially densities, are essential information for refrigeration engineering. A rapid density-measurement system with vibrating-tube densimeter was developed in the present study with an aim to supply large numbers of high-quality PVT property data in a short period. The present system needs only a few minutes to obtain a single datum, and requires less than 20 cm 3 sample fluid. PVT properties in the entire fluid-phase, vapor-pressures, saturated-liquid densities for pure fluid are available. Liquid densities, bubble-point pressures and saturated-liquid densities for mixture can be obtained. The measurement range is from 240 to 380 K for temperature and up to 7 MPa for pressure. By employing a new calibration function, density can be precisely obtained even at lower densities. The densimeter is calibrated with pure water and iso-octane which is one of the density-standard fluids, and then measurement uncertainty was evaluated to be 0.1 kg m -3 or 0.024% whichever greater in density, 0.26 kPa or 0.022% whichever greater in pressure and 3 mK for temperature, respectively. The performance of the present measurement system was examined by measuring thermodynamic properties for refrigerant R134a. The experimental results were compared with available equation of state and confirmed to agree with it within ±0.05% for liquid densities while ±0.5% in pressure for the gas phase

  6. Comparative analysis of internal friction and natural frequency measured by free decay and forced vibration

    International Nuclear Information System (INIS)

    Wang, Y. Z.; Ding, X. D.; Xiong, X. M.; Zhang, J. X.

    2007-01-01

    Relations between various values of the internal friction (tgδ, Q -1 , Q -1* , and Λ/π) measured by free decay and forced vibration are analyzed systemically based on a fundamental mechanical model in this paper. Additionally, relations between various natural frequencies, such as vibration frequency of free decay ω FD , displacement-resonant frequency of forced vibration ω d , and velocity-resonant frequency of forced vibration ω 0 are calculated. Moreover, measurement of natural frequencies of a copper specimen of 99.9% purity has been made to demonstrate the relation between the measured natural frequencies of the system by forced vibration and free decay. These results are of importance for not only more accurate measurement of the elastic modulus of materials but also the data conversion between different internal friction measurements

  7. Re-tuning tuned mass dampers using ambient vibration measurements

    International Nuclear Information System (INIS)

    Hazra, B; Sadhu, A; Narasimhan, S; Lourenco, R

    2010-01-01

    Deterioration, accidental changes in the operating conditions, or incorrect estimates of the structure modal properties lead to de-tuning in tuned mass dampers (TMDs). To restore optimal performance, it is necessary to estimate the modal properties of the system, and re-tune the TMD to its optimal state. The presence of closely spaced modes and a relatively large amount of damping in the dominant modes renders the process of identification difficult. Furthermore, the process of estimating the modal properties of the bare structure using ambient vibration measurements of the structure with the TMD is challenging. In order to overcome these challenges, a novel identification and re-tuning algorithm is proposed. The process of identification consists of empirical mode decomposition to separate the closely spaced modes, followed by the blind identification of the remaining modes. Algorithms for estimating the fundamental frequency and the mode shape of the primary structure necessary for re-tuning the TMD are proposed. Experimental results from the application of the proposed algorithms to identify and re-tune a laboratory structure TMD system are presented

  8. Fluid flow measurements by means of vibration monitoring

    International Nuclear Information System (INIS)

    Campagna, Mauro M; Dinardo, Giuseppe; Fabbiano, Laura; Vacca, Gaetano

    2015-01-01

    The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology. (paper)

  9. Fluid flow measurements by means of vibration monitoring

    Science.gov (United States)

    Campagna, Mauro M.; Dinardo, Giuseppe; Fabbiano, Laura; Vacca, Gaetano

    2015-11-01

    The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology.

  10. A three-dimensional laser vibration measurement technology realized on five laser beam and its calibration

    Science.gov (United States)

    Li, Lu-Ke; Zhang, Shen-Feng

    2018-03-01

    Put forward a kind of three-dimensional vibration information technology of vibrating object by the mean of five laser beam of He-Ne laser, and with the help of three-way sensor, measure the three-dimensional laser vibration developed by above mentioned technology. The technology based on the Doppler principle of interference and signal demodulation technology, get the vibration information of the object, through the algorithm processing, extract the three-dimensional vibration information of space objects, and can achieve the function of angle calibration of five beam in the space, which avoid the effects of the mechanical installation error, greatly improve the accuracy of measurement. With the help of a & B K4527 contact three axis sensor, measure and calibrate three-dimensional laser vibrometer, which ensure the accuracy of the measurement data. Summarize the advantages and disadvantages of contact and non-contact sensor, and analysis the future development trends of the sensor industry.

  11. Investigation on Flow-Induced Noise due to Backflow in Low Specific Speed Centrifugal Pumps

    Directory of Open Access Journals (Sweden)

    Qiaorui Si

    2013-01-01

    Full Text Available Flow-induced noise causes disturbances during the operation of centrifugal pumps and also affects their performance. The pumps often work at off-design conditions, mainly at part-load conditions, because of frequent changes in the pump device system. Consequently numerous unstable phenomena occur. In low specific speed centrifugal pumps the main disturbance is the inlet backflow, which is considered as one of the most important factors of flow-induced noise and vibration. In this study, a test rig of the flow-induced noise and vibration of the centrifugal pump was built to collect signals under various operating conditions. The three-dimensional unsteady flow of centrifugal pumps was calculated based on the Reynolds-averaged equations that resemble the shear stress transport (SST k-ω turbulence model. The results show that the blade passing frequency and shaft frequency are dominant in the spectrum of flow-induced noise, whereas the shaft component, amplitude value at shaft frequency, and peak frequencies around the shaft increase with decreasing flow. Through flow field analysis, the inlet backflow of the impeller occurs under 0.7 times the design flow. The pressure pulsation spectrum with backflow conditions validates the flow-induced noise findings. The velocity characteristics of the backflow zone at the inlet pipe were analyzed, and the dynamic characteristics of the backflow eddy during one impeller rotating period were simultaneously obtained by employing the backflow conditions. A flow visualization experiment was performed to confirm the numerical calculations.

  12. Correlating the vibrational spectra of structurally related molecules: A spectroscopic measure of similarity.

    Science.gov (United States)

    Tao, Yunwen; Zou, Wenli; Cremer, Dieter; Kraka, Elfi

    2018-03-05

    Using catastrophe theory and the concept of a mutation path, an algorithm is developed that leads to the direct correlation of the normal vibrational modes of two structurally related molecules. The mutation path is defined by weighted incremental changes in mass and geometry of the molecules in question, which are successively applied to mutate a molecule into a structurally related molecule and thus continuously converting their normal vibrational spectra from one into the other. Correlation diagrams are generated that accurately relate the normal vibrational modes to each other by utilizing mode-mode overlap criteria and resolving allowed and avoided crossings of vibrational eigenstates. The limitations of normal mode correlation, however, foster the correlation of local vibrational modes, which offer a novel vibrational measure of similarity. It will be shown how this will open new avenues for chemical studies. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency

    Science.gov (United States)

    Platt, Michael; Jagodnik, John

    2011-01-01

    A system for turbo machinery blade vibration has been developed that combines time-of-arrival sensors for blade vibration amplitude measurement and radar sensors for vibration frequency and mode identification. The enabling technology for this continuous blade monitoring system is the radar sensor, which provides a continuous time series of blade displacement over a portion of a revolution. This allows the data reduction algorithms to directly calculate the blade vibration frequency and to correctly identify the active modes of vibration. The work in this project represents a significant enhancement in the mode identification and stress calculation accuracy in non-contacting stress measurement system (NSMS) technology when compared to time-of-arrival measurements alone.

  14. Measurement of Mechatronic Property of Biological Gel with Micro-Vibrating Electrode at Ultrasonic Frequency

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2008-10-01

    Full Text Available A measurement system has been designed with a micro-vibrating electrode at ultrasonic frequency to measure local impedance of biological gel in vitro. The designed system consists of two electrodes, where one of the electrodes vibrates with a piezoelectric actuator. The component of variation at impedance between two electrodes with vibration of one electrode is analyzed at the corresponding spectrum. The manufactured system was applied to measure impedance of a physiological saline solution, a potassium chloride solution, a dextran aqueous solution, and an egg. The experimental results show that the designed system is effective to measure local mechatronic property of biological gel.

  15. The obscure factor analysis on the vibration reliability of the internals of nuclear power plant reactor and anti-vibration measures

    International Nuclear Information System (INIS)

    Fu Geyan; Zhu Qirong

    1998-11-01

    It is pointed out that the main reason making nuclear power plants reactors leak is the vibration of internals of reactors. The factors which lead the vibration all have randomness and obscureness. The obscure reliability theory is introduced to the vibration system of internals of nuclear power reactor. Based on a quantity of designing and moving data, the obscure factors effecting the vibration reliability of the internals of nuclear power plant reactor are analyzed and the anti-vibration reliability criteria and the evaluating model are given. And the anti-vibration reliability measures are advanced from different quarters of the machine design and building, the thermohydraulics design, the control of reactivity, etc.. They may benefit the theory and practice for building and perfecting the vibration obscure reliability model of the reactor internals

  16. Vibration of heat exchange components in liquid and two-phase cross-flow

    International Nuclear Information System (INIS)

    Pettigrew, M.J.

    1978-05-01

    Heat exchange components must be analysed at the design stage to avoid flow-induced vibration problems. This paper presents information required to formulate flow-induced vibration excitation mechanisms in liquid and two-phase cross-flow. Three basic excitation mechanisms are considered, namely: 1) fluidelastic instability, 2) periodic wake shedding, and 3) response to random flow turbulence. The vibration excitation information is deduced from vibration response data for various types of tube bundles. Sources of information are: 1) fundamental studies on tube bundles, 2) model testing, 3) field measurements, and 4) operating experiences. Fluidelastic instability is formulated in terms of dimensionless flow velocity and dimensionless damping; periodic wake shedding in terms of Strouhal number and lift coefficient; and random turbulence excitation in terms of statistical parameters of random forces. Guidelines are recommended for design purposes. (author)

  17. Numerical simulation of flow induced airfoil vibrations with large amplitudes

    Czech Academy of Sciences Publication Activity Database

    Sváček, Petr; Feistauer, M.; Horáček, Jaromír

    2007-01-01

    Roč. 23, - (2007), s. 391-411 ISSN 0889-9746 R&D Projects: GA AV ČR IAA200760613 Institutional research plan: CEZ:AV0Z20760514 Keywords : aeroelasticity * flutter * nonlinear oscillations Subject RIV: BI - Acoustics Impact factor: 0.821, year: 2007

  18. Experimental investigation of flow-induced control-element movements by noise analysis

    International Nuclear Information System (INIS)

    Grunwald, G.; Liewers, P.; Schumann, P.; Weiss, F.P.

    1978-01-01

    The possibility has been reported of separating a single noise component due to flow-induced vibrations of a certain control element from a complex neutron signal which also contained contributions of many other control elements vibrating similarly. One of the basic assumptions for the different methods applied was that the body sound signal originating from touch events with the channel wall is closely correlated with the control-element movement. Some discrepancies between the results of the different methods showed that this assumption may not be entirely fulfilled. This paper investigates this correlation more accurately by measurements of an air flow model of the control-element channel. The pendulum movement of the element, and the body-sound signal due to the touch events with the channel wall, were measured at different flow-rates. The result is that the correlation is not an ideal one. For a constant flow-rate the touch events happen mainly within a small angle region, which means that the touch event marks a certain phase of the movement period and is therefore correlated with the movement. The dispersion of the touch events' angle distribution explains the small discrepancy between the so-called modified averaging method, which uses the sound signal to trigger the averaging procedure, and the partial spectral density method. But not all discrepancies can be explained by these results; they await further investigation. (author)

  19. Nonlinear laser dynamics induced by frequency shifted optical feedback: application to vibration measurements.

    Science.gov (United States)

    Girardeau, Vadim; Goloni, Carolina; Jacquin, Olivier; Hugon, Olivier; Inglebert, Mehdi; Lacot, Eric

    2016-12-01

    In this article, we study the nonlinear dynamics of a laser subjected to frequency shifted optical reinjection coming back from a vibrating target. More specifically, we study the nonlinear dynamical coupling between the carrier and the vibration signal. The present work shows how the nonlinear amplification of the vibration spectrum is related to the strength of the carrier and how it must be compensated to obtain accurate (i.e., without bias) vibration measurements. The theoretical predictions, confirmed by numerical simulations, are in good agreement with the experimental data. The main motivation of this study is the understanding of the nonlinear response of a laser optical feedback imaging sensor for quantitative phase measurements of small vibrations in the case of strong optical feedback.

  20. Discrete time interval measurement system: fundamentals, resolution and errors in the measurement of angular vibrations

    International Nuclear Information System (INIS)

    Gómez de León, F C; Meroño Pérez, P A

    2010-01-01

    The traditional method for measuring the velocity and the angular vibration in the shaft of rotating machines using incremental encoders is based on counting the pulses at given time intervals. This method is generically called the time interval measurement system (TIMS). A variant of this method that we have developed in this work consists of measuring the corresponding time of each pulse from the encoder and sampling the signal by means of an A/D converter as if it were an analog signal, that is to say, in discrete time. For this reason, we have denominated this method as the discrete time interval measurement system (DTIMS). This measurement system provides a substantial improvement in the precision and frequency resolution compared with the traditional method of counting pulses. In addition, this method permits modification of the width of some pulses in order to obtain a mark-phase on every lap. This paper explains the theoretical fundamentals of the DTIMS and its application for measuring the angular vibrations of rotating machines. It also displays the required relationship between the sampling rate of the signal, the number of pulses of the encoder and the rotating velocity in order to obtain the required resolution and to delimit the methodological errors in the measurement

  1. Alternative measures to observe and record vocal fold vibrations

    NARCIS (Netherlands)

    Schutte, HK; McCafferty, G; Coman, W; Carroll, R

    1996-01-01

    Vocal fold vibration patterns form the basis for the production of vocal sound. Over the years much effort has been spend to optimize the ways to visualize and give a description of these patterns. Before video possibilities became available the description of the patterns was Very time-consuming.

  2. Low-cost vibration sensor based on dual fiber Bragg gratings and light intensity measurement.

    Science.gov (United States)

    Gao, Xueqing; Wang, Yongjiao; Yuan, Bo; Yuan, Yinquan; Dai, Yawen; Xu, Gang

    2013-09-20

    A vibration monitoring system based on light intensity measurement has been constructed, and the designed accelerometer is based on steel cantilever frame and dual fiber Bragg gratings (FBGs). By using numerical simulations for the dual FBGs, the dependence relationship of the area of main lobes on the difference of initial central wavelengths is obtained and the most optimal choice for the initial value and the vibration amplitude of the difference of central wavelengths of two FBGs is suggested. The vibration monitoring experiments are finished, and the measured data are identical to the simulated results.

  3. Laser-Doppler vibrating tube densimeter for measurements at high temperatures and pressures

    International Nuclear Information System (INIS)

    Aida, Tsutomu; Yamazaki, Ai; Akutsu, Makoto; Ono, Takumi; Kanno, Akihiro; Hoshina, Taka-aki; Ota, Masaki; Watanabe, Masaru; Sato, Yoshiyuki; Smith, Richard L. Jr.; Inomata, Hiroshi

    2007-01-01

    A laser-Doppler vibrometer was used to measure the vibration of a vibrating tube densimeter for measuring P-V-T data at high temperatures and pressures. The apparatus developed allowed the control of the residence time of the sample so that decomposition at high temperatures could be minimized. A function generator and piezoelectric crystal was used to excite the U-shaped tube in one of its normal modes of vibration. Densities of methanol-water mixtures are reported for at 673 K and 40 MPa with an uncertainty of 0.009 g/cm 3

  4. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  5. Damage assessment in a sandwich panel based on full-field vibration measurements

    Science.gov (United States)

    Seguel, F.; Meruane, V.

    2018-03-01

    Different studies have demonstrated that vibration characteristics are sensitive to debonding in composite structures. Nevertheless, one of the main restrictions of vibration measurements is the number of degrees of freedom that can be acquired simultaneously, which restricts the size of the damage that can be identified. Recent studies have shown that it is possible to use high-speed three-dimensional (3-D) digital image correlation (DIC) techniques for full-field vibration measurements. With this technique, it is possible to take measurements at thousands of points on the surface of a structure with a single snapshot. The present article investigates the application of full-field vibration measurements in the debonding assessment of an aluminium honeycomb sandwich panel. Experimental data from an aluminium honeycomb panel containing different damage scenarios is acquired by a high-speed 3-D DIC system; four methodologies to compute damage indices are evaluated: mode shape curvatures, uniform load surface, modal strain energy and gapped smoothing.

  6. Blade Vibration Measurement System for Characterization of Closely Spaced Modes and Mistuning, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There are several ongoing challenges in non-contacting blade vibration and stress measurement systems that can address closely spaced modes and blade-to-blade...

  7. Prototype vibration measurement program for reactor internals (177-fuel assembly plant). Supplement 1

    International Nuclear Information System (INIS)

    Simonis, J.C.; Post, R.C.; Thoren, D.E.

    1976-08-01

    The surveillance specimen holder tubes installed in the Babcock and Wilcox 177-fuel assembly plants have been redesigned. The structural adequacy of this design has been verified through extensive analysis. The design adequacy will be further confirmed by measuring the vibrational response of the surveillance specimen holder tube during normal and transient flow operation. This report describes the vibration measurement program that will be conducted at Toledo Edison's Davis Besse 1 site

  8. Comprehensive vibration assessment program for Yonggwang nuclear power plant unit 4

    International Nuclear Information System (INIS)

    Rhee, Hui Nam; Hwang, Jong Keun; Kim, Tae Hyung; Kim, Jung Kyu; Song, Heuy Gap; Kim, Beom Shig

    1995-01-01

    A Comprehensive Vibration Assessment Program (CVAP) has been performed for Yonggwang Nuclear Power Plant Unit 4 (YGN 4) in order to verify the structural integrity of the reactor internals for flow induced vibrations prior to commercial operation. The theoretical evidence for the structural integrity of the reactor internals and the basis for measurement and inspection are provided by the analysis. Flow induced hydraulic loads and reactor internals vibration response data were measured during pre-core hot functional testing in YGN 4 site. Also, the critical areas in the reactor internals were inspected visually to check any existence of structural abnormality before and after the pre-core hot functional testing. Then, the measured data have been analyzed and compared with the predicted data by analysis. The measured stresses are less than the predicted values and the allowable limits. It is concluded that the vibration response of the reactor internals due to the flow induced vibration under normal operation is acceptable for long term operation

  9. Preventive measures against vibration of FBR reactor vessel cooling structure

    International Nuclear Information System (INIS)

    Eguchi, Yuzuru; Tanaka, Nobukazu

    1989-01-01

    The present paper describes the fundamental feature of the fluid-elastic vibration of flexible overflow weir, as observed in the French demonstration fast breeder reactor, Super Phenix-1. In the experimental study, the instability criterion of the fluid-elastic vibration was studied by using a simple experimental apparatus of a rectangular tank separated by a flexible weir. A spring-mass model was developed to clarify the mechanism of the instability. The instability condition was analytically derived from the equations of the spring-mass model. The equations of the spring-mass model was also computationally integrated in time to simulate the temporal evolution of the fluid-elastic vibration. The comparison between the experimental and theoretical results indicates that the present theoretical model is capable of predicting most of the physical tendencies observed in the experiment. The present study revealed that the lag time of waterfall at the weir is the most influential parameter among other hydro-elastic parameters. (author)

  10. Noncontact measurement of rotating blade vibrations. Doyoku shindo no hisesshoku keisokuho no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Yukio; Endo, Masanori; Sugiyama, Nanahisa; Koshinuma, Takeshi

    1989-08-01

    The noncontact measurement method of rotating blade vibrations was developed for fans, compressors and turbines, and applied to turbofan engines and industrial gas turbines. The method required no machining of blades and rotor except sensors attached to a casing to detect blade-tips. The method allowed to measure simultaneously the vibration of all blades, by measuring elapsed times of blade-tips rotating from a measuring start point to a detecting point, and detecting the time differences between a vibration and non-vibration condition. The measuring system was composed of the detectors and subsystems for signal processing, control, calculation and display. The vibration wave forms of a few blades and the maximum vibration amplitudes of all the blades were displayed on a realtime basis in an on-line monitoring mode, and an off-line data processing mode was also available for subsequent analyses and reviews. The results of application to existing engines favorably agreed with those of strain gage measurements. 16 refs., 75 figs., 3 tabs.

  11. Optic flow induced self-tilt perception

    NARCIS (Netherlands)

    Bos, J.E.

    2008-01-01

    Roll optic flow induces illusory self-tilt in humans. As far as the mechanism underlying this visual-vestibular interaction is understood, larger angles of self-tilt are predicted than observed. It is hypothesized that the discrepancy can be explained by idiotropic (i.e., referring to a personal

  12. Active Low-frequency Vertical Vibration Isolation System for Precision Measurements

    Institute of Scientific and Technical Information of China (English)

    WU Kang; LI Gang; HU Hua; WANG Lijun

    2017-01-01

    Low-frequency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise.Several types of active vibration isolation systems have been developed.However,few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility.An active low-frequency vertical vibration isolation system based on an earlier instrument,the Super Spring,is designed and implemented.The system,which is simple and compact,consists of two stages:a parallelogram-shaped linkage to ensure vertical motion,and a simple spring-mass system.The theoretical analysis of the vibration isolation system is presented,including terms erroneously ignored before.By carefully choosing the mechanical parameters according to the above analysis and using feedback control,the resonance frequency of the system is reduced from 2.3 to 0.03 Hz,a reduction by a factor of more than 75.The vibration isolation system is installed as an inertial reference in an absolute gravimeter,where it improved the scatter of the absolute gravity values by a factor of 5.The experimental results verifies the improved performance of the isolation system,making it particularly suitable for precision experiments.The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems.An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed,providing fundamental guidelines for vibration isolator design and assembling.

  13. Effect of detector size and position on measured vibration spectra of strings and rods

    International Nuclear Information System (INIS)

    Lipcsei, S.; Kiss, S.; Por, G.

    1993-04-01

    Weight functions of string and rod vibrations are described by standing and travelling wave models. The effects of detector size and position on the measured vibration spectra was investigated, and the main characteristics of the transfer function were calculated by a simple standing wave model. The theoretical results were compared with data from laboratory rod vibration experiments, and with pressure fluctuation spectra obtained at the Paks Nuclear Power Plant. In addition, some fundamental physical consequences can be made using the theory of superposition of travelling waves and their reflection on clamped rod ends. (R.P.) 5 refs.; 10 figs

  14. A New Approach for Reliability Life Prediction of Rail Vehicle Axle by Considering Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Meral Bayraktar

    2014-01-01

    Full Text Available The effect of vibration on the axle has been considered. Vibration measurements at different speeds have been performed on the axle of a running rail vehicle to figure out displacement, acceleration, time, and frequency response. Based on the experimental works, equivalent stress has been used to find out life of the axles for 90% and 10% reliability. Calculated life values of the rail vehicle axle have been compared with the real life data and it is found that the life of a vehicle axle taking into account the vibration effects is in good agreement with the real life of the axle.

  15. Vibrational effects of fuel elements detected during KNK II power operation

    International Nuclear Information System (INIS)

    Mitzel, F.; Vaeth, W.; Ansari, S.

    1982-08-01

    The reactivity signal of the KNK II reactor shows almost harmonic reactivity oscillations of Δρ≤0.5 cent. Sensitive correlation measurements, made during the regular plant operation with the normal out-of-core plant instrumentation, revealed that they are associated with individual fuel elements. Auxiliary measurements under various operational conditions and theoretical considerations showed that the oscillations are caused by flow-induced mechanical vibrations. Similar characteristics with respect to the frequencies of these oscillations have obviously not yet been observed for fuel element vibrations in other reactors and tests in out-of-core loops. Therefore efforts were made to classify the phenomenon and to identify the excitation mechanism by using only the normal plant instrumentation. It seems to be most likely a flow-induced vibration of whole fuel elements by vortex shedding or jet switching. This model can explain all observations without exception [de

  16. The Shock and Vibration Bulletin. Part 2. Measurement Techniques and Data Analysis, Dynamic Measurements, Vibration and Acoustics

    Science.gov (United States)

    1980-09-01

    Smallwood and D. L. Gregory, Sandia Laboratories, Albuquerque, NM A NEW METHOD OF IMPROVING SPECTRA SHAPING IN REVERBERANT CHAMBERS...DAMPING M. M. Wallace and C. W. Bert, The University of Oklahoma, Norman , OK CONTRIBUTIONS TO THE DYNAMIC ANALYSIS OF MAGLEV VEHICLES ON ELEVATED GUIDEWAYS...RANDOM VIBRATION EXTRENAL CONTROL STRATEGY D. 0. Smallwood D. L. Gregory Sandia Laboratories Albuquerque, NM This paper discusses the theoretical basis for

  17. Vibrations on pulse tube based Dry Dilution Refrigerators for low noise measurements

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, E. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay (France); Billard, J.; De Jesus, M.; Juillard, A. [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, F-69622 Villeurbanne (France); Leder, A. [Massachussets Institute of Technology, Laboratory for Nuclear Science, 77 Massachusetts Avenue Cambridge, MA 02139-4307 (United States)

    2017-06-21

    Dry Dilution Refrigerators (DDR) based on pulse tube cryo-coolers have started to replace Wet Dilution Refrigerators (WDR) due to the ease and low cost of operation. However these advantages come at the cost of increased vibrations, induced by the pulse tube. In this work, we present the vibration measurements performed on three different commercial DDRs. We describe in detail the vibration measurement system we assembled, based on commercial accelerometers, conditioner and DAQ, and examined the effects of the various damping solutions utilized on three different DDRs, both in the low and high frequency regions. Finally, we ran low temperature, pseudo-massive (30 and 250 g) germanium bolometers in the best vibration-performing system under study and report on the results.

  18. Automatic Leak Detection in Buried Plastic Pipes of Water Supply Networks by Means of Vibration Measurements

    OpenAIRE

    Martini, Alberto; Troncossi, Marco; Rivola, Alessandro

    2015-01-01

    The implementation of strategies for controlling water leaks is essential in order to reduce losses affecting distribution networks of drinking water. This paper focuses on leak detection by using vibration monitoring techniques. The long-term goal is the development of a system for automatic early detection of burst leaks in service pipes. An experimental campaign was started to measure vibrations transmitted along water pipes by real burst leaks occurring in actual water supply networks. Th...

  19. Corneal Vibrations during Intraocular Pressure Measurement with an Air-Puff Method

    Directory of Open Access Journals (Sweden)

    Robert Koprowski

    2018-01-01

    Full Text Available Introduction. The paper presents a commentary on the method of analysis of corneal vibrations occurring during eye pressure measurements with air-puff tonometers, for example, Corvis. The presented definition and measurement method allow for the analysis of image sequences of eye responses—cornea deformation. In particular, the outer corneal contour and sclera fragments are analysed, and 3D reconstruction is performed. Methods. On this basis, well-known parameters such as eyeball reaction or corneal response are determined. The next steps of analysis allow for automatic and reproducible separation of four different corneal vibrations. These vibrations are associated with (1 the location of the maximum of cornea deformation; (2 the cutoff area measured in relation to the cornea in a steady state; (3 the maximum of peaks occurring between applanations; and (4 the other characteristic points of the corneal contour. Results. The results obtained enable (1 automatic determination of the amplitude of vibrations; (2 determination of the frequency of vibrations; and (3 determination of the correlation between the selected types of vibrations. Conclusions. These are diagnostic features that can be directly applied clinically for new and archived data.

  20. Measuring frequency of one-dimensional vibration with video camera using electronic rolling shutter

    Science.gov (United States)

    Zhao, Yipeng; Liu, Jinyue; Guo, Shijie; Li, Tiejun

    2018-04-01

    Cameras offer a unique capability of collecting high density spatial data from a distant scene of interest. They can be employed as remote monitoring or inspection sensors to measure vibrating objects because of their commonplace availability, simplicity, and potentially low cost. A defect of vibrating measurement with the camera is to process the massive data generated by camera. In order to reduce the data collected from the camera, the camera using electronic rolling shutter (ERS) is applied to measure the frequency of one-dimensional vibration, whose frequency is much higher than the speed of the camera. Every row in the image captured by the ERS camera records the vibrating displacement at different times. Those displacements that form the vibration could be extracted by local analysis with sliding windows. This methodology is demonstrated on vibrating structures, a cantilever beam, and an air compressor to identify the validity of the proposed algorithm. Suggestions for applications of this methodology and challenges in real-world implementation are given at last.

  1. Measurement of ground and nearby building vibration and noise induced by trains in a metro depot.

    Science.gov (United States)

    Zou, Chao; Wang, Yimin; Wang, Peng; Guo, Jixing

    2015-12-01

    Metro depots are where subway trains are parked and where maintenance is carried out. They usually occupy the largest ground areas in metro projects. Due to land utilization problems, Chinese cities have begun to develop over-track buildings above metro depots for people's life and work. The frequently moving trains, when going into and out of metro depots, can cause excessive vibration and noise to over-track buildings and adversely affect the living quality of the building occupants. Considering the current need of reliable experimental data for the construction of metro depots, field measurements of vibration and noise on the ground and inside a nearby 3-story building subjected to moving subway trains were conducted in a metro depot at Guangzhou, China. The amplitudes and frequency contents of velocity levels were quantified and compared. The composite A-weighted equivalent sound levels and maximum sound levels were captured. The predicted models for vibration and noise of metro depot were proposed based on existing models and verified. It was found that the vertical vibrations were significantly greater than the horizontal vibrations on the ground and inside the building near the testing line. While at the throat area, the horizontal vibrations near the curved track were remarkably greater than the vertical vibrations. The attenuation of the vibrations with frequencies above 50 Hz was larger than the ones below 50 Hz, and the frequencies of vibration transmitting to adjacent buildings were mainly within 10-50 Hz. The largest equivalent sound level generated in the throat area was smaller than the testing line one, but the instantaneous maximum sound level induced by wheels squeal, contact between wheels and rail joints as well as turnout was close to or even greater than the testing line one. The predicted models gave a first estimation for design and assessment of newly built metro depots. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. On the Modeling of a MEMS Based Capacitive Accelerometer for Measurement of Tractor Seat Vibration

    Directory of Open Access Journals (Sweden)

    M. Alidoost

    2010-04-01

    Full Text Available Drivers of heavy vehicles often face with higher amplitudes of frequencies range between 1-80 Hz. Hence, this range of frequency results in temporary or even sometimes permanent damages to the health of drivers. Examples for these problems are damages to the vertebral column and early tiredness, which both reduce the driver’s performance significantly. One solution to this problem is to decrease the imposed vibration to the driver’s seat by developing an active seat system. These systems require an online measuring unit to sense vibrations transferred to the seat. The measuring unit can include a capacitive micro-accelerometer on the basis of MEMS which measure online vibrations on the seat. In this study, the mechanical behavior of a capacitive micro-accelerometer for the vibration range applied to a tractor seat has been simulated. The accelerometer is capable to measure step, impact and harmonic external excitations applied to the system. The results of the study indicate that, with increasing the applied voltage, the system sensitivity also increases, but the measuring range of vibrations decreases and vice versa. The modeled accelerometer, at damping ratio of 0.67 is capable to measure accelerations within the frequency range of lower than 130 Hz.

  3. A Method Using Optical Contactless Displacement Sensors to Measure Vibration Stress of Small-Bore Piping.

    Science.gov (United States)

    Maekawa, Akira; Tsuji, Takashi; Takahashi, Tsuneo; Noda, Michiyasu

    2014-02-01

    In nuclear power plants, vibration stress of piping is frequently evaluated to prevent fatigue failure. A simple and fast measurement method is attractive to evaluate many piping systems efficiently. In this study, a method to measure the vibration stress using optical contactless displacement sensors was proposed, the prototype instrument was developed, and the instrument practicality for the method was verified. In the proposed method, light emitting diodes (LEDs) were used as measurement sensors and the vibration stress was estimated by measuring the deformation geometry of the piping caused by oscillation, which was measured as the piping curvature radius. The method provided fast and simple vibration estimates for small-bore piping. Its verification and practicality were confirmed by vibration tests using a test pipe and mock-up piping. The stress measured by both the proposed method and an accurate conventional method using strain gauges were in agreement, and it was concluded that the proposed method could be used for actual plant piping systems.

  4. Features of measurement and processing of vibration signals registered on the moving parts of electrical machines

    OpenAIRE

    Gyzhko, Yuri

    2011-01-01

    Measurement and processing of vibration signals registered on the moving parts of the electrical machines using the diagnostic information-measuring system that uses Bluetooth wireless standard for the transmission of the measured data from moving parts of electrical machine is discussed.

  5. Measurements of vibrational excitation of N2, CO, and NO by low energy proton impact

    International Nuclear Information System (INIS)

    Krutein, J.; Linder, F.

    1979-01-01

    Differential scattering experiments are reported for proton impact on N 2 , CO, and NO in the energy range E/sub lab/=30--80 eV. The measurements include the range of very small scattering angles around 0 0 as well as the rainbow region. The vibrationally resolved energy-loss spectra show a relatively low vibrational inelasticity for all three systems. Differential cross sections, transition probabilities, and the mean vibrational energy transfer are presented. Rotational excitation is indicated by the broadening of the energy-loss peaks which is most significant for H + --NO. The small-angle scattering data for vibrational excitation in CO show good agreement with the impact parameter theory using the known long-range interactions for this system

  6. Measurement of Vibrational Non-Equilibrium in a Supersonic Freestream Using Dual-Pump CARS

    Science.gov (United States)

    Cutler, Andrew D.; Magnotti, Gaetano; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Danehy, Paul M.; Burle, Rob; Rockwell, Robert; Goyne, Christopher; McDaniel, James

    2012-01-01

    Measurements have been conducted at the University of Virginia Supersonic Combustion Facility of the flow in a constant area duct downstream of a Mach 2 nozzle, where the airflow has first been heated to approximately 1200 K. Dual-pump CARS was used to acquire rotational and vibrational temperatures of N2 and O2 at two planes in the duct at different downstream distances from the nozzle exit. Wall static pressures in the nozzle are also reported. With a flow of clean air, the vibrational temperature of N2 freezes at close to the heater stagnation temperature, while the O2 vibrational temperature is about 1000 K. The results are well predicted by computational fluid mechanics models employing separate "lumped" vibrational and translational/rotational temperatures. Experimental results are also reported for a few percent steam addition to the air and the effect of the steam is to bring the flow to thermal equilibrium.

  7. Measurements of bridges' vibration characteristics using a mobile phone

    Directory of Open Access Journals (Sweden)

    Z. M. C. Pravia

    Full Text Available ABSTRACTThis research presents an alternative way to perform a bridge inspection, which considers the dynamics parameters from the structure. It shows an experimental phase with use of a mobile phone to extract the accelerations answers from two concrete bridges, from those records is feasible to obtain natural frequencies using the Fast Fourier Transform (FFT.Numerical models with uses finite element model (FEM allow to determine the natural frequencies from the two concrete bridges and compare with the experimental phase of each one. The final results shows it's possible to use mobiles phones to extract vibration answers from concrete bridges and define the structural behavior of bridges from natural frequencies, this procedure could be used to evaluate bridges with lower costs.

  8. Measurement of unsteady flow forces in inline and staggered tube bundles with fixed and vibrating tubes

    International Nuclear Information System (INIS)

    Michel, A.; Heinecke, E.; Decken, C.B. von der.

    1986-01-01

    Unsteady flow forces arising in heat exchangers with cross-flow may lead to serious vibrations of the tubes. These vibrations can destroy the tubes in the end supports or in the baffles, which would require expensive repairs. The flow forces reach unexpectedly by high values if the vibration of the tube intensifies these forces. To clear up this coupling mechanism the flow forces and the vibration amplitude were measured simultaneously in a staggered and in an inline tube bundle. Considering the tube as a one-mass oscillator excited by the flow force, the main parameters can be derived, i.e. dynamic pressure, reduced mass, eigenfrequency and damping. These parameters form a dimensionless model number describing the coherence of the vibration amplitude and the force coefficient. The validity of this number has been confirmed by varying the test conditions. With the aid of this model number, the expected force coefficient can be calculated and then using a finite-element program information can be obtained about mechanical tensions and the lifetime of the heat exchanger tubes. With this model number the results of other authors, who measured the vibration amplitude only, could be confirmed in good agreement. The experiments were carried out in air with Reynolds numbers 10 4 5 . (orig.) [de

  9. Simultaneous Measurement of Multiple Mechanical Properties of Single Cells Using AFM by Indentation and Vibration.

    Science.gov (United States)

    Zhang, Chuang; Shi, Jialin; Wang, Wenxue; Xi, Ning; Wang, Yuechao; Liu, Lianqing

    2017-12-01

    The mechanical properties of cells, which are the main characteristics determining their physical performance and physiological functions, have been actively studied in the fields of cytobiology and biomedical engineering and for the development of medicines. In this study, an indentation-vibration-based method is proposed to simultaneously measure the mechanical properties of cells in situ, including cellular mass (m), elasticity (k), and viscosity (c). The proposed measurement method is implemented based on the principle of forced vibration stimulated by simple harmonic force using an atomic force microscope (AFM) system integrated with a piezoelectric transducer as the substrate vibrator. The corresponding theoretical model containing the three mechanical properties is derived and used to perform simulations and calculations. Living and fixed human embryonic kidney 293 (HEK 293) cells were subjected to indentation and vibration to measure and compare their mechanical parameters and verify the proposed approach. The results that the fixed sample cells are more viscous and elastic than the living sample cells and the measured mechanical properties of cell are consistent within, but not outside of the central region of the cell, are in accordance with the previous studies. This work provides an approach to simultaneous measurement of the multiple mechanical properties of single cells using an integrated AFM system based on the principle force vibration and thickness-corrected Hertz model. This study should contribute to progress in biomedical engineering, cytobiology, medicine, early diagnosis, specific therapy and cell-powered robots.

  10. Application of focus-variation Technique in Measurements of Ultrasonic Vibrations of Grinding pins

    Directory of Open Access Journals (Sweden)

    Wdowik Roman

    2015-01-01

    Full Text Available The paper presents the application of focus-variation technique in measurements of ultrasonic vibrations of grinding pins. Ultrasonic vibrations of tools are applied in ultrasonic assisted grinding. Their measurements are significant for development of this hybrid machining process. Alumina and zirconia ceramic materials in the final fired state were machined in experiments which are known as scratch tests. Diamond grinding pin was used as a tool to machine scratches. Marks of diamond grains, left on the surface of workpieces after machining process, were investigated using The Infinite Focus Real 3D optical microscope. Focus-variation is the principle of operation of this microscope. Investigations concerned possibilities of measurements of an amplitude of axial and radial vibrations in the case of two ceramic materials. Results of performed measurements are presented and discussed for selected machining parameters.

  11. Vibration measurement on composite material with embedded optical fiber based on phase-OTDR

    Science.gov (United States)

    Franciscangelis, C.; Margulis, W.; Floridia, C.; Rosolem, J. B.; Salgado, F. C.; Nyman, T.; Petersson, M.; Hallander, P.; Hällstrom, S.; Söderquist, I.; Fruett, F.

    2017-04-01

    Distributed sensors based on phase-optical time-domain reflectometry (phase-OTDR) are suitable for aircraft health monitoring due to electromagnetic interference immunity, small dimensions, low weight and flexibility. These features allow the fiber embedment into aircraft structures in a nearly non-intrusive way to measure vibrations along its length. The capability of measuring vibrations on avionics structures is of interest for what concerns the study of material fatigue or the occurrence of undesirable phenomena like flutter. In this work, we employed the phase-OTDR technique to measure vibrations ranging from some dozens of Hz to kHz in two layers of composite material board with embedded polyimide coating 0.24 numerical aperture single-mode optical fiber.

  12. Measurements of Acoustic Properties of Porous and Granular Materials and Application to Vibration Control

    Science.gov (United States)

    Park, Junhong; Palumbo, Daniel L.

    2004-01-01

    For application of porous and granular materials to vibro-acoustic controls, a finite dynamic strength of the solid component (frame) is an important design factor. The primary goal of this study was to investigate structural vibration damping through this frame wave propagation for various poroelastic materials. A measurement method to investigate the vibration characteristics of the frame was proposed. The measured properties were found to follow closely the characteristics of the viscoelastic materials - the dynamic modulus increased with frequency and the degree of the frequency dependence was determined by its loss factor. The dynamic stiffness of hollow cylindrical beams containing porous and granular materials as damping treatment was measured also. The data were used to extract the damping materials characteristics using the Rayleigh-Ritz method. The results suggested that the acoustic structure interaction between the frame and the structure enhances the dissipation of the vibration energy significantly.

  13. Real-time vibration measurement by a spatial phase-shifting technique with a tilted holographic interferogram.

    Science.gov (United States)

    Nakadate, S; Isshiki, M

    1997-01-01

    Real-time vibration measurement by a tilted holographic interferogram is presented that utilizes the real-time digital fringe processor of a video signal. Three intensity data sampled at every one-third of the fringe spacing of the tilted fringes are used to calculate the modulation term of the fringe that is a function of a vibration amplitude. A three-dimensional lookup table performs the calculation in a TV repetition rate to give a new fringe profile that contours the vibration amplitude. Vibration modes at the resonant frequencies of a flat speaker were displayed on a monitor as changing the exciting frequency of vibration.

  14. Measurement and analysis of vibrational behaviour of an SNR-fuel element in sodium flow

    International Nuclear Information System (INIS)

    Hess, B.F.H.; Ruppert, E.; Schmidt, H.; Vinzens, K.

    1975-01-01

    Within the framework of SNR-300 fuel element development programme a complete full size fuel element dummy has been tested thoroughly for nearly 3000 hours at 650 0 C system temperature in the AKB sodium loop at Interatom, Bensberg. Investigations of the hydraulic characteristics by measurements of specific pressure losses, flow velocities, leakage flow through the piston rings and investigations of its vibrational behaviour were part of this endurance test at elevated temperatures. The pressure drop versus flow and the leakage measurement are mentioned briefly to confirm the correctness of the test hydraulics. The vibrational behaviour of the element and the approach to analysis is the main object of this report. (Auth.)

  15. Model-based failure detection for cylindrical shells from noisy vibration measurements.

    Science.gov (United States)

    Candy, J V; Fisher, K A; Guidry, B L; Chambers, D H

    2014-12-01

    Model-based processing is a theoretically sound methodology to address difficult objectives in complex physical problems involving multi-channel sensor measurement systems. It involves the incorporation of analytical models of both physical phenomenology (complex vibrating structures, noisy operating environment, etc.) and the measurement processes (sensor networks and including noise) into the processor to extract the desired information. In this paper, a model-based methodology is developed to accomplish the task of online failure monitoring of a vibrating cylindrical shell externally excited by controlled excitations. A model-based processor is formulated to monitor system performance and detect potential failure conditions. The objective of this paper is to develop a real-time, model-based monitoring scheme for online diagnostics in a representative structural vibrational system based on controlled experimental data.

  16. Simulation of vibration-induced effect on plasma current measurement using a fiber optic current sensor.

    Science.gov (United States)

    Descamps, Frédéric; Aerssens, Matthieu; Gusarov, Andrei; Mégret, Patrice; Massaut, Vincent; Wuilpart, Marc

    2014-06-16

    An accurate measurement of the plasma current is of paramount importance for controlling the plasma magnetic equilibrium in tokamaks. Fiber optic current sensor (FOCS) technology is expected to be implemented to perform this task in ITER. However, during ITER operation, the vessel and the sensing fiber will be subject to vibrations and thus to time-dependent parasitic birefringence, which may significantly compromise the FOCS performance. In this paper we investigate the effects of vibrations on the plasma current measurement accuracy under ITER-relevant conditions. The simulation results show that in the case of a FOCS reflection scheme including a spun fiber and a Faraday mirror, the error induced by the vibrations is acceptable regarding the ITER current diagnostics requirements.

  17. Measurement and prediction of cutting forces and vibrations on longwall shearers

    Energy Technology Data Exchange (ETDEWEB)

    Bulent Tiryaki [CRCMining (Australia)

    2006-12-15

    CRCMining has developed the Cutting Head Performance Analysis Software (CPAS) to predict cutter motor power, ranging arm reaction forces, and vibrations for different drum designs, coal seams, and shearer operational conditions. This project describes the work on THE DBT EL3000 shearer at Beltana to validate/update CPAS by measuring the cutter motor power, ranging arm vibrations, and reaction forces through an online data acquisition system called Cutting Head Performance Monitoring System (CPMS). This system records the outputs of six strain gauge bridges, six accelerometers, and two pressure transducers on ranging arms during underground coal production. CPAS2 has then been developed in order to eliminate the needs for performing coal cutting tests for the target coal seam. CPAS2 simulations for cutter motor power, vertical reaction force, and vibrations were also close to those measured in the trials. CRCMining will release the CPAS code including fully functioning software code on CD to Australian coal mining industry.

  18. A method of measuring and correcting tilt of anti - vibration wind turbines based on screening algorithm

    Science.gov (United States)

    Xiao, Zhongxiu

    2018-04-01

    A Method of Measuring and Correcting Tilt of Anti - vibration Wind Turbines Based on Screening Algorithm is proposed in this paper. First of all, we design a device which the core is the acceleration sensor ADXL203, the inclination is measured by installing it on the tower of the wind turbine as well as the engine room. Next using the Kalman filter algorithm to filter effectively by establishing a state space model for signal and noise. Then we use matlab for simulation. Considering the impact of the tower and nacelle vibration on the collected data, the original data and the filtering data are classified and stored by the Screening algorithm, then filter the filtering data to make the output data more accurate. Finally, we eliminate installation errors by using algorithm to achieve the tilt correction. The device based on this method has high precision, low cost and anti-vibration advantages. It has a wide range of application and promotion value.

  19. Risk assessment of exposure to mechanical vibrations: comparison between field measurements and use of databases

    International Nuclear Information System (INIS)

    Monica, L.; Nataletti, P.; Vignali, G.

    2008-01-01

    Despite continuous technological progress with a view to guaranteeing workers' safety and health, there are still many hazardous situations to workers' health when using industrial equipment; exposure to mechanical vibrations may definitely be included among these situations. Many researches have shown that the widespread use of various vibrating tools in the industrial, agricultural and forestry fields, such as vehicles and machinery in the workplace, are a source of vibration disorders or the worsening of pre-existing symptoms.The aim of this paper is to present a comparison between the two types of risk assessment currently provided for by the law: direct field measurements and database support. We will identify the advantages and operational limitations involved in the use of databases through the results of direct field measurements assessing the risk derived from vibrations in a typical engineering company in the mineral waters and beverages industry. As a result, this research can represent a functional reference for risk assessments of vibration exposure in individual companies

  20. Standardization of Laser Methods and Techniques for Vibration Measurements and Calibrations

    International Nuclear Information System (INIS)

    Martens, Hans-Juergen von

    2010-01-01

    The realization and dissemination of the SI units of motion quantities (vibration and shock) have been based on laser interferometer methods specified in international documentary standards. New and refined laser methods and techniques developed by national metrology institutes and by leading manufacturers in the past two decades have been swiftly specified as standard methods for inclusion into in the series ISO 16063 of international documentary standards. A survey of ISO Standards for the calibration of vibration and shock transducers demonstrates the extended ranges and improved accuracy (measurement uncertainty) of laser methods and techniques for vibration and shock measurements and calibrations. The first standard for the calibration of laser vibrometers by laser interferometry or by a reference accelerometer calibrated by laser interferometry (ISO 16063-41) is on the stage of a Draft International Standard (DIS) and may be issued by the end of 2010. The standard methods with refined techniques proved to achieve wider measurement ranges and smaller measurement uncertainties than that specified in the ISO Standards. The applicability of different standardized interferometer methods to vibrations at high frequencies was recently demonstrated up to 347 kHz (acceleration amplitudes up to 350 km/s 2 ). The relative deviations between the amplitude measurement results of the different interferometer methods that were applied simultaneously, differed by less than 1% in all cases.

  1. Development of Design Criteria for Fluid Induced Structural Vibrations in Steam Generators and Heat Exchangers

    International Nuclear Information System (INIS)

    Catton, Ivan; Dhir, Vijay K.; Alquaddoomi, O.S.; Mitra, Deepanjan; Adinolfi, Pierangelo

    2004-01-01

    OAK-B135 Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers. In the nuclear industry, steam generators are often affected by this problem. However, flow-induced vibration is not limited to nuclear power plants, but to any type of heat exchanger used in many industrial applications such as chemical processing, refrigeration and air conditioning. Specifically, shell and tube type heat exchangers experience flow-induced vibration due to the high velocity flow over the tube banks. Flow-induced vibration in these heat exchangers leads to equipment breakdown and hence expensive repair and process shutdown. The goal of this research is to provide accurate measurements that can help modelers to validate their models using the measured experimental parameters and thereby develop better design criteria for avoiding fluid-elastic instability in heat exchangers. The research is divided between two primary experimental efforts, the first conducted using water alone (single phase) and the second using a mixture of air or steam and water as the working fluid (two phase). The outline of this report is as follows: After the introduction to fluid-elastic instability, the experimental apparatus constructed to conduct the experiments is described in Chapter 2 along with the measurement procedures. Chapter 3 presents results obtained on the tube array and the flow loop, as well as techniques used in data processing. The project performance is described and evaluated in Chapter 4 followed by

  2. Measurements and analysis of vibrations at Virilla Bridge, national route N° 1

    Directory of Open Access Journals (Sweden)

    Francisco Navarro-Henríquez

    2015-06-01

    The measurements allowed quantifying the vibration magnitudes and deformation in various sections of the bridge, on condition of vehicular traffic service (environmental performance. The experimental results are compared with computational analytical modeling of the structure and also with national and international standards.

  3. Nondestructive Evaluation of Railway Bridge by System Identification Using Field Vibration Measurement

    International Nuclear Information System (INIS)

    Ho, Duc Duy; Hong, Dong Soo; Kim, Jeong Tae

    2010-01-01

    This paper presents a nondestructive evaluation approach for system identification (SID) of real railway bridges using field vibration test results. First, a multi-phase SID scheme designed on the basis of eigenvalue sensitivity concept is presented. Next, the proposed multi-phase approach is evaluated from field vibration tests on a real railway bridge (Wondongcheon bridge) located in Yangsan, Korea. On the steel girder bridge, a few natural frequencies and mode shapes are experimentally measured under the ambient vibration condition. The corresponding modal parameters are numerically calculated from a three-dimensional finite element (FE) model established for the target bridge. Eigenvalue sensitivities are analyzed for potential model-updating parameters of the FE model. Then, structural subsystems are identified phase-by-phase using the proposed model-updating procedure. Based on model-updating results, a baseline model and a nondestructive evaluation of test bridge are identified

  4. Shape measurement and vibration analysis of moving speaker cone

    Science.gov (United States)

    Zhang, Qican; Liu, Yuankun; Lehtonen, Petri

    2014-06-01

    Surface three-dimensional (3-D) shape information is needed for many fast processes such as structural testing of material, standing waves on loudspeaker cone, etc. Usually measurement is done from limited number of points using electrical sensors or laser distance meters. Fourier Transform Profilometry (FTP) enables fast shape measurement of the whole surface. Method is based on angled sinusoidal fringe pattern projection and image capturing. FTP requires only one image of the deformed fringe pattern to restore the 3-D shape of the measured object, which makes real-time or dynamic data processing possible. In our experiment the method was used for loudspeaker cone distortion measurement in dynamic conditions. For sound quality issues it is important that the whole cone moves in same phase and there are no partial waves. Our imaging resolution was 1280x1024 pixels and frame rate was 200 fps. Using our setup we found unwanted spatial waves in our sample cone.

  5. Heat exchanger vibration

    International Nuclear Information System (INIS)

    Richards, D.J.W.

    1977-01-01

    The heat exchangers of various types are common items of plant in the generation and transmission of electricity. The amount of attention given to the flow-induced vibrations of heat exchangers by designers is usually related to the operational history of similar items of plant. Consequently, if a particular design procedure yields items of plant which behave in a satisfactory manner during their operational life, there is little incentive to improve or refine the design procedure. On the other hand, failures of heat exchangers clearly indicate deficiencies in the design procedures or in the data available to the designer. When such failures are attributable to flow-induced vibrations, the identification of the mechanisms involved is a prime importance. Ideally, basic research work provides the background understanding and the techniques necessary to be able to identify the important mechanisms. In practice, the investigation of a flow-induced vibration problem may identify the presence of mechanisms but may not be able to quantify their effects adequately. In these circumstances the need for additional work is established and the objectives of the research programme emerge. The purpose of this paper is to outline the background to the current research programme at C.E.R.L. on heat exchanger vibration

  6. Heat exchanger vibration

    Energy Technology Data Exchange (ETDEWEB)

    Richards, D J.W. [CERL, CEGB, Leatherhead, Surrey (United Kingdom)

    1977-12-01

    The heat exchangers of various types are common items of plant in the generation and transmission of electricity. The amount of attention given to the flow-induced vibrations of heat exchangers by designers is usually related to the operational history of similar items of plant. Consequently, if a particular design procedure yields items of plant which behave in a satisfactory manner during their operational life, there is little incentive to improve or refine the design procedure. On the other hand, failures of heat exchangers clearly indicate deficiencies in the design procedures or in the data available to the designer. When such failures are attributable to flow-induced vibrations, the identification of the mechanisms involved is a prime importance. Ideally, basic research work provides the background understanding and the techniques necessary to be able to identify the important mechanisms. In practice, the investigation of a flow-induced vibration problem may identify the presence of mechanisms but may not be able to quantify their effects adequately. In these circumstances the need for additional work is established and the objectives of the research programme emerge. The purpose of this paper is to outline the background to the current research programme at C.E.R.L. on heat exchanger vibration.

  7. Vibration analysis and vibration damage assessment in nuclear and process equipment

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Taylor, C.E.; Fisher, N.J.; Yetisir, M.; Smith, B.A.W.

    1997-01-01

    Component failures due to excessive flow-induced vibration are still affecting the performance and reliability of process and nuclear components. The purpose of this paper is to discuss flow-induced vibration analysis and vibration damage prediction. Vibration excitation mechanisms are described with particular emphasis on fluid elastic instability. The dynamic characteristics of process and power equipment are explained. The statistical nature of some parameters, in particular support conditions, is discussed. The prediction of fretting-wear damage is approached from several points-of-view. An energy approach to formulate fretting-wear damage is proposed. (author)

  8. Viscoelastic material properties' identification using high speed full field measurements on vibrating plates

    Science.gov (United States)

    Giraudeau, A.; Pierron, F.

    2010-06-01

    The paper presents an experimental application of a method leading to the identification of the elastic and damping material properties of isotropic vibrating plates. The theory assumes that the searched parameters can be extracted from curvature and deflection fields measured on the whole surface of the plate at two particular instants of the vibrating motion. The experimental application consists in an original excitation fixture, a particular adaptation of an optical full-field measurement technique, a data preprocessing giving the curvature and deflection fields and finally in the identification process using the Virtual Fields Method (VFM). The principle of the deflectometry technique used for the measurements is presented. First results of identification on an acrylic plate are presented and compared to reference values. Details about a new experimental arrangement, currently in progress, is presented. It uses a high speed digital camera to over sample the full-field measurements.

  9. Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor

    Science.gov (United States)

    Pfister, T.; Büttner, L.; Czarske, J.; Krain, H.; Schodl, R.

    2006-07-01

    This paper presents a novel fibre optic laser Doppler position sensor for single blade tip clearance and vibration measurements at turbo machines, which offers high temporal resolution and high position resolution simultaneously. The sensor principle is based on the generation of a measurement volume consisting of two superposed fan-like interference fringe systems with contrary fringe spacing gradients using wavelength division multiplexing. A flexible and robust measurement system with an all-passive fibre coupled measurement head has been realized employing diffractive and refractive optics. Measurements of tip clearance and rotor vibrations at a transonic centrifugal compressor performed during operation at up to 50 000 rpm (833 Hz) corresponding to 21.7 kHz blade frequency and 586 m s-1 blade tip velocity are presented. The results are in excellent agreement with those of capacitive probes. The mean uncertainty of the position measurement was around 20 µm and, thus, considerably better than for conventional tip clearance probes. Consequently, this sensor is capable of fulfilling the requirements for future active clearance control systems and has great potential for in situ and online tip clearance and vibration measurements at metallic and non-metallic turbine blades with high precision.

  10. Measurement of vibration mode shape by using Hilbert transform

    International Nuclear Information System (INIS)

    Kang, Min Sig

    2001-01-01

    This paper concerns on modal analysis of mechanical structures by using a continuous scanning laser Doppler vibrometer. In modal analysis the Hilbert transform based approach is superior to the Fourier transform based approach because of its fine accuracy and its flexible experimental settings. In this paper the Hilbert transform based approach is extended to measure area mode shape data of a structure by simply modifying the scanning pattern ranging the entire surface of the structure. The effectiveness of this proposed method is illustrated along with results of numerical simulation for a rectangular plate

  11. MODELLING AND VIBRATION ANALYSIS OF A ROAD PROFILE MEASURING SYSTEM

    Directory of Open Access Journals (Sweden)

    C. B. Patel

    2010-06-01

    Full Text Available During a vehicle development program, load data representing severe customer usage is required. The dilemma faced by a design engineer during the design process is that during the initial stage, only predicted loads estimated from historical targets are available, whereas the actual loads are available only at the fag end of the process. At the same time, changes required, if any, are easier and inexpensive during the initial stages of the design process whereas they are extremely costly in the latter stages of the process. The use of road profiles and vehicle models to predict the load acting on the whole vehicle is currently being researched. This work hinges on the ability to accurately measure road profiles. The objective of the work is to develop an algorithm, using MATLAB Simulink software, to convert the input signals into measured road profile. The algorithm is checked by the MATLAB Simulink 4 degrees of freedom half car model. To make the whole Simulink model more realistic, accelerometer and laser sensor properties are introduced. The present work contains the simulation of the mentioned algorithm with a half car model and studies the results in distance, time, and the frequency domain.

  12. Analysis of classical guitars' vibrational behavior based on scanning laser vibrometer measurements

    Science.gov (United States)

    Czajkowska, Marzena

    2012-06-01

    One of the main goals in musical acoustics research is to link measurable, physical properties of a musical instrument with subjective assessments of its tone quality. The aim of the research discussed in this paper was to observe the structural vibrations of different class classical guitars in relation to their quality. This work focuses on mid-low-and low-class classical (nylon-stringed) guitars. The main source of guitar body vibrations come from top and back plate vibrations therefore these were the objects of structural mode measurements and analysis. Sixteen classical guitars have been investigated, nine with cedar and seven with spruce top plate. Structural modes of top and back plates have been measured with the aid of a scanning laser vibrometer and the instruments were excited with a chirp signal transferred by bone vibrator. The issues related to excitor selection have been discussed. Correlation and descriptive statistics of top and back plates measurement results have been investigated in relation to guitar quality. The frequency range of 300 Hz to 5 kHz as well as selected narrowed frequency bands have been analyzed for cedar and spruce guitars. Furthermore, the influence of top plate wood type on vibration characteristics have been observed on three pairs of guitars. The instruments were of the same model but different top plate material. Determination and visualization of both guitar plates' modal patterns in relation to frequency are a significant attainment of the research. Scanning laser vibrometer measurements allow particular mode observation and therefore mode identification, as opposed to sound pressure response measurements. When correlating vibration characteristics of top and back plates it appears that Pearson productmoment correlation coefficient is not a parameter that associates with guitar quality. However, for best instruments with cedar top, top-back correlation coefficient has relatively greater value in 1-2 kHz band and lower in

  13. A nanogenerator as a self-powered sensor for measuring the vibration spectrum of a drum membrane

    Science.gov (United States)

    Yu, Aifang; Zhao, Yong; Jiang, Peng; Wang, Zhong Lin

    2013-02-01

    A nanogenerator (NG) is a device that converts vibration energy into electricity. Here, a flexible, small size and lightweight NG is successfully demonstrated as an active sensor for detecting the vibration spectrum of a drum membrane without the use of an external power source. The output current/voltage signal of the NG is a direct measure of the strain of the local vibrating drum membrane that contains rich informational content, such as, notably, the vibration frequency, vibration speed and vibration amplitude. In comparison to the laser vibrometer, which is excessively complex and expensive, this kind of small and low cost sensor based on an NG is also capable of detecting the local vibration frequency of a drum membrane accurately. A spatial arrangement of the NGs on the membrane can provide position-dependent vibration information on the surface. The measured frequency spectrum can be understood on the basis of the theoretically calculated vibration modes. This work expands the application of NGs and reveals the potential for developing sound wave detection, environmental/infrastructure monitoring and many more applications.

  14. Modeling and experimental characterization of a new piezoelectric sensor for low-amplitude vibration measurement

    International Nuclear Information System (INIS)

    Hou, X Y; Koh, C G; Kuang, K S C; Lee, W H

    2017-01-01

    This paper investigates the capability of a novel piezoelectric sensor for low-frequency and low-amplitude vibration measurement. The proposed design effectively amplifies the input acceleration via two amplifying mechanisms and thus eliminates the use of the external charge amplifier or conditioning amplifier typically employed for measurement system. The sensor is also self-powered, i.e. no external power unit is required. Consequently, wiring and electrical insulation for on-site measurement are considerably simpler. In addition, the design also greatly reduces the interference from rotational motion which often accompanies the translational acceleration to be measured. An analytical model is developed based on a set of piezoelectric constitutive equations and beam theory. Closed-form expression is derived to correlate sensor geometry and material properties with its dynamic performance. Experimental calibration is then carried out to validate the analytical model. After calibration, experiments are carried out to check the feasibility of the new sensor in structural vibration detection. From experimental results, it is concluded that the proposed sensor is suitable for measuring low-frequency and low-amplitude vibrations. (paper)

  15. Measurement and analysis of vibrational behavior of an SNR-fuel element in sodium flow

    International Nuclear Information System (INIS)

    Hess, B.F.H.; Ruppert, E.; Schmidt, H.; Vinzens, K.

    1975-01-01

    Within the framework of SNR-300 fuel element development programme a complete full size fuel element dummy has been tested thoroughly for nearly 3000 hours at 650 deg C system temperature in the AKB sodium loop at Interatom, Bensberg. It is known that the coolant flow through a subassembly can induce flutter or vibrations of structural parts such as single pins, the wrapper and the total pin bundle all of which have been of interest during this test. To detect these vibrations of different structural parts simultaneously with a minimum of instrumentation only 3 weldable high temperature strain gauges were employed. These strain gauges were especially prepared and bent in such a way as to form a bridge between the inner wrapper and a fuel pin top and spot-welded to both the wrapper and the fuel pin. Although this arrangement seems to be a rather unusual one, the simultaneous-measurement of bundle, wrapper and pin vibrations was possible and periodic flow fluctuations were also detected. The presented results are only relative due to calibration difficulties with these deformed strain gauges which were first used during this test. It is, however, believed that this arrangement, in connection with the proposed anlytical approach, leads to a simple and technical representation of the vibrational behavior of core elements during sodium tests. Detailed information needed for check and calibration of computer codes are however displayed by the respective power spectral density functions

  16. Space robots with flexible appendages: Dynamic modeling, coupling measurement, and vibration suppression

    Science.gov (United States)

    Meng, Deshan; Wang, Xueqian; Xu, Wenfu; Liang, Bin

    2017-05-01

    For a space robot with flexible appendages, vibrations of flexible structure can be easily excited during both orbit and/or attitude maneuvers of the base and the operation of the manipulators. Hence, the pose (position and attitude) of the manipulator's end-effector will greatly deviate from the desired values, and furthermore, the motion of the manipulator will trigger and exacerbate vibrations of flexible appendages. Given lack of the atmospheric damping in orbit, the vibrations will last for quite a while and cause the on-orbital tasks to fail. We derived the rigid-flexible coupling dynamics of a space robot system with flexible appendages and established a coupling model between the flexible base and the space manipulator. A specific index was defined to measure the coupling degree between the flexible motion of the appendages and the rigid motion of the end-effector. Then, we analyzed the dynamic coupling for different conditions, such as modal displacements, joint angles (manipulator configuration), and mass properties. Moreover, the coupling map was adopted and drawn to represent the coupling motion. Based on this map, a trajectory planning method was addressed to suppress structure vibration. Finally, simulation studies of typical cases were performed, which verified the proposed models and method. This work provides a theoretic basis for the system design, performance evaluation, trajectory planning, and control of such space robots.

  17. Quantitative estimation of the influence of external vibrations on the measurement error of a coriolis mass-flow meter

    NARCIS (Netherlands)

    van de Ridder, Bert; Hakvoort, Wouter; van Dijk, Johannes; Lötters, Joost Conrad; de Boer, Andries; Dimitrovova, Z.; de Almeida, J.R.

    2013-01-01

    In this paper the quantitative influence of external vibrations on the measurement value of a Coriolis Mass-Flow Meter for low flows is investigated, with the eventual goal to reduce the influence of vibrations. Model results are compared with experimental results to improve the knowledge on how

  18. Experimental evaluation of vibrations in heat exchangers

    International Nuclear Information System (INIS)

    Martin Ghiselli, A.

    1997-01-01

    Flow induced vibrations may produce damage of heat exchangers, condensers and steam generators tubes. To evaluate this problem a set of tests were developed to know the real support state of the tubes, which have great influence on the vibration response. This paper include a description of the tests and the results obtained applying them on a heat exchanger equipment. (author) [es

  19. Spectral composition of a measuring signal during measurements of vibration rates of a moving body

    Science.gov (United States)

    Daynauskas, I. A. I.; Slepov, N. N.

    1973-01-01

    Cybernetics diagnostics of machines and mechanisms using the spectral approach is discussed. The problem of establishing the accuracy of determination of the spectral composition is investigated. In systems with rectilinear or rotary movement, the vibrations appear in the form of movement rate vibrations, which are equivalent to frequency modulation of the signal, in proportion to the mean movement rate of the body. The case of a harmonic signal which reproduces and analyzes the characteristics of the frequency modulated signal is discussed. Mathematical models are developed to show the relationships of the parameters.

  20. IEEE 802.11-Based Wireless Sensor System for Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Yutaka Uchimura

    2010-01-01

    Full Text Available Network-based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard-based TSF-counter and sends the measured data with the counter value. TSF based synchronization enables consistency on common clock among different wireless nodes. We consider the scale effect on synchronization accuracy and evaluated the effect by taking beacon collisions into account. The scalability issue by numerical simulations is also studied. This paper also introduces a newly developed wireless sensing system and the hardware and software specifications are introduced. The experiments were conducted in a reinforced concrete building to evaluate synchronization accuracy. The developed system was also applied for a vibration measurement of a 22-story steel structured high rise building. The experimental results showed that the system performed more than sufficiently.

  1. A MEMS Resonant Sensor to Measure Fluid Density and Viscosity under Flexural and Torsional Vibrating Modes

    Directory of Open Access Journals (Sweden)

    Libo Zhao

    2016-06-01

    Full Text Available Methods to calculate fluid density and viscosity using a micro-cantilever and based on the resonance principle were put forward. Their measuring mechanisms were analyzed and the theoretical equations to calculate the density and viscosity were deduced. The fluid-solid coupling simulations were completed for the micro-cantilevers with different shapes. The sensing chips with micro-cantilevers were designed based on the simulation results and fabricated using the micro electromechanical systems (MEMS technology. Finally, the MEMS resonant sensor was packaged with the sensing chip to measure the densities and viscosities of eight different fluids under the flexural and torsional vibrating modes separately. The relative errors of the measured densities from 600 kg/m3 to 900 kg/m3 and viscosities from 200 μPa·s to 1000 μPa·s were calculated and analyzed with different microcantilevers under various vibrating modes. The experimental results showed that the effects of the shape and vibrating mode of micro-cantilever on the measurement accuracies of fluid density and viscosity were analyzed in detail.

  2. Blast damage predictions from vibration measurements at the SKB underground laboratories at Aespoe in Sweden

    International Nuclear Information System (INIS)

    Ouchterlony, F.; Sjoeberg, C.; Jonsson, B.A.

    1993-01-01

    This contribution reports an investigation of the blasting damage in the contour of an access ramp to a Swedish underground laboratory for nuclear waste related studies. Near zone vibration measurements were made for 7 rounds and the results converted to a site specific scaling law. A simple engineering correction for the influence of the charge length was developed and the resulting equations used to predict the damage zone depths of three different drilling and charging patterns. These predictions were then compared with actual blast damage measurements. The agreement with geophysical borehole logging results is remarkably good. This gives good support to the engineering method in which a critical vibration velocity is used to predict the zones of blast damage around bore holes

  3. Flextensional fiber Bragg grating-based accelerometer for low frequency vibration measurement

    Institute of Scientific and Technical Information of China (English)

    Jinghua Zhang; Xueguang Qiao; Manli Hu; Zhongyao Feng; Hong Gao; Yang Yang; Rui Zhou

    2011-01-01

    @@ The intelligent structural health monitoring method,which uses a fiber Bragg grating(FBG)sensor,is a new approach in the field of civil engineering.However,it lacks a reliable FBG-based accelerometer for taking structural low frequency vibration measurements.In this letter,a flextensional FBG-based accelerometer is proposed and demonstrated.The experimental results indicate that the natural frequency of the developed accelerometer is 16.7 Hz,with a high sensitivity of 410.7 pm/g.In addition,it has a broad and flat response over low frequencies ranging from 1 to 10 Hz.The natural frequency and sensitivity of the accelerometer can be tuned by adding mass to tailor the sensor performance to specific applications.Experimental results are presented to demonstrate the good performance of the proposed FBG-based accelerometer.These results show that the proposed accelerometer is satisfactory for low frequency vibration measurements.%The intelligent structural health monitoring method, which uses a fiber Bragg grating {FBG} sensor, ie a new approach in the field of civil engineering. However, it lacks a reliable FBG-based accelerometer for taking structural low frequency vibration measurements. In this letter, a flextensional FBG-based accelerometer is proposed and demonstrated. The experimental results indicate that the natural frequency of the developed accelerometer is 16.7 Hz, with a high sensitivity of 410.7 pm/g. In addition, it has a broad and flat response over low frequencies ranging from 1 to 10 Hz. The natural frequency and sensitivity of the accelerometer can be tuned by adding mass to tailor the sensor performance to specific applications. Experimental results are presented to demonstrate the good performance of the proposed FBG-based accelerometer. These results show that the proposed accelerometer is satisfactory for low frequency vibration measurements.

  4. Characterization and calibration of piezoelectric polymers: In situ measurements of body vibrations

    Science.gov (United States)

    Kappel, Marcel; Abel, Markus; Gerhard, Reimund

    2011-07-01

    Piezoelectric polymers are known for their flexibility in applications, mainly due to their bending ability, robustness, and variable sensor geometry. It is an optimal material for minimal-invasive investigations in vibrational systems, e.g., for wood, where acoustical impedance matches particularly well. Many applications may be imagined, e.g., monitoring of buildings, vehicles, machinery, alarm systems, such that our investigations may have a large impact on technology. Longitudinal piezoelectricity converts mechanical vibrations normal to the polymer-film plane into an electrical signal, and the respective piezoelectric coefficient needs to be carefully determined in dependence on the relevant material parameters. In order to evaluate efficiency and durability for piezopolymers, we use polyvinylidene fluoride and measure the piezoelectric coefficient with respect to static pressure, amplitude of the dynamically applied force, and long-term stability. A known problem is the slow relaxation of the material towards equilibrium, if the external pressure changes; here, we demonstrate how to counter this problem with careful calibration. Since our focus is on acoustical measurements, we determine accurately the frequency response curve - for acoustics probably the most important characteristic. Eventually, we show that our piezopolymer transducers can be used as a calibrated acoustical sensors for body vibration measurements on a wooden musical instrument, where it is important to perform minimal-invasive measurements. A comparison with the simultaneously recorded airborne sound yields important insight of the mechanism of sound radiation in comparison with the sound propagating in the material. This is especially important for transient signals, where not only the long-living eigenmodes contribute to the sound radiation. Our analyses support that piezopolymer sensors can be employed as a general tool for the determination of the internal dynamics of vibrating systems.

  5. Modelling nuclear fuel vibrations in horizontal CANDU reactors

    International Nuclear Information System (INIS)

    Jagannath, D.V.; Oldaker, I.E.

    1976-01-01

    Flow-induced fuel vibrations in the pressure tubes of CANDU reactors are of vital interest to designers because fretting damage may result. Computer simulation is being used to study how bundles vibrate and to identify bundle design features which will reduce vibration and hence fretting. (author)

  6. Measuring the arterial-induced skin vibration by geometrical moiré fringe

    Science.gov (United States)

    Chiu, Shih-Yung; Wang, Chun-Hsiung; Lee, Shu-Sheng; Wu, Wen-Jong; Hsu, Yu-Hsiang; Lee, Chih-Kung

    2018-02-01

    The demand for self-measured blood pressure self-monitoring device has much increased due to cardiovascular diseases have become leading causes of death for aging population. Currently, the primary non-invasive blood pressure monitoring method is cuff-based. It is well developed and accurate. However, the measuring process is not comfortable, and it cannot provide a continuous measurement. To overcome this problem, methods such as tonometry, volume clamp method, photoplethysmography, pulse wave velocity, and pulse transit time are reported. However, the limited accuracy hindered its application for diagnostics. To perform sequential blood pressure measurement with a high accuracy and long-term examination, we apply moiré interferometry to measure wrist skin vibration induced by radial artery. To achieve this goal, we developed a miniaturized device that can perform moiré interferometry around the wrist region. The 0.4-mm-pitched binary grating and tattoo sticker with 0.46 mm-pitched stripe pattern are used to perform geometric moiré. We demonstrated that the sensitivity and accuracy of this integrated system were sufficient to monitor arterialinduced skin vibration non-invasively. Our developed system was validated with ECG signals collected by a commercial system. According to our studies from measurement, the repeatability of wrist pulsation measurement was achieved with an accuracy of 99.1% in heart rate. A good repeatability of wrist pulse measurement was achieved. Simulations and experiments are both conducted in this paper and prove of geometrical moiré method a suitable technique for arterial-induced skin vibration monitoring.

  7. Measuring body layer vibration of vocal folds by high-frame-rate ultrasound synchronized with a modified electroglottograph.

    Science.gov (United States)

    Tang, Shanshan; Zhang, Yuanyuan; Qin, Xulei; Wang, Supin; Wan, Mingxi

    2013-07-01

    The body-cover concept suggests that the vibration of body layer is an indispensable component of vocal fold vibration. To quantify this vibration, a synchronized system composed of a high-frame-rate ultrasound and a modified electroglottograph (EGG) was employed in this paper to simultaneously image the body layer vibration and record the vocal fold vibration phase information during natural phonations. After data acquisition, the displacements of in vivo body layer vibrations were measured from the ultrasonic radio frequency data, and the temporal reconstruction method was used to enhance the measurement accuracy. Results showed that the modified EGG, the waveform and characteristic points of which were identical to the conventional EGG, resolved the position conflict between the ultrasound transducer and EGG electrodes. The location and range of the vibrating body layer in the estimated displacement image were more clear and discernible than in the ultrasonic B-mode image. Quantitative analysis for vibration features of the body layer demonstrated that the body layer moved as a unit in the superior-inferior direction during the phonation of normal chest registers.

  8. VIBRATIONS MEASUREMENT IN ORDER TO IDENTIFY THE FAULTS TO THE TABLES AND SUPPORTS ON WHICH THE EMBROIDERY MACHINES ARE PLACED

    Directory of Open Access Journals (Sweden)

    ŞUTEU Marius

    2014-05-01

    Full Text Available The aim of this paper is to accurately and quickly identify the faults of the tables and supports on which the embroidery machines are placed through vibrations measuring method. Vibrations measurements on Happy embroidery machine were performed at S.C. CONFIDEX S.R.L Oradea. A FFT spectrum analyzer Impaq was used, made by Benstone Instruments Inc –SUA. The measurements were performed in order to seek the role and importance of the rigidity of embroidery machine supports for a better and more efficient performance of the machine. Before performing these measurements was determined the optimal operating mode of the embroidery machine. The vibration measurements were performed in each measuring point, by installing a vibration sensor on the three directions of the Cartesian coordinates system: axial (X, horizontal (Y, vertical (Z. In the present paper is shown only the measuring direction Z (sensor mounting direction and advance of the material on x direction (the embroidery direction this is the most relevant direction, as on this part the embroidery is executed. After performing these vibration measurements on the HAPPY embroidery machine, previously mounted on a big table, after that mounted on a smaller table and a less rigid base. The same vibrations measurements were performed and it was noticed that it is mandatory to position the machine on a big table and a stable base because it will influence both the reliability and the working regime of the machine.

  9. Automatic Leak Detection in Buried Plastic Pipes of Water Supply Networks by Means of Vibration Measurements

    Directory of Open Access Journals (Sweden)

    Alberto Martini

    2015-01-01

    Full Text Available The implementation of strategies for controlling water leaks is essential in order to reduce losses affecting distribution networks of drinking water. This paper focuses on leak detection by using vibration monitoring techniques. The long-term goal is the development of a system for automatic early detection of burst leaks in service pipes. An experimental campaign was started to measure vibrations transmitted along water pipes by real burst leaks occurring in actual water supply networks. The first experimental data were used for assessing the leak detection performance of a prototypal algorithm based on the calculation of the standard deviation of acceleration signals. The experimental campaign is here described and discussed. The proposed algorithm, enhanced by means of proper signal filtering techniques, was successfully tested on all monitored leaks, thus proving effective for leak detection purpose.

  10. Laser Doppler velocimetry for measurement of nonlinearity in the vibrations of the middle ear

    Science.gov (United States)

    Peacock, John; Dirckx, Joris

    2014-05-01

    At audible Frequencies and at sound pressure below 96 dB SPL the mammalian middle ear is known to behave as an almost entirely linear system. However, as we go to higher sound pressure levels, smaller nonlinear distortions begin to appear, and increase with increasing pressure level. Some modern hearing aids seek to remedy hearing impairment by amplifying sounds to sound pressure levels as high as 130 or 140 dB SPL. Thus at these levels the small nonlinear distortions can become significant, and understanding their behaviour could help us to improve the design of these hearing aids. In order to measure the tiny vibration amplitudes of the middle ear, and to detect the even smaller nonlinear distortions, a very sensitive measurement and analysis method is needed. The tiny vibration amplitudes of the middle ear can easily be measured with laser vibrometry. Thanks to the highly linear response of LDV, the technique is also able to measure small nonlinearities. To detect the nonlinear distortions we developed a sophisticated measurement and analysis method based on the use of multisine excitation signals. These signals are specially designed to measure nonlinear systems. We will describe our set up and our stimulation and analysis method in detail, we will then go on to present some results of measurements at different points along the ossicular chain.

  11. Simultaneous 3D-vibration measurement using a single laser beam device

    Science.gov (United States)

    Brecher, Christian; Guralnik, Alexander; Baümler, Stephan

    2012-06-01

    Today's commercial solutions for vibration measurement and modal analysis are 3D-scanning laser doppler vibrometers, mainly used for open surfaces in the automotive and aerospace industries and the classic three-axial accelerometers in civil engineering, for most industrial applications in manufacturing environments, and particularly for partially closed structures. This paper presents a novel measurement approach using a single laser beam device and optical reflectors to simultaneously perform 3D-dynamic measurement as well as geometry measurement of the investigated object. We show the application of this so called laser tracker for modal testing of structures on a mechanical manufacturing shop floor. A holistic measurement method is developed containing manual reflector placement, semi-automated geometric modeling of investigated objects and fully automated vibration measurement up to 1000 Hz and down to few microns amplitude. Additionally the fast set up dynamic measurement of moving objects using a tracking technique is presented that only uses the device's own functionalities and does neither require a predefined moving path of the target nor an electronic synchronization to the moving object.

  12. ESR measurement of the concentration of vibrationally excited hydrogen and deuterium molecules

    International Nuclear Information System (INIS)

    Gershenzon, Yu.M.; Ivanov, A.V.; Il'in, S.D.; Kucheryavyi, S.I.; Rozenshtein, V.B.

    1988-01-01

    A method is described for measuring the concentration of vibrationally excited H 2 and D 2 molecules using an ESR microwave spectrometer. The essence of the method is the titration of H 2 (v = 1) and D 2 (v = 1) with D and H atoms and measurement of the concentrations of the titration products H and D, respectively. Stoichiometric titration coefficients were determined in the form of proportionality coefficients between the titration signals Δ[H], Δ[D] and the concentrations of H 2 (v = 1), D 2 (v = 1)

  13. Magnetostrictive device for high-temperature sound and vibration measurement in nuclear power stations

    International Nuclear Information System (INIS)

    Hans, R.; Podgorski, J.

    1977-01-01

    The demands on the monitoring systems in nuclear power stations are increasing continuously, not only because of more stringent safety requirements but also for reasons of plant availability and thus economic efficiency. The noise and vibration measurements which therefore have to be taken make it necessary to provide measuring devices with a high degree of efficiency, adequate sensitivity and resistance to high temperatures, radiation and corrosion. Probes using the magnetostrictive effect, whereby a ferromagnetic core changes its length in a magnetic field - a phenomenon which has been known for approximately fifty years - fulfill all the conditions for application in nuclear power stations. (orig.) [de

  14. Smartphones as experimental tools to measure acoustical and mechanical properties of vibrating rods

    Science.gov (United States)

    González, Manuel Á.; González, Miguel Á.

    2016-07-01

    Modern smartphones have calculation and sensor capabilities that make them suitable for use as versatile and reliable measurement devices in simple teaching experiments. In this work a smartphone is used, together with low cost materials, in an experiment to measure the frequencies emitted by vibrating rods of different materials, shapes and lengths. The results obtained with the smartphone have been compared with theoretical calculations and the agreement is good. Alternatively, physics students can perform the experiment described here and use their results to determine the dependencies of the obtained frequencies on the rod characteristics. In this way they will also practice research methods that they will probably use in their professional life.

  15. Difference frequency generation spectroscopy as a vibrational optical activity measurement tool.

    Science.gov (United States)

    Cheon, Sangheon; Cho, Minhaeng

    2009-03-19

    Vibrational optical activity (VOA) of chiral molecules in condensed phases can be studied by using vibrational circular dichroism and Raman optical activity measurement techniques. Recently, IR-vis sum frequency generation has shown to be an alternative VOA measurement method. Such a three-wave-mixing method employing a polarization modulation technique can be a potentially useful VOA measurement tool. Here, a theoretical description of difference frequency generation (DFG) employing circularly polarized visible radiations is presented. Frequency scanning to obtain a VOA-DFG spectrum is achieved by controlling the difference between the two electronically nonresonant incident radiation frequencies. If the two incident beams are linearly polarized and their polarization directions are perpendicular to each other, one can selectively measure the all-electric-dipole-allowed chiral component of the DFG susceptibility. In addition, by using circularly polarized beams and taking the DFG difference intensity signal, which is defined as the difference between left and right circularly polarized DFG signals, additional chiral susceptibility components originating from the electric quadrupole transition can be measured. The DFG as a novel VOA measurement technique for solution samples containing chiral molecules will therefore be a useful coherent spectroscopic tool for determining absolute configuration of chiral molecules in condensed phases.

  16. Study of V-OTDR stability for dynamic strain measurement in piezoelectric vibration

    Science.gov (United States)

    Ren, Meiqi; Lu, Ping; Chen, Liang; Bao, Xiaoyi

    2016-09-01

    In a phase-sensitive optical-time domain reflectometry (Φ-OTDR) system, the challenge for dynamic strain measurement lies in large intensity fluctuations from trace to trace. The intensity fluctuation caused by stochastic characteristics of Rayleigh backscattering sets detection limit for the minimum strength of vibration measurement and causes the large measurement uncertainty. Thus, a trace-to-trace correlation coefficient is introduced to quantify intensity fluctuation of Φ-OTDR traces and stability of the sensor system theoretically and experimentally. A novel approach of measuring dynamic strain induced by various driving voltages of lead zirconate titanate (PZT) in Φ-OTDR is also demonstrated. Piezoelectric vibration signals are evaluated through analyzing peak values of fast Fourier transform spectra at the fundamental frequency and high-order harmonics based on Bessel functions. High trace-to-trace correlation coefficients varying from 0.824 to 0.967 among 100 measurements are obtained in experimental results, showing the good stability of our sensor system, as well as small uncertainty of measured peak values.

  17. Wind turbine blades condition assessment based on vibration measurements and the level of an empirically decomposed feature

    International Nuclear Information System (INIS)

    Abouhnik, Abdelnasser; Albarbar, Alhussein

    2012-01-01

    Highlights: ► We used finite element method to model wind turbine induced vibration characteristics. ► We developed a technique for eliminating wind turbine’s vibration modulation problems. ► We use empirical mode decomposition to decompose the vibration into its fundamental elements. ► We show the area under shaft speed is a good indicator for assessing wind blades condition. ► We validate the technique under different wind turbine speeds and blade (cracks) conditions. - Abstract: Vibration based monitoring techniques are well understood and widely adopted for monitoring the condition of rotating machinery. However, in the case of wind turbines the measured vibration is complex due to the high number of vibration sources and modulation phenomenon. Therefore, extracting condition related information of a specific element e.g. blade condition is very difficult. In the work presented in this paper wind turbine vibration sources are outlined and then a three bladed wind turbine vibration was simulated by building its model in the ANSYS finite element program. Dynamic analysis was performed and the fundamental vibration characteristics were extracted under two healthy blades and one blade with one of four cracks introduced. The cracks were of length (10 mm, 20 mm, 30 mm and 40 mm), all had a consistent 3 mm width and 2 mm depth. The tests were carried out for three rotation speeds; 150, 250 and 360 r/min. The effects of the seeded faults were revealed by using a novel approach called empirically decomposed feature intensity level (EDFIL). The developed EDFIL algorithm is based on decomposing the measured vibration into its fundamental components and then determines the shaft rotational speed amplitude. A real model of the simulated wind turbine was constructed and the simulation outcomes were compared with real-time vibration measurements. The cracks were seeded sequentially in one of the blades and their presence and severity were determined by decomposing

  18. Water flow induced transport of Pseudomonas fluorescens cells through soil columns as affected by inoculant treatment

    NARCIS (Netherlands)

    Hekman, W.E.; Heijnen, C.E.; Trevors, J.T.; Elsas, van J.D.

    1994-01-01

    Water flow induced transport of Pseudomonas fluorescens cells through soil columns was measured as affected by the inoculant treatment. Bacterial cells were introduced into the topsoil of columns, either encapsulated in alginate beads of different types or mixed with bentonite clay in concentrations

  19. Vibration Noise Modeling for Measurement While Drilling System Based on FOGs

    Directory of Open Access Journals (Sweden)

    Chunxi Zhang

    2017-10-01

    Full Text Available Aiming to improve survey accuracy of Measurement While Drilling (MWD based on Fiber Optic Gyroscopes (FOGs in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF method. The KF method needs to model the inertial sensors’ noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn’t white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR. In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.

  20. Vibration Noise Modeling for Measurement While Drilling System Based on FOGs.

    Science.gov (United States)

    Zhang, Chunxi; Wang, Lu; Gao, Shuang; Lin, Tie; Li, Xianmu

    2017-10-17

    Aiming to improve survey accuracy of Measurement While Drilling (MWD) based on Fiber Optic Gyroscopes (FOGs) in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF) method. The KF method needs to model the inertial sensors' noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn't white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR). In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.

  1. Somatosensory Nerve Function, Measured by Vibration Thresholds in Asymptomatic Tennis Players: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Sarah Harrisson

    2015-06-01

    Full Text Available Tennis players are vulnerable to injury in their upper limbs due to the repetitive exposure to racket vibrations and torsional forces during play, leading to musculoskeletal adaptations in the dominant arm including some evidence of changes in nerve function (Colak et al., 2004. Vibration is a sensitive technique for diagnosing mild pathology in clinically asymptomatic participant groups. It has been used in participants with various musculoskeletal disorders (Laursen et al., 2006 (Tucker et al., 2007 showing widespread and bilateral increases in vibration threshold. Tests of somatosensory function by vibration will be abnormal prior to changes in nerve conduction velocity. Thus vibration testing in a sub-clinical group of participants may a more sensitive measure of nerve function compared to nerve conduction by electrodiagnostic testing. The aim of this pilot study was to conduct an exploratory investigation to establish whether tennis players have a reduction in their somatosensory nerve function compared to non- tennis playing controls. It also set out to compare the somatosensory nerve function of the dominant compared to the non-dominant upper limb in tennis players. Healthy tennis players (males, n = 8, females, n = 2, mean age 22 years and control non- tennis playing volunteers (males, n = 6, females, n = 4, mean age 22 years were recruited on an opportunistic basis from a tennis centre in London UK. Participants were excluded if they had any history of neurological impairment, serious injury or fracture or any arthritic condition affecting the upper limbs, cervical or thoracic spine. Control participants were excluded if it was deemed that they played a sport where there was exposure to repetitive use of the upper body. Ethical approval was obtained from the University College London Ethics Committee and all participants gave written informed consent. A preliminary clinical examination was carried out on all participants followed by

  2. Vibration measurement-based simple technique for damage detection of truss bridges: A case study

    Directory of Open Access Journals (Sweden)

    Sudath C. Siriwardane

    2015-10-01

    Full Text Available The bridges experience increasing traffic volume and weight, deteriorating of components and large number of stress cycles. Therefore, assessment of the current condition of steel railway bridges becomes necessary. Most of the commonly available approaches for structural health monitoring are based on visual inspection and non-destructive testing methods. The visual inspection is unreliable as those depend on uncertainty behind inspectors and their experience. Also, the non-destructive testing methods are found to be expensive. Therefore, recent researches have noticed that dynamic modal parameters or vibration measurement-based structural health monitoring methods are economical and may also provide more realistic predictions to damage state of civil infrastructure. Therefore this paper proposes a simple technique to locate the damage region of railway truss bridges based on measured modal parameters. The technique is discussed with a case study. Initially paper describes the details of considered railway bridge. Then observations of visual inspection, material testing and in situ load testing are discussed under separate sections. Development of validated finite element model of the considered bridge is comprehensively discussed. Hence, variations of modal parameters versus position of the damage are plotted. These plots are considered as the main reference for locating the damage of the railway bridge in future periodical inspection by comparing the measured corresponding modal parameters. Finally the procedure of periodical vibration measurement and damage locating technique are clearly illustrated.

  3. New technologies for acceleration and vibration measurements inside operating nuclear power reactors

    International Nuclear Information System (INIS)

    Runkel, J.; Stegemann, D.; Fiedler, J.; Heidemann, P.; Blaser, R.; Schmid, F.; Trobitz, M.; Hirsch, L.; Thoma, K.

    2000-01-01

    A miniature bi-axial in-core accelerometer has been inserted temporarily inside the travelling in-core probe (TIP) systems of operating 1300 MW el boiling water reactors (BWR) during full power operation. In-core acceleration measurements can be performed in any position of the TIP system. This provides new features of control technologies to preserve the integrity of reactor internals. The radial and axial position where fretting or impacting of instrumentation string tubes or other structures might occur can be localised inside the reactor pressure vessel. The efficiency and long-term performance of subsequent improvements of the mechanical or operating conditions can be controlled with high local resolution and sensitivity. Low frequency vibrations of the instrumentation tubes were measured inside the core. Neutron-mechanical scale factors were determined from neutron noise, measured by the standard in-core neutron instrumentation and from displacements of the TIP tubes, calculated by integration of the measured in-core acceleration signals. The scale factors contribute to qualitative and quantitative monitoring of BWR internals' vibrations only by the use of neutron signals. (authors)

  4. Study on viscosity measurement using fiber Bragg grating micro-vibration

    International Nuclear Information System (INIS)

    Song, Le; Fang, Fengzhou; Zhao, Jibo

    2013-01-01

    It is now ascertained that traditional electric sensors are vulnerable to electromagnetic interference when measuring viscosity. Here, we propose a new viscosity-sensitive structure based on the fiber Bragg grating (FBG) sensing principle and a micro-vibration measurement method. The symmetric micro-vibration motivation method is also described, and a mathematical model for compensational voltage and fluid viscosity is established. The probe amplitude, which is produced by reciprocating stimulation, is accessible by means of an FBG sensor mounted on an equal-strength beam. Viscosity can be therefore calculated using a demodulation technique based on linear edge filtering with long period grating. After performing a group of verifying tests, the sensor has been subsequently calibrated with a series of standard fluids to determine uncertain parameters in the mathematical model. The results of the experiment show that the relative measurement error was less than 2% when the viscosity ranged from 200 to 500 mPa s. The proposed architecture utilizes the characteristics of anti-interference, fast response speed, high resolution and compact structure of FBG, thereby offering a novel modality to achieve an online viscosity measurement. (paper)

  5. Atomic vibration amplitudes in fcc and hcp 4He through x-ray diffraction measurements

    International Nuclear Information System (INIS)

    Venkataraman, C.T.; Simmons, R.O.

    2003-01-01

    Atomic vibration amplitudes in dense fcc and hcp 4 He crystals have been measured using synchrotron x rays from the dependence of integrated Bragg intensities up to wave vectors of 91 nm -1 . Observed raw Bragg x-ray integrated intensities cover an extraordinary range, greater than 10 5 , due to the combined effect of the Debye-Waller factor and electronic form factor. From analysis of these intensities mean-square atomic vibration amplitudes Q 2 > and Lindemann ratios are determined. Path-integral Monte Carlo (PIMC) computations of Draeger and Ceperley, extrapolated to the thermodynamic limit, provide excellent agreement with these experimental results. For both present measurements and the PIMC results, one finds both a predominantly Gaussian distribution in Q 2 > and an extraordinarily large Lindemann ratio. In contrast, these directly measured x-ray values are significantly larger than published values inferred from Born-von Karman fitting to phonon dispersion measured by neutron scattering. Mildly anharmonic neon, which is fairly well described by self-consistent phonon theories, is contrasted with present results on fcc 4 He at corresponding densities

  6. Morphing Wing: Experimental Boundary Layer Transition Determination and Wing Vibrations Measurements and Analysis =

    Science.gov (United States)

    Tondji Chendjou, Yvan Wilfried

    This Master's thesis is written within the framework of the multidisciplinary international research project CRIAQ MDO-505. This global project consists of the design, manufacture and testing of a morphing wing box capable of changing the shape of the flexible upper skin of a wing using an actuator system installed inside the wing. This changing of the shape generates a delay in the occurrence of the laminar to turbulent transition area, which results in an improvement of the aerodynamic performances of the morphed wing. This thesis is focused on the technologies used to gather the pressure data during the wind tunnel tests, as well as on the post processing methodologies used to characterize the wing airflow. The vibration measurements of the wing and their real-time graphical representation are also presented. The vibration data acquisition system is detailed, and the vibration data analysis confirms the predictions of the flutter analysis performed on the wing prior to wind tunnel testing at the IAR-NRC. The pressure data was collected using 32 highly-sensitive piezoelectric sensors for sensing the pressure fluctuations up to 10 KHz. These sensors were installed along two wing chords, and were further connected to a National Instrument PXI real-time acquisition system. The acquired pressure data was high-pass filtered, analyzed and visualized using Fast Fourier Transform (FFT) and Standard Deviation (SD) approaches to quantify the pressure fluctuations in the wing airflow, as these allow the detection of the laminar to turbulent transition area. Around 30% of the cases tested in the IAR-NRC wind tunnel were optimized for drag reduction by the morphing wing procedure. The obtained pressure measurements results were compared with results obtained by infrared thermography visualization, and were used to validate the numerical simulations. Two analog accelerometers able to sense dynamic accelerations up to +/-16g were installed in both the wing and the aileron boxes

  7. Experience in WWER fuel assemblies vibration analysis

    International Nuclear Information System (INIS)

    Ovtcharov, O.; Pavelko, V.; Usanov, A.; Arkadov, G.; Dolgov, A.; Molchanov, V.

    2003-01-01

    It is stated that the vibration studies of internals and the fuel assemblies should be conducted during the reactor designing, commissioning and commercial operation stages and the analysis methods being used should complement each other. The present paper describes the methods and main results of the vibration noise studies of internals and the fuel assemblies of the operating NPPs with WWER reactors, as an example of the implementation of the comprehensive approach to the analysis on equipment flow-induced vibration. At that, the characteristics of internals and fuel assemblies vibration loading were dealt jointly as they are elements of the same compound oscillating system and their vibrations have the interrelated nature

  8. A Medical Wireless Measurement System for Hip Prosthesis Loosening Detection Based on Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Sebastian Sauer

    2013-01-01

    Full Text Available Vibration analysis is a promising approach in order to detect early hip prosthesis loosening, with the potential to extend the range of diagnostic tools currently available in clinical routine. Ongoing research efforts and developments in the area of multi-functional implants, which integrate sensors, wireless power supply, communication and signal processing, provide means to obtain valuable in vivo information otherwise not available. In the current work a medical wireless measurement system is presented, which is integrated in the femoral head of a hip prosthesis. The passive miniaturized system includes a 3-axis acceleration sensor and signal pre-processing based on a lock-in amplifier circuit. Bidirectional data communication and power supply is reached through inductive coupling with an operating frequency of 125 kHz in accordance with the ISO 18000-2 protocol standard. The system allows the acquisition of the acceleration frequency response of the femur-prosthesis system between 500 to 2500 Hz. Applied laboratory measurements with system prototypes on artificial bones and integrated prostheses demonstrate the feasibility of the measurement system approach, clearly showing differences in the vibration behavior due to an implant loosening. In addition a possibility to evaluate the non-linear mechanic system behavior is presented.

  9. ANALYSIS OF METHODS PROVIDING ACCURACY FOR TOOLS AND TECHNIQUES VIBRATION MEASUREMENT IN THE PROCESS OF MAINTAINING AIRWORTHINESS OF AIRCRAFT

    Directory of Open Access Journals (Sweden)

    Anatoliy Alexandrovich Bogoyavlenskiy

    2017-01-01

    Full Text Available On the basis of system approach the structure of the aviation activity areas on air transport related to monitoring and measurements of vibration parameters is presented.The technology analysis of laboratory tests of the onboard equipment control of vibration parameters is carried out. The issues related to ensuring the unity of measurements of vibration parameters are researched and summarized.While dealing with the works on metrological certification described in the article, the risks arising from aviation activity on air transport are taken into account. The certification methods of measuring channels of vibration parametersused on stands for testing GTE at the repairing of aircraft engines are developed. The methods are implemented when con- ducting initial and periodic certifications of test benches for twelve types of aircraft GTE in repair organizations. The reliability of the results of the conducted research due to the fact that they were carried out with the use of certified measure- ment equipment, included in the State register of measuring instruments. The research is conducted for a sufficiently high statistical confidence level with the boundaries 0.95. The studies have shown that running on air transport measurements of vibration parameters are metrologically se- cured, the unity of measurements and their traceability from the national primary reference to special measuring instru- ments, test equipment, and onboard controls of the aircraft is maintained.

  10. Detection of Ballast Damage by In-Situ Vibration Measurement of Sleepers

    Science.gov (United States)

    Lam, H. F.; Wong, M. T.; Keefe, R. M.

    2010-05-01

    Ballasted track is one of the most important elements of railway transportation systems worldwide. Owing to its importance in railway safety, many monitoring and evaluation methods have been developed. Current railway track monitoring systems are comprehensive, fast and efficient in testing railway track level and alignment, rail gauge, rail corrugation, etc. However, the monitoring of ballast condition still relies very much on visual inspection and core tests. Although extensive research has been carried out in the development of non-destructive methods for ballast condition evaluation, a commonly accepted and cost-effective method is still in demand. In Hong Kong practice, if abnormal train vibration is reported by the train operator or passengers, permanent way inspectors will locate the problem area by track geometry measurement. It must be pointed out that visual inspection can only identify ballast damage on the track surface, the track geometry deficiencies and rail twists can be detected using a track gauge. Ballast damage under the sleeper loading area and the ballast shoulder, which are the main factors affecting track stability and ride quality, are extremely difficult if not impossible to be detected by visual inspection. Core test is a destructive test, which is expensive, time consuming and may be disruptive to traffic. A fast real-time ballast damage detection method that can be implemented by permanent way inspectors with simple equipment can certainly provide valuable information for engineers in assessing the safety and riding quality of ballasted track systems. The main objective of this paper is to study the feasibility in using the vibration characteristics of sleepers in quantifying the ballast condition under the sleepers, and so as to explore the possibility in developing a handy method for the detection of ballast damage based on the measured vibration of sleepers.

  11. Large-amplitude and narrow-band vibration phenomenon of a foursquare fix-supported flexible plate in a rigid narrow channel

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lifang, E-mail: liu_lifang1106@yahoo.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Lu Daogang, E-mail: ludaogang@ncepu.edu.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Li Yang, E-mail: qinxiuyi@sina.com [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Zhang Pan, E-mail: zhangpan@ncepu.edu.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Niu Fenglei, E-mail: niufenglei@ncepu.edu.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China)

    2011-08-15

    Highlights: > FIV of a foursquare fix-supported flexible plate exposed to axial flow was studied. > Special designed test section and advanced measuring equipments were adopted. > The narrow-band vibration phenomenon with large amplitude was observed. > Line of plate's vibration amplitude and flow rate was investigated. > The phenomenon and the measurement error were analyzed. - Abstract: An experiment was performed to analyze the flow-induced vibration behavior of a foursquare fix-supported flexible plate exposed to the axial flow within a rigid narrow channel. The large-amplitude and narrow-band vibration phenomenon was observed in the experiment when the flow velocity varied with the range of 0-5 m/s. The occurring condition and some characteristics of the large-amplitude and narrow-band vibrations were investigated.

  12. Vibrational-rotational temperature measurement of N2 in the lower thermosphere by the rocket experiment

    Science.gov (United States)

    Kurihara, J.; Oyama, K.; Suzuki, K.; Iwagami, N.

    The vibrational temperature (Tv), the rotational temperature (Tr) and the density of atmospheric N2 between 100 - 150 km were measured in situ by a sounding rocket S310-30, over Kagoshima, Japan at 10:30 UT on February 6, 2002. The main purpose of this rocket experiment is to study the dynamics and the thermal energy budget in the lower thermosphere. N2 was ionized using an electron gun and the emission of the 1st negative bands of N2+ was measured by a sensitive spectrometer. Tv and Tr were determined by fitting the observed spectrum for the simulated spectrum, and the number density was deduced from the intensities of the spectrum. We will report preliminary results of our measurement and discuss the observed thermal structure that indicates the effect of tides and gravity waves.

  13. Clinical studies of the vibration syndrome using a cold stress test measuring finger temperature.

    Science.gov (United States)

    Gautherie, M

    1995-01-01

    Since nine years multicentre, transversal and longitudinal clinical studies on hand-arm, vibration-exposed patients are being performed in cooperation with French occupational medicine centers and social security institutions. These studies are based upon current clinical assessment and standardized, temperature-measuring cooling tests. Data acquisition uses a portable, 10-channel, micro-processor-based temperature recorder and miniature thermal sensors. Temperature is monitored at the ten finger tips continuously, before, during and after a cold stress performed in strictly controlled conditions. Data from examinations performed at outlying sites are transferred through the telephonic network to a central processing unit. Data analysis uses a specific, expert-type software procedure based upon previous clinical studies on (i) 238 "normal" subjects, and (ii) 3,046 patients with vascular disturbances of the upper extremities of various etiologies. This procedure includes a staging process which assigns each finger a class representing the degree of severity of the abnormalities of response to cold ("dysthermia") related to vascular disorders. All data processing is fully automatic and results in a printed examination report. To date, over 1,623 vibration-exposed forestry, building and mechanical workers were examined. Sixty-three per cent of patients had received high dose of vibration (daily use of chain saws, air hammers, ballast tampers over many years). Typical white finger attacks or only neurological symptoms were found in 36% and 23% of patients respectively. The rate of sever dysthermia was much higher in patients with white finger attacks (83%) than in patients without (32%). In 90% of the vibration-exposed patients, the severity of dysthermia has differed greatly from one finger to another and between hands, while in non-exposed patients with primary Raynaud syndrome the dysthermia are generally similar for all fingers but the thumbs. Of 208 forestry

  14. Vibration analysis of 1 MW gearbox for the Avedoere wind turbine. Test bed measurements

    International Nuclear Information System (INIS)

    Crone, A.

    1995-03-01

    The investigations had several purposes: Firstly, to determine and evaluate the structure-borne noise source strength of the gearbox, which is relevant for the final gear noise emission from the wind turbine. Secondly, to select the potentially least noisy gear set out of two, which have been made for the output gear stage. And Thirdly, to obtain the natural vibration modes of the gearbox structure, in order to determine if the structure-borne noise, transmitted to the wind turbine structure, will be amplified due to resonance conditions. Additional vibration tests were carried out. Among these, trials of 'in situ' measurement of the Transmission Error of the output gear stage, and measurements of the torsional vibrations of the input and output shaft. The test of the two output gear sets (from Flender AG and ELKRAFT A.m.b.A.) had the aim to determine the least noisy one of two different tooth profiles. Both gear sets were intended for the Avedoere Wind Turbine when it, in its first period of operation, is going to operate as a stall regulated turbine. After the first mesurements and the exchange of the Flender-designed gear set with the ELKRAFT-designed gear set, troubles with the backmost bearing of the intermediate shaft arose. The evaluation of the structure-borne noise source strength (expressed as the vibration velocity level), has in general been made at load conditions which correspond to the conditions in the wind turibne at a wind speed of 8 m/s, 10 m above terrain (v 10 ). This condition, is the one normally used when the noise emission from wind turbines is evaluated. At the comparison of the two gear sets against each other, the influence of the torque load on the source strength has also been considered. This comparison may indicate the load at which the profile correction is most effective, and may determine the noise potential of the gearbox at wind speeds lower than 8 m/s, which could also be of interest

  15. Gearbox Fault Features Extraction Using Vibration Measurements and Novel Adaptive Filtering Scheme

    Directory of Open Access Journals (Sweden)

    Ghalib R. Ibrahim

    2012-01-01

    Full Text Available Vibration signals measured from a gearbox are complex multicomponent signals, generated by tooth meshing, gear shaft rotation, gearbox resonance vibration signatures, and a substantial amount of noise. This paper presents a novel scheme for extracting gearbox fault features using adaptive filtering techniques for enhancing condition features, meshing frequency sidebands. A modified least mean square (LMS algorithm is examined and validated using only one accelerometer, instead of using two accelerometers in traditional arrangement, as the main signal and a desired signal is artificially generated from the measured shaft speed and gear meshing frequencies. The proposed scheme is applied to a signal simulated from gearbox frequencies with a numerous values of step size. Findings confirm that 10−5 step size invariably produces more accurate results and there has been a substantial improvement in signal clarity (better signal-to-noise ratio, which makes meshing frequency sidebands more discernible. The developed scheme is validated via a number of experiments carried out using two-stage helical gearbox for a healthy pair of gears and a pair suffering from a tooth breakage with severity fault 1 (25% tooth removal and fault 2 (50% tooth removal under loads (0%, and 80% of the total load. The experimental results show remarkable improvements and enhance gear condition features. This paper illustrates that the new approach offers a more effective way to detect early faults.

  16. RISK ASSESSMENT BY STRUCTURAL ANALYSIS AND VIBRATION MEASUREMENT EQUIPMENT OPERATING AT OIL FACILITIES

    Directory of Open Access Journals (Sweden)

    Marius STAN

    2013-05-01

    Full Text Available Vibration analysis applications in operation is one of the diagnostic methods ofoperation of the facility. Analysis of these types of failures indicated the existence of specificfeatures prints and related equipment vibration spectra. Modeling and identification of theseparticular aspects in the spectrum of vibration machines help to control the operation of oilfacilities built safely.

  17. RISK ASSESSMENT BY STRUCTURAL ANALYSIS AND VIBRATION MEASUREMENT EQUIPMENT OPERATING AT OIL FACILITIES

    OpenAIRE

    Marius STAN

    2013-01-01

    Vibration analysis applications in operation is one of the diagnostic methods ofoperation of the facility. Analysis of these types of failures indicated the existence of specificfeatures prints and related equipment vibration spectra. Modeling and identification of theseparticular aspects in the spectrum of vibration machines help to control the operation of oilfacilities built safely.

  18. Simultaneous measurements of global vibrational spectra and dephasing times of molecular vibrational modes by broadband time-resolved coherent anti-Stokes Raman scattering spectrography

    International Nuclear Information System (INIS)

    Yin Jun; Yu Ling-Yao; Liu Xing; Wan Hui; Lin Zi-Yang; Niu Han-Ben

    2011-01-01

    In broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy with supercontinuum (SC), the simultaneously detectable spectral coverage is limited by the spectral continuity and the simultaneity of various spectral components of SC in an enough bandwidth. By numerical simulations, the optimal experimental conditions for improving the SC are obtained. The broadband time-resolved CARS spectrography based on the SC with required temporal and spectral distributions is realised. The global molecular vibrational spectrum with well suppressed nonresonant background noise can be obtained in a single measurement. At the same time, the measurements of dephasing times of various molecular vibrational modes can be conveniently achieved from intensities of a sequence of time-resolved CARS signals. It will be more helpful to provide a complete picture of molecular vibrations, and to exhibit a potential to understand not only both the solvent dynamics and the solute-solvent interactions, but also the mechanisms of chemical reactions in the fields of biology, chemistry and material science. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Simultaneous measurements of disk vibration and pressure fluctuation in turbulent flow developing in a model hard disk drive

    Energy Technology Data Exchange (ETDEWEB)

    Kurashima, D.; Naka, Y.; Fukagata, K. [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Obi, S., E-mail: obsn@mech.keio.ac.jp [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2011-06-15

    The complex flow features inside hard disk drive models are investigated in an axisymmetric and a semi-open shroud configurations. For the axisymmetric case, we have employed both experimental and computational approaches. The experiment focuses on both flow dynamics and the disk vibration, where measurements of the fluctuating pressure and velocity are undertaken at some representative points. The correlation between the disk vibration and the fluctuating pressure in the turbulent flow between disks is evident from the spectral analysis. The experimentally observed fluctuating pressure and velocity are partly due to the disk vibration and its contribution could be estimated by comparing the experiment with the results of a large eddy simulation. For the semi-open shroud case, although the characteristic peaks attributable to the large-scale vortical structure are still observed in the power spectra, the pressure fluctuation and the disk vibration are suppressed when the arm is inserted.

  20. Laser vibrometry measurements of vibration and sound fields of a bowed violin

    Science.gov (United States)

    Gren, Per; Tatar, Kourosh; Granström, Jan; Molin, N.-E.; Jansson, Erik V.

    2006-04-01

    Laser vibrometry measurements on a bowed violin are performed. A rotating disc apparatus, acting as a violin bow, is developed. It produces a continuous, long, repeatable, multi-frequency sound from the instrument that imitates the real bow-string interaction for a 'very long bow'. What mainly differs is that the back and forward motion of the real bow is replaced by the rotating motion with constant velocity of the disc and constant bowing force (bowing pressure). This procedure is repeatable. It is long lasting and allows laser vibrometry techniques to be used, which measure forced vibrations by bowing at all excited frequencies simultaneously. A chain of interacting parts of the played violin is studied: the string, the bridge and the plates as well as the emitted sound field. A description of the mechanics and the sound production of the bowed violin is given, i.e. the production chain from the bowed string to the produced tone.

  1. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning

    Directory of Open Access Journals (Sweden)

    Chuan Li

    2016-06-01

    Full Text Available Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM. The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults.

  2. Report on acoustic and vibration measurements on 250 MVA transformer at St. Vital Station, Winnipeg, Manitoba

    International Nuclear Information System (INIS)

    Weissman, K.; McLoughlin, M.; Schott, R.; Tennese, G.; Daneryd, A.

    1998-09-01

    Vibroacoustic behaviour of a power transformer was characterized prior to employing active noise control (ANC) to control transformer noise. The effect of changes in temperature and loading conditions on the vibration pattern of the transformer tank received particular attention. The transformer quieting technology has been developed and implemented by QuietPower Systems of New York and Noise Cancellation Technologies Inc., of Maryland. Results of the study will be used to ensure that actuator placement is appropriate for each of the seasons experienced throughout the year, as well as to build boundary element and finite element models of the tank vibration and the associated radiated noise. Boundary element results show that the first four harmonics are the primary contributors to radiated noise. The finite element model used to examine the modal response of the tank structure showed high modal densities, even around the lower order harmonics (120 Hz). This can be interpreted to mean that statistical techniques normally associated with high frequency noise problems may be applicable here because of the high modal density. Results of the completed summer and winter measurements permit an evaluation of the effects of loading conditions, temperature and other environmental factors on transformer noise. Appendix B contains the results of numerical simulations on a 250 MVA transformer. 3 refs., 72 figs., 2 appendices

  3. An assessment of noise and vibration measurements taken during the commissioning of Dungeness B

    International Nuclear Information System (INIS)

    Bickers, B.H.

    1983-01-01

    The design of the Dungeness B Advanced Gas Cooled Reactor took into account, from an early stage, the vibrational response of structures within the pressure vessel to noise generated by the gas circulators. Theoretical estimates indicated that the circulators, which absorb 13000HP each in circulating the CO 2 coolant at 30 atmospheres around the gas circuit, could produce potentially damaging noise levels. These estimates were backed up with scale model circulator tests and at a later stage with noise transmission tests in the actual reactor vessel and finally by running the circulators in air under atmospheric conditions. The response of the structural components was predicted initially by theoretical methods, such as the Statistical Energy Method, which was used basically as a sorting technique to identify problem areas which could then be tested in acoustic chambers using representative test specimens to give a more reliable estimate of response. Any items of structure for which a significant level of response was predicted, or where representative testing was not possible, were instrumented so that the vibrational response could be measured during the unfuelled pressurized commissioning tests. Some of the more interesting aspects of the results of these tests are discussed together with a comparison of the results with predictions. (author)

  4. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning.

    Science.gov (United States)

    Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego

    2016-06-17

    Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults.

  5. Integrating Oil Debris and Vibration Measurements for Intelligent Machine Health Monitoring. Degree awarded by Toledo Univ., May 2002

    Science.gov (United States)

    Dempsey, Paula J.

    2003-01-01

    A diagnostic tool for detecting damage to gears was developed. Two different measurement technologies, oil debris analysis and vibration were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig. An oil debris sensor and the two vibration algorithms were adapted as the diagnostic tools. An inductance type oil debris sensor was selected for the oil analysis measurement technology. Gear damage data for this type of sensor was limited to data collected in the NASA Glenn test rigs. For this reason, this analysis included development of a parameter for detecting gear pitting damage using this type of sensor. The vibration data was used to calculate two previously available gear vibration diagnostic algorithms. The two vibration algorithms were selected based on their maturity and published success in detecting damage to gears. Oil debris and vibration features were then developed using fuzzy logic analysis techniques, then input into a multi sensor data fusion process. Results show combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spur gears. As a result of this research, this new diagnostic tool has significantly improved detection of gear damage in the NASA Glenn Spur Gear Fatigue Rigs. This research also resulted in several other findings that will improve the development of future health monitoring systems. Oil debris analysis was found to be more reliable than vibration analysis for detecting pitting fatigue failure of gears and is capable of indicating damage progression. Also, some vibration algorithms are as sensitive to operational effects as they

  6. Calculation of acoustic field based on laser-measured vibration velocities on ultrasonic transducer surface

    Science.gov (United States)

    Hu, Liang; Zhao, Nannan; Gao, Zhijian; Mao, Kai; Chen, Wenyu; Fu, Xin

    2018-05-01

    Determination of the distribution of a generated acoustic field is valuable for studying ultrasonic transducers, including providing the guidance for transducer design and the basis for analyzing their performance, etc. A method calculating the acoustic field based on laser-measured vibration velocities on the ultrasonic transducer surface is proposed in this paper. Without knowing the inner structure of the transducer, the acoustic field outside it can be calculated by solving the governing partial differential equation (PDE) of the field based on the specified boundary conditions (BCs). In our study, the BC on the transducer surface, i.e. the distribution of the vibration velocity on the surface, is accurately determined by laser scanning measurement of discrete points and follows a data fitting computation. In addition, to ensure the calculation accuracy for the whole field even in an inhomogeneous medium, a finite element method is used to solve the governing PDE based on the mixed BCs, including the discretely measured velocity data and other specified BCs. The method is firstly validated on numerical piezoelectric transducer models. The acoustic pressure distributions generated by a transducer operating in an homogeneous and inhomogeneous medium, respectively, are both calculated by the proposed method and compared with the results from other existing methods. Then, the method is further experimentally validated with two actual ultrasonic transducers used for flow measurement in our lab. The amplitude change of the output voltage signal from the receiver transducer due to changing the relative position of the two transducers is calculated by the proposed method and compared with the experimental data. This method can also provide the basis for complex multi-physical coupling computations where the effect of the acoustic field should be taken into account.

  7. In-situ position and vibration measurement of rough surfaces using laser Doppler distance sensors

    Science.gov (United States)

    Czarske, J.; Pfister, T.; Günther, P.; Büttner, L.

    2009-06-01

    In-situ measurement of distances and shapes as well as dynamic deformations and vibrations of fast moving and especially rotating objects, such as gear shafts and turbine blades, is an important task at process control. We recently developed a laser Doppler distance frequency sensor, employing two superposed fan-shaped interference fringe systems with contrary fringe spacing gradients. Via two Doppler frequency evaluations the non-incremental position (i.e. distance) and the tangential velocity of rotating bodies are determined simultaneously. The distance uncertainty is in contrast to e.g. triangulation in principle independent of the object velocity. This unique feature allows micrometer resolutions of fast moved rough surfaces. The novel sensor was applied at turbo machines in order to control the tip clearance. The measurements at a transonic centrifugal compressor were performed during operation at up to 50,000 rpm, i.e. 586 m/s velocity of the blade tips. Due to the operational conditions such as temperatures of up to 300 °C, a flexible and robust measurement system with a passive fiber-coupled sensor, using diffractive optics, has been realized. Since the tip clearance of individual blades could be temporally resolved an analysis of blade vibrations was possible. A Fourier transformation of the blade distances results in an average period of 3 revolutions corresponding to a frequency of 1/3 of the rotary frequency. Additionally, a laser Doppler distance sensor using two tilted fringe systems and phase evaluation will be presented. This phase sensor exhibits a minimum position resolution of σz = 140 nm. It allows precise in-situ shape measurements at grinding and turning processes.

  8. Handbook Of Noise And Vibration

    International Nuclear Information System (INIS)

    1995-12-01

    This book is about noise and vibration. The first chapter has explanations of noise such as basic of sound, influence of noise, assessment of noise, measurement of prevention of noise and technology, case of noise measurement and soundproof. The second chapter describes vibration with outline, theory of vibration, interpretation of vibration, measurement for reduction of vibration, case of design of protection against vibration. It deals with related regulation and method of measurement.

  9. Coagulation measurement from whole blood using vibrating optical fiber in a disposable cartridge.

    Science.gov (United States)

    Yaraş, Yusuf Samet; Gündüz, Ali Bars; Sağlam, Gökhan; Ölçer, Selim; Civitçi, Fehmi; Baris, İbrahim; Yaralioğlu, Göksenin; Urey, Hakan

    2017-11-01

    In clinics, blood coagulation time measurements are performed using mechanical measurements with blood plasma. Such measurements are challenging to do in a lab-on-a-chip (LoC) system using a small volume of whole blood. Existing LoC systems use indirect measurement principles employing optical or electrochemical methods. We developed an LoC system using mechanical measurements with a small volume of whole blood without requiring sample preparation. The measurement is performed in a microfluidic channel where two fibers are placed inline with a small gap in between. The first fiber operates near its mechanical resonance using remote magnetic actuation and immersed in the sample. The second fiber is a pick-up fiber acting as an optical sensor. The microfluidic channel is engineered innovatively such that the blood does not block the gap between the vibrating fiber and the pick-up fiber, resulting in high signal-to-noise ratio optical output. The control plasma test results matched well with the plasma manufacturer's datasheet. Activated-partial-thromboplastin-time tests were successfully performed also with human whole blood samples, and the method is proven to be effective. Simplicity of the cartridge design and cost of readily available materials enable a low-cost point-of-care device for blood coagulation measurements. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  10. Tube-AVB gap measurements using an eddy current rotating probe

    International Nuclear Information System (INIS)

    Badson, F.; Chiron, D.; Trumpff, B.

    1988-01-01

    The wears of tubes due to flow induced vibrations have been observed after a few years of operating PWR steam generators (SG). The vibration and wear are intimately related to the gap between tubes and anti-vibration bars (AVB's) located in the bundle. The authors report the development of an eddy current (EC) method for the measurement of this gap. The method is based on using an EC probe rotating in the tube. Since for each measurement zone the tube is interacting with two AVB's the use of a rotating EC probe is necessary to perform separate and accurate measurements of each tube-AVB gap

  11. Development of Design Criteria for Fluid Induced Structural Vibrations in Steam Generators and Heat Exchangers

    International Nuclear Information System (INIS)

    Uvan Catton; Dhir, Vijay K.; Deepanjan Mitra; Omar Alquaddoomi; Pierangelo Adinolfi

    2004-01-01

    Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers

  12. Optical measurement of the weak non-linearity in the eardrum vibration response to auditory stimuli

    Science.gov (United States)

    Aerts, Johan

    The mammalian hearing organ consists of the external ear (auricle and ear canal) followed by the middle ear (eardrum and ossicles) and the inner ear (cochlea). Its function is to convert the incoming sound waves and convert them into nerve pulses which are processed in the final stage by the brain. The main task of the external and middle ear is to concentrate the incoming sound waves on a smaller surface to reduce the loss that would normally occur in transmission from air to inner ear fluid. In the past it has been shown that this is a linear process, thus without serious distortions, for sound waves going up to pressures of 130 dB SPL (˜90 Pa). However, at large pressure changes up to several kPa, the middle ear movement clearly shows non-linear behaviour. Thus, it is possible that some small non-linear distortions are also present in the middle ear vibration at lower sound pressures. In this thesis a sensitive measurement set-up is presented to detect this weak non-linear behaviour. Essentially, this set-up consists of a loud-speaker which excites the middle ear, and the resulting vibration is measured with an heterodyne vibrometer. The use of specially designed acoustic excitation signals (odd random phase multisines) enables the separation of the linear and non-linear response. The application of this technique on the middle ear demonstrates that there are already non-linear distortions present in the vibration of the middle ear at a sound pressure of 93 dB SPL. This non-linear component also grows strongly with increasing sound pressure. Knowledge of this non-linear component can contribute to the improvement of modern hearing aids, which operate at higher sound pressures where the non-linearities could distort the signal considerably. It is also important to know the contribution of middle ear non-linearity to otoacoustic emissions. This are non-linearities caused by the active feedback amplifier in the inner ear, and can be detected in the external and

  13. Measurements on very small single crystals of NdFeB using a vibrating reed magnetometer

    International Nuclear Information System (INIS)

    Richter, H.J.; Hempel, K.A.; Verhoef, R.

    1988-01-01

    Nd 2 Fe 14 B single crystals with magnetic moments ranging from 1.6 x 10 -8 Acm 2 to 9.5 x 10 -7 Acm 2 are measured using the ultra high sensitivity vibrating reed magnetometer. The hysteresis loops are compared to those of BaFe 12 O 19 single crystals. It turns out that the magnetization reversal of the Nd 2 Fe 14 B samples is similar to that of BaFe 12 O 19 single crystals if the ferrite samples are considerably bigger in size. This does not hold for bigger Nd 2 Fe 14 B particles where stronger domain wall pinning is observed. For very small grains of Nd 2 Fe 14 B there is still evidence of domain wall processes while for BaFe 12 O 19 grains of the same size true single domain behaviour can be observed

  14. Fast-adaptive fiber-optic sensor for ultra-small vibration and deformation measurement

    International Nuclear Information System (INIS)

    Romashko, R V; Girolamo, S Di; Kulchin, Y N; Launay, J C; Kamshilin, A A

    2007-01-01

    Adaptive fiber-optic interferometer measuring system based on a dynamic hologram recorded in photorefractive CdTe crystal without applying an external electric field is developed. Vectorial mixing of two waves with different polarizations in the anisotropic diffraction geometry allows for the realization of linear regime of phase demodulation at the diffusion hologram. High sensitivity of the interferometer is achieved due to recording of the hologram in reflection geometry at high spatial frequencies in a crystal with sufficient concentration of photorefractive centers. The sensitivity obtained makes possible a broadband detection of ultra-small vibrations with amplitude of less then 0.1 nm. High cut-off frequency of the interferometer achieved using low-power light sources due to fast response of CdTe crystal allows one to eliminate temperature fluctuations and other industrial noises

  15. An exploratory study of using external fluid loading on a vibrating tube for measuring suspended sediment concentration in water

    International Nuclear Information System (INIS)

    Hsu, Y-S; Hwang, Y-F; Huang, J H

    2008-01-01

    This paper presents an exploratory study of using external fluid loading on a vibrating tube for measuring the suspended sediment concentration (SSC) in bodies of water such as rivers and reservoirs. This new measuring concept provides an opportunity for an automated on-site monitoring of the conditions in a body of water by taking the fluid sample instantaneously in the area surrounding the vibrating tube. The physical properties of the fluid sample are those of the fluid that naturally flows around the tube, and are more representative of those of the water with SSC to be measured. The theoretical analysis presented in this paper shows that the resonance frequencies of an immersed vibrating tube change significantly with mass density variations that normally occur in bodies of water with suspended sediment. These changes are sensitive enough to have a possible 1% resolution of the measured fluid density. The signal processing issues are discussed, and a schematic of a conceptual measuring setup is proposed. Based on the theoretical analyses and other measurement issues presented in the paper, using the loading by external fluid on a vibrating tube is feasible for measuring the SSC in water bodies

  16. Distribution of base rock depth estimated from Rayleigh wave measurement by forced vibration tests

    International Nuclear Information System (INIS)

    Hiroshi Hibino; Toshiro Maeda; Chiaki Yoshimura; Yasuo Uchiyama

    2005-01-01

    This paper shows an application of Rayleigh wave methods to a real site, which was performed to determine spatial distribution of base rock depth from the ground surface. At a certain site in Sagami Plain in Japan, the base rock depth from surface is assumed to be distributed up to 10 m according to boring investigation. Possible accuracy of the base rock depth distribution has been needed for the pile design and construction. In order to measure Rayleigh wave phase velocity, forced vibration tests were conducted with a 500 N vertical shaker and linear arrays of three vertical sensors situated at several points in two zones around the edges of the site. Then, inversion analysis was carried out for soil profile by genetic algorithm, simulating measured Rayleigh wave phase velocity with the computed counterpart. Distribution of the base rock depth inverted from the analysis was consistent with the roughly estimated inclination of the base rock obtained from the boring tests, that is, the base rock is shallow around edge of the site and gradually inclines towards the center of the site. By the inversion analysis, the depth of base rock was determined as from 5 m to 6 m in the edge of the site, 10 m in the center of the site. The determined distribution of the base rock depth by this method showed good agreement on most of the points where boring investigation were performed. As a result, it was confirmed that the forced vibration tests on the ground by Rayleigh wave methods can be useful as the practical technique for estimating surface soil profiles to a depth of up to 10 m. (authors)

  17. Prototype fiber Bragg Grattings (FBG) sensor based on intensity modulation of the laser diode low frequency vibrations measurement

    Science.gov (United States)

    Setiono, Andi; Ula, Rini Khamimatul; Hanto, Dwi; Widiyatmoko, Bambang; Purnamaningsih, Retno Wigajatri

    2016-02-01

    In general, Fiber Bragg Grating (FBG) sensor works based on observation of spectral response characteristic to detect the desired parameter. In this research, we studied intensity response characteristic of FBG to detect the dynamic strain. Experiment result show that the reflected intensity had linier relationships with dynamic strain. Based on these characteristics, we developed the FBG sensor to detect low frequency vibration. This sensor is designed by attaching the FBG on the bronze cantilever with dimensions of 85×3×0.5 mm. Measurement results showed that the sensor was able to detect vibrations in the frequency range of 7-10 Hz at temperature range of 25-45 ˚C. The measured frequency range is still within the frequency range of digging activity, therefore this vibration sensor can be applied for oil pipelines vandalisation detection system.

  18. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    Science.gov (United States)

    Keersmaekers, Lissa; Keustermans, William; De Greef, Daniël; Dirckx, Joris J. J.

    2016-06-01

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.

  19. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    International Nuclear Information System (INIS)

    Keersmaekers, Lissa; Keustermans, William; De Greef, Daniël; Dirckx, Joris J. J.

    2016-01-01

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250 mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.

  20. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    Energy Technology Data Exchange (ETDEWEB)

    Keersmaekers, Lissa; Keustermans, William, E-mail: william.keustermans@uantwerpen.be; De Greef, Daniël; Dirckx, Joris J. J. [University of Antwerp, Laboratory of Biophysics and Biomedical Physics, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2016-06-28

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250 mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.

  1. Experimental measurements of out-of-plane vibrations of a simple blisk design using Blade Tip Timing and Scanning LDV measurement methods

    Science.gov (United States)

    Di Maio, D.; Ewins, D. J.

    2012-04-01

    The study of dynamic properties of rotating structures, such as bladed discs, can be conveniently done using simple bladed discs where the blades do not have staggering angles. Simplified design, although not truly representative of real structures, can be easy and economic to manufacture and, still, very helpful for studying specific dynamic properties. An example of this can be called as mass mistune blisk study. Experimental measurements of vibrations of bladed discs under rotating conditions can be performed using Scanning Laser Doppler Vibrometer (SLDV) systems. However, in the aerospace industry, the vibrations of complex bladed discs must be measured under operating conditions which are more hostile than laboratory simulations. The Blade Tip Timing (BTT) measurement method is a measurement technique, which can be used to measure vibrations of bladed discs of an engine aircraft under operating conditions. However, the BTT technique is ineffective when used with a flat bladed disc whose blade vibrations cannot be measured. This can be detrimental when the use of controlled dynamic parameters, such as those obtained from a simple bladed disc design, can improve the confidence for the validation of post-processing software. This paper presents a work about experimental measurements of a simple bladed disc design whose vibrations were measured synchronously by Scanning LDV and BTT measurement systems. A rotating test rig and its mechanical modifications for the installation of the BTT probes are introduced. Implications of rotating a specimen inconsistently are presented so as solutions to obtained constant revolving speed. The experimental comparisons of forced response vibrations measured synchronously at one blade are presented and explained.

  2. Prevalence of Hand-transmitted Vibration Exposure among Grass-cutting Workers using Objective and Subjective Measures

    Science.gov (United States)

    Azmir, N. A.; Yahya, M. N.

    2017-01-01

    Extended exposure to hand-transmitted vibration from vibrating machine is associated with an increased occurrence of symptoms of occupational disease related to hand disorder. The present case study is to determine the prevalence and correlation of significant subjective as well as objective variables that induce to hand arm vibration syndrome (HAVS) among hand-held grass-cutting workers in Malaysia. Thus, recommendations are made for grass-cutting workers and grass maintenance service management based on findings. A cross sectional study using adopted subjective Hand Arm Vibration Exposure Risk Assessment (HAVERA) questionnaire from Vibration Injury Network on hand disorder signs and symptoms was distributed to a sample of one hundred and sixty eight male workers from grass and turf maintenance industry that use vibrating machine as part of their work. For objective measure, hand-transmitted vibration measurement was collected on site during operation by the following ISO 5349-1, 2001. Two groups were identified in this research comprising of high exposure group and low-moderate exposure group. Workers also gave information about their personal identification, social history, workers’ health, occupational history and machine safety inspection. There was positive HAVS symptoms relationship between the low-moderate exposure group and high exposure group among hand-held grass-cutting workers. The prevalence ratio (PR) was considered high for experiencing white colour change at fingers and fingers go numb which are 3.63 (1.41 to 9.39) and 4.24 (2.18 to 8.27), respectively. The estimated daily vibration exposure, A(8) differs between 2.1 to 20.7 ms-2 for right hand while 2.7 to 29.1 ms-2 for left hand. The subjects claimed that the feel of numbness at left hand is much stronger compared to right hand. The results suggest that HAVS is diagnosed in Malaysia especially in agriculture sector. The A(8) indicates that the exposure value is more than exposure limit value

  3. Vibration response of a pipe subjected to two-phase flow: Analytical formulations and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Vidal, L. Enrique, E-mail: leortiz@sc.usp.br [Department of Mechanical Engineering, Sao Carlos School of Engineering, University of Sao Paulo (USP), Av., Trabalhador São-carlense, 400, 13566-970 São Carlos, SP (Brazil); Mureithi, Njuki W., E-mail: njuki.mureithi@polymtl.ca [Department of Mechanical Engineering, Polytechnique Montreal, Département de Géniemécanique 2900, H3T 1J7 Montreal, QC (Canada); Rodriguez, Oscar M.H., E-mail: oscarmhr@sc.usp.br [Department of Mechanical Engineering, Sao Carlos School of Engineering, University of Sao Paulo (USP), Av., Trabalhador São-carlense, 400, 13566-970 São Carlos, SP (Brazil)

    2017-03-15

    Highlights: • Analytical formulations for two-phase flow-induced vibration (2-FIV) are presented. • Standard deviation of acceleration pipe response is a function of the square of shear velocity. • Peak frequency is correlated to hydrodynamic mass and consequently to void fraction. • Dynamic pipe response increases with increasing mixture velocity and void fraction. • Hydrodynamic mass in 2-FIV in horizontal pipe is proportional to mixture density. - Abstract: This paper treats the two-phase flow-induced vibration in pipes. A broad range of two-phase flow conditions, including bubbly, dispersed and slug flow, were tested in a clamped-clamped straight horizontal pipe. The vibration response of both transversal directions for two span lengths was measured. From experimental results, an in-depth discussion on the nature of the flow excitation and flow-parameters influence is presented. The hydrodynamic mass parameter is also studied. Experimental results suggest that it is proportional to mixture density. On the other hand, two analytical formulations were developed and tested against experimental results. One formulation predicts the quadratic trend between standard deviation of acceleration and shear velocity found in experiments. The other formulation indicates that the peak-frequency of vibration response depends strongly on void fraction. It provides accurate predictions of peak-frequency, predicting 97.6% of the data within ±10% error bands.

  4. Flow Induced segregation in full scale castings with SCC

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Stang, Henrik; Geiker, Mette Rica

    2007-01-01

    induced segregation is a major risk during casting and it is not yet clear how this phenomenon should be modelled. In this paper testing and numerical simulations of full-scale wall castings are compared. Two different SCCs and three different filling methods were applied resulting in different flow...... patterns during form filling. Results show that the flow patterns have a major influence on the risk of flow induced segregation and the surface finish of the hardened concrete. A hypothesis for the mechanism of flow induced segregation is put forth....

  5. Utilization of old vibro-acoustic measuring equipment to grasp basic concepts of vibration measurements

    DEFF Research Database (Denmark)

    Darula, Radoslav

    2013-01-01

    The aim of the paper is to show that even old vibro-acoustic (analog) equipment can be used as a very suitable teaching equipment to grasp basic principles of measurements in an era, when measurement equipments are more-or-less treated as ‘black-boxes’, i.e. the user cannot see directly how...

  6. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms

    Directory of Open Access Journals (Sweden)

    Qianqian Wu

    2015-08-01

    Full Text Available High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

  7. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms.

    Science.gov (United States)

    Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan

    2015-08-14

    High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

  8. Expanded beam deflection method for simultaneous measurement of displacement and vibrations of multiple microcantilevers

    International Nuclear Information System (INIS)

    Nieradka, K.; MaloziePc, G.; Kopiec, D.; Gotszalk, T.; Grabiec, P.; Janus, P.; Sierakowski, A.

    2011-01-01

    Here we present an extension of optical beam deflection (OBD) method for measuring displacement and vibrations of an array of microcantilevers. Instead of focusing on the cantilever, the optical beam is either focused above or below the cantilever array, or focused only in the axis parallel to the cantilevers length, allowing a wide optical line to span multiple cantilevers in the array. Each cantilever reflects a part of the incident beam, which is then directed onto a photodiode array detector in a manner allowing distinguishing between individual beams. Each part of reflected beam behaves like a single beam of roughly the same divergence angle in the bending sensing axis as the incident beam. Since sensitivity of the OBD method depends on the divergence angle of deflected beam, high sensitivity is preserved in proposed expanded beam deflection (EBD) method. At the detector, each spot's position is measured at the same time, without time multiplexing of light sources. This provides real simultaneous readout of entire array, unavailable in most of competitive methods, and thus increases time resolution of the measurement. Expanded beam can also span another line of cantilevers allowing monitoring of specially designed two-dimensional arrays. In this paper, we present first results of application of EBD method to cantilever sensors. We show how thermal noise resolution can be easily achieved and combined with thermal noise based resonance frequency measurement.

  9. Establishment of one-axis vibration test system for measurement of biodynamic response of human hand-arm system.

    Science.gov (United States)

    Shibata, Nobuyuki; Hosoya, Naoki; Maeda, Setsuo

    2008-12-01

    Prolonged exposure to hand-arm vibration (HAV) due to use of hand-held power tools leads to an increased occurrence of symptoms of disorders in the vascular, neurological, and osteo-articular systems of the upper limbs called hand-arm vibration syndrome (HAVS). Biodynamic responses of the hand-arm system to vibration can be suggestive parameters that give us better assessment of exposure to HAV and fundamental data for design of low-vibration-exposure power tools. Recently, a single axis hand-arm vibration system has been installed in the Japan National Institute of Occupational Safety and Health (NIOSH). The aims of this study were to obtain the fundamental dynamic characteristics of an instrumented handle and to validate the performance and measurement accuracy of the system applied to dynamic response measurement. A pseudo-random vibration signal with a frequency range of 5-1,250 Hz and a power spectrum density of 1.0 (m/s2)2/Hz was used in this study. First the dynamic response of the instrumented handle without any weight was measured. After this measurement, the dynamic response measurement of the handle with weights mounted on the handle was performed. The apparent mass of a weight itself was obtained by using the mass cancellation method. The mass of the measuring cap on the instrumented handle was well compensated by using the mass cancellation method. Based on the 10% error tolerance, this handle can reliably measure the dynamic response represented by an apparent mass with a minimum weight of 2.0 g in a frequency range of 10.0 to 1,000 Hz. A marked increase in the AM magnitude of the weights of 15 g and 20 g in frequency ranges greater than 800 Hz is attributed not to the fundamental resonance frequency of the handle with weights, but to the fixation of the weight to the measuring cap. In this aspect, the peak of the AM magnitude can be reduced and hence should not be an obstacle to the biodynamic response measurement of the human hand-arm system. On the

  10. Quantitative assessment of corneal vibrations during intraocular pressure measurement with the air-puff method in patients with keratoconus.

    Science.gov (United States)

    Koprowski, Robert; Ambrósio, Renato

    2015-11-01

    One of the current methods for measuring intraocular pressure is the air-puff method. A tonometer which uses this method is the Corvis device. With the ultra-high-speed (UHS) Scheimpflug camera, it is also possible to observe corneal deformation during measurement. The use of modern image analysis and processing methods allows for analysis of higher harmonics of corneal deflection above 100 Hz. 493 eyes of healthy subjects and 279 eyes of patients with keratoconus were used in the measurements. For each eye, 140 corneal deformation images were recorded during intraocular pressure measurement. Each image was recorded every 230 µs and had a resolution of 200 × 576 pixels. A new, original algorithm for image analysis and processing has been proposed. It enables to separate the eyeball reaction as well as low-frequency and high-frequency corneal deformations from the eye response to an air puff. Furthermore, a method for classification of healthy subjects and patients with keratoconus based on decision trees has been proposed. The obtained results confirm the possibility to distinguish between patients with keratoconus and healthy subjects. The features used in this classification are directly related to corneal vibrations. They are only available in the proposed software and provide specificity of 98%, sensitivity-85%, and accuracy-92%. This confirms the usefulness of the proposed method in this type of classification that uses corneal vibrations during intraocular pressure measurement with the Corvis tonometer. With the new proposed algorithm for image analysis and processing allowing for the separation of individual features from a corneal deformation image, it is possible to: automatically measure corneal vibrations in a few characteristic points of the cornea, obtain fully repeatable measurement of vibrations for the same registered sequence of images and measure vibration parameters for large inter-individual variability in patients. Copyright © 2015 Elsevier

  11. Modal mass estimation from ambient vibrations measurement: A method for civil buildings

    Science.gov (United States)

    Acunzo, G.; Fiorini, N.; Mori, F.; Spina, D.

    2018-01-01

    A new method for estimating the modal mass ratios of buildings from unscaled mode shapes identified from ambient vibrations is presented. The method is based on the Multi Rigid Polygons (MRP) model in which each floor of the building is ideally divided in several non-deformable polygons that move independent of each other. The whole mass of the building is concentrated in the centroid of the polygons and the experimental mode shapes are expressed in term of rigid translations and of rotations. In this way, the mass matrix of the building can be easily computed on the basis of simple information about the geometry and the materials of the structure. The modal mass ratios can be then obtained through the classical equation of structural dynamics. Ambient vibrations measurement must be performed according to this MRP models, using at least two biaxial accelerometers per polygon. After a brief illustration of the theoretical background of the method, numerical validations are presented analysing the method sensitivity for possible different source of errors. Quality indexes are defined for evaluating the approximation of the modal mass ratios obtained from a certain MRP model. The capability of the proposed model to be applied to real buildings is illustrated through two experimental applications. In the first one, a geometrically irregular reinforced concrete building is considered, using a calibrated Finite Element Model for validating the results of the method. The second application refers to a historical monumental masonry building, with a more complex geometry and with less information available. In both cases, MRP models with a different number of rigid polygons per floor are compared.

  12. Real-time micro-vibration multi-spot synchronous measurement within a region based on heterodyne interference

    Science.gov (United States)

    Lan, Ma; Xiao, Wen; Chen, Zonghui; Hao, Hongliang; Pan, Feng

    2018-01-01

    Real-time micro-vibration measurement is widely used in engineering applications. It is very difficult for traditional optical detection methods to achieve real-time need in a relatively high frequency and multi-spot synchronous measurement of a region at the same time,especially at the nanoscale. Based on the method of heterodyne interference, an experimental system of real-time measurement of micro - vibration is constructed to satisfy the demand in engineering applications. The vibration response signal is measured by combing optical heterodyne interferometry and a high-speed CMOS-DVR image acquisition system. Then, by extracting and processing multiple pixels at the same time, four digital demodulation technique are implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. Different kinds of demodulation algorithms are analyzed and the results show that these four demodulation algorithms are suitable for different interference signals. Both autocorrelation algorithm and cross-correlation algorithm meet the needs of real-time measurements. The autocorrelation algorithm demodulates the frequency more accurately, while the cross-correlation algorithm is more accurate in solving the amplitude.

  13. Review of the experience obtained in the evaluation of vibrations and their effects on the structural integrity of heat exchangers

    International Nuclear Information System (INIS)

    Ghiselli, Alberto M.; Pastorini, Alberto; Kulichevsky Raul

    2000-01-01

    Flow induced vibrations may produce damage of shell-tube type heat exchangers, condensers and steam generators tubes. These vibrations could be produce by changes in the equipment operational condition or by a wrong evaluation during the design procedure. The typical results are tube damage by impact or fretting wear. This paper include a review of the flow-induced vibration mechanisms that affect shell-tube heat exchangers and some practical examples that show the results obtained evaluating this equipment. (author)

  14. Apparatus for measuring surface movement of an object that is subjected to external vibrations

    Science.gov (United States)

    Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1997-04-22

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figs.

  15. Vibrational spectra of nanowires measured using laser doppler vibrometry and STM studies of epitaxial graphene : an LDRD fellowship report.

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, Laura Butler

    2009-09-01

    A few of the many applications for nanowires are high-aspect ratio conductive atomic force microscope (AFM) cantilever tips, force and mass sensors, and high-frequency resonators. Reliable estimates for the elastic modulus of nanowires and the quality factor of their oscillations are of interest to help enable these applications. Furthermore, a real-time, non-destructive technique to measure the vibrational spectra of nanowires will help enable sensor applications based on nanowires and the use of nanowires as AFM cantilevers (rather than as tips for AFM cantilevers). Laser Doppler vibrometry is used to measure the vibration spectra of individual cantilevered nanowires, specifically multiwalled carbon nanotubes (MWNTs) and silver gallium nanoneedles. Since the entire vibration spectrum is measured with high frequency resolution (100 Hz for a 10 MHz frequency scan), the resonant frequencies and quality factors of the nanowires are accurately determined. Using Euler-Bernoulli beam theory, the elastic modulus and spring constant can be calculated from the resonance frequencies of the oscillation spectrum and the dimensions of the nanowires, which are obtained from parallel SEM studies. Because the diameters of the nanowires studied are smaller than the wavelength of the vibrometer's laser, Mie scattering is used to estimate the lower diameter limit for nanowires whose vibration can be measured in this way. The techniques developed in this thesis can be used to measure the vibrational spectra of any suspended nanowire with high frequency resolution Two different nanowires were measured - MWNTs and Ag{sub 2}Ga nanoneedles. Measurements of the thermal vibration spectra of MWNTs under ambient conditions showed that the elastic modulus, E, of plasma-enhanced chemical vapor deposition (PECVD) MWNTs is 37 {+-} 26 GPa, well within the range of E previously reported for CVD-grown MWNTs. Since the Ag{sub 2}Ga nanoneedles have a greater optical scattering efficiency than

  16. A Constitutive Model for Flow-Induced Anisotropic Behavior of Viscoelastic Complex Fluids

    International Nuclear Information System (INIS)

    Zhu, H.; De Kee, D.

    2008-01-01

    Flow-induced structural anisotropy could result when a complex fluid system is removed from equilibrium by means of hydrodynamic forces. In this paper, a general theory is developed to model flow induced anisotropic behavior of complex viscoelastic systems, e.g. polymer solutions/melts and suspensions. The rheological properties are characterized by viscosity and relaxation time tensors. We consider a second-rank tensor as a measure of the microstructure. We consider the effect of the flow on the structural changes: i.e. the evolution of the microstructure tensor is governed by a relaxation-type differential equation. We also propose that the viscosity and the relaxation time tensors depend on the second-rank microstructure tensor. That is as the microstructure tensor changes with the applied rate of deformation, the viscosity and relaxation time tensors evolve accordingly. As an example we consider elongational flow of two complex fluids

  17. Magnetostrictive patch sensor system for battery-less real-time measurement of torsional vibrations of rotating shafts

    Science.gov (United States)

    Lee, Jun Kyu; Seung, Hong Min; Park, Chung Il; Lee, Joo Kyung; Lim, Do Hyeong; Kim, Yoon Young

    2018-02-01

    Real-time uninterrupted measurement for torsional vibrations of rotating shafts is crucial for permanent health monitoring. So far, strain gauge systems with telemetry units have been used for real-time monitoring. However, they have a critical disadvantage in that shaft operations must be stopped intermittently to replace telemetry unit batteries. To find an alternative method to carry out battery-less real-time measurement for torsional vibrations of rotating shafts, a magnetostrictive patch sensor system was proposed in the present study. Since the proposed sensor does not use any powered telemetry system, no battery is needed and thus there is no need to stop rotating shafts for battery replacement. The proposed sensor consists of magnetostrictive patches and small magnets tightly bonded onto a shaft. A solenoid coil is placed around the shaft to convert magnetostrictive patch deformation by shaft torsional vibration into electric voltage output. For sensor design and characterization, investigations were performed in a laboratory on relatively small-sized stationary solid shaft. A magnetostrictive patch sensor system was then designed and installed on a large rotating propulsion shaft of an LPG carrier ship in operation. Vibration signals were measured using the proposed sensor system and compared to those measured with a telemetry unit-equipped strain gauge system.

  18. Vibration measurement for evaluating the danger of rock-collapse; Rakuseki kikendo hantei no tame no shindo sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T; Harada, H [The Nippon Road Co. Ltd., Tokyo (Japan); Mitsuzuka, T [Chishitsu-Keisoku Co. Ltd., Tokyo (Japan)

    1997-10-22

    Discussions were given on feasibility of a method for investigating a problem of the danger of rock-collapse by applying vibration measurement. The measurement investigation was carried out at a mouth of a tunnel under construction on a highway where the danger of rock-collapse is being investigated according to a qualitative determination criterion. Sixty-four rocks have been evaluated of their danger, with the degree of the danger having been classified to ranks one to three. Vibration measurement was performed on five floating rocks out of the 64 rocks. Vibroscopes were installed on upper portion of the rocks to be investigated and on exposed rocks nearby. The measurement revealed that the vibration has nearly the same amplitude in both of the floating rocks and the settled rocks before and after an automobile has passed, but the floating rocks shake more strongly than the settled rocks while an automobile is passing. This trend appears more noticeably in rocks regarded unstable in the danger determining investigation, indicating presence of close relationship between wave amplitude excited by the automobile and adhesion of the floating rocks. As a result of the discussions, it was made clear that the maximum amplitude ratio and the spectral ratio among the vibration characteristics of the floating rocks can be used as effective determination criteria. 2 refs., 7 figs., 2 tabs.

  19. Depth-kymography of vocal fold vibrations : part II. Simulations and direct comparisons with 3D profile measurements

    NARCIS (Netherlands)

    de Mul, Frits F. M.; George, Nibu A.; Qiu, Qingjun; Rakhorst, Gerhard; Schutte, Harm K.

    2009-01-01

    We report novel direct quantitative comparisons between 3D profiling measurements and simulations of human vocal fold vibrations. Until now, in human vocal folds research, only imaging in a horizontal plane was possible. However, for the investigation of several diseases, depth information is

  20. Farfield Ion Current Density Measurements before and after the NASA HiVHAc EDU2 Vibration Test

    Science.gov (United States)

    Huang, Wensheng; Kamhawi, Hani; Shastry, Rohit

    2012-01-01

    There is an increasing need to characterize the plasma plume of the NASA HiVHAc thruster in order to better understand the plasma physics and to obtain data for spacecraft interaction studies. To address this need, the HiVHAc research team is in the process of developing a number of plume diagnostic systems. This paper presents the initial results of the farfield current density probe diagnostic system. Farfield current density measurements were carried out before and after a vibration test of the HiVHAc engineering development unit 2 that simulate typical launch conditions. The main purposes of the current density measurements were to evaluate the thruster plume divergence and to investigate any changes in the plasma plume that may occur as a result of the vibration test. Radial sweeps, as opposed to the traditional polar sweeps, were performed during these tests. The charged-weighted divergence angles were found to vary from 16 to 28 degrees. Charge density profiles measured pre- and post-vibration-test were found to be in excellent agreement. This result, alongside thrust measurements reported in a companion paper, confirm that the operation of the HiVHAc engineering development unit 2 were not altered by full-level/random vibration testing.

  1. Implementation of a robust hybrid rotary-translational vibration energy harvester for autonomous self-powered acceleration measurement

    Science.gov (United States)

    Payne, Owen R.; Vandewater, Luke A.; Ung, Chandarin; Moss, Scott D.

    2015-04-01

    In this paper, a self-powered wireless sensor node utilising ambient vibrations for power is described. The device consists of a vibration energy harvester, power management system, microcontroller, accelerometer, RF transmitter/receiver and external LED indicators. The vibration energy harvester is adapted from a previously reported hybrid rotary-translational device and uses a pair of copper coil transducers to convert the mechanical energy of a magnetic sphere into usable electricity. The device requires less than 0.8 mW of power to operate continuously in its present setup (with LED indicators off) while measuring acceleration at a sample rate of 200 Hz, with the power source providing 39.7 mW of power from 500 mg excitations at 5.5 Hz. When usable input energy is removed, the device will continue to transmit data for more than 5 minutes.

  2. Fluidelastic vibration of cylinder arrays in axial and cross flow--state of the art

    International Nuclear Information System (INIS)

    Paidoussis, M.P.

    1981-01-01

    A critical assessment of the state of the art for flow-induced vibrations of cylinder arrays in cross and axial flow is presented. An historical review highlights the contributions which advanced understanding of the flow-induced vibration phenomena involved and/or predictive ability. In the case of axial-flow-induced vibration, the absence of separated flow regions has contributed towards the development of analytical predictive tools. The designer may predict the onset of fluidelastic instabilities, which generally occur at very high flow velocities, with greater confidence. In contrast, in the case of cross-flow-induced vibration, the complexity of the flow has encouraged more heuristic approaches to be adopted. The state of the art in this case is discussed with the aid of a new classification of the flow-induced vibration phenomena involved, to unify and clarify the contradictory claims facing the designer. It is concluded that, although the physical understanding of cross-flow-induced vibration phenomena is not good, useful design guidelines do exist. These are capable of predicting vibration characteristics to within a factor of 2 to 10. A comprehensive bibliography is included. 115 refs

  3. Transitional free convection flows induced by thermal line sources

    NARCIS (Netherlands)

    Bastiaans, R.J.M.

    1993-01-01

    In the present study the usefullness of a large eddy simulation for transition is examined. Numerical results of such simulations are presented from a study to determine the characteristics of a flow induced by a thermal line source. The first bifurcation to time dependent motion and the route to

  4. Flow-induced elastic anisotropy of metallic glasses

    International Nuclear Information System (INIS)

    Sun, Y.H.; Concustell, A.; Carpenter, M.A.; Qiao, J.C.; Rayment, A.W.; Greer, A.L.

    2016-01-01

    As-cast bulk metallic glasses are isotropic, but anisotropy can be induced by thermomechanical treatments. For example, the diffraction halo in the structure function S(Q) observed in transmission becomes elliptical (rather than circular) after creep in uniaxial tension or compression. Published studies associate this with frozen-in anelastic strain and bond-orientational anisotropy. Results so far are inconsistent on whether viscoplastic flow of metallic glasses can induce anisotropy. Preliminary diffraction data suggest that the anisotropy, if any, is very low, while measurements of the elastic properties suggest that there is induced anisotropy, opposite in sign to that due to anelastic strain. We study three bulk metallic glasses, Ce 65 Al 10 Cu 20 Co 5 , La 55 Ni 10 Al 35 , and Pd 40 Ni 30 Cu 10 P 20 . By using resonant ultrasound spectroscopy to determine the full elasticity tensor, the effects of relaxation and rejuvenation can be reliably separated from uniaxial anisotropy (of either sign). The effects of viscoplastic flow in tension are reported for the first time. We find that viscoplastic flow of bulk metallic glasses, particularly in tension, can induce significant anisotropy that is distinct from that associated with frozen-in anelastic strain. The conditions for inducing such anisotropy are explored in terms of the Weissenberg number (ratio of relaxation times for primary relaxation and for shear strain rate). There is a clear need for further work to characterize the structural origins of flow-induced anisotropy and to explore the prospects for improved mechanical and other properties through induced anisotropy.

  5. A Data-Driven Response Virtual Sensor Technique with Partial Vibration Measurements Using Convolutional Neural Network

    Science.gov (United States)

    Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang

    2017-01-01

    Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy. PMID:29231868

  6. Model-independent quantitative measurement of nanomechanical oscillator vibrations using electron-microscope linescans

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huan; Fenton, J. C.; Chiatti, O. [London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Warburton, P. A. [London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2013-07-15

    Nanoscale mechanical resonators are highly sensitive devices and, therefore, for application as highly sensitive mass balances, they are potentially superior to micromachined cantilevers. The absolute measurement of nanoscale displacements of such resonators remains a challenge, however, since the optical signal reflected from a cantilever whose dimensions are sub-wavelength is at best very weak. We describe a technique for quantitative analysis and fitting of scanning-electron microscope (SEM) linescans across a cantilever resonator, involving deconvolution from the vibrating resonator profile using the stationary resonator profile. This enables determination of the absolute amplitude of nanomechanical cantilever oscillations even when the oscillation amplitude is much smaller than the cantilever width. This technique is independent of any model of secondary-electron emission from the resonator and is, therefore, applicable to resonators with arbitrary geometry and material inhomogeneity. We demonstrate the technique using focussed-ion-beam–deposited tungsten cantilevers of radius ∼60–170 nm inside a field-emission SEM, with excitation of the cantilever by a piezoelectric actuator allowing measurement of the full frequency response. Oscillation amplitudes approaching the size of the primary electron-beam can be resolved. We further show that the optimum electron-beam scan speed is determined by a compromise between deflection of the cantilever at low scan speeds and limited spatial resolution at high scan speeds. Our technique will be an important tool for use in precise characterization of nanomechanical resonator devices.

  7. Railway testing using a portable ride quality and vibration measurement system with GPS

    Science.gov (United States)

    Mee, Brian; Whitten, Brian; Neijikovsky, Boris

    1995-06-01

    To conduct the testing and evaluation of railway and railway vehicles, the Federal Railroad Administration developed a protable system that consists of accelerometers oriented in the vertical and horizontal directions, a Global Positioning System (GPS) receiver, data collection and power systems, and a portable computer. Commercial software was used to collect and display the data, while software, developed by ENSCO, was used to analyze and display results. The GPS provided dynamic location to an accuracy of 30 meters or better, and vehicle speed to within one mile per hour. The system was used in the demonstration tests of several advanced high-speed trains on Amtrak's Northeast Corrider and on other tracks in the US. The portable measurement system proved to be a simple and effective device to characterize the vibration environment of any transportation system. It is ideal for use in the assessment of the safe performance of high-speed trains operating at high cant deficiency. The system has also been used for other field tests, including braking performance and bridge monitoring. This report discusses the portable measurement system, the test applications that the system has been used for, the results of thoses tests, and the potential for improvements.

  8. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    Science.gov (United States)

    Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo

    2009-02-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  9. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Osada, Takashi; Endo, Youichi [Graduate Student, Chiba University 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan); Kanazawa, Chikara [Undergraduate, Chiba University 1-33 Yayoi, Inage, Chiba, 63-8522 (Japan); Ota, Masanori; Maeno, Kazuo, E-mail: maeno@faculty.chiba-u.j [Graduate School of Engineering, Chiba University 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan)

    2009-02-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N{sub 2} are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  10. A Data-Driven Response Virtual Sensor Technique with Partial Vibration Measurements Using Convolutional Neural Network.

    Science.gov (United States)

    Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang

    2017-12-12

    Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy.

  11. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    International Nuclear Information System (INIS)

    Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo

    2009-01-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N 2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  12. An inverse method for the identification of a distributed random excitation acting on a vibrating structure. Theory

    International Nuclear Information System (INIS)

    Granger, S.; Perotin, L.

    1997-01-01

    Maintaining the PWR components under reliable operating conditions requires a complex design to prevent various damaging processes, including fatigue and wear problems due to flow-induced vibration. In many practical situations, it is difficult, if not impossible, to perform direct measurements or calculations of the external forces acting on vibrating structures. Instead, vibrational responses can often be conveniently measured. This paper presents an inverse method for estimating a distributed random excitation from the measurement of the structural response at a number of discrete points. This paper is devoted to the presentation of the theoretical development. The force identification method is based on a modal model for the structure and a spatial orthonormal decomposition of the excitation field. The estimation of the Fourier coefficients of this orthonormal expansion is presented. As this problem turns out to be ill-posed, a regularization process is introduced. The minimization problem associated to this process is then formulated and its solutions is developed. (author)

  13. Building Modern Vibration Diagnostics Systems Based on the Frequency-Time Transformations of A Measured Signal

    Directory of Open Access Journals (Sweden)

    Yasoveev Vasikh

    2016-01-01

    Full Text Available Basic methods of analysis of vibration transducers signals were reviewed. Continuous wavelet transform, being a time-frequency transform, was found to be an advanced mathematical tool for analysis of vibration signals. Experimental studies revealed obvious changes in the continuous wavelet transform spectrum depending on the existing defects. A method for detection and identification of technological violations based on the analysis of CWT spectrum components and normalized correlation coefficient was suggested. In accordance with the suggested method software for vibration diagnostics was developed.

  14. Measurements of seismic vibrations induced by Quarry blasts at the Mostecká basin

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Zdeněk

    -, č. 271 (2006), s. 49-58 ISSN 0372-9508 Institutional research plan: CEZ:AV0Z30860518 Keywords : seismic vibration * slope stability * quarry blast Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  15. Measurement of the effect of an oil additive on vibration, noise and smokiness

    International Nuclear Information System (INIS)

    Dimitrovski, M.

    1999-01-01

    The contents of this article provides a analysis of vibration, noise and smokiness in compression ignition engines. Further explanation has been given on types of lubrication and oils with their characteristic. Series of experiments has been conducted on vibration. Noise and smokiness before and after adding additive. Presentation has been given of data obtained from examination of the vehicle. At the end comparison of data analysis and conclusion has been done. (Author)

  16. Two way assessment of other physical work demands while measuring the whole body vibration magnitude

    Science.gov (United States)

    Tiemessen, Ivo J. H.; Hulshof, Carel T. J.; Frings-Dresen, Monique H. W.

    2008-03-01

    Direct observation, instead of using self-administered questionnaires might give more reliable and specific information about physical work demands at the workplace. This information is of use in a population already at risk of developing low back pain (LBP) due to whole body vibration (WBV) exposure. The aims of this study are to assess the WBV exposure in an exposed population and to assess other physical work demands in two ways, by direct observation and with the use of a self-administered questionnaire. We therefore assessed the WBV magnitude and 5 WBV-related physical work demands by using the PalmTrac system and a self-administered questionnaire in a group of drivers ( N=10). The main findings are 7 out of 10 drivers are exceeding the EU action value. About 50% of the drivers under-estimated the time 'bending', 60% the time 'walking+standing' and 60% over-estimated the time when 'lifting.' We concluded that 7 drivers from this group are at risk of developing LBP and substantial differences exists for the 5 physical work demands comparing the PalmTrac method with the questionnaire. Direct observational assessment in WBV measurements yields extra information. This is useful for preventive activities necessary as drivers are exceeding the EU action value.

  17. Monitoring of Rotor-Stator Interaction in Pump-Turbine Using Vibrations Measured with On-Board Sensors Rotating with Shaft

    Directory of Open Access Journals (Sweden)

    Cristian G. Rodriguez

    2014-01-01

    Full Text Available Current trends in design of pump-turbines have led into higher rotor-stator interaction (RSI loads over impeller-runner. These dynamic loads are of special interest having produced catastrophic failures in pump-turbines. Determining RSI characteristics facilitates the proposal of actions that will prevent these failures. Pressure measurements all around the perimeter of the impeller-runner are appropriate to monitor and detect RSI characteristics. Unfortunately most installed pump-turbines are not manufactured with in-built pressure sensors in appropriate positions to monitor RSI. For this reason, vibration measurements are the preferred method to monitor RSI in industry. Usually vibrations are measured in two perpendicular radial directions in bearings where valuable information could be lost due to bearing response. In this work, in order to avoid the effect of bearing response on measurement, two vibration sensors are installed rotating with the shaft. The RSI characteristics obtained with pressure measurements were compared to those determined using vibration measurements. The RSI characteristics obtained with pressure measurements were also determined using vibrations measured rotating with shaft. These RSI characteristics were not possible to be determined using the vibrations measured in guide bearing. Finally, it is recommended to measure vibrations rotating with shaft to detect RSI characteristics in installed pump-turbines as a more practical and reliable method to monitor RSI characteristics.

  18. Nanomanufacturing concerns about measurements made in the SEM Part III: vibration and drift

    Science.gov (United States)

    Postek, Michael T.; Vladár, András. E.; Cizmar, Petr

    2014-08-01

    Many advanced manufacturing processes employ scanning electron microscopes (SEM) for on-line critical measurements for process and quality control. This is the third of a series of papers discussing various causes of measurement uncertainty in scanned particle beam instruments, and some of the solutions researched and developed at NIST. Scanned particle beam instruments especially the scanning electron microscope have gone through tremendous evolution to become indispensable tools for many and diverse scientifi c and industrial applications. These improvements have signifi cantly enhanced their performance and made them far easier to operate. But, ease of operation has also fostered operator complacency. In addition, the user-friendliness has reduced the need for extensive operator training. Unfortunately, this has led to the concept that the SEM is just another expensive digital camera or another peripheral device connected to a computer and that all of the issues related to obtaining quality data have been solved. Hence, a person (or company) using these instruments may be lulled into thinking that all of the potential pitfalls have been fully eliminated and they believe everything they see on the micrograph is always correct. But, as described in this and the earlier presentations this may not be the case. The fi rst paper in this series discussed some of the issues related to signal generation in the SEM, including instrument calibration, electron beam-sample interactions and the need for physics-based modelling to understand the actual image formation mechanisms to properly interpret SEM images. The second paper, discussed another major issue confronting the microscopist: specimen contamination and methods of contamination elimination. This third paper, discusses vibration and drift and some useful solutions.

  19. Flow measurement and thrust estimation of a vibrating ionic polymer metal composite

    International Nuclear Information System (INIS)

    Chae, Woojin; Cha, Youngsu; Peterson, Sean D; Porfiri, Maurizio

    2015-01-01

    Ionic polymer metal composites (IPMCs) are an emerging class of soft active materials that are finding growing application as underwater propulsors for miniature biomimetic swimmers. Understanding the hydrodynamics generated by an IPMC vibrating under water is central to the design of such biomimetic swimmers. In this paper, we propose the use of time-resolved particle image velocimetry to detail the fluid kinematics and kinetics in the vicinity of an IPMC vibrating along its fundamental structural mode. The reconstructed pressure field is ultimately used to estimate the thrust produced by the IPMC. The vibration frequency is systematically varied to elucidate the role of the Reynolds number on the flow physics and the thrust production. Experimental results indicate the formation and shedding of vortical structures from the IPMC tip during its vibration. Vorticity shedding is sustained by the pressure gradients along each side of the IPMC, which are most severe in the vicinity of the tip. The mean thrust is found to robustly increase with the Reynolds number, closely following a power law that has been derived from direct three-dimensional numerical simulations. A reduced order distributed model is proposed to describe IPMC underwater vibration and estimate thrust production, offering insight into the physics of underwater propulsion and aiding in the design of IPMC-based propulsors. (paper)

  20. Component vibration of VVER-reactors - diagnostics and modelling

    International Nuclear Information System (INIS)

    Altstadt, E.; Scheffler, M.; Weiss, F.-P.

    1995-01-01

    Flow induced vibrations of reactor pressure vessel (RPV) internals (control element and core barrel motions) at VVER-440 reactors have led to the development of dedicated methods for on-line monitoring. These methods need a certain developed stage of the faults to be detected. To achieve a real sensitive early detection of mechanical faults of RPV internals, a theoretical vibration model was developed based on finite elements. The model comprises the whole primary circuit including the steam generators (SG). By means of that model all eigenfrequencies up to 30 Hz and the corresponding mode shapes were calculated for the normal vibration behaviour. Moreover the shift of eigenfrequencies and of amplitudes due to the degradation or to the failure of internal clamping and spring elements could be investigated, showing that a recognition of such degradations even inside the RPV is possible by pure excore vibration measurements. A true diagnostic, that is the identification of the failed component, might become possible because different faults influence different and well separated eigenfrequencies. (author)

  1. Fault diagnosis and performance monitoring for pumps by means of vibration measurement and pattern recognition

    International Nuclear Information System (INIS)

    Grabner, A.; Weiss, F.P.

    1984-12-01

    In recent years the early detection of malfunctions with noise and vibration analysis techniques has become a more and more important method for increasing availability and safety of various components in technical plants. The possibility of pattern recognition assisted vibration monitoring and its practical realization are demonstrated by failure diagnosis and trend analysis of the condition of large centrifugal pumps in hydraulic circuits. Some problems as, e.g., the finding of dynamic failure models, signal analysis, feature extraction and statistical pattern recognition, which helps automatically to decide whether the pump works normally or not, are discussed in more detail. In the paper it is shown that for various types of machines the chance of success of condition based maintenance can be enhanced by such an automatic vibration monitoring. (author)

  2. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongkyu, E-mail: akein@gist.ac.kr; Khalil, Hossam; Jo, Youngjoon; Park, Kyihwan, E-mail: khpark@gist.ac.kr [School of Mechatronics, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, South Korea, 500-712 (Korea, Republic of)

    2016-06-28

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  3. Absolute measurement of subnanometer scale vibration of cochlear partition of an excised guinea pig cochlea using spectral-domain phase-sensitive optical coherence tomography

    Science.gov (United States)

    Subhash, Hrebesh M.; Choudhury, Niloy; Jacques, Steven L.; Wang, Ruikang K.; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.

    2012-01-01

    Direct measurement of absolute vibration parameters from different locations within the mammalian organ of Corti is crucial for understanding the hearing mechanics such as how sound propagates through the cochlea and how sound stimulates the vibration of various structures of the cochlea, namely, basilar membrane (BM), recticular lamina, outer hair cells and tectorial membrane (TM). In this study we demonstrate the feasibility a modified phase-sensitive spectral domain optical coherence tomography system to provide subnanometer scale vibration information from multiple angles within the imaging beam. The system has the potential to provide depth resolved absolute vibration measurement of tissue microstructures from each of the delay-encoded vibration images with a noise floor of ~0.3nm at 200Hz.

  4. PROCEDURE FOR THE EVALUATION OF MEASURED DATA IN TERMS OF VIBRATION DIAGNOSTICS BY APPLICATION OF A MULTIDIMENSIONAL STATISTICAL MODEL

    Directory of Open Access Journals (Sweden)

    Tomas TOMKO

    2016-06-01

    Full Text Available The evaluation process of measured data in terms of vibration diagnosis is problematic for timeline constructors. The complexity of such an evaluation is compounded by the fact that it is a process involving a large amount of disparate measurement data. One of the most effective analytical approaches when dealing with large amounts of data is to engage in a process using multidimensional statistical methods, which can provide a picture of the current status of the flexibility of the machinery. The more methods that are used, the more precise the statistical analysis of measurement data, making it possible to obtain a better picture of the current condition of the machinery.

  5. Development of evaluation method on flow-induced vibration and corrosion of components in two-phase flow by coupled analysis. 5. Evaluation of wall thinning rate with the coupled model of static electrochemical analysis and dynamic double oxide layer analysis

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Uehara, Yasushi

    2008-01-01

    Wall thinning rates due to FAC were calculated with the coupled model of static electrochemical analysis and dynamic double oxide layer analysis at the identified danger zone. Anodic and cathodic current densities and ECPs were calculated with the static electrochemistry model and ferrous ion release rate determined by the anodic current density was used as input for the dynamic double oxide layer model. Thickness of oxide film and its characteristics determined by the dynamic double oxide layer model were used for the electrochemistry model to determine the resistances of cathodic current from the bulk to the surface and anodic current from the surface to the bulk. Two models were coupled to determine local corrosion rate and ECP for various corrosive conditions. The calculated results of the coupled models had good agreement with the measured ones. (author)

  6. A novel vibration-based fault diagnostic algorithm for gearboxes under speed fluctuations without rotational speed measurement

    Science.gov (United States)

    Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh; Sheng, Shuangwen; Tan, Yuegang; Zhou, Zude

    2017-09-01

    The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is often unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. The results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.

  7. An experimental and analytical investigation into the effects of process vibrations on material removal rates during polishing

    Science.gov (United States)

    Mullany, B.; Mainuddin, M.; Williams, W.; Keanini, R.

    2013-06-01

    Experimental testing, using both commercially available polishing machines and a specially built test platform, demonstrates that material removal rates (MRRs) observed during polishing of fused silica are strongly affected by nanometer-scale vibration amplitudes. Specifically, a nanometer level increase in system vibrations can produce MRRs approximately 150% higher than on an inherently smoother running machine. Moreover the higher spatial frequency surface roughness values are little-effected by the spectral content of the polishing machine. Polishing under controlled conditions, using the test platform, shows that for vibration amplitudes, A ≲ 1.6 μm, and over a fairly wide range of vibration frequencies, MRR increases almost linearly with increasing input power. By contrast, for A ≳ 10 μm, MRR exhibits a rapid decay with increasing A. Order of magnitude analyses and physical arguments are presented in order to explain the qualitatively distinct MRR trends observed. In the small-amplitude limit, A ≲ 1.6 μm, two arguments are presented which suggest that the total observed removal rate, MRRtot, reflects the superposed action of chemical-mechanical removal, MRRcm, and vibration-driven, flow-induced removal, MRRflow, i.e., MRRtot=MRRcm+MRRflow. The analyses further indicate that MRRflow primarily reflects cyclic viscous shears and pressure gradients extant within the thin, non-Newtonian slurry film that exists between the polishing tool and workpiece. Shears and pressure gradients, and corresponding flow-induced MRRs, are, in turn, found to scale as √A /do ω, where A is the vibration amplitude, do is the characteristic gap thickness between the tool and workpiece, and ω is the vibration frequency. In the large-amplitude limit, A ≳ 5 μm, experimental measurements and a simple scaling argument show that the polishing slurry film becomes thick enough that the workpiece and polishing tool lose direct contact. In this limit, observed MRRs thus reflect

  8. Depth-kymography of vocal fold vibrations: part II. Simulations and direct comparisons with 3D profile measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mul, Frits F M de; George, Nibu A; Qiu Qingjun; Rakhorst, Gerhard; Schutte, Harm K [Department of Biomedical Engineering BMSA, Faculty of Medicine, University Medical Center Groningen UMCG, University of Groningen, PO Box 196, 9700 AD Groningen (Netherlands)], E-mail: ffm@demul.net

    2009-07-07

    We report novel direct quantitative comparisons between 3D profiling measurements and simulations of human vocal fold vibrations. Until now, in human vocal folds research, only imaging in a horizontal plane was possible. However, for the investigation of several diseases, depth information is needed, especially when the two folds act differently, e.g. in the case of tumour growth. Recently, with our novel depth-kymographic laryngoscope, we obtained calibrated data about the horizontal and vertical positions of the visible surface of the vibrating vocal folds. In order to find relations with physical parameters such as elasticity and damping constants, we numerically simulated the horizontal and vertical positions and movements of the human vocal folds while vibrating and investigated the effect of varying several parameters on the characteristics of the phonation: the masses and their dimensions, the respective forces and pressures, and the details of the vocal tract compartments. Direct one-to-one comparison with measured 3D positions presents-for the first time-a direct means of validation of these calculations. This may start a new field in vocal folds research.

  9. Depth-kymography of vocal fold vibrations: part II. Simulations and direct comparisons with 3D profile measurements

    International Nuclear Information System (INIS)

    Mul, Frits F M de; George, Nibu A; Qiu Qingjun; Rakhorst, Gerhard; Schutte, Harm K

    2009-01-01

    We report novel direct quantitative comparisons between 3D profiling measurements and simulations of human vocal fold vibrations. Until now, in human vocal folds research, only imaging in a horizontal plane was possible. However, for the investigation of several diseases, depth information is needed, especially when the two folds act differently, e.g. in the case of tumour growth. Recently, with our novel depth-kymographic laryngoscope, we obtained calibrated data about the horizontal and vertical positions of the visible surface of the vibrating vocal folds. In order to find relations with physical parameters such as elasticity and damping constants, we numerically simulated the horizontal and vertical positions and movements of the human vocal folds while vibrating and investigated the effect of varying several parameters on the characteristics of the phonation: the masses and their dimensions, the respective forces and pressures, and the details of the vocal tract compartments. Direct one-to-one comparison with measured 3D positions presents-for the first time-a direct means of validation of these calculations. This may start a new field in vocal folds research.

  10. Measurement of correlations between low-frequency vibrational modes and particle rearrangements in quasi-two-dimensional colloidal glasses.

    Science.gov (United States)

    Chen, Ke; Manning, M L; Yunker, Peter J; Ellenbroek, Wouter G; Zhang, Zexin; Liu, Andrea J; Yodh, A G

    2011-09-02

    We investigate correlations between low-frequency vibrational modes and rearrangements in two-dimensional colloidal glasses composed of thermosensitive microgel particles, which readily permit variation of the sample packing fraction. At each packing fraction, the particle displacement covariance matrix is measured and used to extract the vibrational spectrum of the "shadow" colloidal glass (i.e., the particle network with the same geometry and interactions as the sample colloid but absent damping). Rearrangements are induced by successive, small reductions in the packing fraction. The experimental results suggest that low-frequency quasilocalized phonon modes in colloidal glasses, i.e., modes that present low energy barriers for system rearrangements, are spatially correlated with rearrangements in this thermal system.

  11. The impact of vibrational Raman scattering of air on DOAS measurements of atmospheric trace gases

    Science.gov (United States)

    Lampel, J.; Frieß, U.; Platt, U.

    2015-09-01

    In remote sensing applications, such as differential optical absorption spectroscopy (DOAS), atmospheric scattering processes need to be considered. After inelastic scattering on N2 and O2 molecules, the scattered photons occur as additional intensity at a different wavelength, effectively leading to "filling-in" of both solar Fraunhofer lines and absorptions of atmospheric constituents, if the inelastic scattering happens after the absorption. Measured spectra in passive DOAS applications are typically corrected for rotational Raman scattering (RRS), also called Ring effect, which represents the main contribution to inelastic scattering. Inelastic scattering can also occur in liquid water, and its influence on DOAS measurements has been observed over clear ocean water. In contrast to that, vibrational Raman scattering (VRS) of N2 and O2 has often been thought to be negligible, but it also contributes. Consequences of VRS are red-shifted Fraunhofer structures in scattered light spectra and filling-in of Fraunhofer lines, additional to RRS. At 393 nm, the spectral shift is 25 and 40 nm for VRS of O2 and N2, respectively. We describe how to calculate VRS correction spectra according to the Ring spectrum. We use the VRS correction spectra in the spectral range of 420-440 nm to determine the relative magnitude of the cross-sections of VRS of O2 and N2 and RRS of air. The effect of VRS is shown for the first time in spectral evaluations of Multi-Axis DOAS data from the SOPRAN M91 campaign and the MAD-CAT MAX-DOAS intercomparison campaign. The measurements yield in agreement with calculated scattering cross-sections that the observed VRS(N2) cross-section at 393 nm amounts to 2.3 ± 0.4 % of the cross-section of RRS at 433 nm under tropospheric conditions. The contribution of VRS(O2) is also found to be in agreement with calculated scattering cross-sections. It is concluded, that this phenomenon has to be included in the spectral evaluation of weak absorbers as it

  12. Shear flows induced by nonlinear evolution of double tearing modes

    International Nuclear Information System (INIS)

    Wang Zhengxiong; Kishimoto, Y.; Li, J. Q.; Wang Xiaogang; Dong, J. Q.

    2008-01-01

    Shear flows induced by nonlinear evolution of double tearing modes are investigated in a resistive magnetohydrodynamic model with slab geometry. It is found that intensive and thin poloidal shear flow layers are generated in the magnetic island region driven by coupled reconnection process at both rational surfaces. The structure of the flow layers keeps evolving after the merging of magnetic separatrices and forms a few narrow vortices along the open field lines in the final stage of magnetic reconnection. The effects of the distance between both rational surfaces and the initial magnetic shear on the nonlinear evolution of the plasma flows are also taken into consideration and the relevant mechanism is discussed

  13. Circularly polarized infrared and visible sum-frequency-generation spectroscopy: Vibrational optical activity measurement

    International Nuclear Information System (INIS)

    Cheon, Sangheon; Cho, Minhaeng

    2005-01-01

    Vibrational optical activity spectroscopies utilizing either circularly polarized ir or circularly polarized visible beams were theoretically investigated by considering the infrared and visible sum-frequency-generation (IV-SFG) schemes. In addition to the purely electric dipole-allowed chiral component of the IV-SFG susceptibility, the polarizability-electric quadrupole hyperpolarizability term also contributes to the vibrationally resonant IV-SFG susceptibility. The circular-intensity-difference signal is shown to be determined by the interferences between the all-electric dipole-allowed chiral component and the polarizability-electric-dipole or electric-dipole-electric-quadrupole Raman optical activity tensor components. The circularly polarized SFG methods are shown to be potentially useful coherent spectroscopic tools for determining absolute configurations of chiral molecules in condensed phases

  14. The approximation function of bridge deck vibration derived from the measured eigenmodes

    Directory of Open Access Journals (Sweden)

    Sokol Milan

    2017-12-01

    Full Text Available This article deals with a method of how to acquire approximate displacement vibration functions. Input values are discrete, experimentally obtained mode shapes. A new improved approximation method based on the modal vibrations of the deck is derived using the least-squares method. An alternative approach to be employed in this paper is to approximate the displacement vibration function by a sum of sine functions whose periodicity is determined by spectral analysis adapted for non-uniformly sampled data and where the parameters of scale and phase are estimated as usual by the least-squares method. Moreover, this periodic component is supplemented by a cubic regression spline (fitted on its residuals that captures individual displacements between piers. The statistical evaluation of the stiffness parameter is performed using more vertical modes obtained from experimental results. The previous method (Sokol and Flesch, 2005, which was derived for near the pier areas, has been enhanced to the whole length of the bridge. The experimental data describing the mode shapes are not appropriate for direct use. Especially the higher derivatives calculated from these data are very sensitive to data precision.

  15. Leakage flow-induced vibration of an unconstricted tube-in-tube slip joint

    International Nuclear Information System (INIS)

    Mulcahy, T.M.

    1986-12-01

    The conditions are given for which the more flexible of two cantilevered, telescoping tubes conveying fluid can be self-excited by flow leaking from an unconstricted slip joint. Also, a physical explanation of the excitation mechanism is discussed, and a design rule to avoid the mechanism is presented. In addition, the results for the unconstricted slip joint are shown to be similar to those for slip joints having annulus constrictions at very short engagement lengths

  16. Numerical analysis of flow-induced nonlinear vibrations of an airfoil with three degrees of freedom

    Czech Academy of Sciences Publication Activity Database

    Feistauer, M.; Horáček, Jaromír; Růžička, M.; Sváček, P.

    2011-01-01

    Roč. 49, č. 1 (2011), s. 110-127 ISSN 0045-7930 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional research plan: CEZ:AV0Z20760514 Keywords : aeroelasticity * Navier-Stokes equation * non-linear oscillations * flutter instability Subject RIV: BI - Acoustics Impact factor: 1.810, year: 2011 http://www.sciencedirect.com/science/article/pii/S0045793011001538

  17. Vision-based measurement system for structural vibration monitoring using non-projection quasi-interferogram fringe density enhanced by spectrum correction method

    International Nuclear Information System (INIS)

    Zhong, Jianfeng; Zhong, Shuncong; Zhang, Qiukun; Lu, Huancai; Zhuang, Yizhou; Fu, Xinbin

    2017-01-01

    A non-projection fringe vision measurement system suitable for vibration monitoring was proposed by using the concept of a 2D optical coherence vibration tomography (2D-OCVT) technique. An artificial quasi-interferogram fringe pattern (QIFP), similar to the interferogram of the 2D-OCVT system, was pasted onto the surface of a vibrating structure as a sensor. Image sequences of the QIFP were captured by a high-speed CMOS camera that worked as a detector. It was possible to obtain both the in-plane and out-of-plane vibration simultaneously. The in-plane vibration was obtained by tracking the center of the imaged QIFP using an image cross-correlation method, whilst the out-of-plane vibration was obtained from the changes in period density of the imaged QIFP. The influence of the noise sources from the CMOS image sensor, together with the effect of the imaging distance, the period density of the QIFP and also the key parameters of the fringe density enhanced by the spectrum correction method on the accuracy of the displacement measurement, were investigated by numerical simulations and experiments. Compared with the results from a conventional accelerometer-based measurement system, the proposed method was demonstrated to be an effective and accurate technique for measuring structural vibration without introducing any extra mass from the accelerometer. The significant advantages of this method include its simple installation and real-time dynamic response measurement capability, making the measurement system ideal for the low- and high-frequency vibration monitoring of engineering structures. (paper)

  18. Intermediate heat exchanger tube vibration induced by cross and parallel mixed flow

    International Nuclear Information System (INIS)

    Kawamura, Koji

    1986-01-01

    The characteristics of pool type LMFBR intermediate heat exchanger (IHX) tube vibrations induced by cross and parallel mixed flow were basically investigated. Secondary coolant in IHX tube bundle is mixed flow of parallel jit flow along the tube axis through flow holes in baffle plates and cross flow. By changing these two flow rate, flow distributions vary in the tube bundle. Mixed flow also induces vibrations which cause fretting wear and fatigue of tube. It is therefore very important to evaluate the tube vibration characteristics for estimating the tube integrity. The results show that the relationships between tube vibrations and flow distributions in the tube bundle were cleared, and mixed flow induced tube vibration could be evaluated on the base of the characteristics of both parallel and cross flow induced vibration. From these investigations it could be concluded that the characteristics of tube vibration for various flow distributions can be systematically evaluated. (author)

  19. Viscoelastic material properties’ identification using high speed full field measurements on vibrating plates

    Directory of Open Access Journals (Sweden)

    Pierron F.

    2010-06-01

    Full Text Available The paper presents an experimental application of a method leading to the identification of the elastic and damping material properties of isotropic vibrating plates. The theory assumes that the searched parameters can be extracted from curvature and deflection fields measured on the whole surface of the plate at two particular instants of the vibrating motion. The experimental application consists in an original excitation fixture, a particular adaptation of an optical full-field measurement technique, a data preprocessing giving the curvature and deflection fields and finally in the identification process using the Virtual Fields Method (VFM. The principle of the deflectometry technique used for the measurements is presented. First results of identification on an acrylic plate are presented and compared to reference values. Details about a new experimental arrangement, currently in progress, is presented. It uses a high speed digital camera to over sample the full-field measurements.

  20. Robust, accurate, and non-contacting vibration measurement systems: Summary of comparison measurements of the robust laser interferometer and typical accelerometer systems. Volume 1

    International Nuclear Information System (INIS)

    Goodenow, T.C.; Shipman, R.L.; Holland, H.M.

    1995-06-01

    Epoch Engineering, Incorporated (EEI) has completed a series of vibration measurements comparing their newly-developed Robust Laser Interferometer (RLI) with accelerometer-based instrumentation systems. EEI has successfully demonstrated, on several pieces of commonplace machinery, that non-contact, line-of-sight measurements are practical and yield results equal to or, in some cases, better than customary field implementations of accelerometers. The demonstration included analysis and comparison of such phenomena as nonlinearity, transverse sensitivity, harmonics, and signal-to-noise ratio. Fast Fourier Transformations were performed on the accelerometer and the laser system outputs to provide a comparison basis. The RLI was demonstrated, within the limits of the task, to be a viable, line-of-sight, non-contact alternative to accelerometer systems. Several different kinds of machinery were instrumented and compared, including a small pump, a gear-driven cement mixer, a rotor kit, and two small fans. Known machinery vibration sources were verified and RLI system output file formats were verified to be compatible with commercial computer programs used for vibration monitoring and trend analysis. The RLI was also observed to be less subject to electromagnetic interference (EMI) and more capable at very low frequencies

  1. Robust, accurate, and non-contacting vibration measurement systems: Supplemental appendices presenting comparison measurements of the robust laser interferometer and typical accelerometer systems. Volume 2

    International Nuclear Information System (INIS)

    Goodenow, T.C.; Shipman, R.L.; Holland, H.M.

    1995-06-01

    Epoch Engineering, Incorporated (EEI) has completed a series of vibration measurements comparing their newly-developed Robust Laser Interferometer (RLI) with accelerometer-based instrumentation systems. EEI has successfully demonstrated, on several pieces of commonplace machinery, that non-contact, line-of-sight measurements are practical and yield results equal to or, in some cases, better than customary field implementations of accelerometers. The demonstration included analysis and comparison of such phenomena as nonlinearity, transverse sensitivity, harmonics, and signal-to-noise ratio. Fast Fourier Transformations were performed on the accelerometer and the laser system outputs to provide a comparison basis. The RLI was demonstrated, within the limits o the task, to be a viable, line-of-sight, non-contact alternative to accelerometer systems. Several different kinds of machinery were instrumented and. compared, including a small pump, a gear-driven cement mixer, a rotor kit, and two small fans. Known machinery vibration sources were verified and RLI system output file formats were verified to be compatible with commercial computer programs used for vibration monitoring and trend analysis. The RLI was also observed to be less subject to electromagnetic interference (EMI) and more capable at very low frequencies. This document, Volume 2, provides the appendices to this report

  2. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    Science.gov (United States)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David

    2017-03-01

    Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than

  3. Review and Evaluation of Hand–Arm Coordinate Systems for Measuring Vibration Exposure, Biodynamic Responses, and Hand Forces

    Directory of Open Access Journals (Sweden)

    Ren G. Dong

    2015-09-01

    Full Text Available The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC system and an anatomically based biodynamic (BD system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study.

  4. Review and Evaluation of Hand–Arm Coordinate Systems for Measuring Vibration Exposure, Biodynamic Responses, and Hand Forces

    Science.gov (United States)

    Dong, Ren G.; Sinsel, Erik W.; Welcome, Daniel E.; Warren, Christopher; Xu, Xueyan S.; McDowell, Thomas W.; Wu, John Z.

    2015-01-01

    The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC) system and an anatomically based biodynamic (BD) system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study. PMID:26929824

  5. Review and Evaluation of Hand-Arm Coordinate Systems for Measuring Vibration Exposure, Biodynamic Responses, and Hand Forces.

    Science.gov (United States)

    Dong, Ren G; Sinsel, Erik W; Welcome, Daniel E; Warren, Christopher; Xu, Xueyan S; McDowell, Thomas W; Wu, John Z

    2015-09-01

    The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC) system and an anatomically based biodynamic (BD) system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study.

  6. Methodological advances in predicting flow-induced dynamics of plants using mechanical-engineering theory.

    Science.gov (United States)

    de Langre, Emmanuel

    2012-03-15

    The modeling of fluid-structure interactions, such as flow-induced vibrations, is a well-developed field of mechanical engineering. Many methods exist, and it seems natural to apply them to model the behavior of plants, and potentially other cantilever-like biological structures, under flow. Overcoming this disciplinary divide, and the application of such models to biological systems, will significantly advance our understanding of ecological patterns and processes and improve our predictive capabilities. Nonetheless, several methodological issues must first be addressed, which I describe here using two practical examples that have strong similarities: one from agricultural sciences and the other from nuclear engineering. Very similar issues arise in both: individual and collective behavior, small and large space and time scales, porous modeling, standard and extreme events, trade-off between the surface of exchange and individual or collective risk of damage, variability, hostile environments and, in some aspects, evolution. The conclusion is that, although similar issues do exist, which need to be exploited in some detail, there is a significant gap that requires new developments. It is obvious that living plants grow in and adapt to their environment, which certainly makes plant biomechanics fundamentally distinct from classical mechanical engineering. Moreover, the selection processes in biology and in human engineering are truly different, making the issue of safety different as well. A thorough understanding of these similarities and differences is needed to work efficiently in the application of a mechanistic approach to ecology.

  7. PWR control rods wear by vibrations induced by coolant fluid

    International Nuclear Information System (INIS)

    Reynier, R.

    1997-01-01

    Flow induced vibrations in pressurised water reactors generate the wear of control rods against their guidance systems. Alternate sliding (at 320 deg. C in water) and impact-sliding tests (at room temperature in air) were carried out on 304 L austenitic stainless steel control rods' claddings. Microstructural analysis were made on the wear scars of the tube specimen using Scanning ELectron Microscopy, microhardness measurements and X-ray diffractometry. The alternate sliding leads to an important mass loss, a strong plastic deformation due to the strain hardening of the surface layers and generates strong compressive residual stresses. These results are specific to a severe wear case. Therefore, the impact-sliding mode induces martensitic phase, a cracked oxide layer and a compressive residual stresses weaker than those created in the alternate sliding case. This type of motion leads to a milder wear of the control rods

  8. Critical evaluation of measured rotational-vibrational transitions of four sulphur isotopologues of S16O2

    Science.gov (United States)

    Tóbiás, Roland; Furtenbacher, Tibor; Császár, Attila G.; Naumenko, Olga V.; Tennyson, Jonathan; Flaud, Jean-Marie; Kumar, Praveen; Poirier, Bill

    2018-03-01

    A critical evaluation and validation of the complete set of previously published experimental rotational-vibrational line positions is reported for the four stable sulphur isotopologues of the semirigid SO2 molecule - i.e., 32S16O2, 33S16O2, 34S16O2, and 36S16O2. The experimentally measured, assigned, and labeled transitions are collated from 43 sources. The 32S16O2, 33S16O2, 34S16O2, and 36S16O2 datasets contain 40,269, 15,628, 31,080, and 31 lines, respectively. Of the datasets collated, only the extremely limited 36S16O2 dataset is not subjected to a detailed analysis. As part of a detailed analysis of the experimental spectroscopic networks corresponding to the ground electronic states of the 32S16O2, 33S16O2, and 34S16O2 isotopologues, the MARVEL (Measured Active Rotational-Vibrational Energy Levels) procedure is used to determine the rovibrational energy levels. The rovibrational levels and their vibrational parent and asymmetric-top quantum numbers are compared to ones obtained from accurate variational nuclear-motion computations as well as to results of carefully designed effective Hamiltonian models. The rovibrational energy levels of the three isotopologues having the same labels are also compared against each other to ensure self-consistency. This careful, multifaceted analysis gives rise to 15,130, 5852, and 10,893 validated rovibrational energy levels, with a typical accuracy of a few 0.0001 cm-1 , for 32S16O2, 33S16O2, and 34S16O2, respectively. The extensive list of validated experimental lines and empirical (MARVEL) energy levels of the S16O2 isotopologues studied are deposited in the Supplementary Material of this article, as well as in the distributed information system ReSpecTh (http://respecth.hu).

  9. Application of H/V technique on different soils using ambient vibration measurements and earthquakes

    International Nuclear Information System (INIS)

    Schmidt-Diaz, Victor

    2016-01-01

    Four techniques to identify the fundamental frequency (f0) for 26 different sites were applied. These techniques correspond to spectral ratios based on the recording of: ambient vibration using an accelerograph (denominated VAA), ambient vibration using a seismograph (VAS), total seismic records (ST) and a time window of 5 s staring at S waves arrives in the seismic records (SOS). Better results were achieved when VAA was applied during the day (at 8 am and 3 pm). When VAA at 3 pm was compared to VAS at day time, it was observed that in the 58% of the analyzed cases the shapes and amplitudes of the spectral ratios were different, which means that VAA is not an appropriated technique to identify f0 based on that the results from VAS are the correct ones. It is affirmed based on its similarity to ST and SOS techniques in a 75% of the studied cases. These last two techniques are better justified in both mathematical and physical fundaments. (author) [es

  10. A nonlinear flow-induced energy harvester by considering effects of fictitious springs

    Science.gov (United States)

    Zhang, Guangcheng; Lin, Yueh-Jaw

    2018-01-01

    In this paper, a newly proposed energy harvesting approach involving nonlinear coupling effects is demonstrated by utilizing a pair of inducing bluff bodies that are put on both sides of the flag-shaped cantilever beam, and placed in a side-by-side configuration to harvest the energy of the flow. One patch of macro fiber composite is attached to the fixed end of the cantilever beam to facilitate converting the kinetic energy into electric power. It is the first time in recent literature that two fluid dynamic phenomena (i.e. the vortex shedding and the Bernoulli effect) are considered simultaneously in the flow-induced energy harvesting field. The fictitious springs are introduced to explain the nonlinear characteristics of the proposed structure. With the effect of the fictitious springs, the speed range of the flow-induced energy harvester is extended. The proposed structure not only improves the output of the induced-based energy harvester compared to one that has just one cylinder, but can also be utilized in an actual hostile ambient environment. The experimental results for the energy harvester prototype are also investigated. The output power of the energy harvester with two cylinders (D = 25 mm) is measured to be 1.12 μW when the flow speed is 0.325 m s-1 and the center-to-center transverse spacing is 45 mm. This research also delves into the geometric variations of the proposed structure and its optimization.

  11. Flow-induced plastic collapse of stacked fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Davis, D C; Scarton, H A

    1985-03-01

    Flow-induced plastic collapse of stacked fuel plate assemblies was first noted in experimental reactors such as the ORNL High Flux Reactor Assembly and the Engineering Test Reactor (ETR). The ETR assembly is a stack of 19 thin flat rectangular fuel plates separated by narrow channels through which a coolant flows to remove the heat generated by fission of the fuel within the plates. The uranium alloyed plates have been noted to buckle laterally and plastically collapse at the system design coolant flow rate of 10.7 m/s, thus restricting the coolant flow through adjacent channels. A methodology and criterion are developed for predicting the plastic collapse of ETR fuel plates. The criterion is compared to some experimental results and the Miller critical velocity theory.

  12. Measurement of vibrations in the primary coolant circuit and in the vertical experimental channel of the RA reactor

    International Nuclear Information System (INIS)

    Ristic, B.; Rakic, R.; Milosevic, M.; Jerkovic, M.

    1966-01-01

    Full text: Beginning of the work dates from 1962 with the initial objective: study of the wear-out of the bearings of the centrifugal pumps in the heavy water system. It has been expected that the increase of wear-out would initiate increase of vibration amplitudes and noise. During further study the initial task was broadened to other fields, mainly appearance of material fatigue in components of the heavy water coolant system. During operation mechanical energy is generated due to non existing equilibrium of the pump rotor, wear-out of the bearing, turbulence in the pump, cavitation process and pulsation of the operating environment. This energy is transformed into noise and vibration energy which is spread through surrounding walls and pipes causing noise finally. Obtained results were only qualitatively tested at present. For quantitative testing it would be necessary to obtain data about the material, in addition to the diagrams obtained by measurements. It would be possible to calculate the fatigue of the material at measuring points as well as estimation of the time when material fatigue would become critical [sr

  13. Numerical Simulation of Airfoil Vibrations Induced by Turbulent Flow

    Czech Academy of Sciences Publication Activity Database

    Feistauer, M.; Horáček, Jaromír; Sváček, P.

    2015-01-01

    Roč. 17, č. 1 (2015), s. 146-188 ISSN 1815-2406 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional support: RVO:61388998 Keywords : fluid-structure interaction * flow induced vibrations * turbulence models * finite element method Subject RIV: BI - Acoustics Impact factor: 1.778, year: 2015

  14. Vibration measurements and analyses for a magnet-superconductor levitated system

    International Nuclear Information System (INIS)

    Wen Zheng; Liu Yu; Yang Wenjiang; Qiu Ming

    2007-01-01

    Magnetic levitation technology, having the characteristics of low cost and high quality, has been considered a preferable option for the next generation of launcher systems. A world-wide research design on the conceptual level has been carried out on the highly reusable space transportation systems by applying magnetic levitation to the launch assistance. Recently, a research plan has been implemented in our laboratory by constructing a scale-model suspension system with high temperature superconductor (HTS henceforth) bulks over a 7 m Nd-Fe-B permanent-magnet (PM henceforth) track for the launch assistance. An experimental platform was built to investigate the dynamic responses of the PM-HTS interaction at different field-cooled positions. The critical frequencies and amplitudes which lead to the instability of levitation drift were investigated. The stiffness and the vibration damping were also discussed at the zero-field-cooled position

  15. Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification

    Science.gov (United States)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Kenyon, Garrett; Farrar, Charles; Mascareñas, David

    2017-02-01

    Experimental or operational modal analysis traditionally requires physically-attached wired or wireless sensors for vibration measurement of structures. This instrumentation can result in mass-loading on lightweight structures, and is costly and time-consuming to install and maintain on large civil structures, especially for long-term applications (e.g., structural health monitoring) that require significant maintenance for cabling (wired sensors) or periodic replacement of the energy supply (wireless sensors). Moreover, these sensors are typically placed at a limited number of discrete locations, providing low spatial sensing resolution that is hardly sufficient for modal-based damage localization, or model correlation and updating for larger-scale structures. Non-contact measurement methods such as scanning laser vibrometers provide high-resolution sensing capacity without the mass-loading effect; however, they make sequential measurements that require considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation, optical flow), video camera based measurements have been successfully used for vibration measurements and subsequent modal analysis, based on techniques such as the digital image correlation (DIC) and the point-tracking. However, they typically require speckle pattern or high-contrast markers to be placed on the surface of structures, which poses challenges when the measurement area is large or inaccessible. This work explores advanced computer vision and video processing algorithms to develop a novel video measurement and vision-based operational (output-only) modal analysis method that alleviate the need of structural surface preparation associated with existing vision-based methods and can be implemented in a relatively efficient and autonomous manner with little

  16. Ribonuclease S dynamics measured using a nitrile label with 2D IR vibrational echo spectroscopy.

    Science.gov (United States)

    Bagchi, Sayan; Boxer, Steven G; Fayer, Michael D

    2012-04-05

    A nitrile-labeled amino acid, p-cyanophenylalanine, is introduced near the active site of the semisynthetic enzyme ribonuclease S to serve as a probe of protein dynamics and fluctuations. Ribonuclease S is the limited proteolysis product of subtilisin acting on ribonuclease A, and consists of a small fragment including amino acids 1-20, the S-peptide, and a larger fragment including residues 21-124, the S-protein. A series of two-dimensional vibrational echo experiments performed on the nitrile-labeled S-peptide and the RNase S are described. The time-dependent changes in the two-dimensional infrared vibrational echo line shapes are analyzed using the center line slope method to obtain the frequency-frequency correlation function (FFCF). The observations show that the nitrile probe in the S-peptide has dynamics that are similar to, but faster than, those of the single amino acid p-cyanophenylalanine in water. In contrast, the dynamics of the nitrile label when the peptide is bound to form ribonuclease S are dominated by homogeneous dephasing (motionally narrowed) contributions with only a small contribution from very fast inhomogeneous structural dynamics. The results provide insights into the nature of the structural dynamics of the ribonuclease S complex. The equilibrium dynamics of the nitrile labeled S-peptide and the ribonuclease S complex are also investigated by molecular dynamics simulations. The experimentally determined FFCFs are compared to the FFCFs obtained from the molecular dynamics simulations, thereby testing the capacity of simulations to determine the amplitudes and time scales of protein structural fluctuations on fast time scales under thermal equilibrium conditions.

  17. Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy.

    Science.gov (United States)

    Fayer, M D

    2009-01-01

    A wide variety of molecular systems undergo fast structural changes under thermal equilibrium conditions. Such transformations are involved in a vast array of chemical problems. Experimentally measuring equilibrium dynamics is a challenging problem that is at the forefront of chemical research. This review describes ultrafast 2D IR vibrational echo chemical exchange experiments and applies them to several types of molecular systems. The formation and dissociation of organic solute-solvent complexes are directly observed. The dissociation times of 13 complexes, ranging from 4 ps to 140 ps, are shown to obey a relationship that depends on the complex's formation enthalpy. The rate of rotational gauche-trans isomerization around a carbon-carbon single bond is determined for a substituted ethane at room temperature in a low viscosity solvent. The results are used to obtain an approximate isomerization rate for ethane. Finally, the time dependence of a well-defined single structural transformation of a protein is measured.

  18. Monitoring the mechanical vibration of in-core detector tubes and fuel channels via ICFD noise analysis

    International Nuclear Information System (INIS)

    Glockler, O.; Cooke, D.F.; Czuppon, G.J.; Kapoor, K.K.

    2000-01-01

    Vibrations of core internals are regularly monitored in the CANDU nuclear generating stations of Ontario Power Generation (OPG) via the noise analysis of in-core flux detectors (ICFDs). Voltage signals of standard station instrumentation are recorded by portable multi-channel high-speed high-resolution data acquisition systems, then statistical parameters are derived from the multi-channel time series measurements. Reactor noise analysis is a non-intrusive statistical technique regularly used in system surveillance, diagnostics and in actual operational I and C problems. It utilizes the dynamic information carried by the small fluctuations (noise) of station signals measured around their mean values during steady-state operation. The present paper discusses specific results related to the flow-induced mechanical vibrations of detector tubes and fuel channels. (author)

  19. Observation of helium flow induced beam orbit oscillations at RHIC

    International Nuclear Information System (INIS)

    Montag, C.; Bonati, R.; Brennan, J.M.; Butler, J.; Cameron, P.; Ganetis, G.; He, P.; Hirzel, W.; Jia, L.X.; Koello, P.; Louie, W.; McIntyre, G.; Nicoletti, A.; Rank, J.; Roser, T.; Satogata, T.; Schmalzle, J.; Sidi-Yekhlef, A.; Sondericker, J.; Tallerico, T.

    2006-01-01

    Horizontal beam orbit jitter at frequencies around 10 Hz has been observed at RHIC for several years. The distinct frequencies of this jitter have been found at superconducting low-beta quadrupole triplet magnets around the ring, where they coincide with mechanical vibration modes of the cold masses. Recently, we have identified liquid helium flow as the driving force of these oscillations

  20. Vibration insensitive interferometry

    Science.gov (United States)

    Millerd, James; Brock, Neal; Hayes, John; Kimbrough, Brad; North-Morris, Michael; Wyant, James C.

    2017-11-01

    The largest limitation of phase-shifting interferometry for optical testing is the sensitivity to the environment, both vibration and air turbulence. An interferometer using temporal phase-shifting is very sensitive to vibration because the various phase shifted frames of interferometric data are taken at different times and vibration causes the phase shifts between the data frames to be different from what is desired. Vibration effects can be reduced by taking all the phase shifted frames simultaneously and turbulence effects can be reduced by averaging many measurements. There are several techniques for simultaneously obtaining several phase-shifted interferograms and this paper will discuss two such techniques: 1) Simultaneous phase-shifting interferometry on a single detector array (PhaseCam) and 2) Micropolarizer phase-shifting array. The application of these techniques for the testing of large optical components, measurement of vibrational modes, the phasing of segmented optical components, and the measurement of deformations of large diffuse structures is described.

  1. Surface vibrational spectroscopy

    International Nuclear Information System (INIS)

    Erskine, J.L.

    1984-01-01

    A brief review of recent studies which combine measurements of surface vibrational energies with lattice dynamical calculations is presented. These results suggest that surface vibrational spectroscopy offers interesting prospects for use as a molecular-level probe of surface geometry, adsorbate bond distances and molecular orientations

  2. CFD simulations of flow erosion and flow-induced deformation of needle valve: Effects of operation, structure and fluid parameters

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongjun, E-mail: ticky863@126.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan (China); State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan (China); Pan, Qian; Zhang, Wenli; Feng, Guang; Li, Xue [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan (China)

    2014-07-01

    Highlights: • A combined FSI–CFD and DPM computational method is used to investigate flow erosion and deformation of needle valve. • The numerical model is validated with the comparison of measured and predicted erosion rate. • Effects of operation, structure and fluid parameters on flow erosion and flow-induced deformation are discussed. • Particle diameter has the most significant effect on flow erosion. • Inlet rate has the most obvious effect on flow-induced deformation. - Abstract: A three-dimensional fluid–structure interaction (FSI) computational model coupling with a combined continuum and discrete model has been used to predict the flow erosion rate and flow-induced deformation of needle valve. Comparisons with measured data demonstrate good agreement with the predictions of erosion rate. The flow field distribution of gas-particle flow and the erosion rate and deformation of valve core are captured under different operating and structural conditions with different fluid parameters. The effects of inlet velocity, valve opening and inlet valve channel size, particle concentration, particle diameter and particle phase components are discussed in detail. The results indicate that valve tip has the most severe erosion and deformation, and flow field, erosion rate and deformation of valve are all sensitive to inlet condition changes, structural changes and fluid properties changes. The effect of particle diameter on erosion is the most significant, while the influence of inlet rate on deformation is the greatest one.

  3. International Conference on Acoustics and Vibration

    CERN Document Server

    Chaari, Fakher; Walha, Lasaad; Abdennadher, Moez; Abbes, Mohamed; Haddar, Mohamed

    2017-01-01

    The book provides readers with a snapshot of recent research and industrial trends in field of industrial acoustics and vibration. Each chapter, accepted after a rigorous peer-review process, reports on a selected, original piece of work presented and discussed at International Conference on Acoustics and Vibration (ICAV2016), which was organized by the Tunisian Association of Industrial Acoustics and Vibration (ATAVI) and held March 21-23, in Hammamet, Tunisia. The contributions, mainly written by north African authors, covers advances in both theory and practice in a variety of subfields, such as: smart materials and structures; fluid-structure interaction; structural acoustics as well as computational vibro-acoustics and numerical methods. Further topics include: engines control, noise identification, robust design, flow-induced vibration and many others.This book provides a valuable resource for both academics and professionals dealing with diverse issues in applied mechanics. By combining advanced theori...

  4. Two dimensional vibrations of the guinea pig apex organ of Corti measured in vivo using phase sensitive Fourier domain optical coherence tomography

    Science.gov (United States)

    Ramamoorthy, Sripriya; Zhang, Yuan; Petrie, Tracy; Fridberger, Anders; Ren, Tianying; Wang, Ruikang; Jacques, Steven L.; Nuttall, Alfred L.

    2015-02-01

    In this study, we measure the in vivo apical-turn vibrations of the guinea pig organ of Corti in both axial and radial directions using phase-sensitive Fourier domain optical coherence tomography. The apical turn in guinea pig cochlea has best frequencies around 100 - 500 Hz which are relevant for human speech. Prior measurements of vibrations in the guinea pig apex involved opening the otic capsule, which has been questioned on the basis of the resulting changes to cochlear hydrodynamics. Here this limitation is overcome by measuring the vibrations through bone without opening the otic capsule. Furthermore, we have significantly reduced the surgery needed to access the guinea pig apex in the axial direction by introducing a miniature mirror inside the bulla. The method and preliminary data are discussed in this article.

  5. Flow-induced immobilization of glucose oxidase in nonionic micellar nanogels for glucose sensing.

    Science.gov (United States)

    Cardiel, Joshua J; Zhao, Ya; Tonggu, Lige; Wang, Liguo; Chung, Jae-Hyun; Shen, Amy Q

    2014-10-21

    A simple microfluidic platform was utilized to immobilize glucose oxidase (GOx) in a nonionic micellar scaffold. The immobilization of GOx was verified by using a combination of cryogenic electron microscopy (cryo-EM), scanning electron microscopy (SEM), and ultraviolet spectroscopy (UV) techniques. Chronoamperometric measurements were conducted on nanogel-GOx scaffolds under different glucose concentrations, exhibiting linear amperometric responses. Without impacting the lifetime and denaturation of GOx, the nonionic nanogel provides a favorable microenvironment for GOx in biological media. This flow-induced immobilization method in a nonionic nanogel host matrix opens up new pathways for designing a simple, fast, biocompatible, and cost-effective process to immobilize biomolecules that are averse to ionic environments.

  6. Flow induced on a salt waterbody due to the impingement of a freshwater drop

    Science.gov (United States)

    Benouaguef, Islam; Amah, Edison; Musunuri, Naga; Blackmore, Denis; Fischer, Ian; Singh, Pushpendra

    2017-11-01

    The particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) techniques are used to study the flow induced on the surface of a salt waterbody when a drop impinges on the surface. The measurements show that the impingement of a fresh water drop causes a strong axisymmetric solutocapillary flow about the vertical line passing through the center of impact. The fluid directly below the center of impact rises upward, and near the surface it moves away from the center of impact. The flow, which develops within a fraction of second after the impact, persists for several seconds and the volume of water circulated is two orders of magnitude larger than the volume circulated when a freshwater drop falls on a freshwater body.

  7. State-to-state time-of-flight measurements of NO scattering from Au(111): direct observation of translation-to-vibration coupling in electronically nonadiabatic energy transfer.

    Science.gov (United States)

    Golibrzuch, Kai; Shirhatti, Pranav R; Altschäffel, Jan; Rahinov, Igor; Auerbach, Daniel J; Wodtke, Alec M; Bartels, Christof

    2013-09-12

    Translational motion is believed to be a spectator degree of freedom in electronically nonadiabatic vibrational energy transfer between molecules and metal surfaces, but the experimental evidence available to support this view is limited. In this work, we have experimentally determined the translational inelasticity in collisions of NO molecules with a single-crystal Au(111) surface-a system with strong electronic nonadiabaticity. State-to-state molecular beam surface scattering was combined with an IR-UV double resonance scheme to obtain high-resolution time-of-flight data. The measurements include vibrationally elastic collisions (v = 3→3, 2→2) as well as collisions where one or two quanta of molecular vibration are excited (2→3, 2→4) or de-excited (2→1, 3→2, 3→1). In addition, we have carried out comprehensive measurements of the effects of rotational excitation on the translational energy of the scattered molecules. We find that under all conditions of this work, the NO molecules lose a large fraction (∼0.45) of their incidence translational energy to the surface. Those molecules that undergo vibrational excitation (relaxation) during the collision recoil slightly slower (faster) than vibrationally elastically scattered molecules. The amount of translational energy change depends on the surface temperature. The translation-to-rotation coupling, which is well-known for v = 0→0 collisions, is found to be significantly weaker for vibrationally inelastic than elastic channels. Our results clearly show that the spectator view of the translational motion in electronically nonadiabatic vibrational energy transfer between NO and Au(111) is only approximately correct.

  8. TRPV4 activation mediates flow-induced nitric oxide production in the rat thick ascending limb

    Science.gov (United States)

    Garvin, Jeffrey L.

    2014-01-01

    Nitric oxide (NO) regulates renal function. Luminal flow stimulates NO production in the thick ascending limb (TAL). Transient receptor potential vanilloid 4 (TRPV4) is a mechano-sensitive channel activated by luminal flow in different types of cells. We hypothesized that TRPV4 mediates flow-induced NO production in the rat TAL. We measured NO production in isolated, perfused rat TALs using the fluorescent dye DAF FM. Increasing luminal flow from 0 to 20 nl/min stimulated NO from 8 ± 3 to 45 ± 12 arbitrary units (AU)/min (n = 5; P < 0.05). The TRPV4 antagonists, ruthenium red (15 μmol/l) and RN 1734 (10 μmol/l), blocked flow-induced NO production. Also, luminal flow did not increase NO production in the absence of extracellular calcium. We also studied the effect of luminal flow on NO production in TALs transduced with a TRPV4shRNA. In nontransduced TALs luminal flow increased NO production by 47 ± 17 AU/min (P < 0.05; n = 5). Similar to nontransduced TALs, luminal flow increased NO production by 39 ± 11 AU/min (P < 0.03; n = 5) in TALs transduced with a control negative sequence-shRNA while in TRPV4shRNA-transduced TALs, luminal flow did not increase NO production (Δ10 ± 15 AU/min; n = 5). We then tested the effect of two different TRPV4 agonists on NO production in the absence of luminal flow. 4α-Phorbol 12,13-didecanoate (1 μmol/l) enhanced NO production by 60 ± 11 AU/min (P < 0.002; n = 7) and GSK1016790A (10 ηmol/l) increased NO production by 52 ± 15 AU/min (P < 0.03; n = 5). GSK1016790A (10 ηmol/l) did not stimulate NO production in TRPV4shRNA-transduced TALs. We conclude that activation of TRPV4 channels mediates flow-induced NO production in the rat TAL. PMID:24966090

  9. Identification of aeroelastic forces and static drag coefficients of a twin cable bridge stay from full-scale ambient vibration measurements

    DEFF Research Database (Denmark)

    Acampora, Antonio; Georgakis, Christos T.; Macdonald, J.H.G.

    2014-01-01

    Despite much research in recent years, large amplitude vibrations of inclined cables continue to be of concern for cable-stayed bridges. Various excitation mechanisms have been suggested, including rain-wind excitation, dry inclined cable galloping, high reduced velocity vortex shedding...... and excitation from the deck and/or towers. Although there have been many observations of large cable vibrations on bridges, there are relatively few cases of direct full-scale cable vibration and wind measurements, and most research has been based on wind tunnel tests and theoretical modelling.This paper...... presents results from full-scale measurements on the special arrangement of twin cables adopted for the Øresund Bridge. The monitoring system records wind and weather conditions, as well as accelerations of certain cables and a few locations on the deck and tower. Using the Eigenvalue Realization Algorithm...

  10. Vibration mixer

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S.A.; Chernov, V.S.; Denisenko, V.V.; Gorodnyanskiy, I.F.; Prokopov, L.I.; Tikhonov, Yu.P.

    1983-01-01

    The vibration mixer is proposed which contains a housing, vibration drive with rod installed in the upper part of the mixing mechanism made in the form of a hollow shaft with blades. In order to improve intensity of mixing and dispersion of the mud, the shaft with the blades is arranged on the rod of the vibrator and is equipped with a cam coupling whose drive disc is attached to the vibration rod. The rod is made helical, while the drive disc of the cam coupling is attached to the helical surface of the rod. In addition, the vibration mixer is equipped with perforated discs installed on the ends of the rods.

  11. Measurement of Internal Friction for Tungsten by the Curve Vibrating Method with Variation of Voltage and Temperature

    Directory of Open Access Journals (Sweden)

    Elin Yusibani

    2013-12-01

    Full Text Available Application of a curved vibrating wire method (CVM to measure gas viscosity has been widely used. A fine Tungsten wire with 50 mm of diameter is bent into a semi-circular shape and arranged symmetrically in a magnetic field of about 0.2 T. The frequency domain is used for calculating the viscosity as a response for forced oscillation of the wire. Internal friction is one of the parameter in the CVM which is has to be measured beforeahead. Internal friction coefficien for the wire material which is the inverse of the quality factor has to be measured in a vacuum condition. The term involving internal friction actually represents the effective resistance of motion due to all non-viscous damping phenomena including internal friction and magnetic damping. The testing of internal friction measurement shows that at different induced voltage and elevated temperature at a vacuum condition, it gives the value of internal friction for Tungsten is around 1 to 4 10-4.

  12. A review of ANL base technology studies in support of the U.S. LMFBR vibration program

    International Nuclear Information System (INIS)

    Wambsganss, M.W.; Chen, S.S.; Mulcahy, T.M.; Shin, Y.S.

    1977-01-01

    Argonne National Laboratory (ANL) is the center for base technology studies of flow induced vibration for the U.S. LMFBR Program. This paper reviews and summarizes published results, reports on the status of ongoing programs, and discusses future needs as outlined in the U.S. LMFBR Vibrations Program Plan. (author)

  13. A review of ANL base technology studies in support of the U.S. LMFBR vibration program

    Energy Technology Data Exchange (ETDEWEB)

    Wambsganss, M W; Chen, S S [Components Technology Division, Argonne National Laboratory, Argonne, IL (United States); Mulcahy, T M; Shin, Y S

    1977-12-01

    Argonne National Laboratory (ANL) is the center for base technology studies of flow induced vibration for the U.S. LMFBR Program. This paper reviews and summarizes published results, reports on the status of ongoing programs, and discusses future needs as outlined in the U.S. LMFBR Vibrations Program Plan. (author)

  14. Substantiation of vibration strength of nuclear reactor and steam generator internals. Main problems

    International Nuclear Information System (INIS)

    Fyodorov, V.G.; Sinyavasky, V.F.

    1977-01-01

    The report details the scope and priority of studies necessary for substantiation of vibration strength of steam generator tube bundles and reactor fuel assemblies, and design modifications helping to reduce flow-induced vibration of the internals specified. Steam generator tube bundles are studied on the basis of a standard establishing vibration requirements at various stages of design, manufacture and operation of a steam generator at a nuclear power station. The main vibration characteristics of tubes obtained through model and full-scale tests are compared with calculation results. Results are provided concerning test-stand vibration tests of fuel elements and fuel assemblies. (author)

  15. Quantitative measurement of vocal fold vibration in male radio performers and healthy controls using high-speed videoendoscopy.

    Directory of Open Access Journals (Sweden)

    Samantha Warhurst

    Full Text Available Acoustic and perceptual studies show a number of differences between the voices of radio performers and controls. Despite this, the vocal fold kinematics underlying these differences are largely unknown. Using high-speed videoendoscopy, this study sought to determine whether the vocal vibration features of radio performers differed from those of non-performing controls.Using high-speed videoendoscopy, recordings of a mid-phonatory/i/ in 16 male radio performers (aged 25-52 years and 16 age-matched controls (aged 25-52 years were collected. Videos were extracted and analysed semi-automatically using High-Speed Video Program, obtaining measures of fundamental frequency (f0, open quotient and speed quotient. Post-hoc analyses of sound pressure level (SPL were also performed (n = 19. Pearson's correlations were calculated between SPL and both speed and open quotients.Male radio performers had a significantly higher speed quotient than their matched controls (t = 3.308, p = 0.005. No significant differences were found for f0 or open quotient. No significant correlation was found between either open or speed quotient with SPL.A higher speed quotient in male radio performers suggests that their vocal fold vibration was characterised by a higher ratio of glottal opening to closing times than controls. This result may explain findings of better voice quality, higher equivalent sound level and greater spectral tilt seen in previous research. Open quotient was not significantly different between groups, indicating that the durations of complete vocal fold closure were not different between the radio performers and controls. Further validation of these results is required to determine the aetiology of the higher speed quotient result and its implications for voice training and clinical management in performers.

  16. Flow induced/ refined solution crystallization of a semiconducting polymer

    Science.gov (United States)

    Nguyen, Ngoc A.

    Organic photovoltaics, a new generation of solar cells, has gained scientific and economic interests due to the ability of solution-processing and potentially low-cost power production. Though, the low power conversion efficiency of organic/ plastic solar cells is one of the most pertinent challenges that has appealed to research communities from many different fields including materials science and engineering, electrical engineering, chemical engineering, physics and chemistry. This thesis focuses on investigating and controlling the morphology of a semi-conducting, semi-crystalline polymer formed under shear-flow. Molecular structures and processing techniques are critical factors that significantly affect the morphology formation in the plastic solar cells, thus influencing device performance. In this study, flow-induced solution crystallization of poly (3-hexylthiophene) (P3HT) in a poor solvent, 2-ethylnapthalene (2-EN) was utilized to make a paint-like, structural liquid. The polymer crystals observed in this structured paint are micrometers long, nanometers in cross section and have a structure similar to that formed under quiescent conditions. There is pi-pi stacking order along the fibril axis, while polymer chain folding occurs along the fibril width and the order of the side-chain stacking is along fibril height. It was revealed that shear-flow not only induces P3HT crystallization from solution, but also refines and perfects the P3HT crystals. Thus, a general strategy to refine the semiconducting polymer crystals from solution under shear-flow has been developed and employed by simply tuning the processing (shearing) conditions with respect to the dissolution temperature of P3HT in 2-EN. The experimental results demonstrated that shear removes defects and allows more perfect crystals to be formed. There is no glass transition temperature observed in the crystals formed using the flow-induced crystallization indicating a significantly different

  17. Vibration in car repair work.

    Science.gov (United States)

    Hansson, J E; Eklund, L; Kihlberg, S; Ostergren, C E

    1987-03-01

    The main objective of the study was to find efficient hand tools which caused only minor vibration loading. Vibration measurements were carried out under standardised working conditions. The time during which car body repairers in seven companies were exposed to vibration was determined. Chisel hammers, impact wrenches, sanders and saws were the types of tools which generated the highest vibration accelerations. The average daily exposure at the different garages ranged from 22 to 70 min. The risk of vibration injury is currently rated as high. The difference between the highest and lowest levels of vibration was considerable in most tool categories. Therefore the choice of tool has a major impact on the magnitude of vibration exposure. The importance of choosing the right tools and working methods is discussed and a counselling service on vibration is proposed.

  18. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  19. Vibration behavior of PWR reactor internals Model experiments and analysis

    International Nuclear Information System (INIS)

    Assedo, R.; Dubourg, M.; Livolant, M.; Epstein, A.

    1975-01-01

    In the late 1971, the CEA and FRAMATOME decided to undertake a comprehensive joint program of studying the vibration behavior of PWR internals of the 900 MWe, 50 cycle, 3 loop reactor series being built by FRAMATOME in France. The PWR reactor internals are submitted to several sources of excitation during normal operation. Two main sources of excitation may effect the internals behavior: the large flow turbulences which could generate various instabilities such as: vortex shedding: the pump pressure fluctuations which could generate acoustic noise in the circuit at frequencies corresponding to shaft speed frequencies or blade passing frequencies, and their respective harmonics. The flow induced vibrations are of complex nature and the approach selected, for this comprehensive program, is semi-empirical and based on both theoretical analysis and experiments on a reduced scale model and full scale internals. The experimental support of this program consists of: the SAFRAN test loop which consists of an hydroelastic similitude of a 1/8 scale model of a PWR; harmonic vibration tests in air performed on full scale reactor internals in the manufacturing shop; the GENNEVILLIERS facilities which is a full flow test facility of primary pump; the measurements carried out during start up on the Tihange reactor. This program will be completed in April 1975. The results of this program, the originality of which consists of studying separately the effects of random excitations and acoustic noises, on the internals behavior, and by establishing a comparison between experiments and analysis, will bring a major contribution for explaining the complex vibration phenomena occurring in a PWR

  20. Improved Laser Vibration Radar

    National Research Council Canada - National Science Library

    Hilaire, Pierre

    1998-01-01

    .... This thesis reconfigured an existing CO2 laboratory laser radar system that is capable of measuring the frequencies of vibration of a simulated target into a more compact and rugged form for field testing...

  1. Fluid elastic vibration of nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Kim, S. N.; Jung, S. Y.

    1998-01-01

    Since utilities and fuel venders have adopted the fuel design of high burn-up and improved thermal margin flow mixing vane, several PWR nuclear power plants have in recent years experienced fretting wear fuel rod failure due to flow induced vibration. Flow induced vibration can be resulted from fluidelastic instability, periodic shedding, turbulence-induced excitation, and acoustic resonance (1). Among these mechanisms found in the core of nuclear power plant, the governing mechanism that is fluidelastic instability, could be inferred from the analysis of fuel failure patterns. Therefore, to simulate the fuel failure in nuclear power plants, Tanaka's model (2) was chosen as most suitable one, which is well explaining the damage pattern, in particular it's second row damage characteristics. In the model, unsteady fluid dynamic forces acting on the vibrating cyclinders were included which consists of the inertia forces due to the added mass of fluid, damping forces of fluid in phase to the cylinder vibrating velocity, and stiffness forces proportional to cylinder displacements. However, the model did not account for radiation effect-spring forces deflection. So, the model was modified to account for the spring force relaxation due to radiation exposure. The stiffness of spring was fitted with experimental data. Finally the critical velocities were calculated with the modified spring force at beginning and end of cycle

  2. Method and apparatus for measuring surface movement of a solid object that is subjected to external vibrations

    Science.gov (United States)

    Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1995-04-25

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figs.

  3. Comparison of electrochemical skin conductance and vibration perception threshold measurement in the detection of early diabetic neuropathy.

    Directory of Open Access Journals (Sweden)

    Amit Goel

    Full Text Available The early diagnosis of diabetic peripheral neuropathy (DPN is challenging. Sudomotor dysfunction is one of the earliest detectable abnormalities in DPN. The present study aimed to determine the diagnostic performance of the electrochemical skin conductance (ESC test in detecting early DPN, compared with the vibration perception threshold (VPT test and diabetic neuropathy symptom (DNS score, using the modified neuropathy disability score (NDS as the reference standard. Five hundred and twenty-three patients with type 2 diabetes underwent an NDS-based clinical assessment for neuropathy. Participants were classified into the DPN and non-DPN groups based on the NDS (≥ 6. Both groups were evaluated further using the DNS, and VPT and ESC testing. A receiver-operator characteristic (ROC curve analysis was performed to compare the efficacy of ESC measurements with those of DNS and VPT testing in detecting DPN. The DPN group (n = 110, 21% had significantly higher HbA1c levels and longer diabetes durations compared with the non-DPN group (n = 413. The sensitivity of feet ESC 15 V, and DNS ≥ 1, were 16.4, 10.9 and 1.8, respectively. ESC measurement is an objective and sensitive technique for the early detection of DPN. Feet ESC measurement was superior to VPT testing for identifying patients with early DPN.

  4. Study on the Effect and Mechanism of Aerodynamic Measures for the Vortex-Induced Vibration of Separate Pairs of Box Girders in Cable-Stayed Bridges

    Directory of Open Access Journals (Sweden)

    Han Xin He

    2015-01-01

    Full Text Available Although not always resulting in catastrophic failures, vortex-induced vibration (VIV response can seriously impact the fatigue life and functionality of bridges, especially for separate pairs of box girders in cable-stayed bridges. This study investigates the effects of three aerodynamic measures: grating, inclined web plate, and the baffles on separated box girders in the cable-stayed bridges. The experimental result indicates that the grating of different opening ratios can control the vortex-induced vibration effectively, and the optimized grating opening ratio set in this paper is 40%. Increasing the angle of inclined web plate has a great control on mitigation of the vortex-induced vibration. However, there is an optimum angle where the amplitude of vortex-induced vibration is the smallest at low wind speed. The amplitude of vortex-induced vibration becomes larger with the increase of the web inclined angle that exceeds the optimum angle. Comparatively, the baffles installed on both sides of the inclined webs are more effective to restrain the vortex-induced resonance. The Computational Fluent Dynamics (CFD software is utilized to investigate the mechanism of the experimental results.

  5. Measurement of 3-D Vibrational Motion by Dynamic Photogrammetry Using Least-Square Image Matching for Sub-Pixel Targeting to Improve Accuracy

    Science.gov (United States)

    Lee, Hyoseong; Rhee, Huinam; Oh, Jae Hong; Park, Jin Ho

    2016-01-01

    This paper deals with an improved methodology to measure three-dimensional dynamic displacements of a structure by digital close-range photogrammetry. A series of stereo images of a vibrating structure installed with targets are taken at specified intervals by using two daily-use cameras. A new methodology is proposed to accurately trace the spatial displacement of each target in three-dimensional space. This method combines the correlation and the least-square image matching so that the sub-pixel targeting can be obtained to increase the measurement accuracy. Collinearity and space resection theory are used to determine the interior and exterior orientation parameters. To verify the proposed method, experiments have been performed to measure displacements of a cantilevered beam excited by an electrodynamic shaker, which is vibrating in a complex configuration with mixed bending and torsional motions simultaneously with multiple frequencies. The results by the present method showed good agreement with the measurement by two laser displacement sensors. The proposed methodology only requires inexpensive daily-use cameras, and can remotely detect the dynamic displacement of a structure vibrating in a complex three-dimensional defection shape up to sub-pixel accuracy. It has abundant potential applications to various fields, e.g., remote vibration monitoring of an inaccessible or dangerous facility. PMID:26978366

  6. a Middle-Ear Reverse Transfer Function Computed from Vibration Measurements of Otoacoustic Emissions on the Ear Drum of the Guinea PIG

    Science.gov (United States)

    Dalhoff, Ernst; Turcanu, Diana; Gummer, Anthony W.

    2009-02-01

    Using distortion products measured as vibration of the umbo and as sound pressure in the ear canal of guinea pigs, we calculated the corresponding reverse transfer function. We compare the measurements with a middle-ear model taken from the literature and adapted to the guinea pig. A reasonable fit could be achieved. We conclude that the reverse transfer function will be useful to aid fitting a middle-ear model to measured transfer functions of human subjects.

  7. Experimental Study on Piezoelectric Energy Harvesting from Vortex-Induced Vibrations and Wake-Induced Vibrations

    Directory of Open Access Journals (Sweden)

    Min Zhang

    2016-01-01

    Full Text Available A rigid circular cylinder with two piezoelectric beams attached on has been tested through vortex-induced vibrations (VIV and wake-induced vibrations (WIV by installing a big cylinder fixed upstream, in order to study the influence of the different flow-induced vibrations (FIV types. The VIV test shows that the output voltage increases with the increases of load resistance; an optimal load resistance exists for the maximum output power. The WIV test shows that the vibration of the small cylinder is controlled by the vortex frequency of the large one. There is an optimal gap of the cylinders that can obtain the maximum output voltage and power. For a same energy harvesting device, WIV has higher power generation capacity; then the piezoelectric output characteristics can be effectively improved.

  8. Vibration measurements of the Daniel K. Inouye Solar Telescope mount, Coudé rotator, and enclosure assemblies

    Science.gov (United States)

    McBride, William R.; McBride, Daniel R.

    2016-08-01

    The Daniel K. Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, with a 4-meter off-axis primary mirror and 16 meter rotating Coudé laboratory within the telescope pier. The off-axis design requires a mount similar to an 8-meter on-axis telescope. Both the telescope mount and the Coudé laboratory utilize a roller bearing technology in place of the more commonly used hydrostatic bearings. The telescope enclosure utilizes a crawler mechanism for the altitude axis. As these mechanisms have not previously been used in a telescope, understanding the vibration characteristics and the potential impact on the telescope image is important. This paper presents the methodology used to perform jitter measurements of the enclosure and the mount bearings and servo system in a high-noise environment utilizing seismic accelerometers and high dynamic-range data acquisition equipment, along with digital signal processing (DSP) techniques. Data acquisition and signal processing were implemented in MATLAB. In the factory acceptance testing of the telescope mount, multiple accelerometers were strategically located to capture the six axes-of-motion of the primary and secondary mirror dummies. The optical sensitivity analysis was used to map these mirror mount displacements and rotations into units of image motion on the focal plane. Similarly, tests were done with the Coudé rotator, treating the entire rotating instrument lab as a rigid body. Testing was performed by recording accelerometer data while the telescope control system performed tracking operations typical of various observing scenarios. The analysis of the accelerometer data utilized noise-averaging fast Fourier transform (FFT) routines, spectrograms, and periodograms. To achieve adequate dynamic range at frequencies as low as 3Hz, the use of special filters and advanced windowing functions were necessary. Numerous identical automated tests were compared to identify and select the data sets

  9. Experiments of flow-induced in-line oscillation of a circular cylinder in a water tunnel. 2. Influence of the aspect ratio of a cantilevered circular cylinder

    International Nuclear Information System (INIS)

    Nakamura, Akira; Okajima, Atsushi; Kosugi, Takashi

    2001-01-01

    The flow-induced in-line oscillation of a cantilevered circular cylinder was experimentally studied through free-oscillation tests in a water tunnel. The response displacement amplitude at a circular cylinder tip was measured at reduced velocity from 1.0 to 4.0. A cantilevered cylinder was supported by a plate spring mounted on the water tunnel wall. The cylinder aspect ratio was varied from 5 to 21 to investigate the effect of aspect ratio on the response displacement. It is found that cylinders with aspect ratios of 5 and 10 have one excitation region, while cylinders with aspect ratios of 14 and 21 have two excitation regions. The aspect ratio, therefore, affects the amplitude of the excitation regions. The influence of end-effect was also investigated using cylinders with an end plate attached to the free end. Since the cylinders with an end plate show two excitation regions, even at an aspect ratio of 5, the flow around the free end of a cantilevered cylinder causes the end-effect. The mechanism of vibration was investigated using a cylinder with a splitter plate in wake to prevent alternate vortices. The amplitude is greater than those of a normal cylinder without a splitter plate, especially at V r =2.3 to 3.0, where a cylinder with an end plate shows the second excitation region. In order words, the alternate vortices suppress the amplitude in this range. The maximum amplitude of each excitation region decreases in proportion to C n and the amplitude of the first excitation is more sensitive to C n . (author)

  10. Putting a damper on drilling's bad vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, S [Sedco forex, Montrouge (France); Malone, D [Anadrill, Sugar Land, TX (United States); Sheppard, M [Schlumberger Cambridge Research, Cambridge (United Kingdom)

    1994-01-01

    Harmful drilling vibrations are costing the industry dearly. Three main vibration types (axial, torsional and transverse) are explained and its causes discussed. Technology exists to eliminate most vibrations, but requires more systematic deployment than is usual. Hardware that eliminates vibrations is reviewed, including downhole shock measurement, torque feedback shock guards and antiwhirl bits. 9 figs., 11 refs.

  11. Site-Specific Measurement of Water Dynamics in the Substrate Pocket of Ketosteroid Isomerase Using Time-Resolved Vibrational Spectroscopy

    Science.gov (United States)

    Jha, Santosh Kumar; Ji, Minbiao; Gaffney, Kelly J.; Boxer, Steven G.

    2012-01-01

    Little is known about the reorganization capacity of water molecules at the active sites of enzymes and how this couples to the catalytic reaction. Here, we study the dynamics of water molecules at the active site of a highly proficient enzyme, Δ5-3-ketosteroid isomerase (KSI), during a light-activated mimic of its catalytic cycle. Photo-excitation of a nitrile containing photo-acid, coumarin183 (C183), mimics the change in charge density that occurs at the active site of KSI during the first step of the catalytic reaction. The nitrile of C183 is exposed to water when bound to the KSI active site, and we used time-resolved vibrational spectroscopy as a site-specific probe to study the solvation dynamics of water molecules in the vicinity of the nitrile. We observed that water molecules at the active site of KSI are highly rigid, during the light-activated catalytic cycle, compared to the solvation dynamics observed in bulk water. Based upon this result we hypothesize that rigid water dipoles at the active site might help in the maintenance of the pre-organized electrostatic environment required for efficient catalysis. The results also demonstrate the utility of nitrile probes in measuring the dynamics of local (H-bonded) water molecules in contrast to the commonly used fluorescence methods which measure the average behavior of primary and subsequent spheres of solvation. PMID:22931297

  12. INCLINATION AND VIBRATION MEASUREMENT BY INERTIAL SENSING FOR STRUCTURAL HEALTH MONITORING

    Science.gov (United States)

    Sugisaki, Koichi; Abe, Masato; Koshimizu, Satoru

    To develop a practical health monitoring system, inertial sensing which can readily be done for wide variety of situations is useful. However inertial sensors are measuring inclination and acceleration in reference to gravity. Therefore inclination are influence by acceleration and vice versa caused measuring errors. Especially, errors are more affected at low-frequency band which is important to estimate displacement. In this study, to establish correcting theory for inertial sensing and to develop method to estimate parameters for some structural system. And conducted a field test targeted at the real railway bridge to verify the effectiveness of the proposed method using response records of the pier under passing train load.

  13. A visualization study of flow-induced acoustic resonance in a branched pipe

    International Nuclear Information System (INIS)

    Li, Yanrong; Someya, Satoshi; Okamoto, Koji

    2008-01-01

    Systems with closed side-branches are liable to an excitation of sound, as called cavity tones. It may occur in pipe branches leading to safety valves or to boiler relief valves. The outbreak mechanism of the cavity tone has been known by phase-averaged measurement in previous researches, while the relation between sound propagation and flow field is still unclear due to the difficulty of detecting instantaneous pressure field. High time-resolved PIV has a possibility to analyze the pressure field and the relation mentioned above. In this report, flow-induced acoustic resonances of piping system containing closed side-branches were investigated experimentally. A High-Time-Resolved PIV technique was applied to measure a gas-flow in a cavity-tone. Air flow containing an oil mist as tracer particles was measured using a high frequency pulse laser and a high-speed camera. The present investigation on the coaxial closed side-branches is the first rudimentary study to measure the flow field two-dimensionally and simultaneously with the pressure measurement at multi-points and to visualize the fluid flow in the cross-section by using PIV. The fluid flows at different points in the cavity interact with some phase differences and the relation should be clarified. (author)

  14. Simultaneous viscosity and density measurement of small volumes of liquids using a vibrating microcantilever.

    Science.gov (United States)

    Payam, A F; Trewby, W; Voïtchovsky, K

    2017-05-02

    Many industrial and technological applications require precise determination of the viscosity and density of liquids. Such measurements can be time consuming and often require sampling substantial amounts of the liquid. These problems can partly be overcome with the use of microcantilevers but most existing methods depend on the specific geometry and properties of the cantilever, which renders simple, accurate measurement difficult. Here we present a new approach able to simultaneously quantify both the density and the viscosity of microliters of liquids. The method, based solely on the measurement of two characteristic frequencies of an immersed microcantilever, is completely independent of the choice of a cantilever. We derive analytical expressions for the liquid's density and viscosity and validate our approach with several simple liquids and different cantilevers. Application of our model to non-Newtonian fluids shows that the calculated viscosities are remarkably robust when compared to measurements obtained from a standard rheometer. However, the results become increasingly dependent on the cantilever geometry as the frequency-dependent nature of the liquid's viscosity becomes more significant.

  15. Fluid dynamic forces acting on a circular tube bundle in cross flow. Proposals of generation condition of vortex-induced vibration and correlation equation of turbulence-induced exciting force

    International Nuclear Information System (INIS)

    Inada, Fumio; Yoneda, Kimitoshi; Yasuo, Akira; Nishihara, Takashi

    2000-01-01

    In the circular tube bundle immersed in the crossflow, the exciting force induced by the turbulence and periodically discharged vortices becomes large, and it is necessary to confirm a long-term integrity to the flow induced vibration. In this report, the local fluid exciting force and the correlation length in the direction of tube axis were measured. The exciting force acting on the first row was smaller than that inside the tube bundle, and the exciting force was almost saturated at the third row. As for vortex induced vibration, there could be an influence when a dimensionless frequency was 0.4 or less. When vortex induced vibration did not affect the vibration, a correlation composed of a correlation length and power spectrum density of the local fluid exciting force were proposed, with which we could estimate the amplitude of the vibration. A computer program to estimate the vibration amplitude and maximum stress was made using the flow velocity distribution and the mode of vibration. (author)

  16. Measurement of correlations between low-frequency vibrational modes and particle rearrangements in quasi-two-dimensional colloidal glasses

    NARCIS (Netherlands)

    Chen, K.; Manning, M.L.; Yunker, P.J.; Ellenbroek, W.G.; Zhang, Zexin; Liu, Andrea J.; Yodh, A.G.

    2011-01-01

    We investigate correlations between low-frequency vibrational modes and rearrangements in two-dimensional colloidal glasses composed of thermosensitive microgel particles, which readily permit variation of the sample packing fraction. At each packing fraction, the particle displacement covariance

  17. Improvement on vibration measurement performance of laser self-mixing interference by using a pre-feedback mirror

    Science.gov (United States)

    Zhu, Wei; Chen, Qianghua; Wang, Yanghong; Luo, Huifu; Wu, Huan; Ma, Binwu

    2018-06-01

    In the laser self-mixing interference vibration measurement system, the self mixing interference signal is usually weak so that it can be hardly distinguished from the environmental noise. In order to solve this problem, we present a self-mixing interference optical path with a pre-feedback mirror, a pre-feedback mirror is added between the object and the collimator lens, corresponding feedback light enters into the inner cavity of the laser and the interference by the pre-feedback mirror occurs. The pre-feedback system is established after that. The self-mixing interference theoretical model with a pre-feedback based on the F-P model is derived. The theoretical analysis shows that the amplitude of the intensity of the interference signal can be improved by 2-4 times. The influence factors of system are also discussed. The experiment results show that the amplitude of the signal is greatly improved, which agrees with the theoretical analysis.

  18. 3D Blade Vibration Measurements on an 80 m Diameter Wind Turbine by Using Non-contact Remote Measurement Systems

    Science.gov (United States)

    Ozbek, Muammer; Rixen, Daniel J.

    Non-contact optical measurement systems photogrammetry and laser interferometry are introduced as cost efficient alternatives to the conventional wind turbine/farm monitoring systems that are currently in use. The proposed techniques are proven to provide an accurate measurement of the dynamic behavior of a 2.5 MW—80 m diameter—wind turbine. Several measurements are taken on the test turbine by using 4 CCD cameras and 1 laser vibrometer and the response of the turbine is monitored from a distance of 220 m. The results of the infield tests and the corresponding analyses show that photogrammetry (also can be called as videogrammetry or computer vision technique) enable the 3D deformations of the rotor to be measured at 33 different points simultaneously with an average accuracy of ±25 mm, while the turbine is rotating. Several important turbine modes can also be extracted from the recorded data. Similarly, laser interferometry (used for the parked turbine only) provides very valuable information on the dynamic properties of the turbine structure. Twelve different turbine modes can be identified from the obtained response data.

  19. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study.

    Science.gov (United States)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-03-01

    An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography.

  20. An Evaluation of Test and Physical Uncertainty of Measuring Vibration in Wooden Junctions

    DEFF Research Database (Denmark)

    Dickow, Kristoffer Ahrens; Kirkegaard, Poul Henning; Andersen, Lars Vabbersgaard

    2012-01-01

    In the present paper a study of test and material uncertainty in modal analysis of certain wooden junctions is presented. The main structure considered here is a T-junction made from a particleboard plate connected to a spruce beam of rectangular cross section. The size of the plate is 1.2 m by 0.......6 m. The T-junctions represent cut-outs of actual full size floor assemblies. The aim of the experiments is to investigate the underlying uncertainties of both the test method as well as variation in material and craftmanship. For this purpose, ten nominally identical junctions are tested and compared...... to each other in terms of modal parameters such as natural frequencies, modeshapes and damping. Considerations regarding the measurement procedure and test setup are discussed. The results indicate a large variation of the response at modes where the coupling of torsion in the beam to bending of the plate...

  1. Ship Vibrations

    DEFF Research Database (Denmark)

    Sørensen, Herman

    1997-01-01

    Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board......Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board...

  2. Detection of the local sliding in the tyre-road contact by measuring vibrations on the inner liner of the tyre

    Science.gov (United States)

    Niskanen, Arto J.; Tuononen, Ari J.

    2017-04-01

    Intelligent tyres can provide vital information from the tyre-road contact, especially for autonomous cars and intelligent infrastructure. In this paper, the acceleration measured on the inner liner of a tyre is used to detect the local sliding in the tyre-road contact. The Hilbert-Huang transform is utilized to extract the relevant vibration components and localize them in the wheel rotation angle domain. The energy of the vibration in the trailing part of the contact is shown to increase in low-friction conditions which can be related to the sliding of the tread part as a result of the shear stresses exceeding the local friction limit. To separate the effect of the surface roughness and the friction, different road surfaces were used in the measurements. In addition, the effects of different driving manoeuvres on the measured accelerations and the propagation of the sliding zone in the contact patch during braking are illustrated.

  3. Detection of the local sliding in the tyre-road contact by measuring vibrations on the inner liner of the tyre

    International Nuclear Information System (INIS)

    Niskanen, Arto J; Tuononen, Ari J

    2017-01-01

    Intelligent tyres can provide vital information from the tyre-road contact, especially for autonomous cars and intelligent infrastructure. In this paper, the acceleration measured on the inner liner of a tyre is used to detect the local sliding in the tyre-road contact. The Hilbert–Huang transform is utilized to extract the relevant vibration components and localize them in the wheel rotation angle domain. The energy of the vibration in the trailing part of the contact is shown to increase in low-friction conditions which can be related to the sliding of the tread part as a result of the shear stresses exceeding the local friction limit. To separate the effect of the surface roughness and the friction, different road surfaces were used in the measurements. In addition, the effects of different driving manoeuvres on the measured accelerations and the propagation of the sliding zone in the contact patch during braking are illustrated. (paper)

  4. The effects of vibration-reducing gloves on finger vibration

    Science.gov (United States)

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2015-01-01

    Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new

  5. Field measurement of the piping system vibration of Ko-Ri unit 4 during the load-following operation

    International Nuclear Information System (INIS)

    Chung, Tae-Young; Hong, Sung-Yull; Kim, Bum-Nyun.

    1989-01-01

    During the load-following operation of nuclear power plants, flow rate, temperature, and pressure in the piping system can be varied by changing the electric power output level, and these variations can cause different vibration phenomena in the piping system. The piping system vibration is important because it is directly related to the dynamic stress of the piping system and can affect the life of the piping system through structural fatigue. An assessment of vibration levels for the classes II and III piping systems of the Ko-Ri Unit 4950-MW nuclear power plant was performed according to the given pattern of the load-following operation to study its feasibility from the viewpoint of piping system vibration. The classes II and III piping system vibration of the Ko-Ri Unit 4 may not cause any potential problem under the given pattern of the load-following operation; however, it is recommended that long-term operation in the 85 to 95% power range be avoided as much as possible

  6. French experimental facilities for measurements of transverse flows and assessment of the corresponding risk of vibrations in heterogeneous cores

    International Nuclear Information System (INIS)

    Le Borgne, E.; Mattei, A.; Oceraies, Y.; Fardeau, P.

    1994-01-01

    Due to insertion of a limited number of new assemblies at each cycle, the cores in Pressurized Water Reactors are not homogeneous. Referring only to the impact on coolant flow, these differences can range from variable hydraulic resistances in the assembly, which depend on the geometric changes occurring during preceding cycles, to coexistence of assemblies with new design structures. Deviations in resistance between neighboring fuel assemblies causes the flow rates to be distributed differently between the assembly rods. This results in development of transverse flows from the main axial flow, and changes in the axial velocity gradients. These particularities of coolant flow have an effect on both vibration levels and cooling of the fuel rods, and also on the axial forces exerted on the assemblies in the core cavity. Since 1985, French Atomic Energy Commission (CEA) has gradually acquired experimental and measuring facilities that have allowed it to engage in research and development programs in these areas, in cooperation with industry partners in the nuclear field. Two complementary test loops have been constructed, called ARIANE and HERMES T. Use of these experimental facilities allows to obtain complete and detailed information on the hydraulic and vibratory phenomena specific to heterogeneous cores. In particular it is possible to establish a direct assessment of the actual compatibility between two different assemblies. By making a few specific changes, these facilities can also be used as a unique tool for assembly behaviour studies under seismic conditions with simulation of the flow effects. Also, a source of information in thus made available for qualification of computation codes for vibratory mechanics and multidimensional fluid mechanics under development at CEA and also used in the field of nuclear fuel. (authors). 6 figs., 1 ref

  7. Dynamic vibration measurements at the fundaments of wind power plants to reduce the expenses during maintenance; Dynamische Schwingungsmessungen an WEA-Fundamenten zur Kostenreduzierung bei der Instandhaltung

    Energy Technology Data Exchange (ETDEWEB)

    Deininger, Klaus [KTW Umweltschutztechnik GmbH, Mellingen (Germany)

    2013-06-01

    The author of the contribution under consideration reports on dynamic vibration measurements at the foundations of wind power plants. Typical damages at these foundations as well as various options of sealing are described. The author recommends the installation of condition monitoring systems which punctually display critical states of wind power plants using the global positioning system or direct involvement in the entire data of the wind power plant.

  8. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study

    International Nuclear Information System (INIS)

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-01-01

    Highlights: • An in-situ and real-time electrochemical monitoring of flow-induced corrosion of Mg alloy is designed in a vascular bioreactor. • Effect of hydrodynamics on corrosion kinetics, types, rates and products is analyzed. • Flow accelerates mass and electron transfer, leading to an increase in uniform and localized corrosions. • Flow increases not only the thickness of uniform corrosion product layer, but the removal rate of localized corrosion products. • Electrochemical impedance spectroscopy and linear polarization-measured polarization resistances provide a consistent correlation to corrosion rate calculated by computed tomography. - Abstract: An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography.

  9. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

    In   this   paper   we   describe   a   field   study   conducted   with   a   wearable   vibration   belt   where   we   test   to   determine   the   vibration   intensity   sensitivity   ranges   on   a   large   diverse   group   of   participants   with   evenly   distributed  ages  and...

  10. Test for Jet Flow Induced by Steam Jet Condensation Using the GIRLS Facility

    International Nuclear Information System (INIS)

    Kim, Yeon Sik; Yoon, Y. J.; Song, C. H.

    2007-03-01

    To investigate the characteristics of the turbulent jet induced by steam jet condensation in a water tank through a single-hole sparger an experimental investigation was performed using the GIRLS facility. The experiments were conducted with respect to two cases, e.g. horizontal and vertical upward injections. For the measurements, pitot tube and thermocouples were used for turbulent flow velocity and temperatures, respectively. Overall flow shapes of the turbulent jet by the steam jet condensation are similar to those of axially symmetric turbulent jet flows. The angular coefficients of turbulent rays are quantitatively comparable between the traditional turbulent jet flows and the turbulent jet flows induced by the steam jet condensation in this work. Although the turbulent flows were induced by the horizontally injected steam jet condensation, general theory of turbulent jets was found to be applicable to the turbulent flows of this work. But for the vertically upward injection case, experimental data were quite deviated from the theoretical ones, which is considered due to the buoyancy effect

  11. Fluid-Induced Vibration Analysis for Reactor Internals Using Computational FSI Method

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jong Sung; Yi, Kun Woo; Sung, Ki Kwang; Im, In Young; Choi, Taek Sang [KEPCO E and C, Daejeon (Korea, Republic of)

    2013-10-15

    This paper introduces a fluid-induced vibration analysis method which calculates the response of the RVI to both deterministic and random loads at once and utilizes more realistic pressure distribution using the computational Fluid Structure Interaction (FSI) method. As addressed above, the FIV analysis for the RVI was carried out using the computational FSI method. This method calculates the response to deterministic and random turbulence loads at once. This method is also a simple and integrative method to get structural dynamic responses of reactor internals to various flow-induced loads. Because the analysis of this paper omitted the bypass flow region and Inner Barrel Assembly (IBA) due to the limitation of computer resources, it is necessary to find an effective way to consider all regions in the RV for the FIV analysis in the future. Reactor coolant flow makes Reactor Vessel Internals (RVI) vibrate and may affect the structural integrity of them. U. S. NRC Regulatory Guide 1.20 requires the Comprehensive Vibration Assessment Program (CVAP) to verify the structural integrity of the RVI for Fluid-Induced Vibration (FIV). The hydraulic forces on the RVI of OPR1000 and APR1400 were computed from the hydraulic formulas and the CVAP measurements in Palo Verde Unit 1 and Yonggwang Unit 4 for the structural vibration analyses. In this method, the hydraulic forces were divided into deterministic and random turbulence loads and were used for the excitation forces of the separate structural analyses. These forces are applied to the finite element model and the responses to them were combined into the resultant stresses.

  12. Linear Aspects of Stability in Flow Induced Oscillations of Cantilever Pipes: Application of a Popular Heuristic Algorithm

    Science.gov (United States)

    Hebbar, Ullhas; Krishnan, Abilash; Kadoli, Ravikiran

    2017-11-01

    This work studied linear aspects of flow induced oscillations in cantilever pipes, with an emphasis on the numerical method of solution adopted for the system of governing equations. The complex frequencies of vibration of the different characteristic modes of the system were computed as a function of the flow velocity, wherein multi-variable minimization was performed using the popular Nelder-Mead heuristic algorithm. Results for a canonical fluid-to-pipe mass ratio (β) were validated with literature, and the evolution of frequencies was studied for different mass ratios. Additionally, the numerical scheme was implemented to compute critical conditions of stability for the cantilever system as a function of β. Finally, interesting aspects of the dynamics of the system were analyzed: the supposed `mode exchange' behavior, and an explanation for discontinuities observed in the critical conditions plotted as a function of β. In conclusion, the heuristic optimization based solution used in this study can be used to analyze various aspects of linear stability in pipes conveying fluid. Part of the submitted work was completed at the author's previous affiliation - National Institute of Technology Karnataka, India.

  13. Effectiveness of non-pharmacological measures for reducing pain and fear in children during venipuncture in the emergency department: a vibrating cold devices versus distraction.

    Science.gov (United States)

    García-Aracil, Noelia; Ramos-Pichardo, Juan Diego; Castejón-de la Encina, María Elena; José-Alcaide, Lourdes; Juliá-Sanchís, Rocío; Sanjuan-Quiles, Ángela

    2018-06-01

    To assess the effectiveness of a physical method of managing pain and fear in children and anxiety in the accompanying adult during venous puncture in the emergency department. Quasi-experimental study of 3 groups: one group used a combination of directed distraction by means of a vibration device with ice pack, a second group received only distraction, and no strategy was used in the third. Pain and adult anxiety were similar in the 2 groups in which a pain management strategy was applied. Pain and adult anxiety were greater when no strategy was adopted. We detected no differences in the level of the children's fear. Directed distraction can be useful for managing pain in children and it reduces the anxiety experienced by accompanying adults. The use of a vibration device with ice does not add benefits. Fear is not reduced by any of these measures.

  14. Vibration transducer calibration techniques

    Science.gov (United States)

    Brinkley, D. J.

    1980-09-01

    Techniques for the calibration of vibration transducers used in the Aeronautical Quality Assurance Directorate of the British Ministry of Defence are presented. Following a review of the types of measurements necessary in the calibration of vibration transducers, the performance requirements of vibration transducers, which can be used to measure acceleration, velocity or vibration amplitude, are discussed, with particular attention given to the piezoelectric accelerometer. Techniques for the accurate measurement of sinusoidal vibration amplitude in reference-grade transducers are then considered, including the use of a position sensitive photocell and the use of a Michelson laser interferometer. Means of comparing the output of working-grade accelerometers with that of previously calibrated reference-grade devices are then outlined, with attention given to a method employing a capacitance bridge technique and a method to be used at temperatures between -50 and 200 C. Automatic calibration procedures developed to speed up the calibration process are outlined, and future possible extensions of system software are indicated.

  15. Selection of a Suitable Wall Pressure Spectrum Model for Estimating Flow-Induced Noise in Sonar Applications

    Directory of Open Access Journals (Sweden)

    V. Bhujanga Rao

    1995-01-01

    Full Text Available Flow-induced structural noise of a sonar dome in which the sonar transducer is housed, constitutes a major source of self-noise above a certain speed of the vessel. Excitation of the sonar dome structure by random pressure fluctuations in turbulent boundary layer flow leads to acoustic radiation into the interior of the dome. This acoustic radiation is termed flow-induced structural noise. Such noise contributes significantly to sonar self-noise of submerged vessels cruising at high speed and plays an important role in surface ships, torpedos, and towed sonars as well. Various turbulent boundary layer wall pressure models published were analyzed and the most suitable analytical model for the sonar dome application selected while taking into account high frequency, fluid loading, low wave number contribution, and pressure gradient effects. These investigations included type of coupling that exists between turbulent boundary layer pressure fluctuations and dome wall structure of a typical sonar dome. Comparison of theoretical data with measured data onboard a ship are also reported.

  16. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    Science.gov (United States)

    Santos, José; Janeiro, Fernando M.; Ramos, Pedro M.

    2015-10-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed.

  17. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    International Nuclear Information System (INIS)

    Santos, José; Ramos, Pedro M; Janeiro, Fernando M

    2015-01-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed. (paper)

  18. Development of a phase-sensitive Fourier domain optical coherence tomography system to measure mouse organ of Corti vibrations in two cochlear turns

    Energy Technology Data Exchange (ETDEWEB)

    Ramamoorthy, Sripriya [Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon (United States); Zhang, Yuan; Jacques, Steven [Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon (United States); Petrie, Tracy; Wang, Ruikang [Department of Bioengineering, University of Washington, Seattle, Washington (United States); Nuttall, Alfred L. [Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon (United States); Kresge Hearing Research Institute, The University of Michigan, Ann Arbor, Michigan (United States)

    2015-12-31

    In this study, we have developed a phase-sensitive Fourier-domain optical coherence tomography system to simultaneously measure the in vivo inner ear vibrations in the hook area and second turn of the mouse cochlea. This technical development will enable measurement of intra-cochlear distortion products at ideal locations such as the distortion product generation site and reflection site. This information is necessary to un-mix the complex mixture of intra-cochlear waves comprising the DPOAE and thus leads to the non-invasive identification of the local region of cochlear damage.

  19. Two-phase cross-flow-induced forces acting on a circular cylinder

    International Nuclear Information System (INIS)

    Hara, F.

    1982-01-01

    This paper clarifies the characteristics of unsteady flow-induced lift and drag forces acting on a circular cylinder immersed perpendicular to a two-phase bubbly air-water flow, in conjunction with Karman vortex shedding and pressure fluctuations. Experimental results presented show that Karman vortex shedding disappears over a certain value of air concentration in the two-phase flow. Related to this disappearance, flow-induced forces are rather small and periodical in low air concentration but become very large and random in higher air concentration. 7 refs

  20. Vibrations in orthopedics.

    Science.gov (United States)

    Nokes, L D; Thorne, G C

    1988-01-01

    Measurements of various mechanical properties of skeletal