WorldWideScience

Sample records for flow separation location

  1. Simultaneous Multiple-Location Separation Control

    Science.gov (United States)

    Greenblatt, David (Inventor)

    2009-01-01

    A method of controlling a shear layer for a fluid dynamic body introduces first periodic disturbances into the fluid medium at a first flow separation location. Simultaneously, second periodic disturbances are introduced into the fluid medium at a second flow separation location. A phase difference between the first and second periodic disturbances is adjusted to control flow separation of the shear layer as the fluid medium moves over the fluid dynamic body.

  2. Separation of flow

    CERN Document Server

    Chang, Paul K

    2014-01-01

    Interdisciplinary and Advanced Topics in Science and Engineering, Volume 3: Separation of Flow presents the problem of the separation of fluid flow. This book provides information covering the fields of basic physical processes, analyses, and experiments concerning flow separation.Organized into 12 chapters, this volume begins with an overview of the flow separation on the body surface as discusses in various classical examples. This text then examines the analytical and experimental results of the laminar boundary layer of steady, two-dimensional flows in the subsonic speed range. Other chapt

  3. Separated Flow over Wind Turbines

    Science.gov (United States)

    Brown, David; Lewalle, Jacques

    2015-11-01

    The motion of the separation point on an airfoil under unsteady flow can affect its performance and longevity. Of interest is to understand and control the performance decrease in wind turbines subject to turbulent flow. We examine flow separation on an airfoil at a 19 degree angle of attack under unsteady flow conditions. We are using a DU-96-W180 airfoil of chord length 242 mm. The unsteadiness is generated by a cylinder with diameter 203 mm located 7 diameters upstream of the airfoil's leading edge. The data comes from twenty surface pressure sensors located on the top and bottom of the airfoil as well as on the upstream cylinder. Methods of analysis include Mexican hat transforms, Morlet wavelet transforms, power spectra, and various cross correlations. With this study I will explore how the differences of signals on the pressure and suction sides of an airfoil are related to the motion of the separation point.

  4. Microfluidic ultrasonic particle separators with engineered node locations and geometries

    Science.gov (United States)

    Rose, Klint A.; Fisher, Karl A.; Wajda, Douglas A.; Mariella, Jr., Raymond P.; Bailey, Christopher; Dehlinger, Dietrich; Shusteff, Maxim; Jung, Byoungsok; Ness, Kevin D.

    2016-04-26

    An ultrasonic microfluidic system includes a separation channel for conveying a sample fluid containing small particles and large particles, flowing substantially parallel, adjacent to a recovery fluid, with which it is in contact. An acoustic transducer produces an ultrasound standing wave, that generates a pressure field having at least one node of minimum pressure amplitude. An acoustic extension structure is located proximate to said separation channel for positioning said acoustic node off center in said acoustic area and concentrating the large particles in said recovery fluid stream.

  5. Composite separators and redox flow batteries based on porous separators

    Science.gov (United States)

    Li, Bin; Wei, Xiaoliang; Luo, Qingtao; Nie, Zimin; Wang, Wei; Sprenkle, Vincent L.

    2016-01-12

    Composite separators having a porous structure and including acid-stable, hydrophilic, inorganic particles enmeshed in a substantially fully fluorinated polyolefin matrix can be utilized in a number of applications. The inorganic particles can provide hydrophilic characteristics. The pores of the separator result in good selectivity and electrical conductivity. The fluorinated polymeric backbone can result in high chemical stability. Accordingly, one application of the composite separators is in redox flow batteries as low cost membranes. In such applications, the composite separator can also enable additional property-enhancing features compared to ion-exchange membranes. For example, simple capacity control can be achieved through hydraulic pressure by balancing the volumes of electrolyte on each side of the separator. While a porous separator can also allow for volume and pressure regulation, in RFBs that utilize corrosive and/or oxidizing compounds, the composite separators described herein are preferable for their robustness in the presence of such compounds.

  6. Flow-induced separation in wall turbulence.

    Science.gov (United States)

    Nguyen, Quoc; Srinivasan, Chiranth; Papavassiliou, Dimitrios V

    2015-03-01

    One of the defining characteristics of turbulence is its ability to promote mixing. We present here a case where the opposite happens-simulation results indicate that particles can separate near the wall of a turbulent channel flow, when they have sufficiently different Schmidt numbers without use of any other means. The physical mechanism of the separation is understood when the interplay between convection and diffusion, as expressed by their characteristic time scales, is considered, leading to the determination of the necessary conditions for a successful separation between particles. Practical applications of these results can be found when very small particles need to be separated or removed from a fluid.

  7. Moving after separation : The role of location-specific capital

    NARCIS (Netherlands)

    Mulder, Clara H.; Wagner, Michael

    2012-01-01

    This paper addresses the role of location-specific capital-the ties that bind people to a place-in which ex-partners of two-sex couples move after separation or divorce. The study uses data from the first and second waves of the Netherlands Kinship Panel Study (N = 361) to test hypotheses on the

  8. Gradient Flow Convolutive Blind Source Separation

    DEFF Research Database (Denmark)

    Pedersen, Michael Syskind; Nielsen, Chinton Møller

    2004-01-01

    Experiments have shown that the performance of instantaneous gradient flow beamforming by Cauwenberghs et al. is reduced significantly in reverberant conditions. By expanding the gradient flow principle to convolutive mixtures, separation in a reverberant environment is possible. By use...... of a circular four microphone array with a radius of 5 mm, and applying convolutive gradient flow instead of just applying instantaneous gradient flow, experimental results show an improvement of up to around 14 dB can be achieved for simulated impulse responses and up to around 10 dB for a hearing aid...

  9. Efficient Indoor Proximity and Separation Detection for Location Fingerprinting

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Treu, Georg; Ruppel, Peter

    2008-01-01

    the respective building topology. The approach applies efficient strategies to reduce the number of messages transmitted between the mobile targets and a central location server, thus saving the targets' battery power, bandwidth, and other resources. The strategies are evaluated in terms of efficiency......Detecting proximity and separation among mobile targets is a basic mechanism for many location-based services (LBSs) and requires continuous positioning and tracking. However, realizing both mechanisms for indoor usage is still a major challenge. Positioning methods like GPS cannot be applied there......, and for distance calculations the particular building topology has to be taken into account. To address these challenges, this paper presents a novel approach for indoor proximity and separation detection, which uses location fingerprinting for indoor positioning of targets and walking distances for modeling...

  10. Flow separation on wind turbines blades

    Science.gov (United States)

    Corten, G. P.

    2001-01-01

    separation line, which causes the terms with the chord-wise speed or accelerations to disappear. The conclusion is that the chord-wise pressure gradient balances the Coriolis force. By doing so we obtain a simple set of equations that can be solved analytically. Subsequently, our model predicts that the convective term with the radial velocity (vrvr/r) is dominant in the equation for the r-direction, precisely the term that was neglected in Snel's analysis. 3. Multiple Power Levels Several large commercial wind turbines demonstrate drops in maximum power levels up to 45%, under apparently equal conditions. Earlier studies attempting to explain this effect by technical malfunctioning, aerodynamic instabilities and blade contamination effects estimated with computational fluid dynamics, have not yet yielded a plausible result. We formulated many hypotheses, three of which were useful. By taking stall flag measurements and making two other crucial experiments, we could confirm one of those three hypotheses: the insect hypothesis. Insects only fly in low wind, impacting upon the blades at specific locations. In these conditions, the insectual remains are located at positions where roughness has little influence on the profile performance, so that the power is not affected. In high winds however, the flow around the blades has changed. As a result, the positions at which the insects have impacted at low winds are very sensitive to contamination. So the contamination level changes at low wind when insects fly and this level determines the power in high winds when insects do not fly. As a consequence we get discrete power levels in high winds. The other two hypotheses, which did not cause the multiple power levels for the case we studied, gave rise to two new insights. First, we expect the power to depend on the wind direction at sites where the shape of the terrain concentrates the wind. In this case the power level of all turbine types, including pitch regulated ones, will be

  11. Downstream Effects on Orbiter Leeside Flow Separation for Hypersonic Flows

    Science.gov (United States)

    Buck, Gregory M.; Pulsonetti, Maria V.; Weilmuenster, K. James

    2005-01-01

    Discrepancies between experiment and computation for shuttle leeside flow separation, which came to light in the Columbia accident investigation, are resolved. Tests were run in the Langley Research Center 20-Inch Hypersonic CF4 Tunnel with a baseline orbiter model and two extended trailing edge models. The extended trailing edges altered the wing leeside separation lines, moving the lines toward the fuselage, proving that wing trailing edge modeling does affect the orbiter leeside flow. Computations were then made with a wake grid. These calculations more closely matched baseline experiments. Thus, the present findings demonstrate that it is imperative to include the wake flow domain in CFD calculations in order to accurately predict leeside flow separation for hypersonic vehicles at high angles of attack.

  12. Tidal flow separation at protruding beach nourishments

    NARCIS (Netherlands)

    Radermacher, M.; de Schipper, M.A.; Swinkels, Cilia M.; MacMahan, Jamie; Reniers, A.J.H.M.

    2016-01-01

    In recent years, the application of large-scale beach nourishments has been discussed, with the Sand Motor in the Netherlands as the first real-world example. Such protruding beach nourishments have an impact on tidal currents, potentially leading to tidal flow separation and the generation of tidal

  13. Reynolds averaged simulation of unsteady separated flow

    International Nuclear Information System (INIS)

    Iaccarino, G.; Ooi, A.; Durbin, P.A.; Behnia, M.

    2003-01-01

    The accuracy of Reynolds averaged Navier-Stokes (RANS) turbulence models in predicting complex flows with separation is examined. The unsteady flow around square cylinder and over a wall-mounted cube are simulated and compared with experimental data. For the cube case, none of the previously published numerical predictions obtained by steady-state RANS produced a good match with experimental data. However, evidence exists that coherent vortex shedding occurs in this flow. Its presence demands unsteady RANS computation because the flow is not statistically stationary. The present study demonstrates that unsteady RANS does indeed predict periodic shedding, and leads to much better concurrence with available experimental data than has been achieved with steady computation

  14. Waves in separated two-phase flow

    International Nuclear Information System (INIS)

    Pols, R.M.

    1998-06-01

    across the wave front to the sides of the tube. In the modelling of the three-dimensional wave separate scales are defined relating to both the movement of liquid in axial direction and the movement of liquid in circumferential direction. On the basis of these scales the three-dimensional shallow water equations are simplified and are essentially decoupled in a first approximation. Providing the axial flow is simultaneously matched with an expression for the wave front the resulting system is shown to provide solutions for the bulk of the axial flow. The shape of the wave front is determined by the changes of the wave velocity across the wave front as a function of the liquid depth, similar to a shock wave moving in a tube. Results of the modelling are compared with experimental observations and discussed. In vertical annular flow the interfacial shear remains a significant feature acting to destabilise the interface which is characterised by finite amplitude disturbance waves. In this instance gravity acts perpendicular to the interface and it is the pressure of the gas flow which acts to restore those waves on the liquid film. An asymmetrical wave profile is sought by piecing together the solutions over the windward and leeward side of the wave. For periodic waves a matching solution is shown to be possible where the solutions for the windward and the leeward side of the wave are pieced together appropriately to ensure that mass and momentum are conserved. The model calculations of disturbance waves are compared with the observed behaviour of waves in vertical upward annular flow and in gas sheared falling films

  15. Synthetic Jet Interactions with Flows of Varying Separation Severity and Spanwise Flow Magnitude

    Science.gov (United States)

    Monastero, Marianne; Lindstrom, Annika; Amitay, Michael

    2017-11-01

    Flow physics associated with the interactions of synthetic jet actuators with a highly three-dimensional separated flow over a flapped airfoil were investigated experimentally and analyzed using stereo particle image velocimetry (SPIV) and surface pressure data. Increased understanding of active flow control devices in flows which are representative of airplane wings or tails can lead to actuator placement (i.e., chordwise location, spanwise spacing) with the greatest beneficial effect on performance. An array of discrete synthetic jets was located just upstream of the control surface hingeline and operated at a blowing ratio of 1 and non-dimensional frequency of 48. Detailed flowfield measurements over the control surface were conducted, where the airfoil's sweep angle and the control surface deflection angle were fixed at 20°. Focus was placed on the local and global flowfields as spanwise actuator spacing was varied. Moreover, surface pressure measurement for several sweep angles, control surface deflection angles, and angles of attack were also performed. Actuation resulted in an overall separation reduction and a dependence of local flowfield details (i.e. separation severity, spanwise flow magnitude, flow structures, and jet trajectory) on spanwise jet spacing. The Boeing Company.

  16. Physical mechanisms in shock-induced turbulent separated flow

    Science.gov (United States)

    Dolling, D. S.

    1987-12-01

    It has been demonstrated that the flow downstream of the moving shock is separated and that the foot of the shock is effectively the instantaneous separation point. The shock induced turbulent separation is an intermittant process and the separation line indicated by surface tracer methods, such as kerosene-lampblack, is a downstream boundary of a region of intermittent separation.

  17. Tracking coherent structures in massively-separated and turbulent flows

    Science.gov (United States)

    Rockwood, Matthew; Huang, Yangzi; Green, Melissa

    2018-01-01

    Coherent vortex structures are tracked in simulations of massively-separated and turbulent flows. Topological Lagrangian saddle points are found using intersections of the positive and negative finite-time Lyapunov exponent ridges, and these points are then followed in order to track individual coherent structure motion both in a complex interacting three-dimensional flow (turbulent channel) and during vortex formation (two-dimensional bluff body shedding). For a simulation of wall-bounded turbulence in a channel flow, tracking Lagrangian saddles shows that the average structure convection speed exhibits a similar trend as a previously published result based on velocity and pressure correlations, giving validity to the method. When this tracking method is applied in a study of a circular cylinder in cross-flow it shows that Lagrangian saddles rapidly accelerate away from the cylinder surface as the vortex sheds. This saddle behavior is compared with the time-resolved static pressure distribution on the circular cylinder, yielding locations on a cylinder surface where common sensors could detect this phenomenon, which is not available from force measurements or vortex circulation calculations. The current method of tracking coherent structures yields insight into the behavior of the coherent structures in both of the diverse flows presented, highlighting the breadth of its potential application.

  18. Flow visualization in models of high speed centrifugal separators

    International Nuclear Information System (INIS)

    Lagerstedt, T.; Nabo, O.

    1987-01-01

    The modern centrifugal separator is a fluid machine where the high ''G'' forces set up by rotation are utilized to separate phases of different densities. The fluid dynamics of the separator is complex and poorly known. Hundred years of (practical) experience has, however, turned the separator into an efficient machine. The present report shows how straight forward visualization experiments in model rigs provide valuable information on the flow inside the separator. The report concentrates on describing the flow between the closely spaced discs in a separator disc stack

  19. Obtaining location/arrival-time and location/outflow-quantity distributions for steady flow systems

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A steady, two-dimensional flow system is used to demonstrate the application of location/arrival-time and location/outflow-quantity curves in determining the environmental consequences of groundwater contamination. The subsurface geologic and hydrologic evaluations needed to obtain the arrival results involve a sequence of four phases: system identification, new potential determination, flow systems kinematics, and contaminant transport analysis. Once these phases are completed, they are effectively summarized and easily used to evaluate environmental consequences through the arrival distributions

  20. The Photospheric Flow near the Flare Locations of Active Regions

    Indian Academy of Sciences (India)

    tribpo

    in the active regions along with few locations of upflows. The localised upflows are observed in the light bridges and emerging flux regions with different speeds (Beckers & Schroter 1969). The flow patterns of flare locations in the active regions are observed by using the tower vector magnetograph (TVM) of Marshall.

  1. Effect of delta wing on the particle flow in a novel gas supersonic separator

    DEFF Research Database (Denmark)

    Wen, Chuang; Yang, Yan; Walther, Jens Honore

    2016-01-01

    The present work presents numerical simulations of the complex particle motion in a supersonic separator with a delta wing located in the supersonic flow. The effect of the delta wing on the strong swirling flow is analysed using the Discrete Particle Method. The results show that the delta wings...

  2. Computation of subsonic flow around airfoil systems with multiple separation

    Science.gov (United States)

    Jacob, K.

    1982-01-01

    A numerical method for computing the subsonic flow around multi-element airfoil systems was developed, allowing for flow separation at one or more elements. Besides multiple rear separation also sort bubbles on the upper surface and cove bubbles can approximately be taken into account. Also, compressibility effects for pure subsonic flow are approximately accounted for. After presentation the method is applied to several examples and improved in some details. Finally, the present limitations and desirable extensions are discussed.

  3. Topology of Flow Separation on Three-Dimensional Bodies

    Science.gov (United States)

    Chapman, Gary T.; Yates, Leslie A.

    1991-01-01

    In recent years there has been extensive research on three-dimensional flow separation. There are two different approaches: the phenomenological approach and a mathematical approach using topology. These two approaches are reviewed briefly and the shortcomings of some of the past works are discussed. A comprehensive approach applicable to incompressible and compressible steady-state flows as well as incompressible unsteady flow is then presented. The approach is similar to earlier topological approaches to separation but is more complete and in some cases adds more emphasis to certain points than in the past. To assist in the classification of various types of flow, nomenclature is introduced to describe the skin-friction portraits on the surface. This method of classification is then demonstrated on several categories of flow to illustrate particular points as well as the diversity of flow separation. The categories include attached, two-dimensional separation and three different types of simple, three-dimensional primary separation, secondary separation, and compound separation. Hypothetical experiments are utilized to illustrate the topological terminology and its role in characterizing these flows. These hypothetical experiments use colored oil injected onto the surface at singular points in the skin-friction portrait. Actual flow-visualization information, if available, is used to corroborate the hypothetical examples.

  4. 5th International Conference on Jets, Wakes and Separated Flows

    CERN Document Server

    2016-01-01

    This volume collects various contributions from the 5th International Conference on Jets, Wakes and Separated Flows (ICJWSF2015) that took place in Stockholm during June 2015. Researchers from all around the world presented their latest results concerning fundamental and applied aspects of fluid dynamics. With its general character, the conference embraced many aspects of fluid dynamics, such as shear flows, multiphase flows and vortex flows, for instance. The structure of the present book reflects the variety of topics treated within the conference i.e. Jets, Wakes, Separated flows, Vehicle aerodynamics, Wall-bounded and confined flows, Noise, Turbomachinery flows, Multiphase and reacting flows, Vortex dynamics, Energy-related flows and a section dedicated to Numerical analyses.

  5. Acoustic bubble enhanced pinched flow fractionation for microparticle separation

    International Nuclear Information System (INIS)

    Zhou, Ran; Wang, Cheng

    2015-01-01

    Pinched flow fractionation is a simple method for separating micron-sized particles by size, but has certain intrinsic limitations, e.g. requirement of a pinched segment similar to particle size and limited separation distance. In this paper, we developed an acoustic bubble enhanced pinched flow fractionation (PFF) method for microparticle separation. The proposed technique utilized microbubble streaming flows to overcome the limitations of conventional PFF. Our device has demonstrated separation of different sized microparticles (diameters 10 and 2 μm) with a larger pinched segment (60 μm) and at different buffer/particle solution flow rate ratios (5–25). The separation distances between particles are larger (as much as twice as large) than those achieved with conventional PFF. In addition, the separation position and distance can be adjusted by changing the driving voltage. The robust performance is due to the unique features of the flow field inside the pinched segment. We investigated several factors, including flow rate ratio, total flow rate and driving voltage, that affect the separation performance. (paper)

  6. Turbulence Modeling of Flows with Extensive Crossflow Separation

    Directory of Open Access Journals (Sweden)

    Argyris G. Panaras

    2015-07-01

    Full Text Available The reasons for the difficulty in simulating accurately strong 3-D shock wave/turbulent boundary layer interactions (SBLIs and high-alpha flows with classical turbulence models are investigated. These flows are characterized by the appearance of strong crossflow separation. In view of recent additional evidence, a previously published flow analysis, which attributes the poor performance of classical turbulence models to the observed laminarization of the separation domain, is reexamined. According to this analysis, the longitudinal vortices into which the separated boundary layer rolls up in this type of separated flow, transfer external inviscid air into the part of the separation adjacent to the wall, decreasing its turbulence. It is demonstrated that linear models based on the Boussinesq equation provide solutions of moderate accuracy, while non-linear ones and others that consider the particular structure of the flow are more efficient. Published and new Reynolds Averaged Navier–Stokes (RANS simulations are reviewed, as well as results from a recent Large Eddy Simulation (LES study, which indicate that in calculations characterized by sufficient accuracy the turbulent kinetic energy of the reverse flow inside the separation vortices is very low, i.e., the flow is almost laminar there.

  7. Higher-order RANS turbulence models for separated flows

    Data.gov (United States)

    National Aeronautics and Space Administration — Higher-order Reynolds-averaged Navier-Stokes (RANS) models are developed to overcome the shortcomings of second-moment RANS models in predicting separated flows....

  8. International Conference on Instability and Control of Massively Separated Flows

    CERN Document Server

    Soria, Julio

    2015-01-01

    This book contains the outcome of the international meeting on instability, control and noise generated by massive flow separation that was organized at the Monash Center, in Prato, Italy, September 4-6, 2013. The meeting served as the final review of the EU-FP7 Instability and Control of Massively Separated Flows Marie Curie travel grant and was supported by the European Office of Aerospace Research and Development. Fifty leading specialists from twelve countries reviewed the progress made since the 50s of the last century and discussed modern analysis techniques, advanced experimental flow diagnostics, and recent developments in active flow control techniques from the incompressible to the hypersonic regime. Applications involving massive flow separation and associated instability and noise generation mechanisms of interest to the aeronautical, naval and automotive industries have been addressed from a theoretical, numerical or experimental point of view, making this book a unique source containing the stat...

  9. Heat Transfer Enhancement in Separated and Vortex Flows

    Energy Technology Data Exchange (ETDEWEB)

    Richard J. Goldstein

    2004-05-27

    This document summarizes the research performance done at the Heat Transfer Laboratory of the University of Minnesota on heat transfer and energy separation in separated and vortex flow supported by DOE in the period September 1, 1998--August 31, 2003. Unsteady and complicated flow structures in separated or vortex flows are the main reason for a poor understanding of heat transfer under such conditions. The research from the University of Minnesota focused on the following important aspects of understanding such flows: (1) Heat/mass transfer from a circular cylinder; (2) study of energy separation and heat transfer in free jet flows and shear layers; and (3) study of energy separation on the surface and in the wake of a cylinder in crossflow. The current study used three different experimental setups to accomplish these goals. A wind tunnel and a liquid tunnel using water and mixtures of ethylene glycol and water, is used for the study of prandtl number effect with uniform heat flux from the circular cylinder. A high velocity air jet is used to study energy separation in free jets. A high speed wind tunnel, same as used for the first part, is utilized for energy separation effects on the surface and in the wake of the circular cylinder. The final outcome of this study is a substantial advancement in this research area.

  10. Geometrical effects on the airfoil flow separation and transition

    KAUST Repository

    Zhang, Wei; Cheng, Wan; Gao, Wei; Qamar, Adnan; Samtaney, Ravi

    2015-01-01

    We present results from direct numerical simulations (DNS) of incompressible flow over two airfoils, NACA-4412 and NACA-0012-64, to investigate the effects of the airfoil geometry on the flow separation and transition patterns at Re=104 and 10

  11. Smoothed particle hydrodynamics simulations of flow separation at bends

    NARCIS (Netherlands)

    Hou, Q.; Kruisbrink, A.C.H.; Pearce, F.R.; Tijsseling, A.S.; Yue, T.

    2014-01-01

    The separated flow in two-dimensional bends is numerically simulated for a right-angled bend with different ratios of the channel widths and for a symmetric bend with different turning angles. Unlike the potential flow solutions that have several restrictive assumptions, the Euler equations are

  12. Smoothed particle hydrodynamics simulations of flow separation at bends

    NARCIS (Netherlands)

    Hou, Q.; Kruisbrink, A.C.H.; Pearce, F.R.; Tijsseling, A.S.; Yue, T.

    2013-01-01

    The separated flow in two-dimensional bends is numerically simulated for a right-angled bend with different ratios of the channel widths and for a symmetric bend with different turning angles. Unlike the potential flow solutions that have several restrictive assumptions, the Euler equations are

  13. Groundwater Flow Model of the General Separations Area Using PORFLOW

    International Nuclear Information System (INIS)

    FLACH, GREGORY

    2004-01-01

    The E Area PA (McDowell-Boyer et al. 2000) includes a steady-state simulation of groundwater flow in the General Separations Area as a prerequisite for saturated zone contaminant transport analyses. The groundwater flow simulations are based on the FACT code (Hamm and Aleman2000). The FACT-based GSA model was selected during preparation of the original PA to take advantage of an existing model developed for environmental restoration applications at the SRS (Flach and Harris 1997, 1999; Flach 1999). The existing GSA/FACT model was then slightly modified for PA use, as described in the PA document. FACT is a finite-element code utilizing deformed brick elements. Material properties are defined at element centers, and state variables such as hydraulic head are located at element vertices. The PORFLOW code (Analytic and Computational Research, Inc. 2000) was selected for performing saturated zone transport simulations of source zone radionuclides and their progeny. PORFLOW utilizes control volume discretization and the nodal point integration method, with all properties and state variables being defined at the center of an interior grid cell. The groundwater flow calculation includes translating the Darcy velocity field computed by FACT into a form compatible for input to PORFLOW. The FACT velocity field is defined at element vertices, whereas PORFLOW requires flux across cell faces. For the present PA, PORFLOW cell face flux is computed in a two-step process. An initial face flux is computed from FACT as an average of the normal components of Darcy velocity at the four corners. The derived flux field approximately conserves mass, but not rigorously. Thus, the flux field is subsequently perturbed to force rigorous mass conservation on a cell-by-cell basis. The undocumented process used is non-unique and can introduce significant artifacts into the final flux field

  14. A Theory of Material Spike Formation in Flow Separation

    Science.gov (United States)

    Serra, Mattia; Haller, George

    2017-11-01

    We develop a frame-invariant theory of material spike formation during flow separation over a no-slip boundary in two-dimensional flows with arbitrary time dependence. This theory identifies both fixed and moving separation, is effective also over short-time intervals, and admits a rigorous instantaneous limit. Our theory is based on topological properties of material lines, combining objectively stretching- and rotation-based kinematic quantities. The separation profile identified here serves as the theoretical backbone for the material spike from its birth to its fully developed shape, and remains hidden to existing approaches. Finally, our theory can be used to rigorously explain the perception of off-wall separation in unsteady flows, and more importantly, provide the conditions under which such a perception is justified. We illustrate our results in several examples including steady, time-periodic and unsteady analytic velocity fields with flat and curved boundaries, and an experimental dataset.

  15. Passive Flap Actuation by Reversing Flow in Laminar Boundary Layer Separation

    Science.gov (United States)

    Parsons, Chase; Lang, Amy; Santos, Leo; Bonacci, Andrew

    2017-11-01

    Reducing the flow separation is of great interest in the field of fluid mechanics in order to reduce drag and improve the overall efficiency of aircraft. This project seeks to investigate passive flow control using shark inspired microflaps in laminar boundary layer separation. This study aims to show that whether a flow is laminar or turbulent, laminar and 2D or turbulent and 3D, microflaps actuated by reversing flow is a robust means of controlling flow separation. In order to generate a controlled adverse pressure gradient, a rotating cylinder induces separation at a chosen location on a flat plate boundary layer with Re above 10000. Within this thick boundary layer, digital particle image velocimetry is used to map the flow. This research can be used in the future to better understand the nature of the bristling shark scales and its ability to passively control separation. Results show that microflaps successfully actuated due to backflow and that this altered the formation of flow separation. I would like to thank the NSF for REU Grant EEC 1659710 and the Army Research Office for funding this project.

  16. Continuous-flow sheathless diamagnetic particle separation in ferrofluids

    International Nuclear Information System (INIS)

    Zhou, Yilong; Song, Le; Yu, Liandong; Xuan, Xiangchun

    2016-01-01

    Separating particles from a complex mixture is often necessary in many chemical and biomedical applications. This work presents a continuous-flow sheathless diamagnetic particle separation in ferrofluids through U-shaped microchannels. Due to the action of a size-dependent magnetic force, diamagnetic particles are focused into a single stream in the inlet branch of the U-turn and then continuously separated into two streams in its outlet branch. A 3D numerical model is developed to predict and understand the diamagnetic particle transport during this separation process. The numerical predictions are found to agree well with the experimental observations in a systematic study of the effects of multiple parameters including ferrofluid flow rate, concentration and magnet-channel distance. Additional numerical studies of the geometric effects of the U-turn reveal that increasing the outlet-branch width of the U-turn can significantly enhance the diamagnetic particle separation in ferrofluids. - Highlights: • Particles are focused and separated in the two branches of a U-shaped microchannel. • Negative magnetophoretic motion in ferrofluids causes the particle deflection. • A 3D numerical model is developed to simulate the particle separation. • Multiple parametric effects are studied both experimentally and numerically. • Increasing the outlet-branch width significantly enhances the particle separation.

  17. Continuous-flow sheathless diamagnetic particle separation in ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yilong [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921 (United States); Song, Le [School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei 230009 (China); Yu, Liandong, E-mail: liandongyu@hfut.edu.cn [School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei 230009 (China); Xuan, Xiangchun, E-mail: xcxuan@clemson.edu [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921 (United States)

    2016-08-15

    Separating particles from a complex mixture is often necessary in many chemical and biomedical applications. This work presents a continuous-flow sheathless diamagnetic particle separation in ferrofluids through U-shaped microchannels. Due to the action of a size-dependent magnetic force, diamagnetic particles are focused into a single stream in the inlet branch of the U-turn and then continuously separated into two streams in its outlet branch. A 3D numerical model is developed to predict and understand the diamagnetic particle transport during this separation process. The numerical predictions are found to agree well with the experimental observations in a systematic study of the effects of multiple parameters including ferrofluid flow rate, concentration and magnet-channel distance. Additional numerical studies of the geometric effects of the U-turn reveal that increasing the outlet-branch width of the U-turn can significantly enhance the diamagnetic particle separation in ferrofluids. - Highlights: • Particles are focused and separated in the two branches of a U-shaped microchannel. • Negative magnetophoretic motion in ferrofluids causes the particle deflection. • A 3D numerical model is developed to simulate the particle separation. • Multiple parametric effects are studied both experimentally and numerically. • Increasing the outlet-branch width significantly enhances the particle separation.

  18. METHOD FOR NUMERICAL MODELING OF UNSTEADY SEPARATED FLOW AROUND AIRFOILS MOVING CLOSE TO FLAT SCREEN

    Directory of Open Access Journals (Sweden)

    V. Pogrebnaya Tamara

    2017-01-01

    Full Text Available In this article an attempt is made to explain the nature of differences in measurements of forces and moments, which influence an aircraft at take-off and landing when testing on different types of stands. An algorithm for numerical simulation of unsteady separated flow around airfoil is given. The algorithm is based on the combination of discrete vortex method and turbulent boundary layer equations. An unsteady flow separation modeling has been used. At each interval vortex method was used to calculate the potential flow around airfoils located near a screen. Calculated pressures and velocities were then used in boundary layer calculations to determine flow separation points and separated vortex in- tensities. After that calculation were made to determine free vortex positions to next time step and the process was fulfilled for next time step. The proposed algorithm allows using numeric visualization to understand physical picture of flow around airfoil moving close to screen. Three different ways of flow modeling (mirror method, fixed or movable screens were tested. In each case the flow separation process, which determines pressure distribution over airfoil surface and influ- ences aerodynamic performance, was viewed. The results of the calculations showed that at low atitudes of airfoil over screen mirror method over predicts lift force compared with movable screen, while fixed screen under predicts it. The data obtained can be used when designing equipment for testing in wind tunnels.

  19. Flow and separation in gas centrifuge with Beams type circulation

    International Nuclear Information System (INIS)

    Ajsen, Eh.M.; Borisevich, V.D.; Levin, E.V.

    1992-01-01

    Structure of the secondary circulation flows in the working chamber of gas centrifuge for uranium isotope separation is studied using the numerical methods. Influence of the circulation thermal component on the centrifuge efficiency is analyzed. The contribution of useful component concentration difference of binary isotope mixture in feeding flows to the centrifuge efficiency is determined. Dependence of concentration optimal difference, whereby the maximum efficiency is achieved, on temperature distribution on the rotor side wall is found

  20. Turbulent Flow Modification With Thermoacoustic Waves for Separation Control

    Science.gov (United States)

    2017-08-24

    respectively. At the outlet, the time-average flow is set to be the target state of the sponge zone. In this section, the effects of momentum thickness...Turbulent Flow Modification With Thermoacoustic Waves For Separation Control The views, opinions and/or findings contained in this report are those...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Florida State University Sponsored Research Administration 874

  1. Prediction of Separation Length of Turbulent Multiphase Flow Using Radiotracer and Computational Fluid Dynamics Simulation

    International Nuclear Information System (INIS)

    Sugiharto, S.; Kurniadi, R.; Abidin, Z.; Stegowski, Z.; Furman, L.

    2013-01-01

    Multiphase flow modeling presents great challenges due to its extreme importance in various industrial and environmental applications. In the present study, prediction of separation length of multiphase flow is examined experimentally by injection of two kinds of iodine-based radiotracer solutions into a hydrocarbon transport pipeline (HCT) having an inner diameter of 24 in (60,96 m). The main components of fluids in the pipeline are water 95%, crude oil 3% and gas 2%. A radiotracing experiment was carried out at the segment of pipe which is located far from branch points with assumptions that stratified flows in such segment were achieved. Two radiation detectors located at 80 and 100 m from injection point were used to generate residence time distribution (RTD) curve resulting from injection of radiotracer solutions. Multiphase computational fluid dynamics (CFD) simulations using Eulerian-Eulerian control volume and commercial CFD package Fluent 6.2 were employed to simulate separation length of multiphase flow. The results of study shows that the flow velocity of water is higher than the flow rate of crude oil in water-dominated system despite the higher density of water than the density of the crude oil. The separation length in multiphase flow predicted by Fluent mixture model is approximately 20 m, measured from injection point. This result confirms that the placement of the first radiation detector at the distance 80 m from the injection point was correct. (author)

  2. Prediction of Separation Length of Turbulent Multiphase Flow Using Radiotracer and Computational Fluid Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    S. Sugiharto1

    2013-04-01

    Full Text Available Multiphase flow modeling presents great challenges due to its extreme importance in various industrial and environmental applications. In the present study, prediction of separation length of multiphase flow is examined experimentally by injection of two kinds of iodine-based radiotracer solutions into a hydrocarbon transport pipeline (HCT having an inner diameter of 24 in (60,96 m. The main components of fluids in the pipeline are water 95%, crude oil 3% and gas 2%. A radiotracing experiment was carried out at the segment of pipe which is located far from branch points with assumptions that stratified flows in such segment were achieved. Two radiation detectors located at 80 and 100 m from injection point were used to generate residence time distribution (RTD curve resulting from injection of radiotracer solutions. Multiphase computational fluid dynamics (CFD simulations using Eulerian-Eulerian control volume and commercial CFD package Fluent 6.2 were employed to simulate separation length of multiphase flow. The results of study shows that the flow velocity of water is higher than the flow rate of crude oil in water-dominated system despite the higher density of water than the density of the crude oil. The separation length in multiphase flow predicted by Fluent mixture model is approximately 20 m, measured from injection point. This result confirms that the placement of the first radiation detector at the distance 80 m from the injection point was correct

  3. Identifiability of location and magnitude of flow barriers in slightly compressible flow

    NARCIS (Netherlands)

    Kahrobaei, S.; Mansoori Habib Abadi, M.; Joosten, G.J.P.; Hof, Van den P.M.J.; Jansen, J.D.

    2015-01-01

    Classic identifiability analysis of flow barriers in incompressible single-phase flow reveals that it is not possible to identify the location and permeability of low-permeability barriers from production data (wellbore pressures and rates), and that only averaged reservoir properties in between

  4. Identifiability of location and magnitude of flow barriers in slightly compressible flow

    NARCIS (Netherlands)

    Kahrobaei, S.; Mansoori Habib Abadi, M.; Joosten, G.J.P.; Van den Hof, P.; Jansen, J.D.

    2016-01-01

    Classic identifiability analysis of flow barriers in incompressible single-phase flow reveals that it is not possible to identify the location and permeability of low-permeability barriers from production data (wellbore pressures and rates), and that only averaged reservoir properties in between

  5. General Separations Area (GSA) Groundwater Flow Model Update: Hydrostratigraphic Data

    Energy Technology Data Exchange (ETDEWEB)

    Bagwell, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bennett, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-02-21

    This document describes the assembly, selection, and interpretation of hydrostratigraphic data for input to an updated groundwater flow model for the General Separations Area (GSA; Figure 1) at the Department of Energy’s (DOE) Savannah River Site (SRS). This report is one of several discrete but interrelated tasks that support development of an updated groundwater model (Bagwell and Flach, 2016).

  6. Measurement of flow separation in a human vocal folds model

    Czech Academy of Sciences Publication Activity Database

    Šidlof, Petr; Doaré, O.; Cadot, O.; Chaigne, A.

    2011-01-01

    Roč. 51, č. 1 (2011), s. 123-136 ISSN 0723-4864 R&D Projects: GA AV ČR KJB200760801 Institutional research plan: CEZ:AV0Z20760514 Keywords : vocal folds * flow separation * physical model Subject RIV: BI - Acoustics Impact factor: 1.735, year: 2011 http://www.springerlink.com/content/t81114611760jp23/

  7. Diffusive separation of particles by diffusion in swirled turbulent flows

    International Nuclear Information System (INIS)

    Arbuzov, V.N.; Shiliaev, M.I.

    1984-01-01

    An analysis of the dynamics of turbulent flow and diffusive separation of solid particles in a centrifugal air separator (consisting of two flat disks rotating at the same angular velocity) is presented. A closed set of balances for all the components of the tensor of turbulent stresses, extended to the entire flow region, is employed in the numerical analysis of transition and turbulent air flows between the rotating disks. The analytical relationships obtained for the case of the mixed flow for the various components of the average velocity, energy of fluctuations, and turbulence level in the circumferential direction agreed well with the theoretical and experimental distributions of Bakke, et al. (1973). It is shown that at high Reynolds numbers the flow is isotropic, the dependence of the circumferential component of the average velocity obeys a power law, and the generation of the radial component is controlled by the local centrifugal field. The sharpness of particle separation was calculated by the eddy diffusion equation and was found to depend on the geometry and the operating conditions. 8 references

  8. Geometrical effects on the airfoil flow separation and transition

    KAUST Repository

    Zhang, Wei

    2015-04-25

    We present results from direct numerical simulations (DNS) of incompressible flow over two airfoils, NACA-4412 and NACA-0012-64, to investigate the effects of the airfoil geometry on the flow separation and transition patterns at Re=104 and 10 degrees incidence. The two chosen airfoils are geometrically similar except for maximum camber (respectively 4%C and 0 with C the chord length), which results in a larger projection area with respect to the incoming flow for the NACA-4412 airfoil, and a larger leeward surface curvature at the leading edge for the NACA-0012-64 airfoil. The governing equations are discretized using an energy conservative fourth-order spatial discretization scheme. An assessment on the two-point correlation indicates that a spanwise domain size of 0.8C is sufficiently large for the present simulations. We discuss flow separation at the airfoil leading edge, transition of the separated shear layer to three-dimensional flow and subsequently to turbulence. Numerical results reveal a stronger adverse pressure gradient field in the leading edge region of the NACA-0012-64 airfoil due to the rapidly varying surface curvature. As a result, the flow experiences detachment at x/C=0.08, and the separated shear layer transition via Kelvin-Helmholtz mechanism occurs at x/C=0.29 with fully developed turbulent flow around x/C=0.80. These flow development phases are delayed to occur at much downstream positions, respectively, observed around x/C=0.25, 0.71 and 1.15 for the NACA-4412 airfoil. The turbulent intensity, measured by the turbulent fluctuations and turbulent Reynolds stresses, are much larger for NACA-0012-64 from the transition onset until the airfoil trailing edge, while turbulence develops significantly downstream of the trailing edge for the NACA-4412 airfoil. For both airfoils, our DNS results indicate that the mean Reynolds stress u\\'u\\'/U02 reaches its maximum value at a distance from the surface approximately equal to the displacement

  9. Dynein Transmits Polarized Actomyosin Cortical Flows to Promote Centrosome Separation

    Directory of Open Access Journals (Sweden)

    Alessandro De Simone

    2016-03-01

    Full Text Available The two centrosomes present at the onset of mitosis must separate in a timely and accurate fashion to ensure proper bipolar spindle assembly. The minus-end-directed motor dynein plays a pivotal role in centrosome separation, but the underlying mechanisms remain elusive, particularly regarding how dynein coordinates this process in space and time. We addressed these questions in the one-cell C. elegans embryo, using a combination of 3D time-lapse microscopy and computational modeling. Our analysis reveals that centrosome separation is powered by the joint action of dynein at the nuclear envelope and at the cell cortex. Strikingly, we demonstrate that dynein at the cell cortex acts as a force-transmitting device that harnesses polarized actomyosin cortical flows initiated by the centrosomes earlier in the cell cycle. This mechanism elegantly couples cell polarization with centrosome separation, thus ensuring faithful cell division.

  10. Management of Energy Flows in Low-temperature Separation Units

    Directory of Open Access Journals (Sweden)

    Trishyn F.A.

    2018-04-01

    Full Text Available . The aim of this work is to study the effect of medium and low power ultrasound on the crystallization and separation processes. A thesis about the importance of using thermal energy converters in separation units has been suggested. The prospects of desalination freezing units and ways of their improvement have been justified. Based on the system analysis, the energy flows in an ice recycling facility have been considered. For the first time, the overall energy efficiency estimation technique based on the hypothesis of direct and reverse energy flows has been proposed. The new results on the effect of ultrasonic fields on the separation and crystallization process have been obtained. It has been proved that the use of ultrasonic field is effective in controlling the energy flows during block freezing. It has been established that the salt content in the ice block is reduced by 2-3 times. The relationship between the ice block separation kinetics and the power and frequency has been determined. The similarity theory methods have been used to summarize the experimental data obtained. The criterion models have been presented to calculate the block porosity and the filtration rate. It has been established that the Euler wavenumber modified by the authors successfully generalizes the databases of the experimental findings. Using the numerical simulation methods, the thermal field in the block which depends on its porosity has been established. The results of the simulation have been presented in the form of a nomogram.

  11. Integral methods for shallow free-surface flows with separation

    DEFF Research Database (Denmark)

    Watanabe, S.; Putkaradze, V.; Bohr, Tomas

    2003-01-01

    eddy and separated flow. Assuming a variable radial velocity profile as in Karman-Pohlhausen's method, we obtain a system of two ordinary differential equations for stationary states that can smoothly go through the jump. Solutions of the system are in good agreement with experiments. For the flow down...... an inclined plane we take a similar approach and derive a simple model in which the velocity profile is not restricted to a parabolic or self-similar form. Two types of solutions with large surface distortions are found: solitary, kink-like propagating fronts, obtained when the flow rate is suddenly changed......, and stationary jumps, obtained, for instance, behind a sluice gate. We then include time dependence in the model to study the stability of these waves. This allows us to distinguish between sub- and supercritical flows by calculating dispersion relations for wavelengths of the order of the width of the layer....

  12. Engineered bio-inspired coating for reduction of flow separation

    Science.gov (United States)

    Bocanegra Evans, Humberto; Hamed, Ali M.; Gorumlu, Serdar; Doosttalab, Ali; Aksak, Burak; Chamorro, Leonardo P.; Castillo, Luciano

    2017-11-01

    Flow control using passive strategies has received notable attention in the last decades as a way to increase mixing and reduce skin drag, among others. Here, we present a bio-inspired coating, composed by uniformly distributed pillars with diverging tips, that is able to reduce the recirculation region in highly separated flows. This is demonstrated with laboratory experiments in a refractive index-matching flume at Reynolds number Reθ 1200 . The flow over an expanding channel following a S835 wing section was characterized with the coating and with smooth walls. High-resolution, wall-normal particle image velocimetry show a significant reduction of the reversed flow with the coating, where the region with reverse flow was reduced by 60 % . The performance of the micro-scale coating is surprising since the size of the fibers are nearly coincident with the viscous length scale (k+ 1). Additionally, the flow control properties of the surface do not depend on hydrophobicity, giving the coating the capability to work in both air and water media.

  13. Separation of cancer cells using vortical microfluidic flows.

    Science.gov (United States)

    Haddadi, Hamed; Naghsh-Nilchi, Hamed; Di Carlo, Dino

    2018-01-01

    Label-free separation of viable cancer cells using vortical microfluidic flows has been introduced as a feasible cell collection method in oncological studies. Besides the clinical importance, the physics of particle interactions with the vortex that forms in a wall-confined geometry of a microchannel is a relatively new area of fluid dynamics. In our previous work [Haddadi and Di Carlo, J. Fluid. Mech. 811 , 436-467 (2017)], we have introduced distinct aspects of inertial flow of dilute suspensions over cavities in a microchannel such as breakdown of the separatrix and formation of stable limit cycle orbits for finite size polystyrene particles. In this work, we extend our experiments to address the engineering-physics of cancer cell entrapment in microfluidic cavities. We begin by studying the effects of the channel width and device height on the morphology of the vortex, which has not been discussed in our previous work. The stable limit cycle orbits of finite size cancer cells are then presented. We demonstrate effects of the separatrix breakdown and the limit cycle formation on the operation of the cancer cell separation platform. By studying the flow of dilute cell suspensions over the cavities, we further develop the notion of the cavity capacity and the relative rate of cell accumulation as optimization criteria which connect the device geometry with the flow. Finally, we discuss the proper placement of multiple cavities inside a microchannel for improved cell entrapment.

  14. Separation flow control on a generic ground vehicle using steady microjet arrays

    Energy Technology Data Exchange (ETDEWEB)

    Aubrun, Sandrine; Kourta, Azeddine [Universite d' Orleans, Laboratoire PRISME, Orleans cedex (France); McNally, Jonathan; Alvi, Farrukh [Florida State University, FAMU-FSU College of Engineering, Tallahassee, FL (United States)

    2011-11-15

    A model of a generic vehicle shape, the Ahmed body with a 25 slant, is equipped with an array of blowing steady microjets 6 mm downstream of the separation line between the roof and the slanted rear window. The goal of the present study is to evaluate the effectiveness of this actuation method in reducing the aerodynamic drag, by reducing or suppressing the 3D closed separation bubble located on the slanted surface. The efficiency of this control approach is quantified with the help of aerodynamic load measurements. The changes in the flow field when control is applied are examined using PIV and wall pressure measurements and skin friction visualisations. By activating the steady microjet array, the drag coefficient was reduced by 9-14% and the lift coefficient up to 42%, depending on the Reynolds number. The strong modification of the flow topology under progressive flow control is particularly studied. (orig.)

  15. Nanoparticle separation with a miniaturized asymmetrical flow field-flow fractionation cartridge

    Science.gov (United States)

    Müller, David; Cattaneo, Stefano; Meier, Florian; Welz, Roland; deMello, Andrew

    2015-07-01

    Asymmetrical Flow Field-Flow Fractionation (AF4) is a separation technique applicable to particles over a wide size range. Despite the many advantages of AF4, its adoption in routine particle analysis is somewhat limited by the large footprint of currently available separation cartridges, extended analysis times and significant solvent consumption. To address these issues, we describe the fabrication and characterization of miniaturized AF4 cartridges. Key features of the scale-down platform include simplified cartridge and reagent handling, reduced analysis costs and higher throughput capacities. The separation performance of the miniaturized cartridge is assessed using certified gold and silver nanoparticle standards. Analysis of gold nanoparticle populations indicates shorter analysis times and increased sensitivity compared to conventional AF4 separation schemes. Moreover, nanoparticulate titanium dioxide populations exhibiting broad size distributions are analyzed in a rapid and efficient manner. Finally, the repeatability and reproducibility of the miniaturized platform are investigated with respect to analysis time and separation efficiency.

  16. Active Flow Control and Global Stability Analysis of Separated Flow Over a NACA 0012 Airfoil

    Science.gov (United States)

    Munday, Phillip M.

    The objective of this computational study is to examine and quantify the influence of fundamental flow control inputs in suppressing flow separation over a canonical airfoil. Most flow control studies to this date have relied on the development of actuator technology, and described the control input based on specific actuators. Taking advantage of a computational framework, we generalize the inputs to fundamental perturbations without restricting inputs to a particular actuator. Utilizing this viewpoint, generalized control inputs aim to aid in the quantification and support the design of separation control techniques. This study in particular independently introduces wall-normal momentum and angular momentum to the separated flow using swirling jets through model boundary conditions. The response of the flow field and the surface vorticity fluxes to various combinations of actuation inputs are examined in detail. By closely studying different variables, the influence of the wall-normal and angular momentum injections on separated flow is identified. As an example, open-loop control of fully separated, incompressible flow over a NACA 0012 airfoil at alpha = 6° and 9° with Re = 23,000 is examined with large-eddy simulations. For the shallow angle of attack alpha = 6°, the small recirculation region is primarily affected by wall-normal momentum injection. For a larger separation region at alpha = 9°, it is observed that the addition of angular momentum input to wall-normal momentum injection enhances the suppression of flow separation. Reducing the size of the separated flow region significantly impacts the forces, and in particular reduces drag and increases lift on the airfoil. It was found that the influence of flow control on the small recirculation region (alpha = 6°) can be sufficiently quantified with the traditional coefficient of momentum. At alpha = 9°, the effects of wall-normal and angular momentum inputs are captured by modifying the standard

  17. Osmotically driven flows in microchannels separated by a semipermeable membrane

    DEFF Research Database (Denmark)

    Jensen, Kåre Hartvig; Lee, J.; Bohr, Tomas

    2009-01-01

    We have fabricated lab-on-a-chip systems with microchannels separated by integrated membranes allowing for osmotically driven microflows. We have investigated these flows experimentally by studying the dynamics and structure of the front of a sugar solution travelling in 200 mu m wide and 50-200 mu...... m deep microchannels. We find that the sugar front travels at a constant speed, and that this speed is proportional to the concentration of the sugar solution and inversely proportional to the depth of the channel. We propose a theoretical model, which, in the limit of low axial flow resistance......, predicts that the sugar front should indeed travel with a constant velocity. The model also predicts an inverse relationship between the depth of the channel and the speed, and a linear relation between the sugar concentration and the speed. We thus find good qualitative agreement between the experimental...

  18. Upper internals of PWR with coolant flow separator

    International Nuclear Information System (INIS)

    Chevereau, G.; Heuze, A.

    1989-01-01

    The upper internals for a PWR has a collecting volume for the coolant merging from the core and an apparatus for separating the flow of coolant. This apparatus has a guide for the control rods, a lower plate perforated to allow the coolant through from the core, an upper plate also perforated to allow the coolant through to the collecting volume and a peripheral binding ring joining the two plates. Each guide comprises an envelope without holes and joined perceptibly tight to the plates [fr

  19. Predicting transition in two- and three-dimensional separated flows

    International Nuclear Information System (INIS)

    Cutrone, L.; De Palma, P.; Pascazio, G.; Napolitano, M.

    2008-01-01

    This paper is concerned with the numerical prediction of two- and three-dimensional transitional separated flows of turbomachinery interest. The recently proposed single-point transition model based on the use of a laminar kinetic energy transport equation is considered, insofar as it does not require to evaluate any integral parameter, such as boundary-layer thickness, and is thus directly applicable to three-dimensional flows. A well established model, combining a transition-onset correlation with an intermittency transport equation, is also used for comparison. Both models are implemented within a Reynolds-averaged Navier-Stokes solver employing a low-Reynolds-number k-ω turbulence model. The performance of the transition models have been evaluated and tested versus well-documented incompressible flows past a flat plate with semi-circular leading edge, namely: tests T3L2, T3L3, T3L5, and T3LA1 of ERCOFTAC, with different Reynolds numbers and free-stream conditions, the last one being characterized by a non-zero pressure gradient. In all computations, the first model has proven as adequate as or superior to the second one and has been then applied with success to two more complex test cases, for which detailed experimental data are available in the literature, namely: the two- and three-dimensional flows through the T106 linear turbine cascade

  20. The Effects of Sweeping Jet Actuator Parameters on Flow Separation Control

    Science.gov (United States)

    Koklu, Mehti

    2015-01-01

    A parametric experimental study was performed with sweeping jet actuators (fluidic oscillators) to determine their effectiveness in controlling flow separation on an adverse pressure gradient ramp. Actuator parameters that were investigated include blowing coefficients, operation mode, pitch and spreading angles, streamwise location, aspect ratio, and scale. Surface pressure measurements and surface oil flow visualization were used to characterize the effects of these parameters on the actuator performance. 2D Particle Image Velocimetry measurements of the flow field over the ramp and hot-wire measurements of the actuator's jet flow were also obtained for selective cases. In addition, the sweeping jet actuators were compared to other well-known flow control techniques such as micro-vortex generators, steady blowing, and steady vortex-generating jets. The results confirm that the sweeping jet actuators are more effective than steady blowing and steady vortex-generating jets. The results also suggest that an actuator with a larger spreading angle placed closer to the location where the flow separates provides better performance. For the cases tested, an actuator with an aspect ratio, which is the width/depth of the actuator throat, of 2 was found to be optimal. For a fixed momentum coefficient, decreasing the aspect ratio to 1 produced weaker vortices while increasing the aspect ratio to 4 reduced coverage area. Although scaling down the actuator (based on the throat dimensions) from 0.25 inch x 0.125 inch to 0.15 inch x 0.075 inch resulted in similar flow control performance, scaling down the actuator further to 0.075 inch x 0.0375 inch reduced the actuator efficiency by reducing the coverage area and the amount of mixing in the near-wall region. The results of this study provide insight that can be used to design and select the optimal sweeping jet actuator configuration for flow control applications.

  1. Investigation of turbulent separation in a forward-facing step flow

    International Nuclear Information System (INIS)

    Pearson, D S; Goulart, P J; Ganapathisubramani, B

    2011-01-01

    The relation between the upstream and downstream regions of separation of the flow over a forward-facing step is investigated using experimental data. High-speed Particle Image Velocimetry (PIV) data is used to show a correlation between the wall shear stress of the oncoming boundary layer and the streamwise location of reverse flow upstream of the step. The time delay associated with the correlation is consistent with average convection velocities in the lower boundary layer. This suggests that appropriate addition of momentum into the boundary layer could be used to control the spatial extent of the separation upstream of the step. In addition, low-speed PIV data is used to show statistical relations between the flow characteristics of the recirculation regions in the vicinity of the step face. It is shown that a slower than average flow velocity above the step face is associated with an increase in the wall-normal extent of upstream reverse flow, an increase in the inclination of the flow above the step and an increase in downstream vorticity.

  2. On the Active and Passive Flow Separation Control Techniques over Airfoils

    Science.gov (United States)

    Moghaddam, Tohid; Banazadeh Neishabouri, Nafiseh

    2017-10-01

    In the present work, recent advances in the field of the active and passive flow separation control, particularly blowing and suction flow control techniques, applied on the common airfoils are briefly reviewed. This broad research area has remained the point of interest for many years as it is applicable to various applications. The suction and blowing flow control methods, among other methods, are more technically feasible and market ready techniques. It is well established that the uniform and/or oscillatory blowing and suction flow control mechanisms significantly improve the lift-to-drag ratio, and further, postpone the boundary layer separation as well as the stall. The oscillatory blowing and suction flow control, however, is more efficient compared to the uniform one. A wide range of parameters is involved in controlling the behavior of a blowing and/or suction flow control, including the location, length, and angle of the jet slots. The oscillation range of the jet slot is another substantial parameter.

  3. Comparison of plateletpheresis on three continuous flow cell separators

    Directory of Open Access Journals (Sweden)

    Tendulkar Anita

    2009-01-01

    Full Text Available Introduction: Platelet concentrate (PC remains one of the most important support measures in thrombocytopenic patients. An efficient cell separator is a prerequisite for an optimally functioning apheresis setup. Donor blood count may undergo a temporary reduction after the procedure. Aim: The aim was to find the extent of reduction in donor blood count (hemoglobin, hematocrit, white blood cell, and platelet after plateletpheresis and to evaluate the cell separator for collection efficiency, processing time, and leukoreduction. Study Design and Methods: Two hundred and thirty seven procedures performed on the Amicus (N = 121, Fenwal CS-3000 Plus (N = 50 and Cobe spectra (N = 66 in a one year period were evaluated. The procedures performed on the continuous flow centrifugation (CFC cell separators and donor blood counts (pre and post donation done were included in the study. Results: The percent reduction in hemoglobin (HB, hematocrit (HCT, white blood cell (WBC and platelet count ((PLT ct was 2.9, 3.1, 9, 30.7 (Mean, N = 237 respectively after the procedure. The post donation PLT ct reduced to < 100x109/L (range 80-100 in five donors (N = 5/237, Amicus. The pre donation PLT ct in them was 150-200x109/L. Collection efficiency (percent of Amicus (79.3 was better as compared to the other two machines (CS: 62.5, Cobe: 57.5. PC collected on Cobe spectra had < 1x106 WBC. The donor pre donation PLT levels had a positive correlation to the product PLT yield (r = 0.30, P = 0.000. Conclusion: Monitoring donor blood counts helps to avoid pheresis induced adverse events. A cautious approach is necessary in donors whose pre donation PLT ct is 150-200x109/L. The main variable in PLT yield is donor PLT ct (pre donation. High collection efficiency is a direct measure of an optimally functioning cell separator.

  4. Investigation of unsteady, hypersonic, laminar separated flows over a double cone geometry using a kinetic approach

    Science.gov (United States)

    Tumuklu, Ozgur; Levin, Deborah A.; Theofilis, Vassilis

    2018-04-01

    Shock-dominated hypersonic laminar flows over a double cone are investigated using time accurate direct simulation Monte Carlo combined with the residuals algorithm for unit Reynolds numbers gradually increasing from 9.35 × 104 to 3.74 × 105 m-1 at a Mach number of about 16. The main flow features, such as the strong bow-shock, location of the separation shock, the triple point, and the entire laminar separated region, show a time-dependent behavior. Although the separation shock angle is found to be similar for all Re numbers, the effects of Reynolds number on the structure and extent of the separation region are profound. As the Reynolds number is increased, larger pressure values in the under-expanded jet region due to strong shock interactions form more prominent λ-shocklets in the supersonic region between two contact surfaces. Likewise, the surface parameters, especially on the second cone surface, show a strong dependence on the Reynolds number, with skin friction, pressure, and surface heating rates increasing and velocity slip and temperature jump values decreasing for increasing Re number. A Kelvin-Helmholtz instability arising at the shear layer results in an unsteady flow for the highest Reynolds number. These findings suggest that consideration of experimental measurement times is important when it comes to determining the steady state surface parameters even for a relatively simple double cone geometry at moderately large Reynolds numbers.

  5. A continuous flow micro filtration device for plasma/blood separation using submicron vertical pillar gap structures

    International Nuclear Information System (INIS)

    Kang, Tae Goo; Ji, Hongmiao; Lim, Pei Yi; Chen, Yu; Yoon, Yong-Jin

    2014-01-01

    This work demonstrates a continuous flow plasma/blood separator using a vertical submicron pillar gap structure. The working principle of the proposed separator is based on size exclusion of cells through cross-flow filtration, in which only plasma is allowed to pass through submicron vertical pillars located tangential to the main flow path of the blood sample. The maximum filtration efficiency of 99.9% was recorded with a plasma collection rate of 0.67 µl min −1 for an input blood flow rate of 12.5 µl min −1 . The hemolysis phenomenon was observed for an input blood flow rate above 30 µl min −1 . Based on the experimental results, we can conclude that the proposed device shows potential for the application of on-chip plasma/blood separation as a part of integrated point-of-care (POC) diagnostics systems. (technical note)

  6. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    Science.gov (United States)

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  7. Detection of flow separation and stagnation points using artificial hair sensors

    International Nuclear Information System (INIS)

    Phillips, D M; Baur, J W; Ray, C W; Hagen, B J; Reich, G W; Su, W

    2015-01-01

    Recent interest in fly-by-feel approaches for aircraft control has motivated the development of novel sensors for use in aerial systems. Artificial hair sensors (AHSs) are one type of device that promise to fill a unique niche in the sensory suite for aerial systems. In this work, we investigate the capability of an AHS based on structural glass fibers to directly identify flow stagnation and separation points on a cylindrical domain in a steady flow. The glass fibers are functionalized with a radially aligned carbon nanotube (CNT) forest and elicit a piezoresistive response as the CNT forest impinges on electrodes in a micropore when the hair is deflected due to viscous drag forces. Particle image velocimetry is used to measure the flow field allowing for the resulting moment and force acting on the hair to be correlated with the electrical response. It is demonstrated that the AHS provides estimates for the locations of both the stagnation and separation in steady flow. From this, a simulation of a heading estimation is presented to demonstrate a potential application for hair sensors. These results motivate the construction of large arrays of hair sensors for imaging and resolving flow structures in real time. (paper)

  8. Shooter position estimation with muzzle blast and shockwave measurements from separate locations

    Science.gov (United States)

    Grasing, David

    2016-05-01

    There are two acoustical events associated with small arms fire: the muzzle blast (created by bullets being expelled from the barrel of the weapon), and the shockwave (created by bullets which exceed the speed of sound). Assuming the ballistics of a round are known, the times and directions of arrival of the acoustic events furnish sufficient information to determine the origin of the shot. Existing methods tacitly assume that it is a single sensor which makes measurements of the times and direction of arrival. If the sensor is located past the point where the bullet goes transonic or if the sensor is far off the axis of the shot line a single sensor localization become highly inaccurate due to the ill-conditioning of the localization problem. In this paper, a more general approach is taken which allows for localizations from measurements made at separate locations. There are considerable advantages to this approach, the most noteworthy of which is the improvement in localization accuracy due to the improvement in the conditioning of the problem. Additional benefits include: the potential to locate in cases where a single sensor has insufficient information, furnishing high quality initialization to data fusion algorithms, and the potential to identify the round from a set of possible rounds.

  9. Venturi Wet Gas Flow Modeling Based on Homogeneous and Separated Flow Theory

    Directory of Open Access Journals (Sweden)

    Xu Ying

    2008-10-01

    Full Text Available When Venturi meters are used in wet gas, the measured differential pressure is higher than it would be in gas phases flowing alone. This phenomenon is called over-reading. Eight famous over-reading correlations have been studied by many researchers under low- and high-pressure conditions, the conclusion is separated flow model and homogeneous flow model performing well both under high and low pressures. In this study, a new metering method is presented based on homogeneous and separated flow theory; the acceleration pressure drop and the friction pressure drop of Venturi under two-phase flow conditions are considered in new correlation, and its validity is verified through experiment. For low pressure, a new test program has been implemented in Tianjin University’s low-pressure wet gas loop. For high pressure, the National Engineering Laboratory offered their reports on the web, so the coefficients of the new proposed correlation are fitted with all independent data both under high and low pressures. Finally, the applicability and errors of new correlation are analyzed.

  10. Variation of flow separation over large bedforms during a tidal cycle

    DEFF Research Database (Denmark)

    Lefebvre, A.; Ferret, Y.; Paarlberg, A.J.

    2013-01-01

    This study characterizes the shape of the flow separation zone over natural compound bedforms during a tidal cycle and investigates how the flow separation zone depends on changing flow conditions, water levels and bathymetry. Field data collected during a full tidal cycle over large ebb-oriented......This study characterizes the shape of the flow separation zone over natural compound bedforms during a tidal cycle and investigates how the flow separation zone depends on changing flow conditions, water levels and bathymetry. Field data collected during a full tidal cycle over large ebb......, no flow separation developed over the gentle slope of the flood lee side (3 to 5° on average). However, a small flow separation zone is often recognized near the crest, where the slope is locally up to 15°. The shape of the FSZ is not influenced by changes in current velocities or water levels...

  11. Experimental Studies of Flow Separation of the NACA 2412 Airfoil at Low Speeds

    Science.gov (United States)

    Seetharam, H. C.; Rodgers, E. J.; Wentz, W. H., Jr.

    1997-01-01

    Wind tunnel tests have been conducted on an NACA 2412 airfoil section at Reynolds number of 2.2 x 10(exp 6) and Mach number of 0.13. Detailed measurements of flow fields associated with turbulent boundary layers have been obtained at angles of attack of 12.4 degrees, 14.4 degrees, and 16.4 degrees. Pre- and post-separated velocity and pressure survey results over the airfoil and in the associated wake are presented. Extensive force, pressure, tuft survey, hot-film survey, local skin friction, and boundary layer data are also included. Pressure distributions and separation point locations show good agreement with theory for the two layer angles of attack. Boundary layer displacement thickness, momentum thickness, and shape factor agree well with theory up to the point of separation. There is considerable disparity between extent of flow reversal in the wake as measured by pressure and hot-film probes. The difference is attributed to the intermittent nature of the flow reversal.

  12. Three-dimensional numerical study of heat transfer enhancement in separated flows

    Science.gov (United States)

    Kumar, Saurav; Vengadesan, S.

    2017-11-01

    The flow separation appears in a wide range of heat transfer applications and causes poor heat transfer performance. It motivates the study of heat transfer enhancement in laminar as well as turbulent flows over a backward facing step by means of an adiabatic fin mounted on the top wall. Recently, we have studied steady, 2-D numerical simulations in laminar flow and investigated the effect of fin length, location, and orientation. It revealed that the addition of fin causes enhancement of heat transfer and it is very effective to control the flow and thermal behavior. The fin is most effective and sensitive when it is placed exactly above the step. A slight displacement of the fin in upstream of the step causes the complete change of flow and thermal behavior. Based on the obtained 2-D results it is interesting to investigate the side wall effect in three-dimensional simulations. The comparison of two-dimensional and three-dimensional numerical simulations with the available experimental results will be presented. Special attention has to be given to capture unsteadiness in the flow and thermal field.

  13. In-Line Oil-Water Separation in Swirling Flow (USB stick)

    NARCIS (Netherlands)

    Slot, J.J.; van Campen, L.J.A.M.; Hoeijmakers, Hendrik Willem Marie; Mudde, R.F.; Johansen, S.T.

    2011-01-01

    An in-line oil-water separator has been designed and is investigated for single- and two-phase flow. Numerical single-phase flow results show an annular reversed flow region. This flow pattern agrees qualitatively with results from measurements. In the two-phase flow simulations two different drag

  14. Integrated Lateral Flow Device for Flow Control with Blood Separation and Biosensing

    Directory of Open Access Journals (Sweden)

    Veronica Betancur

    2017-12-01

    Full Text Available Lateral flow devices are versatile and serve a wide variety of purposes, including medical, agricultural, environmental, and military applications. Yet, the most promising opportunities of these devices for diagnosis might reside in point-of-care (POC applications. Disposable paper-based lateral flow strips have been of particular interest, because they utilize low-cost materials and do not require expensive fabrication instruments. However, there are constraints on tuning flow rates and immunoassays functionalization in papers, as well as technical challenges in sensors’ integration and concentration units for low-abundant molecular detection. In the present work, we demonstrated an integrated lateral flow device that applied the capillary forces with functionalized polymer-based microfluidics as a strategy to realize a portable, simplified, and self-powered lateral flow device (LFD. The polydimethylsiloxane (PDMS surface was rendered hydrophilic via functionalization with different concentrations of Pluronic F127. Controlled flow is a key variable for immunoassay-based applications for providing enough time for protein binding to antibodies. The flow rate of the integrated LFD was regulated by the combination of multiple factors, including Pluronic F127 functionalized surface properties and surface treatments of microchannels, resistance of the integrated flow resistor, the dimensions of the microstructures and the spacing between them in the capillary pump, the contact angles, and viscosity of the fluids. Various plasma flow rates were regulated and achieved in the whole device. The LFD combined the ability to separate high quality plasma from human whole blood by using a highly asymmetric plasma separation membrane, and created controlled and steady fluid flow using capillary forces produced by the interfacial tensions. Biomarker immunoglobulin G (IgG detection from plasma was demonstrated with a graphene nanoelectronic sensor integrated

  15. Modelling of two-phase flow based on separation of the flow according to velocity

    Energy Technology Data Exchange (ETDEWEB)

    Narumo, T. [VTT Energy, Espoo (Finland). Nuclear Energy

    1997-12-31

    The thesis concentrates on the development work of a physical one-dimensional two-fluid model that is based on Separation of the Flow According to Velocity (SFAV). The conventional way to model one-dimensional two-phase flow is to derive conservation equations for mass, momentum and energy over the regions occupied by the phases. In the SFAV approach, the two-phase mixture is divided into two subflows, with as distinct average velocities as possible, and momentum conservation equations are derived over their domains. Mass and energy conservation are treated equally with the conventional model because they are distributed very accurately according to the phases, but momentum fluctuations follow better the flow velocity. Submodels for non-uniform transverse profile of velocity and density, slip between the phases within each subflow and turbulence between the subflows have been derived. The model system is hyperbolic in any sensible flow conditions over the whole range of void fraction. Thus, it can be solved with accurate numerical methods utilizing the characteristics. The characteristics agree well with the used experimental data on two-phase flow wave phenomena Furthermore, the characteristics of the SFAV model are as well in accordance with their physical counterparts as of the best virtual-mass models that are typically optimized for special flow regimes like bubbly flow. The SFAV model has proved to be applicable in describing two-phase flow physically correctly because both the dynamics and steady-state behaviour of the model has been considered and found to agree well with experimental data This makes the SFAV model especially suitable for the calculation of fast transients, taking place in versatile form e.g. in nuclear reactors. 45 refs. The thesis includes also five previous publications by author.

  16. Modelling of two-phase flow based on separation of the flow according to velocity

    International Nuclear Information System (INIS)

    Narumo, T.

    1997-01-01

    The thesis concentrates on the development work of a physical one-dimensional two-fluid model that is based on Separation of the Flow According to Velocity (SFAV). The conventional way to model one-dimensional two-phase flow is to derive conservation equations for mass, momentum and energy over the regions occupied by the phases. In the SFAV approach, the two-phase mixture is divided into two subflows, with as distinct average velocities as possible, and momentum conservation equations are derived over their domains. Mass and energy conservation are treated equally with the conventional model because they are distributed very accurately according to the phases, but momentum fluctuations follow better the flow velocity. Submodels for non-uniform transverse profile of velocity and density, slip between the phases within each subflow and turbulence between the subflows have been derived. The model system is hyperbolic in any sensible flow conditions over the whole range of void fraction. Thus, it can be solved with accurate numerical methods utilizing the characteristics. The characteristics agree well with the used experimental data on two-phase flow wave phenomena Furthermore, the characteristics of the SFAV model are as well in accordance with their physical counterparts as of the best virtual-mass models that are typically optimized for special flow regimes like bubbly flow. The SFAV model has proved to be applicable in describing two-phase flow physically correctly because both the dynamics and steady-state behaviour of the model has been considered and found to agree well with experimental data This makes the SFAV model especially suitable for the calculation of fast transients, taking place in versatile form e.g. in nuclear reactors

  17. Estimation of roughness lengths and flow separation over compound bedforms in a natural-tidal inlet

    DEFF Research Database (Denmark)

    Lefebvre, Alice; Ernstsen, Verner Brandbyge; Winter, Christian

    2013-01-01

    was found to underestimate the length of the flow separation zone of the primary bedforms. A better estimation of the presence and shape of the flow separation zone over complex bedforms in a tidal environment still needs to be determined; in particular the relationship between flow separation zone......The hydraulic effect of asymmetric compound bedforms on tidal currents was assessed from field measurements of flow velocity in the Knudedyb tidal inlet, Denmark. Large asymmetric bedforms with smaller superimposed ones are a common feature of sandy shallow water environments and are known to act...... as hydraulic roughness elements in dependence with flow direction. The presence of a flow separation zone on the bedform lee was estimated through analysis of the measured velocity directions and the calculation of the flow separation line. The Law of the Wall was used to calculate roughness lengths and shear...

  18. Applying the flow-capturing location-allocation model to an authentic network: Edmonton, Canada

    NARCIS (Netherlands)

    M.J. Hodgson (John); K.E. Rosing (Kenneth); A.L.G. Storrier (Leontien)

    1996-01-01

    textabstractTraditional location-allocation models aim to locate network facilities to optimally serve demand expressed as weights at nodes. For some types of facilities demand is not expressed at nodes, but as passing network traffic. The flow-capturing location-allocation model responds to this

  19. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation

    OpenAIRE

    Piacentini, Niccolò; Mernier, Guillaume; Tornay, Raphaël; Renaud, Philippe

    2011-01-01

    We present a microfluidic device capable of separating platelets from other blood cells in continuous flow using dielectrophoresis field-flow-fractionation. The use of hydrodynamic focusing in combination with the application of a dielectrophoretic force allows the separation of platelets from red blood cells due to their size difference. The theoretical cell trajectory has been calculated by numerical simulations of the electrical field and flow speed, and is in agreement with the experiment...

  20. Reattachment Zone Characterisation Under Offshore Winds With Flow Separation On The Lee Side Of Coastal Dunes

    Science.gov (United States)

    Delgado-Fernandez, I.; Jackson, D.; Cooper, J. A.; Baas, A. C.; Lynch, K.; Beyers, M.

    2010-12-01

    Airflow separation, lee-side eddies and secondary flows play an essential role on the formation and maintenance of sand dunes. Downstream from dune crests the flow surface layer detaches from the ground and generates an area characterised by turbulent eddies in the dune lee slope (the wake). At some distance downstream from the dune crest, flow separates into a reversed component directed toward the dune toe and an offshore “re-attached” component. This reattachment zone (RZ) has been documented in fluvial and desert environments, wind tunnel experiments and numerical simulations, but not yet characterised in coastal dunes. This study examines the extent and temporal evolution of the RZ and its implications for beach-dune interaction at Magilligan, Northern Ireland. Wind parameters were measured over a profile extending from an 11 m height dune crest towards the beach, covering a total distance of 65 m cross-shore. Data was collected using an array of nine ultrasonic anemometers (UAs) deployed in April-May 2010, as part of a larger experiment to capture airflow data under a range of incident wind velocities and offshore directions. UAs were located along the profile (5 m tower spacing) over the beach, which allowed a detailed examination of the RZ with empirical data. Numerical modelling using Computational Fluid Dynamics (CFD) software was also conducted with input data from anemometer field measurements, running over a surface mesh generated from LiDAR and DGPS surveys. Results demonstrate that there is a wind threshold of approximately 5-6 ms-1 under which no flow separation exists with offshore winds. As wind speed increases over the threshold, a flow reversal area is quickly formed, with the maximum extent of the RZ at approximately 3.5 dune heights (h). The maximum extent of the RZ increases up to 4.5h with stronger wind speeds of 8-10 ms-1 and remains relatively constant as wind speed further increases. This suggests that the spatial extent of the RZ is

  1. Turbulent shear flow downstream of a sphere with and without an o-ring located over a plane boundary

    Directory of Open Access Journals (Sweden)

    Sahin Besir

    2012-04-01

    Full Text Available Flow-structure interaction of separated shear flow from the sphere and a flat plate was investigated by using dye visualization and the particle image velocimetry technique. Later, a passive control method was applied with 2mm oring located on the sphere surface at 55° from front stagnation point. The experiments were carried out in open water channel for Reynolds number value of Re=5000. Flow characteristics have been examined in terms of the 2-D instantaneous and time-averaged velocity vectors, patterns of vorticity, streamlines, rms of velocity fluctuations and Reynolds stress variations and discussed from the point of flow physics, vortex formation, lengths of large-scale Karman Vortex Streets and Kelvin-Helmholtz vortices depending on the sphere locations over the flat plate. It is demonstrated that the gap flow occurring between the sphere bottom point and the flat plate surface has very high scouring effect until h/d=0.25 and then unsymmetrical flow structure of the wake region keeps up to h/D=1.0 for smooth sphere. For the sphere with o-ring, the wake flow structure becomes symmetrical at smaller gap ratios and reattachment point on the flat plate surface occurs earlier. Moreover, o-ring on the sphere diminishes peak magnitudes of the flow characteristics and thus it is expected that the flow-induced forces will be lessened both on the sphere and flat plate surface. Vortex formation lengths and maximum value occurring points become closer locations to the rear surface of the sphere with o-ring.

  2. Computational Investigations of Inboard Flow Separation and Mitigation Techniques on Multi-Megawatt Wind Turbines

    Science.gov (United States)

    Chow, Raymond

    The aerodynamic characteristics of the NREL 5-MW rotor have been examined using a Reynolds-averaged Navier-Stokes method, OVERFLOW2. A comprehensive off-body grid independence study has been performed. A strong dependence on the size of the near-body wake grid has been found. Rapid diffusion of the wake appears to generate an overprediction of power and thrust. A large, continuous near-wake grid at minimum of two rotor diameters downstream of the rotor appears to be necessary for accurate predictions of near-body forces. The NREL 5-MW rotor demonstrates significant inboard flow separation up to 30% of span. This separation appears to be highly three-dimensional, with a significant amount of radial flow increasing the size of the separated region outboard. Both integrated aerodynamic coefficients and detailed wake structures for the baseline NREL 5-MW rotor are in excellent agreement with results by Riso at Uinfinity = 8 and 11 m/s. A simple, continuous full-chord fence was applied at the maximum chord location of the blade, within the region of separation. This non-optimized device reduced the boundary-layer cross-flow and resulting separation, and increased rotor power capture by 0.9% and 0.6% at U infinity = 8 and 11 m/s, respectively. Suction side only fences perform similarly in terms of power capture but reduce the increase in rotor thrust. Fence heights from 0.5% to 17.5% of the maximum chord all demonstrate some level of effectiveness, with fences (1-2.5%cmax) showing similar performance gains to taller fences with smaller penalties in thrust. Performance in terms of power capture is not very sensitive to spanwise location when placed within the separation region. Blunt trailing edge modifications to the inboard region of the blade showed a relatively significant effect on rotor power. Over a large range of trailing edge thicknesses from hTE = 10 to 25%c, power was found to increase by 1.4%. Thrust increased proportionally with the thicknesses examined

  3. Flow separation on transversal ribs in an open channel

    Czech Academy of Sciences Publication Activity Database

    Příhoda, Jaromír; Šulc, J.; Sedlář, M.; Zubík, P.

    2009-01-01

    Roč. 13, - (2009), s. 218-220 ISSN 1335-2938. [Stretnutie katedier mechaniky tekutín a termomechaniky. Jasná, Demanovská dolina, 24.06.2009-26.06.2009] R&D Projects: GA ČR GA103/09/0977 Institutional research plan: CEZ:AV0Z20760514 Keywords : free-surface flow * supercritical flow over ribs * numerical and experimental modelling Subject RIV: BK - Fluid Dynamics

  4. Separation of acoustic waves in isentropic flow perturbations

    International Nuclear Information System (INIS)

    Henke, Christian

    2015-01-01

    The present contribution investigates the mechanisms of sound generation and propagation in the case of highly-unsteady flows. Based on the linearisation of the isentropic Navier–Stokes equation around a new pathline-averaged base flow, it is demonstrated for the first time that flow perturbations of a non-uniform flow can be split into acoustic and vorticity modes, with the acoustic modes being independent of the vorticity modes. Therefore, we can propose this acoustic perturbation as a general definition of sound. As a consequence of the splitting result, we conclude that the present acoustic perturbation is propagated by the convective wave equation and fulfils Lighthill’s acoustic analogy. Moreover, we can define the deviations of the Navier–Stokes equation from the convective wave equation as “true” sound sources. In contrast to other authors, no assumptions on a slowly varying or irrotational flow are necessary. Using a symmetry argument for the conservation laws, an energy conservation result and a generalisation of the sound intensity are provided. - Highlights: • First splitting of non-uniform flows in acoustic and non-acoustic components. • These result leads to a generalisation of sound which is compatible with Lighthill’s acoustic analogy. • A closed equation for the generation and propagation of sound is given

  5. Reversing flow causes passive shark scale actuation in a separating turbulent boundary layer

    Science.gov (United States)

    Lang, Amy; Gemmell, Bradford; Motta, Phil; Habegger, Laura; Du Clos, Kevin; Devey, Sean; Stanley, Caleb; Santos, Leo

    2017-11-01

    Control of flow separation by shortfin mako skin in experiments has been demonstrated, but the mechanism is still poorly understood yet must be to some extent Re independent. The hypothesized mechanisms inherent in the shark skin for controlling flow separation are: (1) the scales, which are capable of being bristled only by reversing flow, inhibit flow reversal events from further development into larger-scale separation and (2) the cavities formed when scales bristle induces mixing of high momentum flow towards the wall thus energizing the flow close to the surface. Two studies were carried out to measure passive scale actuation caused by reversing flow. A small flow channel induced an unsteady, wake flow over the scales prompting reversing flow events and scale actuation. To resolve the flow and scale movements simultaneously we used specialized optics at high magnification (1 mm field of view) at 50,000 fps. In another study, 3D printed models of shark scales, or microflaps (bristling capability up to 50 degrees), were set into a flat plate. Using a tripped, turbulent boundary layer grown over the long flat plate and a localized adverse pressure gradient, a separation bubble was generated within which the microflaps were placed. Passive flow actuation of both shark scales and microflaps by reversing flow was observed. Funding from Army Research Office and NSF REU site Grant.

  6. In search of chiral magnetic effect: separating flow-driven background effects and quantifying anomaly-induced charge separations

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xu-Guang [Physics Department and Center for Particle Physics and Field Theory, Fudan University, Shanghai 200433 (China); Yin, Yi [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Liao, Jinfeng [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-12-15

    We report our recent progress on the search of Chiral Magnetic Effect (CME) by developing new measurements as well as by hydrodynamic simulations of CME and background effects, with both approaches addressing the pressing issue of separating flow-driven background contributions and possible CME signal in current heavy ion collision measurements.

  7. Experimental Study of Unsteady Flow Separation in a Laminar Boundary Layer

    Science.gov (United States)

    Bonacci, Andrew; Lang, Amy; Wahidi, Redha; Santos, Leonardo

    2017-11-01

    Flow separation, caused by an adverse pressure gradient, is a major problem in many applications. Reversing flow near the wall is the first sign of incipient separation and can bristle shark scales which may be linked to a passive, flow actuated separation control mechanism. An investigation of how this backflow forms and how it interacts with shark skin is of interest due to the fact that this could be used as a bioinspired means of initiating flow control. A water tunnel experiment aims to study unsteady separation with a focus on the reversing flow development near the wall within a flat plate laminar boundary layer (Re on order of 105) as an increasing adverse pressure gradient is induced by a rotating cylinder. Unsteady reversing flow development is documented using DPIV. Funding was provided by the National Science Foundation under the Research Experience for Undergraduates (REU) program (EEC 1659710) and the Army Research Office.

  8. Flow dynamics in distillation columns packed with Dixon rings as used in isotope separation

    International Nuclear Information System (INIS)

    Gilath, C.; Cohen, H.; Wolf, D.

    1977-01-01

    Packed distillation columns are common in isotope separation. The pressure drop serves as an indication for the hydrodynamic state of the column. Models were formulated for flow and pressure drop dynamics in packed distillation columns. These models were confirmed on columns packed with Dixon rings and operated with water for separation of oxygen isotopes. Liquid holdup displacement is very important in isotope separation practice. Experiments proved that distillation columns packed with Dixon rings exhibit a behaviour close to plug flow. (author)

  9. Secondary flows occurring in a whirlpool separator – A study of phenomena – observation, simulation and measurements

    Directory of Open Access Journals (Sweden)

    Jakubowski Marek

    2015-09-01

    Full Text Available The whirlpool separator, used for hot trub separation, is prevalent in the brewing industry. It is a kind of a hydrocyclone inside of which a tea leaf effect occurs, which is sediment accumulation into a cone shape at the central part of the tank’s bottom. This manner of sediment accumulation is caused by the secondary flow occurring in the so-called Ekman boundary layer. This article is a summary of the research, which has been conducted for many years and involved observation, simulation and experimental research on the recognition and formation of the secondary flow accumulating the sediment cone. Secondary flows occurring in a whirlpool were identified through CFD simulation and PIV experiments, and are presented in this paper. Based on their location and direction, an attempt to determine their impact on the separation process taking place in the whirlpool has been made. The secondary flow identification methods proposed in this paper can be successfully applied in other solutions, e. g. structural ones, which involve rotational-flow-based separation.

  10. Influence of sodium chloride on shear flow induced starch-gluten separation from Soissons wheat dough

    NARCIS (Netherlands)

    Zalm, van der E.E.J.; Goot, van der A.J.; Boom, R.M.

    2010-01-01

    Wheat dough can be separated into a starch-rich and a gluten-rich fraction by subjecting the dough to curvilinear shear flow. This paper presents the effect of salt (NaCl) addition on the shear-induced separation process. The separation (defined as the changes in protein concentration in the various

  11. CFD modeling of particle behavior in supersonic flows with strong swirls for gas separation

    DEFF Research Database (Denmark)

    Yang, Yan; Wen, Chuang

    2017-01-01

    flow from the dry gas outlet. The separation efficiency reached over 80%, when the droplet diameter was more than 1.5 μm. The optimum length of the cyclonic separation section was approximate 16–20 times of the nozzle throat diameter to obtain higher collection efficiency for the supersonic separator...

  12. An insight into the separate flow and stall delay for HAWT

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Guohua; Shen, Xin; Zhu, Xiaocheng; Du, Zhaohui [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-01-15

    The flow characteristics and the stall delay phenomenon of wind turbine rotor due to blade rotation in the steady state non-yawed conditions are investigated. An incompressible Reynolds-averaged Navier-Stokes solver is applied to carry out all the cases at different wind speeds from 5 m/s to 10 m/s with an interval of 1 m/s. CFD results turn out to agree well with experimental ones at incoming wind speeds below 10 m/s, though at 10 m/s some deviations exist due to the relative large flow separation and 3D spanwise flow over the suction surface of the blade. In the meanwhile, a lifting surface code with and without Du-Selig stall delay model is used to predict the power. A MATLAB code is developed to extract aerodynamic force coefficients from 3D CFD computations which are compared with the 2D airfoil wind tunnel experiment to demonstrate the stall delay and augmented lift phenomenon particularly at inboard span locations of the blade. The computational results are compared with the corrected value by the Du-Selig model and a lifting surface method derived data based on the measurements of the Unsteady Aerodynamic Experiment at the NASA Ames wind tunnel. (author)

  13. Flow separation and roughness lengths over large bedforms in a tidal environment

    DEFF Research Database (Denmark)

    Lefebvre, Alice; Paarlberg, Andries; Ernstsen, Verner Brandbyge

    2014-01-01

    This study characterises the shape of the flow separation zone (FSZ) and wake region over large asymmetric bedforms under tidal flow conditions. High resolution bathymetry, flow velocity and turbulence data were measured along two parallel transects in a tidal channel covered with bedforms. The f...

  14. Prediction of unsteady separated flows on oscillating airfoils

    Science.gov (United States)

    Mccroskey, W. J.

    1978-01-01

    Techniques for calculating high Reynolds number flow around an airfoil undergoing dynamic stall are reviewed. Emphasis is placed on predicting the values of lift, drag, and pitching moments. Methods discussed include: the discrete potential vortex method; thin boundary layer method; strong interaction between inviscid and viscous flows; and solutions to the Navier-Stokes equations. Empirical methods for estimating unsteady airloads on oscillating airfoils are also described. These methods correlate force and moment data from wind tunnel tests to indicate the effects of various parameters, such as airfoil shape, Mach number, amplitude and frequency of sinosoidal oscillations, mean angle, and type of motion.

  15. A Performance Assessment of an Airborne Separation Assistance System Using Realistic Complex Traffic Flows

    Science.gov (United States)

    Smith, Jeremy C.; Bussink, Frank J. L.

    2008-01-01

    This paper presents the results from a study that investigates the performance of a tactical Airborne Separation Assistance System (ASAS) in en route airspace, under varying demand levels, with realistic traffic flows. The ASAS concept studied here allows flight crews of equipped aircraft to perform separation from other air traffic autonomously. This study addresses the tactical aspects of an ASAS using aircraft state data (i.e. position and velocity) to detect and resolve projected conflicts. In addition, use of a conflict prevention system helps ASAS-equipped aircraft avoid maneuvers that may cause new conflicts. ASAS-capable aircraft are equipped with satellite-based navigation and Automatic Dependent Surveillance Broadcast (ADS-B) for transmission and receipt of aircraft state data. In addition to tactical conflict detection and resolution (CD&R), a complete, integrated ASAS is likely to incorporate a strategic CD&R component with a longer look-ahead time, using trajectory intent information. A system-wide traffic flow management (TFM) component, located at the FAA command center helps aircraft to avoid regions of excessive traffic density and complexity. A Traffic Alert and Collision Avoidance System (TCAS), as used today is the system of last resort. This integrated approach avoids sole reliance on the use of the tactical CD&R studied here, but the tactical component remains a critical element of the complete ASAS. The focus of this paper is to determine to what extent the proposed tactical component of ASAS alone can maintain aircraft separation at demand levels up to three times that of current traffic. The study also investigates the effect of mixing ASAS-equipped aircraft with unequipped aircraft (i.e. current day) that do not have the capability to self-separate. Position and velocity data for unequipped aircraft needs to be available to ASASequipped. Most likely, for this future concept, state data would be available from instrument flight rules (IFR

  16. Modeling river dune evolution using a parameterization of flow separation

    NARCIS (Netherlands)

    Paarlberg, Andries J.; Dohmen-Janssen, C. Marjolein; Hulscher, Suzanne J.M.H.; Termes, Paul

    2009-01-01

    This paper presents an idealized morphodynamic model to predict river dune evolution. The flow field is solved in a vertical plane assuming hydrostatic pressure conditions. The sediment transport is computed using a Meyer-Peter–Müller type of equation, including gravitational bed slope effects and a

  17. Towards Separation of Concerns in Flow-Based Programming

    DEFF Research Database (Denmark)

    Zarrin, Bahram; Baumeister, Hubert

    2015-01-01

    Flow-Based Programming (FBP) is a programming paradigm that models software systems as a directed graph of predefined processes which run asynchronously and exchange data through input and output ports. FBP decomposes software systems into a network of processes. However there are concerns...

  18. Numerical Simulation on Flow Field of Oilfield Three-Phase Separator

    Directory of Open Access Journals (Sweden)

    Yong-tu Liang

    2013-01-01

    Full Text Available The conventional measurement method can no longer guarantee the accuracy requirement after the oilfield development entering high water cut stage, due to the water content and gas phase in the flow. In order to overcome the impact of measurement deviation the oilfield production management, the flow field of three-phase separator is studied numerically in this paper using Fluent 6.3.26. Taking into consideration the production situation of PetroChina Huabei Oilfield and the characteristics of three-phase separator, the effect of internal flow status as well as other factors such as varying flow rate, gas fraction, and water content on the separation efficiency is analyzed. The results show that the separation efficiencies under all operation conditions are larger than 95%, which satisfy the accuracy requirement and also provide the theoretical foundation for the application of three-phase separators at oilfields.

  19. Active Control of Flow Separation Over an Airfoil

    Science.gov (United States)

    Ravindran, S. S.

    1999-01-01

    Designing an aircraft without conventional control surfaces is of interest to aerospace community. In this direction, smart actuator devices such as synthetic jets have been proposed to provide aircraft maneuverability instead of control surfaces. In this article, a numerical study is performed to investigate the effects of unsteady suction and blowing on airfoils. The unsteady suction and blowing is introduced at the leading edge of the airfoil in the form of tangential jet. Numerical solutions are obtained using Reynolds-Averaged viscous compressible Navier-Stokes equations. Unsteady suction and blowing is investigated as a means of separation control to obtain lift on airfoils. The effect of blowing coefficients on lift and drag is investigated. The numerical simulations are compared with experiments from the Tel-Aviv University (TAU). These results indicate that unsteady suction and blowing can be used as a means of separation control to generate lift on airfoils.

  20. Filter case for separating out radioactive effluents from gas flows

    International Nuclear Information System (INIS)

    Jannakos, K.; Zabel, G.

    1982-01-01

    A remotely operated change of filter in a filter case can be done with an annular or cylindrical filter insert, where the contaminated air side remains separate from the clean air side. A lid is provided which can be divided into two parts, and by which the openings of the filter insert and also in the intermediate floor can be opened or closed using the double lid technique. When closing the filter case lid, the double lid closure is always opened. (DG) [de

  1. The Dynamics of Controlled Flow Separation within a Diverter Duct Diffuser

    Science.gov (United States)

    Peterson, C. J.; Vukasinovic, B.; Glezer, A.

    2016-11-01

    The evolution and receptivity to fluidic actuation of the flow separation within a rectangular, constant-width, diffuser that is branched off of a primary channel is investigated experimentally at speeds up to M = 0.4. The coupling between the diffuser's adverse pressure gradient and the internal separation that constricts nearly half of the flow passage through the duct is controlled using a spanwise array of fluidic actuators on the surface upstream of the diffuser's inlet plane. The dynamics of the separating surface vorticity layer in the absence and presence of actuation are investigated using high-speed particle image velocimetry combined with surface pressure measurements and total pressure distributions at the primary channel's exit plane. It is shown that the actuation significantly alters the incipient dynamics of the separating vorticity layer as the characteristic cross stream scales of the boundary layer upstream of separation and of the ensuing vorticity concentrations within the separated flow increase progressively with actuation level. It is argued that the dissipative (high frequency) actuation alters the balance between large- and small-scale motions near separation by intensifying the large-scale motions and limiting the small-scale dynamics. Controlling separation within the diffuser duct also has a profound effect on the global flow. In the presence of actuation, the mass flow rate in the primary duct increases 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45% at 0.7% actuation mass fraction. Supported by the Boeing Company.

  2. Boundary Layer Separation and Reattachment Detection on Airfoils by Thermal Flow Sensors

    Directory of Open Access Journals (Sweden)

    Peter Busche

    2012-10-01

    Full Text Available A sensor concept for detection of boundary layer separation (flow separation, stall and reattachment on airfoils is introduced in this paper. Boundary layer separation and reattachment are phenomena of fluid mechanics showing characteristics of extinction and even inversion of the flow velocity on an overflowed surface. The flow sensor used in this work is able to measure the flow velocity in terms of direction and quantity at the sensor’s position and expected to determine those specific flow conditions. Therefore, an array of thermal flow sensors has been integrated (flush-mounted on an airfoil and placed in a wind tunnel for measurement. Sensor signals have been recorded at different wind speeds and angles of attack for different positions on the airfoil. The sensors used here are based on the change of temperature distribution on a membrane (calorimetric principle. Thermopiles are used as temperature sensors in this approach offering a baseline free sensor signal, which is favorable for measurements at zero flow. Measurement results show clear separation points (zero flow and even negative flow values (back flow for all sensor positions. In addition to standard silicon-based flow sensors, a polymer-based flexible approach has been tested showing similar results.

  3. Separation Dynamics of Controlled Internal Flow in an Adverse Pressure Gradient

    Science.gov (United States)

    Peterson, C. J.; Vukasinovic, B.; Glezer, A.

    2017-11-01

    The effects of fluidic actuation on the dynamic evolution of aggressive internal flow separation is investigated at speeds up to M = 0.4 within a constant-width diffuser branching off of a primary flow duct. It is shown that a spanwise array of fluidic actuators upstream of the separation actively controls the flow constriction (and losses) within the diffuser and consequently the local pressure gradient at its entrance. The effectiveness of the actuation, as may be measured by the increased flow rate that is diverted through the diffuser, scales with its flow rate coefficient. In the presence of actuation (0.7% mass fraction), the mass flow rate in the primary duct increases by 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45%. The flow dynamics near separation in the absence and presence of actuation are characterized using high speed particle image velocimetry and analyzed using proper orthogonal and spectral decompositions. In particular, the spectral contents of the incipient boundary layer separation are compared in the absence and presence of actuation with emphasis on the changes in local dynamics near separation as the characteristic cross stream scale of the boundary layer increases with separation delay.

  4. A novel mechanical model for phase-separation in debris flows

    Science.gov (United States)

    Pudasaini, Shiva P.

    2015-04-01

    Understanding the physics of phase-separation between solid and fluid phases as a two-phase mass moves down slope is a long-standing challenge. Here, I propose a fundamentally new mechanism, called 'separation-flux', that leads to strong phase-separation in avalanche and debris flows. This new model extends the general two-phase debris flow model (Pudasaini, 2012) to include a separation-flux mechanism. The new flux separation mechanism is capable of describing and controlling the dynamically evolving phase-separation, segregation, and/or levee formation in a real two-phase, geometrically three-dimensional debris flow motion and deposition. These are often observed phenomena in natural debris flows and industrial processes that involve the transportation of particulate solid-fluid mixture material. The novel separation-flux model includes several dominant physical and mechanical aspects that result in strong phase-separation (segregation). These include pressure gradients, volume fractions of solid and fluid phases and their gradients, shear-rates, flow depth, material friction, viscosity, material densities, boundary structures, gravity and topographic constraints, grain shape, size, etc. Due to the inherent separation mechanism, as the mass moves down slope, more and more solid particles are brought to the front, resulting in a solid-rich and mechanically strong frontal surge head followed by a weak tail largely consisting of the viscous fluid. The primary frontal surge head followed by secondary surge is the consequence of the phase-separation. Such typical and dominant phase-separation phenomena are revealed here for the first time in real two-phase debris flow modeling and simulations. However, these phenomena may depend on the bulk material composition and the applied forces. Reference: Pudasaini, Shiva P. (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.

  5. Thin-layer approximation and algebraic model for separated turbulent flows

    Science.gov (United States)

    Baldwin, B.; Lomax, H.

    1978-01-01

    An algebraic turbulence model for two- and three-dimensional separated flows is specified that avoids the necessity for finding the edge of the boundary layer. Properties of the model are determined and comparisons made with experiment for an incident shock on a flat plate, separated flow over a compression corner, and transonic flow over an airfoil. Separation and reattachment points from numerical Navier-Stokes solutions agree with experiment within one boundary-layer thickness. Use of law-of-the-wall boundary conditions does not alter the predictions significantly. Applications of the model to other cases are contained in companion papers.

  6. Effect of swirling device on flow behavior in a supersonic separator for natural gas dehydration

    DEFF Research Database (Denmark)

    Wen, Chuang; Li, Anqi; Walther, Jens Honore

    2016-01-01

    is designed for an annular supersonic separator. The supersonic swirling separation flow of natural gas is calculated using the Reynolds Stress model. The results show that the viscous heating and strong swirling flow cause the adverse pressure in the annular channel, which may negatively affect......The supersonic separator is a revolutionary device to remove the condensable components from gas mixtures. One of the key issues for this novel technology is the complex supersonic swirling flow that is not well understood. A swirling device composed of an ellipsoid and several helical blades...

  7. Multiple sample flow through immunomagnetic separator for concentrating pathogenic bacteria

    International Nuclear Information System (INIS)

    Rotariu, Ovidiu; Ogden, Iain D; MacRae, Marion; Udrea, Laura Elena; Strachan, Norval J C

    2005-01-01

    The standard method of immunomagnetic separation for isolating pathogenic bacteria from food and environmental matrices processes 1 ml volumes. Pathogens present at low levels ( 97% recovery of polydisperse magnetic particles (diameter range 1 to 8 μm) containing 29-33% w/w Fe 3 O 4 content. Between 70 and 130 times more of the pathogenic bacteria Escherichia coli O157 is recovered from PBS compared with the standard 1 ml method. Also, the recovery of E. coli O157 from beef mince homogenates, after a 4 h incubation at 42 deg. C, is between 80 and 180 times higher than the standard 1 ml method

  8. Performance of Reynolds Averaged Navier-Stokes Models in Predicting Separated Flows: Study of the Hump Flow Model Problem

    Science.gov (United States)

    Cappelli, Daniele; Mansour, Nagi N.

    2012-01-01

    Separation can be seen in most aerodynamic flows, but accurate prediction of separated flows is still a challenging problem for computational fluid dynamics (CFD) tools. The behavior of several Reynolds Averaged Navier-Stokes (RANS) models in predicting the separated ow over a wall-mounted hump is studied. The strengths and weaknesses of the most popular RANS models (Spalart-Allmaras, k-epsilon, k-omega, k-omega-SST) are evaluated using the open source software OpenFOAM. The hump ow modeled in this work has been documented in the 2004 CFD Validation Workshop on Synthetic Jets and Turbulent Separation Control. Only the baseline case is treated; the slot flow control cases are not considered in this paper. Particular attention is given to predicting the size of the recirculation bubble, the position of the reattachment point, and the velocity profiles downstream of the hump.

  9. Separation prediction in two dimensional boundary layer flows using artificial neural networks

    International Nuclear Information System (INIS)

    Sabetghadam, F.; Ghomi, H.A.

    2003-01-01

    In this article, the ability of artificial neural networks in prediction of separation in steady two dimensional boundary layer flows is studied. Data for network training is extracted from numerical solution of an ODE obtained from Von Karman integral equation with approximate one parameter Pohlhousen velocity profile. As an appropriate neural network, a two layer radial basis generalized regression artificial neural network is used. The results shows good agreements between the overall behavior of the flow fields predicted by the artificial neural network and the actual flow fields for some cases. The method easily can be extended to unsteady separation and turbulent as well as compressible boundary layer flows. (author)

  10. Effects of traveling waves on flow separation and turbulence

    Science.gov (United States)

    Akbarzadeh, Amir Mahdi; Borazjani, Iman; scientific computing; biofluids laboratory Team

    2017-11-01

    Stable leading edge vortex (LEV) is observed in many flying, hovering and also some aquatic creatures. However, the LEV stability in aquatic animal, in contrast to hovering ones, is not well understood. Here, we study the flow over an inclined plate with an undulatory motion inspired from aquatic swimmers using our immersed boundary, large-eddy simulations (LES). The angle of attack is five degrees and Reynolds number (Re) is 20,000. The undulation is a traveling wave, which has a constant amplitude of 0.01 with respect to chord length and a different wavelength and Strouhal number (St =fA/U, f: frequency, A: amplitude, and U: free stream velocity) for each case. Over a fixed plate the LEV becomes unstable as it reaches the trailing edge and sheds to the wake, whereas over the undulating plate with St =0.2 the LEV becomes stable. The visualization of time average results shows there is a favorable pressure gradient along the tangential direction in cases the LEV becomes stable, which we explain analytically by showing the correlation between the average pressure gradient, St, and wavelength. Finally, the effects of undulatory moving walls of a channel flow on the turbulent statistics is shown. This work was partly supported by the National Science Foundation (NSF) CAREER Grant CBET 1453982, and the Center of Computational Research (CCR) of University at Buffalo.

  11. EUROMECH 384 Colloquium on Steady and Unsteady Separated Flows Manchester, UK July 6-9 1998. Book of Abstracts

    National Research Council Canada - National Science Library

    Barakos, G

    1998-01-01

    The numerical simulation of unsteady separated turbulent flows around moving lifting surfaces is fueled by the industrial need to analyse and understand flow phenomena associated with the behaviour...

  12. Calculation of the separate parameters of a countercurrent centrifuge with an axially varying internal flow

    International Nuclear Information System (INIS)

    Migliavacca, S.C.P.

    1991-01-01

    A review of the isotope separation theory for the countercurrent gas centrifuge is presented. The diffusion-convection equation is solved according to the ONSAGER-COHEN solution for the constant internal flow and adapted to an axially varying countercurrent flow. Based on that theory, a numerical program is developed for the calculation of the isotopic compositions and the separative parameters of the centrifuge. The influence of the feed flow and the internal parameters. Like cut and countercurrent flow, on the separative parameters is then analysed for a model-centrifuge, which afterwards is optimized with respect to its separative power. Finally, a comparison between the present calculation procedure and some published results, provided by different theories, shows deviations lower then 20%. (author)

  13. DNS for Flow Separation Control Around Airfoil by Steady and Pulsed Jets

    National Research Council Canada - National Science Library

    Deng, Shutian; Jiang, Li; Liu, Chaoqun

    2004-01-01

    This work consists of two parts. The first part is direct numerical simulation (DNS) for flow separation and transition around a NACA 0012 airfoil with an attack angle of 4 degrees and Reynolds number of 100,000...

  14. Turbulence Models: Data from Other Experiments: FAITH Hill 3-D Separated Flow

    Data.gov (United States)

    National Aeronautics and Space Administration — Exp: FAITH Hill 3-D Separated Flow. This web page provides data from experiments that may be useful for the validation of turbulence models. This resource is...

  15. A device for pre-separating water-drops in a two-phase flow

    International Nuclear Information System (INIS)

    Andro, Jean; Peyrelongue, J.-P.

    1974-01-01

    The invention relates to the mechanical pre-separation of water-drops in suspension in a flow of saturated steam. To this end, the method comprises the steps of carrying out rough separations by directing the flow towards curved surfaces adapted to deflect that flow and to project the drops onto said surfaces, sucking the film formed by the water-drops displaced by centrifugal force on the outer periphery of said surfaces, directing the steam separated from the water-drops onto five separators so as to extract dry steam and discharging the water provided by the sucking of said surfaces and the five separators. The invention applies to the drying of steam issuing from the high-pressure bodies of nuclear steam-turbines [fr

  16. Separation of cancer cells from white blood cells by pinched flow fractionation

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant; Ashley, Neil; Koprowska, Kamila

    2015-01-01

    In this paper, the microfluidic size-separation technique pinched flow fractionation (PFF) is used to separate cancer cells from white blood cells (WBCs). The cells are separated at efficiencies above 90% for both cell types. Circulating tumor cells (CTCs) are found in the blood of cancer patients...... and can form new tumors. CTCs are rare cells in blood, but they are important for the understanding of metastasis. There is therefore a high interest in developing a method for the enrichment of CTCs from blood samples, which also enables further analysis of the separated cells. The separation...

  17. Separation of ions in nanofluidic channels with combined pressure-driven and electro-osmotic flow.

    Science.gov (United States)

    Gillespie, Dirk; Pennathur, Sumita

    2013-03-05

    Separation of ionic species with the same electrophoretic mobility but different valence in electrolyte systems can occur within nanometer-scale channels with finite electrical double layers (EDLs). This is because EDL thicknesses are a significant fraction of slit height in such channels and can create transverse analyte concentration profiles that allow for unique separation modalities when combined with axial fluid flow. Previous work has shown such separation to occur using either pressure-driven flow or electro-osmotic flow separately. Here, we develop a Poisson-Boltzmann model to compare the separation of such ions using the combination of both pressure-driven and electro-osmotic flow. Applying a pressure gradient in the opposite direction of electro-osmotic flow can allow for zero or infinite retention of analyte species, which we investigate using three different wall boundary conditions. Furthermore, we determine conditions in fused silica nanochannels with which to generate optimal separation between two analytes of different charge but the same mobility. We also give simple rules of thumb to achieve the best separation efficacy in nanochannel systems.

  18. Development of the Two Phase Flow Separator Experiment for a Reduced Gravity Aircraft Flight

    Science.gov (United States)

    Golliher, Eric; Gotti, Daniel; Owens, Jay; Gilkey, Kelly; Pham, Nang; Stehno, Philip

    2016-01-01

    The recent hardware development and testing of a reduced gravity aircraft flight experiment has provided valuable insights for the future design of the Two Phase Flow Separator Experiment (TPFSE). The TPFSE is scheduled to fly within the Fluids Integration Rack (FIR) aboard the International Space Station (ISS) in 2020. The TPFSE studies the operational limits of gas and liquid separation of passive cyclonic separators. A passive cyclonic separator utilizes only the inertia of the incoming flow to accomplish the liquid-gas separation. Efficient phase separation is critical for environmental control and life support systems, such as recovery of clean water from bioreactors, for long duration human spaceflight missions. The final low gravity aircraft flight took place in December 2015 aboard NASA's C9 airplane.

  19. Movable shark scales act as a passive dynamic micro-roughness to control flow separation

    International Nuclear Information System (INIS)

    Lang, Amy W; Bradshaw, Michael T; Smith, Jonathon A; Wheelus, Jennifer N; Motta, Philip J; Habegger, Maria L; Hueter, Robert E

    2014-01-01

    Shark scales on fast-swimming sharks have been shown to be movable to angles in excess of 50°, and we hypothesize that this characteristic gives this shark skin a preferred flow direction. During the onset of separation, flow reversal is initiated close to the surface. However, the movable scales would be actuated by the reversed flow thereby causing a greater resistance to any further flow reversal and this mechanism would disrupt the process leading to eventual flow separation. Here we report for the first time experimental evidence of the separation control capability of real shark skin through water tunnel testing. Using skin samples from a shortfin mako Isurus oxyrinchus, we tested a pectoral fin and flank skin attached to a NACA 4412 hydrofoil and separation control was observed in the presence of movable shark scales under certain conditions in both cases. We hypothesize that the scales provide a passive, flow-actuated mechanism acting as a dynamic micro-roughness to control flow separation. (paper)

  20. Simulation of boiling flow in evaporator of separate type heat pipe with low heat flux

    International Nuclear Information System (INIS)

    Kuang, Y.W.; Wang, Wen; Zhuan, Rui; Yi, C.C.

    2015-01-01

    Highlights: • A boiling flow model in a separate type heat pipe with 65 mm diameter tube. • Nucleate boiling is the dominant mechanism in large pipes at low mass and heat flux. • The two-phase heat transfer coefficient is less sensitive to the total mass flux. - Abstract: The separate type heat pipe heat exchanger is considered to be a potential selection for developing passive cooling spent fuel pool – for the passive pressurized water reactor. This paper simulates the boiling flow behavior in the evaporator of separate type heat pipe, consisting of a bundle of tubes of inner diameter 65 mm. It displays two-phase characteristic in the evaporation section of the heat pipe working in low heat flux. In this study, the two-phase flow model in the evaporation section of the separate type heat pipe is presented. The volume of fluid (VOF) model is used to consider the interaction between the ammonia gas and liquid. The flow patterns and flow behaviors are studied and the agitated bubbly flow, churn bubbly flow are obtained, the slug bubble is likely to break into churn slug or churn froth flow. In addition, study on the heat transfer coefficients indicates that the nucleate boiling is the dominant mechanism in large pipes at low mass and heat flux, with the heat transfer coefficient being less sensitive to the total mass flux

  1. Separation of base flow from streamflow using groundwater levels - illustrated for the Pang catchment (UK)

    NARCIS (Netherlands)

    Peters, E.; Lanen, van H.A.J.

    2005-01-01

    A new filter to separate base flow from streamflow has developed that uses observed groundwater levels. To relate the base flow to the observed groundwater levels, a non-linear relation was used. This relation is suitable for unconfined aquifers with deep groundwater levels that do not respond to

  2. Separation of magnetic beads in a hybrid continuous flow microfluidic device

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Abhishek [Haldia Institute of Technology, Production Engineering Department, Haldia (India); Ganguly, Ranjan; Datta, Amitava [Jadavpur University, Power Engineering Department (India); Modak, Nipu, E-mail: nmechju@gmail.com [Jadavpur University, Mechanical Engineering Department (India)

    2017-04-01

    Magnetic separation of biological entities in microfluidic environment is a key task for a large number of bio-analytical protocols. In magnetophoretic separation, biochemically functionalized magnetic beads are allowed to bind selectively to target analytes, which are then separated from the background stream using a suitably imposed magnetic field. Here we present a numerical study, characterizing the performance of a magnetophoretic hybrid microfluidic device having two inlets and three outlets for immunomagnetic isolation of three different species from a continuous flow. The hybrid device works on the principle of split-flow thin (SPLITT) fractionation and field flow fractionation (FFF) mechanisms. Transport of the magnetic particles in the microchannel has been predicted following an Eulerian-Lagrangian model and using an in-house numerical code. Influence of the salient geometrical parameters on the performance of the separator is studied by characterizing the particle trajectories and their capture and separation indices. Finally, optimum channel geometry is identified that yields the maximum capture efficiency and separation index. - Highlights: • Immunomagnetic separation in a hybrid microchannel design is investigated numerically. • Influence of salient geometric parameters on the device performance is analysed. • Optimum device dimension for best separation parameters are identified. • Optimized design of hybrid separator performs better than FFF or SPLITT devices.

  3. Numerical analysis of flow in a centrifugal compressor with circumferential grooves: influence of groove location and number on flow instability

    Science.gov (United States)

    Chen, X.; Qin, G.; Ai, Z.; Ji, Y.

    2017-08-01

    As an effective and economic method for flow range enhancement, circumferential groove casing treatment (CGCT) is widely used to increase the stall margin of compressors. Different from traditional grooved casing treatments, in which the grooves are always located over the rotor in both axial and radial compressors, one or several circumferential grooves are located along the shroud side of the diffuser passage in this paper. Numerical investigations were conducted to predict the performance of a low flow rate centrifugal compressor with CGCT in diffuser. Computational fluid dynamics (CFD) analysis is performed under stage environment in order to find the optimum location of the circumferential casing groove in consideration of stall margin enhancement and efficiency gain at design point, and the impact of groove number to the effect of this grooved casing treatment configuration in enhancing the stall margin of the compressor stage is studied. The results indicate that the centrifugal compressor with circumferential groove in vaned diffuser can obtain obvious improvement in the stall margin with sacrificing design efficiency a little. Efforts were made to study blade level flow mechanisms to determine how the CGCT impacts the compressor’s stall margin (SM) and performance. The flow structures in the passage, the tip gap, and the grooves as well as their mutual interactions were plotted and analysed.

  4. Impact of trucking network flow on preferred biorefinery locations in the southern United States

    Science.gov (United States)

    Timothy M. Young; Lee D. Han; James H. Perdue; Stephanie R. Hargrove; Frank M. Guess; Xia Huang; Chung-Hao Chen

    2017-01-01

    The impact of the trucking transportation network flow was modeled for the southern United States. The study addresses a gap in existing research by applying a Bayesian logistic regression and Geographic Information System (GIS) geospatial analysis to predict biorefinery site locations. A one-way trucking cost assuming a 128.8 km (80-mile) haul distance was estimated...

  5. Membraneless laminar flow cell for electrocatalytic CO2 reduction with liquid product separation

    International Nuclear Information System (INIS)

    Monroe, Morgan M; Lobaccaro, Peter; Lum, Yanwei; Ager, Joel W

    2017-01-01

    The production of liquid fuel products via electrochemical reduction of CO 2 is a potential path to produce sustainable fuels. However, to be practical, a separation strategy is required to isolate the fuel-containing electrolyte produced at the cathode from the anode and also prevent the oxidation products (i.e. O 2 ) from reaching the cathode. Ion-conducting membranes have been applied in CO 2 reduction reactors to achieve this separation, but they represent an efficiency loss and can be permeable to some product species. An alternative membraneless approach is developed here to maintain product separation through the use of a laminar flow cell. Computational modelling shows that near-unity separation efficiencies are possible at current densities achievable now with metal cathodes via optimization of the spacing between the electrodes and the electrolyte flow rate. Laminar flow reactor prototypes were fabricated with a range of channel widths by 3D printing. CO 2 reduction to formic acid on Sn electrodes was used as the liquid product forming reaction, and the separation efficiency for the dissolved product was evaluated with high performance liquid chromatography. Trends in product separation efficiency with channel width and flow rate were in qualitative agreement with the model, but the separation efficiency was lower, with a maximum value of 90% achieved. (paper)

  6. Unsteady effects in flows past stationary airfoils with Gurney flaps due to unsteady flow separations at low Reynolds numbers

    OpenAIRE

    Dan MATEESCU

    2015-01-01

    This paper presents the analysis of the unsteady flows past stationary airfoils equipped with Gurney flaps at low Reynolds numbers, aiming to study the unsteady behavior of the aerodynamic coefficients due to the flow separations occurring at these Reynolds numbers. The Gurney flaps are simple but very efficient lift-increasing devices, which due to their mechanical simplicity are of particular interest for the small size micro-air-vehicles (MAV) flying at low speed and very low Reynolds numb...

  7. Turbine endwall two-cylinder program. [wind tunnel and water tunnel investigation of three dimensional separation of fluid flow

    Science.gov (United States)

    Langston, L. S.

    1980-01-01

    Progress is reported in an effort to study the three dimensional separation of fluid flow around two isolated cylinders mounted on an endwall. The design and performance of a hydrogen bubble generator for water tunnel tests to determine bulk flow properties and to measure main stream velocity and boundary layer thickness are described. Although the water tunnel tests are behind schedule because of inlet distortion problems, tests are far enough along to indicate cylinder spacing, wall effects and low Reynolds number behavior, all of which impacted wind tunnel model design. The construction, assembly, and operation of the wind tunnel and the check out of its characteristics are described. An off-body potential flow program was adapted to calculate normal streams streamwise pressure gradients at the saddle point locations.

  8. Flow characteristics of centrifugal gas-liquid separator. Investigation with air-water two-phase flow experiment

    International Nuclear Information System (INIS)

    Yoneda, Kimitoshi; Inada, Fumio

    2004-01-01

    Air-water two-phase flow experiment was conducted to examine the basic flow characteristics of a centrifugal gas-liquid separator. Vertical transparent test section, which is 4 m in height, was used to imitate the scale of a BWR separator. Flow rate conditions of gas and liquid were fixed at 0.1 m 3 /s and 0.033 m 3 /s, respectively. Radial distributions of two-phase flow characteristics, such as void fraction, gas velocity and bubble chord length, were measured by traversing dual optical void probes in the test section, horizontally. The flow in the standpipe reached to quasi-developed state within the height-to-diameter aspect ratio H/D=10, which in turn can mean the maximum value for an ideal height design of a standpipe. The liquid film in the barrel showed a maximum thickness at 0.5 to 1 m in height from the swirler exit, which was a common result for three different standpipe length conditions, qualitatively and quantitatively. The empirical database obtained in this study would contribute practically to the validation of numerical analyses for an actual separator in a plant, and would also be academically useful for further investigations of two-phase flow in large-diameter pipes. (author)

  9. Hypersonic Separated Flows About "Tick" Configurations With Sensitivity to Model Design

    Science.gov (United States)

    Moss, J. N.; O'Byrne, S.; Gai, S. L.

    2014-01-01

    This paper presents computational results obtained by applying the direct simulation Monte Carlo (DSMC) method for hypersonic nonequilibrium flow about "tick-shaped" model configurations. These test models produces a complex flow where the nonequilibrium and rarefied aspects of the flow are initially enhanced as the flow passes over an expansion surface, and then the flow encounters a compression surface that can induce flow separation. The resulting flow is such that meaningful numerical simulations must have the capability to account for a significant range of rarefaction effects; hence the application of the DSMC method in the current study as the flow spans several flow regimes, including transitional, slip, and continuum. The current focus is to examine the sensitivity of both the model surface response (heating, friction and pressure) and flowfield structure to assumptions regarding surface boundary conditions and more extensively the impact of model design as influenced by leading edge configuration as well as the geometrical features of the expansion and compression surfaces. Numerical results indicate a strong sensitivity to both the extent of the leading edge sharpness and the magnitude of the leading edge bevel angle. Also, the length of the expansion surface for a fixed compression surface has a significant impact on the extent of separated flow.

  10. A Study of Flow Separation in Transonic Flow Using Inviscid and Viscous Computational Fluid Dynamics (CFD) Schemes

    Science.gov (United States)

    Rhodes, J. A.; Tiwari, S. N.; Vonlavante, E.

    1988-01-01

    A comparison of flow separation in transonic flows is made using various computational schemes which solve the Euler and the Navier-Stokes equations of fluid mechanics. The flows examined are computed using several simple two-dimensional configurations including a backward facing step and a bump in a channel. Comparison of the results obtained using shock fitting and flux vector splitting methods are presented and the results obtained using the Euler codes are compared to results on the same configurations using a code which solves the Navier-Stokes equations.

  11. Effect of inlet and outlet flow conditions on natural gas parameters in supersonic separation process.

    Directory of Open Access Journals (Sweden)

    Yan Yang

    Full Text Available A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.

  12. Flow Separation

    Science.gov (United States)

    1975-11-01

    procedant k une "correction de couche Halte" qul aura pour effet de placer le decollement en un point plus avanc« et, par Id, plus pro- che de celul trouve...couche Hmlte se comporte comae celul qul se produlralt sur la surface correapondant i la frontlire de fi. evaluee k partlr du premier calcul sans...proche de celul de Chapman-Rubesln que le nombre de coefficients retenu dans la relation gin^rale de Nielsen entre la temperature et la

  13. Unsteady effects in flows past stationary airfoils with Gurney flaps due to unsteady flow separations at low Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Dan MATEESCU

    2015-12-01

    Full Text Available This paper presents the analysis of the unsteady flows past stationary airfoils equipped with Gurney flaps at low Reynolds numbers, aiming to study the unsteady behavior of the aerodynamic coefficients due to the flow separations occurring at these Reynolds numbers. The Gurney flaps are simple but very efficient lift-increasing devices, which due to their mechanical simplicity are of particular interest for the small size micro-air-vehicles (MAV flying at low speed and very low Reynolds number. The unsteady aerodynamic analysis is performed with an efficient time-accurate numerical method developed for the solution of the Navier-Stokes equations at low Reynolds numbers, which is second-order-accurate in time and space. The paper presents solutions for the unsteady aerodynamic coefficients of lift and drag and for the lift-to-drag ratio of several symmetric and cambered airfoils with Gurney flaps. It was found that although the airfoil is considered stationary, starting from a relatively small incidence (about 8 degrees the flow becomes unsteady due to the unsteadiness of the flow separations occurring at low Reynolds numbers, and the aerodynamic coefficients display periodic oscillations in time. A detailed study is presented in the paper on the influence of various geometric and flow parameters, such as the Gurney flap height, Reynolds number, airfoil relative thickness and relative camber, on the aerodynamic coefficients of lift, drag and lift-to-drag ratio. The flow separation is also studied with the aid of flow visualizations illustrating the changes in the flow pattern at various moments in time.

  14. Prediction of fluctuating pressure environments associated with plume-induced separated flow fields

    Science.gov (United States)

    Plotkin, K. J.

    1973-01-01

    The separated flow environment induced by underexpanded rocket plumes during boost phase of rocket vehicles has been investigated. A simple semi-empirical model for predicting the extent of separation was developed. This model offers considerable computational economy as compared to other schemes reported in the literature, and has been shown to be in good agreement with limited flight data. The unsteady pressure field in plume-induced separated regions was investigated. It was found that fluctuations differed from those for a rigid flare only at low frequencies. The major difference between plume-induced separation and flare-induced separation was shown to be an increase in shock oscillation distance for the plume case. The prediction schemes were applied to PRR shuttle launch configuration. It was found that fluctuating pressures from plume-induced separation are not as severe as for other fluctuating environments at the critical flight condition of maximum dynamic pressure.

  15. Comparison of Miniaturized and Conventional Asymmetrical Flow Field-Flow Fractionation (AF4 Channels for Nanoparticle Separations

    Directory of Open Access Journals (Sweden)

    Zengchao You

    2017-03-01

    Full Text Available The performance of a miniaturized channel for the separation of polymer and metal nanoparticles (NP using Asymmetrical Flow Field-Flow Fractionation (AF4 was investigated and compared with a conventional AF4 system. To develop standard separation methods, experimental parameters like cross flow, gradient profile and injection time were varied and optimized. Corresponding chromatographic parameters were calculated and compared. Our results indicate that the chromatographic resolution in the miniaturized channel is lower, whereas significantly shorter analyses time and less solvent consumption were obtained. Moreover, the limit of detection (LOD and limit of quantification (LOQ obtained from hyphenation with a UV-detector are obviously lower than in a conventional channel, which makes the miniaturized channel interesting for trace analysis.

  16. Phase separation and pressure drop of two-phase flow in vertical manifolds

    International Nuclear Information System (INIS)

    Zetzmann, K.

    1982-01-01

    The splitting of a two-phase mass flow in a tube manifold results in a separation between liquid and gas phase. A study is presented of the phase distribution and the related two-phase pressure drop for vertical manifolds in the technically relevant geometry and flow parameter region of an air-water-flow. At the outlet changes in the gas/fluid-radio are observed which are proportional to this ratio at the inlet. The separation characteristic strongly depends on the massflow through the junction. Empirical equations are given to calculate the separation. Measuring the pressure drop at main- and secondary tube of the manifold the additional pressure drop can be obtained. If these results are related with the dynamic pressure at the inlet, two-phase resistance coefficients can be deduced, which may be tested by empirical relations. (orig.) [de

  17. Continuous flow electrophoretic separation of proteins and cells from mammalian tissues

    Science.gov (United States)

    Hymer, W. C.; Barlow, Grant H.; Blaisdell, Steven J.; Cleveland, Carolyn; Farrington, Mary Ann; Feldmeier, Mary; Hatfield, J. Michael; Lanham, J. Wayne; Grindeland, Richard; Snyder, Robert S.

    1987-01-01

    This paper describes an apparatus for continuous flow electrophoresis (CFE), designed to separate macromolecules and cells at conditions of microgravity. In this CFE, buffer flows upward in a 120-cm long flow chamber, which is 16-cm wide x 3.0-mm thick in the microgravity version (and 6-cm wide x 1.5-mm thick in the unit-gravity laboratory version). Ovalbumin and rat serum albumin were separated in space (flight STS-4) with the same resolution of the two proteins achieved at 25 percent total w/v concentration that was obtained in the laboratory at 0.2 percent w/v concentration. Rat anterior pituitary cells, cultured human embryonic kidney cells, and canine Langerhans cells were separated into subpopulations (flight STS-8) more effectively than in unit gravity, with comparable resolution having been achieved at 100 times the concentration possible on earth.

  18. High-frequency counter-flow plasma synthetic jet actuator and its application in suppression of supersonic flow separation

    Science.gov (United States)

    Wang, Hongyu; Li, Jun; Jin, Di; Tang, Mengxiao; Wu, Yun; Xiao, Lianghua

    2018-01-01

    We come up with a control strategy for suppression of supersonic flow separation based on high-frequency Counter-flow Plasma Synthetic Jet Actuator (CPSJA). The main purpose of this investigation is to verify if its control authority can be enhanced by the jet/shock interaction. We use a blunt nose to generate a bow shock, a step on a flat plate to introduce a massive separation in a Mach 2 wind tunnel, and the CPSJA to generate Plasma Synthetic Jet (PSJ). In this study, pulsed capacitive discharge is provided for an array of CPSJAs, which makes the actuation (discharge) frequency f1 = 1 kHz, f2 = 2 kHz and f3 = 3 kHz. We use the high-speed schlieren imaging and fast response pressure transducers as well as a numerical simulation to investigate the quiescent PSJ properties, the interaction between the jet and bow shock, and its disturbance effect on the downstream separated region. The schlieren images show that PSJ is characterized by a succession of vortex rings; the jet strength weakens with the increase of frequency. A 4.5 mN jet thrust is found for all the frequencies. The simulation results show that jet/shock interaction produces vorticity in the vortex ring of the jet, enhancing turbulent mixing in PSJ so that a great deal of momentum is produced into the flow. We found the downstream flow is significantly disturbed by the enhanced actuation. Actuation with frequency of f2, f3 which is close to the natural frequency fn of the separation bubble suppresses the separation with the upstream laminar boundary layer being periodically attenuated, which has a better control effect than f1. The control effect is sensitive to the position where PSJ interacts with the shear layer, but the amount of energy deposited in one pulse is not crucial in a separation reduction in the experiment.

  19. A different approach on the onset of separation in the flow around a circular cylinder

    Science.gov (United States)

    Malamataris, Nikolaos; Sarris, I.; Pazis, D.; Liakos, A.

    2016-11-01

    The onset of separation in the flow around a cylinder is revisited with new insight. The goal of the research is to compute the smallest Reynolds number where the separation actual occurs rather than computing small eddies and extrapolating to the value of the Reynolds number where separation may occur. To this purpose, an accurate home made code is designed with Galerkin finite elements. The computational domain is chosen as the laboratory experiments by Taneda. It is found that in all six different choices of Taneda's diameters of the cylinders he used, separation is not observed for Re separation is computed in all of his six cases for Re = 6 . 14 . Images of this smallest eddy are shown for the first time where all characteristics of eddies are recognisable (vortex centre, separation length etc). The vorticity of the flow is computed along the cylinder surface and it is shown that, at separation, vorticity changes sign. Byproducts of this research is the computation of the drag coefficient for Reynolds numbers starting from 1 .10-5 up to 40. In addition, the separation angle (point where vorticity changes sign) is computed for 6 . 14 work done on that subject so far.

  20. Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland

    Science.gov (United States)

    Walter, Fabian; Burtin, Arnaud; McArdell, Brian W.; Hovius, Niels; Weder, Bianca; Turowski, Jens M.

    2017-06-01

    Heavy precipitation can mobilize tens to hundreds of thousands of cubic meters of sediment in steep Alpine torrents in a short time. The resulting debris flows (mixtures of water, sediment and boulders) move downstream with velocities of several meters per second and have a high destruction potential. Warning protocols for affected communities rely on raising awareness about the debris-flow threat, precipitation monitoring and rapid detection methods. The latter, in particular, is a challenge because debris-flow-prone torrents have their catchments in steep and inaccessible terrain, where instrumentation is difficult to install and maintain. Here we test amplitude source location (ASL) as a processing scheme for seismic network data for early warning purposes. We use debris-flow and noise seismograms from the Illgraben catchment, Switzerland, a torrent system which produces several debris-flow events per year. Automatic in situ detection is currently based on geophones mounted on concrete check dams and radar stage sensors suspended above the channel. The ASL approach has the advantage that it uses seismometers, which can be installed at more accessible locations where a stable connection to mobile phone networks is available for data communication. Our ASL processing uses time-averaged ground vibration amplitudes to estimate the location of the debris-flow front. Applied to continuous data streams, inversion of the seismic amplitude decay throughout the network is robust and efficient, requires no manual identification of seismic phase arrivals and eliminates the need for a local seismic velocity model. We apply the ASL technique to a small debris-flow event on 19 July 2011, which was captured with a temporary seismic monitoring network. The processing rapidly detects the debris-flow event half an hour before arrival at the outlet of the torrent and several minutes before detection by the in situ alarm system. An analysis of continuous seismic records furthermore

  1. Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland

    Directory of Open Access Journals (Sweden)

    F. Walter

    2017-06-01

    Full Text Available Heavy precipitation can mobilize tens to hundreds of thousands of cubic meters of sediment in steep Alpine torrents in a short time. The resulting debris flows (mixtures of water, sediment and boulders move downstream with velocities of several meters per second and have a high destruction potential. Warning protocols for affected communities rely on raising awareness about the debris-flow threat, precipitation monitoring and rapid detection methods. The latter, in particular, is a challenge because debris-flow-prone torrents have their catchments in steep and inaccessible terrain, where instrumentation is difficult to install and maintain. Here we test amplitude source location (ASL as a processing scheme for seismic network data for early warning purposes. We use debris-flow and noise seismograms from the Illgraben catchment, Switzerland, a torrent system which produces several debris-flow events per year. Automatic in situ detection is currently based on geophones mounted on concrete check dams and radar stage sensors suspended above the channel. The ASL approach has the advantage that it uses seismometers, which can be installed at more accessible locations where a stable connection to mobile phone networks is available for data communication. Our ASL processing uses time-averaged ground vibration amplitudes to estimate the location of the debris-flow front. Applied to continuous data streams, inversion of the seismic amplitude decay throughout the network is robust and efficient, requires no manual identification of seismic phase arrivals and eliminates the need for a local seismic velocity model. We apply the ASL technique to a small debris-flow event on 19 July 2011, which was captured with a temporary seismic monitoring network. The processing rapidly detects the debris-flow event half an hour before arrival at the outlet of the torrent and several minutes before detection by the in situ alarm system. An analysis of continuous seismic

  2. A microfluidic chip for blood plasma separation using electro-osmotic flow control

    International Nuclear Information System (INIS)

    Jiang, Hai; Weng, Xuan; Chon, Chan Hee; Wu, Xudong; Li, Dongqing

    2011-01-01

    In this paper, a microfluidic-based chip with two straight microchannels and five branch microchannels was designed and tested to separate blood plasma from a small sample of fresh human blood. The electro-osmotic flow method was used to control the separation of blood plasma. Blood cell removal and blood plasma extraction were realized in experiments. The efficiency of extracting blood plasma can be as high as 26%

  3. Formation of structural steady states in lamellar/sponge phase-separating fluids under shear flow

    Science.gov (United States)

    Panizza, P.; Courbin, L.; Cristobal, G.; Rouch, J.; Narayanan, T.

    2003-05-01

    We investigate the effect of shear flow on a lamellar-sponge phase-separating fluid when subjected to shear flow. We show the existence of two different steady states (droplets and ribbons structures) whose nature does not depend on the way to reach the two-phase unstable region of the phase diagram (temperature quench or stirring). The transition between ribbons and droplets is shear thickening and its nature strongly depends on what dynamical variable is imposed. If the stress is fixed, flow visualization shows the existence of shear bands at the transition, characteristic of coexistence in the cell between ribbons and droplets. In this shear-banding region, the viscosity oscillates. When the shear rate is fixed, no shear bands are observed. Instead, the transition exhibits a hysteretic behavior leading to a structural bi-stability of the phase-separating fluid under flow.

  4. Lean premixed reacting flows with swirl and wall-separation zones in a contracting chamber

    Science.gov (United States)

    Zhang, Yuxin; Rusak, Zvi; Wang, Shixiao

    2017-11-01

    Low Mach number lean premixed reacting swirling flows with wall-separation zones in a contracting circular finite-length open chamber are studied. Assuming a complete reaction with high activation energy and chemical equilibrium behind the reaction zone, a nonlinear partial differential equation is derived for the solution of the flow stream function behind the reaction zone in terms of the inlet total enthalpy for a reacting flow, specific entropy and the circulation functions. Bifurcation diagrams of steady flows are described as the inlet swirl level is increased at fixed chamber contraction and reaction heat release. The approach is applied to an inlet solid-body rotation flow with constant profiles of the axial velocity, temperature and mixture reactant mass fraction. The computed results provide predictions of the critical inlet swirl levels for the first appearance of wall-separation states and for the size of the separation zone as a function of the inlet swirl ratio, Mach number, chamber contraction and heat release of the reaction. The methodology developed in this paper provides a theoretical feasibility for the development of the technology of swirl-assisted combustion where the reaction zone is supported and stabilized by a wall-separation zone.

  5. Self-separation of blood plasma from whole blood during the capillary flow in microchannel

    Science.gov (United States)

    Nunna, Bharath Babu; Zhuang, Shiqiang; Lee, Eon Soo

    2017-11-01

    Self-separation of blood plasma from whole blood in microchannels is of great importance due to the enormous range of applications in healthcare and diagnostics. Blood is a multiphase complex fluid, composed of cells suspended in blood plasma. RBCs are the suspended particles whose shape changes during the flow of blood. The primary constituents of blood are erythrocytes or red blood cells (RBCs), leukocytes or white blood cells (WBCs), thrombocytes or platelets and blood plasma. The existence of RBCs in blood makes the blood a non-Newtonian fluid. The current study of separation of blood plasma from whole blood during self-driven flows in a single microchannel without bifurcation, by enhancing the capillary effects. The change in the capillary effect results in a change in contact angle which directly influences the capillary flow. The flow velocity directly influences the net force acting on the RBCs and influence the separation process. The experiments are performed on the PDMS microchannels with different contact angles by altering the surface characteristics using plasma treatment. The change in the separation length is studied during the capillary flow of blood in microchannel. Bharath Babu Nunna is a researcher in mechanical engineering and implementing the novel and innovative technologies in the biomedical devices to enhance the sensitivity of the disease diagnosis.

  6. Inlet Diameter and Flow Volume Effects on Separation and Energy Efficiency of Hydrocyclones

    Science.gov (United States)

    Erikli, Ş.; Olcay, A. B.

    2015-08-01

    This study investigates hydrocyclone performance of an oil injected screw compressor. Especially, the oil separation efficiency of a screw compressor plays a significant role for air quality and non-stop working hour of compressors has become an important issue when the efficiency in energy is considered. In this study, two separation efficiency parameters were selected to be hydrocyclone inlet diameter and flow volume height between oil reservoir surface and top of the hydrocyclone. Nine different cases were studied in which cyclone inlet diameter and flow volume height between oil reservoir surface and top were investigated in regards to separation and energy performance aspects and the effect of the parameters on the general performance appears to be causing powerful influence. Flow inside the hydrocyclone geometry was modelled by Reynolds Stress Model (RSM) and hydro particles were tracked by Discrete Phase Model (DPM). Besides, particle break up was modelled by the Taylor Analogy Breakup (TAB) model. The reversed vortex generation was observed at different planes. The upper limit of the inlet diameter of the cyclone yields the centrifugal force on particles to decrease while the flow becomes slower; and the larger diameter implies slower flow. On the contrary, the lower limit is increment in speed causes breakup problems that the particle diameters become smaller; consequently, it is harder to separate them from gas.

  7. Numerical Simulation of Unsteady Large Scale Separated Flow around Oscillating Airfoil

    OpenAIRE

    Isogai, Koji; 磯貝, 紘二

    1991-01-01

    Numerical simulations of dynamic stall phenomenon of NACA0012 airfoil oscillating in pitch near static stalling angle are performed by using the compressible Navier-Stokes equations. In the present computations, a TVD scheme and an algebraic turbulence model are employed for the simulations of the unsteady separated flows at Reynolds number of 1.1x105. The hysteresis loops of the unsteady pitching moment during dynamic stall are compared with the existing experimental data. The flow pattern a...

  8. Application of the PROMETHEE technique to determine depression outlet location and flow direction in DEM

    Science.gov (United States)

    Chou, Tien-Yin; Lin, Wen-Tzu; Lin, Chao-Yuan; Chou, Wen-Chieh; Huang, Pi-Hui

    2004-02-01

    With the fast growing progress of computer technologies, spatial information on watersheds such as flow direction, watershed boundaries and the drainage network can be automatically calculated or extracted from a digital elevation model (DEM). The stubborn problem that depressions exist in DEMs has been frequently encountered while extracting the spatial information of terrain. Several filling-up methods have been proposed for solving depressions. However, their suitability for large-scale flat areas is inadequate. This study proposes a depression watershed method coupled with the Preference Ranking Organization METHod for Enrichment Evaluations (PROMETHEEs) theory to determine the optimal outlet and calculate the flow direction in depressions. Three processing procedures are used to derive the depressionless flow direction: (1) calculating the incipient flow direction; (2) establishing the depression watershed by tracing the upstream drainage area and determining the depression outlet using PROMETHEE theory; (3) calculating the depressionless flow direction. The developed method was used to delineate the Shihmen Reservoir watershed located in Northern Taiwan. The results show that the depression watershed method can effectively solve the shortcomings such as depression outlet differentiating and looped flow direction between depressions. The suitability of the proposed approach was verified.

  9. The Two-Phase Flow Separator Experiment Breadboard Model: Reduced Gravity Aircraft Results

    Science.gov (United States)

    Rame, E; Sharp, L. M.; Chahine, G.; Kamotani, Y.; Gotti, D.; Owens, J.; Gilkey, K.; Pham, N.

    2015-01-01

    Life support systems in space depend on the ability to effectively separate gas from liquid. Passive cyclonic phase separators use the centripetal acceleration of a rotating gas-liquid mixture to carry out phase separation. The gas migrates to the center, while gas-free liquid may be withdrawn from one of the end plates. We have designed, constructed and tested a breadboard that accommodates the test sections of two independent principal investigators and satisfies their respective requirements, including flow rates, pressure and video diagnostics. The breadboard was flown in the NASA low-gravity airplane in order to test the system performance and design under reduced gravity conditions.

  10. Characterization of Passive Flow-Actuated Microflaps Inspired by Shark Skin for Separation Control

    Science.gov (United States)

    Morris, Jackson; Devey, Sean; Lang, Amy; Hubner, Paul

    2017-11-01

    Thanks to millions of years of natural selection, sharks have evolved into quick apex predators. Previous research has proven shark skin to reduce flow separation, which would result in lower pressure drag. Mako shark skin is made up of microscopic scales on the order of 0.2 mm in size. These scales are hypothesized to be a flow control mechanism, capable of being passively actuated by reversed flow. We believe shark scales are strategically sized to interact with the lower 5 percent of the boundary layer, where reversed flow occurs near the wall. Previous wind tunnel research has shown that it is possible to passively actuate 2D flaps in the lower regions of the boundary layer. This research aims to identify reverse flow conditions that will cause small 3D flaps to actuate. Several sets of microflaps (about 4 mm in length) geometrically similar to shark scales were 3D printed. These microflaps were tested in a low-speed wind tunnel in various reverse flow conditions. Microflaps were observed to be actuated by the reversing flow and flow conditions were characterized using a hot-wire probe. These microflaps have the potential to mimic the mako shark type of flow control in air, passively actuated by reverse flow conditions. This research was supported by Boeing, the US Army, and the National Science Foundation REU program.

  11. Thermophoretic motion behavior of submicron particles in boundary-layer-separation flow around a droplet.

    Science.gov (United States)

    Wang, Ao; Song, Qiang; Ji, Bingqiang; Yao, Qiang

    2015-12-01

    As a key mechanism of submicron particle capture in wet deposition and wet scrubbing processes, thermophoresis is influenced by the flow and temperature fields. Three-dimensional direct numerical simulations were conducted to quantify the characteristics of the flow and temperature fields around a droplet at three droplet Reynolds numbers (Re) that correspond to three typical boundary-layer-separation flows (steady axisymmetric, steady plane-symmetric, and unsteady plane-symmetric flows). The thermophoretic motion of submicron particles was simulated in these cases. Numerical results show that the motion of submicron particles around the droplet and the deposition distribution exhibit different characteristics under three typical flow forms. The motion patterns of particles are dependent on their initial positions in the upstream and flow forms. The patterns of particle motion and deposition are diversified as Re increases. The particle motion pattern, initial position of captured particles, and capture efficiency change periodically, especially during periodic vortex shedding. The key effects of flow forms on particle motion are the shape and stability of the wake behind the droplet. The drag force of fluid and the thermophoretic force in the wake contribute jointly to the deposition of submicron particles after the boundary-layer separation around a droplet.

  12. Experimental determination of convective heat transfer coefficients in the separated flow region of the Space Shuttle Solid Rocket Motor

    Science.gov (United States)

    Whitesides, R. Harold; Majumdar, Alok K.; Jenkins, Susan L.; Bacchus, David L.

    1990-01-01

    A series of cold flow heat transfer tests was conducted with a 7.5-percent scale model of the Space Shuttle Rocket Motor (SRM) to measure the heat transfer coefficients in the separated flow region around the nose of the submerged nozzle. Modifications were made to an existing 7.5 percent scale model of the internal geometry of the aft end of the SRM, including the gimballed nozzle in order to accomplish the measurements. The model nozzle nose was fitted with a stainless steel shell with numerous thermocouples welded to the backside of the thin wall. A transient 'thin skin' experimental technique was used to measure the local heat transfer coefficients. The effects of Reynolds number, nozzle gimbal angle, and model location were correlated with a Stanton number versus Reynolds number correlation which may be used to determine the convective heating rates for the full scale Space Shuttle Solid Rocket Motor nozzle.

  13. Fluidic separation in microstructured devices – concepts and their Integration into process flow networks

    NARCIS (Netherlands)

    Vural - Gürsel, I.; Kockmann, N.; Hessel, V.

    2017-01-01

    FDA and pharmaceutical industry turn the vision of integrated end-to-end manufacturing currently into reality. Accordingly, besides the efforts to develop reactions in continuous flow, it is also essential to consider separation of reaction mixtures and purification of the desired product - and how

  14. Effects of Particles Collision on Separating Gas–Particle Two-Phase Turbulent Flows

    KAUST Repository

    Sihao, L. V.; Yang, Weihua; Li, Xiangli; Li, Guohui

    2013-01-01

    A second-order moment two-phase turbulence model incorporating a particle temperature model based on the kinetic theory of granular flow is applied to investigate the effects of particles collision on separating gas–particle two-phase turbulent

  15. Preparative divergent flow IEF without carrier ampholytes for separation of complex biological samples

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Šlais, Karel

    2010-01-01

    Roč. 31, č. 3 (2010), s. 433-439 ISSN 0173-0835 R&D Projects: GA AV ČR IAAX00310701 Institutional research plan: CEZ:AV0Z40310501 Keywords : carrier-free divergent flow IEF * proteins * yeast lysate Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.569, year: 2010

  16. Flow-induced vibration and fretting-wear damage in a moisture separator reheater

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Taylor, C.E.; Fisher, N.J.

    1996-01-01

    Tube failures due to excessive flow-induced vibration were experienced in the tube bundles of moisture separator reheaters in a BWR nuclear station. This paper presents the results of a root cause analysis and covers recommendations for continued operation and for replacement tube bundles. The following tasks are discussed: tube failure analysis; flow velocity distribution calculations; flow-induced vibration analysis with particular emphasis on finned-tubes; fretting-wear testing of a tube and tube-support material combination under simulated operating conditions; field measurements of flow-induced vibration; and development of vibration specifications for replacement tube bundles. The effect of transient operating conditions and of other operational changes such as tube fouling were considered in the analysis. This paper outlines a typical field problem and illustrates the application of flow-induced vibration technology for the solution of a practical problem

  17. Separation and reattachment in flows over asymmetric cavities at small Reynolds numbers

    International Nuclear Information System (INIS)

    Tavoularis, S.; Goldman, A.; Floryan, J.M.

    1985-01-01

    Recent experimental and analytical studies of flows at extremely small Reynolds numbers have revealed rather complicated flow patterns, often beyond intuitive explanation. Such flows are common in biological systems as well as in industrial applications involving small particle suspensions. The present study was motivated by Nachtigall's observation that scales on certain butterfly and moth upper wing surfaces appear aerodynamically advantageous, since their removal results in decrease of the lift without an appreciable change of the drag. Since low Reynolds number flows are nearly reversible, it seems that geometrical asymmetry and not random roughness is responsible for this effect. Stokes flows (i.e. at 'zero' Reynolds number) are known to separate behind steps and obstacles, contrary to the expectation that the fluid motion would follow the boundary shape, if its inertia became negligible. (author)

  18. Numerical simulation of gas-solid two-phase flow in U-beam separator

    International Nuclear Information System (INIS)

    Zhou, X Y; Chen, X P; Dou, H S; Zhang, H Z; Ruan, J M

    2015-01-01

    Numerical simulation is carried out for gas-solid two-phase flow in a U-beam separator. In this study, the U-beam is altered with the inlet fins in order to improve the performance of the separator. The inlet fin angle of the separator are 30°, 35°, 40°, 45°, 50°, 55 ° and 60°. The governing equations are the Reynolds-Averaged Navier-Stokes equation with the standard k-ε model and the discrete phase model (DPM) describing the discrete two - phase flow as well as stochastic tracking model. Results show that the pressure drop deviation with fins is within 3% from those without fins. It is found that there is a maximum separation efficiency at the fin angle of 35°. Fin induces generation of a stagnation region which could collect particles and lead to change of vortical structures. The fin induced flow also causes the turbulent intensity inside the baffle to decrease to facilitate separation

  19. Heat transfer in a laminar separation bubble affected by oscillating external flow

    International Nuclear Information System (INIS)

    Wissink, J.G.; Michelassi, V.; Rodi, W.

    2004-01-01

    A three-dimensional Direct Numerical Simulation (DNS) of passive heat transfer in a Laminar Separation Bubble (LSB) over a flat plate affected by oscillating external flow is presented. The oscillation imposes a periodicity which is employed for phase-averaging. The flat plate is kept at a uniform, low temperature. The local Nusselt number, Nu, is determined as a function of phase. In the dead-air region of the bubble Nu is found to be relatively small, while it peaks in the recirculation region where hot outer fluid gets entrained and is transported towards the flat plate. Each period a new separation bubble is formed, that merges with the old separation bubble. The reverse flow inside the separation bubble reaches values of up to 60% of the local free-stream velocity, which is sufficient to make the separation bubble absolutely unstable such that self-sustained turbulence can exist. For the phase-averaged flow, neither the turbulent viscosity hypothesis nor the temperature gradient-diffusion hypothesis is found to hold

  20. An Eulerian-Eulerian CFD Simulation of Air-Water Flow in a Pipe Separator

    Directory of Open Access Journals (Sweden)

    E.A. Afolabi

    2014-06-01

    Full Text Available This paper presents a three dimensional Computational Fluid Dynamics (CFD of air-water flow using Eulerian –Eulerian multiphase model and RSM mixture turbulence model to investigate its hydrodynamic flow behaviour in a 30 mm pipe separator. The simulated results are then compared with the stereoscopic PIV measurements at different axial positions. The comparison shows that the velocity distribution can be predicted with high accuracy using CFD. The numerical velocity profiles are also found to be in good qualitative agreement with the experimental measurements. However, there were some discrepancies between the CFD results and the SPIV measurements at some axial positions away from the inlet section. Therefore, the CFD model could provide good physical understanding on the hydrodynamics flow behaviour for air-water in a pipe separator.

  1. Scaling laws for gas–liquid flow in swirl vane separators

    International Nuclear Information System (INIS)

    Liu, Li; Bai, Bofeng

    2016-01-01

    Highlights: • Model for swirl vane separator performance is established with similarity criteria. • Scaling laws are developed to correlate downscale test with prototype separator. • Effects of key similarity criteria on separation performance are studied. • The vital role of droplet size distribution on separation performance is discussed. - Abstract: Laboratory tests on gas–liquid flow in swirl vane separators are usually carried out to help establish an experimental database for separator design and performance improvement. Such model tests are generally performed in the reduced scale and not on the actual working conditions. Though great efficiency is often obtainable in the reduced model, the performance of the full-sized prototype usually cannot be well predicted. To design downscale model tests and apply the experimental results to predict the prototype, a general relationship to correlate them is required. In this paper, the relation of the similitude-criterion concerning the pressure loss is presented by using the dimensionless analysis, and mathematical models for critical droplet diameter, grade efficiency and overall separation efficiency are established by analyzing the features of the droplet trajectory in gas swirling flow field. The essential similarity criteria accounting for pressure loss and separation efficiency are obtained, respectively. On this basis, the scaling laws which enable a comparison between the reduced model and the full-sized prototype under similar conditions are also developed. It is found that the overall separation efficiency is significantly affected by the size distribution of the small droplets, especially when the mean diameter is smaller than the critical droplet diameter.

  2. A Study on the Performance of the Saffron Separator for Different Air Flows

    Directory of Open Access Journals (Sweden)

    Abbas Moghanizadeh

    2014-10-01

    Full Text Available Saffron, the dried stigmas of Crocus sativus, is extremely appreciated for its extraordinary color, taste and aroma. At the present time, nearly all the saffron harvest and post harvest processes are carried out manually. To increase the quality and development of economic role of saffron, it is essential to go beyond the traditional method of harvest of saffron. Considering that saffron components terminal velocities are different, a separator is planned and constructed to separate stigma from other parts of saffron flower. This separator is designed on the basis of aerodynamic and physical properties of saffron flower. The purpose of this study is to analyze the performance of a saffron separator for different air flows to increase the level of automation and efficiency of post-harvest operations. The results show that the maximum stigma separation happens when the air flow speed in outlet B is 3 m/s. finally, this data will be applied to find the optimum areas of outlet B and D, as two main parameters which have significant effect on the efficiency of saffron separator.

  3. Application of recently developed elliptic blending based models to separated flows

    International Nuclear Information System (INIS)

    Billard, F.; Revell, A.; Craft, T.

    2012-01-01

    Highlights: ► The study focuses on elliptic blending near-wall models. ► Models are compared on 2- and 3-dimensional separating flows. ► Conclusions are ambiguous on 2-d flows. ► Predictive superiority of Reynolds stress models over eddy viscosity model appear on 3-d flows. - Abstract: This paper considers the application of four Reynolds-Averaged Navier Stokes (RANS) models to a range of progressively complex test cases, exhibiting both 2-d and 3-d flow separation. Two Eddy Viscosity Models (EVM) and two Reynolds Stress Transport Models (RSM) are employed, of which two (one in each category) are based on elliptic blending formulations. By both reviewing the conclusions of previous studies, and from the present calculations, this study aims at gaining more insight into the importance of two modelling features for these flows: the usage of turbulence anisotropy resolving schemes, and the near-wall limiting behaviour. In general the anisotropy and near wall treatment offered by both elliptic blending models is observed to offer some improvement over other models tested, although this is not always the case for the 2-d flows, where (as ever) a single “best candidate” model does not emerge.

  4. On the properties and mechanisms of microjet arrays in crossflow for the control of flow separation

    Science.gov (United States)

    Fernandez, Erik J.

    By utilizing passive and active methods of flow control, the aerodynamic performance of external and internal components can be greatly improved. Recently however, the benefits of applying active flow control methods to turbomachinery components for improved fuel efficiency, reduced engine size, and greater operational envelope has sparked a renewed interest in some of these flow control techniques. The more attractive of these, is active control in the form of jets in cross flow. With their ability to be turned on and off, as well as their negligible effect on drag when not being actuated, they are well suited for applications such as compressor and turbine blades, engine inlet diffusers, internal engine passages, and general external aerodynamics. This study consists of two parts. The first is the application of active control on a low-pressure turbine (LPT) cascade to determine the effectiveness of microjet actuators on flow separation at relatively low speeds. The second study, motivated by the first, involves a parametric study on a more canonical model to examine the effects of various microjet parameters on the efficacy of separation control and to provide a better understanding of the relevant flow physics governing this control approach. With data obtained from velocity measurements across the wide parametric range, correlations for the growth of the counter-rotating vortex pairs generated by these actuators are deduced. From the information and models obtained throughout the study, basic suggestions for microjet actuator design are presented.

  5. Wavelet analysis of hemispheroid flow separation toward understanding human vocal fold pathologies

    Science.gov (United States)

    Plesniak, Daniel H.; Carr, Ian A.; Bulusu, Kartik V.; Plesniak, Michael W.

    2014-11-01

    Physiological flows observed in human vocal fold pathologies, such as polyps and nodules, can be modeled by flow over a wall-mounted protuberance. The experimental investigation of flow separation over a surface-mounted hemispheroid was performed using particle image velocimetry (PIV) and measurements of surface pressure in a low-speed wind tunnel. This study builds on the hypothesis that the signatures of vortical structures associated with flow separation are imprinted on the surface pressure distributions. Wavelet decomposition methods in one- and two-dimensions were utilized to elucidate the flow behavior. First, a complex Gaussian wavelet was used for the reconstruction of surface pressure time series from static pressure measurements acquired from ports upstream, downstream, and on the surface of the hemispheroid. This was followed by the application of a novel continuous wavelet transform algorithm (PIVlet 1.2) using a 2D-Ricker wavelet for coherent structure detection on instantaneous PIV-data. The goal of this study is to correlate phase shifts in surface pressure with Strouhal numbers associated with the vortex shedding. Ultimately, the wavelet-based analytical framework will be aimed at addressing pulsatile flows. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  6. Coherent structures and flow topology of transitional separated-reattached flow over two and three dimensional geometrical shapes

    Science.gov (United States)

    Diabil, Hayder Azeez; Li, Xin Kai; Abdalla, Ibrahim Elrayah

    2017-09-01

    Large-scale organized motions (commonly referred to coherent structures) and flow topology of a transitional separated-reattached flow have been visualised and investigated using flow visualisation techniques. Two geometrical shapes including two-dimensional flat plate with rectangular leading edge and three-dimensional square cylinder are chosen to shed a light on the flow topology and present coherent structures of the flow over these shapes. For both geometries and in the early stage of the transition, two-dimensional Kelvin-Helmholtz rolls are formed downstream of the leading edge. They are observed to be twisting around the square cylinder while they stay flat in the case of the two-dimensional flat plate. For both geometrical shapes, the two-dimensional Kelvin-Helmholtz rolls move downstream of the leading edge and they are subjected to distortion to form three-dimensional hairpin structures. The flow topology in the flat plate is different from that in the square cylinder. For the flat plate, there is a merging process by a pairing of the Kelvin-Helmholtz rolls to form a large structure that breaks down directly into many hairpin structures. For the squire cylinder case, the Kelvin-Helmholtz roll evolves topologically to form a hairpin structure. In the squire cylinder case, the reattachment length is much shorter and a forming of the three-dimensional structures is closer to the leading edge than that in the flat plate case.

  7. Computational Flow Dynamic Simulation of Micro Flow Field Characteristics Drainage Device Used in the Process of Oil-Water Separation

    Directory of Open Access Journals (Sweden)

    Guangya Jin

    2017-01-01

    Full Text Available Aqueous crude oil often contains large amounts of produced water and heavy sediment, which seriously threats the safety of crude oil storage and transportation. Therefore, the proper design of crude oil tank drainage device is prerequisite for efficient purification of aqueous crude oil. In this work, the composition and physicochemical properties of crude oil samples were tested under the actual conditions encountered. Based on these data, an appropriate crude oil tank drainage device was developed using the principle of floating ball and multiphase flow. In addition, the flow field characteristics in the device were simulated and the contours and streamtraces of velocity magnitude at different nine moments were obtained. Meanwhile, the improvement of flow field characteristics after the addition of grids in crude oil tank drainage device was validated. These findings provide insights into the development of effective selection methods and serve as important references for oil-water separation process.

  8. In situ cardiac perfusion reveals interspecific variation of intraventricular flow separation in reptiles.

    Science.gov (United States)

    Joyce, William; Axelsson, Michael; Altimiras, Jordi; Wang, Tobias

    2016-07-15

    The ventricles of non-crocodilian reptiles are incompletely divided and provide an opportunity for mixing of oxygen-poor blood and oxygen-rich blood (intracardiac shunting). However, both cardiac morphology and in vivo shunting patterns exhibit considerable interspecific variation within reptiles. In the present study, we develop an in situ double-perfused heart approach to characterise the propensity and capacity for shunting in five reptile species: the turtle Trachemys scripta, the rock python Python sebae, the yellow anaconda Eunectes notaeus, the varanid lizard Varanus exanthematicus and the bearded dragon Pogona vitticeps To simulate changes in vascular bed resistance, pulmonary and systemic afterloads were independently manipulated and changes in blood flow distribution amongst the central outflow tracts were monitored. As previously demonstrated in Burmese pythons, rock pythons and varanid lizards exhibited pronounced intraventricular flow separation. As pulmonary or systemic afterload was raised, flow in the respective circulation decreased. However, flow in the other circulation, where afterload was constant, remained stable. This correlates with the convergent evolution of intraventricular pressure separation and the large intraventricular muscular ridge, which compartmentalises the ventricle, in these species. Conversely, in the three other species, the pulmonary and systemic flows were strongly mutually dependent, such that the decrease in pulmonary flow in response to elevated pulmonary afterload resulted in redistribution of perfusate to the systemic circuit (and vice versa). Thus, in these species, the muscular ridge appeared labile and blood could readily transverse the intraventricular cava. We conclude that relatively minor structural differences between non-crocodilian reptiles result in the fundamental changes in cardiac function. Further, our study emphasises that functionally similar intracardiac flow separation evolved independently in

  9. Research on the Flow Field and Structure Optimization in Cyclone Separator with Downward Exhaust Gas

    Directory of Open Access Journals (Sweden)

    Wang Weiwei

    2017-01-01

    Full Text Available A numerical software analysis of the turbulent and strongly swirling flow field of a cyclone separator with downward exhaust gas and its performances is described. The ANSYS 14.0 simulations based on DPM model are also used in the investigation. A new set of geometrical design has been optimized to achieve minimum pressure drop and maximum separation efficiency. A comparison of numerical simulation of the new design confirm the superior performance of the new design compared to the conventional design. The influence of the structure parameters such as the length of the guide pipe, the shape of the guide, the inlet shape on the separation performance was analyzed in this research. This research result has certain reference value for cyclone separator design and performance optimization.

  10. Separation and Characterization of DNA Molecules and Intermolecular Interactions in Pressure-Driven Micro Flow

    Science.gov (United States)

    Friedrich, Sarah; Wang, Tza-Huei

    Pressure-driven flow in micron-sized diameter capillaries can be used to separate DNA molecules by size in a technique called Free Solution Hydrodynamic Separation. By coupling this technique with Cylindrical Illumination Confocal Spectroscopy, we have developed a highly sensitive and quantitative platform capable of separating DNA molecules by length over a large dynamic range (25 bp to 48 kbp) in a single run using only picoliters or femtograms of a DNA sample. The optical detection volume completely spans the capillary cross section, enabling highly efficient single molecule detection for enhanced sensitivity and quantification accuracy via single molecule counting. Because each DNA molecule generates its own fluorescent burst, these burst profiles can be further analyzed to individually characterize each DNA molecule's shape as it passes through the detection region. We exploit these burst profiles to visualize fluctuations in conformation under shear flow in microcapillaries, and utilizing combined mobility shift analysis, explore the complex relationship between molecular properties including length and conformation, hydrodynamic mobility, solution conditions including ion species and concentrations, and separation conditions including flow rate and capillary diameter.

  11. Load flow analysis for determining the location of NPP power distribution in West Kalimantan

    International Nuclear Information System (INIS)

    Citra Candranurani; Rizki Finnansyah Setya Budi; Sahala M Lumbanraja

    2015-01-01

    Electricity crisis condition happened in West Kalimantan (Kalbar) as a result of power plant capacity almost equal to the peak load. The system will experience a shortfall if there are plants that not operating and do not have reserve. The policy of electricity planning until 2022 is replacing diesel power plant with steam power plant. For long-term planning is required the role of new and renewable energy in order to reduce dependency on fossil fuel consumption, such as NPP utilization. The purpose of this study was to determine the optimum location of the NPP power distribution in order to prepare electricity infrastructure. Load flow calculation in this study using ETAP 12.5 software. NPP is planned to supply base load, so the optimum capacity factor is above 80 %. The result show that there are three location where NPP can generate over 80 % of its capacity, namely: Mempawah Substation, Singkawang Substation, and Sambas Substation. The most optimum located in Mempawah Substation with capacity factor 83.5 %. The location of the three Substation are onshore and in line with one requirement for NPP construction, namely: the availability of cooling water. (author)

  12. Effect of Reynolds Number and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Intermittency Behavior Along the Suction Surface of a Low Pressure Turbine Blade

    Science.gov (United States)

    Schobeiri, M. T.; Ozturk, B.; Ashpis, David E.

    2007-01-01

    The paper experimentally studies the effects of periodic unsteady wake flow and different Reynolds numbers on boundary layer development, separation and re-attachment along the suction surface of a low pressure turbine blade. The experimental investigations were performed on a large scale, subsonic unsteady turbine cascade research facility at Turbomachinery Performance and Flow Research Laboratory (TPFL) of Texas A&M University. The experiments were carried out at Reynolds numbers of 110,000 and 150,000 (based on suction surface length and exit velocity). One steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities, and turbulence intensities were investigated. The reduced frequencies chosen cover the operating range of LP turbines. In addition to the unsteady boundary layer measurements, surface pressure measurements were performed. The inception, onset, and the extent of the separation bubble information collected from the pressure measurements were compared with the hot wire measurements. The results presented in ensemble-averaged, and the contour plot forms help to understand the physics of the separation phenomenon under periodic unsteady wake flow and different Reynolds number. It was found that the suction surface displayed a strong separation bubble for these three different reduced frequencies. For each condition, the locations defining the separation bubble were determined carefully analyzing and examining the pressure and mean velocity profile data. The location of the boundary layer separation was dependent of the Reynolds number. It is observed that starting point of the separation bubble and the re-attachment point move further downstream by increasing Reynolds number from 110,000 to 150,000. Also, the size of the separation bubble is smaller when compared to that for Re=110,000.

  13. Shock tunnel measurements of surface pressures in shock induced separated flow field using MEMS sensor array

    International Nuclear Information System (INIS)

    Sriram, R; Jagadeesh, G; Ram, S N; Hegde, G M; Nayak, M M

    2015-01-01

    Characterized not just by high Mach numbers, but also high flow total enthalpies—often accompanied by dissociation and ionization of flowing gas itself—the experimental simulation of hypersonic flows requires impulse facilities like shock tunnels. However, shock tunnel simulation imposes challenges and restrictions on the flow diagnostics, not just because of the possible extreme flow conditions, but also the short run times—typically around 1 ms. The development, calibration and application of fast response MEMS sensors for surface pressure measurements in IISc hypersonic shock tunnel HST-2, with a typical test time of 600 μs, for the complex flow field of strong (impinging) shock boundary layer interaction with separation close to the leading edge, is delineated in this paper. For Mach numbers 5.96 (total enthalpy 1.3 MJ kg −1 ) and 8.67 (total enthalpy 1.6 MJ kg −1 ), surface pressures ranging from around 200 Pa to 50 000 Pa, in various regions of the flow field, are measured using the MEMS sensors. The measurements are found to compare well with the measurements using commercial sensors. It was possible to resolve important regions of the flow field involving significant spatial gradients of pressure, with a resolution of 5 data points within 12 mm in each MEMS array, which cannot be achieved with the other commercial sensors. In particular, MEMS sensors enabled the measurement of separation pressure (at Mach 8.67) near the leading edge and the sharply varying pressure in the reattachment zone. (paper)

  14. Comparison of different base flow separation methods in a lowland catchment

    Directory of Open Access Journals (Sweden)

    S. Uhlenbrook

    2009-11-01

    Full Text Available Assessment of water resources available in different storages and moving along different pathways in a catchment is important for its optimal use and protection, and also for the prediction of floods and low flows. Moreover, understanding of the runoff generation processes is essential for assessing the impacts of climate and land use changes on the hydrological response of a catchment. Many methods for base flow separation exist, but hardly one focuses on the specific behaviour of temperate lowland areas. This paper presents the results of a base flow separation study carried out in a lowland area in the Netherlands. In this study, field observations of precipitation, groundwater and surface water levels and discharges, together with tracer analysis are used to understand the runoff generation processes in the catchment. Several tracer and non-tracer based base flow separation methods were applied to the discharge time series, and their results are compared.

    The results show that groundwater levels react fast to precipitation events in this lowland area with shallow groundwater tables. Moreover, a good correlation was found between groundwater levels and discharges suggesting that most of the measured discharge also during floods comes from groundwater storage. It was estimated using tracer hydrological approaches that approximately 90% of the total discharge is groundwater displaced by event water mainly infiltrating in the northern part of the catchment, and only the remaining 10% is surface runoff. The impact of remote recharge causing displacement of near channel groundwater during floods could also be motivated with hydraulic approximations. The results show further that when base flow separation is meant to identify groundwater contributions to stream flow, process based methods (e.g. the rating curve method; Kliner and Knezek, 1974 are more reliable than other simple non-tracer based methods. Also, the recursive filtering method

  15. A Pressure Controlled Pinched Flow Fractionation Device for Continuous Particle Separation

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Trosborg, Jacqueline; Tanzi, Simone

    2012-01-01

    In this work the problem of separating small particles of di↵erent sizes is solved by developing a simple microfluidic device using pinched flow fractionation (PFF), a technique originally presented by Yamada et al. in 2004 [1]. The present work takes the concept of PFF to the next level by makin...... Polymers GmbH) using a micro machined silicon master. The functionality of the device was confirmed using polymer beads, and by adjusting the pressure accordingly a complete separation of 2 μm and 4.5 μm beads was demonstrated....

  16. Control of unsteady separated flow associated with the dynamic pitching of airfoils

    Science.gov (United States)

    Ahmed, Sajeer

    1991-01-01

    Although studies have been done to understand the dependence of parameters for the occurrence of deep stall, studies to control the flow for sustaining lift for a longer time has been little. To sustain the lift for a longer time, an understanding of the development of the flow over the airfoil is essential. Studies at high speed are required to study how the flow behavior is dictated by the effects of compressibility. When the airfoil is pitched up in ramp motion or during the upstroke of an oscillatory cycle, the flow development on the upper surface of the airfoil and the formation of the vortex dictates the increase in lift behavior. Vortex shedding past the training edge decreases the lift. It is not clear what is the mechanism associated with the unsteady separation and vortex formation in present unsteady environment. To develop any flow control device, to suppress the vortex formation or delay separation, it is important that this mechanism be properly understood. The research activities directed toward understanding these questions are presented and the results are summarized.

  17. The use of a polymer inclusion membrane for separation and preconcentration of orthophosphate in flow analysis

    International Nuclear Information System (INIS)

    Nagul, Edward A.; Fontàs, Clàudia; McKelvie, Ian D.; Cattrall, Robert W.; Kolev, Spas D.

    2013-01-01

    Graphical abstract: -- Highlights: •A flow analysis system determines phosphate at trace levels as molybdenum blue. •The flow system can operate under flow injection or continuous flow conditions. •On-line membrane-based separation and preconcentration is applied. •A polymer inclusion membrane composed of 70 wt% PVC and 30 wt% Aliquat 336 is used. •The flow system was successfully applied to a number of pristine water samples. -- Abstract: A highly sensitive flow analysis system has been developed for the trace determination of reactive phosphate in natural waters, which uses a polymer inclusion membrane (PIM) with Aliquat 336 as the carrier for on-line analyte separation and preconcentration. The system operates under flow injection (FI) and continuous flow (CF) conditions. Under optimal FI conditions the system is characterised by a linear concentration range between 0.5 and 1000 μg L −1 P, a sampling rate of 10 h −1 , a limit of detection of 0.5 μg L −1 P and RSDs of 3.2% (n = 10, 100 μg L −1 ) and 7.7% (n = 10, 10 μg L −1 ). Under CF conditions with 10 min stop-flow time and sample solution flow rate of 1.32 mL min −1 the flow system offers a limit of detection of 0.04 μg L −1 P, a sampling rate of 5 h −1 and an RSD of 3.4% (n = 5, 2.0 μg L −1 ). Interference studies revealed that anions commonly found in natural waters did not interfere when in excess of at least one order of magnitude. The flow system, operating under CF conditions, was successfully applied to the analysis of natural water samples containing concentrations of phosphate in the low μg L −1 P range, using the multipoint standard addition method

  18. The use of a polymer inclusion membrane for separation and preconcentration of orthophosphate in flow analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nagul, Edward A. [School of Chemistry, The University of Melbourne, Victoria 3010 (Australia); Centre for Aquatic Pollution Identification and Management (CAPIM), The University of Melbourne, Victoria 3010 (Australia); Fontàs, Clàudia [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain); McKelvie, Ian D. [School of Chemistry, The University of Melbourne, Victoria 3010 (Australia); School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL48AA (United Kingdom); Cattrall, Robert W. [School of Chemistry, The University of Melbourne, Victoria 3010 (Australia); Kolev, Spas D., E-mail: s.kolev@unimelb.edu.au [School of Chemistry, The University of Melbourne, Victoria 3010 (Australia); Centre for Aquatic Pollution Identification and Management (CAPIM), The University of Melbourne, Victoria 3010 (Australia)

    2013-11-25

    Graphical abstract: -- Highlights: •A flow analysis system determines phosphate at trace levels as molybdenum blue. •The flow system can operate under flow injection or continuous flow conditions. •On-line membrane-based separation and preconcentration is applied. •A polymer inclusion membrane composed of 70 wt% PVC and 30 wt% Aliquat 336 is used. •The flow system was successfully applied to a number of pristine water samples. -- Abstract: A highly sensitive flow analysis system has been developed for the trace determination of reactive phosphate in natural waters, which uses a polymer inclusion membrane (PIM) with Aliquat 336 as the carrier for on-line analyte separation and preconcentration. The system operates under flow injection (FI) and continuous flow (CF) conditions. Under optimal FI conditions the system is characterised by a linear concentration range between 0.5 and 1000 μg L{sup −1} P, a sampling rate of 10 h{sup −1}, a limit of detection of 0.5 μg L{sup −1} P and RSDs of 3.2% (n = 10, 100 μg L{sup −1}) and 7.7% (n = 10, 10 μg L{sup −1}). Under CF conditions with 10 min stop-flow time and sample solution flow rate of 1.32 mL min{sup −1} the flow system offers a limit of detection of 0.04 μg L{sup −1} P, a sampling rate of 5 h{sup −1} and an RSD of 3.4% (n = 5, 2.0 μg L{sup −1}). Interference studies revealed that anions commonly found in natural waters did not interfere when in excess of at least one order of magnitude. The flow system, operating under CF conditions, was successfully applied to the analysis of natural water samples containing concentrations of phosphate in the low μg L{sup −1} P range, using the multipoint standard addition method.

  19. Studies on unsteady pressure fields in the region of separating and reattaching flows

    Science.gov (United States)

    Govinda Ram, H. S.; Arakeri, V. H.

    1990-12-01

    Experimental studies on the measurement of pressure fields in the region of separating and reattaching flows behind several two-dimensional fore-bodies and one axisymmetric body are reported. In particular, extensive measurements of mean pressure, surface pressure fluctuation, and pressure fluctuation within the flow were made for a series of two-dimensional fore-body shapes consisting of triangular nose with varying included angle. The measurements from different bodies are compared and one of the important findings is that the maximum values of rms pressure fluctuation levels in the shear layer approaching reattachment are almost equal to the maximum value of the surface fluctuation levels.

  20. Ribbon phase in a phase-separated lyotropic lamellar-sponge mixture under shear flow

    Science.gov (United States)

    Cristobal, G.; Rouch, J.; Panizza, P.; Narayanan, T.

    2001-07-01

    We report the effect of shear flow on a phase-separated system composed of lyotropic lamellar (Lα) and sponge (L3) phases in a mixture of brine, surfactant, and cosurfactant. Optical microscopy, small-angle light, and x-ray scattering measurements are consistent with the existence of a steady state made of multilamellar ribbonlike structures aligned in the flow direction. At high shear rates, these ribbonlike structures become unstable and break up into monodisperse droplets resulting in a shear-thickening transition.

  1. Examination of forced unsteady separated flow fields on a rotating wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Huyer, S [Univ. of Colorado, Boulder, CO (US)

    1993-04-01

    The wind turbine industry faces many problems regarding the construction of efficient and predictable wind turbine machines. Steady state, two-dimensional wind tunnel data are generally used to predict aerodynamic loads on wind turbine blades. Preliminary experimental evidence indicates that some of the underlying fluid dynamic phenomena could be attributed to dynamic stall, or more specifically to generation of forced unsteady separated flow fields. A collaborative research effort between the University of Colorado and the National Renewable Energy Laboratory was conducted to systematically categorize the local and global effects of three- dimensional forced unsteady flow fields.

  2. DSMC Simulation of Separated Flows About Flared Bodies at Hypersonic Conditions

    Science.gov (United States)

    Moss, James N.

    2000-01-01

    This paper describes the results of a numerical study of interacting hypersonic flows at conditions that can be produced in ground-based test facilities. The computations are made with the direct simulation Monte Carlo (DSMC) method of Bird. The focus is on Mach 10 flows about flared axisymmetric configurations, both hollow cylinder flares and double cones. The flow conditions are those for which experiments have been or will be performed in the ONERA R5Ch low-density wind tunnel and the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel. The range of flow conditions, model configurations, and model sizes provides a significant range of shock/shock and shock/boundary layer interactions at low Reynolds number conditions. Results presented will highlight the sensitivity of the calculations to grid resolution, contrast the differences in flow structure for hypersonic cold flows and those of more energetic but still low enthalpy flows, and compare the present results with experimental measurements for surface heating, pressure, and extent of separation.

  3. Identifying the best locations to install flow control devices in sewer networks to enable in-sewer storage

    Science.gov (United States)

    Leitão, J. P.; Carbajal, J. P.; Rieckermann, J.; Simões, N. E.; Sá Marques, A.; de Sousa, L. M.

    2018-01-01

    The activation of available in-sewer storage volume has been suggested as a low-cost flood and combined sewer overflow mitigation measure. However, it is currently unknown what the attributes for suitable objective functions to identify the best location for flow control devices are and the impact of those attributes on the results. In this study, we present a novel location model and efficient algorithm to identify the best location(s) to install flow limiters. The model is a screening tool that does not require hydraulic simulations but rather considers steady state instead of simplistic static flow conditions. It also maximises in-sewer storage according to different reward functions that also considers the potential impact of flow control device failure. We demonstrate its usefulness on two real sewer networks, for which an in-sewer storage potential of approximately 2,000 m3 and 500 m3 was estimated with five flow control devices installed.

  4. Determination of the separate effective renal blood flow by mathematical interpretation of radionephrograms

    International Nuclear Information System (INIS)

    Degtereva, O.A.; Zvonova, I.A.

    1982-01-01

    Mathematical model of nephrotropic compound kinetics was plotted, and using +t, the procedure of determination of separate effective, renal blood flow was developed. This procedure was based on radionephrograms obtained after intravenous injection of 131 I hippuran. Partial renal functions were found according summary gammachronograms of the precardiac and renal areas with double taking of blood samples. The technique of plotting of theoretical summary radionephrogram was solved according to calculated parameters [ru

  5. Cross-flow-assembled ultrathin and robust graphene oxide membranes for efficient molecule separation

    Science.gov (United States)

    Ying, Yulong; Ying, Wen; Guo, Yi; Peng, Xinsheng

    2018-04-01

    A graphene oxide (GO) membrane is promising for molecule separation. However, it is still a big challenge to achieve highly stable pristine GO membranes, especially in water. In this work, an ultrathin and robust GO membrane is assembled via the cross-flow method. The as-prepared 12 nm thick GO membrane (GOCF membrane) presents high stability with water permeance of 1505 ± 65 litres per hour per square meter per bar (LHM bar-1) and Evans Blue (EB) rejection of 98.7 ± 0.4%, 21-fold enhancement in water permeance compared with that of a pristine GO membrane (50-70 LHM bar-1) and 100 times higher than that of commercial ultrafiltration membranes (15 LHM.bar-1, GE2540F30, MWCO 1000, GE Co., Ltd) with similar rejection. Attributed to the surface cross-flow, the GO nanosheets will be refolded, crumpled, or wrinkled, resulting in a very strong inter-locking structure among the GO membrane, which significantly enhances the stability and facilitates their separation performance. This cross-flow assembling technique is also easily extended to assemble GO membranes onto other various backing filter supports. Based on the Donnan effect and size sieving mechanism, selective membrane separation of dyes with a similar molecular structure from their mixture (such as Rhodamine B (RhB) and Rose Bengal, and RhB and EB) are achieved with a selectivity of 133 ± 10 and 227 ± 15, respectively. Assembly of this ultrathin GO membrane with high stability and separation performance, via a simple cross-flow method, shows great potential for water purification.

  6. Heuristics methods for the flow shop scheduling problem with separated setup times

    Directory of Open Access Journals (Sweden)

    Marcelo Seido Nagano

    2012-06-01

    Full Text Available This paper deals with the permutation flow shop scheduling problem with separated machine setup times. As a result of an investigation on the problem characteristics, four heuristics methods are proposed with procedures of the construction sequencing solution by an analogy with the asymmetric traveling salesman problem with the objective of minimizing makespan. Experimental results show that one of the new heuristics methods proposed provide high quality solutions in comparisons with the evaluated methods considered in the literature.

  7. Modeling of ion transport through a porous separator in vanadium redox flow batteries

    Science.gov (United States)

    Zhou, X. L.; Zhao, T. S.; An, L.; Zeng, Y. K.; Wei, L.

    2016-09-01

    In this work, we develop a two-dimensional, transient model to investigate the mechanisms of ion-transport through a porous separator in VRFBs and their effects on battery performance. Commercial-available separators with pore sizes of around 45 nm are particularly investigated and effects of key separator design parameters and operation modes are explored. We reveal that: i) the transport mechanism of vanadium-ion crossover through available separators is predominated by convection; ii) reducing the pore size below 15 nm effectively minimizes the convection-driven vanadium-ion crossover, while further reduction in migration- and diffusion-driven vanadium-ion crossover can be achieved only when the pore size is reduced to the level close to the sizes of vanadium ions; and iii) operation modes that can affect the pressure at the separator/electrode interface, such as the electrolyte flow rate, exert a significant influence on the vanadium-ion crossover rate through the available separators, indicating that it is critically important to equalize the pressure on each half-cell of a power pack in practical applications.

  8. Circuit modification in electrical field flow fractionation systems generating higher resolution separation of nanoparticles.

    Science.gov (United States)

    Tasci, Tonguc O; Johnson, William P; Fernandez, Diego P; Manangon, Eliana; Gale, Bruce K

    2014-10-24

    Compared to other sub-techniques of field flow fractionation (FFF), cyclical electrical field flow fractionation (CyElFFF) is a relatively new method with many opportunities remaining for improvement. One of the most important limitations of this method is the separation of particles smaller than 100nm. For such small particles, the diffusion rate becomes very high, resulting in severe reductions in the CyElFFF separation efficiency. To address this limitation, we modified the electrical circuitry of the ElFFF system. In all earlier ElFFF reports, electrical power sources have been directly connected to the ElFFF channel electrodes, and no alteration has been made in the electrical circuitry of the system. In this work, by using discrete electrical components, such as resistors and diodes, we improved the effective electric field in the system to allow high resolution separations. By modifying the electrical circuitry of the ElFFF system, high resolution separations of 15 and 40nm gold nanoparticles were achieved. The effects of applying different frequencies, amplitudes and voltage shapes have been investigated and analyzed through experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A Structured Grid Based Solution-Adaptive Technique for Complex Separated Flows

    Science.gov (United States)

    Thornburg, Hugh; Soni, Bharat K.; Kishore, Boyalakuntla; Yu, Robert

    1996-01-01

    The objective of this work was to enhance the predictive capability of widely used computational fluid dynamic (CFD) codes through the use of solution adaptive gridding. Most problems of engineering interest involve multi-block grids and widely disparate length scales. Hence, it is desirable that the adaptive grid feature detection algorithm be developed to recognize flow structures of different type as well as differing intensity, and adequately address scaling and normalization across blocks. In order to study the accuracy and efficiency improvements due to the grid adaptation, it is necessary to quantify grid size and distribution requirements as well as computational times of non-adapted solutions. Flow fields about launch vehicles of practical interest often involve supersonic freestream conditions at angle of attack exhibiting large scale separate vortical flow, vortex-vortex and vortex-surface interactions, separated shear layers and multiple shocks of different intensity. In this work, a weight function and an associated mesh redistribution procedure is presented which detects and resolves these features without user intervention. Particular emphasis has been placed upon accurate resolution of expansion regions and boundary layers. Flow past a wedge at Mach=2.0 is used to illustrate the enhanced detection capabilities of this newly developed weight function.

  10. Three-Dimensional Flow Separation Induced by a Model Vocal Fold Polyp

    Science.gov (United States)

    Stewart, Kelley C.; Erath, Byron D.; Plesniak, Michael W.

    2012-11-01

    The fluid-structure energy exchange process for normal speech has been studied extensively, but it is not well understood for pathological conditions. Polyps and nodules, which are geometric abnormalities that form on the medial surface of the vocal folds, can disrupt vocal fold dynamics and thus can have devastating consequences on a patient's ability to communicate. A recent in-vitro investigation of a model polyp in a driven vocal fold apparatus demonstrated that such a geometric abnormality considerably disrupts the glottal jet behavior and that this flow field adjustment was a likely reason for the severe degradation of the vocal quality in patients. Understanding of the formation and propagation of vortical structures from a geometric protuberance, and their subsequent impact on the aerodynamic loadings that drive vocal fold dynamic, is a critical component in advancing the treatment of this pathological condition. The present investigation concerns the three-dimensional flow separation induced by a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, i.e. a model vocal fold polyp. Unsteady three-dimensional flow separation and its impact of the wall pressure loading are examined using skin friction line visualization and wall pressure measurements. Supported by the National Science Foundation, Grant No. CBET-1236351 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  11. A Numerically and Experimentally Investigated Structure of the Turbulent Flow Past a Trench with a Separation

    Directory of Open Access Journals (Sweden)

    V. N. Afanasiev

    2017-01-01

    Full Text Available The paper studies the convective heat exchange intensification due to two-dimensional depressions formed on the initially flat surface. This problem is of interest for engineering applications because many different convective surfaces have cavities and depressions of constructive or random occurrence. During flow around a depression the boundary layer separation and its reattachment result in occurring specific phenomena, which have a significant impact on drag and heat exchange.The work involved an experimental study of hydrodynamic and heat characteristics of the turbulent boundary layer formed when there was an external airflow of the flat surface with a single transversal separation trench.The experimental part used an open subsonic low-turbulence wind tunnel operating in suction mode. A numerical simulation involves hydrodynamics and heat exchange parameters analysis via solution of the system of differential equations, which describe momentum and heat transport processes using ANSYS Fluent solver.The experimental data of this study are compared with numerical simulation results obtained by solving the steady Reynolds-averaged Navier-Stokes equations (RANS with a two-parametrical Menter k-ω (MSST turbulence model.The comparison shows that simulation results are in good agreement with experimental data, heat exchange surface profiling by a transversal trench system with or without flow separation does not lead to increasing surface drag and, moreover, at the certain ratios of geometrical parameters (cylindrical trenches with h/S£ 0.5 it can decrease the surface drag. Surface conjugations in these depressions should be smooth without any sharp curves and transitions, which can lead to forming stagnation regions.The reason for raising heat exchange is a spatial non-uniformity of the generated turbulence field. During flow analysis there were two sources of turbulence generation found out, namely a wall (heat exchange surface and a mixing

  12. Tessellated permanent magnet circuits for flow-through, open gradient separations of weakly magnetic materials

    International Nuclear Information System (INIS)

    Moore, Lee R.; Williams, P. Stephen; Chalmers, Jeffrey J.; Zborowski, Maciej

    2017-01-01

    Emerging microfluidic-based cell assays favor label-free red blood cell (RBC) depletion. Magnetic separation of RBC is possible because of the paramagnetism of deoxygenated hemoglobin but the process is slow for open-gradient field configurations. In order to increase the throughput, periodic arrangements of the unit magnets were considered, consisting of commercially available Nd-Fe-B permanent magnets and soft steel flux return pieces. The magnet design is uniquely suitable for multiplexing by magnet tessellation, here meaning the tiling of the magnet assembly cross-sectional plane by periodic repetition of the magnet and the flow channel shapes. The periodic pattern of magnet magnetizations allows a reduction of the magnetic material per channel with minimal distortion of the field cylindrical symmetry inside the magnet apertures. A number of such magnet patterns are investigated for separator performance, size and economy with the goal of designing an open-gradient magnetic separator capable of reducing the RBC number concentration a hundred-fold in 1 mL whole blood per hour. - Highlights: • Simple geometry of commercial, off-the-shelf NdFeB magnet blocks is amenable to generate high fields and open gradients. • Periodic pattern of permanent magnet blocks (tessellation) reduces the number of blocks per separation channel and improves the efficiency of separator design. • Split-flow lateral transport thin (SPLITT) fractionation model predicts 100-fold reduction of red blood cells from 1 mL whole blood sample in 1 h, suitable for laboratory medicine applications.

  13. Tessellated permanent magnet circuits for flow-through, open gradient separations of weakly magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Lee R. [Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Ave., Cleveland OH 44195 (United States); Williams, P. Stephen [Cambrian Technologies, Inc., Cleveland, OH (United States); Chalmers, Jeffrey J. [William G. Lowrie Department of Chemical and Biomedical Engineering, The Ohio State University, Columbus 151 W. Woodruff Avenue, OH 43210 (United States); Zborowski, Maciej, E-mail: zborowm@ccf.org [Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Ave., Cleveland OH 44195 (United States)

    2017-04-01

    Emerging microfluidic-based cell assays favor label-free red blood cell (RBC) depletion. Magnetic separation of RBC is possible because of the paramagnetism of deoxygenated hemoglobin but the process is slow for open-gradient field configurations. In order to increase the throughput, periodic arrangements of the unit magnets were considered, consisting of commercially available Nd-Fe-B permanent magnets and soft steel flux return pieces. The magnet design is uniquely suitable for multiplexing by magnet tessellation, here meaning the tiling of the magnet assembly cross-sectional plane by periodic repetition of the magnet and the flow channel shapes. The periodic pattern of magnet magnetizations allows a reduction of the magnetic material per channel with minimal distortion of the field cylindrical symmetry inside the magnet apertures. A number of such magnet patterns are investigated for separator performance, size and economy with the goal of designing an open-gradient magnetic separator capable of reducing the RBC number concentration a hundred-fold in 1 mL whole blood per hour. - Highlights: • Simple geometry of commercial, off-the-shelf NdFeB magnet blocks is amenable to generate high fields and open gradients. • Periodic pattern of permanent magnet blocks (tessellation) reduces the number of blocks per separation channel and improves the efficiency of separator design. • Split-flow lateral transport thin (SPLITT) fractionation model predicts 100-fold reduction of red blood cells from 1 mL whole blood sample in 1 h, suitable for laboratory medicine applications.

  14. Cluster-based control of a separating flow over a smoothly contoured ramp

    Science.gov (United States)

    Kaiser, Eurika; Noack, Bernd R.; Spohn, Andreas; Cattafesta, Louis N.; Morzyński, Marek

    2017-12-01

    The ability to manipulate and control fluid flows is of great importance in many scientific and engineering applications. The proposed closed-loop control framework addresses a key issue of model-based control: The actuation effect often results from slow dynamics of strongly nonlinear interactions which the flow reveals at timescales much longer than the prediction horizon of any model. Hence, we employ a probabilistic approach based on a cluster-based discretization of the Liouville equation for the evolution of the probability distribution. The proposed methodology frames high-dimensional, nonlinear dynamics into low-dimensional, probabilistic, linear dynamics which considerably simplifies the optimal control problem while preserving nonlinear actuation mechanisms. The data-driven approach builds upon a state space discretization using a clustering algorithm which groups kinematically similar flow states into a low number of clusters. The temporal evolution of the probability distribution on this set of clusters is then described by a control-dependent Markov model. This Markov model can be used as predictor for the ergodic probability distribution for a particular control law. This probability distribution approximates the long-term behavior of the original system on which basis the optimal control law is determined. We examine how the approach can be used to improve the open-loop actuation in a separating flow dominated by Kelvin-Helmholtz shedding. For this purpose, the feature space, in which the model is learned, and the admissible control inputs are tailored to strongly oscillatory flows.

  15. High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries.

    Science.gov (United States)

    Hendriks, Koen H; Robinson, Sophia G; Braten, Miles N; Sevov, Christo S; Helms, Brett A; Sigman, Matthew S; Minteer, Shelley D; Sanford, Melanie S

    2018-02-28

    Nonaqueous redox flow batteries (NRFBs) represent an attractive technology for energy storage from intermittent renewable sources. In these batteries, electrical energy is stored in and extracted from electrolyte solutions of redox-active molecules (termed catholytes and anolytes) that are passed through an electrochemical flow cell. To avoid battery self-discharge, the anolyte and catholyte solutions must be separated by a membrane in the flow cell. This membrane prevents crossover of the redox active molecules, while simultaneously allowing facile transport of charge-balancing ions. A key unmet challenge for the field is the design of redox-active molecule/membrane pairs that enable effective electrolyte separation while maintaining optimal battery properties. Herein, we demonstrate the development of oligomeric catholytes based on tris(dialkylamino)cyclopropenium (CP) salts that are specifically tailored for pairing with size-exclusion membranes composed of polymers of intrinsic microporosity (PIMs). Systematic studies were conducted to evaluate the impact of oligomer size/structure on properties that are crucial for flow battery performance, including cycling stability, charge capacity, solubility, electron transfer kinetics, and crossover rates. These studies have led to the identification of a CP-derived tetramer in which these properties are all comparable, or significantly improved, relative to the monomeric counterpart. Finally, a proof-of-concept flow battery is demonstrated by pairing this tetrameric catholyte with a PIM membrane. After 6 days of cycling, no crossover is detected, demonstrating the promise of this approach. These studies provide a template for the future design of other redox-active oligomers for this application.

  16. Towards 2D field-flow fractionation - Vector separation over slanted open cavities

    Science.gov (United States)

    Bernate, Jorge A.; Yang, Mengfei; Zhao, Hong; Risbud, Sumedh; Paul, Colin; Dallas, Matthew; Konstantopoulos, Konstantinos; Drazer, German; Shaqfeh, Eric S. G.

    2013-11-01

    Planar microfluidic platforms for vector chromatography, in which different species fan out in different directions and can be continuously sorted, are particularly promising for the high throughput separation of multicomponent mixtures. We carry out a computational study of the vector separation of dilute suspensions of rigid and flexible particles transported by a pressure-driven flow over an array of slanted open cavities. The numerical scheme is based on a Stokes flow boundary integral equation method. The simulations are performed in a periodic system without lateral confinement, relevant to microfluidic devices with negligible recirculation in the main channel. We study the deflection of rigid spherical particles, of flexible capsules as a model of white and red blood cells, and of rigid discoidal particles as a model of platelets. We characterize the deflection of different particles as a function of their size, shape, shear elasticity, their release position, and the geometric parameters of the channel. The simulations provide insight into the separation mechanism and allow the optimization of specific devices depending on the application. Good agreement with experiments is observed.

  17. Evaluation of wall thinning profile by flow accelerated corrosion in separation and union pipe

    International Nuclear Information System (INIS)

    Watanabe, Shun; Yoneda, Kimitoshi

    2013-01-01

    Flow Accelerated Corrosion (FAC) is a pipe wall thinning phenomena to be monitored and managed in power plants with high priority. At present, its management has been conducted with conservative evaluation of thinning rate and residual lifetime of the piping based on wall thickness measurements. However, noticeable case of wall thinning was occurred at separation and union pipe. In such pipe system, it is a problem to manage section beneath reinforcing plate of T-tube pipe and 'crotch' of T-joint pipe; the region where wall thickness measurement is difficult to conduct with ordinary ultrasonic testing device. In this study, numerical analysis for separation and union part of T-tube and T-joint pipe was conducted, and wall thinning profile by Flow Accelerated Corrosion was evaluated by calculating mass transfer coefficient and geometry factor. Based on these results, we considered applicable wall thinning management for T-tube and T-joint pipe. In the case of union flow from main and branch pipe, the wall thinning profile of T-tube showed the tendency of increase at main pipe like semielliptical region. On the other hand, noticeable profile appeared at 'crotch' in T-joint. Although it was found that geometry factor of T-joint in this case was half the value of T-tube, an alternative evaluation method to previous one might be needed for the profiles of 'semielliptical region' and 'crotch'. (author)

  18. Groundwater flow simulation of the Savannah River Site general separations area

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bagwell, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bennett, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-07

    The most recent groundwater flow model of the General Separations Area, Savannah River Site, is referred to as the “GSA/PORFLOW” model. GSA/PORFLOW was developed in 2004 by porting an existing General Separations Area groundwater flow model from the FACT code to the PORFLOW code. The preceding “GSA/FACT” model was developed in 1997 using characterization and monitoring data through the mid-1990’s. Both models were manually calibrated to field data. Significantly more field data have been acquired since the 1990’s and model calibration using mathematical optimization software has become routine and recommended practice. The current task involved updating the GSA/PORFLOW model using selected field data current through at least 2015, and use of the PEST code to calibrate the model and quantify parameter uncertainty. This new GSA groundwater flow model is named “GSA2016” in reference to the year in which most development occurred. The GSA2016 model update is intended to address issues raised by the DOE Low-Level Waste (LLW) Disposal Facility Federal Review Group (LFRG) in a 2008 review of the E-Area Performance Assessment, and by the Nuclear Regulatory Commission in reviews of tank closure and Saltstone Disposal Facility Performance Assessments.

  19. The on-line graph processing study on phase separation of two-phase flow in T-tube

    International Nuclear Information System (INIS)

    Qian Yong; Xu Jijun; Yang Zhilin; Chen Yifen

    1997-01-01

    The on-line graph processing measure system is equipped with and experimental study of phase separation of air-water bubbly flow in the horizontal T-junction is carried out. For the first time, the author have found and defined the new type of complete phase separation, by the visual experiment, which shows that under certain conditions, the air flow entering the T junction will flow into the run outlet completely, which had never been reported in the literature Also, the pressure wave feed back effect and the branch bubble flow reorganization effect were found and analyzed. The complexity of this phase separation phenomenon in the T junction has been further revealed via the on-line graph processing technology. Meanwhile the influences of the inlet mass flow rate W1, the inlet mass quality X1, and the mass extraction rate G3/G1 on phase separation were analyzed

  20. Numerical investigation on flow behavior and energy separation in a micro-scale vortex tube

    Directory of Open Access Journals (Sweden)

    Rahbar Nader

    2015-01-01

    Full Text Available There are a few experimental and numerical studies on the behaviour of micro-scale vortex tubes. The intention of this work is to investigate the energy separation phenomenon in a micro-scale vortex tube by using the computational fluid dynamic. The flow is assumed as steady, turbulent, compressible ideal gas, and the shear-stress transport sst k-w is used for modeling of turbulence phenomenon. The results show that 3-D CFD simulation is more accurate than 2-D axisymmetric one. Moreover, optimum cold-mass ratios to maximize the refrigeration-power and isentropicefficiency are evaluated. The results of static temperature, velocity magnitude and pressure distributions show that the temperature-separation in the micro-scale vortex tube is a function of kinetic-energy variation and air-expansion in the radial direction.

  1. Free flow electrophoresis separation and AMS quantitation of 14C-naphthalene-protein adducts

    International Nuclear Information System (INIS)

    Buchholz, Bruce A.; Haack, Kurt W.; Sporty, Jennifer L.; Buckpitt, Alan R.; Morin, Dexter

    2010-01-01

    Naphthalene is a volatile aromatic hydrocarbon to which humans are exposed from a variety of sources including mobile air sources and cigarette smoke. Naphthalene produces dose-(concentration)dependent injury to airway epithelial cells of murine lung which is observed at concentrations well below the current occupational exposure standard. Toxicity is dependent upon the cytochrome P450 mediated metabolic activation of the parent substrate to unstable metabolites which become bound covalently to tissue proteins. Nearly 70 proteins have been identified as forming adducts with reactive naphthalene metabolites using in vitro systems but very little work has been conducted in vivo because reasonably large amounts (100 μCi) of 14 C labeled parent compound must be administered to generate detectable adduct levels on storage phosphor screens following separation of labeled proteins by 2D gel electrophoresis. The work described here was done to provide proof of concept that protein separation by free flow electrophoresis followed by AMS detection of protein fractions containing protein bound reactive metabolites would provide adducted protein profiles in animals dosed with trace quantities of labeled naphthalene. Mice were administered 200 mg/kg naphthalene intraperitoneally at a calculated specific activity of 2 DPM/nmol (1 pCi/nmol) and respiratory epithelial tissue was obtained by lysis lavage 4 h post injection. Free flow electrophoresis (FFE) separates proteins in the liquid phase over a large pH range (2.5-11.5) using low molecular weight acids and bases to modify the pH. The apparatus separates fractions into standard 96-well plates that can be used in other protein analysis techniques. The buffers of the fractions have very high carbon content, however, and need to be dialyzed to yield buffers compatible with 14 C-AMS. We describe the processing techniques required to couple FFE to AMS for quantitation of protein adducts.

  2. Free flow electrophoresis separation and AMS quantitation of 14C-naphthalene-protein adducts

    Science.gov (United States)

    Buchholz, Bruce A.; Haack, Kurt W.; Sporty, Jennifer L.; Buckpitt, Alan R.; Morin, Dexter

    2010-04-01

    Naphthalene is a volatile aromatic hydrocarbon to which humans are exposed from a variety of sources including mobile air sources and cigarette smoke. Naphthalene produces dose-(concentration)dependent injury to airway epithelial cells of murine lung which is observed at concentrations well below the current occupational exposure standard. Toxicity is dependent upon the cytochrome P450 mediated metabolic activation of the parent substrate to unstable metabolites which become bound covalently to tissue proteins. Nearly 70 proteins have been identified as forming adducts with reactive naphthalene metabolites using in vitro systems but very little work has been conducted in vivo because reasonably large amounts (100 μCi) of 14C labeled parent compound must be administered to generate detectable adduct levels on storage phosphor screens following separation of labeled proteins by 2D gel electrophoresis. The work described here was done to provide proof of concept that protein separation by free flow electrophoresis followed by AMS detection of protein fractions containing protein bound reactive metabolites would provide adducted protein profiles in animals dosed with trace quantities of labeled naphthalene. Mice were administered 200 mg/kg naphthalene intraperitoneally at a calculated specific activity of 2 DPM/nmol (1 pCi/nmol) and respiratory epithelial tissue was obtained by lysis lavage 4 h post injection. Free flow electrophoresis (FFE) separates proteins in the liquid phase over a large pH range (2.5-11.5) using low molecular weight acids and bases to modify the pH. The apparatus separates fractions into standard 96-well plates that can be used in other protein analysis techniques. The buffers of the fractions have very high carbon content, however, and need to be dialyzed to yield buffers compatible with 14C-AMS. We describe the processing techniques required to couple FFE to AMS for quantitation of protein adducts.

  3. Free flow electrophoresis separation and AMS quantitation of {sup 14}C-naphthalene-protein adducts

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Bruce A., E-mail: bbuchholz@llnl.go [Center for AMS, LLNL, 7000 East Avenue, Livermore, CA 94551 (United States); Haack, Kurt W.; Sporty, Jennifer L. [Center for AMS, LLNL, 7000 East Avenue, Livermore, CA 94551 (United States); Buckpitt, Alan R.; Morin, Dexter [Department of Molecular Biosciences, School of Veterinary Medicine, UC Davis, Davis, CA 95616 (United States)

    2010-04-15

    Naphthalene is a volatile aromatic hydrocarbon to which humans are exposed from a variety of sources including mobile air sources and cigarette smoke. Naphthalene produces dose-(concentration)dependent injury to airway epithelial cells of murine lung which is observed at concentrations well below the current occupational exposure standard. Toxicity is dependent upon the cytochrome P450 mediated metabolic activation of the parent substrate to unstable metabolites which become bound covalently to tissue proteins. Nearly 70 proteins have been identified as forming adducts with reactive naphthalene metabolites using in vitro systems but very little work has been conducted in vivo because reasonably large amounts (100 muCi) of {sup 14}C labeled parent compound must be administered to generate detectable adduct levels on storage phosphor screens following separation of labeled proteins by 2D gel electrophoresis. The work described here was done to provide proof of concept that protein separation by free flow electrophoresis followed by AMS detection of protein fractions containing protein bound reactive metabolites would provide adducted protein profiles in animals dosed with trace quantities of labeled naphthalene. Mice were administered 200 mg/kg naphthalene intraperitoneally at a calculated specific activity of 2 DPM/nmol (1 pCi/nmol) and respiratory epithelial tissue was obtained by lysis lavage 4 h post injection. Free flow electrophoresis (FFE) separates proteins in the liquid phase over a large pH range (2.5-11.5) using low molecular weight acids and bases to modify the pH. The apparatus separates fractions into standard 96-well plates that can be used in other protein analysis techniques. The buffers of the fractions have very high carbon content, however, and need to be dialyzed to yield buffers compatible with {sup 14}C-AMS. We describe the processing techniques required to couple FFE to AMS for quantitation of protein adducts.

  4. TRANSIENT LAMINAR SEPARATED FLOW AROUND AN IMPULSIVELY STARTED SPHERICAL PARTICLE AT 20≤RE≤1000

    Directory of Open Access Journals (Sweden)

    FARIDA BENABBAS

    2015-12-01

    Full Text Available Numerical simulations of the axisymmetric laminar flow characteristics past a rigid sphere impulsively started are presented for Reynolds numbers from 20 to 1000. The results are obtained by solving the complete time dependant Navier-Stokes equations in vorticity and stream function formulation. A fourth order compact method is used to discretize the Poisson equation of stream function while the vorticity transport equation is solved by an alternating direction implicit method. Time evolution of flow separation angle and length of the vortex behind the sphere are reported. Time variation of the axial velocity in the vortex and the wall vorticity around the sphere are also examined. Secondary vortices are seen to be initiated at Reynolds number of 610 and for dimensionless time t about 5. Comparisons with previously published simulations and experimental data for steady state conditions show very good agreement.

  5. Development of an Immunomagnetic Separation Method for Viable Salmonella Typhimurium Detected by Flow Cytometry

    DEFF Research Database (Denmark)

    Ahmed, Shakil; Rubahn, Horst-Günter; Erdmann, Helmut

    2016-01-01

    for detection of food-related bacteria. In this study, a flow cytometry based immunomagnetic separation (IMS) method for the isolation and enrichment of Salmonella Typhimurium from liquid samples was developed and optimized. Both polyclonal and monoclonal antibodies have been used to couple with 1 micron sized...... and bacteria, immunocapture time, staining and buffering conditions for the viability assays were optimized. The capture efficiency of IMS was>98% for a range of Salmonella Typhimurium cell concentrations from 103 to 105/mL using 108/mL bead concentration. The method proved to have high (98%) specificity...

  6. Wall shear stress characterization of a 3D bluff-body separated flow

    Science.gov (United States)

    Fourrié, Grégoire; Keirsbulck, Laurent; Labraga, Larbi

    2013-10-01

    Efficient flow control strategies aimed at reducing the aerodynamic drag of road vehicles require a detailed knowledge of the reference flow. In this work, the flow around the rear slanted window of a generic car model was experimentally studied through wall shear stress measurements using an electrochemical method. The mean and fluctuating wall shear stress within the wall impact regions of the recirculation bubble and the main longitudinal vortex structures which develop above the rear window are presented. Correlations allow a more detailed characterization of the recirculation phenomenon within the separation bubble. In the model symmetry plane the recirculation structure compares well with simpler 2D configurations; specific lengths, flapping motion and shedding of large-scale vortices are observed, these similarities diminish when leaving the middle plane due to the strong three-dimensionality of the flow. A specific attention is paid to the convection processes occurring within the recirculation: a downstream convection velocity is observed, in accordance with 2D recirculations from the literature, and an upstream convection is highlighted along the entire bubble length which has not been underlined in some previous canonical configurations.

  7. A proposal simulated annealing algorithm for proportional parallel flow shops with separated setup times

    Directory of Open Access Journals (Sweden)

    Helio Yochihiro Fuchigami

    2014-08-01

    Full Text Available This article addresses the problem of minimizing makespan on two parallel flow shops with proportional processing and setup times. The setup times are separated and sequence-independent. The parallel flow shop scheduling problem is a specific case of well-known hybrid flow shop, characterized by a multistage production system with more than one machine working in parallel at each stage. This situation is very common in various kinds of companies like chemical, electronics, automotive, pharmaceutical and food industries. This work aimed to propose six Simulated Annealing algorithms, their perturbation schemes and an algorithm for initial sequence generation. This study can be classified as “applied research” regarding the nature, “exploratory” about the objectives and “experimental” as to procedures, besides the “quantitative” approach. The proposed algorithms were effective regarding the solution and computationally efficient. Results of Analysis of Variance (ANOVA revealed no significant difference between the schemes in terms of makespan. It’s suggested the use of PS4 scheme, which moves a subsequence of jobs, for providing the best percentage of success. It was also found that there is a significant difference between the results of the algorithms for each value of the proportionality factor of the processing and setup times of flow shops.

  8. Numerical simulation of bellows effect on flow and separation of uranium isotopes in a supercritical gas centrifuge

    International Nuclear Information System (INIS)

    Borisevich, V.D.; Morozov, O.E.; Godisov, O.N.

    2000-01-01

    Numerical solving of the Navier-Stokes and convection-diffusion equations by the finite difference technique has been applied to study the influence of bellows on the flow and separation of uranium isotopes in a single supercritical gas centrifuge. Dependence of the separative power of a gas centrifuge on geometric parameters and position of a bellows on a rotor wall as well as the effect of scoop drag and feed flow on isotope separation in a gas centrifuge with a bellows have been obtained in computing experiments. It was demonstrated that increase of the separative power with increase of the gas centrifuge length is less considerable than predicted by the Dirac's law

  9. Numerical investigation of the LM MHD flows in a curved duct with an FCI with varying slot locations

    International Nuclear Information System (INIS)

    Yang, Jong Hoon; Yan, Yue; Kim, Chang Nyung

    2016-01-01

    Highlights: • This study numerically investigates the liquid-metal magnetohydrodynamic flows in a curved duct with an FCI. • The effects of the location of FCI slot and of the curvature radius on the flow behavior are reviewed. • The influence of the FCI slot position on the equalization of the pressure in the inner fluid region (inside the FCI) and the gap fluid region (outer the FCI) is examined. - Abstract: This study numerically investigates the liquid-metal (LM) magnetohydrodynamic (MHD) flows in a curved duct with an FCI having three different slot locations and having no slot under a uniform magnetic field perpendicular to the duct. The flow velocity, current density, electric potential, Lorentz force, and pressure in different flow situations are presented in detail. The effects of the location of FCI slot and of the curvature radius on the flow behavior are reviewed. The flow field is examined with an introduction of the electric-field component and electro-motive component of the current, allowing us to analyze the interdependency of the flow variables. The effect of the FCI slot position on the equalization of the pressure in the inner fluid region (inside the FCI) and the gap fluid region (outer the FCI) is examined. The result shows that and the case with an FCI slot located in the neutral position yields the smallest pressure gradient in the main flow direction among the cases with an FCI slot, resulting in the smallest pressure drop. Also, in a flow situation with smaller radius of curvature with the FCI slot in the neutral position, the axial velocity near the inner (in terms of the curvature) part of a cross-section is higher than that near the outer part.

  10. Location, location, location

    NARCIS (Netherlands)

    Anderson, S.P.; Goeree, J.K.; Ramer, R.

    1997-01-01

    We analyze the canonical location-then-price duopoly game with general log- concave consumer densities. A unique pure-strategy equilibrium to the two-stage game exists if the density is not "too asymmetric" and not "too concave." These criteria are satisfied by many commonly used densities.

  11. Active flow control of the laminar separation bubble on a plunging airfoil near stall

    Science.gov (United States)

    Pande, Arth; Agate, Mark; Little, Jesse; Fasel, Hermann

    2017-11-01

    The effects of small amplitude (A/c = 0.048) high frequency (πfc/U∞ = 0.70) plunging motion on the X-56A airfoil are examined experimentally at Re = 200,000 for 12° angle of attack (CL,MAX = 12.25°) . The purpose of this research is to study the aerodynamic influence of structural motion when the wing is vibrating close to its eigenfrequency near static stall. Specific focus is placed on the laminar separation bubble (LSB) near the leading edge and its control via plasma actuation. In the baseline case, the leading edge bubble bursts during the oscillation cycle causing moment stall. A collaborative computational effort has shown that small amplitude forcing at a frequency that is most amplified by the primary instability of the LSB (FLSB+= 1, Fc+= 52) generates coherent spanwise vortices that entrain freestream momentum, thus reducing separation all while maintaining a laminar flow state. Results (PIV and surface pressure) indicate that a similar control mechanism is effective in the experiments. This is significant given the existence of freestream turbulence in the wind tunnel which has been shown to limit the efficacy of this active flow control technique in a model problem using Direct Numerical Simulation. The implications of these results are discussed.

  12. Ground effects on the stability of separated flow around an airfoil at low Reynolds numbers

    Science.gov (United States)

    He, Wei; Yu, Peng; Li, Larry K. B.

    2017-11-01

    We perform a BiGlobal stability analysis on the separated flow around a NACA 4415 airfoil at low Reynolds numbers (Re = 300 - 1000) and a high angle of attack α =20° with a focus on the effect of the airfoil's proximity to a moving ground. The results show that the most dominant perturbation is the Kelvin-Helmholtz mode and that this traveling mode becomes less unstable as the airfoil approaches the ground, although this stabilizing effect diminishes with increasing Reynolds number. By performing a Floquet analysis, we find that this ground effect can also stabilize secondary instabilities. This numerical-theoretical study shows that the ground can have a significant influence on the stability of separated flow around an airfoil at low Reynolds numbers, which could have implications for the design of micro aerial vehicles and for the understanding of natural flyers such as insects and birds. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815) and the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) under Grant No.U1501501.

  13. Vorticity amplification and its effects on flow separation from simplified landing gear wheels

    Science.gov (United States)

    McCarthy, Philip; Feltham, Graham; Ekmekci, Alis

    2015-11-01

    In the presence of weak streams of inbound vorticity, the stagnation region of bluff bodies have been shown to support mechanisms for the collection and amplification of said vorticity into large-scale, discrete vortex structures. For extremely low aspect ratio cylinders, such as those which represent simplified aircraft landing gear wheels, these discrete vortex structures tilt around the sides of the geometry, orientating their axes in the streamwise direction. Once the oncoming vorticity is collected and amplified into discrete vortices, they are shed from the stagnation region and this cycle repeats itself periodically. The present work investigates the effect of the vortex tilting and subsequent shedding on the behaviour of the outboard side flow separation region present on simplified landing gear wheels. Experiments were conducted in a recirculating-type water tunnel on a two-wheel landing gear model, with the upstream vorticity source being a 100 µm platinum wire. Hydrogen bubble visualisations were first used for qualitative understanding of the flow, accompanied by 2D-PIV for vortex identification and tracking of the growth and movement of the observed structures. Finally, the side separation bubble has been characterised using 3D velocity measurements (using V3V). The authors would like to thank Bombardier, Messier-Bugatti-Dowty and NSERC for their support for this project.

  14. Experimental investigation of droplet separation in a horizontal counter-current air/water stratified flow

    International Nuclear Information System (INIS)

    Gabriel, Stephan Gerhard

    2015-01-01

    A stratified counter-current two-phase gas/liquid flow can occur in various technical systems. In the past investigations have mainly been motivated by the possible occurrence of these flows in accident scenarios of nuclear light water-reactors and in numerous applications in process engineering. However, the precise forecast of flow parameters, is still challenging, for instance due to their strong dependency on the geometric boundary conditions. A new approach which uses CFD methods (Computational Fluid Dynamics) promises a better understanding of the flow phenomena and simultaneously a higher scalability of the findings. RANS methods (Reynolds Averaged Navier Stokes) are preferred in order to compute industrial processes and geometries. A very deep understanding of the flow behavior and equation systems based on real physics are necessary preconditions to develop the equation system for a reliable RANS approach with predictive power. Therefore, local highly resolved, experimental data is needed in order to provide and validate the required turbulence and phase interaction models. The central objective of this work is to provide the data needed for the code development for these unsteady, turbulent and three-dimensional flows. Experiments were carried out at the WENKA facility (Water Entrainment Channel Karlsruhe) at the Karlsruhe Institute of Technology (KIT). The work consists of a detailed description of the test-facility including a new bended channel, the measurement techniques and the experimental results. The characterization of the new channel was done by flow maps. A high-speed imaging study gives an impression of the occurring flow regimes, and different flow phenomena like droplet separation. The velocity distributions as well as various turbulence values were investigated by particle image velocimetry (PIV). In the liquid phase fluorescent tracer-particles were used to suppress optical reflections from the phase surface (fluorescent PIV, FPIV

  15. Three-Phase AC Optimal Power Flow Based Distribution Locational Marginal Price: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui; Zhang, Yingchen

    2017-05-17

    Designing market mechanisms for electricity distribution systems has been a hot topic due to the increased presence of smart loads and distributed energy resources (DERs) in distribution systems. The distribution locational marginal pricing (DLMP) methodology is one of the real-time pricing methods to enable such market mechanisms and provide economic incentives to active market participants. Determining the DLMP is challenging due to high power losses, the voltage volatility, and the phase imbalance in distribution systems. Existing DC Optimal Power Flow (OPF) approaches are unable to model power losses and the reactive power, while single-phase AC OPF methods cannot capture the phase imbalance. To address these challenges, in this paper, a three-phase AC OPF based approach is developed to define and calculate DLMP accurately. The DLMP is modeled as the marginal cost to serve an incremental unit of demand at a specific phase at a certain bus, and is calculated using the Lagrange multipliers in the three-phase AC OPF formulation. Extensive case studies have been conducted to understand the impact of system losses and the phase imbalance on DLMPs as well as the potential benefits of flexible resources.

  16. Simulation of turbulent separated flows using a novel, evolution-based, eddy-viscosity formulation

    Science.gov (United States)

    Castellucci, Paul

    Currently, there exists a lack of confidence in the computational simulation of turbulent separated flows at large Reynolds numbers. The most accurate methods available are too computationally costly to use in engineering applications. Thus, inexpensive models, developed using the Reynolds-averaged Navier-Stokes (RANS) equations, are often extended beyond their applicability. Although these methods will often reproduce integrated quantities within engineering tolerances, such metrics are often insensitive to details within a separated wake, and therefore, poor indicators of simulation fidelity. Using concepts borrowed from large-eddy simulation (LES), a two-equation RANS model is modified to simulate the turbulent wake behind a circular cylinder. This modification involves the computation of one additional scalar field, adding very little to the overall computational cost. When properly inserted into the baseline RANS model, this modification mimics LES in the separated wake, yet reverts to the unmodified form at the cylinder surface. In this manner, superior predictive capability may be achieved without the additional cost of fine spatial resolution associated with LES near solid boundaries. Simulations using modified and baseline RANS models are benchmarked against both LES and experimental data for a circular cylinder wake at Reynolds number 3900. In addition, the computational tool used in this investigation is subject to verification via the Method of Manufactured Solutions. Post-processing of the resultant flow fields includes both mean value and triple-decomposition analysis. These results reveal substantial improvements using the modified system and appear to drive the baseline wake solution toward that of LES, as intended.

  17. Automation of radiochemical analysis by flow injection techniques. Am-Pu separation using TRU-resinTM sorbent extraction column

    International Nuclear Information System (INIS)

    Egorov, O.; Washington Univ., Seattle, WA; Grate, J.W.; Ruzicka, J.

    1998-01-01

    A rapid automated flow injection analysis (FIA) procedure was developed for efficient separation of Am and Pu from each other and from interfering matrix and radionuclide components using a TRU-resin TM column. Selective Pu elution is enabled via on-column reduction. The separation was developed using on-line radioactivity detection. After the separation had been developed, fraction collection was used to obtain the separated fractions. In this manner, a FIA instrument functions as an automated separation workstation capable of unattended operation. (author)

  18. Three-dimensional printed magnetophoretic system for the continuous flow separation of avian influenza H5N1 viruses.

    Science.gov (United States)

    Wang, Yuhe; Li, Yanbin; Wang, Ronghui; Wang, Maohua; Lin, Jianhan

    2017-04-01

    As a result of the low concentration of avian influenza viruses in samples for routine screening, the separation and concentration of these viruses are vital for their sensitive detection. We present a novel three-dimensional printed magnetophoretic system for the continuous flow separation of the viruses using aptamer-modified magnetic nanoparticles, a magnetophoretic chip, a magnetic field, and a fluidic controller. The magnetic field was designed based on finite element magnetic simulation and developed using neodymium magnets with a maximum intensity of 0.65 T and a gradient of 32 T/m for dragging the nanoparticle-virus complexes. The magnetophoretic chip was designed by SOLIDWORKS and fabricated by a three-dimensional printer with a magnetophoretic channel for the continuous flow separation of the viruses using phosphate-buffered saline as carrier flow. The fluidic controller was developed using a microcontroller and peristaltic pumps to inject the carrier flow and the viruses. The trajectory of the virus-nanoparticle complexes was simulated using COMSOL for optimization of the carrier flow and the magnetic field, respectively. The results showed that the H5N1 viruses could be captured, separated, and concentrated using the proposed magnetophoretic system with the separation efficiency up to 88% in a continuous flow separation time of 2 min for a sample volume of 200 μL. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Flow and Transport in Complex Microporous Carbonates as a Consequence of Separation of Scales

    Science.gov (United States)

    Bijeljic, B.; Raeini, A. Q.; Lin, Q.; Blunt, M. J.

    2017-12-01

    Some of the most important examples of flow and transport in complex pore structures are found in subsurface applications such as contaminant hydrology, carbon storage and enhanced oil recovery. Carbonate rock structures contain most of the world's oil reserves, considerable amount of water reserves, and potentially hold a storage capacity for carbon dioxide. However, this type of pore space is difficult to represent due to complexities associated with a wide range of pore sizes and variation in connectivity which poses a considerable challenge for quantitative predictions of transport across multiple scales.A new concept unifying X-ray tomography experiment and direct numerical simulation has been developed that relies on full description flow and solute transport at the pore scale. Differential imaging method (Lin et al. 2016) provides rich information in microporous space, while advective and diffusive mass transport are simulated on micro-CT images of pore-space: Navier-Stokes equations are solved for flow in the image voxels comprising the pore space, streamline-based simulation is used to account for advection, and diffusion is superimposed by random walk.Quantitative validation has been done on analytical solutions for diffusion and by comparing the model predictions versus the experimental NMR measurements in the dual porosity beadpack. Furthermore, we discriminate signatures of multi-scale transport behaviour for a range of carbonate rock (Figure 1), dependent on the heterogeneity of the inter- and intra-grain pore space, heterogeneity in the flow field, and the mass transfer characteristics of the porous media. Finally, we demonstrate the predictive capabilities of the model through an analysis that includes a number of probability density functions flow and transport (PDFs) measures of non-Fickian transport on the micro-CT i935mages. In complex porous media separation of scales exists, leading to flow and transport signatures that need to be described by

  20. Methods for estimating flow-duration curve and low-flow frequency statistics for ungaged locations on small streams in Minnesota

    Science.gov (United States)

    Ziegeweid, Jeffrey R.; Lorenz, David L.; Sanocki, Chris A.; Czuba, Christiana R.

    2015-12-24

    Knowledge of the magnitude and frequency of low flows in streams, which are flows in a stream during prolonged dry weather, is fundamental for water-supply planning and design; waste-load allocation; reservoir storage design; and maintenance of water quality and quantity for irrigation, recreation, and wildlife conservation. This report presents the results of a statewide study for which regional regression equations were developed for estimating 13 flow-duration curve statistics and 10 low-flow frequency statistics at ungaged stream locations in Minnesota. The 13 flow-duration curve statistics estimated by regression equations include the 0.0001, 0.001, 0.02, 0.05, 0.1, 0.25, 0.50, 0.75, 0.9, 0.95, 0.99, 0.999, and 0.9999 exceedance-probability quantiles. The low-flow frequency statistics include annual and seasonal (spring, summer, fall, winter) 7-day mean low flows, seasonal 30-day mean low flows, and summer 122-day mean low flows for a recurrence interval of 10 years. Estimates of the 13 flow-duration curve statistics and the 10 low-flow frequency statistics are provided for 196 U.S. Geological Survey continuous-record streamgages using streamflow data collected through September 30, 2012.

  1. Domestic wastewater treatment using multi-electrode continuous flow MFCs with a separator electrode assembly design

    KAUST Repository

    Ahn, Yongtae

    2012-10-11

    Treatment of domestic wastewater using microbial fuel cells (MFCs) will require reactors with multiple electrodes, but this presents unique challenges under continuous flow conditions due to large changes in the chemical oxygen demand (COD) concentration within the reactor. Domestic wastewater treatment was examined using a single-chamber MFC (130 mL) with multiple graphite fiber brush anodes wired together and a single air cathode (cathode specific area of 27 m2/m3). In fed-batch operation, where the COD concentration was spatially uniform in the reactor but changed over time, the maximum current density was 148 ± 8 mA/m2 (1,000 Ω), the maximum power density was 120 mW/m2, and the overall COD removal was >90 %. However, in continuous flow operation (8 h hydraulic retention time, HRT), there was a 57 % change in the COD concentration across the reactor (influent versus effluent) and the current density was only 20 ± 13 mA/m2. Two approaches were used to increase performance under continuous flow conditions. First, the anodes were separately wired to the cathode, which increased the current density to 55 ± 15 mA/m2. Second, two MFCs were hydraulically connected in series (each with half the original HRT) to avoid large changes in COD among the anodes in the same reactor. The second approach improved current density to 73 ± 13 mA/m2. These results show that current generation from wastewaters in MFCs with multiple anodes, under continuous flow conditions, can be improved using multiple reactors in series, as this minimizes changes in COD in each reactor. © 2012 Springer-Verlag Berlin Heidelberg.

  2. Numerical Predictions of Flow Characteristics in a 90 Degree Bended Upward Elbow Located at the Downstream Region of a Flow Control Valve (Butterfly Valve)

    International Nuclear Information System (INIS)

    Won, Se Youl; Park, Young Sheop; Kim, Yun Jung; Oh, Seung Jong

    2006-01-01

    Butterfly valves are widely used in industrial piping components. They are used for flow control in large diameter pipes because of their lightweight, simple structure and the rapidity of manipulation. Any flow disturbing components such as elbows, orifice plates and tees are recommended to be located in a distance of 8 diameters (L/D.8) from the downstream of butterfly valves to decrease the effect of flow disturbance. However, one would encounter cases where other piping components are installed in a close proximity due to the space restriction. In these cases, the numerical simulation will be useful to evaluate the impact of flow disturbances. In this study, we have examined one practical case encountered where the elbow is located in a close proximity to the butterfly valve. Due to the close proximity, we are concerned about pipe thinning and we use the numerical evaluation to determine the range of operating regime and options

  3. Water Transport and Removal in PEMFC Gas Flow Channel with Various Water Droplet Locations and Channel Surface Wettability

    Directory of Open Access Journals (Sweden)

    Yanzhou Qin

    2018-04-01

    Full Text Available Water transport and removal in the proton exchange membrane fuel cell (PEMFC is critically important to fuel cell performance, stability, and durability. Water emerging locations on the membrane-electrode assembly (MEA surface and the channel surface wettability significantly influence the water transport and removal in PEMFC. In most simulations of water transport and removal in the PEMFC flow channel, liquid water is usually introduced at the center of the MEA surface, which is fortuitous, since water droplet can emerge randomly on the MEA surface in PEMFC. In addition, the commonly used no-slip wall boundary condition greatly confines the water sliding features on hydrophobic MEA/channel surfaces, degrading the simulation accuracy. In this study, water droplet is introduced with various locations along the channel width direction on the MEA surface, and water transport and removal is investigated numerically using an improved model incorporating the sliding flow property by using the shear wall boundary condition. It is found that the water droplet can be driven to the channel sidewall by aerodynamics when the initial water location deviates from the MEA center to a certain amount, forming the water corner flow in the flow channel. The channel surface wettability on the water transport is also studied and is shown to have a significant impact on the water corner flow in the flow channel.

  4. LES of High-Reynolds-Number Coanda Flow Separating from a Rounded Trailing Edge of a Circulation Control Airfoil

    Science.gov (United States)

    Nichino, Takafumi; Hahn, Seonghyeon; Shariff, Karim

    2010-01-01

    This slide presentation reviews the Large Eddy Simulation of a high reynolds number Coanda flow that is separated from a round trailing edge of a ciruclation control airfoil. The objectives of the study are: (1) To investigate detailed physics (flow structures and statistics) of the fully turbulent Coanda jet applied to a CC airfoil, by using LES (2) To compare LES and RANS results to figure out how to improve the performance of existing RANS models for this type of flow.

  5. Parabolized Navier-Stokes solutions of separation and trailing-edge flows

    Science.gov (United States)

    Brown, J. L.

    1983-01-01

    A robust, iterative solution procedure is presented for the parabolized Navier-Stokes or higher order boundary layer equations as applied to subsonic viscous-inviscid interaction flows. The robustness of the present procedure is due, in part, to an improved algorithmic formulation. The present formulation is based on a reinterpretation of stability requirements for this class of algorithms and requires only second order accurate backward or central differences for all streamwise derivatives. Upstream influence is provided for through the algorithmic formulation and iterative sweeps in x. The primary contribution to robustness, however, is the boundary condition treatment, which imposes global constraints to control the convergence path. Discussed are successful calculations of subsonic, strong viscous-inviscid interactions, including separation. These results are consistent with Navier-Stokes solutions and triple deck theory.

  6. Closed compact Taylor's droplets in a phase-separated lamellar-sponge mixture under shear flow

    Science.gov (United States)

    Courbin, L.; Cristobal, G.; Rouch, J.; Panizza, P.

    2001-09-01

    We have studied by optical microscopy, small-angle light scattering, and rheology, the behavior under shear flow of a phase-separated lamellar-sponge (Lα - L3) ternary mixture. We observe in the Lα-rich region (ΦLα > 80%) the existence of a Newtonian assembly made of closed compact monodisperse lamellar droplets immersed in the sponge phase. Contrary to the classical onion glassy texture obtained upon shearing Lα phases, the droplet size scales herein as dot gamma-1, the inverse of the shear rate. This result is in good agreement with Taylor's picture. Above a critical shear rate, dot gammac, the droplets organize to form a single colloidal crystal whose lattice size varies as dot gamma-1/3. To the memory of Tess Melissa P.

  7. On-chip immunomagnetic separation of bacteria by in-flow dynamic manipulation of paramagnetic beads

    Science.gov (United States)

    Ahmed, Shakil; Noh, Jong Wook; Hoyland, James; de Oliveira Hansen, Roana; Erdmann, Helmut; Rubahn, Horst-Günter

    2016-11-01

    Every year, millions of people all over the world fall ill due to the consumption of unsafe food, where consumption of contaminated and spoiled animal origin product is the main cause for diseases due to bacterial growth. This leads to an intense need for efficient methods for detection of food-related bacteria. In this work, we present a method for integration of immunomagnetic separation of bacteria into microfluidic technology by applying an alternating magnetic field, which manipulates the paramagnetic beads into a sinusoidal path across the whole microchannel, increasing the probability for bacteria capture. The optimum channel geometry, flow rate and alternating magnetic field frequency were investigated, resulting in a capture efficiency of 68 %.

  8. Vortex Lattice Simulations of Attached and Separated Flows around Flapping Wings

    Directory of Open Access Journals (Sweden)

    Thomas Lambert

    2017-04-01

    Full Text Available Flapping flight is an increasingly popular area of research, with applications to micro-unmanned air vehicles and animal flight biomechanics. Fast, but accurate methods for predicting the aerodynamic loads acting on flapping wings are of interest for designing such aircraft and optimizing thrust production. In this work, the unsteady vortex lattice method is used in conjunction with three load estimation techniques in order to predict the aerodynamic lift and drag time histories produced by flapping rectangular wings. The load estimation approaches are the Katz, Joukowski and simplified Leishman–Beddoes techniques. The simulations’ predictions are compared to experimental measurements from wind tunnel tests of a flapping and pitching wing. Three types of kinematics are investigated, pitch-leading, pure flapping and pitch lagging. It is found that pitch-leading tests can be simulated quite accurately using either the Katz or Joukowski approaches as no measurable flow separation occurs. For the pure flapping tests, the Katz and Joukowski techniques are accurate as long as the static pitch angle is greater than zero. For zero or negative static pitch angles, these methods underestimate the amplitude of the drag. The Leishman–Beddoes approach yields better drag amplitudes, but can introduce a constant negative drag offset. Finally, for the pitch-lagging tests the Leishman–Beddoes technique is again more representative of the experimental results, as long as flow separation is not too extensive. Considering the complexity of the phenomena involved, in the vast majority of cases, the lift time history is predicted with reasonable accuracy. The drag (or thrust time history is more challenging.

  9. Enhanced separation of membranes during free flow zonal electrophoresis in plants.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2007-07-15

    Free flow zonal electrophoresis (FFZE) is a versatile technique that allows for the separation of cells, organelles, membranes, and proteins based on net surface charge during laminar flow through a thin aqueous layer. We have been optimizing the FFZE technique to enhance separation of plant vacuolar membranes (tonoplast) from other endomembranes to pursue a directed proteomics approach to identify novel tonoplast transporters. Addition of ATP to a mixture of endomembranes selectively enhanced electrophoretic mobility of acidic vesicular compartments during FFZE toward the positive electrode. This has been attributed to activation of the V-ATPase generating a more negative membrane potential outside the vesicles, resulting in enhanced migration of acidic vesicles, including tonoplast, to the anode (Morré, D. J.; Lawrence, J.; Safranski, K.; Hammond, T.; Morré, D. M. J. Chromatogr., A 1994, 668, 201-213). We confirm that ATP does induce a redistribution of membranes during FFZE of microsomal membranes isolated from several plant species, including Arabidopsis thaliana, Thellungiella halophila, Mesembryanthemum crystallinum, and Ananas comosus. However, we demonstrate, using V-ATPase-specific inhibitors, nonhydrolyzable ATP analogs, and ionophores to dissipate membrane potential, that the ATP-dependent migrational shift of membranes under FFZE is not due to activation of the V-ATPase. Addition of EDTA to chelate Mg2+, leading to the production of the tetravalent anionic form of ATP, resulted in a further enhancement of membrane migration toward the anode, and manipulation of cell surface charge by addition of polycations also influenced the ATP-dependent migration of membranes. We propose that ATP enhances the mobility of endomembranes by screening positive surface charges on the membrane surface.

  10. Active control of massively separated high-speed/base flows with electric arc plasma actuators

    Science.gov (United States)

    DeBlauw, Bradley G.

    The current project was undertaken to evaluate the effects of electric arc plasma actuators on high-speed separated flows. Two underlying goals motivated these experiments. The first goal was to provide a flow control technique that will result in enhanced flight performance for supersonic vehicles by altering the near-wake characteristics. The second goal was to gain a broader and more sophisticated understanding of these complex, supersonic, massively-separated, compressible, and turbulent flow fields. The attainment of the proposed objectives was facilitated through energy deposition from multiple electric-arc plasma discharges near the base corner separation point. The control authority of electric arc plasma actuators on a supersonic axisymmetric base flow was evaluated for several actuator geometries, frequencies, forcing modes, duty cycles/on-times, and currents. Initially, an electric arc plasma actuator power supply and control system were constructed to generate the arcs. Experiments were performed to evaluate the operational characteristics, electromagnetic emission, and fluidic effect of the actuators in quiescent ambient air. The maximum velocity induced by the arc when formed in a 5 mm x 1.6 mm x 2 mm deep cavity was about 40 m/s. During breakdown, the electromagnetic emission exhibited a rise and fall in intensity over a period of about 340 ns. After breakdown, the emission stabilized to a near-constant distribution. It was also observed that the plasma formed into two different modes: "high-voltage" and "low-voltage". It is believed that the plasma may be switching between an arc discharge and a glow discharge for these different modes. The two types of plasma do not appear to cause substantial differences on the induced fluidic effects of the actuator. In general, the characterization study provided a greater fundamental understanding of the operation of the actuators, as well as data for computational model comparison. Preliminary investigations

  11. Effects of Particles Collision on Separating Gas–Particle Two-Phase Turbulent Flows

    KAUST Repository

    Sihao, L. V.

    2013-10-10

    A second-order moment two-phase turbulence model incorporating a particle temperature model based on the kinetic theory of granular flow is applied to investigate the effects of particles collision on separating gas–particle two-phase turbulent flows. In this model, the anisotropy of gas and solid phase two-phase Reynolds stresses and their correlation of velocity fluctuation are fully considered using a presented Reynolds stress model and the transport equation of two-phase stress correlation. Experimental measurements (Xu and Zhou in ASME-FED Summer Meeting, San Francisco, Paper FEDSM99-7909, 1999) are used to validate this model, source codes and prediction results. It showed that the particles collision leads to decrease in the intensity of gas and particle vortices and takes a larger effect on particle turbulent fluctuations. The time-averaged velocity, the fluctuation velocity of gas and particle phase considering particles colli-sion are in good agreement with experimental measurements. Particle kinetic energy is always smaller than gas phase due to energy dissipation from particle collision. Moreover, axial– axial and radial–radial fluctuation velocity correlations have stronger anisotropic behaviors. © King Fahd University of Petroleum and Minerals 2013

  12. Hydrogen separation from high temperature CO-containing syn-gas flow using molecular ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Soudarev, A.; Konakov, G.; Souryaninov, A.; Molchanov, A. [Boyko Research Engineering Ceramic Heat Engines Center Ltd., St. Petersburg (Russian Federation); Lelait, L.; Stevens, P.H. [European Inst. for Power Studies, Karlsruhe (Germany)

    2006-07-01

    Poisoning of the platinum (Pt) metals used as catalysts for proton exchange membrane fuel cells (PEMFCs) can negatively impact on PEMFC operation efficiency. In order to address this issue, a supply of hydrogen with a carbon monoxide (CO) admixtures is required. This paper provided details of a new type of molecular ceramic membrane (MCM) that allows the separation of hydrogen (H{sub 2}) from the hydrocarbon fuel reforming products that contain CO and has higher temperature and pressure capacity than other membranes. After various tests, alumo-magnesium spinel (AMS) was selected as the most promising porous material for the ceramic multi-layer membrane. The crystalline structure of the AMS showed good thermo-dynamic stability during tests that ranged between 20 and 1400 degrees C, as well as a chemical resistance relative to the effects of the aggressive fuel cell environment, and no exposure to the oxidation-recovery processes in the CO and H{sub 2} flow. The macroporous substrate of the AMS and the membrane selection layers have the same composition. The formation of the carrier was conducted by a semi-dry molding on a hydraulic press. Formation of the nano-porous structure in the carrier macro-pores by the polysilicon acid sol solution treatment allowed the synthesis of the amorphous silica and crystobalite crystals with a developed surface and nano-dimension subporosity. Test results have shown that the MCM has optimum penetrability and selectivity values as well as admissible thermo-mechanical properties. H{sub 2} flow through the membrane was 1.5-1.7 times greater than the CO flow. It was concluded that the AMS-based membrane devices will increase the efficiency of the PEMFC power plants and reduce their degradation capacity. 2 refs., 1 tab., 1 fig.

  13. Numerical modelling of the flow and isotope separation in centrifuge Iguasu for different lengths of the rotor

    Energy Technology Data Exchange (ETDEWEB)

    Bogovalov, S. V.; Borisevich, V. D.; Borman, V. D.; Tronin, I. V.; Tronin, V. N. [National Research Nuclear University, “MEPhI” Moscow Engineering Physics Institute, Moscow (Russian Federation)

    2016-06-08

    Numerical modelling and optimization of the gas flow and isotope separation in the Iguasu gas centrifuge (GC) for uranium enrichment have been performed for different lengths of the rotor. The calculations show that the specific separative power of the GC reduces with the length of the rotor. We show that the reduction of the specific separative power is connected with the growth of the pressure in the optimal regime and corresponding growth of temperature to prevent the working gas sublimation. The specific separative power remains constant with the growth of the rotor length provided that the temperature of the gas is taken to be constant.

  14. Numerical prediction of Plume Induced Flow Separation (PIFS) on launch vehicles

    International Nuclear Information System (INIS)

    Jeffries, D.K.; Ferguson, F.; Chandra, S.

    2002-01-01

    Lockheed Martin Astronautics designs and operates launch vehicles that deliver payloads into specific geosynchronous orbits for the government and the commercial market place. Lockheed's family Atlas Launch Vehicles are an industry leader in this very competitive business and remain in this position by continuously optimizing the Atlas design to increase its performance. However, the unknown overall effects of a phenomenon that occurs when aircraft operate at high altitudes is hindering the advancement of the vehicle. Engineers have known for years through observations and calculations that the exhaust plume from an aircraft's engine undergoes changes in shape and increases in size as the aircraft gains altitude and speed. The change in exhaust plum configuration typically leads to interaction between the exhaust gases and freestream air, which is the cause of the phenomenon know as Plume Induced Flow Separation (PIFS). PIFS separates the external flow from the surface of the vehicle allowing the hot exhaust gases to climb forward from the engines toward the aircraft's leading end. Long believed to harmlessly climb the outside surfaces of aircraft, the mostly unknown phenomenon in now feared to hamper the performance of today's launch vehicles. Lockheed Martin has contracted the research study of PIFS to better understand the flowfield and then use that information to optimize the design of their launch vehicles and mitigate ifs effects. A study of the phenomenon, its resulting flowfield and thermal environment, is greatly needed to add to the knowledge of bases of PIFS and aerospace flight. The study presented outlines the development of a numerical model, which was used to investigate the effects of PIFS on an Atlas IIIA Launch Vehicle by simulating the vehicle operating under flight conditions where PIFS is most likely to occur. The model was validated by comparing numerical results with experimental data and verified by reviewing the flow physics captured. The

  15. Two-dimensional fluid dynamics in a sharply bent channel: Laminar flow, separation bubble, and vortex dynamics

    Science.gov (United States)

    Matsumoto, Daichi; Fukudome, Koji; Wada, Hirofumi

    2016-10-01

    Understanding the hydrodynamic properties of fluid flow in a curving pipe and channel is important for controlling the flow behavior in technologies and biomechanics. The nature of the resulting flow in a bent pipe is extremely complicated because of the presence of a cross-stream secondary flow. In an attempt to disentangle this complexity, we investigate the fluid dynamics in a bent channel via the direct numerical simulation of the Navier-Stokes equation in two spatial dimensions. We exploit the absence of secondary flow from our model and systematically investigate the flow structure along the channel as a function of both the bend angle and Reynolds number of the laminar-to-turbulent regime. We numerically suggest a scaling relation between the shape of the separation bubble and the flow conductance, and construct an integrated phase diagram.

  16. Estimating Bus Loads and OD Flows Using Location-Stamped Farebox and Wi-Fi Signal Data

    Directory of Open Access Journals (Sweden)

    Yuxiong Ji

    2017-01-01

    Full Text Available Electronic fareboxes integrated with Automatic Vehicle Location (AVL systems can provide location-stamped records to infer passenger boarding at individual stops. However, bus loads and Origin-Destination (OD flows, which are useful for route planning, design, and real-time controls, cannot be derived directly from farebox data. Recently, Wi-Fi sensors have been used to collect passenger OD flow information. But the data are insufficient to capture the variation of passenger demand across bus trips. In this study, we propose a hierarchical Bayesian model to estimate trip-level OD flow matrices and a period-level OD flow matrix using sampled OD flow data collected by Wi-Fi sensors and boarding data provided by fareboxes. Bus loads on each bus trip are derived directly from the estimated trip-level OD flow matrices. The proposed method is evaluated empirically on an operational bus route and the results demonstrate that it provides good and detailed transit route-level passenger demand information by combining farebox and Wi-Fi signal data.

  17. Field-scale measurements for separation of catchment discharge into flow route contributions

    NARCIS (Netherlands)

    Velde, Y. van der; Rozemeijer, J.C.; Rooij, G.H. de; Geer, F.C. van; Broers, H.P.

    2010-01-01

    Agricultural pollutants in catchments are transported toward the discharging stream through various flow routes such as tube drain flow, groundwater flow, interflow, and overland flow. Direct measurements of flow route contributions are difficult and often impossible. We developed a field-scale

  18. Field-Scale Measurements for Separation of Catchment Discharge into Flow Route Contributions

    NARCIS (Netherlands)

    Velde, van der Y.; Rozemeijer, J.; Rooij, de G.H.; Geer, van F.C.; Broers, H.P.

    2010-01-01

    Agricultural pollutants in catchments are transported toward the discharging stream through various flow routes such as tube drain flow, groundwater flow, interflow, and overland flow. Direct measurements of flow route contributions are difficult and often impossible. We developed a field-scale

  19. Field-scale measurements for separation of catchment discharge into flow route contributions

    NARCIS (Netherlands)

    van der Velde, Ype; Rozemeijer, Joachim C.; de Rooij, Gerrit H.; van Geer, Frans C.; Broers, Hans Peter

    Agricultural pollutants in catchments are transported toward the discharging stream through various flow routes such as tube drain flow, groundwater flow, interflow, and overland flow. Direct measurements of flow route contributions are difficult and often impossible. We developed a field-scale

  20. Tube Radial Distribution Flow Separation in a Microchannel Using an Ionic Liquid Aqueous Two-Phase System Based on Phase Separation Multi-Phase Flow.

    Science.gov (United States)

    Nagatani, Kosuke; Shihata, Yoshinori; Matsushita, Takahiro; Tsukagoshi, Kazuhiko

    2016-01-01

    Ionic liquid aqueous two-phase systems were delivered into a capillary tube to achieve tube radial distribution flow (TRDF) or annular flow in a microspace. The phase diagram, viscosity of the phases, and TRDF image of the 1-butyl-3-methylimidazolium chloride and NaOH system were examined. The TRDF was formed with inner ionic liquid-rich and outer ionic liquid-poor phases in the capillary tube. The phase configuration was explained using the viscous dissipation principle. We also examined the distribution of rhodamine B in a three-branched microchannel on a microchip with ionic liquid aqueous two-phase systems for the first time.

  1. Lyapunov spectrum of the separated flow around the NACA 0012 airfoil and its dependence on numerical discretization

    International Nuclear Information System (INIS)

    Fernandez, P.; Wang, Q.

    2017-01-01

    We investigate the impact of numerical discretization on the Lyapunov spectrum of separated flow simulations. The two-dimensional chaotic flow around the NACA 0012 airfoil at a low Reynolds number and large angle of attack is considered to that end. Time, space and accuracy-order refinement studies are performed to examine each of these effects separately. Numerical results show that the time discretization has a small impact on the dynamics of the system, whereas the spatial discretization can dramatically change them. Also, the finite-time Lyapunov exponents associated to unstable modes are shown to be positively skewed, and quasi-homoclinic tangencies are observed in the attractor of the system. The implications of these results on flow physics and sensitivity analysis of chaotic flows are discussed.

  2. Lyapunov spectrum of the separated flow around the NACA 0012 airfoil and its dependence on numerical discretization

    Science.gov (United States)

    Fernandez, P.; Wang, Q.

    2017-12-01

    We investigate the impact of numerical discretization on the Lyapunov spectrum of separated flow simulations. The two-dimensional chaotic flow around the NACA 0012 airfoil at a low Reynolds number and large angle of attack is considered to that end. Time, space and accuracy-order refinement studies are performed to examine each of these effects separately. Numerical results show that the time discretization has a small impact on the dynamics of the system, whereas the spatial discretization can dramatically change them. Also, the finite-time Lyapunov exponents associated to unstable modes are shown to be positively skewed, and quasi-homoclinic tangencies are observed in the attractor of the system. The implications of these results on flow physics and sensitivity analysis of chaotic flows are discussed.

  3. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications

    International Nuclear Information System (INIS)

    Francioso, L; De Pascali, C; Siciliano, P; Pescini, E; De Giorgi, M G

    2016-01-01

    Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0–100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa −1 for the best devices. (paper)

  4. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications

    Science.gov (United States)

    Francioso, L.; De Pascali, C.; Pescini, E.; De Giorgi, M. G.; Siciliano, P.

    2016-06-01

    Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0-100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa-1 for the best devices.

  5. Using a Microfluidic-Microelectric Device to Directly Separate Serum/Blood Cells from a Continuous Whole Bloodstream Flow

    Science.gov (United States)

    Wang, Ming-Wen; Jeng, Kuo-Shyang; Yu, Ming-Che; Su, Jui-Chih

    2012-03-01

    To make the rapid separation of serum/blood cells possible in a whole bloodstream flow without centrifugation and Pasteur pipette suction, the first step is to use a microchannel to transport the whole bloodstream into a microdevice. Subsequently, the resulting serum/blood cell is separated from the whole bloodstream by applying other technologies. Creating the serum makes this subsequent separation possible. To perform the actual separation, a microchannel with multiple symmetric curvilinear microelectrodes has been designed on a glass substrate and fabricated with micro-electromechanical system technology. The blood cells can be observed clearly by black-field microscopy imaging. A local dielectrophoretic (DEP) force, obtained from nonuniform electric fields, was used for manipulating and separating the blood cells from a continuous whole bloodstream. The experimental studies show that the blood cells incur a local dielectrophoretic field when they are suspended in a continuous flow (v = 0.02-0.1 cm/s) and exposed to AC fields at a frequency of 200 kHz. Using this device, the symmetric curvilinear microelectrodes provide a local dielectrophoretic field that is sufficiently strong for separating nearby blood cells and purifying the serum in a continuous whole bloodstream flow.

  6. Numerical analysis of pulsating heat pipe based on separated flow model

    International Nuclear Information System (INIS)

    Kim, Jong Soo; Im, Yong Bin; Bui, Ngoc Hung

    2005-01-01

    The examination on the operating mechanism of a Pulsating Heat Pipe (PHP) using visualization revealed that the working fluid in the PHP oscillated to the axial direction by the contraction and expansion of vapor plugs. This contraction and expansion is due to the formation and extinction of bubbles in the evaporating and condensing section, respectively. In this paper, a theoretical model of PHP was presented. The theoretical model was based on the separated flow model with two liquid slugs and three vapor plugs. The results show that the diameter, surface tension and charge ratio of working fluid have significant effects on the performance of the PHP. The following conclusions were obtained. The periodic oscillations of liquid slugs and vapor plugs were obtained under specified parameters. When the hydraulic diameter of the PHP was increased to d=3 mm, the frequency of oscillation decreased. By increasing the charging ratio from 40 to 60 by volume ratio, the pressure difference between the evaporating section and condensing section increased, the amplitude of oscillation reduced, and the oscillation frequency decreased. The working fluid with higher surface tension resulted in an increase in the amplitude and frequency of oscillation. Also the average temperature of vapor plugs decreased

  7. Measurement of characteristics of solid flow in the cyclone separators with fiber optical probe

    International Nuclear Information System (INIS)

    Li Shaohua; Li Yan; Li Jinjing; Yang Shi; Yang Hairui; Zhang Hai; Lu Junfu; Yue Guangxi

    2009-01-01

    In some applications, e.g. circulating fluidized beds (CFB), cyclones are usually operated at high solid loadings. Under high inlet solid concentration, most of the particles are collected at the wall and form a dense particle spiral band because of high separation efficiency. As a result, gas-solid reactions should occur mostly in the near-wall region. To understand the gas-solid reaction mechanism in the cyclone, an experimental study was conducted in a plexiglass CFB cold apparatus, with a riser of 0.2m I.D. and 5m high, and a standard Lapple cyclone. Fiber optical probe was used to measure the characteristics of solid flow in the cyclone, including particle velocity and volumetric solid concentration, especially in the near-wall region of the cyclone. Based on the experiment results, the combustion of carbon particles in the cyclone of a CFB boiler was estimated with group combustion theory. The calculated results show that combustion effectiveness factor ηeff of near-wall particle cloud is smaller than 1/25, which means the combustion rate of a carbon particle in the near-wall region is greatly restricted by other particles in the cloud.

  8. DNS/LES Simulations of Separated Flows at High Reynolds Numbers

    Science.gov (United States)

    Balakumar, P.

    2015-01-01

    Direct numerical simulations (DNS) and large-eddy simulations (LES) simulations of flow through a periodic channel with a constriction are performed using the dynamic Smagorinsky model at two Reynolds numbers of 2800 and 10595. The LES equations are solved using higher order compact schemes. DNS are performed for the lower Reynolds number case using a fine grid and the data are used to validate the LES results obtained with a coarse and a medium size grid. LES simulations are also performed for the higher Reynolds number case using a coarse and a medium size grid. The results are compared with an existing reference data set. The DNS and LES results agreed well with the reference data. Reynolds stresses, sub-grid eddy viscosity, and the budgets for the turbulent kinetic energy are also presented. It is found that the turbulent fluctuations in the normal and spanwise directions have the same magnitude. The turbulent kinetic energy budget shows that the production peaks near the separation point region and the production to dissipation ratio is very high on the order of five in this region. It is also observed that the production is balanced by the advection, diffusion, and dissipation in the shear layer region. The dominant term is the turbulent diffusion that is about two times the molecular dissipation.

  9. Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation

    International Nuclear Information System (INIS)

    Chen Kang; Liang Hua

    2016-01-01

    Plasma flow control (PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle (UAV) by nanosecond discharge plasma aerodynamic actuation (NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge (30 A) is much bigger than that for millisecond discharge (0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation (MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. (paper)

  10. Modeling of filling gas centrifuge cascade for nickel isotope separation by feed flow input to different stages

    Directory of Open Access Journals (Sweden)

    Orlov Alexey A.

    2017-01-01

    Full Text Available The article presents results of research filling gas centrifuge cascade by process gas fed into different stages. The modeling of filling cascade was done for nickel isotope separation. Analysis of the research results shows that nickel isotope concentrations of light and heavy fraction flows after filling cascade depend on feed stage number.

  11. Continuous flow microfluidic separation and processing of rare cells and bioparticles found in blood – A review

    DEFF Research Database (Denmark)

    Antfolk, Maria; Laurell, Thomas

    2017-01-01

    conventional cell separation methods, such as flow cytometry or magnetic activated cell sorting, have fallen short other methods are desperately sought for. Microfluidics have been extensively used towards isolating and processing rare cells as it offers possibilities not present in the conventional systems...

  12. High-flux membrane separation using fluid skimming dominated convective fluid flow

    NARCIS (Netherlands)

    Dinther, van A.M.C.; Schroën, C.G.P.H.; Boom, R.M.

    2011-01-01

    We here report on the separation of yeast cells, with micro-engineered membranes having pores that are typically five times larger than the cells. The separation is due to neither shear-induced diffusion, nor initial lift, but to an effect similar to fluid skimming. The separation performance is

  13. Intra-Urban Movement Flow Estimation Using Location Based Social Networking Data

    Science.gov (United States)

    Kheiri, A.; Karimipour, F.; Forghani, M.

    2015-12-01

    In recent years, there has been a rapid growth of location-based social networking services, such as Foursquare and Facebook, which have attracted an increasing number of users and greatly enriched their urban experience. Location-based social network data, as a new travel demand data source, seems to be an alternative or complement to survey data in the study of mobility behavior and activity analysis because of its relatively high access and low cost. In this paper, three OD estimation models have been utilized in order to investigate their relative performance when using Location-Based Social Networking (LBSN) data. For this, the Foursquare LBSN data was used to analyze the intra-urban movement behavioral patterns for the study area, Manhattan, the most densely populated of the five boroughs of New York city. The outputs of models are evaluated using real observations based on different criterions including distance distribution, destination travel constraints. The results demonstrate the promising potential of using LBSN data for urban travel demand analysis and monitoring.

  14. INTRA-URBAN MOVEMENT FLOW ESTIMATION USING LOCATION BASED SOCIAL NETWORKING DATA

    Directory of Open Access Journals (Sweden)

    A. Kheiri

    2015-12-01

    Full Text Available In recent years, there has been a rapid growth of location-based social networking services, such as Foursquare and Facebook, which have attracted an increasing number of users and greatly enriched their urban experience. Location-based social network data, as a new travel demand data source, seems to be an alternative or complement to survey data in the study of mobility behavior and activity analysis because of its relatively high access and low cost. In this paper, three OD estimation models have been utilized in order to investigate their relative performance when using Location-Based Social Networking (LBSN data. For this, the Foursquare LBSN data was used to analyze the intra-urban movement behavioral patterns for the study area, Manhattan, the most densely populated of the five boroughs of New York city. The outputs of models are evaluated using real observations based on different criterions including distance distribution, destination travel constraints. The results demonstrate the promising potential of using LBSN data for urban travel demand analysis and monitoring.

  15. Capillary-driven flow in a fracture located in a porous medium

    International Nuclear Information System (INIS)

    Martinez, M.J.

    1988-09-01

    Capillary-driven immiscible displacement of air by water along an isolated fracture located in a permeable medium is induced by an abrupt change in water saturation at the fracture inlet. The fracture is idealized as either a smooth slot with permeable walls or a high-permeability later. The penetration distance of moisture in the fracture permeability ratio and length scales for the problem. The models are applied to materials representative of the Yucca Mountain region of the Nevada Test Site. Fracture moisture-penetration histories are predicted for several units in Yucca Mountain and for representative fracture apertures. 18 refs., 20 figs., 6 tabs

  16. Flow-through immunomagnetic separation system for waterborne pathogen isolation and detection: Application to Giardia and Cryptosporidium cell isolation

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, Qasem, E-mail: qasem.alramadan@epfl.ch [Bioelectronics Program, Institute of Microelectronics, 11 Science Park Road, Singapore 117685 (Singapore); Christophe, Lay; Teo, William; ShuJun, Li; Hua, Feng Han [Bioelectronics Program, Institute of Microelectronics, 11 Science Park Road, Singapore 117685 (Singapore)

    2010-07-12

    Simultaneous sample washing and concentration of two waterborne pathogen samples were demonstrated using a rotational magnetic system under continuous flow conditions. The rotation of periodically arranged small permanent magnets close to a fluidic channel carrying magnetic particle suspension allows the trapping and release of particles along the fluidic channel in a periodic manner. Each trapping and release event resembles one washing cycle. The performance of the magnetic separation system (MSS) was evaluated in order to test its functionality to isolate magnetic-labelled protozoan cells from filtered, concentrated tap water, secondary effluent water, and purified water. Experimental protocols described in US Environmental Protection Agency method 1623 which rely on the use of a magnetic particle concentrator, were applied to test and compare our continuous flow cell separation system to the standard magnetic bead-based isolation instruments. The recovery efficiencies for Giardia cysts using the magnetic tube holder and our magnetic separation system were 90.5% and 90.1%, respectively, from a tap water matrix and about 31% and 18.5%, respectively, from a spiked secondary effluent matrix. The recovery efficiencies for Cryptosporidium cells using the magnetic tube holder and our magnetic separation system were 90% and 83.3%, respectively, from a tap water matrix and about 38% and 36%, respectively, from a spiked secondary effluent matrix. Recoveries from all matrices with the continuous flow system were typically higher in glass tubing conduits than in molded plastic conduits.

  17. Centrifugal Separation Device Based on Two-Layer Laminar Flow in Microchannels for High-Throughput and Continuous Blood Cell/Plasma Separation

    Science.gov (United States)

    Taizo Kobayashi,; Taisuke Funamoto,; Makoto Hosaka,; Satoshi Konishi,

    2010-07-01

    This paper presents a novel type of centrifugation device that is based on the two-layer laminar flow in micro flow channels for continuous blood cell/plasma separation. We propose to rotate the flow channels which are arranged along the circumference around the rotational axis. Downsizing the channel width reduced both the cell sedimentation time and the required centrifugal force, because the channel width corresponds to the centrifugal sedimentation length. First, plasma and cells were continuously extracted from pig blood in each of the branch channels using a milled acrylic prototype device (channel width = 800 μm, volume = 150 μl). Next, the relationship between the channel width (125, 250, and 500 μm) and the sedimentation time taken for various centrifugal forces (2.3, 9, 36, and 145 G) was evaluated using the downsized microchannels fabricated by hot-embossing and thermal bonding technologies. Using downsized microchannels with a width of 125 μm successfully reduced the sedimentation time to 85 s as compared to the sedimentation time of 270 s for a channel of a width of 500 μm, when a centrifugal force of 2.3 G was applied. The use of the proposed device did not result in obvious hemolysis at the centrifugal forces lower than 335 G.

  18. Separating twin images and locating the center of a microparticle in dense suspensions using correlations among reconstructed fields of two parallel holograms.

    Science.gov (United States)

    Ling, Hangjian; Katz, Joseph

    2014-09-20

    This paper deals with two issues affecting the application of digital holographic microscopy (DHM) for measuring the spatial distribution of particles in a dense suspension, namely discriminating between real and virtual images and accurate detection of the particle center. Previous methods to separate real and virtual fields have involved applications of multiple phase-shifted holograms, combining reconstructed fields of multiple axially displaced holograms, and analysis of intensity distributions of weakly scattering objects. Here, we introduce a simple approach based on simultaneously recording two in-line holograms, whose planes are separated by a short distance from each other. This distance is chosen to be longer than the elongated trace of the particle. During reconstruction, the real images overlap, whereas the virtual images are displaced by twice the distance between hologram planes. Data analysis is based on correlating the spatial intensity distributions of the two reconstructed fields to measure displacement between traces. This method has been implemented for both synthetic particles and a dense suspension of 2 μm particles. The correlation analysis readily discriminates between real and virtual images of a sample containing more than 1300 particles. Consequently, we can now implement DHM for three-dimensional tracking of particles when the hologram plane is located inside the sample volume. Spatial correlations within the same reconstructed field are also used to improve the detection of the axial location of the particle center, extending previously introduced procedures to suspensions of microscopic particles. For each cross section within a particle trace, we sum the correlations among intensity distributions in all planes located symmetrically on both sides of the section. This cumulative correlation has a sharp peak at the particle center. Using both synthetic and recorded particle fields, we show that the uncertainty in localizing the axial

  19. Power flow analysis and optimal locations of resistive type superconducting fault current limiters.

    Science.gov (United States)

    Zhang, Xiuchang; Ruiz, Harold S; Geng, Jianzhao; Shen, Boyang; Fu, Lin; Zhang, Heng; Coombs, Tim A

    2016-01-01

    Based on conventional approaches for the integration of resistive-type superconducting fault current limiters (SFCLs) on electric distribution networks, SFCL models largely rely on the insertion of a step or exponential resistance that is determined by a predefined quenching time. In this paper, we expand the scope of the aforementioned models by considering the actual behaviour of an SFCL in terms of the temperature dynamic power-law dependence between the electrical field and the current density, characteristic of high temperature superconductors. Our results are compared to the step-resistance models for the sake of discussion and clarity of the conclusions. Both SFCL models were integrated into a power system model built based on the UK power standard, to study the impact of these protection strategies on the performance of the overall electricity network. As a representative renewable energy source, a 90 MVA wind farm was considered for the simulations. Three fault conditions were simulated, and the figures for the fault current reduction predicted by both fault current limiting models have been compared in terms of multiple current measuring points and allocation strategies. Consequently, we have shown that the incorporation of the E - J characteristics and thermal properties of the superconductor at the simulation level of electric power systems, is crucial for estimations of reliability and determining the optimal locations of resistive type SFCLs in distributed power networks. Our results may help decision making by distribution network operators regarding investment and promotion of SFCL technologies, as it is possible to determine the maximum number of SFCLs necessary to protect against different fault conditions at multiple locations.

  20. Partially ionized gas flow and heat transfer in the separation, reattachment, and redevelopment regions downstream of an abrupt circular channel expansion.

    Science.gov (United States)

    Back, L. H.; Massier, P. F.; Roschke, E. J.

    1972-01-01

    Heat transfer and pressure measurements obtained in the separation, reattachment, and redevelopment regions along a tube and nozzle located downstream of an abrupt channel expansion are presented for a very high enthalpy flow of argon. The ionization energy fraction extended up to 0.6 at the tube inlet just downstream of the arc heater. Reattachment resulted from the growth of an instability in the vortex sheet-like shear layer between the central jet that discharged into the tube and the reverse flow along the wall at the lower Reynolds numbers, as indicated by water flow visualization studies which were found to dynamically model the high-temperature gas flow. A reasonably good prediction of the heat transfer in the reattachment region where the highest heat transfer occurred and in the redevelopment region downstream can be made by using existing laminar boundary layer theory for a partially ionized gas. In the experiments as much as 90 per cent of the inlet energy was lost by heat transfer to the tube and the nozzle wall.

  1. Numerically Simulated Impact of Gas Prandtl Number and Flow Model on Efficiency of the Machine-less Energetic Separation Device

    Directory of Open Access Journals (Sweden)

    K. S. Egorov

    2015-01-01

    Full Text Available The presented paper regards the influence of one of similarity criteria – the Prandtl number of gas (Pr - on the efficiency of the machine-less energetic separation device (Leontiev pipe, using numerical modeling in ANSYS software. This device, equally as Rank-Hilsch and Hartman-Schprenger pipes, is designed to separate one gas flow into two flows with different temperatures. One flow (supersonic streams out of the pipe with a temperature higher than initial and the other (subsonic flows out with a temperature lower than initial. This direction of energetic separation is true if the Prandtl number is less than 1 that corresponds to gases.The Prandtl number affects the efficiency of running Leontiev pipe indirectly both through a temperature difference on which a temperature recovery factor has an impact and through a thermal conductivity coefficient that shows the impact of heat transfer intensity between gas and solid wall.The Prandtl number range in the course of research was from 0.1 to 0.7. The Prandtl number value equal to 0.7 corresponds to the air or pure gases (for example, inert argon gas. The Prandtl number equal to 0.2 corresponds to the mixtures of inert gases such as helium-xenon.The numerical modeling completed for the supersonic flow with Mach number 2.0 shows that efficiency of the machine-less energetic separation device has been increased approximately 2 times with the Prandtl number decreasing from 0.7 to 0.2. Moreover, for the counter-flow scheme this effect is a little higher due to its larger heat efficiency in comparison with the straight-flow one.Also, the research shows that the main problem for the further increase of the Leontiev pipe efficiency is a small value of thermal conductivity coefficient, which requires an intensification of the heat exchange, especially in the supersonic flow. It can be obtained, for example, by using a system of oblique shock waves in the supersonic channel.

  2. Pipe degradation investigations for optimization of flow-accelerated corrosion inspection location selection

    International Nuclear Information System (INIS)

    Chandra, S.; Habicht, P.; Chexal, B.; Mahini, R.; McBrine, W.; Esselman, T.; Horowitz, J.

    1995-01-01

    A large amount of piping in a typical nuclear power plant is susceptible to Flow-Accelerated Corrosion (FAC) wall thinning to varying degrees. A typical PAC monitoring program includes the wall thickness measurement of a select number of components in order to judge the structural integrity of entire systems. In order to appropriately allocate resources and maintain an adequate FAC program, it is necessary to optimize the selection of components for inspection by focusing on those components which provide the best indication of system susceptibility to FAC. A better understanding of system FAC predictability and the types of FAC damage encountered can provide some of the insight needed to better focus and optimize the inspection plan for an upcoming refueling outage. Laboratory examination of FAC damaged components removed from service at Northeast Utilities' (NU) nuclear power plants provides a better understanding of the damage mechanisms involved and contributing causes. Selected results of this ongoing study are presented with specific conclusions which will help NU to better focus inspections and thus optimize the ongoing FAC inspection program

  3. Fluid Dynamic Mechanisms and Interactions within Separated Flows and Their Effects on Missile Aerodynamics

    Science.gov (United States)

    1983-05-01

    or blow-by, flow which, in turn, caused the pressure in the annular region (at PS4 and at pS5)41 to rise slightly then decrease. The slight pressure...pulse was much less than that measured during the Rip-Zap program. Thus, the splash- hack mass flow-rate apparently was relatively small for the Arrow

  4. Effect of transverse power distribution on the ONB location in the subcooled boiling flow

    International Nuclear Information System (INIS)

    Al-Yahia, Omar S.; Lee, Yong Joong; Jo, Daeseong

    2017-01-01

    Highlights: • Effect of transverse power distribution on ONB incipient. • Uniform and non-uniform heat distribution is simulated in a narrow rectangular channel. • Simulations are performed using CFX and TMAP codes. • For uniform heating, ONB incipient by CFX occurs between predictions by TMAP analyses. • For non-uniform heating, ONB incipient by CFX occurs at a higher power than that by TMAP analysis. - Abstract: This study investigates the effect of transverse power distribution on the ONB (Onset of Nucleate Boiling) incipient. For this purpose, a subcooled boiling model with uniform and non-uniform heat flux distribution is simulated in a narrow vertical rectangular channel heated from both sides by applying a wide range of thermal power (8–16 kW). The simulations are performed using the CFX and TMAP codes. The CFX code incorporates both a two-fluid model and RPI wall boiling model to investigate coolant and wall temperature distributions along the heated channel. The TMAP code implements two different sets of heat transfer correlations to evaluate the wall temperature. The results obtained from the TMAP analyses show that the wall temperatures predicted by the Jo et al. heat transfer correlation are higher than the ones predicted by the Dittus and Boelter heat transfer correlation. The wall temperatures predicted by the CFX analyses lie between the predicted wall temperatures obtained by the TMAP analyses. Based on the superheated temperature on the heated surface, the ONB incipient is determined. The axial locations of the ONB incipient are predicted differently by the CFX and TMAP analyses. For uniform heating, the ONB incipient predicted by the CFX analysis occurs between the predictions made by the TMAP analyses. For non-uniform heating, the ONB incipient by the CFX analysis occurs at a higher power than the power required by the TMAP analyses.

  5. Evaluation of sub grid scale and local wall models in Large-eddy simulations of separated flow

    OpenAIRE

    Sam Ali Al; Szasz Robert; Revstedt Johan

    2015-01-01

    The performance of the Sub Grid Scale models is studied by simulating a separated flow over a wavy channel. The first and second order statistical moments of the resolved velocities obtained by using Large-Eddy simulations at different mesh resolutions are compared with Direct Numerical Simulations data. The effectiveness of modeling the wall stresses by using local log-law is then tested on a relatively coarse grid. The results exhibit a good agreement between highly-resolved Large Eddy Simu...

  6. A numerical experiment that provides new results regarding the inception of separation in the flow around a circular cylinder

    Science.gov (United States)

    Malamataris, Nikolaos; Liakos, Anastasios

    2015-11-01

    The exact value of the Reynolds number regarding the inception of separation in the flow around a circular cylinder is still a matter of research. This work connects the inception of separation with the calculation of a positive pressure gradient around the circumference of the cylinder. The hypothesis is that inception of separation occurs when the pressure gradient becomes positive around the circumference. From the most cited laboratory experiments that have dealt with that subject of inception of separation only Thom has measured the pressure gradient there at very low Reynolds numbers (up to Re=3.5). For this reason, the experimental conditions of his tunnel are simulated in a new numerical experiment. The full Navier Stokes equations in both two and three dimensions are solved with a home made code that utilizes Galerkin finite elements. In the two dimensional numerical experiment, inception of separation is observed at Re=4.3, which is the lowest Reynolds number where inception has been reported computationally. Currently, the three dimensional experiment is under way, in order to compare if there are effects of three dimensional theory of separation in the conditions of Thom's experiments.

  7. Computational Study of Separation Control Using ZNMF Devices: Flow Physics and Scaling Laws

    National Research Council Canada - National Science Library

    Mittal, Rajat

    2008-01-01

    The primary objective of the proposed research was to gain a fundamental understanding of strategies, mechanisms, and scaling laws for successful control of separation using zern-net mass-flux (ZNMF) actuators...

  8. RANS Simulation of the Separated Flow over a Bump with Active Control

    Science.gov (United States)

    Iaccarino, Gianluca; Marongiu, Claudio; Catalano, Pietro; Amato, Marcello

    2003-01-01

    The objective of this paper is to investigate the accuracy of Reynolds-Averaged Navier- Stokes (RANS) techniques in predicting the effect of steady and unsteady flow control devices. This is part of a larger effort in applying numerical simulation tools to investigate of the performance of synthetic jets in high Reynolds number turbulent flows. RANS techniques have been successful in predicting isolated synthetic jets as reported by Kral et al. Nevertheless, due to the complex, and inherently unsteady nature of the interaction between the synthetic jet and the external boundary layer flow, it is not clear whether RANS models can represent the turbulence statistics correctly.

  9. URANS simulations of separated flow with stall cells over an NREL S826 airfoil

    DEFF Research Database (Denmark)

    Sarlak Chivaee, Hamid; Nishino, T.; Sørensen, Jens Nørkær

    2016-01-01

    airfoil using unsteady Reynolds-averaged Navier-Stokes (URANS) approach. Results of the simulations are demonstrated in terms of mean flow velocity, lift and drag, as well as pressure distribution, and validated against available experimental data. The simulations are carried out with a wide computational......A series of wind tunnel measurements and oil flow visualization was recently carried out at the Technical University of Denmark in order to investigate flow characteristics over a 14% thick NREL S826 airfoil at low Reynolds numbers. This paper aims at presenting numerical simulations of the same...

  10. Direct flow separation strategy, to isolate no-carrier-added {sup 90}Nb from irradiated Mo or Zr targets

    Energy Technology Data Exchange (ETDEWEB)

    Radchenko, Valery; Roesch, Frank [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Filosofov, Dmitry V.; Dadakhanov, Jakhongir [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Karaivanov, Dimitar V. [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. for Nuclear Research and Nuclear Energy; Marinova, Atanaska [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Sofia Univ. (Bulgaria). Faculty of Chemistry and Pharmacy; Baimukhanova, Ayagoz [Joint Institute of Nuclear Research, Dubna (Russian Federation). Dzhelepov Laboratory of Nuclear Problems; Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty (Kazakhstan)

    2016-11-01

    {sup 90}Nb has an intermediate half-life of 14.6 h, a high positron branching of 53% and optimal β{sup +} emission energy of only E{sub mean} 0.35 MeV per decay. These favorable characteristics suggest it may be a potential candidate for application in immuno-PET. Our recent aim was to conduct studies on distribution coefficients for Zr{sup IV} and Nb{sup V} in mixtures of HCl/H{sub 2}O{sub 2} and HCl/oxalic acid for anion exchange resin (AG 1 x 8) and UTEVA resin to develop a ''direct flow'' separation strategy for {sup 90}Nb. The direct flow concept refers to a separation accomplished using a single eluent on multiple columns, effectively streamlining the separation process and increasing the time efficiency. Finally, we also demonstrated that this separation strategy is applicable to the production of the positron emitter {sup 90}Nb via the irradiation of molybdenum targets and isolation of {sup 90}Nb from the irradiated molybdenum target.

  11. Domestic wastewater treatment using multi-electrode continuous flow MFCs with a separator electrode assembly design

    KAUST Repository

    Ahn, Yongtae; Logan, Bruce E.

    2012-01-01

    Treatment of domestic wastewater using microbial fuel cells (MFCs) will require reactors with multiple electrodes, but this presents unique challenges under continuous flow conditions due to large changes in the chemical oxygen demand (COD

  12. Mathematical modeling of filling of gas centrifuge cascade for nickel isotope separation by various feed flow rate

    Science.gov (United States)

    Ushakov, Anton; Orlov, Alexey; Sovach, Victor P.

    2018-03-01

    This article presents the results of research filling of gas centrifuge cascade for separation of the multicomponent isotope mixture with process gas by various feed flow rate. It has been used mathematical model of the nonstationary hydraulic and separation processes occurring in the gas centrifuge cascade. The research object is definition of the regularity transient of nickel isotopes into cascade during filling of the cascade. It is shown that isotope concentrations into cascade stages after its filling depend on variable parameters and are not equal to its concentration on initial isotope mixture (or feed flow of cascade). This assumption is used earlier any researchers for modeling such nonstationary process as set of steady-state concentration of isotopes into cascade. Article shows physical laws of isotope distribution into cascade stage after its filling. It's shown that varying each parameters of cascade (feed flow rate, feed stage number or cascade stage number) it is possible to change isotope concentration on output cascade flows (light or heavy fraction) for reduction of duration of further process to set of steady-state concentration of isotopes into cascade.

  13. Numerical simulations of separated flows at moderate Reynolds numbers appropriate for turbine blades and unmanned aero vehicles

    International Nuclear Information System (INIS)

    Castiglioni, G.; Domaradzki, J.A.; Pasquariello, V.; Hickel, S.; Grilli, M.

    2014-01-01

    Highlights: • The present study evaluate LES techniques and IB method to simulate separated flows. • Simulations have been performed with an IB code and a commercial code. • The benchmark flow is a laminar separation bubble around an airfoil. • It is concluded that IB methods are appropriate only for high resolution DNS and LES. • High fidelity LES with 1% of DNS resolution can be performed. - Abstract: Flows over airfoils and blades in rotating machinery, for unmanned and micro-aerial vehicles, wind turbines, and propellers consist of a laminar boundary layer near the leading edge that is often followed by a laminar separation bubble and transition to turbulence further downstream. Typical RANS turbulence models are inadequate for such flows. Direct numerical simulation (DNS) is the most reliable, but is also the most computationally expensive alternative. This work assesses the capability of Immersed Boundary (IB) methods and Large Eddy Simulations (LES) to reduce the computational requirements for such flows and still provide high quality results. Two-dimensional and three-dimensional simulations of a laminar separation bubble on a NACA-0012 airfoil at Re c =5×10 4 at 5° of incidence have been performed with an IB code and a commercial code using body fitted grids. Several Subgrid Scale (SGS) models have been implemented in both codes and their performance evaluated. For the two-dimensional simulations with the IB method the results show good agreement with DNS benchmark data for the pressure coefficient C p and the friction coefficient C f but only when using dissipative numerical schemes. There is evidence that this behavior can be attributed to the ability of dissipative schemes to damp numerical noise coming from the IB. For the three-dimensional simulations the results show a good prediction of the separation point, but inaccurate prediction of the reattachment point unless full DNS resolution is used. The commercial code shows good agreement

  14. The potential of hybrid micro-vortex generators to control flow separation of NACA 4415 airfoil in subsonic flow

    Science.gov (United States)

    Jumahadi, Muhammad Taufiq; Saad, Mohd Rashdan; Idris, Azam Che; Sujipto, Suriyadi; Rahman, Mohd Rosdzimin Abdul

    2018-02-01

    Boundary layer separation is detrimental to the lift and drag of most aeronautical applications. Many vortex generators (VG), both passive and active have been designed to reduce these drawbacks. This study targets to investigate the effectiveness of hybrid micro-VGs, which combine both active and passive micro-VGs in controlling separation under subsonic conditions. NACA 4415 airfoils installed with passive, active and hybrid micro-VGs each are designed, 3D printed, and tested in a wind tunnel at 26.19 m/s under Re = 2.5x105. The lift and drag measurements from a 3-component force balance prove that hybrid micro-VGs increase lift by up to 21.2%, increase drag by more than 11.3% and improve lift-to-drag ratio by at least 8.6% until up to 33.7%. From this research, it is believed that hybrid micro-VGs are competitive to the performance of active VGs and a better configuration is to be considered to reduce parasitic drag and outstand active VGs.

  15. Validation of vibration-dissociation coupling models in hypersonic non-equilibrium separated flows

    Science.gov (United States)

    Shoev, G.; Oblapenko, G.; Kunova, O.; Mekhonoshina, M.; Kustova, E.

    2018-03-01

    The validation of recently developed models of vibration-dissociation coupling is discussed in application to numerical solutions of the Navier-Stokes equations in a two-temperature approximation for a binary N2/N flow. Vibrational-translational relaxation rates are computed using the Landau-Teller formula generalized for strongly non-equilibrium flows obtained in the framework of the Chapman-Enskog method. Dissociation rates are calculated using the modified Treanor-Marrone model taking into account the dependence of the model parameter on the vibrational state. The solutions are compared to those obtained using traditional Landau-Teller and Treanor-Marrone models, and it is shown that for high-enthalpy flows, the traditional and recently developed models can give significantly different results. The computed heat flux and pressure on the surface of a double cone are in a good agreement with experimental data available in the literature on low-enthalpy flow with strong thermal non-equilibrium. The computed heat flux on a double wedge qualitatively agrees with available data for high-enthalpy non-equilibrium flows. Different contributions to the heat flux calculated using rigorous kinetic theory methods are evaluated. Quantitative discrepancy of numerical and experimental data is discussed.

  16. Development of a centrifugal in-line separator for oil-water flows

    NARCIS (Netherlands)

    Slot, J.J.

    2013-01-01

    The world energy consumption will increase in the next decades. However, many aging oil fields are showing a steady decline in oil production. And they are producing increasing amounts of water, making the separation of the oil from the oil-water mixture an important processing step. In-line

  17. Effects of Oscillation Frequency and Amplitude on Separation in an Unsteady Turbulent Flow.

    Science.gov (United States)

    1980-09-01

    be performed with much of the aircraft immersed in turbulent flow. When in operation near the ground or landing platform , unsteady, turbulent flow...34 - .-,...i ,aXa. 8O- IDa I"l N 0 N( ’A0 󈧨 a r. 0 a 0.a " - M - if l’ . t 1 - o t I.- I.- 𔃻 I I I Ni ilNl 1i * 11 it O ag 0) - -i "NUm M CA myp WiX ~ U’iCL

  18. Computing daily mean streamflow at ungaged locations in Iowa by using the Flow Anywhere and Flow Duration Curve Transfer statistical methods

    Science.gov (United States)

    Linhart, S. Mike; Nania, Jon F.; Sanders, Curtis L.; Archfield, Stacey A.

    2012-01-01

    The U.S. Geological Survey (USGS) maintains approximately 148 real-time streamgages in Iowa for which daily mean streamflow information is available, but daily mean streamflow data commonly are needed at locations where no streamgages are present. Therefore, the USGS conducted a study as part of a larger project in cooperation with the Iowa Department of Natural Resources to develop methods to estimate daily mean streamflow at locations in ungaged watersheds in Iowa by using two regression-based statistical methods. The regression equations for the statistical methods were developed from historical daily mean streamflow and basin characteristics from streamgages within the study area, which includes the entire State of Iowa and adjacent areas within a 50-mile buffer of Iowa in neighboring states. Results of this study can be used with other techniques to determine the best method for application in Iowa and can be used to produce a Web-based geographic information system tool to compute streamflow estimates automatically. The Flow Anywhere statistical method is a variation of the drainage-area-ratio method, which transfers same-day streamflow information from a reference streamgage to another location by using the daily mean streamflow at the reference streamgage and the drainage-area ratio of the two locations. The Flow Anywhere method modifies the drainage-area-ratio method in order to regionalize the equations for Iowa and determine the best reference streamgage from which to transfer same-day streamflow information to an ungaged location. Data used for the Flow Anywhere method were retrieved for 123 continuous-record streamgages located in Iowa and within a 50-mile buffer of Iowa. The final regression equations were computed by using either left-censored regression techniques with a low limit threshold set at 0.1 cubic feet per second (ft3/s) and the daily mean streamflow for the 15th day of every other month, or by using an ordinary-least-squares multiple

  19. Separating underwater ambient noise from flow noise recorded on stereo acoustic tags attached to marine mammals

    NARCIS (Netherlands)

    Benda-Beckmann, A.M. von; Wensveen, P.J.; Samarra, F.I.P.; Beerens, S.P.; Miller, P.J.O.

    2016-01-01

    Sound-recording acoustic tags attached to marine animals are commonly used in behavioural studies. Measuring ambient noise is of interest to efforts to understand responses of marine mammals to anthropogenic underwater sound, or to assess their communication space. Noise of water flowing around the

  20. On the flow around Glauert-Goldschmied body in the narrow channel and separation control strategy

    Czech Academy of Sciences Publication Activity Database

    Procházka, Pavel P.; Uruba, Václav

    2016-01-01

    Roč. 16, č. 1 (2016), s. 643-644 ISSN 1617-7061 R&D Projects: GA ČR(CZ) GP14-25354P Institutional support: RVO:61388998 Keywords : PIV * active flow control * Glauert-Goldschmied body Subject RIV: BK - Fluid Dynamics http://onlinelibrary.wiley.com/doi/10.1002/pamm.201610310/full

  1. Studies on the separation and purification of strontium from the highly radioactive waste flow of fuel element reprocessing

    International Nuclear Information System (INIS)

    Tuerker, A.

    1989-10-01

    The quantity of spent fuel elements is increasing due to the extended peaceful uses of nuclear energy. Of the numerous fission products, strontium has an interesting application potential as a radiation or energy source for utilization in various industrial fields. A necessary condition for its use is its isolation in high radiochemical purity from the highly radioactive waste flow of the Purex process. In the present study, precipitation and coprecipitation reactions, and in particular ion exchange reactions, were chosen from among the various possible chemical and physical separation methods and examined with respect to their suitability for a selective separation of strontium from the other fission products. In selecting separation materials, particularly with respect to radiation resistance, thermal stability and selectivity, polyantimonic acid proved to be the best absorbent (even in a very acid medium) for strontium. Furthermore, the behaviour of the most important radionuclides was studied with respect to the denitration reaction from a 5 molar nitric acid solution. On the basis of the high demands made on the purity of the product, a method was developed by combining lead sulphate carrier precipitation with an ion exchange reaction on polyantimonic acid and is shown in a flow chart. (orig.) [de

  2. Genetic Algorithm for Solving Location Problem in a Supply Chain Network with Inbound and Outbound Product Flows

    Directory of Open Access Journals (Sweden)

    Suprayogi Suprayogi

    2016-12-01

    Full Text Available This paper considers a location problem in a supply chain network. The problem addressed in this paper is motivated by an initiative to develop an efficient supply chain network for supporting the agricultural activities. The supply chain network consists of regions, warehouses, distribution centers, plants, and markets. The products include a set of inbound products and a set of outbound products. In this paper, definitions of the inbound and outbound products are seen from the region’s point of view.  The inbound product is the product demanded by regions and produced by plants which flows on a sequence of the following entities: plants, distribution centers, warehouses, and regions. The outbound product is the product demanded by markets and produced by regions and it flows on a sequence of the following entities: regions, warehouses, and markets. The problem deals with determining locations of the warehouses and the distribution centers to be opened and shipment quantities associated with all links on the network that minimizes the total cost. The problem can be considered as a strategic supply chain network problem. A solution approach based on genetic algorithm (GA is proposed. The proposed GA is examined using hypothetical instances and its results are compared to the solution obtained by solving the mixed integer linear programming (MILP model. The comparison shows that there is a small gap (0.23%, on average between the proposed GA and MILP model in terms of the total cost. The proposed GA consistently provides solutions with least total cost. In terms of total cost, based on the experiment, it is demonstrated that coefficients of variation are closed to 0.

  3. Numerical Study Of Flue Gas Flow In A Multi Cyclone Separator

    OpenAIRE

    Ganga Reddy C; Umesh Kuppuraj

    2015-01-01

    The removal of harmful particulate matter from power plant flue gas is of critical importance to the environment and its inhabitants. The present work illustrates the use of multi-cyclone separators to remove the particulate matter from the bulk of the gas exhausted to the atmosphere. The method has potential to replace conventional systems like electrostatic precipitator due to inherent low power requirement and low maintenance. A parametric model may be employed to design the sy...

  4. Numerical modeling of ground-water flow systems in the vicinity of the reference repository location, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Davis, P.; Beyeler, W.; Logsdon, M.; Coleman, N.; Brinster, K.

    1989-04-01

    This report documents south-central Washington State's Pasco Basin ground-water modeling studies. This work was done to support the NRC's review of hydrogeologic studies under the Department of Energy's (DOE) Basalt Waste Isolation Project. The report provides a brief overview of the geology, hydrology, and hydrochemistry of the Pasco Basin as a basis for the evaluation of previous conceptual and numerical ground-water flow models of the region. Numerical models were developed to test new conceptual models of the site and to provide a means of evaluating the Department of Energy's performance assessments and proposed hydrologic testing. Regional ground-water flow modeling of an area larger than the Pasco Basin revealed that current concepts on the existence and behavior of a hydrologic barrier west of the proposed repository location are inconsistent with available data. This modeling also demonstrated that the measured pattern of hydraulic heads cannot be produced with a model that (1) has uniform layer properties over the entire domain; (2) has zones of large conductivity associated with anticlinal structures; or (3) includes recharge from the industrial disposal ponds. Adequate representation of the measured hydraulic heads was obtained with a model that contained regions of larger hydraulic conductivity that corresponded to the presence of sedimentary interbeds. In addition, a detailed model of a region smaller than the Pasco Basin was constructed to provide the NRC staff with the ability to analyze proposed Department of Energy hydrologic tests. 62 refs., 145 figs., 18 tabs

  5. Design and Development of Gas-Liquid Cylindrical Cyclone Compact Separators for Three-Phase Flow; SEMIANNUAL

    International Nuclear Information System (INIS)

    Mohan, Ram S.; Shoham, Ovadia

    1999-01-01

    The objective of this five-year project (October, 1997-September, 2002) is to expand the current research activities of Tulsa University Separation Technology Projects (TUSTP) to multiphase oil/water/gas separation. This project will be executed in two phases. Phase I (1997-2000) will focus on the investigations of the complex multiphase hydrodynamic flow behavior in a three-phase Gas-Liquid Cylindrical Cyclone (GLCC) Separator. The activities of this phase will include the development of a mechanistic model, a computational fluid dynamics (CFD) simulator, and detailed experimentation on the three-phase GLCC. The experimental and CFD simulation results will be suitably integrated with the mechanistic model. In Phase II (2000-2002), the developed GLCC separator will be tested under high pressure and real crudes conditions. This is crucial for validating the GLCC design for field application and facilitating easy and rapid technology deployment. Design criteria for industrial applications will be developed based on these results and will be incorporated into the mechanistic model by TUSTP

  6. An Improved Scale-Adaptive Simulation Model for Massively Separated Flows

    Directory of Open Access Journals (Sweden)

    Yue Liu

    2018-01-01

    Full Text Available A new hybrid modelling method termed improved scale-adaptive simulation (ISAS is proposed by introducing the von Karman operator into the dissipation term of the turbulence scale equation, proper derivation as well as constant calibration of which is presented, and the typical circular cylinder flow at Re = 3900 is selected for validation. As expected, the proposed ISAS approach with the concept of scale-adaptive appears more efficient than the original SAS method in obtaining a convergent resolution, meanwhile, comparable with DES in visually capturing the fine-scale unsteadiness. Furthermore, the grid sensitivity issue of DES is encouragingly remedied benefiting from the local-adjusted limiter. The ISAS simulation turns out to attractively represent the development of the shear layers and the flow profiles of the recirculation region, and thus, the focused statistical quantities such as the recirculation length and drag coefficient are closer to the available measurements than DES and SAS outputs. In general, the new modelling method, combining the features of DES and SAS concepts, is capable to simulate turbulent structures down to the grid limit in a simple and effective way, which is practically valuable for engineering flows.

  7. Numerical Analysis for Separation of Methane by Hollow Fiber Membrane with Cocurrent Flow

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungmin; Seo, Yeonhee; Kang, Hanchang; Lee, Yongtaek [Chungnam National University, Daejeon (Korea, Republic of); Kim, Jeonghoon [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of)

    2015-02-15

    A theoretical analysis was carried out to examine the concentration behavior of methane from a biogas using a polysulfone membrane. After the governing equations were derived for the cocurrent flow mode in a membrane module, the coupled nonlinear differential equations were numerically solved with the Compaq Visual Fortran 6.6 software. At the typical operating condition of mole fraction of 0.7 in a feed stream, the mole fraction of methane in the retentate increased to 0.76 while the normalized retentate flow rate to the feed flow rate decreased from 1 to 0.79. When either the mole fraction of methane in a feed increased or the pressure of the feed stream increased, the methane mole fraction in the retentate increased. On the other hand, it was found that as either the membrane area decreased or the ratio of the permeate pressure to the feed pressure increased, the methane mole fraction in the retentate decreased. In case that the stage cut increased, the methane mole fraction in the retentate increased while the recovery of methane slightly decreased.

  8. Effects of Input Voltage on Flow Separation Control for Low-Pressure Turbine at Low Reynolds Number by Plasma Actuators

    Directory of Open Access Journals (Sweden)

    Takayuki Matsunuma

    2012-01-01

    Full Text Available Active flow control using dielectric barrier discharge (DBD plasma actuators was investigated to reattach the simulated boundary layer separation on the suction surface of a turbine blade at low Reynolds number, Re = 1.7 × 104. The flow separation is induced on a curved plate installed in the test section of a low-speed wind tunnel. Particle image velocimetry (PIV was used to obtain instantaneous and time-averaged two-dimensional velocity measurements. The amplitude of input voltage for the plasma actuator was varied from ±2.0 kV to ±2.8 kV. The separated flow reattached on the curved wall when the input voltage was ±2.4 kV and above. The displacement thickness of the boundary layer near the trailing edge decreased by 20% at ±2.0 kV. The displacement thickness was suddenly reduced as much as 56% at ±2.2 kV, and it was reduced gradually from ±2.4 kV to ±2.8 kV (77% reduction. The total pressure loss coefficient, estimated from the boundary layer displacement thickness and momentum thickness, was 0.172 at the baseline (actuator off condition. The total pressure loss was reduced to 0.107 (38% reduction at ±2.2 kV and 0.078 (55% reduction at ±2.8 kV.

  9. Influence of the thermal boundary conditions on the flow and the isotope separation of a gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.

    1981-11-01

    The axisymmetric steady gas flow in a so called thermally driven ultracentrifuge at total reflux and its /sup 235/UF/sub 6/-/sup 238/UF/sub 6/- separating characteristics are treated numerically. The top and the bottom end-caps are thermally conducting and kept at temperatures generally depending on radius. Regarding the side-wall temperature conditions, three cases will be considered: (1) insulated side-wall; (2) side-wall at constant temperature; (3) linear temperature profile continuously joining the end-plate temperatures. 20 figures, 2 tables.

  10. Studies of Transitional Flow, Unsteady Separation Phenomena and Particle Induced Augmentation Heating on Ablated Nose Tips.

    Science.gov (United States)

    1975-10-01

    afforded us the maximum shock layer thickness and thereby thu maximum resolution with high speed cinematography . The basic configuration had a...LOCATION, r/R-0.2 TO 3 ES T SU NZ 10 ■" P P )E 3 H. i I Ä | A \\ tu K m Art 1 W 1 ^wj ■N, 1 Ul GC a. "ö / r yi V V 1>\\ 1’ V ! ^: ’ P" h— TIME

  11. Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation

    DEFF Research Database (Denmark)

    Kammer, Frank von der; Legros, Samuel; Hofmann, Thilo

    2011-01-01

    The thorough analysis of natural nanoparticles (NPs) and engineered NPs involves the sequence of detection, identification, quantification and, if possible, detailed characterization. In a complex or heterogeneous sample, each step of this sequence is an individual challenge, and, given suitable...... has been applied for separation of various types of NP (e.g., organic macromolecules, and carbonaceous or inorganic NPs) in different types of media (e.g., natural waters, soil extracts or food samples).FFF can be coupled to different types of detectors that offer additional information...... conditions on all types of NP in the sample. A holistic methodological approach is preferable to a technique-focused one....

  12. Numerical simulation of heat transfer to separation tio2/water nanofluids flow in an asymmetric abrupt expansion

    Directory of Open Access Journals (Sweden)

    Oon Cheen Sean

    2015-01-01

    Full Text Available Flow separation and reattachment of 0.2% TiO2 nanofluid in an asymmetric abrupt expansion is studied in this paper. Such flows occur in various engineering and heat transfer applications. Computational fluid dynamics package (FLUENT is used to investigate turbulent nanofluid flow in the horizontal double-tube heat exchanger. The meshing of this model consists of 43383 nodes and 74891 elements. Only a quarter of the annular pipe is developed and simulated as it has symmetrical geometry. Standard k-epsilon second order implicit, pressure based-solver equation is applied. Reynolds numbers between 17050 and 44545, step height ratio of 1 and 1.82 and constant heat flux of 49050 W/m2 was utilized in the simulation. Water was used as a working fluid to benchmark the study of the heat transfer enhancement in this case. Numerical simulation results show that the increase in the Reynolds number increases the heat transfer coefficient and Nusselt number of the flowing fluid. Moreover, the surface temperature will drop to its lowest value after the expansion and then gradually increase along the pipe. Finally, the chaotic movement and higher thermal conductivity of the TiO2 nanoparticles have contributed to the overall heat transfer enhancement of the nanofluid compare to the water.

  13. Unsteady separated stagnation-point flow and heat transfer of a viscous fluid over a moving flat surface

    Science.gov (United States)

    Dholey, S.

    2018-04-01

    In this paper, we have investigated numerically the laminar unsteady separated stagnation-point flow and heat transfer of a viscous fluid over a moving flat surface in the presence of a time dependent free stream velocity which causes the unsteadiness of this flow problem. The plate is assumed to move in the same or opposite direction of the free stream velocity. The flow is therefore governed by the velocity ratio parameter λ (ratio of the plate velocity to the free stream velocity) and the unsteadiness parameter β. When the plate surface moves in the same direction of the free stream velocity (i.e., when λ > 0), the solution of this flow problem continues for any given value of β. On the other hand, when they move in opposite directions (i.e., when λ heat transfer analysis is that for a given value of λ(= 0), first the heat transfer rate increases with the increase of the Prandtl number Pr and after attaining a maximum value, it decreases and finally tends to be zero for large values of Pr depending upon the values of β > 0. On the contrary, for a given value of β(≤ 0), the rate of heat transfer increases consistently with the increase of Pr.

  14. Porous plug phase separator and superfluid film flow suppression system for the soft x-ray spectrometer onboard Hitomi

    Science.gov (United States)

    Ezoe, Yuichiro; DiPirro, Michael; Fujimoto, Ryuichi; Ishikawa, Kumi; Ishisaki, Yoshitaka; Kanao, Kenichi; Kimball, Mark; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Murakami, Masahide; Noda, Hirofumi; Ohashi, Takaya; Okamoto, Atsushi; Satoh, Yohichi; Sato, Kosuke; Shirron, Peter; Tsunematsu, Shoji; Yamaguchi, Hiroya; Yoshida, Seiji

    2018-01-01

    When using superfluid helium in low-gravity environments, porous plug phase separators are commonly used to vent boil-off gas while confining the bulk liquid to the tank. Invariably, there is a flow of superfluid film from the perimeter of the porous plug down the vent line. For the soft x-ray spectrometer onboard ASTRO-H (Hitomi), its approximately 30-liter helium supply has a lifetime requirement of more than 3 years. A nominal vent rate is estimated as ˜30 μg/s, equivalent to ˜0.7 mW heat load. It is, therefore, critical to suppress any film flow whose evaporation would not provide direct cooling of the remaining liquid helium. That is, the porous plug vent system must be designed to both minimize film flow and to ensure maximum extraction of latent heat from the film. The design goal for Hitomi is to reduce the film flow losses to knife-edge devices. Design, on-ground testing results, and in-orbit performance are described.

  15. Analysis of turbulent separated flows for the NREL airfoil using anisotropic two-equation models at higher angles of attack

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shijie [Tsinghua University, Beijing (China). School of Architecture; Yuan Xin; Ye Dajun [Tsinghua University, Beijing (China). Dept. of Thermal Engineering

    2001-07-01

    Numerical simulations of the turbulent flow fields at stall conditions are presented for the NREL (National Renewable Energy Laboratory) S809 airfoil. The flow is modelled as compressible, viscous, steady/unsteady and turbulent. Four two-equation turbulence models (isotropic {kappa}-{epsilon} and q-{omega} models, anisotropic {kappa}-{epsilon} and -{omega} models), are applied to close the Reynolds-averaged Navier-Stokes equations, respectively. The governing equations are integrated in time by a new LU-type implicit scheme. To accurately model the convection terms in the mean-flow and turbulence model equations, a modified fourth-order high resolution MUSCL TVD scheme is incorporated. The large-scale separated flow fields and their losses at the stall and post-stall conditions are analyzed for the NREL S809 airfoil at various angles of attack ({alpha}) from 0 to 70 degrees. The numerical results show excellent to fairly good agreement with the experimental data. The feasibility of the present numerical method and the influence of the four turbulence models are also investigated. (author)

  16. Gas-liquid two-phase flows in double inlet cyclones for natural gas separation

    DEFF Research Database (Denmark)

    Yang, Yan; Wang, Shuli; Wen, Chuang

    2017-01-01

    The gas-liquid two-phase flow within a double inlet cyclone for natural gasseparation was numerically simulated using the discrete phase model. The numericalapproach was validated with the experimental data, and the comparison resultsagreed well with each other. The simulation results showed...... that the strong swirlingflow produced a high centrifugal force to remove the particles from the gas mixture.The larger particles moved downward on the internal surface and were removeddue to the outer vortex near the wall. Most of the tiny particles went into the innervortex zones and escaped from the up...

  17. Separate base usages of genes located on the leading and lagging strands in Chlamydia muridarum revealed by the Z curve method

    Directory of Open Access Journals (Sweden)

    Yu Xiu-Juan

    2007-10-01

    Full Text Available Abstract Background The nucleotide compositional asymmetry between the leading and lagging strands in bacterial genomes has been the subject of intensive study in the past few years. It is interesting to mention that almost all bacterial genomes exhibit the same kind of base asymmetry. This work aims to investigate the strand biases in Chlamydia muridarum genome and show the potential of the Z curve method for quantitatively differentiating genes on the leading and lagging strands. Results The occurrence frequencies of bases of protein-coding genes in C. muridarum genome were analyzed by the Z curve method. It was found that genes located on the two strands of replication have distinct base usages in C. muridarum genome. According to their positions in the 9-D space spanned by the variables u1 – u9 of the Z curve method, K-means clustering algorithm can assign about 94% of genes to the correct strands, which is a few percent higher than those correctly classified by K-means based on the RSCU. The base usage and codon usage analyses show that genes on the leading strand have more G than C and more T than A, particularly at the third codon position. For genes on the lagging strand the biases is reverse. The y component of the Z curves for the complete chromosome sequences show that the excess of G over C and T over A are more remarkable in C. muridarum genome than in other bacterial genomes without separating base and/or codon usages. Furthermore, for the genomes of Borrelia burgdorferi, Treponema pallidum, Chlamydia muridarum and Chlamydia trachomatis, in which distinct base and/or codon usages have been observed, closer phylogenetic distance is found compared with other bacterial genomes. Conclusion The nature of the strand biases of base composition in C. muridarum is similar to that in most other bacterial genomes. However, the base composition asymmetry between the leading and lagging strands in C. muridarum is more significant than that in

  18. Evaluation of sub grid scale and local wall models in Large-eddy simulations of separated flow

    Directory of Open Access Journals (Sweden)

    Sam Ali Al

    2015-01-01

    Full Text Available The performance of the Sub Grid Scale models is studied by simulating a separated flow over a wavy channel. The first and second order statistical moments of the resolved velocities obtained by using Large-Eddy simulations at different mesh resolutions are compared with Direct Numerical Simulations data. The effectiveness of modeling the wall stresses by using local log-law is then tested on a relatively coarse grid. The results exhibit a good agreement between highly-resolved Large Eddy Simulations and Direct Numerical Simulations data regardless the Sub Grid Scale models. However, the agreement is less satisfactory with relatively coarse grid without using any wall models and the differences between Sub Grid Scale models are distinguishable. Using local wall model retuned the basic flow topology and reduced significantly the differences between the coarse meshed Large-Eddy Simulations and Direct Numerical Simulations data. The results show that the ability of local wall model to predict the separation zone depends strongly on its implementation way.

  19. Rapid Detection and Enumeration of Giardia lamblia Cysts in Water Samples by Immunomagnetic Separation and Flow Cytometric Analysis ▿ †

    Science.gov (United States)

    Keserue, Hans-Anton; Füchslin, Hans Peter; Egli, Thomas

    2011-01-01

    Giardia lamblia is an important waterborne pathogen and is among the most common intestinal parasites of humans worldwide. Its fecal-oral transmission leads to the presence of cysts of this pathogen in the environment, and so far, quantitative rapid screening methods are not available for various matrices, such as surface waters, wastewater, or food. Thus, it is necessary to establish methods that enable reliable rapid detection of a single cyst in 10 to 100 liters of drinking water. Conventional detection relies on cyst concentration, isolation, and confirmation by immunofluorescence microscopy (IFM), resulting in low recoveries and high detection limits. Many different immunomagnetic separation (IMS) procedures have been developed for separation and cyst purification, so far with variable but high losses of cysts. A method was developed that requires less than 100 min and consists of filtration, resuspension, IMS, and flow cytometric (FCM) detection. MACS MicroBeads were used for IMS, and a reliable flow cytometric detection approach was established employing 3 different parameters for discrimination from background signals, i.e., green and red fluorescence (resulting from the distinct pattern emitted by the fluorescein dye) and sideward scatter for size discrimination. With spiked samples, recoveries exceeding 90% were obtained, and false-positive results were never encountered for negative samples. Additionally, the method was applicable to naturally occurring cysts in wastewater and has the potential to be automated. PMID:21685159

  20. Early malnutrition results in long-lasting impairments in pattern-separation for overlapping novel object and novel location memories and reduced hippocampal neurogenesis.

    Science.gov (United States)

    Pérez-García, Georgina; Guzmán-Quevedo, Omar; Da Silva Aragão, Raquel; Bolaños-Jiménez, Francisco

    2016-02-17

    Numerous epidemiological studies indicate that malnutrition during in utero development and/or childhood induces long-lasting learning disabilities and enhanced susceptibility to develop psychiatric disorders. However, animal studies aimed to address this question have yielded inconsistent results due to the use of learning tasks involving negative or positive reinforces that interfere with the enduring changes in emotional reactivity and motivation produced by in utero and neonatal malnutrition. Consequently, the mechanisms underlying the learning deficits associated with malnutrition in early life remain unknown. Here we implemented a behavioural paradigm based on the combination of the novel object recognition and the novel object location tasks to define the impact of early protein-restriction on the behavioural, cellular and molecular basis of memory processing. Adult rats born to dams fed a low-protein diet during pregnancy and lactation, exhibited impaired encoding and consolidation of memory resulting from impaired pattern separation. This learning deficit was associated with reduced production of newly born hippocampal neurons and down regulation of BDNF gene expression. These data sustain the existence of a causal relationship between early malnutrition and impaired learning in adulthood and show that decreased adult neurogenesis is associated to the cognitive deficits induced by childhood exposure to poor nutrition.

  1. Staggered-electromagnetophoresis with a Split-flow System for the Separation of Microparticles by a Hollow Fiber-embedded PDMS Microchip.

    Science.gov (United States)

    Iiguni, Yoshinori; Tanaka, Ayaka; Kitagawa, Shinya; Ohtani, Hajime

    2016-01-01

    A novel microchip separation system for microparticles based on electromagnetophoresis (EMP) was developed. In this system, focusing and separation of flowing microparticles in a microchannel could be performed by staggered-EMP by controlling the electric current applied to the channel locally combined with the split-flow system for fractionation of eluates. To apply the electric current through the flushing medium in the microchannel, a hollow fiber-embedded microchip with multiple electrodes was fabricated. The hollow fiber was made by a semi-permeable membrane and could separate small molecules. This microchip allowed us to apply the electric current to a part of the microchannel without any pressure control device because a main channel contacted with the subchannels that had electrodes through the semi-permeable membrane. Moreover, the separation using this microchip was combined with the split-flow system at two outlets to improve separation efficiency. Using this system, with the split-flow ratio of 10:1, 87% of 3 μm polystyrene (PS) latex particles were isolated from a mixture of 3 and 10 μm particles. Even the separation of 6 and 10 μm PS particles was achieved with about 77% recovery and 100% purity. In addition, by controlling the applied current, size fractionation of polypropylene (PP) particles was demonstrated. Moreover, biological particles such as pollens could be separated with high separation efficiency by this technique.

  2. Flow measurements in the core of the FRJ-2 research reactor after the installation of flow regulators in the locating bushes in the grid and investigation of the consequences for the safety of reactor operation

    International Nuclear Information System (INIS)

    Wolters, J.P.

    1975-04-01

    Early in June, 1974, radial flow regulators were installed in the locating bushes in the grid of the FRJ-2 reactor in order to reduce the flow irregularities in certain positions and thus to mobilize additional safety reserves. The success of these measures was tested by flow measurements in all 25 fuel element positions. The results are presented in this paper, their consequences for safety engineering are analyzed, and a flexible inlet temperature is proposed. (orig./AK) [de

  3. Membrane Separated Flow Cell for Parallelized Electrochemical Impedance Spectroscopy and Confocal Laser Scanning Microscopy to Characterize Electro-Active Microorganisms

    International Nuclear Information System (INIS)

    Stöckl, Markus; Schlegel, Christin; Sydow, Anne; Holtmann, Dirk; Ulber, Roland; Mangold, Klaus-Michael

    2016-01-01

    Highlights: • Development of a membrane separated electrochemical flow cell. • Simultaneous combination of EIS and CLSM. • Monitoring of bacterial cell attachment to anode of MFC. • Cell attachment of Shewanella oneidensis is shown. - Abstract: Understanding the attachment of electro-active bacteria to electrode surfaces and their subsequent biofilm formation is one of the major challenges for the establishment of bacterial bioelectrochemial systems (BES). For a constant observation of biofilm growth, providing information on different stages of biofilm formation, continuous monitoring methods are required. In this paper a combination of two powerful analytical methods, Electrochemical Impedance Spectroscopy (EIS) and Confocal Laser Scanning Microscopy (CLSM), for biofilm monitoring is presented. A custom-built flow cell with a transparent indium tin oxide working electrode (WE) was constructed allowing monitoring of cell attachment to a working electrode simultaneously by EIS and CLSM. Cyclic Voltammetry (CV) and EIS of an iron (II)/iron (III) redox couple indicate that the flow cell is suitable for electrochemical experiments. An engineered Shewanella oneidensis MR-1 (ATCC700550) producing eGFP was used as electro-active model organism to demonstrate the practical application of the flow cell as BES to monitor cell attachment simultaneously with EIS and CLSM. Applying the flow cell as MFC (transparent working electrode poised as anode) produced a typical current curve for such a system. From the equivalent circuit used to interpret EIS data the charge transfer resistance R CT is sensitive to attachment of microorganisms. Fitted R CT was increased initially after cell inoculation and then lowered constantly with progressing experimental time. In parallel taken CLSM images show that bacteria already adhered to the WE 5 min after inoculation. A mono- respectively bilayer of electro-active cells was observed after 17 h on the WE surface. With the presented

  4. The Influence of Volume, Temperature and Flow Rate on the of Separation Ru from IRC-50 Amberlite Resin

    International Nuclear Information System (INIS)

    Murdani Sumarsono; Djoko Widodo

    2002-01-01

    It was studied Ru elution of IRC-50 amberlite resin for separating, Ru of resin bonding. The resin bonding was ion exchange result of spent fuel uranyl nitrate. In this experiment, the eluent was used 6 N HNO 3 solution the adsorption of Ru was 20 ppm and then it was eluted with 6 N HNO 3 eluent. The objective of this experiment was to determine the operation condition of elution proses that was based on the value of Ru release from its bonding as much as possible. Based on the experiment, the relative good condition were resin volume = 205 ml, elution temperature = 85 o C and the flow rate of eluent = 2 ml 6 N HNO 3 / minute and Ru as result was 93 %. (author)

  5. Effects of Freestream Turbulence on the Pressure Acting on a Low-Rise Building Roof in the Separated Flow Region

    Directory of Open Access Journals (Sweden)

    Pedro L. Fernández-Cabán

    2018-04-01

    Full Text Available This paper presents the experimental design and subsequent findings from a series of experiments in a large boundary layer wind tunnel to investigate the variation of surface pressures with increasing upwind terrain roughness on low-rise buildings. Geometrically scaled models of the Wind Engineering Research Field Laboratory experimental building were subjected to a wide range of turbulent boundary layer flows, through precise adjustment of a computer control terrain generator called the Terraformer. The study offers an in-depth examination of the effects of freestream turbulence on extreme pressures under the separation “bubble” for the case of the wind traveling perpendicular to wall surfaces, independently confirming previous findings that the spatial distribution of the peaks is heavily influenced by the mean reattachment length. Further, the study shows that the observed peak pressures collapse if data are normalized by the mean reattachment length and a non-Gaussian estimator for peak velocity pressure.

  6. Boundary Conditions and SGS Models for LES of Wall-Bounded Separated Flows: An Application to Engine-Like Geometries

    Directory of Open Access Journals (Sweden)

    Piscaglia F.

    2013-11-01

    Full Text Available The implementation and the combination of advanced boundary conditions and subgrid scale models for Large Eddy Simulations are presented. The goal is to perform reliable cold flow LES simulations in complex geometries, such as in the cylinders of internal combustion engines. The implementation of an inlet boundary condition for synthetic turbulence generation and of two subgrid scale models, the local Dynamic Smagorinsky and the Wall-Adapting Local Eddy-viscosity SGS model ( WALE is described. The WALE model is based on the square of the velocity gradient tensor and it accounts for the effects of both the strain and the rotation rate of the smallest resolved turbulent fluctuations and it recovers the proper y3 near-wall scaling for the eddy viscosity without requiring dynamic pressure; hence, it is supposed to be a very reliable model for ICE simulation. Model validation has been performed separately on two steady state flow benches: a backward facing step geometry and a simple IC engine geometry with one axed central valve. A discussion on the completeness of the LES simulation (i.e. LES simulation quality is given.

  7. Zonal RANS/LES coupling simulation of a transitional and separated flow around an airfoil near stall

    Energy Technology Data Exchange (ETDEWEB)

    Richez, F.; Mary, I.; Gleize, V. [ONERA, Department of Computational Fluid Dynamics and Aeroacoustics, 29 Avenue de la Division Leclerc, BP 72, Chatillon (France); Basdevant, C. [Universite Paris-Nord, Laboratoire d' Analyse, Geometrie et Applications, CNRS, Villetaneuse (France)

    2008-05-15

    The objective of the current study is to examine the course of events leading to stall just before its occurrence. The stall mechanisms are very sensitive to the transition that the boundary layer undergoes near the leading edge of the profile by a so-called laminar separation bubble (LSB). In order to provide helpful insights into this complex flow, a zonal Reynolds-averaged Navier-Stokes (RANS)/large-eddy simulation (LES) simulation of the flow around an airfoil near stall has been achieved and its results are presented and analyzed in this paper. LSB has already been numerically studied by direct numerical simulation (DNS) or LES, but for a flat plate with an adverse pressure gradient only. We intend, in this paper, to achieve a detailed analysis of the transition process by a LSB in more realistic conditions. The comparison with a linear instability analysis has shown that the numerical instability mechanism in the LSB provides the expected frequency of the perturbations. Furthermore, the right order of magnitude for the turbulence intensities at the reattachment point is found. (orig.)

  8. Analysis of the UPTF Separate Effects Test 11 (steam-water counter-current flow in the broken loop hot leg) using RELAP5/MOD2

    International Nuclear Information System (INIS)

    Dillistone, M.J.

    1989-08-01

    RELAP5/MOD2 predictions of countercurrent flow limitation in the UPTF hot leg separate effects Test (test 11) are compared with the experimental data. The code underestimates, by a factor of more than three, the gas flow necessary to prevent liquid runback from the steam generator, and this is shown to be due to an oversimplified flow-regime map which does not allow the possibility of stratified flow in the hot leg riser. The predicted countercurrent flow is also shown to depend, wrongly, on the depth of liquid in the steam generator plenum. The same test is also modelled using a version of the code in which stratified flow in the riser is made possible. The gas flow needed to prevent liquid runback is then predicted quite well, but at all lower gas flows the code predicts that the flow is completely unrestricted - i.e. liquid flows between full flow and zero flow are not predicted. This is shown to happen because the code cannot calculate correctly the liquid level in the hot leg, mainly because of a numerical effect of upwind donoring in the momentum flux terms of the code's basic equations. It is also shown that the code cannot model the considerable effect of the ECCS injection pipe (which runs inside the hot leg) on the liquid level. (author)

  9. Effect of diameter and axial location on upward gas–liquid two-phase flow patterns in intermediate-scale vertical tubes

    International Nuclear Information System (INIS)

    Ansari, M.R.; Azadi, R.

    2016-01-01

    Highlights: • A vertical two-phase flow system is manufactured to study flow behavior adiabatically. • Two test sections are studied with inner diameters of 40 mm and 70 mm at two locations. • Flow pattern maps are presented for both tubes. • Effects of tube diameter and heights on pattern transition boundaries are investigated. • Three sub-patterns bubbly flow and two types of slug pattern are recognized. - Abstract: In the present research, a two-phase flow system is designed, manufactured, assembled and adjusted to study two-phase flow behavior isothermally. Test sections are tubes standing in vertical position and are made of transparent acrylic with inner diameters of 40 mm and 70 mm. Two axial locations of 1.73 m and 3.22 m are chosen for data acquisition. Flow pattern maps are presented for both tubes. Effects of tube diameter and axial location on pattern transition boundaries are investigated. Air and water are chosen as working fluids. The range of air and water superficial velocities are 0.054–9.654 m/s and 0.015–0.877 m/s for the 40 mm diameter tube, but these values are 0.038–20.44 m/s and 0.036–1.530 m/s for 70 mm diameter tube. The results show that for both tubes, increasing axial location does not affect flow transition boundaries significantly. However, slug pattern region shrinks considerably by changing tube diameter from 40 mm to 70 mm. Using image processing techniques, recorded high speed movies were investigated accurately. As a result, bubbly flow in the 40 mm tube can be divided into three sub-patterns as dispersed, agitated and agglomerated bubbly. Also, two types of slug pattern are also recognized in the same tube diameter which are called small and large slugs. Semi-annular flow is observed as an independent pattern in the 70 mm tube that does not behave as known churn or annular patterns.

  10. A State-of-the-Art Review of the Sensor Location, Flow Observability, Estimation, and Prediction Problems in Traffic Networks

    Directory of Open Access Journals (Sweden)

    Enrique Castillo

    2015-01-01

    Full Text Available A state-of-the-art review of flow observability, estimation, and prediction problems in traffic networks is performed. Since mathematical optimization provides a general framework for all of them, an integrated approach is used to perform the analysis of these problems and consider them as different optimization problems whose data, variables, constraints, and objective functions are the main elements that characterize the problems proposed by different authors. For example, counted, scanned or “a priori” data are the most common data sources; conservation laws, flow nonnegativity, link capacity, flow definition, observation, flow propagation, and specific model requirements form the most common constraints; and least squares, likelihood, possible relative error, mean absolute relative error, and so forth constitute the bases for the objective functions or metrics. The high number of possible combinations of these elements justifies the existence of a wide collection of methods for analyzing static and dynamic situations.

  11. Semi-analytical solution of flow to a well in an unconfined-fractured aquifer system separated by an aquitard

    Science.gov (United States)

    Sedghi, Mohammad M.; Samani, Nozar; Barry, D. A.

    2018-04-01

    Semi-analytical solutions are presented for flow to a well in an extensive homogeneous and anisotropic unconfined-fractured aquifer system separated by an aquitard. The pumping well is of infinitesimal radius and screened in either the overlying unconfined aquifer or the underlying fractured aquifer. An existing linearization method was used to determine the watertable drainage. The solution was obtained via Laplace and Hankel transforms, with results calculated by numerical inversion. The main findings are presented in the form of non-dimensional drawdown-time curves, as well as scaled sensitivity-dimensionless time curves. The new solution permits determination of the influence of fractures, matrix blocks and watertable drainage parameters on the aquifer drawdown. The effect of the aquitard on the drawdown response of the overlying unconfined aquifer and the underlying fractured aquifer was also explored. The results permit estimation of the unconfined and fractured aquifer hydraulic parameters via type-curve matching or coupling of the solution with a parameter estimation code. The solution can also be used to determine aquifer hydraulic properties from an optimal pumping test set up and duration.

  12. A Mathematical Model of Membrane Gas Separation with Energy Transfer by Molecules of Gas Flowing in a Channel to Molecules Penetrating this Channel from the Adjacent Channel

    Directory of Open Access Journals (Sweden)

    Szwast Maciej

    2015-06-01

    Full Text Available The paper presents the mathematical modelling of selected isothermal separation processes of gaseous mixtures, taking place in plants using membranes, in particular nonporous polymer membranes. The modelling concerns membrane modules consisting of two channels - the feeding and the permeate channels. Different shapes of the channels cross-section were taken into account. Consideration was given to co-current and counter-current flows, for feeding and permeate streams, respectively, flowing together with the inert gas receiving permeate. In the proposed mathematical model it was considered that pressure of gas changes along the length of flow channels was the result of both - the drop of pressure connected with flow resistance, and energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel. The literature on membrane technology takes into account only the drop of pressure connected with flow resistance. Consideration given to energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel constitute the essential novelty in the current study. The paper also presents results of calculations obtained by means of a computer program which used equations of the derived model. Physicochemical data concerning separation of the CO2/CH4 mixture with He as the sweep gas and data concerning properties of the membrane made of PDMS were assumed for calculations.

  13. The application of the signal flow graph method to charged-particle optics - the formula derivation of a three-sector isotope separator

    International Nuclear Information System (INIS)

    Lu Hongyou; Zhao Zhiyong; Sun Quinren

    1987-01-01

    A brief introduction of the Signal Flow Graph (SFG) method is given. The application of it to charged-particle optics (CPO) is described. The method has the advantages of simplicity, visualisation and computerisation. An example of the application of SFG is given for the design of a three-sector electromagnetic isotope separator. (orig.)

  14. What Do They Have in Common? Drivers of Streamflow Spatial Correlation and Prediction of Flow Regimes in Ungauged Locations

    Science.gov (United States)

    Betterle, A.; Radny, D.; Schirmer, M.; Botter, G.

    2017-12-01

    The spatial correlation of daily streamflows represents a statistical index encapsulating the similarity between hydrographs at two arbitrary catchment outlets. In this work, a process-based analytical framework is utilized to investigate the hydrological drivers of streamflow spatial correlation through an extensive application to 78 pairs of stream gauges belonging to 13 unregulated catchments in the eastern United States. The analysis provides insight on how the observed heterogeneity of the physical processes that control flow dynamics ultimately affect streamflow correlation and spatial patterns of flow regimes. Despite the variability of recession properties across the study catchments, the impact of heterogeneous drainage rates on the streamflow spatial correlation is overwhelmed by the spatial variability of frequency and intensity of effective rainfall events. Overall, model performances are satisfactory, with root mean square errors between modeled and observed streamflow spatial correlation below 10% in most cases. We also propose a method for estimating streamflow correlation in the absence of discharge data, which proves useful to predict streamflow regimes in ungauged areas. The method consists in setting a minimum threshold on the modeled flow correlation to individuate hydrologically similar sites. Catchment outlets that are most correlated (ρ>0.9) are found to be characterized by analogous streamflow distributions across a broad range of flow regimes.

  15. Impact of heat load location and strength on air flow pattern with a passive chilled beam system

    Energy Technology Data Exchange (ETDEWEB)

    Kosonen, Risto [Halton Oy, Niittyvillankuja 4, 01510 Vantaa (Finland); Saarinen, Pekka; Koskela, Hannu [Finnish Institute of Occupational Health, Lemminkaisenkatu 14-18 B, 20520 Turku (Finland); Hole, Alex [Arup, Rob Leslie-Carter, Level 10, 201 Kent Street, Sydney, NSW 2000 (Australia)

    2010-01-15

    A passive chilled beam is a source of natural convection, creating a flow of cold air directly into the occupied zone. Experiments were conducted in a mock-up of an office room to study the air velocities in the occupied spaces. In addition, velocity profiles are registered when underneath heat loads exist and the cool and warm air flows interact. Experimental laboratory study revealed that in the case of the underneath heat gains, even no upward plume was generated and the dummy only acted as a flow obstacle, having a significant effect on the velocity profile. Furthermore, in an actual occupied office environment, the thermal plumes and the supply air diffuser mixed effectively the whole air volume. The maximum air velocity measured was still below 0.25 m/s with the extremely high heat gain of 164 W/m{sup 2}. The results demonstrate that analysis methods were the interaction of convection flow and jet are not taken into account could not accurately describe air movement and draught risk in the occupied room space. (author)

  16. Influence of the fire location and the size of a compartment on the heat and smoke flow out of the compartment

    Science.gov (United States)

    Wegrzyński, Wojciech; Konecki, Marek

    2018-01-01

    This paper presents results of CFD and scale modelling of the flow of heat and smoke inside and outside of a compartment, in case of fire. Estimation of mass flow out of a compartment is critical, as it is the boundary condition in further considerations related to the exhaust of the smoke from a building - also in analysis related to the performance of natural ventilation in wind conditions. Both locations of the fire and the size of compartment were addressed as possible variables, which influence the mass and the temperature of smoke that leaves the room engulfed in fire. Results of the study show small to none influence of both size of the compartment and the location of the fire, on the mass flow of smoke exiting the room. On the same time, both of these parameters influence the temperature of the smoke - in larger compartments lower average temperatures of the smoke layer, but higher maximum values were observed. Results of this study may be useful also in the determination of the worst case scenarios for structural analysis, or in the investiga tion of the spread of fire through the compartment. Based on the results presented in this study, researchers can attribute an expert judgement choice of fire location, as a single scenario that is representative of a larger amount of probable scenarios.

  17. Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations

    Science.gov (United States)

    Sclerotinia sclerotiorum causes serious yield losses in crops in The People’s Republic of China. Two formulations of oilseed rape seed containing the endophytic bacterium Bacillus subtilis Tu-100 were evaluated for suppression of this pathogen in field trials conducted at two independent locations....

  18. Co-located monogenetic eruptions similar to 200 kyr apart driven by tapping vertically separated mantle source regions, Chagwido, Jeju Island, Republic of Korea

    NARCIS (Netherlands)

    Brenna, M.; Nemeth, K.; Cronin, S.J.; Sohn, Y.K.; Smith, I.E.M.; Wijbrans, J.R.

    2015-01-01

    New eruptions in monogenetic volcanic fields conceptually occur independently of previous ones. In some instances, however, younger volcanic structures and vents may overlap with older edifices. The genetic links between such co-located eruptions remain unclear. We mapped and analysed the

  19. Hydrological influences on long-term gas flow trends at locations in the Vogtland/NW Bohemian seismic region (German-Czech border

    Directory of Open Access Journals (Sweden)

    J. Heinicke

    2007-06-01

    Full Text Available One of the typical methods for the identification of seismo-hydrological effects is to monitor changes in the free gas flow throughout springs or mofettes. For several years, the gas flow regime of mineral springs at Bad Brambach (Germany and mofettes in the Nature Park Soos (Czech Republic and its dependence on hydro-/meteorological parameters have been studied. The mineral spring ‘Wettinquelle’, Bad Brambach, is a well-known seismo- hydrologically sensitive location for swarmquakes at a special epicentral area of NW Bohemia. Since 2000, a slight upward trend in the gas flow of three Bad Brambach mineral springs has been observed, which became stronger after the ‘Eisenquelle’ spring capture reconstruction (winter 2003/2004. Similar behaviour could be detected at a mofette in Soos. The results correspond to a 3He/4He mantle ratio increase in gases at mofettes in the Cheb Basin (CZ traced by other authors for more than 12 years, and could give hints for a higher degassing activity of the magma body below that area. Common and special properties in the degassing regimes of the Bad Brambach and Soos locations are discussed. It is demonstrated that the long-term gas flow trend was interrupted in 2003 because of very low groundwater levels. This effect was amplified by the artificial groundwater lowering during the ‘Eisenquelle’ spring capture reconstruction.

  20. CENTRIFUGAL SEPARATORS

    Science.gov (United States)

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  1. Coupling a Neural Network with Atmospheric Flow Simulations to Locate and Quantify CH4 Emissions at Well Pads

    Science.gov (United States)

    Travis, B. J.; Sauer, J.; Dubey, M. K.

    2017-12-01

    Methane (CH4) leaks from oil and gas production fields are a potentially significant source of atmospheric methane. US DOE's ARPA-E office is supporting research to locate methane emissions at 10 m size well pads to within 1 m. A team led by Aeris Technologies, and that includes LANL, Planetary Science Institute and Rice University has developed an autonomous leak detection system (LDS) employing a compact laser absorption methane sensor, a sonic anemometer and multiport sampling. The LDS system analyzes monitoring data using a convolutional neural network (cNN) to locate and quantify CH4 emissions. The cNN was trained using three sources: (1) ultra-high-resolution simulations of methane transport provided by LANL's coupled atmospheric transport model HIGRAD, for numerous controlled methane release scenarios and methane sampling configurations under variable atmospheric conditions, (2) Field tests at the METEC site in Ft. Collins, CO., and (3) Field data from other sites where point-source surface methane releases were monitored downwind. A cNN learning algorithm is well suited to problems in which the training and observed data are noisy, or correspond to complex sensor data as is typical of meteorological and sensor data over a well pad. Recent studies with our cNN emphasize the importance of tracking wind speeds and directions at fine resolution ( 1 second), and accounting for variations in background CH4 levels. A few cases illustrate the importance of sufficiently long monitoring; short monitoring may not provide enough information to determine accurately a leak location or strength, mainly because of short-term unfavorable wind directions and choice of sampling configuration. Length of multiport duty cycle sampling and sample line flush time as well as number and placement of monitoring sensors can significantly impact ability to locate and quantify leaks. Source location error at less than 10% requires about 30 or more training cases.

  2. Development of porous plug phase separator and superfluid film flow suppression system for the Soft X-ray Spectrometer onboard ASTRO-H

    Science.gov (United States)

    Ezoe, Yuichiro; Ishikawa, Kumi; Ohashi, Takaya; Yamaguchi, Hiroya; Mitsuda, Kazuhisa; Fujimoto, Ryuichi; Murakami, Masahide; Kanao, Kenichi; Yoshida, Seiji; Tsunematsu, Shoji; DiPirro, Michael; Shirron, Peter; the SXS Team

    2012-04-01

    ASTRO-H is the sixth Japanese astronomy satellite scheduled for launch in 2014. The Soft X-ray Spectrometer instrument is onboard ASTRO-H. This is a 6 × 6 array of X-ray microcalorimeters with an energy resolution of gravity, a porous plug phase separator made of sintered stainless is used. Since the vapor mass flow rate is only 29 μg/s, any additional superfluid film loss influences the lifetime of the liquid helium. Therefore, a film flow suppression system consisting of an orifice, a heat exchanger, and knife edge devices is adopted based on the design used for the X-ray Spectrometer onboard Suzaku. The film flow will be suppressed to <2 μg/s, sufficiently smaller than the vapor flow rate. In the present investigation, the design and ground experiments of a helium vent system composed of the porous plug and film flow suppression system are presented. The results show that the phase separation and the film flow suppression are satisfactorily achieved.

  3. Computed statistics at streamgages, and methods for estimating low-flow frequency statistics and development of regional regression equations for estimating low-flow frequency statistics at ungaged locations in Missouri

    Science.gov (United States)

    Southard, Rodney E.

    2013-01-01

    The weather and precipitation patterns in Missouri vary considerably from year to year. In 2008, the statewide average rainfall was 57.34 inches and in 2012, the statewide average rainfall was 30.64 inches. This variability in precipitation and resulting streamflow in Missouri underlies the necessity for water managers and users to have reliable streamflow statistics and a means to compute select statistics at ungaged locations for a better understanding of water availability. Knowledge of surface-water availability is dependent on the streamflow data that have been collected and analyzed by the U.S. Geological Survey for more than 100 years at approximately 350 streamgages throughout Missouri. The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, computed streamflow statistics at streamgages through the 2010 water year, defined periods of drought and defined methods to estimate streamflow statistics at ungaged locations, and developed regional regression equations to compute selected streamflow statistics at ungaged locations. Streamflow statistics and flow durations were computed for 532 streamgages in Missouri and in neighboring States of Missouri. For streamgages with more than 10 years of record, Kendall’s tau was computed to evaluate for trends in streamflow data. If trends were detected, the variable length method was used to define the period of no trend. Water years were removed from the dataset from the beginning of the record for a streamgage until no trend was detected. Low-flow frequency statistics were then computed for the entire period of record and for the period of no trend if 10 or more years of record were available for each analysis. Three methods are presented for computing selected streamflow statistics at ungaged locations. The first method uses power curve equations developed for 28 selected streams in Missouri and neighboring States that have multiple streamgages on the same streams. Statistical

  4. Visualization of boundary layer separation and passive flow control on airfoils and bodies in wind-tunnel and in-flight experiments

    Directory of Open Access Journals (Sweden)

    Matejka Milan

    2012-04-01

    Full Text Available Infrared camera, Particle Image Velocimetry, smoke-wire, tuft filaments and oil-flow visualization techniques were used for wind-tunnel and in-flight investigation of boundary layer separation, both stall and separation bubbles, related to the low-Reynolds numbers transition mechanism. Airfoils of Wortmann FX66 series and FX66 series wing-fuselage interaction, as well as modern airfoils and their wing-fuselage geometry were subject to study. The presence of previously identified structures in the CFD modelling, such as horse-shoe vortices, was confirmed in the flow. Wind-tunnels and in-flight measurements on sailplanes were carried out and effect of passive flow control devices - vortex generators - was surveyed; namely counter-rotating vortex generators and Zig-zag type turbulators were applied. Separation suppression and consequent drag coefficient reduction of test aircrafts was reached. PIV investigation was further extended by Time-Resolved techniques. An important study on structure of the turbulent flow in the lower atmosphere, creating an environment of the soaring flight, was presented.

  5. Visualization of boundary layer separation and passive flow control on airfoils and bodies in wind-tunnel and in-flight experiments

    Science.gov (United States)

    Popelka, Lukas; Kuklova, Jana; Simurda, David; Souckova, Natalie; Matejka, Milan; Uruba, Vaclav

    2012-04-01

    Infrared camera, Particle Image Velocimetry, smoke-wire, tuft filaments and oil-flow visualization techniques were used for wind-tunnel and in-flight investigation of boundary layer separation, both stall and separation bubbles, related to the low-Reynolds numbers transition mechanism. Airfoils of Wortmann FX66 series and FX66 series wing-fuselage interaction, as well as modern airfoils and their wing-fuselage geometry were subject to study. The presence of previously identified structures in the CFD modelling, such as horse-shoe vortices, was confirmed in the flow. Wind-tunnels and in-flight measurements on sailplanes were carried out and effect of passive flow control devices - vortex generators - was surveyed; namely counter-rotating vortex generators and Zig-zag type turbulators were applied. Separation suppression and consequent drag coefficient reduction of test aircrafts was reached. PIV investigation was further extended by Time-Resolved techniques. An important study on structure of the turbulent flow in the lower atmosphere, creating an environment of the soaring flight, was presented.

  6. Effects of land use and sample location on nitrate-stream flow hysteresis descriptors during storm events

    Science.gov (United States)

    Feinson, Lawrence S.; Gibs, Jacob; Imbrigiotta, Thomas E.; Garrett, Jessica D.

    2016-01-01

    The U.S. Geological Survey's New Jersey and Iowa Water Science Centers deployed ultraviolet-visible spectrophotometric sensors at water-quality monitoring sites on the Passaic and Pompton Rivers at Two Bridges, New Jersey, on Toms River at Toms River, New Jersey, and on the North Raccoon River near Jefferson, Iowa to continuously measure in-stream nitrate plus nitrite as nitrogen (NO3 + NO2) concentrations in conjunction with continuous stream flow measurements. Statistical analysis of NO3 + NO2 vs. stream discharge during storm events found statistically significant links between land use types and sampling site with the normalized area and rotational direction of NO3 + NO2-stream discharge (N-Q) hysteresis patterns. Statistically significant relations were also found between the normalized area of a hysteresis pattern and several flow parameters as well as the normalized area adjusted for rotational direction and minimum NO3 + NO2 concentrations. The mean normalized hysteresis area for forested land use was smaller than that of urban and agricultural land uses. The hysteresis rotational direction of the agricultural land use was opposite of that of the urban and undeveloped land uses. An r2 of 0.81 for the relation between the minimum normalized NO3 + NO2 concentration during a storm vs. the normalized NO3 + NO2 concentration at peak flow suggested that dilution was the dominant process controlling NO3 + NO2 concentrations over the course of most storm events.

  7. The association between body-built and injury occurrence in pre-professional ballet dancers – Separated analysis for the injured body-locations

    Directory of Open Access Journals (Sweden)

    Petra Zaletel

    2017-02-01

    Full Text Available Objectives: This study has aimed at identifying prevalence of injury-occurrence in 24 pre-professional-ballet-dancers (females, 16–18 years of age, and identifying the associations between the body-built and prevalence of injuries. Material and Methods: The sample of variables included: body mass, body height, and 3 somatotype characteristics (mesomorph, ectomorph and endomorph and data on injuries over the preceding year. Results: Dancers were mostly ectomorphic-mesomorph (endomorphy: 2.6±0.54, mesomorphy: 3.99±0.77, ectomorphy: 3.23±0.54. The most commonly injured locations were the foot (17% of all injuries and ankle (17%. Majority of the injuries occurred while practising but 37% of hip-injuries occurred while performing. Ankle-injuries resulted in longest absence from ballet. Endomorphy was related to ankle-injury (odds ratio (OR = 1.9, 95% confidence interval (CI: 1.4–2.3, ectomorphy to foot injury (OR = 1.7, 95% CI: 1.1–2.9, and body-mass to injury to the toes (OR = 1.7, 95% CI: 1.4–3.1. Conclusions: The results of this study allow for recognizing those dancers who are particularly vulnerable to injuries of certain body location. A more profound analysis of the possible mechanisms that lead to hip-injury during performance is needed. Int J Occup Med Environ Health 2017;30(1:151–159

  8. Identification of MHF (massive hydraulic fracturing) fracture planes and flow paths: A correlation of well log data with patterns in locations of induced seismicity

    Energy Technology Data Exchange (ETDEWEB)

    Dreesen, D.; Malzahn, M.; Fehler, M.; Dash, Z.

    1987-01-01

    One of the critical steps in developing a hot dry rock geothermal system is the creation of flow paths through the rock between two wellbores. To date, circulation systems have only been created by drilling one wellbore, hydraulically fracturing the well (which induces microearthquakes), locating the microearthquakes and then drilling a second wellbore through the zone of seismicity. A technique for analyzing the pattern of seismicity to determine where fracture planes are located in the seismically active region has recently been developed. This allows us to distinguish portions of the seismically active volume which are most likely to contain significant flow paths. We applied this technique to seismic data collected during a massive hydraulic fracturing (MHF) treatment and found that the fracture planes determined by the seismic method are confirmed by borehole temperature and caliper logs which indicate where permeable fractures and/or zones of weakness intersect the wellbores. A geometric model based on these planes and well log data has enhanced our understanding of the reservoir flow paths created by fracturing and is consistent with results obtained during production testing of the reservoir.

  9. The association between body-built and injury occurrence in pre-professional ballet dancers - Separated analysis for the injured body-locations.

    Science.gov (United States)

    Zaletel, Petra; Sekulić, Damir; Zenić, Nataša; Esco, Michael R; Šajber, Dorica; Kondrič, Miran

    2017-02-21

    This study has aimed at identifying prevalence of injury-occurrence in 24 pre-professional-ballet-dancers (females, 16-18 years of age), and identifying the associations between the body-built and prevalence of injuries. The sample of variables included: body mass, body height, and 3 somatotype characteristics (mesomorph, ectomorph and endomorph) and data on injuries over the preceding year. Dancers were mostly ectomorphic-mesomorph (endomorphy: 2.6±0.54, mesomorphy: 3.99±0.77, ectomorphy: 3.23±0.54). The most commonly injured locations were the foot (17% of all injuries) and ankle (17%). Majority of the injuries occurred while practising but 37% of hip-injuries occurred while performing. Ankle-injuries resulted in longest absence from ballet. Endomorphy was related to ankle-injury (odds ratio (OR) = 1.9, 95% confidence interval (CI): 1.4-2.3), ectomorphy to foot injury (OR = 1.7, 95% CI: 1.1-2.9), and body-mass to injury to the toes (OR = 1.7, 95% CI: 1.4-3.1). The results of this study allow for recognizing those dancers who are particularly vulnerable to injuries of certain body location. A more profound analysis of the possible mechanisms that lead to hip-injury during performance is needed. Int J Occup Med Environ Health 2017;30(1):151-159. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  10. Steam-water separator

    International Nuclear Information System (INIS)

    Modrak, T.M.; Curtis, R.W.

    1978-01-01

    The steam-water separator connected downstream of a steam generator consists of a vertical centrifugal separator with swirl blades between two concentric pipes and a cyclone separator located above. The water separated in the cyclone separator is collected in the inner tube of the centrifugal separator which is closed at the bottom. This design allows the overall height of the separator to be reduced. (DG) [de

  11. Microparticle Separation by Cyclonic Separation

    Science.gov (United States)

    Karback, Keegan; Leith, Alexander

    2017-11-01

    The ability to separate particles based on their size has wide ranging applications from the industrial to the medical. Currently, cyclonic separators are primarily used in agriculture and manufacturing to syphon out contaminates or products from an air supply. This has led us to believe that cyclonic separation has more applications than the agricultural and industrial. Using the OpenFoam computational package, we were able to determine the flow parameters of a vortex in a cyclonic separator in order to segregate dust particles to a cutoff size of tens of nanometers. To test the model, we constructed an experiment to separate a test dust of various sized particles. We filled a chamber with Arizona test dust and utilized an acoustic suspension technique to segregate particles finer than a coarse cutoff size and introduce them into the cyclonic separation apparatus where they were further separated via a vortex following our computational model. The size of the particles separated from this experiment will be used to further refine our model. Metropolitan State University of Denver, Colorado University of Denver, Dr. Randall Tagg, Dr. Richard Krantz.

  12. Preliminary evaluation of the importance of existing hydraulic-head observation locations to advective-transport predictions, Death Valley regional flow system, California and Nevada

    International Nuclear Information System (INIS)

    Hill, M.C.; Ely, D.M.; Tiedeman, C.R.; O'Brien, G.M.; D'Agnese, F.A.; Faunt, C.C.

    2001-01-01

    When a model is calibrated by nonlinear regression, calculated diagnostic statistics and measures of uncertainty provide a wealth of information about many aspects of the system. This report presents a method of ranking the likely importance of existing observation locations using measures of prediction uncertainty. It is suggested that continued monitoring is warranted at more important locations, and unwarranted or less warranted at less important locations. The report develops the methodology and then demonstrates it using the hydraulic-head observation locations of a three-layer model of the Death Valley regional flow system (DVRFS). The predictions of interest are subsurface transport from beneath Yucca Mountain and 14 underground Test Area (UGTA) sites. The advective component of transport is considered because it is the component most affected by the system dynamics represented by the regional-scale model being used. The problem is addressed using the capabilities of the U.S. Geological Survey computer program MODFLOW-2000, with its ADVective-Travel Observation (ADV) Package, and an additional computer program developed for this work

  13. Study on flow-induced acoustic resonance in symmetrically located side-branches using dynamic PIV technique

    International Nuclear Information System (INIS)

    Li, Yanrong; Inagaki, Terumi; Nishi, Yasuyuki; Someya, Satoshi; Okamoto, Koji

    2014-01-01

    Flow-induced acoustic resonance in a piping system containing closed coaxial side-branches was investigated experimentally. Resonance characteristics of the piping system were examined by a microphone. The results revealed that the resonance frequencies of the shear layer instability were locked in corresponding to the natural frequencies of the side-branches. Phase-averaged velocity fields were obtained two-dimensionally in the junction of coaxial side-branches by dynamic particle image velocimetry (PIV), while the acoustic resonance was induced at the first and second hydrodynamic modes. Patterns of jet correspond to two hydrodynamic modes were derived from the phase-averaged velocity fields. The dynamic PIV can acquire time-series velocity fluctuations, then, two-dimensional phase delay maps under resonance and off-resonance conditions in the junction of coaxial side-branches were obtained. Experimental results show that the proposed phase delay map method costs less experiment and computation time and achieves a better accuracy and repetition than the phase-locking technique. In addition, the phase delay map method can obtain phase difference under the different frequency components. This is important when two different acoustic modes were induced in one experimental condition. (author)

  14. Disaggregation and separation dynamics of magnetic particles in a microfluidic flow under an alternating gradient magnetic field

    Science.gov (United States)

    Cao, Quanliang; Li, Zhenhao; Wang, Zhen; Qi, Fan; Han, Xiaotao

    2018-05-01

    How to prevent particle aggregation in the magnetic separation process is of great importance for high-purity separation, while it is a challenging issue in practice. In this work, we report a novel method to solve this problem for improving the selectivity of size-based separation by use of a gradient alternating magnetic field. The specially designed magnetic field is capable of dynamically adjusting the magnetic field direction without changing the direction of magnetic gradient force acting on the particles. Using direct numerical simulations, we show that particles within a certain center-to-center distance are inseparable under a gradient static magnetic field since they are easy aggregated and then start moving together. By contrast, it has been demonstrated that alternating repulsive and attractive interaction forces between particles can be generated to avoid the formation of aggregations when the alternating gradient magnetic field with a given alternating frequency is applied, enabling these particles to be continuously separated based on size-dependent properties. The proposed magnetic separation method and simulation results have the significance for fundamental understanding of particle dynamic behavior and improving the separation efficiency.

  15. Modelling Truck Weigh Stations’ Locations based on Truck Traffic Flow and Overweight Violation: A Case Study in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Mirsad Kulović

    2018-04-01

    Full Text Available The number of registered commercial freight vehicles is constantly increasing, increasing therefore as well the traffic load on the roads in Bosnia and Herzegovina. A significant part of freight vehicles moving along the main and regional roads are overloaded and cause significant damage to road infrastructure, affect road safety and result in an increase of emissions of harmful gases for people and the environment. The overloading rate is extremely high, in particular with 5-axle trucks representing 58.7%. The research showed that the increased overload level ranges from 10-20% of the maximum permissible weight. The importance of load limits was recognized early in the history of road development. This interrelation led directly to limitations on vehicle loads, and laws were enacted in many countries to establish the maximum allowable motor vehicle sizes and weights. Strict enforcement of motor vehicle size and weight laws is a step toward reducing motor vehicle size and weight violations, heavy truck accidents, and, even more, improving road maintenance, rehabilitation expenditures and road safety. Thus, based on the applied model the objective of this paper is to evaluate and optimize the locations of truck weigh stations on the road network of Bosnia and Herzegovina.

  16. Potency of Micro Hydro Power Plant Development Use of Kelampuak River Flow Located in Tamblang Village – Buleleng

    Directory of Open Access Journals (Sweden)

    Dewa Ngakan Ketut Putra Negara

    2012-11-01

    Full Text Available Need of electrical energy is increasing along with people population and economic growth. According to PLN data, Bali Province’s electrical consumption is predicted growth 5,6% in average every year. Until year 2007, electrical condition in Bali is categorized critical. If Power Plat in Bali, PLTG Gilimanuk that has power 130 MW is out of system, affecting Bali’s electrical back up is minus. Consecuenlly, it will be extinguishing if there is not adding power plan or new energy supply. This problem needs to be anticipated by use of thermal energy program such as coal, gas and geothermal and use of alternative energy such as solar, wind and ocean energies. Regency of Buleleng is one of Regency in Bali having potency of renewable energy development especially water resource. It has some rivers that have potency to be developed as a Micro Hydro Power Plant (PLTMH. One of them is Kelampuak River which is located in Tamblang Village. As a first step in developing of Micro Hydro Power Plant, it needs to be known water debit and head of the river. For that reason, it needs to be investigated debit and head of Kelampuak River so that it can be predicted the power can be generated.

  17. Heat-transfer and pressure distributions for laminar separated flows downstream of rearward-facing steps with and without mass suction

    Science.gov (United States)

    Brown, R. D.; Jakubowski, A. K.

    1974-01-01

    Heat-transfer and pressure distributions were measured for laminar separated flows downstream of rearward-facing steps with and without mass suction. The flow conditions were such that the boundary-layer thickness was comparable to or larger than the step height. For both suction and no-suction cases, an increase in the step height resulted in a sharp decrease in the initial heat-transfer rates behind the step. Downstream, however, the heat transfer gradually recovered back to less than or near attached-flow values. Mass suction from the step base area increased the local heat-transfer rates; however, this effect was relatively weak for the laminar flows considered. Even removal of the entire approaching boundary layer raised the post-step heat-transfer rates only about 10 percent above the flatplate values. Post-step pressure distributions were found to depend on the entrainment conditions at separation. In the case of the solid-faced step, a sharp pressure drop behind the step was followed by a very short plateau and relatively fast recompression. For the slotted-step connected to a large plenum but without suction, the pressure drop at the base was much smaller and the downstream recompression more gradual than that for solid-faced step.

  18. Testing a community water supply well located near a stream for susceptibility to stream contamination and low-flows.

    Science.gov (United States)

    Stewart-Maddox, N. S.; Tysor, E. H.; Swanson, J.; Degon, A.; Howard, J.; Tsinnajinnie, L.; Frisbee, M. D.; Wilson, J. L.; Newman, B. D.

    2014-12-01

    A community well is the primary water supply to the town of El Rito. This small rural town in is located in a semi-arid, mountainous portion of northern New Mexico where water is scarce. The well is 72 meters from a nearby intermittent stream. Initial tritium sampling suggests a groundwater connection between the stream and well. The community is concerned with the sustainability and future quality of the well water. If this well is as tightly connected to the stream as the tritium data suggests, then the well is potentially at risk due to upstream contamination and the impacts of extended drought. To examine this, we observed the well over a two-week period performing pump and recovery tests, electrical resistivity surveys, and physical observations of the nearby stream. We also collected general chemistry, stable isotope and radon samples from the well and stream. Despite the large well diameter, our pump test data exhibited behavior similar to a Theis curve, but the rate of drawdown decreased below the Theis curve late in the test. This decrease suggests that the aquifer is being recharged, possibly through delayed yield, upwelling of groundwater, or from the stream. The delayed yield hypothesis is supported by our electrical resistivity surveys, which shows very little change in the saturated zone over the course of the pump test, and by low values of pump-test estimated aquifer storativity. Observations of the nearby stream showed no change in stream-water level throughout the pump test. Together this data suggests that the interaction between the stream and the well is low, but recharge could be occurring through other mechanisms such as delayed yield. Additional pump tests of longer duration are required to determine the exact nature of the aquifer and its communication with the well.

  19. An auroral westward flow channel (AWFC and its relationship to field-aligned current, ring current, and plasmapause location determined using multiple spacecraft observations

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    2007-02-01

    Full Text Available An auroral westward flow channel (AWFC is a latitudinally narrow channel of unstable F-region plasma with intense westward drift in the dusk-to-midnight sector ionosphere. AWFCs tend to overlap the equatorward edge of the auroral oval, and their life cycle is often synchronised to that of substorms: they commence close to substorm expansion phase onset, intensify during the expansion phase, and then decay during the recovery phase. Here we define for the first time the relationship between an AWFC, large-scale field-aligned current (FAC, the ring current, and plasmapause location. The Tasman International Geospace Environment Radar (TIGER, a Southern Hemisphere HF SuperDARN radar, observed a jet-like AWFC during ~08:35 to 13:28 UT on 7 April 2001. The initiation of the AWFC was preceded by a band of equatorward expanding ionospheric scatter (BEES which conveyed an intense poleward electric field through the inner plasma sheet. Unlike previous AWFCs, this event was not associated with a distinct substorm surge; rather it occurred during an interval of persistent, moderate magnetic activity characterised by AL~−200 nT. The four Cluster spacecraft had perigees within the dusk sector plasmasphere, and their trajectories were magnetically conjugate to the radar observations. The Waves of High frequency and Sounder for Probing Electron density by Relaxation (WHISPER instruments on board Cluster were used to identify the plasmapause location. The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE EUV experiment also provided global-scale observations of the plasmapause. The Cluster fluxgate magnetometers (FGM provided successive measurements specifying the relative location of the ring current and filamentary plasma sheet current. An analysis of Iridium spacecraft magnetometer measurements provided estimates of large-scale ionospheric FAC in relation to the AWFC evolution. Peak flows in the AWFC were located close to the peak of a Region 2

  20. A direct numerical simulation investigation of the synthetic jet frequency effects on separation control of low-Re flow past an airfoil

    KAUST Repository

    Zhang, Wei

    2015-05-05

    We present results of direct numerical simulations of a synthetic jet (SJ) based separation control of flow past a NACA-0018 (National Advisory Committee for Aeronautics) airfoil, at 10° angle of attack and Reynolds number 104 based on the airfoil chord length C and uniform inflow velocity U 0. The actuator of the SJ is modeled as a spanwise slot on the airfoil leeward surface and is placed just upstream of the leading edge separation position of the uncontrolled flow. The momentum coefficient of the SJ is chosen at a small value 2.13 × 10−4 normalized by that of the inflow. Three forcing frequencies are chosen for the present investigation: the low frequency (LF) F + = feC/U 0 = 0.5, the medium frequency (MF) F + = 1.0, and the high frequency (HF) F + = 4.0. We quantify the effects of forcing frequency for each case on the separation control and related vortex dynamics patterns. The simulations are performed using an energy conservative fourth-order parallel code. Numerical results reveal that the geometric variation introduced by the actuator has negligible effects on the mean flow field and the leading edge separation pattern; thus, the separation control effects are attributed to the SJ. The aerodynamic performances of the airfoil, characterized by lift and lift-to-drag ratio, are improved for all controlled cases, with the F + = 1.0 case being the optimal one. The flow in the shear layer close to the actuator is locked to the jet, while in the wake this lock-in is maintained for the MF case but suppressed by the increasing turbulent fluctuations in the LF and HF cases. The vortex evolution downstream of the actuator presents two modes depending on the frequency: the vortex fragmentation and merging mode in the LF case where the vortex formed due to the SJ breaks up into several vortices and the latter merge as convecting downstream; the discrete vortices mode in the HF case where discrete vortices form and convect downstream without any fragmentation and

  1. A direct numerical simulation investigation of the synthetic jet frequency effects on separation control of low-Re flow past an airfoil

    KAUST Repository

    Zhang, Wei; Samtaney, Ravi

    2015-01-01

    We present results of direct numerical simulations of a synthetic jet (SJ) based separation control of flow past a NACA-0018 (National Advisory Committee for Aeronautics) airfoil, at 10° angle of attack and Reynolds number 104 based on the airfoil chord length C and uniform inflow velocity U 0. The actuator of the SJ is modeled as a spanwise slot on the airfoil leeward surface and is placed just upstream of the leading edge separation position of the uncontrolled flow. The momentum coefficient of the SJ is chosen at a small value 2.13 × 10−4 normalized by that of the inflow. Three forcing frequencies are chosen for the present investigation: the low frequency (LF) F + = feC/U 0 = 0.5, the medium frequency (MF) F + = 1.0, and the high frequency (HF) F + = 4.0. We quantify the effects of forcing frequency for each case on the separation control and related vortex dynamics patterns. The simulations are performed using an energy conservative fourth-order parallel code. Numerical results reveal that the geometric variation introduced by the actuator has negligible effects on the mean flow field and the leading edge separation pattern; thus, the separation control effects are attributed to the SJ. The aerodynamic performances of the airfoil, characterized by lift and lift-to-drag ratio, are improved for all controlled cases, with the F + = 1.0 case being the optimal one. The flow in the shear layer close to the actuator is locked to the jet, while in the wake this lock-in is maintained for the MF case but suppressed by the increasing turbulent fluctuations in the LF and HF cases. The vortex evolution downstream of the actuator presents two modes depending on the frequency: the vortex fragmentation and merging mode in the LF case where the vortex formed due to the SJ breaks up into several vortices and the latter merge as convecting downstream; the discrete vortices mode in the HF case where discrete vortices form and convect downstream without any fragmentation and

  2. Benchmarking a computational fluid dynamics model of separated flow in a thin rectangular channel for use in predictive design analysis

    International Nuclear Information System (INIS)

    Stovall, T.K.; Crabtree, A.; Felde, D.

    1995-01-01

    The Advanced Neutron Source (ANS) reactor is being designed to provide a research tool with capabilities beyond those of any existing reactors. One portion of its state-of-the-art design requires high speed fluid flow through narrow channels between the fuel plates in the core. Experience with previous reactors has shown that fuel plate damage can occur when debris becomes lodged at the entrance to these channels. Such debris can disrupt the fluid flow to the plate surfaces and prevent adequate cooling of the fuel. Preliminary ANS designs addressed this issue by providing an unheated entrance length for each fuel plate. In theory, any flow disruption would recover within this unheated length, thus providing adequate heat removal from the downstream heated portions of the fuel plates

  3. Controlling Separation in Turbomachines

    Science.gov (United States)

    Evans, Simon; Himmel, Christoph; Power, Bronwyn; Wakelam, Christian; Xu, Liping; Hynes, Tom; Hodson, Howard

    2010-01-01

    Four examples of flow control: 1) Passive control of LP turbine blades (Laminar separation control). 2) Aspiration of a conventional axial compressor blade (Turbulent separation control). 3) Compressor blade designed for aspiration (Turbulent separation control). 4.Control of intakes in crosswinds (Turbulent separation control).

  4. Method for separating isotopes

    International Nuclear Information System (INIS)

    Schlenker, R.F.

    1978-01-01

    A vortex tube for separating isotopes is described. A gas mixture containing the isotopic molecules enters the vortex tube under pressure and is separated into a hot discharge flow stream and a cold discharge flow stream. The hot discharge is enriched in lighter isotopic molecules whereas the cold discharge flow stream is enriched in the heavier isotopic molecules. The vortex tube can be used in a single stage or multistage isotope separation apparatus

  5. SEPARATE AND COMBINED EFFECTS OF CORTICOSTEROIDS AND BRONCHODILATORS ON AIR-FLOW OBSTRUCTION AND AIRWAY HYPERRESPONSIVENESS IN ASTHMA

    NARCIS (Netherlands)

    WEMPE, JB; POSTMA, DS; BREEDERVELD, N; ALTINGHEBING, D; VANDERMARK, TW; KOETER, GH

    We have investigated separate and interactive effects of corticosteroids and bronchodilators on airflow obstruction and airway hyperresponsiveness. Twelve allergic subjects with asthma were treated in a double-blind, crossover, randomized study with budesonide, 1.6 mg daily for 3 weeks, prednisone,

  6. Mechanics of the Separating Surface for a Two-Phase Co-current Flow in a Porous Medium

    DEFF Research Database (Denmark)

    Shapiro, Alexander A.

    2016-01-01

    of the extended Maxwell-Stefan formalism, as in our previous paper (Shapiro 2015). Force balances are formulated in the directions parallel and orthogonal to the flow. A complete system of the flow equations, generalizing the traditional Buckley–Leverett and Rappoport–Leas system, is derived. Sample computations...... show that one of the main effects produced by the new system is sharpening of the displacement front, which otherwise would be washed out by the capillary forces, as in the solution of the Rappoport–Leas equation....

  7. Separation of polyunsaturated fatty acid esters by flowing liquid membrane with porous partition.; Kakumaku gata ryudo ekimaku ni yoru kodo fuhowa shibosan esuteru no bunri

    Energy Technology Data Exchange (ETDEWEB)

    Yokosawa, R.; Nii, S.; Takahashi, K. [Nagoya Univ., Nagoya (Japan). Depertment of Chemical Engineering; Misawa, Y. [Harima Chemicals, Inc., Osaka (Japan)

    2000-07-10

    A laboratory-constructed flowing liquid membrane apparatus with porous partition (FLM) was applied to the separation of such polyunsaturated fatty acid esters (PUFA-Ets) as eicosapentaenoic acid ethylester (EPA-Et) and docosahexaenoic acid ethylester (DHA-Et) at 293 K. The hydrophilic porous membrane was used as a partition, and 2 M AgNO{sub 3} aqueous solution was used as a membrane liquid. By using dodecane as a feed diluent and m-xylene as a recovery solution, PUFA-Ets were successfully separated from mixture of fatty acid esters. The recovery fraction of PUFA-Ets and the separation degree between DHA-Et and EPA-Et were investigated ; it increases with the velocity of membrane liquid and the flow path length in the module, while it decreased with the velocity of feed and recovery solution. The recovery fraction of DHA-Et reachs 60% with only 8 s-retention time by the continuous operation. The concentrations of the DHA-Et at the outlet of the module were simulated based on the mass transfer model, which gave nearly 85% recovery fraction with 30 s-retention time. These results show that a stable operation, a high recovery and a high recovery and a high throughput are realized by the FLM. (author)

  8. Continuous countercurrent extraction and particle separation

    International Nuclear Information System (INIS)

    Ito, Y.

    1981-01-01

    A flow-through continuous countercurrent extraction or particle separation device consists of a coiled tube or spiral coplanar channel revolving around a main axis and rotating around its own axis at the same angular velocity and in the same direction. In a flow-through centrifuge for continuous countercurrent extraction, with two solvent phases A and B, there are 5 flow tubes: 1) a feed tube for phase B located at the head end of a helical separation column, 2) a return tube for phase A located at the head end, 3) a feed tube for phase A located at the tail end, 4) a return tube for phase B located at the tail end, and 5) a sample feed tube located at the middle portion of the column. The column is mounted on a hollow rotary shaft and the axis of revolution is defined by a stationary hollow central shaft. The 5 flow tubes are led through the hollow rotary shaft, and then through the stationary central shaft. In this way, the flow tubes from the rotary shaft are allowed to rotate freely without interference or twisting. (author)

  9. The Location of Digital Ethnography

    Directory of Open Access Journals (Sweden)

    Dana M. Walker

    2010-10-01

    Full Text Available Qualitative researchers interested in digitally-located social and cultural practices have struggled with ways in which to design studies that can account for the digital aspect of cultural practices while also taking into account that those digital practices do not exist as separate (or separable in terms of our research from other social and cultural practices. As such, one of the primary and ongoing challenges facing internet-based ethnographic research is the question of how to construct the location of a project when the sites, technologically-mediated practices, and people we study exist and flow through a wider information ecology that is neither fixed nor can easily be located as “online” or “offline.” This is as much a methodological challenge as a theoretical one. If one accepts that a rigid distinction between online and offline makes little theoretical sense, then drawing a methodological line between online and offline only reifies such a dualism. While there is a developing body of internet-related ethnographic literature which is attempting to take into account the fluid nature of our information ecology (e.g. Burrell, 2009, Leander and McKim, 2003, Hine, 2007, we continue to operate on shifting ground. This article uses the case of my own work on city-specific discussion forums in Philadelphia, Pennsylvania to highlight the complexities of locating digital ethnographic work and also argue for the necessity of accounting for both movement and placed-ness.

  10. A continuous-flow system for measuring in vitro oxygen and nitrogen metabolism in separated stream communities

    DEFF Research Database (Denmark)

    Prahl, C.; Jeppesen, E.; Sand-Jensen, Kaj

    1991-01-01

    on the stream bank, consists of several macrophyte and sediment chambers equipped with a double-flow system that ensures an internal water velocity close to that in the stream and which, by continuously renewing the water, mimics diel fluctuation in stream temperature and water chemistry. Water temperature...... production and dark respiration occurred at similar rates (6-7g O2 m-2 day-1), net balance being about zero. Inorganic nitrogen was consumed both by the sediment and to a greater extent by the macrophytes, the diel average consumption being 1g N m-2 day-1. 3. The sum of the activity in the macrophyte...... and sediment chambers corresponded to the overall activity of the stream section as determined by upstream/downstream mass balance. This indicates that the results obtained with the continuous-flow chambers realistically describe the oxygen and the nitrogen metabolism of the stream....

  11. Surface-enhanced Raman detection of RNA and DNA bases following flow-injection analysis or HPLC separation

    Science.gov (United States)

    Cotton, Therese M.; Sheng, Rong-Sheng; Ni, Fan

    1990-11-01

    The goal of this study is to develop Surface-enhanced Raman scattering (SERS) detection methods for flow injection analysis (FIA) and high performance liquid chromatography (HPLC). Nucleic acid bases have been chosen for analysis because of their importance in life processes. The advantages to the use of SERS-based detection include its sensitivity, specificity and versatility. With the development of improved methodology, the detection limits should be comparable to UV spectroscopy. However, the specificity is considerably superior to that obtained with electronic spectroscopy in that the Raman spectrum provides a molecular fingerprint of the individual analytes. Raman spectroscopy is very versatile: aqueous samples, gases and solids can be analyzed with equal facility. The results presented here demonstrate that SERS can be used as a detection method for both FIA and HPLC detection. In the following experiments Ag sols have been used as the active substrate. The effect of various parameters such as temperature, pH, flow rate, and the nature of the interface between the HPLC system and the Raman spectrometer have been examined. One of the most significant findings is that the temperature of the Ag sol/HPLC effluent mixture has a dramatic effect on the SERS intensities. This effect is a result of increased colloid aggregation at higher temperatures. Aggregation is known to produce greater enhancement in SERS and proceeds much more rapidly at elevated temperatures. An increase in the temperature of the Ag sol enables SERS detection under flowing conditions and in real time. This is a substantial improvement over many of the previous attempts to interface SERS detection to FIA or HPLC. In most of the previous studies, it was necessary to stop the flow as the analyte eluted from the chromatogram and measure the SERS spectra under static conditions.

  12. Hazard Identification of the Offshore Three-phase Separation Process Based on Multilevel Flow Modeling and HAZOP

    DEFF Research Database (Denmark)

    Wu, Jing; Zhang, Laibin; Lind, Morten

    2013-01-01

    on function-oriented modeling, Multilevel Flow Modeling (MFM), is extended with function roles. A graphical MFM editor, which is combined with the reasoning capabilities of the MFM Workbench developed by DTU is applied to automate HAZOP studies. The method is proposed to support the “brain-storming” sessions...... is the first paper discussing and demonstrate the potential of the roles concept in MFM to supplement the integrity of HAZOP analysis....

  13. Isolation of intracellular parasites (Plasmodium falciparum) from culture using free-flow electrophoresis: separation of the free parasites according to stages.

    Science.gov (United States)

    Heidrich, H G; Mrema, J E; Vander Jagt, D L; Reyes, P; Rieckmann, K H

    1982-06-01

    Parasitized human erythrocytes were concentrated from continuous cultures of Plasmodium falciparum from 5-7% up to 80-95% using Plasmagel. After aggregation of the cells with phythemagglutinin, the aggregated erythrocytes were fragmented by passing them, with minimal force, through successive nylon filters of decreasing pore size (100 microns-3 microns). The mixture of liberated, free parasites, intact erythrocytes and erythrocyte membrane vesicles was separated using free-flow electrophoresis. Most of the fractions containing free parasites did not show contamination with erythrocyte constituents as determined by light and electron microscopy, polyacrylamide gel electrophoresis, and enzymatic analysis. In addition, the various stages of free parasites of Plasmodium falciparum exhibited different electrical surface charges. Rings and trophozoites were highly negatively charged whereas schizonts and, in particular, merozoites showed low negative charges. Thus, the various stages could be isolated separate from each other.

  14. An experimental study for the interface shear stress of near vertical air-water separated flow on evaporation

    International Nuclear Information System (INIS)

    Kwon, H.; Park, G. C.

    2000-01-01

    The object of experiment is improved model of evaporative heat transfer coefficient using interfacial friction factor on evaporation. Experiments have been conducted with near-vertical(87 .deg.) flat plate on evaporation for air-water countercurrent stratified flow. Experiment facility is consisted of 1.7m length and 0.2 X 0.005m cross section, the one side direct heating system which have 10kw power capacity. The interfacial shear stress, pressure drop and temperatures in test section were measured. These parameters were measured by DP-103 pressure transducer, K-type thermocouple, RTD and Hot Wire Anemometer(HWA). Experimental results were inclination as increased interfacial shear stress with increased the evaporation rate. Interfacial shear stress was increased as increased water flow rate and air flow rate too. For the evaluation of the measured evaporative heat transfer coefficients and physical understanding of the evaporation phenomena, the evaporative heat transfer coefficients were obtained through the simple calculation process by the use of mass transfer coefficient correlation and the experimental data of wavy film surface effect on shear and on evaporation

  15. Application of CAE-modeling for the study of the influence of the sensor location on the flow-through water heater operation

    Science.gov (United States)

    Yakunin, A. G.

    2018-01-01

    The article deals with issues related to increasing the efficiency of the system of automatic maintenance of the temperature of liquid media entering the pipes to the place of consumption. For this purpose, a flowing water heater model is proposed, made in the SolidWorks environment, the construction parameters of which can be changed using the appropriate macro and screen form. It is shown that the choice of the location of the temperature sensor has a significant effect on such parameters of the device as the accuracy of maintaining a given temperature regime and the duration of the transient process caused by a change in the temperature of the liquid entering the heater. On a concrete example, it is shown that by changing the distance between the sensor and the heating module, it is possible to achieve minimum temperature fluctuations of the heat-transfer-agent at the heater outlet.

  16. Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction/expansion microchannels.

    Science.gov (United States)

    Sim, Tae Seok; Kwon, Kiho; Park, Jae Chan; Lee, Jeong-Gun; Jung, Hyo-Il

    2011-01-07

    Previously we introduced a novel hydrodynamic method using a multi-orifice microchannel for size-based particle separation, which is called a multi-orifice flow fractionation (MOFF). The MOFF has several advantages such as continuous, non-intrusive, and minimal power consumption. However, it has a limitation that the recovery yield is relatively low. Although the recovery may be increased by adjusting parameters such as the Reynolds number and central collecting region, poor purity inevitably followed. We newly designed and fabricated a microfluidic channel for multi-stage multi-orifice flow fractionation (MS-MOFF), which is made by combining three multi-orifice segments, and consists of 3 inlets, 3 filters, 3 multi-orifice segments and 5 outlets. The structure and dimensions of the MS-MOFF were determined by the hydrodynamic principles to have constant Reynolds numbers at each multi-orifice segment. Polystyrene microspheres of two different sizes (7 μm and 15 μm) were tested. With this device, we made an attempt to improve recovery and minimize loss of purity by collecting and re-separating non-selected particles of the first separation. The final recovery successfully increased from 73.2% to 88.7% while the final purity slightly decreased from 91.4% to 89.1% (for 15 μm). These values were never achievable with the single-stage MOFF (SS-MOFF) having only one multi-orifice segment in our previous work. The MS-MOFF channel will be useful for clinical applications, such as separation of circulating tumor cells (CTC) or rare cells from human blood samples.

  17. Large-eddy simulation of flow separation on an airfoil at a high angle of attack and re=10{sup 5} using Cartesian grids

    Energy Technology Data Exchange (ETDEWEB)

    Eisenbach, Sven; Friedrich, Rainer [Fachgebiet Stroemungsmechanik, Technische Universitaet Muenchen, Garching (Germany)

    2008-05-15

    Incompressible flow separating from the upper surface of an airfoil at an 18 angle of attack and a Reynolds number of Re=10{sup 5}, based on the freestream velocity and chord length c, is studied by the means of large-eddy simulation (LES). The numerical method is based on second-order central spatial discretization on a Cartesian grid using an immersed boundary technique. The results are compared with an LES using body-fitted nonorthogonal grids and with experimental data. (orig.)

  18. Influence of gas-liquid two-phase flow on angiotensin-I converting enzyme inhibitory peptides separation by ultra-filtration.

    Science.gov (United States)

    Charoenphun, Narin; Youravong, Wirote

    2017-01-01

    Membrane fouling is a major problem in ultra-filtration systems and two-phase flow is a promising technique for permeate flux enhancement. The objective of this research was to study the use of an ultra-filtration (UF) system to enrich angiotensin-I converting enzyme (ACE) inhibitory peptides from tilapia protein hydrolysate. To select the most appropriate membrane and operating condition, the effects of membrane molecular weight cut-off (MWCO), transmembrane pressure (TMP) and cross-flow velocity (CFV) on permeate flux and ACE inhibitory peptide separation were studied. Additionally, the gas-liquid two-phase flow technique was applied to investigate its effect on the process capability. The results showed that the highest ACE inhibitory activity was obtained from permeate of the 1 kDa membrane. In terms of TMP and CFV, the permeate flux tended to increase with TMP and CFV. The use of gas-liquid two-phase flow as indicated by shear stress number could reduce membrane fouling and increase the permeate flux up to 42%, depending on shear stress number. Moreover, the use of a shear stress number of 0.039 led to an augmentation in ACE inhibitory activity of permeates. Operating conditions using a shear stress number of 0.039 were recommended for enrichment of ACE inhibitory peptides. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Active Control of Flow Separation on a High-Lift System with Slotted Flap at High Reynolds Number

    Science.gov (United States)

    Khodadoust, Abdollah; Washburn, Anthony

    2007-01-01

    The NASA Energy Efficient Transport (EET) airfoil was tested at NASA Langley's Low- Turbulence Pressure Tunnel (LTPT) to assess the effectiveness of distributed Active Flow Control (AFC) concepts on a high-lift system at flight scale Reynolds numbers for a medium-sized transport. The test results indicate presence of strong Reynolds number effects on the high-lift system with the AFC operational, implying the importance of flight-scale testing for implementation of such systems during design of future flight vehicles with AFC. This paper describes the wind tunnel test results obtained at the LTPT for the EET high-lift system for various AFC concepts examined on this airfoil.

  20. Energy flow and greenhouse gas emissions in organic and conventional sweet cherry orchards located in or close to Natura 2000 sites

    International Nuclear Information System (INIS)

    Litskas, Vassilios D.; Mamolos, Andreas P.; Kalburtji, Kiriaki L.; Tsatsarelis, Constantinos A.; Kiose-Kampasakali, Eleni

    2011-01-01

    An energy analysis in orchards is useful to deciding best management strategies. The objective of this study was to evaluate, by selecting organic and conventional sweet cherry orchards located in/or close to Natura 2000 sites (a) the energy flow between the two farming systems and (b) the effect of farming system to gas emissions (CO 2 , CH 4 and N 2 O). Twenty farms [(2-conventional and 2-organic) x 5-locations] were selected during 2003-2004. Means averaged over all locations for insecticides and fungicides application, fuel, insecticides, fungicides, non-renewable energy inputs, energy shoot outputs, energy fruit outputs, energy shoot + fruit outputs, fruit production, shoot efficiency, fruit efficiency, shoot + fruit efficiency, non-renewable energy efficiency, gas emissions were higher in conventional than in organic orchards, while fertilizer application, harvesting, fertilizers, labor, total energy inputs, renewable energy inputs, intensity and non-renewable energy consumption were higher in organic orchards. Means averaged over two farming systems for fertilizer, insecticide and fungicide application were higher in GRL2 and GRL5. The means averaged over two systems for transportation had the highest value in GRL4 and the lowest in GRL5. Finally, means averaged over two farming systems for labor had the highest value in GRL2. Non-renewable energy inputs as percent of total inputs were 82.63 and 52.42% in conventional and organic sweet cherry orchards respectively. The results show that organic farming systems could reduce non-renewable energy inputs and gas emissions in an efficient way in areas related to Natura 2000 sites.

  1. Estimation of time-variable fast flow path chemical concentrations for application in tracer-based hydrograph separation analyses

    Science.gov (United States)

    Kronholm, Scott C.; Capel, Paul D.

    2016-01-01

    Mixing models are a commonly used method for hydrograph separation, but can be hindered by the subjective choice of the end-member tracer concentrations. This work tests a new variant of mixing model that uses high-frequency measures of two tracers and streamflow to separate total streamflow into water from slowflow and fastflow sources. The ratio between the concentrations of the two tracers is used to create a time-variable estimate of the concentration of each tracer in the fastflow end-member. Multiple synthetic data sets, and data from two hydrologically diverse streams, are used to test the performance and limitations of the new model (two-tracer ratio-based mixing model: TRaMM). When applied to the synthetic streams under many different scenarios, the TRaMM produces results that were reasonable approximations of the actual values of fastflow discharge (±0.1% of maximum fastflow) and fastflow tracer concentrations (±9.5% and ±16% of maximum fastflow nitrate concentration and specific conductance, respectively). With real stream data, the TRaMM produces high-frequency estimates of slowflow and fastflow discharge that align with expectations for each stream based on their respective hydrologic settings. The use of two tracers with the TRaMM provides an innovative and objective approach for estimating high-frequency fastflow concentrations and contributions of fastflow water to the stream. This provides useful information for tracking chemical movement to streams and allows for better selection and implementation of water quality management strategies.

  2. Gas separating

    Science.gov (United States)

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  3. A Geochemical Mass-Balance Method for Base-Flow Separation, Upper Hillsborough River Watershed, West-Central Florida, 2003-2005 and 2009

    Science.gov (United States)

    Kish, G.R.; Stringer, C.E.; Stewart, M.T.; Rains, M.C.; Torres, A.E.

    2010-01-01

    Geochemical mass-balance (GMB) and conductivity mass-balance (CMB) methods for hydrograph separation were used to determine the contribution of base flow to total stormflow at two sites in the upper Hillsborough River watershed in west-central Florida from 2003-2005 and at one site in 2009. The chemical and isotopic composition of streamflow and precipitation was measured during selected local and frontal low- and high-intensity storm events and compared to the geochemical and isotopic composition of groundwater. Input for the GMB method included cation, anion, and stable isotope concentrations of surface water and groundwater, whereas input for the CMB method included continuous or point-sample measurement of specific conductance. The surface water is a calcium-bicarbonate type water, which closely resembles groundwater geochemically, indicating that much of the surface water in the upper Hillsborough River basin is derived from local groundwater discharge. This discharge into the Hillsborough River at State Road 39 and at Hillsborough River State Park becomes diluted by precipitation and runoff during the wet season, but retains the calcium-bicarbonate characteristics of Upper Floridan aquifer water. Field conditions limited the application of the GMB method to low-intensity storms but the CMB method was applied to both low-intensity and high-intensity storms. The average contribution of base flow to total discharge for all storms ranged from 31 to 100 percent, whereas the contribution of base flow to total discharge during peak discharge periods ranged from less than 10 percent to 100 percent. Although calcium, magnesium, and silica were consistent markers of Upper Floridan aquifer chemistry, their use in calculating base flow by the GMB method was limited because the frequency of point data collected in this study was not sufficient to capture the complete hydrograph from pre-event base-flow to post-event base-flow concentrations. In this study, pre-event water

  4. Premodelling of the importance of the location of the upstream hydraulic boundary of a regional flow model of the Laxemar-Simpevarp area. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Holmen, Johan G.

    2008-03-01

    The location of the westernmost hydraulic boundary of a regional groundwater flow model representing the Laxemar investigation area is of importance as the regional flow of groundwater is primarily from the west towards the sea (as given by the regional topography). If the westernmost boundary condition of a regional flow model is located to close to the investigation area, the regional flow model may underestimate the magnitude of the regional groundwater flow (at the investigation area), as well as overestimate breakthrough times of flow paths from the repository area, etc. Groundwater flows have been calculated by use of two mathematical (numerical) models: A very large groundwater flow model, much larger than the regional flow model used in the Laxemar site description version 1.2, and a smaller flow model that is of a comparable size to the regional model used in the site description. The models are identical except for the different horizontal extensions of the models; the large model extends to the west much further than the small model. The westernmost lateral boundary of the small model is a topographic water divide approx. 7 km from the central parts of the Laxemar investigation area, and the westernmost lateral boundary of the large model is a topographic water divide approx. 40 km from the central parts of the Laxemar investigation area. In the models the lateral boundaries are defined as no-flow boundaries. The objective of the study is to calculate and compare the groundwater flow properties at a tentative repository area at Laxemar; by use of a large flow model and a small flow model. The comparisons include the following three parameters: - Length of flow paths from the tentative repository area. - Advective breakthrough time for flow paths from the tentative repository area. - Magnitude of flow at the tentative repository area. The comparisons demonstrated the following considering the median values of the obtained distributions of flow paths

  5. Location-based Scheduling

    DEFF Research Database (Denmark)

    Andersson, Niclas; Christensen, Knud

    on the market. However, CPM is primarily an activity based method that takes the activity as the unit of focus and there is criticism raised, specifically in the case of construction projects, on the method for deficient management of construction work and continuous flow of resources. To seek solutions...... to the identified limitations of the CPM method, an alternative planning and scheduling methodology that includes locations is tested. Location-based Scheduling (LBS) implies a shift in focus, from primarily the activities to the flow of work through the various locations of the project, i.e. the building. LBS uses...... the graphical presentation technique of Line-of-balance, which is adapted for planning and management of work-flows that facilitates resources to perform their work without interruptions caused by other resources working with other activities in the same location. As such, LBS and Lean Construction share...

  6. Locative media

    CERN Document Server

    Wilken, Rowan

    2014-01-01

    Not only is locative media one of the fastest growing areas in digital technology, but questions of location and location-awareness are increasingly central to our contemporary engagements with online and mobile media, and indeed media and culture generally. This volume is a comprehensive account of the various location-based technologies, services, applications, and cultures, as media, with an aim to identify, inventory, explore, and critique their cultural, economic, political, social, and policy dimensions internationally. In particular, the collection is organized around the perception that the growth of locative media gives rise to a number of crucial questions concerning the areas of culture, economy, and policy.

  7. Evaluation of energy savings potential of variable refrigerant flow (VRF from variable air volume (VAV in the U.S. climate locations

    Directory of Open Access Journals (Sweden)

    Dongsu Kim

    2017-11-01

    Full Text Available Variable refrigerant flow (VRF systems are known for their high energy performance and thus can improve energy efficiency both in residential and commercial buildings. The energy savings potential of this system has been demonstrated in several studies by comparing the system performance with conventional HVAC systems such as rooftop variable air volume systems (RTU-VAV and central chiller and boiler systems. This paper evaluates the performance of VRF and RTU-VAV systems in a simulation environment using widely-accepted whole building energy modeling software, EnergyPlus. A medium office prototype building model, developed by the U.S. Department of Energy (DOE, is used to assess the performance of VRF and RTU-VAV systems. Each system is placed in 16 different locations, representing all U.S. climate zones, to evaluate the performance variations. Both models are compliant with the minimum energy code requirements prescribed in ASHRAE standard 90.1-2010 — energy standard for buildings except low-rise residential buildings. Finally, a comparison study between the simulation results of VRF and RTU-VAV models is made to demonstrate energy savings potential of VRF systems. The simulation results show that the VRF systems would save around 15–42% and 18–33% for HVAC site and source energy uses compared to the RTU-VAV systems. In addition, calculated results for annual HVAC cost savings point out that hot and mild climates show higher percentage cost savings for the VRF systems than cold climates mainly due to the differences in electricity and gas use for heating sources.

  8. Genetic algorithm based separation cascade optimization

    International Nuclear Information System (INIS)

    Mahendra, A.K.; Sanyal, A.; Gouthaman, G.; Bera, T.K.

    2008-01-01

    The conventional separation cascade design procedure does not give an optimum design because of squaring-off, variation of flow rates and separation factor of the element with respect to stage location. Multi-component isotope separation further complicates the design procedure. Cascade design can be stated as a constrained multi-objective optimization. Cascade's expectation from the separating element is multi-objective i.e. overall separation factor, cut, optimum feed and separative power. Decision maker may aspire for more comprehensive multi-objective goals where optimization of cascade is coupled with the exploration of separating element optimization vector space. In real life there are many issues which make it important to understand the decision maker's perception of cost-quality-speed trade-off and consistency of preferences. Genetic algorithm (GA) is one such evolutionary technique that can be used for cascade design optimization. This paper addresses various issues involved in the GA based multi-objective optimization of the separation cascade. Reference point based optimization methodology with GA based Pareto optimality concept for separation cascade was found pragmatic and promising. This method should be explored, tested, examined and further developed for binary as well as multi-component separations. (author)

  9. Location, location, location: Extracting location value from house prices

    OpenAIRE

    Kolbe, Jens; Schulz, Rainer; Wersing, Martin; Werwatz, Axel

    2012-01-01

    The price for a single-family house depends both on the characteristics of the building and on its location. We propose a novel semiparametric method to extract location values from house prices. After splitting house prices into building and land components, location values are estimated with adaptive weight smoothing. The adaptive estimator requires neither strong smoothness assumptions nor local symmetry. We apply the method to house transactions from Berlin, Germany. The estimated surface...

  10. Effects of flow separation and cove leakage on pressure and heat-transfer distributions along a wing-cove-elevon configuration at Mach 6.9. [Langley 8-ft high temperature tunnel test

    Science.gov (United States)

    Deveikis, W. D.

    1983-01-01

    External and internal pressure and cold-wall heating-rate distributions were obtained in hypersonic flow on a full-scale heat-sink representation of the space shuttle orbiter wing-elevon-cove configuration in an effort to define effects of flow separation on cove aerothermal environment as a function of cove seal leak area, ramp angle, and free-stream unit Reynolds number. Average free-stream Mach number from all tests was 6.9; average total temperature from all tests was 3360 R; free-stream dynamic pressure ranged from about 2 to 9 psi; and wing angle of attack was 5 deg (flow compression). For transitional and turbulent flow separation, increasing cove leakage progressively increased heating rates in the cove. When ingested mass flow was sufficient to force large reductions in extent of separation, increasing cove leakage reduced heating rates in the cove to those for laminar attached flow. Cove heating-rate distributions calculated with a method that assumed laminar developing channel flow agreed with experimentally obtained distributions within root-mean-square differences that varied between 11 and 36 percent where cove walls were parallel for leak areas of 50 and 100 percent.

  11. Flow characteristics in occupied zone – An experimental study with symmetrically located thermal plumes and low-momentum diffuse ceiling air distribution

    DEFF Research Database (Denmark)

    Lestinen, Sami; Kilpeläinen, Simo; Kosonen, Risto

    2018-01-01

    and turbulent mixing that can further yield a draught discomfort in an occupied zone. The main objective was to investigate large-scale airflow patterns and fluctuations as a result of interaction of buoyancy flows and diffuse ceiling flow. Experiments were performed in a test room of 5.5 m (length) x 3.8 m...

  12. Library Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Carnegie Library of Pittsburgh locations including address, coordinates, phone number, square footage, and standard operating hours. The map below does not display...

  13. Sequential Determination of Total Arsenic and Cadmium in Concentrated Cadmium Sulphate Solutions by Flow-Through Stripping Chronopotentiometry after Online Cation Exchanger Separation

    Directory of Open Access Journals (Sweden)

    Frantisek Cacho

    2012-01-01

    Full Text Available Flow-through stripping chronopotentiometry with a gold wire electrode was used for the determination of total arsenic and cadmium in cadmium sulphate solutions for cadmium production. The analysis is based on the online separation of arsenic as arsenate anion from cadmium cations by means of a cation exchanger. On measuring arsenate in the effluent, the trapped cadmium is eluted by sodium chloride solution and determined in a small segment of the effluent by making use of the same electrode. The elaborated protocol enables a full automatic measurement of both species in the same sample solution. The accuracy of the results was confirmed by atomic absorption spectrometry. The LOD and LOQ for Arsenic were found to be 0.9 μg dm-3 and 2.7 μg dm-3, respectively. A linear response range was observed in the concentration range of 1 to 300 μg dm-3 for sample volumes of 4 mL. The repeatability and reproducibility were found to be 2.9% and 5.2%, respectively. The linear response range for cadmium was found to be 0.5 to 60 g/L. The method was tested on samples from a cadmium production plant.

  14. The remarkable occurrence of large rainfall-induced debris flows at two different locations on July 12, 2008, Southern Sierra Nevada, CA, USA

    Science.gov (United States)

    DeGraff, J.V.; Wagner, D.L.; Gallegos, A.J.; DeRose, M.; Shannon, C.; Ellsworth, T.

    2011-01-01

    On July 12, 2008, two convective cells about 155 km apart produced a brief period of intense rainfall triggering large debris flows in the southern Sierra Nevada. The northernmost cell was centered over Oak Creek Canyon, an east-flowing drainage, and its tributaries near Independence, CA, USA. About 5:00 P.M., debris flows passed down the South Fork and North Fork of Oak Creek to merge into a large single feature whose passage affected the historic Mt. Whitney Fish hatchery and blocked California State Highway 395. At about the same time, the southernmost cell was largely centered over Erskine Creek, a main tributary of the west-flowing Kern River. Debris flows issued from several branches to coalesce into a large debris flow that passed along Erskine Creek, through the town of Lake Isabella, CA, USA and into the Kern River. It was observed reaching Lake Isabella about 6:30 P.M. Both debris flows caused significant disruption and damage to local communities. ?? 2011 Springer-Verlag.

  15. Gene Locater

    DEFF Research Database (Denmark)

    Anwar, Muhammad Zohaib; Sehar, Anoosha; Rehman, Inayat-Ur

    2012-01-01

    software's for calculating recombination frequency is mostly limited to the range and flexibility of this type of analysis. GENE LOCATER is a fully customizable program for calculating recombination frequency, written in JAVA. Through an easy-to-use interface, GENE LOCATOR allows users a high degree...... of flexibility in calculating genetic linkage and displaying linkage group. Among other features, this software enables user to identify linkage groups with output visualized graphically. The program calculates interference and coefficient of coincidence with elevated accuracy in sample datasets. AVAILABILITY...

  16. Tracking, say, SKYPE Locations

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Tracking, say, SKYPE Locations. Real Time Communication: Peer-to-Peer (P2P). Datagram flows between the two conversing partners; Exposes the IP addresses of all the participants to one another. If A knows B's VoIP ID, she can establish a call with Bob & obtain his current ...

  17. Acoustofluidic bacteria separation

    International Nuclear Information System (INIS)

    Li, Sixing; Huang, Tony Jun; Ma, Fen; Zeng, Xiangqun; Bachman, Hunter; Cameron, Craig E

    2017-01-01

    Bacterial separation from human blood samples can help with the identification of pathogenic bacteria for sepsis diagnosis. In this work, we report an acoustofluidic device for label-free bacterial separation from human blood samples. In particular, we exploit the acoustic radiation force generated from a tilted-angle standing surface acoustic wave (taSSAW) field to separate Escherichia coli from human blood cells based on their size difference. Flow cytometry analysis of the E. coli separated from red blood cells shows a purity of more than 96%. Moreover, the label-free electrochemical detection of the separated E. coli displays reduced non-specific signals due to the removal of blood cells. Our acoustofluidic bacterial separation platform has advantages such as label-free separation, high biocompatibility, flexibility, low cost, miniaturization, automation, and ease of in-line integration. The platform can be incorporated with an on-chip sensor to realize a point-of-care sepsis diagnostic device. (paper)

  18. Acoustofluidic bacteria separation

    Science.gov (United States)

    Li, Sixing; Ma, Fen; Bachman, Hunter; Cameron, Craig E.; Zeng, Xiangqun; Huang, Tony Jun

    2017-01-01

    Bacterial separation from human blood samples can help with the identification of pathogenic bacteria for sepsis diagnosis. In this work, we report an acoustofluidic device for label-free bacterial separation from human blood samples. In particular, we exploit the acoustic radiation force generated from a tilted-angle standing surface acoustic wave (taSSAW) field to separate Escherichia coli from human blood cells based on their size difference. Flow cytometry analysis of the E. coli separated from red blood cells shows a purity of more than 96%. Moreover, the label-free electrochemical detection of the separated E. coli displays reduced non-specific signals due to the removal of blood cells. Our acoustofluidic bacterial separation platform has advantages such as label-free separation, high biocompatibility, flexibility, low cost, miniaturization, automation, and ease of in-line integration. The platform can be incorporated with an on-chip sensor to realize a point-of-care sepsis diagnostic device.

  19. Gully monitoring at two locations in the Grand Canyon National Park, Arizona, 1996-2010, with emphasis on documenting effects of the March 2008 high-flow experiment

    Science.gov (United States)

    Schott, Nathan D.; Hazel, Joseph E.; Fairley, Helen C.; Kaplinski, Matt; Parnell, Roderic A.

    2014-01-01

    Many archeological sites in the Grand Canyon are being impacted by gully incision. In March 2008, a high-flow experiment (2008 HFE) was conducted with the intention of redistributing fine sediment (sand, silt, and clay) from the bed of the Colorado River to higher elevations along the channel margin. Deposition of fine sediment in gully mouths has been hypothesized to slow gully erosion rates and lessen impacts to archeological sites. The effects of the 2008 HFE on gullies were evaluated by comparing the topographic changes of three gullies at two study sites before and after the 2008 HFE. Comparison results indicated that sediment was deposited in gully mouths during the 2008 HFE, and that the inundated areas nearest to the river can be extensively altered by mainstream flow during high-flow events. Additionally, the history of gully evolution at the two study sites was examined between 1996 and 2010 and indicated that gullies have been subjected to thalweg incision and gully widening processes over a decadal timescale. Although the small sample size precludes extrapolating the results to other gullies, the findings contribute to the understanding of gully erosion in archeologically significant areas and have implications for future monitoring of gully erosion and evaluating the effectiveness of check dams intended to mitigate that erosion at archaeological sites in the Grand Canyon National Park.

  20. Response of Stream Chemistry During Base Flow to Gradients of Urbanization in Selected Locations Across the Conterminous United States, 2002-04

    Science.gov (United States)

    Sprague, Lori A.; Harned, Douglas A.; Hall, David W.; Nowell, Lisa H.; Bauch, Nancy J.; Richards, Kevin D.

    2007-01-01

    During 2002-2004, the U.S. Geological Survey's National Water-Quality Assessment Program conducted a study to determine the effects of urbanization on stream water quality and aquatic communities in six environmentally heterogeneous areas of the conterminous United States--Atlanta, Georgia; Raleigh-Durham, North Carolina; Milwaukee-Green Bay, Wisconsin; Dallas-Fort Worth, Texas; Denver, Colorado; and Portland, Oregon. This report compares and contrasts the response of stream chemistry during base flow to urbanization in different environmental settings and examines the relation between the exceedance of water-quality benchmarks and the level of urbanization in these areas. Chemical characteristics studied included concentrations of nutrients, dissolved pesticides, suspended sediment, sulfate, and chloride in base flow. In three study areas where the background land cover in minimally urbanized basins was predominantly forested (Atlanta, Raleigh-Durham, and Portland), urban development was associated with increased concentrations of nitrogen and total herbicides in streams. In Portland, there was evidence of mixed agricultural and urban influences at sites with 20 to 50 percent urban land cover. In two study areas where agriculture was the predominant background land cover (Milwaukee-Green Bay and Dallas-Fort Worth), concentrations of nitrogen and herbicides were flat or decreasing as urbanization increased. In Denver, which had predominantly shrub/grass as background land cover, nitrogen concentrations were only weakly related to urbanization, and total herbicide concentrations did not show any clear pattern relative to land cover - perhaps because of extensive water management in the study area. In contrast, total insecticide concentrations increased with increasing urbanization in all six study areas, likely due to high use of insecticides in urban applications and, for some study areas, the proximity of urban land cover to the sampling sites. Phosphorus

  1. Dielectrophoretic separation of gaseous isotopes

    International Nuclear Information System (INIS)

    McConnell, D.B.

    1975-01-01

    Gaseous isotopes are separated from a mixture in a vertically elongated chamber by subjecting the mixture to a nonuniform transverse electric field. Dielectrophoretic separation of the isotopes is effected, producing a transverse temperature gradient in the chamber, thereby enhancing the separation by convective countercurrent flow. In the example given, the process and apparatus are applied to the production of heavy water from steam

  2. Presentation of test cases TC-2A, TC-2B, TC-2C, TC-2D - Twodimensional, incompressible, wall flows with separation

    DEFF Research Database (Denmark)

    Scheel Larsen, Poul

    1988-01-01

    The four test cases comprise the backfacing step at high Re-number (TC-2A) and low Re-number (TC-2B), a low Re-number boundary layer flow past a thin obstacle, fence-on-wall (TC-2C), and a high Re-number developed channel flow past a squareobstacle (TC-2D). Geometry, test conditions and available...

  3. A separator

    Energy Technology Data Exchange (ETDEWEB)

    Prokopyuk, S.G.; Dyachenko, A.Ye.; Mukhametov, M.N.; Prokopov, O.I.

    1982-01-01

    A separator is proposed which contains separating slanted plates and baffle plates installed at a distance to them at an acute angle to them. To increase the effectiveness of separating a gas and liquid stream and the throughput through reducing the secondary carry away of the liquid drops and to reduce the hydraulic resistance, as well, openings are made in the plates. The horizontal projections of each opening from the lower and upper surfaces of the plate do not overlap each other.

  4. Experimental Studies of Radiation and Plasma Effects behind the Incident Shock in LENS XX, and the Unsteady Flow Characteristics associated with Free Flight Shroud and Stage Separation and Mode Switching in LENS II

    Science.gov (United States)

    2010-04-01

    Characteristics associated with “Free Flight” Shroud and Stage Separation and Mode Switching in LENS II Michael S. Holden, PhD CUBRC , Inc. 4455 Genesee...ADDRESS(ES) CUBRC , Inc. 4455 Genesee Street Buffalo, NY 14225, USA 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND...switching and inlet-starting validation • Validation to CFD community ( CUBRC /UM) Figure 32: Numerical Simulation of the Unsteady Flow Dynamics during

  5. Isotope separation

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1979-01-01

    A method of isotope separation is described which involves the use of a laser photon beam to selectively induce energy level transitions of an isotope molecule containing the isotope to be separated. The use of the technique for 235 U enrichment is demonstrated. (UK)

  6. Centrifugal gas separator

    Energy Technology Data Exchange (ETDEWEB)

    Kanagawa, A; Fujii, O; Nakamoto, H

    1970-03-09

    Counter currents in the rotary drum of a centrifugal gas separator are produced by providing, at either end of the drum in the vicinity of the circumferential and central positions, respectively, outflow and inflow holes with a communicating passage external to the drum there between whereby gaseous counter currents are caused to flow within the drum and travel through the passage which is provided with gas flow adjustment means. Furthermore, the space defined by the stationary portion of the passage and the rotor drum is additionally provided with a screw pump or throttling device at either its stationary side or drum side or both in order to produce a radially directed gas flow therewithin. A gas mixture is axially admitted into the drum while centrifugal force and a cooling element provided therebelow cause an increase in gas pressure along and a gaseous flow toward the wall member, whereupon the comparatively high pressured circumferentially distributed gas is extracted from the outlet holes, flows through the external gas passage and back into the lower pressured drum core through the inlet holes, thus producing the desired counter currents. The gases thus separated are withdrawn along axially provided discharge pipes. Accordingly, this invention permits heating elements which were formerly used to produce thermal convection currents to be disposed of and allows the length of the rotor drum to be more efficiently utilized to enhance separation efficiency.

  7. Isotopic separation

    International Nuclear Information System (INIS)

    Castle, P.M.

    1979-01-01

    This invention relates to molecular and atomic isotope separation and is particularly applicable to the separation of 235 U from other uranium isotopes including 238 U. In the method described a desired isotope is separated mechanically from an atomic or molecular beam formed from an isotope mixture utilising the isotropic recoil momenta resulting from selective excitation of the desired isotope species by radiation, followed by ionization or dissociation by radiation or electron attachment. By forming a matrix of UF 6 molecules in HBr molecules so as to collapse the V 3 vibrational mode of the UF 6 molecule the 235 UF 6 molecules are selectively excited to promote reduction of UF 6 molecules containing 235 U and facilitate separation. (UK)

  8. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1979-01-01

    Isotopic species in an isotopic mixture including a first species having a first isotope and a second species having a second isotope are separated by selectively exciting the first species in preference to the second species and then reacting the selectively excited first species with an additional preselected radiation, an electron or another chemical species so as to form a product having a mass different from the original species and separating the product from the balance of the mixture in a centrifugal separating device such as centrifuge or aerodynamic nozzle. In the centrifuge the isotopic mixture is passed into a rotor where it is irradiated through a window. Heavier and lighter components can be withdrawn. The irradiated mixture experiences a large centrifugal force and is separated in a deflection area into lighter and heavier components. (UK)

  9. Separations chemistry

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Results of studies on the photochemistry of aqueous Pu solutions and the stability of iodine in liquid and gaseous CO 2 are reported. Progress is reported in studies on: the preparation of macroporous bodies filled with oxides and sulfides to be used as adsorbents; the beneficiation of photographic wastes; the anion exchange adsorption of transition elements from thiosulfate solutions; advanced filtration applications of energy significance; high-resolution separations; and, the examination of the separation agents, octylphenylphosphoric acid (OPPA) and trihexyl phosphate (THP)

  10. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1982-01-01

    A method is described for separating isotopes in which photo-excitation of selected isotope species is used together with the reaction of the excited species with postive ions of predetermined ionization energy, other excited species, or free electrons to produce ions or ion fragments of the selected species. Ions and electrons are produced by an electrical discharge, and separation is achieved through radial ambipolar diffusion, electrostatic techniques, or magnetohydrodynamic methods

  11. Dynamic Kalman filtering to separate low-frequency instabilities from turbulent fluctuations: Application to the Large-Eddy Simulation of unsteady turbulent flows

    International Nuclear Information System (INIS)

    Cahuzac, A; Boudet, J; Borgnat, P; Lévêque, E

    2011-01-01

    A dynamic method based on Kalman filtering is presented to isolate low-frequency unsteadiness from turbulent fluctuations in the large-eddy simulation (LES) of unsteady turbulent flows. The method can be viewed as an adaptive exponential smoothing, in which the smoothing factor adapts itself dynamically to the local behavior of the flow. Interestingly, the proposed method does not require any empirical tuning. In practice, it is used to estimate a shear-improved Smagorinsky viscosity, in which the low-frequency component of the velocity field is used to estimate a correction term to the Smagorinsky viscosity. The LES of the flow past a circular cylinder at Reynolds number Re D = 4.7 × 10 4 is examined as a challenging test case. Good comparisons are obtained with the experimental results, indicating the relevance of the shear-improved Smagorinsky model and the efficiency of the Kalman filtering. Finally, the adaptive cut-off of the Kalman filter is investigated, and shown to adapt locally and instantaneously to the complex flow around the cylinder.

  12. Isotope separation apparatus

    International Nuclear Information System (INIS)

    Lyon, R.K.; Eisner, P.N.; Thomas, W.R.I.

    1983-01-01

    This application discloses a method for and an apparatus in which isotopes of an element in a compared are separated from each other while that compound, i.e., including a mixture of such isotopes, flows along a predetermined path. The apparatus includes a flow tube having a beginning and an end. The mixture of isotopes is introduced into the flow tube at a first introduction point between the beginning and the end thereof to flow the mixture toward the end thereof. A laser irradiates the flow tube dissociating compounds of a preselected one of said isotopes thereby converting the mixture in an isotopically selective manner. The dissociation products are removed from the tube at a first removal point between the first introduction point and the end. The dissociation product removed at the the first removal point are reconverted back into the comound thereby providing a first stage enriched compound. This first stage enriched compound is reintroduced into the flow tube at a second introduction point between the beginning thereof and the first introduction point. Further product is removed from the flow tube at a second removal point between the second introduction point and the first introduction point. The second introduction point is chosen so that the isotope composition of the first stage enriched compound is approximately the same as that of the compound in the flow tube

  13. Gas ultracentrifuge separative parameters modeling using hybrid neural networks

    International Nuclear Information System (INIS)

    Crus, Maria Ursulina de Lima

    2005-01-01

    A hybrid neural network is developed for the calculation of the separative performance of an ultracentrifuge. A feed forward neural network is trained to estimate the internal flow parameters of a gas ultracentrifuge, and then these parameters are applied in the diffusion equation. For this study, a 573 experimental data set is used to establish the relation between the separative performance and the controlled variables. The process control variables considered are: the feed flow rate F, the cut θ and the product pressure Pp. The mechanical arrangements consider the radial waste scoop dimension, the rotating baffle size D s and the axial feed location Z E . The methodology was validated through the comparison of the calculated separative performance with experimental values. This methodology may be applied to other processes, just by adapting the phenomenological procedures. (author)

  14. Hydrogen separation process

    Science.gov (United States)

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  15. Separation system

    International Nuclear Information System (INIS)

    Rubin, L.S.

    1986-01-01

    A disposal container is described for use in disposal of radioactive waste materials consisting of: top wall structure, bottom wall structure, and circumferential side wall structure interconnecting the top and bottom wall structures to define an enclosed container, separation structure in the container adjacent the inner surface of the side wall structure for allowing passage of liquid and retention of solids, inlet port structure in the top wall structure, discharge port structure at the periphery of the container in communication with the outer surface of the separation structure for receiving liquid that passes through the separation structure, first centrifugally actuated valve structure having a normal position closing the inlet port structure and a centrifugally actuated position opening the inlet port structure, second centrifugally actuated valve structure having a normal position closing the discharge port structure and a centrifugally actuated position opening the discharge port structure, and coupling structure integral with wall structure of the container for releasable engagement with centrifugal drive structure

  16. Separable algebras

    CERN Document Server

    Ford, Timothy J

    2017-01-01

    This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.

  17. Isotope separation

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Morrey, J.R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated

  18. Electromagnetic separator of plasma

    International Nuclear Information System (INIS)

    Gasilin, V.V.; Nezovibatko, Yu.N.; Poklepach, G.S.; Shvets, O.M.; Taran, V.S.; Tereshin, V.I.

    2005-01-01

    The progress in the widespread utilization of the PVD methods is determined in many respects by the plasma quality and, therefore, the necessity of an application of plasma separators, in particular magnetic separators. One needs to note that traditional magnetic separators have a number of problems their using, namely their unwieldiness, the presence of the isolated cameras and so on. We have proposed, manufactured and investigated the simple separator of plasma that doesn't require using additional cameras. As a source of metallic plasma the standard cathode vaporizer in the installation 'BULAT 6' was in use. Plasma stream from the cathode flowed through the not protected by isolation spiral solenoid. The solenoid input (from the cathode side) was under floating potential. The solenoid output was connected to the autonomous power supply system. The solenoid was prepared with stride winding and 90 degree turn. The solenoid current was 20-90 A and the solenoid voltage with respect to the vessel (earth) was +15 V. In this case drifting charged particles could freely fly out from the interior solenoid region to its boundary. The glow of the turned flow of plasma was observed during the supplying of the cathode and the solenoid. Plasma flow was separated from the coils and extended along the axis of solenoid. One can assume that this device ensures radial electric with respect to the bulk of plasma (the diameter of the bulk of plasma is comparable with the cathode diameter), the toroidal magnetic field, produced by solenoid, was of an order of 20 Oe. Magnetic field strength was sufficient for the magnetization of electrons, but it was rather small for magnetizing the ions and charged micro-droplets. The experiments carried out with aluminum cathode on the deposition of coatings at the stainless steel substrate have shown the high effectiveness of this separator operation. Coatings without droplets were obtained also on the glass substrate with HF- displacement

  19. Boundary Layer Transition, Separation and Flow Control on Airfoils, Wings and Bodies in CFD, Wind-Tunnel and In-Flight Studies

    Czech Academy of Sciences Publication Activity Database

    Popelka, Lukáš; Matějka, M.; Šimurda, David; Součková, Natálie

    2011-01-01

    Roč. 35, č. 4 (2011), s. 97-104 ISSN 0744-8996 R&D Projects: GA MŠk(CZ) 1M06031; GA AV ČR IAA2076403; GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : airfoil * wing-fuselage interaction * flow control Subject RIV: BK - Fluid Dynamics

  20. Separation of Hepatic parenchymal and Intrahepatic bile duct isotope activity: Studies of parenchymal function and bile duct flow using dynamic Tc-99m HIDA SPECT

    International Nuclear Information System (INIS)

    Jonas, E.; Naslund, E.; Freedman, J.; Hultcrantz, R.; Slezak, P.; Jacobsson, H.

    2003-01-01

    Currently used liver function tests have several shortcomings. Most of them are either insensitive or non-specific. The ultimate liver function test is probably a dynamic study, using a test substance with exclusive hepatic elimination and bile excretion, detected by means of a non?invasive method enabling sampling from all relevant compartments. In this paper we describe a method which enables measurements of parenchymal function and bile flow in different liver segments. The study was performed on 20 healthy volunteers. Tc-99m HIDA was used as test substrate and repeated Single Photon Emission Computed Tomography (SPECT) registrations as sampling method. Following injection of 120 MBq of Tc-99m HIDA, twelve liver SPECT examinations were performed at 6-minute intervals. Duct-representing peaks on images were detected by cranio-caudal activity scanning. Sampling from parenchyma and bile ducts in liver segments 2 to 8 was performed on consecutive examinations, creating time-activity graphs for parenchyma and ducts. Quantitative analysis of parenchymal and duct curves was performed and the results obtained from the left and right-sided liver segments were compared. Maximum counts/voxel (C max ) of left-sided segments (mean=33.2) were significantly lower than the values from right-sided segments (mean=24.7) and flow of isotope from parenchyma to bile ducts was significantly slower on the left. Furthermore, bile flow in ducts draining left-sided segments was slower than flow on the right side as reflected in significantly longer excretion t 1/2 (28.9 compared to 25.2 minutes) and delayed t max . (21.7 compared to 17.0 minutes). It has been concluded that the new method could provide a differential analysis of tracer flow in the hepatic parenchyma and the bile ducts. This pilot study on normal subjects has revealed interesting differences in both parenchymal accumulation as well as biliary excretion between left and right-sided segments. However, the value of the method

  1. Drivers of increased organic carbon concentrations in stream water following forest disturbance: Separating effects of changes in flow pathways and soil warming

    Science.gov (United States)

    Schelker, J.; Grabs, T.; Bishop, K.; Laudon, H.

    2013-12-01

    disturbance such as clear-cutting has been identified as an important factor for increasing dissolved organic carbon (DOC) concentrations in boreal streams. We used a long-term data set of soil temperature, soil moisture, shallow groundwater (GW) levels, and stream DOC concentrations from three boreal first-order streams to investigate mechanisms causing these increases. Clear-cutting was found to alter soil conditions with warmer and wetter soils during summer. The application of a riparian flow concentration integration model (RIM) explained a major part of variation in stream [DOC] arising from changing flow pathways in riparian soils during the pretreatment period (r2 = 0.4-0.7), but less well after the harvest. Model residuals were sensitive to changes in soil temperature. The linear regression models for the temperature dependence of [DOC] in soils were not different in the disturbed and undisturbed catchments, whereas a nonlinear response to soil moisture was found. Overall these results suggest that the increased DOC mobilization after forest disturbance is caused by (i) increased GW levels leading to increased water fluxes in shallow flow path in riparian soils and (ii) increased soil temperature increasing the DOC availability in soils during summer. These relationships indicate that the mechanisms of DOC mobilization after forest disturbance are not different to those of undisturbed catchments, but that catchment soils respond to the higher hydro-climatic variation observed after clear-cutting. This highlights the sensitivity of boreal streams to changes in the energy and water balance, which may be altered as a result of both land management and climate change.

  2. Dielectrophoretic separation of gaseous isotopes

    International Nuclear Information System (INIS)

    McConnell, D.B.

    1976-01-01

    This invention relates to a process for the separation of gaseous isotopes by electrophoresis assisted by convective countercurrent flow and to an apparatus for use in the process. The invention is especially applicable to heavy water separation from steam; however, it is to be understood that the invention is broadly applicable to the separation of gaseous isotopes having different dipole moments and/or different molecular weights. (author)

  3. Numerical simulation of a cyclone used as an inlet device of a gravitational separator

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Carlos Alberto Capela [Centro de Pesquisas da PETROBRAS (CENPES), Rio de Janeiro, RJ (Brazil). Gerencia de Tecnologia de Processamento Primario], E-mail: capela@petrobras.com.br; Oliveira Junior, Joao Americo Aguirre; Almeida, Lucilla Coelho de [Engineering Simulation and Scientific Software (ESSS), Florianopolis, SC (Brazil)], E-mails: joao.aguirre@esss.com.br, lucilla@esss.com.br

    2011-04-15

    This study presents the numerical simulation of the flow inside a gravitational separator to evaluate the influence of each internal device in the separation efficiency. In this first stage, the cyclone - located at the vessel entrance, known as the primary separation - internal flow is investigated. The flow inside cyclones presents rather complex and challenging characteristics, such as: streamlines with high curvature, intense force fields, interaction between primary and secondary flows and anisotropic turbulence. A three-dimensional fluid dynamics study is presented of a gas-liquid two-phase flow in a cyclone. The two-phase flow was modeled using an Eulerian, isothermal approach. The main conclusion of these simulations is the phase separation inside the proposed initial design does not occur by centrifugal effect, as an internal rotating flow is not established, due to an ineffective inlet design. Based on the lack of this expected centrifugal field for a cyclone, it can be concluded that the device does not behave as such. As a result, the device efficiency is limited and possibly small droplets will be carried by the gas stream. Therefore, changes to the cyclone inlet geometry were proposed to better achieve the cyclone effect to increase the separation efficiency. (author)

  4. Some thoughts on separation control strategies

    Indian Academy of Sciences (India)

    Flow separation generally leads to increased energy losses, instability and so ... Separation control strategy often refers to a clever (or intelligent) fluid ... bubble will have a certain influence, directly or indirectly, on the development of the shear.

  5. Radioactive substance separation systems

    International Nuclear Information System (INIS)

    Sakai, Takuhiko.

    1981-01-01

    Purpose: To enable separation of fission products, radioactive corrosion products and the likes in primary coolants with no requirement for the replacement of separation system during plant service life, by providing protruded magnetic pole plates in a liquid metal flow channel to thereby form slopes magnetic fields. Constitution: A plurality of magnetic pole plates are disposed vertically in a comb-like arrangement so as not to contact with each other along the direction of flow in a rectangular primary coolant pipeway at the exit of the reactor core in an LMFBR type reactor. Large magnetic poles are provided to the upper and lower sides of the pipeway and coils are wound on the side opposed to the pipeway. When electrical current is supplied to the coils, the magnetic pole is magnetized intensely and thus the magnetic pole plates are also magnetized intensely and thus the magnetic pole plates are also magnetized intensely to form large gradient in the magnetic fields between the upper and lower magnetic plates, whereby ferromagnetic and ferrimagnetic fission products and radioactive corrosion products in the coolants are intensely adsorbed and not detached by the flow of the coolants. Accordingly, the fission products and the radioactive corrosion products can surely be removed with no requirement for the exchange of separation system during plant service life. (Horiuchi, T.)

  6. Gas separation with membranes

    International Nuclear Information System (INIS)

    Schulz, G.; Michele, H.; Werner, U.

    1982-01-01

    Gas separation with membranes has already been tested in numerous fields of application, e.g. uranium enrichment of H 2 separation. In many of these processes the mass transfer units, so-called permeators, have to be connected in tandem in order to achieve high concentrations. A most economical operating method provides for each case an optimization of the cascades with regard to the membrane materials, construction and design of module. By utilization of the concentration gradient along the membrane a new process development has been accomplished - the continuously operating membrane rectification unit. Investment and operating costs can be reduced considerably for a number of separating processes by combining a membrane rectification unit with a conventional recycling cascade. However, the new procedure requires that the specifications for the module construction, flow design, and membrane properties be reconsidered. (orig.) [de

  7. Apparatus for diffusion separation

    International Nuclear Information System (INIS)

    Nierenberg, W.A.

    1976-01-01

    A diffuser separator apparatus is described which comprises a plurality of flow channels in a single stage. Each of said channels has an inlet port and an outlet port and a constant cross sectional area between said ports. At least a portion of the defining surface of each of said channels is a diffusion separation membrane, and each of said channels is a different cross sectional area. Means are provided for connecting said channels in series so that each successive channel of said series has a smaller cross sectional area than the previous channel of said series. Also provided are a source of gaseous mixture, individual means for flowing said gaseous mixture to the inlet port of each of said channels, gas receiving and analyzing means, individual means for flowing gas passing from each of said outlet ports and means for flowing gas passing through said membranes to said receiving and analyzing means, and individual means for connecting the outlet port of each channel with the inlet port of the channel having the next smaller cross sectional area

  8. Isotope separation

    International Nuclear Information System (INIS)

    Rosevear, A.; Sims, H.E.

    1985-01-01

    sup(195m)Au for medical usage is separated from sup(195m)Hg in a solution containing ions of sup(195m)Hg by contacting the solution with an adsorbing agent to adsorb 195 Hgsup(H) thereon, followed by selective elution of sup(195m)Au generated by radioactive decay of the sup(195m)Hg. The adsorbing agent comprises a composite material in the form of an inert porous inorganic substrate (e.g. Kieselguhr),the pores of which are occupied by a hydrogel of a polysaccharide (e.g. agarose) carrying terminal thiol groups for binding Hgsup(H) ions. (author)

  9. A laboratory flow reactor with gas particle separation and on-line MS/MS for product identification in atmospherically important reactions

    Directory of Open Access Journals (Sweden)

    J. F. Bennett

    2009-12-01

    Full Text Available A system to study the gas and particle phase products from gas phase hydrocarbon oxidation is described. It consists of a gas phase photochemical flow reactor followed by a diffusion membrane denuder to remove gases from the reacted products, or a filter to remove the particles. Chemical analysis is performed by an atmospheric pressure chemical ionization (APCI triple quadrupole mass spectrometer. A diffusion membrane denuder is shown to remove trace gases to below detectable limits so the particle phase can be studied. The system was tested by examining the products of the oxidation of m-xylene initiated by HO radicals. Dimethylphenol was observed in both the gas and particle phases although individual isomers could not be identified. Two furanone isomers, 5-methyl-2(3Hfuranone and 3-methyl-2(5Hfuranone were identified in the particulate phase, but the isobaric product 2,5 furandione was not observed. One isomer of dimethyl-nitrophenol was identified in the particle phase but not in the gas phase.

  10. Development of an on-line flow injection Sr/matrix separation method for accurate, high-throughput determination of Sr isotope ratios by multiple collector-inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Galler, Patrick; Limbeck, Andreas; Boulyga, Sergei F; Stingeder, Gerhard; Hirata, Takafumi; Prohaska, Thomas

    2007-07-01

    This work introduces a newly developed on-line flow injection (FI) Sr/Rb separation method as an alternative to the common, manual Sr/matrix batch separation procedure, since total analysis time is often limited by sample preparation despite the fast rate of data acquisition possible by inductively coupled plasma-mass spectrometers (ICPMS). Separation columns containing approximately 100 muL of Sr-specific resin were used for on-line FI Sr/matrix separation with subsequent determination of (87)Sr/(86)Sr isotope ratios by multiple collector ICPMS. The occurrence of memory effects exhibited by the Sr-specific resin, a major restriction to the repetitive use of this costly material, could successfully be overcome. The method was fully validated by means of certified reference materials. A set of two biological and six geological Sr- and Rb-bearing samples was successfully characterized for its (87)Sr/(86)Sr isotope ratios with precisions of 0.01-0.04% 2 RSD (n = 5-10). Based on our measurements we suggest (87)Sr/(86)Sr isotope ratios of 0.713 15 +/- 0.000 16 (2 SD) and 0.709 31 +/- 0.000 06 (2 SD) for the NIST SRM 1400 bone ash and the NIST SRM 1486 bone meal, respectively. Measured (87)Sr/(86)Sr isotope ratios for five basalt samples are in excellent agreement with published data with deviations from the published value ranging from 0 to 0.03%. A mica sample with a Rb/Sr ratio of approximately 1 was successfully characterized for its (87)Sr/(86)Sr isotope signature to be 0.718 24 +/- 0.000 29 (2 SD) by the proposed method. Synthetic samples with Rb/Sr ratios of up to 10/1 could successfully be measured without significant interferences on mass 87, which would otherwise bias the accuracy and uncertainty of the obtained data.

  11. Separation phenomena in Liquids and Gases

    Energy Technology Data Exchange (ETDEWEB)

    Louvet, P; Soubbaramayer, [CEA Saclay, Dept. des Lasers et de la Physico-Chimie, DESICP/DLPC/SPP, 91 - Gif-sur-Yvette (France); Noe, P

    1989-07-01

    The Proceedings of the 1989 Workshop are presented in two volumes: volume 1 contains 4 papers on plasma processes and 7 papers on centrifugation. The papers on plasma processes deal with two main methods: ion cyclotron resonance and rotating plasmas. A survey lecture reviews extensively the physics of the two processes, the published experimental results and includes an abundant bibliography of about 200 references. The 3 other papers communicate original and recent experiments carried out by the authors. The plasma process remains as a possible technology to separate stable isotopes and isotopes of metals located in the middle of the Mendeleev Table. Regarding the stable isotopes, the ion cyclotron resonance might be an alternative to the Calutron process. The sessions on centrifugation include 2 review papers by URENCO authors and 5 specialized communications. The review papers take stock of the centrifuge research and gives the current status of the centrifuge technology in URENCO. The authors say that the centrifugation is presently an established industrial and commercial process ready to enter in competition for any new construction of enrichment capacity. Volume 2 contains the papers on 3 topics: basic studies (11 papers), chemical process (2 papers) and laser processes (7 papers). The papers on basic studies include investigations on rotating flows. A special attention is given to studies on convection flows, driven by acceleration field or (and) capillary forces. The interest of convection is obvious, as it has applications in important fields: the hydrodynamics of liquid uranium in the evaporation crucible of AVLIS Process, the crystal growth experiments on earth or under microgravity conditions (future experiments planned in space-labs) and the welding by electron or photon beams. Two papers are presented on the chemical process and both of them are by French authors. The French CEA has, in the past, developed with success the CHEMEX process. The

  12. Separation phenomena in Liquids and Gases

    International Nuclear Information System (INIS)

    Louvet, P.; Dr Soubbaramayer; Noe, P.

    1989-01-01

    The Proceedings of the 1989 Workshop are presented in two volumes: volume 1 contains 4 papers on plasma processes and 7 papers on centrifugation. The papers on plasma processes deal with two main methods: ion cyclotron resonance and rotating plasmas. A survey lecture reviews extensively the physics of the two processes, the published experimental results and includes an abundant bibliography of about 200 references. The 3 other papers communicate original and recent experiments carried out by the authors. The plasma process remains as a possible technology to separate stable isotopes and isotopes of metals located in the middle of the Mendeleev Table. Regarding the stable isotopes, the ion cyclotron resonance might be an alternative to the Calutron process. The sessions on centrifugation include 2 review papers by URENCO authors and 5 specialized communications. The review papers take stock of the centrifuge research and gives the current status of the centrifuge technology in URENCO. The authors say that the centrifugation is presently an established industrial and commercial process ready to enter in competition for any new construction of enrichment capacity. Volume 2 contains the papers on 3 topics: basic studies (11 papers), chemical process (2 papers) and laser processes (7 papers). The papers on basic studies include investigations on rotating flows. A special attention is given to studies on convection flows, driven by acceleration field or (and) capillary forces. The interest of convection is obvious, as it has applications in important fields: the hydrodynamics of liquid uranium in the evaporation crucible of AVLIS Process, the crystal growth experiments on earth or under microgravity conditions (future experiments planned in space-labs) and the welding by electron or photon beams. Two papers are presented on the chemical process and both of them are by French authors. The French CEA has, in the past, developed with success the CHEMEX process. The

  13. Separation of Hydrogen Isotopes by Palladium Alloy Membranes Separator

    International Nuclear Information System (INIS)

    Jiangfeng, S.; Deli, L.; Yifu, X.; Congxian, L.; Zhiyong, H.

    2007-01-01

    Full text of publication follows: Separation of hydrogen isotope with palladium alloy membranes is one of the promising methods for hydrogen isotope separation. It has several advantages, such as high separation efficiency, smaller tritium inventory, simple separation device, ect. Limited by the manufacture of membrane and cost of gas transportation pump, this method is still at the stage of conceptual study. The relationship between separation factors and temperatures, feed gas components, split ratios have not been researched in detail, and the calculated results of cascade separation have not been validated with experimental data. In this thesis, a palladium alloy membrane separator was designed to further study its separation performance between H 2 and D 2 . The separation factor of the single stage was affected by the temperature, the feed gas component, the split ratio and the gas flow rate, etc. The experimental results showed that the H 2 -D 2 separation factor decreased with the increasing of temperature. On the temperature from 573 K to 773 K, when the feed rate was 5 L/min, the separation factor of 66.2%H 2 - 33.8%D 2 decreased from 2.09 to 1.85 when the split ratio was 0.1 and from 1.74 to 1.52 when the split ratio was 0.2.The separation factor also decreased with the increasing of split ratio. At 573 K and the feed rate of 5 L/min, the separation factor of 15.0%H 2 and 85.0%D 2 decreased from 2.43 to 1.35 with the increasing of split ratio from 0.050 to 0.534,and for 66.2%H 2 -33.8%D 2 , the separation factor decreased from 2.87 to 1.30 with the increasing of split ratio from 0.050 to 0.688. When the separation factor was the biggest, the flow rate of feed gas was in a perfect value. To gain a best separation performance, perfect flow rate, lower temperature and reflux ratio should be chosen. (authors)

  14. A Comparison of Hybrid Reynolds Averaged Navier Stokes/Large Eddy Simulation (RANS/LES) and Unsteady RANS Predictions of Separated Flow for a Variable Speed Power Turbine Blade Operating with Low Inlet Turbulence Levels

    Science.gov (United States)

    2017-10-01

    6 4 3 passage 4 passage 5 passage 3 Sta. 0 Sta. 2 −2.0 0.0 −55.5°m etal −1.0 y  pitch β 1= 34. 2 ° z ero i β1=−11.8°max i β1=−2.5° t-o β 1 =4 0.0...structured grids at 2 flow conditions, cruise and takeoff, of the VSPT blade. Computations were run in parallel on a Department of Defense...to predict the separation/reattachment suggested by experiment. The difference in results between the 2 grids for RANS computations suggests that

  15. Separations chemistry

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Infrared spectra of Pu(IV) polymer show effects of CO 2 adsorption and of aging. Uv light (300 nm) increases the rate of reduction of PuO 2 2+ and Pu 4+ to Pu 3+ and the Pu--U separation factor using TBP. Distribution ratios for Zr and Hf between Dowex 50W--X8 resin and H 2 SO 4 solutions were found to decrease sharply with H 2 SO 4 content. Octylphenyl acid phosphate, a mixture of monooctylphenyl and dioctylphenyl phosphoric acids, is being studied for U recovery from wet-process phosphoric acid. A study of HNO 3 leaching of Ra from U ores was completed. Effects of particle size of the packed bed on the dispersion of the boundary of the miscible phase used in oil recovery are being studied. Effects of sulfonates on toluene--n-butanol--water phase relations were determined, as were the effects of salts and solutes on the max water content of 1:1 toluene--alcohol solutions. A study was begun of hydrocarbon solubility in water--surfactant--alcohol. The mechanism of the formation of hydrous ZrO 2 --polyacrylate membranes and their use for sulfate rejection were studied. Salt rejection through hyperfiltration by clay membranes (bentonite and kaolin) was also investigated. Preliminary results are given for hyperfiltration of wood-pulping wastes by ZrO 2 membranes. 13 figures

  16. Separation process using microchannel technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Dublin, OH; Perry, Steven T [Galloway, OH; Arora, Ravi [Dublin, OH; Qiu, Dongming [Bothell, WA; Lamont, Michael Jay [Hilliard, OH; Burwell, Deanna [Cleveland Heights, OH; Dritz, Terence Andrew [Worthington, OH; McDaniel, Jeffrey S [Columbus, OH; Rogers, Jr; William, A [Marysville, OH; Silva, Laura J [Dublin, OH; Weidert, Daniel J [Lewis Center, OH; Simmons, Wayne W [Dublin, OH; Chadwell, G Bradley [Reynoldsburg, OH

    2009-03-24

    The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.

  17. Flow Control in a Compact Inlet

    Science.gov (United States)

    Vaccaro, John C.

    2011-12-01

    An experimental investigation of flow control, via various control jets actuators, was undertaken to eliminate separation and secondary flows in a compact inlet. The compact inlet studied was highly aggressive with a length-to-diameter ratio of 1.5. A brand new facility was designed and built to enable various actuation methodologies as well as multiple measurement techniques. Techniques included static surface pressure, total pressure, and stereoscopic particle image velocimetry. Experimental data were supplemented with numerical simulations courtesy of Prof. Kenneth Jansen, Dr. Onkar Sahni, and Yi Chen. The baseline flow field was found to be dominated by two massive separations and secondary flow structures. These secondary structures were present at the aerodynamic interface plane in the form of two counter-rotating vortices inducing upwash along centerline. A dominant shedding frequency of 350 Hz was measured both at the aerodynamic interface plane and along the lower surface of the inlet. Flow control experiments started utilizing a pair of control jets placed in streamwise locations where flow was found to separate. Tests were performed for a range of inlet Mach numbers from 0.2 to 0.44. Steady and unsteady static pressure measurements along the upper and lower walls of the duct were performed for various combinations of actuation. The parameters that were tested include the control jets momentum coefficient, their blowing ratio, the actuation frequency, as well as different combinations of jets. It was shown that using mass flux ratio as a criterion to define flow control is not sufficient, and one needs to provide both the momentum coefficient and the blowing ratio to quantify the flow control performance. A detailed study was undertaken on controlling the upstream separation point for an inlet Mach number of 0.44. Similar to the baseline flow field, the flow field associated with the activation of a two-dimensional control jet actuator was dominated by

  18. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel.

    Science.gov (United States)

    Nam, Jeonghun; Lim, Hyunjung; Kim, Dookon; Shin, Sehyun

    2011-10-07

    Platelet separation from blood is essential for biochemical analyses and clinical diagnosis. In this article, we propose a method to separate platelets from undiluted whole blood using standing surface acoustic waves (SSAWs) in a microfluidic device. A polydimethylsiloxane (PDMS) microfluidic channel was fabricated and integrated with interdigitated transducer (IDT) electrodes patterned on a piezoelectric substrate. To avoid shear-induced activation of platelets, the blood sample flow was hydrodynamically focused by introducing sheath flow from two side-inlets and pressure nodes were designed to locate at side walls. By means of flow cytometric analysis, the RBC clearance ratio from whole blood was found to be over 99% and the purity of platelets was close to 98%. Conclusively, the present technique using SSAWs can directly separate platelets from undiluted whole blood with higher purity than other methods.

  19. Computational aspects of unsteady flows

    Science.gov (United States)

    Cebeci, T.; Carr, L. W.; Khattab, A. A.; Schimke, S. M.

    1985-01-01

    The calculation of unsteady flows and the development of numerical methods for solving unsteady boundary layer equations and their application to the flows around important configurations such as oscillating airfoils are presented. A brief review of recent work is provided with emphasis on the need for numerical methods which can overcome possible problems associated with flow reversal and separation. The zig-zag and characteristic box schemes are described in this context, and when embodied in a method which permits interaction between solutions of inviscid and viscous equations, the characteristic box scheme is shown to avoid the singularity associated with boundary layer equations and prescribed pressure gradient. Calculations were performed for a cylinder started impulsively from rest and oscillating airfoils. The results are presented and discussed. It is conlcuded that turbulence models based on an algebraic specification of eddy viscosity can be adequate, that location of translation is important to the calculation of the location of flow separation and, therefore, to the overall lift of an oscillating airfoil.

  20. Apparatus for diffusion separation

    International Nuclear Information System (INIS)

    Nierenberg, W.A.; Pontius, R.B.

    1976-01-01

    The method of testing the separation efficiency of porous permeable membranes is described which comprises causing a stream of a gaseous mixture to flow into contact with one face of a finely porous permeable membrane under such conditions that a major fraction of the mixture diffuses through the membrane, maintaining a rectangular cross section of the gaseous stream so flowing past said membrane, continuously recirculating the gas that diffuses through said membrane and continuously withdrawing the gas that does not diffuse through said membrane and maintaining the volume of said recirculating gas constant by continuously introducing into said continuously recirculating gas stream a mass of gas equivalent to that which is continuously withdrawn from said gas stream and comparing the concentrations of the light component in the entering gas, the withdrawn gas and the recirculated gas in order to determine the efficiency of said membrane

  1. Effect of geometric parameters of liquid-gas separator units on phase separation performance

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Songping; Chen, Xueqing; Chen, Ying [Guangdong University of Technology, Seoul (China); Yang, Zhen [Tsinghua University, Beijing (China)

    2015-07-15

    Five liquid-gas separator units were designed and constructed based on a new concept of a validated high-performance condenser. Each separator unit consists of two united T-junctions and an apertured baffle. The separator units have different header diameters or different baffles with different diameters of the liquid-gas separation hole. The phase separation characteristics of the units were investigated at inlet air superficial velocities from 1.0m/s to 33.0m/s and water superficial velocities from 0.0015 m/s to 0..50 m/s. The experimental results showed that the liquid height, liquid flow rate through the separation hole, and liquid separation efficiency increased with increased header diameter and decreased diameter of the separation hole. The geometric structures of the separator units affected the phase separation characteristics by influencing the liquid height in the header and the liquid flow rate through the separation hole.

  2. Hydrodynamic aspects of flotation separation

    Directory of Open Access Journals (Sweden)

    Peleka Efrosyni N.

    2016-01-01

    Full Text Available Flotation separation is mainly used for removing particulates from aqueous dispersions. It is widely used for ore beneficiation and recovering valuable materials. This paper reviews the hydrodynamics of flotation separations and comments on selected recent publications. Units are distinguished as cells of ideal and non-ideal flow. A brief introduction to hydrodynamics is included to explain an original study of the hybrid flotation-microfiltration cell, effective for heavy metal ion removal.

  3. Separating particles from a liquid

    International Nuclear Information System (INIS)

    Leslie, C.M.; Watson, J.H.P.; Williams, J.A.

    1980-01-01

    An apparatus for separating particles suspended in a liquid from the liquid, is described, in which a flow of the liquid is passed through a filter bed of ferromagnetic bodies which acts as a coarse filter to trap the larger particles in the flow. The filter bed is arranged within a truncated core between the poles of an electromagnet. To cleanse the bed and flush out the trapped particles a wash liquid is passed through the bed and the electromagnet is energised to levitate the bed to allow the wash liquid to remove the particles. The liquid flow from the coarse filter can be passed to a high gradient magnetic separator at which remaining small particles in the flow are filtered magnetically. (U.K.)

  4. Separation unit for uranium isotopes etc

    International Nuclear Information System (INIS)

    1975-01-01

    The task of the invention - improving the efficiency of a uranium isotope separation unit with a rotor as separation chamber by improving its flow characteristics - is solved by a central-axial gas conduction system with radial branches which leads the media into the separation chambers or out of these. (UWI) [de

  5. Um modelo de fluxos e localização de terminais intermodais para escoamento da soja brasileira destinada à exportação A model for flow allocation and location of intermodal terminals for the Brazilian soybean exports

    Directory of Open Access Journals (Sweden)

    Mônica do Amaral

    2012-12-01

    Full Text Available A consideração de rotas intermodais pode ser vantajosa em diversas situações, como nos casos de escoamento de produtos agrícolas para exportação. Entretanto, a possibilidade de redução dos custos logísticos está condicionada à existência de instalações que permitam o transbordo de carga e a integração entre os modais disponíveis. Nesse contexto, propõe-se um modelo de fluxos e localização de terminais intermodais, com o objetivo de apoiar decisões de investimento em infraestrutura e de roteirização na rede. O modelo possui forte relação com problemas de p-medianas, sabidamente NP-difíceis. São considerados múltiplos níveis, em que cada nível corresponde ao fluxo entre dois terminais, e uma estrutura esparsa para representação da rede. Testes realizados com uma rede para exportação de soja baseada em dados secundários foram utilizados para verificar a coerência e ilustrar o potencial de análise do modelo, enquanto instâncias geradas aleatoriamente serviram para avaliar seu desempenho computacional utilizando-se dois softwares de otimização.The use of intermodal routes may be advantageous in several situations such as to export agricultural products. However, the possibility of reducing logistics costs depends on the existence of intermodal facilities for the transshipment and the integration between the available modes. In this context, we propose a model for flow allocation and location of intermodal terminals to support investment decisions in network infrastructure and routing. The model is closely related to the NP-hard p-median problem. Multiple levels were used to represent the flows between two terminals, and a sparse structure was used for the network matrix representation. Tests using a soybean network for exports based on secondary data were performed to verify the model consistency and to illustrate the potential of analysis of the model, while randomly generated instances were used to evaluate

  6. A Location Privacy Aware Friend Locator

    DEFF Research Database (Denmark)

    Siksnys, Laurynas; Thomsen, Jeppe Rishede; Saltenis, Simonas

    2009-01-01

    to trade their location privacy for quality of service, limiting the attractiveness of the services. The challenge is to develop a communication-efficient solution such that (i) it detects proximity between a user and the user’s friends, (ii) any other party is not allowed to infer the location of the user...

  7. Convective heat flow probe

    Science.gov (United States)

    Dunn, James C.; Hardee, Harry C.; Striker, Richard P.

    1985-01-01

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.

  8. Isotopic separation by ion chromatography

    International Nuclear Information System (INIS)

    Albert, M.G.; Barre, Y.; Neige, R.

    1994-01-01

    The isotopic exchange reaction and the isotopic separation factor are first recalled; the principles of ion chromatography applied to lithium isotope separation are then reviewed (displacement chromatography) and the process is modelled in the view of dimensioning and optimizing the industrial process; the various dimensioning parameters are the isotopic separation factor, the isotopic exchange kinetics and the material flow rate. Effects of the resin type and structure are presented. Dimensioning is also affected by physico-chemical and hydraulic parameters. Industrial implementation features are also discussed. 1 fig., 1 tab., 5 refs

  9. Flow separation on wind turbines blades

    NARCIS (Netherlands)

    Corten, G.P.

    2001-01-01

    In the year 2000, 15GW of wind power was installed throughout the world, producing 100PJ of energy annually. This contributes to the total electricity demand by only 0.2%. Both the installed power and the generated energy are increasing by 30% per year world-wide. If the airflow over wind turbine

  10. Thermal Nonequilibrium in Hypersonic Separated Flow

    Science.gov (United States)

    2014-12-22

    and rotational temperature of nitric oxide and coherent anti-Stokes Raman scattering (CARS) point measurements of rotational and vibrational...temperature T∞ [K] 590 165 freestream density ρ∞ [kg/m3] 0.0020 0.0060 freestream velocity u∞ [m/s] 4550 2500 Figure 7 shows the nozzle reservoir

  11. Workshop II On Unsteady Separated Flow Proceedings

    Science.gov (United States)

    1988-07-28

    particularly for the higher incidence around finite-aspect-ratio wings using a angles, cannot be divorced from the wing as an two-dimensional approximation is...in Pitch", AIAA Paper No. 87-2493, presented at the AIAA Atmospheric Flight Mechanics Conference, Monterrey , CA., August 17-19, 1987. 6. Malcolm, G

  12. Analysis of flow separation over aerodynamic airfoils

    OpenAIRE

    Rodríguez Sánchez, Sergio Jesús

    2014-01-01

    Energy industries are nowadays struggling with the most effcient source of energy generation. The list of energy resources is huge starting with traditional coal and going through the different technologies until reaching the controversial nuclear reactors. One of the most interesting areas in energy generation is the renewable energy technologies. Among the different renewable energy sources, this project will be focused on eolic energy generation via horizontal axis wind turbine...

  13. CFD Validation Studies for Hypersonic Flow Prediction

    Science.gov (United States)

    Gnoffo, Peter A.

    2001-01-01

    A series of experiments to measure pressure and heating for code validation involving hypersonic, laminar, separated flows was conducted at the Calspan-University at Buffalo Research Center (CUBRC) in the Large Energy National Shock (LENS) tunnel. The experimental data serves as a focus for a code validation session but are not available to the authors until the conclusion of this session. The first set of experiments considered here involve Mach 9.5 and Mach 11.3 N2 flow over a hollow cylinder-flare with 30 degree flare angle at several Reynolds numbers sustaining laminar, separated flow. Truncated and extended flare configurations are considered. The second set of experiments, at similar conditions, involves flow over a sharp, double cone with fore-cone angle of 25 degrees and aft-cone angle of 55 degrees. Both sets of experiments involve 30 degree compressions. Location of the separation point in the numerical simulation is extremely sensitive to the level of grid refinement in the numerical predictions. The numerical simulations also show a significant influence of Reynolds number on extent of separation. Flow unsteadiness was easily introduced into the double cone simulations using aggressive relaxation parameters that normally promote convergence.

  14. Simultaneous separation of five major ribonucleic acids by capillary electrophoresis with laser-induced fluorescence in the presence of electroosmotic flow: application to the rapid screening of 5S rRNA from ovarian cancer cells.

    Science.gov (United States)

    Shih, Ya-Chu; Liao, Ching-Ru; Chung, I-Che; Chang, Yu-Sun; Chang, Po-Ling

    2014-10-17

    RNA integrity is important in RNA studies because poor RNA quality may impact downstream methodologies. This study proposes a rapid and cost-effective method for the determination of RNA integrity based on CE-LIF in the presence of electroosmotic flow. The proposed method uses poly(ethylene) oxide (Mavg=4,000,000 Da) as a sieving matrix for total RNA separation. Ethidium bromide (μg mL(-1)) was dissolved in a polymer solution as an interchelating dye for on-column fluorescent labeling. The 28S rRNA, 18S rRNA, 5.8S rRNA, 5S rRNA and tRNA from the total human RNA extracted from the cells were fully separated using the proposed method. The lowest detectable concentration of total RNA achieved was 100 pg μL(-1) with a 6 min sample injection followed by on-column concentration. In addition, the temperature-induced degradation of total RNA was observed by CE-LIF. The electropherograms revealed more fragmentation of 28S and 18S rRNAs by temperature-induced hydrolysis compared with the 5.8S rRNA, 5S rRNA and tRNA. Therefore, the results indicated that RNA degradation should be considered for long-term, high-temperature incubations in RNA-related experiments involving RNA hybridization. The proposed method is furthermore, applied to the determination of 5S rRNA overexpressed in ovarian cancer cells as compared to the cervical cancer cells. Overall, CE-LIF is highly promising for rapid screening of ovarian cancers without tedious pre-amplification steps. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Locating Objects in Wide-Area Systems

    NARCIS (Netherlands)

    Steen, M. van; Hauck, F.J.; Homburg, P.; Tanenbaum, A.S.

    Locating mobile objects in a worldwide system requires a scalable location service. An object can be a telephone or a notebook computer, but also a software or data object, such as a file or an electronic document. Our service strictly separates an object's name from the addresses where it can be

  16. Onderzoek Location Based Marketing: Mobile = location = effect

    NARCIS (Netherlands)

    Gisbergen, M.S. van; Huhn, A.E.; Khan, V.J.; Ketelaar, P.E.

    2011-01-01

    Onderzoekers van de NHTV (Internationaa Hoger Onderwijs Breda, Radboud Universiteit, DVJ Insights en Popai Benelux lieten consumenten in een virtuele supermarkt advertenties via de smartphone ontvangen wanneer men langs het geadverteerde product liep. De uitkomsten laten zien dat 'location based

  17. Computational simulation of the blood separation process.

    Science.gov (United States)

    De Gruttola, Sandro; Boomsma, Kevin; Poulikakos, Dimos; Ventikos, Yiannis

    2005-08-01

    The aim of this work is to construct a computational fluid dynamics model capable of simulating the quasitransient process of apheresis. To this end a Lagrangian-Eulerian model has been developed which tracks the blood particles within a delineated two-dimensional flow domain. Within the Eulerian method, the fluid flow conservation equations within the separator are solved. Taking the calculated values of the flow field and using a Lagrangian method, the displacement of the blood particles is calculated. Thus, the local blood density within the separator at a given time step is known. Subsequently, the flow field in the separator is recalculated. This process continues until a quasisteady behavior is reached. The simulations show good agreement with experimental results. They shows a complete separation of plasma and red blood cells, as well as nearly complete separation of red blood cells and platelets. The white blood cells build clusters in the low concentrate cell bed.

  18. Method and equipment of separation of gaseous and vaporous materials, particularly isotopes, with separation nozzles

    International Nuclear Information System (INIS)

    Becker, E.W.; Eisenbeiss, G.; Ehrfeld, W.

    1975-01-01

    The invention improves on the already known separation nozzle method by the two following steps: 1) The partial flows produced within the cascade with various shares of additional gas are introduced into the separating nozzle systems in such a manner that with regard to the additional gas, a molar fraction gradient is created which is in the opposite direction to the gradient created by the separation process. 2) The partial flows produced within the cascade with various compositions of the mixture of substances to be separated are introduced into the separating nozzle systems in such a manner that regarding the substances to be separated, a molar fraction gradient is created which is in the same direction as the molar fraction gradient formed by the separation process. Both measures can be separately applied or in combination with one another; flowsheets of the invented cascade circuits and separating nozzle systems are given. (GG/LH) [de

  19. Spalart–Allmaras model apparent transition and RANS simulations of laminar separation bubbles on airfoils

    International Nuclear Information System (INIS)

    Crivellini, Andrea; D’Alessandro, Valerio

    2014-01-01

    Highlights: • RANS simulation of laminar separation bubbles. • Spalart–Allamaras unexpected capability. • Straightforward implementation of our SA modifications. • Applications of a high order DG incompressible solver. - Abstract: The present paper deals with the Reynolds Averaged Navier–Stokes (RANS) simulation of Laminar Separation Bubble (LSB). This phenomenon is of large interest in several engineering fields, such as the study of wind turbines, unmanned aerial vehicles (UAV) and micro-air vehicles (MAV) characterized by a low operating Reynolds number. In such contexts a laminar boundary layer separation followed by a turbulent transition and afterwards by a turbulent reattachment may appear in the flow-field. The main novelty of this work is that an almost standard Spalart–Allmaras (SA) model, without additional equations for transition modeling, was successfully employed. The result achieved is very surprising being the model not developed for this purpose, but for fully-turbulent flows or for cases with imposed transition location. This result is of large interest, since the SA model is widely used in commercial, open-source and research codes. However, our approach cannot be advocated to predict natural transition within an attached boundary layer, indeed it is only able to deal with transitions triggered by a separated flow. The reliability and accuracy of our approach are here proved computing, by means of a high-order Discontinuous Galerkin (DG) incompressible solver, the flow-field over two airfoils at different flow regimes showing the formation of a LSB

  20. Location | FNLCR Staging

    Science.gov (United States)

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland. Satellite locations include leased and government facilities extending s

  1. Appraising manufacturing location

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2002-01-01

    International location of manufacturing activities is an issue for managers of manufacturing companies as well as public policy makers. For managers, the issue is relevant because international locations offer opportunities for lowering costs due to productivity improvements. For governments the

  2. Law Enforcement Locations

    Data.gov (United States)

    Kansas Data Access and Support Center — Law Enforcement Locations in Kansas Any location where sworn officers of a law enforcement agency are regularly based or stationed. Law enforcement agencies "are...

  3. Cross-flow analysis of injection wells in a multilayered reservoir

    Directory of Open Access Journals (Sweden)

    Mohammadreza Jalali

    2016-09-01

    Natural and forced cross-flow is modeled for some injection wells in an oil reservoir located at North Sea. The solution uses a transient implicit finite difference approach for multiple sand layers with different permeabilities separated by impermeable shale layers. Natural and forced cross-flow rates for each reservoir layer during shut-in are calculated and compared with different production logging tool (PLT measurements. It appears that forced cross-flow is usually more prolonged and subject to a higher flow rate when compared with natural cross-flow, and is thus worthy of more detailed analysis.

  4. Smartphones as locative media

    CERN Document Server

    Frith, Jordan

    2015-01-01

    Smartphone adoption has surpassed 50% of the population in more than 15 countries, and there are now more than one million mobile applications people can download to their phones. Many of these applications take advantage of smartphones as locative media, which is what allows smartphones to be located in physical space. Applications that take advantage of people's location are called location-based services, and they are the focus of this book. Smartphones as locative media raise important questions about how we understand the complicated relationship between the Internet and physical space

  5. Separation control on the wing by jet actuators

    Science.gov (United States)

    Karyakin, O. M.; Nalivaiko, A. G.; Ustinov, M. V.; Flaxman, Ja. Sh.

    2018-05-01

    Use of jet actuators to eliminate flow separation is experimentally investigated on a straight wing with a NACA 0012 airfoil. It is shown that under the influence of synthetic jets the size of separation zone greatly reduces and the flow separation point displaces downstream. In addition, lift coefficient increases by more than 10%.

  6. Quantitating aortic regurgitation by cardiovascular magnetic resonance: significant variations due to slice location and breath holding

    International Nuclear Information System (INIS)

    Chaturvedi, Abhishek; Hamilton-Craig, Christian; Cawley, Peter J.; Maki, Jeffrey H.; Mitsumori, Lee M.; Otto, Catherine M.

    2016-01-01

    Compare variability in flow measurements by phase contrast MRI, performed at different locations in the aorta and pulmonary artery (PA) using breath-held (BH) and free-breathing (FB) sequences. Fifty-seven patients with valvular heart disease, confirmed by echocardiography, were scanned using BH technique at 3 locations in the ascending aorta (SOV = sinus of Valsalva, STJ = sinotubular junction, ASC = ascending aorta at level of right pulmonary artery) and 2 locations in PA. Single FB measurement was obtained at STJ for aorta. Obtained metrics (SV = stroke volume, FV = forward volume, BV = backward volume, RF = regurgitant fraction) were evaluated separately for patients with aortic regurgitation (AR, n = 31) and mitral regurgitation (n = 26). No difference was noted between the two measurements in the PA. Significant differences were noted in measured SV at different aortic locations. SV measurements obtained at ASC correlated best with the measurements obtained in the PA. Strongest correlation of AR was measured at the STJ. Measurements of flow volumes by phase contrast MRI differ depending on slice location. When using stroke volumes to calculate pulmonary to systemic blood flow ratio (Qp/Qs), ASC should be used. For quantifying aortic regurgitation, measurement should be obtained at STJ. (orig.)

  7. Management of Vortices Trailing Flapped Wings via Separation Control

    Science.gov (United States)

    Greenblatt, David

    2005-01-01

    A pilot study was conducted on a flapped semi-span model to investigate the concept and viability of near-wake vortex management via separation control. Passive control was achieved by means of a simple fairing and active control was achieved via zero mass-flux blowing slots. Vortex sheet strength, estimated by integrating surface pressure ports, was used to predict vortex characteristics by means of inviscid rollup relations. Furthermore, vortices trailing the flaps were mapped using a seven-hole probe. Separation control was found to have a marked effect on vortex location, strength, tangential velocity, axial velocity and size over a wide range of angles of attack and control conditions. In general, the vortex trends were well predicted by the inviscid rollup relations. Manipulation of the separated flow near the flap edges exerted significant control over both outboard and inboard edge vortices while producing negligible lift excursions. Dynamic separation and attachment control was found to be an effective means for dynamically perturbing the vortex from arbitrarily long wavelengths down to wavelengths less than a typical wingspan. In summary, separation control has the potential for application to time-independent or time-dependent wake alleviation schemes, where the latter can be deployed to minimize adverse effects on ride-quality and dynamic structural loading.

  8. PARAFFIN SEPARATION VACUUM DISTILLATION

    Directory of Open Access Journals (Sweden)

    Zaid A. Abdulrahman

    2013-05-01

    Full Text Available Simulated column performance curves were constructed for existing paraffin separation vacuum distillation column in LAB plant (Arab Detergent Company/Baiji-Iraq. The variables considered in this study are the thermodynamic model option, top vacuum pressure, top and bottom temperatures, feed temperature, feed composition & reflux ratio. Also simulated columns profiles for the temperature, vapor & liquid flow rates composition were constructed. Four different thermodynamic model options (SRK, TSRK, PR, and ESSO were used, affecting the results within 1-25% variation for the most cases.The simulated results show that about 2% to 8 % of paraffin (C10, C11, C12, & C13 present at the bottom stream which may cause a problem in the LAB plant. The major variations were noticed for the top temperature & the  paraffin weight fractions at bottom section with top vacuum pressure. The bottom temperature above 240 oC is not recommended because the total bottom flow rate decreases sharply, where as  the weight fraction of paraffins decrease slightly. The study gives evidence about a successful simulation with CHEMCAD

  9. Surface representations of two- and three-dimensional fluid flow topology

    Science.gov (United States)

    Helman, James L.; Hesselink, Lambertus

    1990-01-01

    We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.

  10. Prediction of Mass Flow Rate in Supersonic Natural Gas Processing

    Directory of Open Access Journals (Sweden)

    Wen Chuang

    2015-11-01

    Full Text Available The mass flow rate of natural gas through the supersonic separator was numerically calculated by various cubic equations of state. The numerical results show that the compressibility factor and specific heat ratio for ideal gas law diverge remarkably from real gas models at a high inlet pressure. Simultaneously, the deviation of mass flow calculated by the ideal and real gas models reaches over 10 %. The difference increases with the lower of the inlet temperature regardless of the inlet pressure. A higher back pressure results in an earlier location of the shock wave. The pressure ratio of 0.72 is the first threshold to get the separator work normally. The second threshold is 0.95, in which case the whole flow is subsonic and cannot reach the choked state. The shock position moves upstream with the real gas model compared to the ideal gas law in the cyclonic separation section.

  11. Fictional Separation Logic

    DEFF Research Database (Denmark)

    Jensen, Jonas Buhrkal; Birkedal, Lars

    2012-01-01

    , separation means physical separation. In this paper, we introduce \\emph{fictional separation logic}, which includes more general forms of fictional separating conjunctions P * Q, where "*" does not require physical separation, but may also be used in situations where the memory resources described by P and Q...

  12. Separation vortices and pattern formation

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Schnipper, Teis

    2010-01-01

    In this paper examples are given of the importance of flow separation for fluid patterns at moderate Reynolds numbers—both in the stationary and in the time-dependent domain. In the case of circular hydraulic jumps, it has been shown recently that it is possible to generalise the Prandtl–Kármán–P...... results for the vortex patterns behind a flapping foil in a flowing soap film, which shows the interaction and competition between the vortices shed from the round leading edge (like the von Kármán vortex street) and those created at the sharp trailing edge....

  13. Lost in Location

    DEFF Research Database (Denmark)

    Hansen, Lone Koefoed

    2009-01-01

    traversed. While becoming destination aware, the individual loses her location awareness. The article proposes that the reason people get lost when using sat-nav is due to a wrong location-performative paradigm. As an alternative, the article introduces and analyzes two performance-related examples...... that illustrate an alternative location-performative paradigm: Meredith Warner's Lost/Found knitting series and Etter and Schecht's Melodious Walkabout. In both examples, the artist's hand becomes the intermediary between alien and location. Thus, by exploring how wayfinding can be a poetically situated...... performance, the article examines how the growing locative media industry can learn from the location-aware performative strategies employed by artists who create situated and urban performances for the curious participant. The academic frames employed in the analysis draw on psychogeography, site...

  14. Internet Geo-Location

    Science.gov (United States)

    2017-12-01

    INTERNET GEO-LOCATION DUKE UNIVERSITY DECEMBER 2017 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED STINFO COPY AIR...REPORT TYPE FINAL TECHNICAL REPORT 3. DATES COVERED (From - To) MAY 2014 – MAY 2017 4. TITLE AND SUBTITLE INTERNET GEO-LOCATION 5a. CONTRACT...of SpeedTest servers that are used by end users to measure the speed of their Internet connection. The servers log the IP address and the location

  15. Smart Location Database - Service

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Smart Location Database (SLD) summarizes over 80 demographic, built environment, transit service, and destination accessibility attributes for every census block...

  16. Smart Location Database - Download

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Smart Location Database (SLD) summarizes over 80 demographic, built environment, transit service, and destination accessibility attributes for every census block...

  17. Hydrodynamic blood plasma separation in microfluidic channels

    DEFF Research Database (Denmark)

    Jouvet, Lionel

    2010-01-01

    The separation of red blood cells from plasma flowing in microchannels is possible by biophysical effects such as the Zweifach–Fung bifurcation law. In the present study, daughter channels are placed alongside a main channel such that cells and plasma are collected separately. The device is aimed...

  18. Application of Shark Skin Flow Control Techniques to Airflow

    Science.gov (United States)

    Morris, Jackson Alexander

    Due to millions of years of evolution, sharks have evolved to become quick and efficient ocean apex predators. Shark skin is made up of millions of microscopic scales, or denticles, that are approximately 0.2 mm in size. Scales located on the shark's body where separation control is paramount (such as behind the gills or the trailing edge of the pectoral fin) are capable of bristling. These scales are hypothesized to act as a flow control mechanism capable of being passively actuated by reversed flow. It is believed that shark scales are strategically sized to interact with the lower 5% of a boundary layer, where reversed flow occurs at the onset of boundary layer separation. Previous research has shown shark skin to be capable of controlling separation in water. This thesis aims to investigate the same passive flow control techniques in air. To investigate this phenomenon, several sets of microflaps were designed and manufactured with a 3D printer. The microflaps were designed in both 2D (rectangular) and 3D (mirroring shark scale geometry) variants. These microflaps were placed in a low-speed wind tunnel in the lower 5% of the boundary layer. Solid fences and a flat plate diffuser with suction were placed in the tunnel to create different separated flow regions. A hot film probe was used to measure velocity magnitude in the streamwise plane of the separated regions. The results showed that low-speed airflow is capable of bristling objects in the boundary layer. When placed in a region of reverse flow, the microflaps were passively actuated. Microflaps fluctuated between bristled and flat states in reverse flow regions located close to the reattachment zone.

  19. Numerical modelling of flow pattern for high swirling flows

    Directory of Open Access Journals (Sweden)

    Parra Teresa

    2015-01-01

    Full Text Available This work focuses on the interaction of two coaxial swirling jets. High swirl burners are suitable for lean flames and produce low emissions. Computational Fluid Dynamics has been used to study the isothermal behaviour of two confined jets whose setup and operating conditions are those of the benchmark of Roback and Johnson. Numerical model is a Total Variation Diminishing and PISO is used to pressure velocity coupling. Transient analysis let identify the non-axisymmetric region of reverse flow. The center of instantaneous azimuthal velocities is not located in the axis of the chamber. The temporal sampling evidences this center spins around the axis of the device forming the precessing vortex core (PVC whose Strouhal numbers are more than two for Swirl numbers of one. Influence of swirl number evidences strong swirl numbers are precursor of large vortex breakdown. Influence of conical diffusers evidence the reduction of secondary flows associated to boundary layer separation.

  20. Assessment on separate effect tests

    International Nuclear Information System (INIS)

    Bernard, M.; Kukita, Y.; Renault, C.

    1985-01-01

    In the general frame of Cathare assessment this operation is aimed to qualify the set of constitutive laws by reconstitution of experimental tests. The experimental tests are selected following 2 objectives: to be able to qualify separately (as far as possible) the constitutive laws, and, to cover the entire parameter range which is of interest for safety studies. This selection has led to a set of 135 separate effect tests taken from 15 experimental facilities and which can be arranged in 3 main categories: Adiabatic flow tests, without significant external heat exchange; non adiabatic flow tests, in which external heating or cooling is applied to the test section but not being driven by wall heat exchange; and, heat transfer tests, in which wall heat transfer plays the dominant role

  1. Amalgam-chromatographic separation of magnesium isotopes

    International Nuclear Information System (INIS)

    Klinskij, G.D.; Levkin, A.V.; Ivanov, S.A.

    1990-01-01

    Separation of magnesium isotopes within Mg(Hg)-MgI 2 system (in dimethylformamide) is conducted under amalgam-chromatographic conditions. Separation maximal degree, that is (1.09), for 24 Mg and 26 Mg and separation coefficient (α = 1.0089±0.006) are determined. Light isotopes are found to concentrate in the amalgam. Technique of thermal conversion of flows within amalgam-dimethylformamide system is suggested on the basis of reversible reaction of Ca-Mg element exchange

  2. Separation Anxiety (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Separation Anxiety KidsHealth / For Parents / Separation Anxiety What's in this ... both of you get through it. About Separation Anxiety Babies adapt pretty well to other caregivers. Parents ...

  3. Flow control inside a molten Zn pot for improving surface quality of zinc plated strips

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.H. [Samsung Techwin Co., Ltd. (Korea); Koh, M.S.; Kim, S. [Pohang University of Science and Technology Graduate School, Pohang (Korea)

    2001-10-01

    The flow fields inside a molten Zn pot of continuous hot-chip galvanizing process were investigated experimentally. With varying several parameters including the strip speed V{sub s}, flow rate Q of induction heater, scrapper location and baffle configuration, instantaneous velocity fields were measured using a PIV velocity field measurement technique. Inside the strip region, counter-clockwise rotating flow is dominant. The general flow pattern inside the strip region is nearly not influenced by the trip speed V{sub 2}, flow rate Q and the scrapper location. In the exit region, the flow separated from the moving strip due to the existence of a stabilizing roll ascends to the free surface, for the cases of no scrapper and scrapper detached form the roll. On the other hand, the ascending flow to the free surface is decreased, as the flow rate Q of induction heater increases. By installing a baffle around the uprising strip, the flow moving up to the stabilizing roll decreases. In addition, B-type baffle is better than A-type baffle in reducing speed of flow around the stabilizing rolls. However, the flow ascended to the free surface is largely influenced by changing the flow rate Q, and the scrapper location, irrespective of the baffle type. (author). 14 refs., 11 figs.

  4. System and method of plasma particle separation

    International Nuclear Information System (INIS)

    Schmidt, G.; Halpern, G.M.; Thomas, W.R.L.

    1975-01-01

    Several examples of the design are described to ionize flowing uranium or UF 6 vapour through laser beam and to conduct the thus produced flowing plasma into the region of a magnetic field gradient separating the isotopes. (GG/LH) [de

  5. Green facility location

    NARCIS (Netherlands)

    Velázquez Martínez, J.C.; Fransoo, J.C.; Bouchery, Y.; Corbett, C.J.; Fransoo, J.C.; Tan, T.

    2017-01-01

    Transportation is one of the main contributing factors of global carbon emissions, and thus, when dealing with facility location models in a distribution context, transportation emissions may be substantially higher than the emissions due to production or storage. Because facility location models

  6. Industrial location and competitiveness

    NARCIS (Netherlands)

    S. Brakman (Steven); J.H. Garretsen (Harry); J.G.M. van Marrewijk (Charles)

    2006-01-01

    textabstractThe interaction between the extent of location advantages and the intensity of firm competition relative to the size of the market jointly determines the location of industrial activity. Technology, factor endowments, geography, and scale economies are influential for determining

  7. In vivo 31P and 1H NMR studies of rat brain tumor pH and blood flow during acute hyperglycemia: Differential effects between subcutaneous and intracerebral locations

    International Nuclear Information System (INIS)

    Ross, B.D.; Mitchell, S.L.; Merkle, H.; Garwood, M.

    1989-01-01

    Surface coil NMR spectroscopy was used to monitor the hyperglycemia-induced alterations in pH and blood flow in vivo in C6 gliomas implanted both subcutaneously and intracerebrally in rats. Tumor pH was calculated from the chemical shift difference between PCr and Pi in the 31 P NMR spectra. Subcutaneous glioma pH decreased 0.8 units by 1 h after intraperitoneal administration of an aqueous 50% glucose solution (6 g glucose per kg body weight). In contrast, hyperglycemia failed to significantly alter the pH of intracerebral gliomas which were monitored for 90 min following administration of glucose. Tumor blood flow (TBF) was determined both pre- and post-glucose administration using deuterium NMR by monitoring the time course of D2O washout following intratumoral injection of saline D2O. Subcutaneous and intracerebral TBF were found to have an average change of -78.1% (range -47.4 to -93.3%, n = 5) and -21.1% (range +6.0 to -37.8%, n = 9), respectively. In addition, laser Doppler blood flow measurements of rat skin and subcutaneous glioma revealed a dramatic reduction in blood flow in both tissues following glucose administration. These results indicate that the effects of acute hyperglycemia are site dependent and that hyperglycemia alone is not beneficial for inducing intracellular acidosis in intracerebral tumors

  8. International taxation and multinational firm location decisions

    OpenAIRE

    Barrios Cobos, Salvador; Huizinga, Harry; Laeven, Luc; Nicodème, Gaëtan J.A.

    2008-01-01

    Using a large international firm-level data set, we estimate separate effects of host and parent country taxation on the location decisions of multinational firms. Both types of taxation are estimated to have a negative impact on the location of new foreign subsidiaries. In fact, the impact of parent country taxation is estimated to be relatively large, possibly reflecting its international discriminatory nature. For the cross-section of multinational firms, we find that parent firms tend to ...

  9. Mothers' Mobility after Separation : Do Grandmothers Matter?

    NARCIS (Netherlands)

    Das, Marjolijn; de Valk, Helga; Merz, Eva-Maria

    2017-01-01

    Starting from a life course perspective, this study aims to gain more insight into mobility patterns of recently separated mothers, focusing especially on moves to the location of their own mother: the maternal grandmother. Separated mothers, having linked lives with their own mothers, may benefit

  10. Mothers' Mobility after Separation: Do Grandmothers Matter?

    NARCIS (Netherlands)

    Das, M.; de Valk, H.A.G.; Merz, E.-M.

    2017-01-01

    Starting from a life course perspective, this study aims to gain more insight into mobility patterns of recently separated mothers, focusing especially on moves to the location of their own mother: the maternal grandmother. Separated mothers, having linked lives with their own mothers, may benefit

  11. Separation of Particles in Channels Rotary Engine

    Directory of Open Access Journals (Sweden)

    Zyatikov Pavel

    2015-01-01

    Full Text Available The article considers the separation of particles in channels with different relative length. It is shown that the intensity of turbulence at the inlet section of the channel varies considerably in its length. The dependence of the turbulence damping along the channel expressing by fraction of the distance is shown. The ratio of the particle separation efficiency out the gas flow in the rotor channel is defined. The values of particle separation efficiency in the channel for the angle α=π/4 in turbulent aerosol flow is shows, including without mixing the particles.

  12. Hythane (H2 and CH4) production from unsaturated polyester resin wastewater contaminated by 1,4-dioxane and heavy metals via up-flow anaerobic self-separation gases reactor

    International Nuclear Information System (INIS)

    Mahmoud, Mohamed; Elreedy, Ahmed; Pascal, Peu; Sophie, Le Roux; Tawfik, Ahmed

    2017-01-01

    Highlights: • Bio-hythane production from polyester wastewater via UASG reactor was assessed. • Impacts of influent contamination by 1,4-dioxane and heavy metals were discussed. • Maximum volumetric H 2 and CH 4 productions of 0.12 and 1.06 L/L/d were achieved. • Significant drop in CH 4 production was resulted at OLR up to 1.07 ± 0.06 gCOD/L/d. • Bioenergy recovery through UASG economically achieved a net profit of 10,231 $/y. - Abstract: A long-term evaluation of hythane generation from unsaturated polyester resin wastewater contaminated by 1,4-dioxane and heavy metals was investigated in a continuous up-flow anaerobic self- separation gases (UASG) reactor inoculated with mixed culture. The reactor was operated at constant hydraulic retention time (HRT) of 96 h and different organic loading rates (OLRs) of 0.31 ± 0.04, 0.71 ± 0.08 and 1.07 ± 0.06 gCOD/L/d. Available data showed that volumetric hythane production rate was substantially increased from 0.093 ± 0.021 to 0.245 ± 0.016 L/L/d at increasing OLR from 0.31 ± 0.04 to 0.71 ± 0.08 gCOD/L/d. However, at OLR exceeding 1.07 ± 0.06 gCOD/L/d, it was dropped to 0.114 ± 0.016 L/L/d. The reactor achieved 1,4-dioxane removal efficiencies of 51.8 ± 2.8, 35.9 ± 1.6 and 26.3 ± 1.6% at initial 1,4-dioxane concentrations of 1.14 ± 0.28, 1.97 ± 0.41 and 4.21 ± 0.30 mg/L, respectively. Moreover, the effect and potential removal of the contaminated by heavy metals (i.e., Cu 2+ , Mn 2+ , Cr 3+ , Fe 3+ and Ni 2+ ) were highlighted. Kinetic modelling and microbial community dynamics were studied, according to each OLR, to carefully describe the UASG performance. The economic analysis showed a stable operation for the anaerobic digestion of unsaturated polyester resin wastewater using UASG, and the maximum net profit was achieved at OLR of 0.71 ± 0.08 gCOD/L/d.

  13. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)

    1996-08-01

    Ceramic gas separation membranes can provide very high separation factors if the pore size is sufficiently small to separate gas molecules by molecular sieving and if oversized pores are adequately limited. Ceramic membranes typically have some pores that are substantially larger than the mean pore size and that should be regarded as defects. To assess the effects of such defects on the performance of ceramic membranes, a simple mathematical model has been developed to describe flow through a gas separation membrane that has a primary mode of flow through very small pores but that has a secondary mode of flow through undesirably large pores. This model permits separation factors to be calculated for a specified gas pair as a function of the molecular weights and molecular diameters of the gases, the membrane pore diameter, and the diameter and number of defects. This model will be described, and key results from the model will be presented. The separation factors of the authors membranes continue to be determined using a permeance test system that measures flows of pure gases through a membrane at temperatures up to 275{degrees}C. A primary goal of this project for FY 1996 is to develop a mixed gas separation system for measuring the separation efficiency of membranes at higher temperatures. Performance criteria have been established for the planned mixed gas separation system and design of the system has been completed. The test system is designed to measure the separation efficiency of membranes at temperatures up to 600{degrees}C and pressures up to 100 psi by separating the constituents of a gas mixture containing hydrogen. The system will accommodate the authors typical experimental membrane that is tubular and has a diameter of about 9 mm and a length of about 23 cm. The design of the new test system and its expected performance will be discussed.

  14. Contribution to the study of recirculating flows

    International Nuclear Information System (INIS)

    Grand, Dominique

    1975-01-01

    The technology of the integrated primary circuit of French LMFBR type reactors involves many difficulties relating to heat transfer and hydraulics of the sodium masses inside the reactor. The work reported was a basic research supporting said reactor type development. Recirculating flows were studied inside a rectangular cavity, in the presence of body forces. Results given were obtained from numerical simulation, experimental investigation and a formal theoretical analysis. Solutions were obtained using the numerical integration of the conservation equation for a planar isothermal laminar flow driven by a mobile wall. The turbulent flow was experimentally investigated, the fluid being then driven through a mixing layer in common with a channel flow. Local velocity measurements in isothermal flow were effected using a laser-anemometer. In the occurrence of heat transfer, the temperature field only was scanned; complementary data were also obtained from color Schlieren vizualisation. A theoretical study of the flow was done at high Reynolds number. The flow inside the cavity was then separated in two parts: an external part (the non-viscous core) located at the center of the cavity and an internal part, the shear region, about the walls. An inclusive solution connecting both parts was developed in the framework of the laminar flow; results obtained are in good agreement with the numerical data. (author) [fr

  15. On recent developments in marginal separation theory.

    Science.gov (United States)

    Braun, S; Scheichl, S

    2014-07-28

    Thin aerofoils are prone to localized flow separation at their leading edge if subjected to moderate angles of attack α. Although 'laminar separation bubbles' at first do not significantly alter the aerofoil performance, they tend to 'burst' if α is increased further or if perturbations acting upon the flow reach a certain intensity. This then either leads to global flow separation (stall) or triggers the laminar-turbulent transition process within the boundary layer flow. This paper addresses the asymptotic analysis of the early stages of the latter phenomenon in the limit as the characteristic Reynolds number [Formula: see text], commonly referred to as marginal separation theory. A new approach based on the adjoint operator method is presented that enables the fundamental similarity laws of marginal separation theory to be derived and the analysis to be extended to higher order. Special emphasis is placed on the breakdown of the flow description, i.e. the formation of finite-time singularities (a manifestation of the bursting process), and on its resolution being based on asymptotic arguments. The passage to the subsequent triple-deck stage is described in detail, which is a prerequisite for carrying out a future numerical treatment of this stage in a proper way. Moreover, a composite asymptotic model is developed in order for the inherent ill-posedness of the Cauchy problems associated with the current flow description to be resolved.

  16. New separation technique. Catalytically functionated separation membrane

    Energy Technology Data Exchange (ETDEWEB)

    Urgami, Tadashi [Kansai Univ., Osaka (Japan)

    1989-02-01

    This report introduces research examples, showing the fundamental principle of the membrane by separating the catalytically functionated separation membrane into enzyme fixing separation membrane, polymerized metal complex separation membrane and polymer catalyst separation membrane. This membrane can achieve both functions of separation and catalytic reaction simultaneously and has sufficient possibility to combine powerful functions. Enzyme fixing separation membrane is prepared by carrier combination method, bridging method or covering method and the enzyme fixing method with polymerized complex in which enzyme is controlled to prevent the activity lowering as much as possible and enzyme is fixed from an aqueous solution into polymer membrane. This membrane is applied to the continuous manufacturing of invert sugar from cane sugar and adsorption and removing of harmful substances from blood by utilizing both micro-capsuled urease and active carbon. Alginic acid-copper (II) complex membrane is used for the polymerized metal complex membrane and polystyrene sulfonate membrane is used for the polymer catalyst separation membrane. 28 refs., 4 figs., 1 tabs.

  17. Actinide Separation Demonstration Facility, Tarapur

    International Nuclear Information System (INIS)

    Vishwaraj, I.

    2017-01-01

    Partitioning of minor actinide from high level waste could have a substantial impact in lowering the radio toxicity associated with high level waste as well as it will reduce the burden on geological repository. In Indian context, the partitioned minor actinide could be routed into the fast breeder reactor systems scheduled for commissioning in the near period. The technological breakthrough in solvent development has catalyzed the partitioning programme in India, leading to the setting up and hot commissioning of the Actinide Separation Demonstration Facility (ASDF) at BARC, Tarapur. The engineering scale Actinide Separation Demonstration Facility (ASDF) has been retrofitted in an available radiological hot cell situated adjacent to the Advanced Vitrification Facility (AVS). This location advantage ensures an uninterrupted supply of high-level waste and facilitates the vitrification of the high-level waste after separation of minor actinides

  18. Allegheny County Dam Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the point locations of dams in Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  19. Smart Location Mapping

    Science.gov (United States)

    The Smart Location Database, Access to Jobs and Workers via Transit, and National Walkability Index tools can help assess indicators related to the built environment, transit accessibility, and walkability.

  20. OAS :: Our Locations

    Science.gov (United States)

    the Human Resources of the OAS, including its organizational structure, each organizational unit's contract and travel control measure reports, the applicable procurement rules and regulations, and the Charter Organizational Charts Organizational List Authorities Our Locations Contact Us Telephone: +1 (202

  1. VT Hospital Site Locations

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This data layer contains point locations of all major community, regional, comprehensive health, and healthcare provider hospitals in the state of...

  2. SGA Project Locations

    Data.gov (United States)

    Vermont Center for Geographic Information — The stream geomorphic assessment is a physical assessment competed by geomorphologists to determine the condition and sensitivity of a stream. The SGA locations...

  3. Waste Recovery Locations

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Locations where City residents are encouraged to drop off and dispose or recycle of unwanted materials. Information provided is subject to change. Please call ahead...

  4. Global Volcano Locations Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC maintains a database of over 1,500 volcano locations obtained from the Smithsonian Institution Global Volcanism Program, Volcanoes of the World publication. The...

  5. USAID Activity Locations

    Data.gov (United States)

    US Agency for International Development — The USAID Activities dataset is a snapshot of activities supported by USAID including their geographical locations within countries at the time of the snapshot. The...

  6. Uranium Location Database

    Data.gov (United States)

    U.S. Environmental Protection Agency — A GIS compiled locational database in Microsoft Access of ~15,000 mines with uranium occurrence or production, primarily in the western United States. The metadata...

  7. AFRICOM: Does Location Matter?

    Science.gov (United States)

    2009-03-01

    Decision Model,” 242-244. 26 Susan Hesse Owen & Mark S. Daskin , “Strategic Facility Location: A Review,” European Journal of Operational Research...Susan Hesse & Mark S. Daskin . “Strategic Facility Location: A Review,” European Journal of Operational Research 111 (1998), 423-447. Paye-Layeleh...ES) N/ A 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and

  8. On English Locative Subjects

    Directory of Open Access Journals (Sweden)

    Gabriela Brůhová

    2017-07-01

    Full Text Available The paper analyses English sentences with thematic locative subjects. These subjects were detected as translation counterparts of Czech sentenceinitial locative adverbials realized by prepositional phrases with the prepositions do (into, na (on, v/ve (in, z/ze (from complemented by a noun. In the corresponding English structure, the initial scene-setting adverbial is reflected in the thematic subject, which results in the locative semantics of the subject. The sentences are analysed from syntactic, semantic and FSP aspects. From the syntactic point of view, we found five syntactic patterns of the English sentences with a locative subject (SV, SVA, SVO, SVpassA and SVCs that correspond to Czech sentences with initial locative adverbials. On the FSP level the paper studies the potential of the sentences to implement the Presentation or Quality Scale. Since it is the “semantic content of the verb that actuates the presentation semantics of the sentence” (Duškova, 2015a: 260, major attention is paid to the syntactic-semantic structure of the verb. The analysis of the semantics of the English sentences results in the identification of two semantic classes of verbs which co-occur with the English locative subject.

  9. Additive property of separative power

    International Nuclear Information System (INIS)

    Yamamoto, Ichiro; Kanagawa, Akira

    1980-01-01

    A separative power of a separating element, whose heads and tails separation factors are α and β, is expressed by phi sub(b)(α, β) = [α(β - 1)1n α - (α - 1)1n β]/(αβ - 1) for the unit flow of the desired material and phi sub(a)(α, β) (= phi sub(b)(β, α)) for that of undesired material. The additive properties of the functions phi sub(b) and phi sub(a) were demonstrated by calculations of various types of ideal cascades, but the origin of the property is not obvious. The present study has furnished the mathematical basis of the additivity based on the special functional equation. First, for symmetric processes (α = β), the functional equation which describes the function representing the quality of separation f(α, α) concerning the desired material was obtained and solved to give the functional form of f(α, α). The result was extented to the function f(α, β) representing the quality of asymmetric separation (α not equal β). The derived function f(α, β) was demonstrated to be equal to phi sub(b)(α, β), and it was verified that functions phi sub(b)(α, β) and phi sub(a)(α, β) have the additive property in themselves. (author)

  10. Evaluating oil/water separators

    International Nuclear Information System (INIS)

    Murdoch, M.A.

    1993-01-01

    Four commercially available oil/water separators were tested at an oil refinery test facility. The separators were the Alfa-Laval OFPX 413 disk-stack centrifuge, the Conoco Vortoil hydrocyclone system, International Separation Technology's Intr-Septor 250, and a modified Flo Trend gravity separator. Each machine was tested against mixtures of salt water and crude oil, and mixtures of salt water and a water-in-oil emulsion. The impact on separator performance from simulated sea motion, and from the addition of emulsion breakers and debris to the influent, were also evaluated. The test equipment, instrumentation, analysis facilities, test plans, and procedures to conduct the tests are described, but test results are not reported. Recommendations for improved test procedures are included. The inability to accurately monitor flow rates was found to have the greatest negative impact on test performance and results. Aspects of the test program that worked well included the use of flexible and semi-rigid hoses for customizing the test setups, the use of modular and leased tanks, and the sea motion simulator swing table design. 3 refs., 2 tabs

  11. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Adcock, K.D.; Fain, D.E.; James, D.L.; Powell, L.E.; Raj, T.; Roettger, G.E.; Sutton, T.G. [East Tennessee Technology Park, Oak Ridge, TN (United States)

    1997-12-01

    The separative performance of the authors` ceramic membranes has been determined in the past using a permeance test system that measured flows of pure gases through a membrane at temperatures up to 275 C. From these data, the separation factor was determined for a particular gas pair from the ratio of the pure gas specific flows. An important project goal this year has been to build a Mixed Gas Separation System (MGSS) for measuring the separation efficiencies of membranes at higher temperatures and using mixed gases. The MGSS test system has been built, and initial operation has been achieved. The MGSS is capable of measuring the separation efficiency of membranes at temperatures up to 600 C and pressures up to 100 psi using a binary gas mixture such as hydrogen/methane. The mixed gas is fed into a tubular membrane at pressures up to 100 psi, and the membrane separates the feed gas mixture into a permeate stream and a raffinate stream. The test membrane is sealed in a stainless steel holder that is mounted in a split tube furnace to permit membrane separations to be evaluated at temperatures up to 600 C. The compositions of the three gas streams are measured by a gas chromatograph equipped with thermal conductivity detectors. The test system also measures the temperatures and pressures of all three gas streams as well as the flow rate of the feed stream. These data taken over a range of flows and pressures permit the separation efficiency to be determined as a function of the operating conditions. A mathematical model of the separation has been developed that permits the data to be reduced and the separation factor for the membrane to be determined.

  12. Numerical study of an impinging jet to a turbulent channel flow in a T-Junction configuration

    Science.gov (United States)

    Georgiou, Michail; Papalexandris, Miltiadis

    2016-11-01

    In this talk we report on Large Eddy Simulations of an impinging planar jet to a turbulent channel flow in a T-Junction configuration. Due to its capacity for mixing and heat transfer enhancement, this type of flow is encountered in various industrial applications. In particular, our work is related to the emergency cooling systems of pressurized water reactors. As is well known, this type of flow is dominated by a large separation bubble downstream the jet impingement location. Secondary regions of flow separation are predicted both upstream and downstream the impinging jet. We describe how these separation regions interact with the shear layer that is formed by the injection of the jet to the crossflow, and how they affect the mixing process. In our talk we further examine the influence of the jet's velocity to characteristic quantities of the jet, such as penetration length and expansion angle, as well as to the first and second-order statistics of the flow.

  13. Experimental Investigation of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions

    Science.gov (United States)

    Hultgren, Lennart S.; Volino, Ralph J.

    2002-01-01

    Modern low-pressure turbine airfoils are subject to increasingly stronger pressure gradients as designers impose higher loading in an effort to improve efficiency and to reduce part count. The adverse pressure gradients on the suction side of these airfoils can lead to boundary-layer separation, particularly under cruise conditions. Separation bubbles, notably those which fail to reattach, can result in a significant degradation of engine efficiency. Accurate prediction of separation and reattachment is hence crucial to improved turbine design. This requires an improved understanding of the transition flow physics. Transition may begin before or after separation, depending on the Reynolds number and other flow conditions, has a strong influence on subsequent reattachment, and may even eliminate separation. Further complicating the problem are the high free-stream turbulence levels in a real engine environment, the strong pressure gradients along the airfoils, the curvature of the airfoils, and the unsteadiness associated with wake passing from upstream stages. Because of the complicated flow situation, transition in these devices can take many paths that can coexist, vary in importance, and possibly also interact, at different locations and instances in time. The present work was carried out in an attempt to systematically sort out some of these issues. Detailed velocity measurements were made along a flat plate subject to the same nominal dimensionless pressure gradient as the suction side of a modern low-pressure turbine airfoil ('Pak-B'). The Reynolds number based on wetted plate length and nominal exit velocity, Re, was varied from 50;000 to 300; 000, covering cruise to takeoff conditions. Low, 0.2%, and high, 7%, inlet free-stream turbulence intensities were set using passive grids. These turbulence levels correspond to about 0.2% and 2.5% turbulence intensity in the test section when normalized with the exit velocity. The Reynolds number and free

  14. Heat exchanger leakage problem location

    Directory of Open Access Journals (Sweden)

    Jícha Miroslav

    2012-04-01

    Full Text Available Recent compact heat exchangers are very often assembled from numerous parts joined together to separate heat transfer fluids and to form the required heat exchanger arrangement. Therefore, the leak tightness is very important property of the compact heat exchangers. Although, the compact heat exchangers have been produced for many years, there are still technological problems associated with manufacturing of the ideal connection between the individual parts, mainly encountered with special purpose heat exchangers, e.g. gas turbine recuperators. This paper describes a procedure used to identify the leakage location inside the prime surface gas turbine recuperator. For this purpose, an analytical model of the leaky gas turbine recuperator was created to assess its performance. The results obtained are compared with the experimental data which were acquired during the recuperator thermal performance analysis. The differences between these two data sets are used to indicate possible leakage areas.

  15. Implementation of suitable flow injection/sequential-sample separation/preconcentration schemes for determination of trace metal concentrations using detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Wang, Jianhua

    2002-01-01

    Various preconditioning procedures encomprising appropriate separation/preconcentration schemes in order to obtain optimal sensitivity and selectivity characteristics when using electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS...

  16. Active Control of Jet Engine Inlet Flows

    National Research Council Canada - National Science Library

    Rediniotis, Othon; Bowersox, Rodney; Kirk, Aaron; Kumar, Abhinav; Tichenor, Nathan

    2007-01-01

    ...), flow visualization tests, particle image velocimetry (PIV), pressure probe and wall static tap experiments at various locations, the development and evolution of the secondary flow structures were observed...

  17. Design and fabrication of a micro fluidic circuit for the separation of micron sized particles

    CSIR Research Space (South Africa)

    Khumalo, F

    2009-07-01

    Full Text Available The development of a micro fluidic circuit for the separation of micro particles is being investigated. There are a wide range of available separation techniques such as acoustic, laminar flow, split flow, optical trapping and centrifugal forces...

  18. The Three Dimensional Flow Field at the Exit of an Axial-Flow Turbine Rotor

    Science.gov (United States)

    Lakshminarayana, B.; Ristic, D.; Chu, S.

    1998-01-01

    A systematic and comprehensive investigation was performed to provide detailed data on the three dimensional viscous flow phenomena downstream of a modem turbine rotor and to understand the flow physics such as origin, nature, development of wakes, secondary flow, and leakage flow. The experiment was carried out in the Axial Flow Turbine Research Facility (AFTRF) at Penn State, with velocity measurements taken with a 3-D LDV System. Two radial traverses at 1% and 10% of chord downstream of the rotor have been performed to identify the three-dimensional flow features at the exit of the rotor blade row. Sufficient spatial resolution was maintained to resolve blade wake, secondary flow, and tip leakage flow. The wake deficit is found to be substantial, especially at 1% of chord downstream of the rotor. At this location, negative axial velocity occurs near the tip, suggesting flow separation in the tip clearance region. Turbulence intensities peak in the wake region, and cross- correlations are mainly associated with the velocity gradient of the wake deficit. The radial velocities, both in the wake and in the endwall region, are found to be substantial. Two counter-rotating secondary flows are identified in the blade passage, with one occupying the half span close to the casino and the other occupying the half span close to the hub. The tip leakage flow is well restricted to 10% immersion from the blade tip. There are strong vorticity distributions associated with these secondary flows and tip leakage flow. The passage averaged data are in good agreement with design values.

  19. Electromagnetic Separator of a Plasma

    International Nuclear Information System (INIS)

    Gasilin, Vladimir V.; Nezovibat'ko, Yuriy N.; Poklipach, Grigoriy S.; Shvets, Oleg M.; Taran, Valeriy S.; Tereshin, Vladimir I.

    2006-01-01

    Simple freestanding 90 deg. filter is used for obtaining the metallic vacuum coatings. As the source of metallic plasma adapted standard cathode vaporizer on the installation ''Bulat 6''. Plasma flow from the cathode flowed through the not protected by isolation spiral (solenoid). The solenoid outlet from the side of cathode find under the floating potential. The second solenoid outlet was connected to the autonomous power supply. Solenoid was prepared with the wide interval of the coil winding and with the turning to 90 degrees. Therefore, drifting charged of particle can freely depart from the interior of solenoid outside. The glow of the turned flow of plasma is observed during the supplying to the cathode and the solenoid. Flow is separation from the coils and is extended along the axis of solenoid. In this case over the solenoid flow the current 20-90 A, the voltage of solenoid relative to vessel (earth) + 15 V. We assume, that this device ensures radial electric field relative to the basic nucleus of the plasma (diameter of the nucleus of plasma column it is commensurate with the diameter of cathode) and the current of solenoid creates the longitudinal magnetic field (estimated order 20 oersted). Magnetic field strength is sufficient for the magnetization of electrons, but it is very small for the ions and the charged microdroplets. The carried out experiments on the application of coatings on the dielectric substrate with the use of aluminum and titanium cathodes showed the effectiveness of the work of this separator. Coatings without the drops are obtained also on the glass substrate with HF- displacement. The reflective properties of the metallic films (Ti,Al) on the glass samples were measured

  20. General minisum circle location

    DEFF Research Database (Denmark)

    Körner, Mark; Brimberg, Jack; Juel, Henrik

    2009-01-01

    In our paper we approximate a set of given points by a general circle. More precisely, we consider the problem of locating and scaling the unit ball of some given norm k1 with respect to xed points on the plane such that the sum of weighted distances between the circle and the xed points is minim......In our paper we approximate a set of given points by a general circle. More precisely, we consider the problem of locating and scaling the unit ball of some given norm k1 with respect to xed points on the plane such that the sum of weighted distances between the circle and the xed points...