EU-NORSEWInD - Investigation of Flow Distoration Effects on Offshore Instrumentation
DEFF Research Database (Denmark)
Stickland, Matt; Scanlon, Tom; Fabre, Sylvie
of which is the availability of good quality data to facilitate better project planning, accurate yield prediction, and a fundamentally better understanding of the working environment and local climatology. To address this issue the common convention is to mount instrumentation in offshore locations...... to assess the local wind conditions. Part of the overall NORSEWInD project is the use of LiDAR remote sensing (RS) systems mounted on offshore platforms to measure wind velocity profiles at a number of locations offshore. The data acquired from the offshore RS measurements will be fed into a large and novel....... It was obvious that the airflow data measured above the mounting platforms would be distorted by the presence of the platform. However; the extent to which the flow field above the various mounting platforms would be distorted was unknown. Therefore, part of the fundamental research incorporated...
Taxonomia de distorções contábeis
Directory of Open Access Journals (Sweden)
José Humberto da Cruz Cunha
2017-05-01
Full Text Available http://dx.doi.org/10.5007/1518-2924.2017v22n49p127 Discute o uso de uma taxonomia de distorções contábeis provenientes de erros e fraudes, voltada para o uso dos auditores na análise dos riscos e escolha dos procedimentos de auditoria. Sua elaboração segue as orientações conceituais da classificação facetada, por meio de levantamento conceitual em pesquisa bibliográfica. A taxonomia apresentada possui como categorias fundamentais as fases da informação, aspectos essenciais, afirmações, ciclos de recursos, subciclos de recursos, distorções contábeis e afirmações (objetivos de auditoria. É apresentada a metodologia de elaboração da taxonomia, bem como a sua aplicabilidade na auditoria contábil como instrumento de organização da informação e do conhecimento. Conclui que, a partir dos exemplos utilizados, é possível afirmar que a taxonomia orienta a análise das distorções como uma trilha de auditoria, padronizando os conceitos identificados na linguagem natural em uma estrutura de classificação padronizada.
Taxonomia de distorções contábeis
José Humberto da Cruz Cunha; Rogério Henrique de Araújo Júnior
2017-01-01
http://dx.doi.org/10.5007/1518-2924.2017v22n49p127 Discute o uso de uma taxonomia de distorções contábeis provenientes de erros e fraudes, voltada para o uso dos auditores na análise dos riscos e escolha dos procedimentos de auditoria. Sua elaboração segue as orientações conceituais da classificação facetada, por meio de levantamento conceitual em pesquisa bibliográfica. A taxonomia apresentada possui como categorias fundamentais as fases da informação, aspectos essenciais, afirmações, ci...
Distorções cognitivas: comparação entre uma amostra forense e uma amostra normativa
Nunes, Nádia Sofia Santos
2012-01-01
Mestrado em Psicologia Comunitária e Proteção de Menores Com este trabalho pretendeu-se explorar a associação entre distorções cognitivas e comportamento agressivo e, consoante esta associação, se as distorções vão influenciar comportamentos de empatia e sintomas clínicos (como depressão, stress pós-traumático, hipervigilância, psicopatia e baixa auto-estima), numa amostra portuguesa composta por estudantes universitários e reclusos. Todos os participantes eram do sexo masculino. A amostra...
Auditorias e distorções: ênfase nas atividades de anotação de enfermagem
Directory of Open Access Journals (Sweden)
Creso Machado Lopes
1998-03-01
Full Text Available Estudo junto a 34 Relatórios de Auditorias Técnico-Contábil, empreendidos em Unidades de Saúde de Rio Branco-Acre, nos anos de 1994/95, envolvendo as atividades do SIA-SIH/SUS. Como objetivo analisou-se as distorções encontradas, segundo 8 categorias em diferentes áreas de atuação, dando ênfase nas atividades de anotações de enfermagem. Estabeleceu-se também sub-categorias, as quais foram agrupadas por semelhanças de conteúdo. Nas 34 auditorias encontrou-se 491 distorções, representando uma média de 14,4 distorções por unidades. Como resultados mais significativos das categorias, destaca-se as 198(40,6% distorções em Administração; 121(24,6% em Medicina; 99(20,2% em Enfermagem e 51(10,2% em Contabilidade. Dentro das sub-categorias em Enfermagem, cita-se as 34(34,3% distorções em anotação de enfermagem e 15(15,1% na administração de medicamentos. Como conclusão encontrou-se que o pessoal de enfermagem não vem seguindo as regras de anotação de enfermagem, colocando em risco não só o paciente, como também o profissional e a própria unidade de saúde. Tais resultados, acredita-se, em muito contribuirão com os técnicos envolvidos na produção, controle e auditoria nos recursos oriundos do SUS.
Pulsatile pipe flow transition: Flow waveform effects
Brindise, Melissa C.; Vlachos, Pavlos P.
2018-01-01
Although transition is known to exist in various hemodynamic environments, the mechanisms that govern this flow regime and their subsequent effects on biological parameters are not well understood. Previous studies have investigated transition in pulsatile pipe flow using non-physiological sinusoidal waveforms at various Womersley numbers but have produced conflicting results, and multiple input waveform shapes have yet to be explored. In this work, we investigate the effect of the input pulsatile waveform shape on the mechanisms that drive the onset and development of transition using particle image velocimetry, three pulsatile waveforms, and six mean Reynolds numbers. The turbulent kinetic energy budget including dissipation rate, production, and pressure diffusion was computed. The results show that the waveform with a longer deceleration phase duration induced the earliest onset of transition, while the waveform with a longer acceleration period delayed the onset of transition. In accord with the findings of prior studies, for all test cases, turbulence was observed to be produced at the wall and either dissipated or redistributed into the core flow by pressure waves, depending on the mean Reynolds number. Turbulent production increased with increasing temporal velocity gradients until an asymptotic limit was reached. The turbulence dissipation rate was shown to be independent of mean Reynolds number, but a relationship between the temporal gradients of the input velocity waveform and the rate of turbulence dissipation was found. In general, these results demonstrated that the shape of the input pulsatile waveform directly affected the onset and development of transition.
Directory of Open Access Journals (Sweden)
Heydrich Lopes Virgulino de Medeiros
2010-01-01
Full Text Available OBJETIVO: O objetivo deste estudo foi identificar as principais distorções do pensamento (DP em pacientes deprimidos, sua frequência, bem como se há relação delas com dados clínicos e sociodemográficos. Método: Estudo descritivo de corte transversal com 75 voluntários entre 18 e 65 anos, residentes na cidade de João Pessoa/PB. Aplicaram-se a escala SCID - I, apenas a parte dedicada ao diagnóstico de depressão, o Inventário de Beck para Depressão (IBD e questionários para avaliação de dados clínicos e sociodemográficos. Foram pesquisadas as principais distorções do pensamento descritas na literatura. RESULTADOS: As distorções do pensamento mais prevalentes foram desesperança (69,3%, hipocondria (62,7%, ideias de fracasso (61,3% e desejo de morte (60,0%. As DP ideias de culpa, desejo de morte e ideias suicidas foram as únicas a ocorrerem exclusivamente em pacientes com IBD > 10. Apenas 13,3% dos pacientes não apresentaram no momento da entrevista nenhuma distorção do pensamento. Houve associação estatisticamente significativa entre várias DP e variáveis clínicas e sociodemográficas (p OBJECTIVE: This study aimed to identify the main thought distortions (TD in depressed patients, their frequency as well as if there is any relation of such distortions with the clinical and sociodemographical data. METHOD: Descriptive study of transversal cut involving 75 volunteers between 18 and 65 years old, dwellers of João Pessoa/PB. The SCID-I scale was used, but just the part devoted to depression diagnosis, the Beck Depression Inventory (BDI and questionnaires for evaluating the clinical and socio-demographical data. The main thought distortions, described in the literature, were researched. RESULTS: The most prevalent thought distortions were hopelessness (69,3%, hypochondria (62,7%, failure ideas (61,3% and death desire (60,0%. The thought distortions (TD referring to guilt ideas, death desire and suicidal ideas were the
Effect of Equilibrium Flow on Plasma Parameters
International Nuclear Information System (INIS)
Mukhopadhyay, S.; Lahiri, S.; Sakanaka, P.H.; Dasgupta, B.
2003-01-01
The transition to high confinement modes have been identified with the occurrence of strong shear flow near the plasma boundary. Plasma flow has also been associated with various instabilities, heating and other physical processes. As a result, it has become very important to study the effect of such flows on various plasma parameters. In this paper, we present the numerical solution of plasma equilibrium with incompressible toroidal and poloidal flows in several magnetic confinement configurations including tokamaks. The code, which was reported in the last conference, has been used to solve the problem in both circular and D-shaped devices. A parametric study on the generation of shear flow due to radial electric fields has been carried out. Through this study, it has been possible to generate plasma equilibria having sharp pressure gradients which are remarkably close to those reported in various H-mode experiments. The effects of flow on reverse shear equilibria and on the position of the magnetic axis has been studied. Finally, a detailed study has been carried out to understand the effect of flows on important plasma parameters, such as the poloidal flux function, β, energy confinement time
Pressure Effect on Entrance Flow
DEFF Research Database (Denmark)
Christensen, Jens Horslund; Couch, Mark
1997-01-01
The paper reports on experimentally determined pressure drops associated with orifice and capillary dies, where the exit pressure is elevated. The effect of hydrostatic pressure up to 70 MPa is reported for PS, LDPE and PP melts.......The paper reports on experimentally determined pressure drops associated with orifice and capillary dies, where the exit pressure is elevated. The effect of hydrostatic pressure up to 70 MPa is reported for PS, LDPE and PP melts....
Thermoinduced plastic flow and shape memory effects
Directory of Open Access Journals (Sweden)
Xiao Heng
2011-01-01
Full Text Available We propose an enhanced form of thermocoupled J2-flow models of finite deformation elastoplasticity with temperature-dependent yielding and hardening behaviour. The thermomechanical constitutive structure of these models is rendered free and explicit in the rigorous sense of thermodynamic consistency. Namely, with a free energy function explicitly introduced in terms of almost any given form of the thermomechanical constitutive functions, the requirements from the second law are identically fulfilled with positive internal dissipation. We study the case when a dependence of yielding and hardening on temperature is given and demonstrate that thermosensitive yielding with anisotropic hardening may give rise to appreciable plastic flow either in a process of heating or in a cyclic process of heating/cooling, thus leading to the findings of one- and two-way thermoinduced plastic flow. We then show that such theoretical findings turn out to be the effects found in shape memory materials, such as one- and two-way memory effects. Thus, shape memory effects may be explained to be thermoinduced plastic flow resulting from thermosensitive yielding and hardening behaviour. These and other relevant facts may suggest that, from a phenomenological standpoint, thermocoupled elastoplastic J2-flow models with thermosensitive yielding and hardening may furnish natural, straightforward descriptions of thermomechanical behaviour of shape memory materials.
Directory of Open Access Journals (Sweden)
Cristiane A. Kasse
2002-10-01
Full Text Available Introdução: O núcleo do nervo facial e do núcleo olivar superior são conectados por fibras, desta forma uma lesão nesta conecção poderia interferir na função das células ciliadas externas, alterando o exame de emissão otoacústica por produtos de distorção (EOAPD. Objetivo: Observar a possibilidade da paralisia de Bell afetar a função das células ciliadas externas através da EOAPD. Forma do Estudo: Prospectivo clínico. Material e Método: Quarenta pacientes com paralisia de Bell foram comparados com 69 pacientes normais (grupo controle, usando EOAPD. Resultados: Os pacientes com paralisia de Bell e EOAPD alterados foram de 17,5% e no grupo controle de 7,2%, sem diferença estatística entre os valores. Não se observou também uma correlação entre o reflexo estapediano e o grau da paralisia facial com a EOAPD. Conclusão: Não observamos correlação entre EOAPD e a paralisia de Bell.Introduction: The facial nucleus and olivar nucleus are connected with fibers, then a lesion in this conection could interfer in the outer cell function changing the result of otoacoustic emission product distortion test (DPOE. Objective: To observe the possibility of Bell's palsy affect the function of outer hair cells, using the DPOE test. Study Design: Prospective clinical. Material and Method: Forty patients with Bell's palsy were compared with 69 patients without symptons (control group using DPOE. Results: The patients with Bell's palsy without DPOE response were 17.5% and in the control group, 7.2%, without statistical difference between them. We did not observe a correlation with stapedium reflex and degree of palsy and DPOE. Conclusion: There was no correlation with Bell's palsy and DPOE.
Surface roughness effects on turbulent Couette flow
Lee, Young Mo; Lee, Jae Hwa
2017-11-01
Direct numerical simulation of a turbulent Couette flow with two-dimensional (2-D) rod roughness is performed to examine the effects of the surface roughness. The Reynolds number based on the channel centerline laminar velocity (Uco) and channel half height (h) is Re =7200. The 2-D rods are periodically arranged with a streamwise pitch of λ = 8 k on the bottom wall, and the roughness height is k = 0.12 h. It is shown that the wall-normal extent for the logarithmic layer is significantly shortened in the rough-wall turbulent Couette flow, compared to a turbulent Couette flow with smooth wall. Although the Reynolds stresses are increased in a turbulent channel flow with surface roughness in the outer layer due to large-scale ejection motions produced by the 2-D rods, those of the rough-wall Couette flow are decreased. Isosurfaces of the u-structures averaged in time suggest that the decrease of the turbulent activity near the centerline is associated with weakened large-scale counter-rotating roll modes by the surface roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).
Directory of Open Access Journals (Sweden)
Jonathas Henrique Pereira
2016-03-01
Full Text Available Resumo Distorções em componentes soldados são alterações permanente de forma e dimensões resultantes das deformações plásticas que ocorrem devido as tensões térmicas desenvolvidas durante o processo de soldagem. Em função dos elevados custos para corrigir essas distorções de soldagem, existe grande interesse das indústrias em prever, monitorar e controlar estas distorções. Este trabalho compara as distorções ocorridas durante a soldagem de modelos de anel segmentado em escala reduzida com dois tipos de juntas (“X” e “V” utilizando a metodologia de monitoramento contínuo da evolução das distorções de soldagem com sensores a laser. Para o monitoramento contínuo são utilizados sensores a laser que são apoiados sobre a peça e os feixes foram projetados em um anteparo translúcido colocado em frente ao mesmo. Com a progressão da distorção durante a soldagem os feixes luminosos se movimentam pelo anteparo proporcionalmente a deformações ocorridas na peça. Os deslocamentos dos pontos luminosos refletidos no anteparo são filmados pelo lado oposto do anteparo. A discretização da filmagem permite analisar as deformações ao longo do processo soldagem e determinar a evolução das distorções em função do tempo. Foi confirmado que as soldagens realizadas em juntas em “X” apresentam menores valores de distorções que as juntas em “V”. Os resultados demostram que para os corpos de prova utilizados neste experimento pelo menos 60% da distorção ocorreu após a extinção do arco. Pelos testes experimentais foi possível afirmar que a técnica de monitoramento com sensores a laser é viável para utilizar na indústria e laboratórios de soldagem, porém faz-se necessário otimizar o processamento dos dados obtidos pela filmagem, permitindo um monitoramento instantâneo. A informação sobre a evolução das distorções durante a soldagem será útil para definir e monitorar de forma mais eficiente o
Gravity Effects in Microgap Flow Boiling
Robinson, Franklin; Bar-Cohen, Avram
2017-01-01
Increasing integration density of electronic components has exacerbated the thermal management challenges facing electronic system developers. The high power, heat flux, and volumetric heat generation of emerging devices are driving the transition from remote cooling, which relies on conduction and spreading, to embedded cooling, which facilitates direct contact between the heat-generating device and coolant flow. Microgap coolers employ the forced flow of dielectric fluids undergoing phase change in a heated channel between devices. While two phase microcoolers are used routinely in ground-based systems, the lack of acceptable models and correlations for microgravity operation has limited their use for spacecraft thermal management. Previous research has revealed that gravitational acceleration plays a diminishing role as the channel diameter shrinks, but there is considerable variation among the proposed gravity-insensitive channel dimensions and minimal research on rectangular ducts. Reliable criteria for achieving gravity-insensitive flow boiling performance would enable spaceflight systems to exploit this powerful thermal management technique and reduce development time and costs through reliance on ground-based testing. In the present effort, the authors have studied the effect of evaporator orientation on flow boiling performance of HFE7100 in a 218 m tall by 13.0 mm wide microgap cooler. Similar heat transfer coefficients and critical heat flux were achieved across five evaporator orientations, indicating that the effect of gravity was negligible.
Effective diffusion in laminar convective flows
International Nuclear Information System (INIS)
Rosenbluth, M.N.; Berk, H.L.; Doxas, I.; Horton, W.
1987-03-01
The effective diffusion coefficient D* of a passive component, such as test particles, dye, temperature, magnetic flux, etc., is derived for motion in periodic two-dimensional incompressible convective flow with characteristic velocity v and size d in the presence of an intrinsic local diffusivity D. Asymptotic solutions for effective diffusivity D*(P) in the large P limit, with P ∼ vd/D, is shown to be of the form D* = cDP/sup 1/2/ with c being a coefficient that is determined analytically. The constant c depends on the geometry of the convective cell and on an average of the flow speed along the separatrix. The asymptotic method of evaluation applies to both free boundary and rough boundary flow patterns and it is shown that the method can be extended to more complicated patterns such as the flows generated by rotating cylinders, as in the problem considered by Nadim, Cox, and Brenner [J. Fluid Mech., 164: 185 (1986)]. The diffusivity D* is readily calculated for small P, but the evaluation for arbitrary P requires numerical methods. Monte Carlo particle simulation codes are used to evaluate D* at arbitrary P, and thereby describe the transition for D* between the large and small P limits
Downstream Effects on Orbiter Leeside Flow Separation for Hypersonic Flows
Buck, Gregory M.; Pulsonetti, Maria V.; Weilmuenster, K. James
2005-01-01
Discrepancies between experiment and computation for shuttle leeside flow separation, which came to light in the Columbia accident investigation, are resolved. Tests were run in the Langley Research Center 20-Inch Hypersonic CF4 Tunnel with a baseline orbiter model and two extended trailing edge models. The extended trailing edges altered the wing leeside separation lines, moving the lines toward the fuselage, proving that wing trailing edge modeling does affect the orbiter leeside flow. Computations were then made with a wake grid. These calculations more closely matched baseline experiments. Thus, the present findings demonstrate that it is imperative to include the wake flow domain in CFD calculations in order to accurately predict leeside flow separation for hypersonic vehicles at high angles of attack.
Thermal radiation effects on hydromagnetic flow
International Nuclear Information System (INIS)
Abdelkhalek, M.M.
2005-01-01
Numerical results are presented for the effects of thermal radiation, buoyancy and heat generation or absorption on hydromagnetic flow over an accelerating permeable surface. These results are obtained by solving the coupled nonlinear partial differential equations describing the conservation of mass, momentum and energy by a perturbation technique. This qualitatively agrees with the expectations, since the magnetic field exerts a retarding force on the free convection flow. A parametric study is performed to illustrate the influence of the radiation parameter, magnetic parameter, Prandtl number, Grashof number and Schmidt number on the profiles of the velocity components and temperature. The effects of the different parameters on the velocity and temperature profiles as well as the skin friction and wall heat transfer are presented graphically. Favorable comparisons with previously published work confirm the correctness of numerical results
Structural effects on electromagnetic flow coupler performance
International Nuclear Information System (INIS)
Aoyama, Goro; Yokota, Norikatsu; Mine, Masao; Watanabe, Takashi; Takuma, Tadasu; Takenaka, Kiyoshi.
1992-01-01
A prototype electromagnetic flow coupler was tested using 300degC liquid sodium to estimate the effect on performance of generator flow velocity, magnetic flux density, magnetic core length and bus bar length. Its performance was not affected by changes in fluid velocity and magnetic flux density up to 8.3 m/s and 0.51 T, respectively. Besides the experiments, a two-dimensional numerical analysis program based on Ohm's law and the current continuity equation was prepared to estimate the effects of magnetic core length and bus bar construction. The current transferred from the generator to the pump, the current transfer ratio, increased by lengthening the magnetic core being a maximum of 0.706 for a 100 mm core and 0.764 for a 300 mm core. The numerical results showed that the presence of the bus bar in the outer region of the magnetic core gave inferior performance to that in its absence. (author)
Surface Effects on Nanoscale Gas Flows
Beskok, Ali; Barisik, Murat
2010-11-01
3D MD simulations of linear Couette flow of argon gas confined within nano-scale channels are performed in the slip, transition and free molecular flow regimes. The velocity and density profiles show deviations from the kinetic theory based predictions in the near wall region that typically extends three molecular diameters (s) from each surface. Utilizing the Irwin-Kirkwood theorem, stress tensor components for argon gas confined in nano-channels are investigated. Outside the 3s region, three normal stress components are identical, and equal to pressure predicted using the ideal gas law, while the shear stress is a constant. Within the 3s region, the normal stresses become anisotropic and the shear stress shows deviations from its bulk value due to the surface virial effects. Utilizing the kinetic theory and MD predicted shear stress values, the tangential momentum accommodation coefficient for argon gas interacting with FCC structured walls (100) plane facing the fluid is calculated to be 0.75; this value is independent of the Knudsen number. Results show emergence of the 3s region as an additional characteristic length scale in nano-confined gas flows.
Effect of surface wettability on flow patterns in vertical gas-liquid two-phase flow
International Nuclear Information System (INIS)
Nakamura, D.
2005-01-01
To examine the effect of the surface characteristics on the flow regime in two-phase flow, visualization study was performed using three test pipes, namely a no-coating pipe, a water-attracting coating pipe, a water-shedding coating pipe. Three flow regime maps were obtained based on the visual observation in the three pipes. In the water-attracting coating pipe, the slug flow-to-churn flow transition boundary was shifted to higher gas velocity at a given liquid velocity, whereas the churn flow-to-annular flow transition boundary was shifted to lower gas velocity at a given liquid velocity. In the water shedding coating pipe, the inverted-churn flow regime was observed in the region where the churn flow regime was to be observed in a no-coating pipe, whereas the droplet flow regime was observed in the region where the annular flow regime was to be observed in a no-coating pipe. The criteria for the slug flow-to-inverted-churn flow transition and the inverted-churn flow-to-droplet flow transition were modeled by force balance approaches. The modeled transition criteria could predict the observed flow transition boundaries reasonably well. (authors)
Gursoy, Kadir Ali; Yavuz, Mehmet Metin
2014-11-01
In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.
Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell
International Nuclear Information System (INIS)
Jiao, Kui; Bachman, John; Zhou, Yibo; Park, Jae Wan
2014-01-01
Highlights: • 3D numerical works to study the effect of cross flow on the PEMFC performance. • The cross flow ensure more evenly distributed water and oxygen in the CL. • The optimal net power output can be identified by controlling the back pressure. • Results confirm that present design is effective in improving performance. - Abstract: The cross flow in proton exchange membrane fuel cells (PEMFCs) plays an important role in changing the transport pattern and performance. In this study, three-dimensional numerical simulations are carried out to investigate the effect of induced cross flow on the flow pattern and performance of a PEMFC with a previously proposed and experimentally studied novel parallel flow channel design. The numerical results indicate that the liquid water and oxygen become more evenly distributed in the catalyst layer (CL) as the pressure difference between the low-pressure and high-pressure flow channels increases. It has been found that, in the low-pressure channels, the cross flow drives a convective flow from the CL to the flow channel resulting in improved liquid water removal. The optimal net power output can be identified by controlling the back pressure on the high-pressure flow channels. The numerical results confirm that this novel parallel flow channel design is effective in improving PEMFC performance
On effects of topography in rotating flows
Burmann, Fabian; Noir, Jerome; Jackson, Andrew
2017-11-01
Both, seismological studies and geodynamic arguments suggest that there is significant topography at the core mantle boundary (CMB). This leads to the question whether the topography of the CMB could influence the flow in the Earth's outer core. As a preliminary experiment, we investigate the effects of bottom topography in the so-called Spin-Up, where motion of a contained fluid is created by a sudden increase of rotation rate. Experiments are performed in a cylindrical container mounted on a rotating table and quantitative results are obtained with particle image velocimetry. Several horizontal length scales of topography (λ) are investigated, ranging from cases where λ is much smaller then the lateral extend of the experiment (R) to cases where λ is a fraction of R. We find that there is an optimal λ that creates maximum dissipation of kinetic energy. Depending on the length scale of the topography, kinetic energy is either dissipated in the boundary layer or in the bulk of the fluid. Two different phases of fluid motion are present: a starting flow in the from of solid rotation (phase I), which is later replaced by meso scale vortices on the length scale of bottom topography (phase II).
Effect of wall wettability on flow characteristics of gas-liquid two-phase flow
International Nuclear Information System (INIS)
Uematsu, Junichi; Abe, Kazuya; Hazuku, Tatsuya; Takamasa, Tomoji; Hibiki, Takashi
2007-01-01
To evaluate the effect of surface wettability in pipe wall on flow characteristics in a vertical upward gas-liquid to-phase flow, visualization study was performed using three test pipes, namely an acrylic pipe, a hydrophilic pipe, a hydrophobic pipe. Such basic flow characteristics as flow patterns and void fraction were investigated in these three pipes. In the hydrophilic pipe, the slug flow-to-churn flow transition boundary was shifted to higher gas velocity condition at a given liquid velocity, whereas the churn flow-to-annular flow transition boundary was shifted to lower gas velocity condition at a given liquid velocity. In the hydrophobic pipe, the inverted-churn flow regime was observed in the region where the churn flow regime was observed in the acrylic pipe, whereas the droplet flow regime was observed in the region where the annular flow regime was observed in the acrylic pipe. At high-gas flow rate condition, the mean void fraction in the hydrophobic pipe took relatively higher value to that in the acrylic pipe. (author)
Effect of TIPS placement on portal and splanchnic arterial blood flow in 4-dimensional flow MRI
Energy Technology Data Exchange (ETDEWEB)
Stankovic, Zoran [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); University Medical Center Freiburg, Department of Diagnostic Radiology and Medical Physics, Freiburg (Germany); Roessle, Martin; Schultheiss, Michael [University Medical Center Freiburg, Department of Gastroenterology, Freiburg (Germany); Euringer, Wulf; Langer, Mathias [University Medical Center Freiburg, Department of Diagnostic Radiology and Medical Physics, Freiburg (Germany); Salem, Riad; Barker, Alex; Carr, James; Collins, Jeremy D. [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Chicago, IL (United States)
2015-09-15
To assess changes in portal and splanchnic arterial haemodynamics in patients undergoing transjugular intrahepatic portosystemic shunt (TIPS) using four-dimensional (4D) flow MRI, a non-invasive, non-contrast imaging technique. Eleven patients undergoing TIPS implantation were enrolled. K-t GRAPPA accelerated non-contrast 4D flow MRI of the liver vasculature was applied with acceleration factor R = 5 at 3Tesla. Flow analysis included three-dimensional (3D) blood flow visualization using time-resolved 3D particle traces and semi-quantitative flow pattern grading. Quantitative evaluation entailed peak velocities and net flows throughout the arterial and portal venous (PV) systems. MRI measurements were taken within 24 h before and 4 weeks after TIPS placement. Three-dimensional flow visualization with 4D flow MRI revealed good image quality with minor limitations in PV flow. Quantitative analysis revealed a significant increase in PV flow (562 ± 373 ml/min before vs. 1831 ± 965 ml/min after TIPS), in the hepatic artery (176 ± 132 ml/min vs. 354 ± 140 ml/min) and combined flow in splenic and superior mesenteric arteries (770 ml/min vs. 1064 ml/min). Shunt-flow assessment demonstrated stenoses in two patients confirmed and treated at TIPS revision. Four-dimensional flow MRI might have the potential to give new information about the effect of TIPS placement on hepatic perfusion. It may explain some unexpected findings in clinical observation studies. (orig.)
Effect of flow conditions on flow accelerated corrosion in pipe bends
International Nuclear Information System (INIS)
Mazhar, H.; Ching, C.Y.
2015-01-01
Flow Accelerated Corrosion (FAC) in piping systems is a safety and reliability problem in the nuclear industry. In this study, the pipe wall thinning rates and development of surface roughness in pipe bends are compared for single phase and two phase annular flow conditions. The FAC rates were measured using the dissolution of test sections cast from gypsum in water with a Schmidt number of 1280. The change in location and levels of maximum FAC under single phase and two phase flow conditions are examined. The comparison of the relative roughness indicates a higher effect for the surface roughness in single phase flow than in two phase flow. (author)
Effect of a flow-corrective insert on the flow pattern in a pebble bed reactor
Energy Technology Data Exchange (ETDEWEB)
Li, Yu; Gui, Nan; Yang, Xingtuan [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); Tu, Jiyuan [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); School of Aerospace, Mechanical & Manufacturing Engineering, RMIT University, Melbourne 3083, VIC (Australia); Jiang, Shengyao, E-mail: shengyaojiang@sina.com [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)
2016-04-15
Highlights: • Effect of an insert on improving flow uniformity and eliminating stagnant zone is studied. • Three values concerned with the stagnant zone, radial uniformity and flow sequence are used. • Outlet diameter is a critical parameter that determines balancing mechanism of the insert. • Height/location is varied to let the insert work in unbalanced region and avoid adverse effect. - Abstract: A flow-corrective insert is adopted in the pebble-bed high temperature gas-cooled reactor (HTGR) to improve flow performance of the pebble flow for the first time. 3D discrete element method (DEM) modeling is employed to study this slow and dense granular flow. It is verified that locating a properly designed insert in the bed can help transform unsatisfactory flow field to the preferred flow pattern for pebble bed reactors. Three characteristic values on the stagnant zone, radial uniformity and flow sequence of pebble flow are defined to evaluate uniformity of the overall flow field quantitatively. The results demonstrate that the pebble bed equipped with an insert performs better than normal beds from all these three aspects. Moreover, based on numerical experiments, several universal tips for insert design on height, location and outlet diameter are suggested.
International Nuclear Information System (INIS)
He Yong; Zou Wen-Kang; Song Sheng-Yi
2011-01-01
In modern pulsed power systems, magnetically insulated transmission lines (MITLs) are used to couple power between the driver and the load. The circuit parameters of MITLs are well understood by employing the concept of flow impedance derived from Maxwell's equations and pressure balance across the flow. However, the electron density in an MITL is always taken as constant in the application of flow impedance. Thus effects of electron flow current density (product of electron density and drift velocity) in an MITL are neglected. We calculate the flow impedances of an MITL and compare them under three classical MITL theories, in which the electron density profile and electron flow current density are different from each other. It is found that the assumption of constant electron density profile in the calculation of the flow impedance is not always valid. The electron density profile and the electron flow current density have significant effects on flow impedance of the MITL. The details of the electron flow current density and its effects on the operation impedance of the MITL should be addressed more explicitly by experiments and theories in the future. (nuclear physics)
The effect of ultrasound on arterial blood flow: 1. Steady fully developed flow
International Nuclear Information System (INIS)
Bestman, A.R.
1990-12-01
The paper models the effects of ultrasound heating of the tissues and the resultant perturbation on blood flow in the arteries and veins. It is assumed that the blood vessel is rigid and the undisturbed flow is fully developed. Acoustical perturbation on this Poiseuille flow, for the general three-dimensional flow with heat transfer in an infinitely long pipe is considered. Closed form analytical solutions are obtained to the problem. It is discovered that the effects of the ultrasound heating are concentrated at the walls of the blood vessels. (author). 4 refs
Inertia effects in rheometrical flow systems
Waterman, H.A.
1976-01-01
The flow field of a linear viscoelastic material in the orthogonal rheometer, taking fluid inertia into account, has been studied theoretically and an exact solution is given. The flow field of a Newtonian liquid is included in this solution as a special case. The forces on the plates are readily
The effect of sympathectomy on bone blood flow in man
International Nuclear Information System (INIS)
Lahtinen, T.; Alhava, E.M.; Hyoedynmaa, S.; Hendolin, H.; Oksala, I.
1982-01-01
The effect of lumbar sympathectomy on bone blood flow was measured in seven patients with a Xe-133 washout method. On the third postoperative day there was a significant increase of blood flow in the proximal femur and a slight increase in the proximal tibia. Two months after the operation blood flow in the proximal part of the femur was no more significantly increased but in the proximal tibia there was a significant increase. The study suggests that the positive effect of sympathectomy on bone blood flow may be of value in cases where the increase of blood flow to peripheral bones is required
Effects of Pulsating Flow on Mass Flow Balance and Surge Margin in Parallel Turbocharged Engines
Thomasson, Andreas; Eriksson, Lars
2015-01-01
The paper extends a mean value model of a parallel turbocharged internal combustion engine with a crank angle resolved cylinder model. The result is a 0D engine model that includes the pulsating flow from the intake and exhaust valves. The model captures variations in turbo speed and pressure, and therefore variations in the compressor operating point, during an engine cycle. The model is used to study the effect of the pulsating flow on mass flow balance and surge margin in parallel turbocha...
Chaotic Flows Correlation effects and coherent structures
Bakunin, Oleg G
2011-01-01
The book introduces readers to and summarizes the current ideas and theories about the basic mechanisms for transport in chaotic flows. Typically no single paradigmatic approach exists as this topic is relevant for fields as diverse as plasma physics, geophysical flows and various branches of engineering. Accordingly, the dispersion of matter in chaotic or turbulent flows is analyzed from different perspectives. Partly based on lecture courses given by the author, this book addresses both graduate students and researchers in search of a high-level but approachable and broad introduction to the topic.
The effect of debris-flow composition on runout distance
de Haas, Tjalling; Braat, Lisanne; Leuven, Jasper; Lokhorst, Ivar; Kleinhans, Maarten
2015-04-01
Estimating runout distance is of major importance for the assessment and mitigation of debris-flow hazards. Debris-flow runout distance depends on debris-flow composition and topography, but state-of-the-art runout prediction methods are mainly based on topographical parameters and debris-flow volume, while composition is generally neglected or incorporated in empirical constants. Here we experimentally investigated the effect of debris-flow composition and topography on runout distance. We created the first small-scale experimental debris flows with self-formed levees, distinct lobes and morphology and texture accurately resembling natural debris flows. In general, the effect of debris-flow composition on runout distance was larger than the effect of topography. Enhancing channel slope and width, outflow plain slope, debris-flow size and water fraction leads to an increase in runout distance. However, runout distance shows an optimum relation with coarse-material and clay fraction. An increase in coarse-material fraction leads to larger runout distances by increased grain collisional forces and more effective levee formation, but too much coarse debris causes a large accumulation of coarse debris at the flow front, enhancing friction and decreasing runout. An increase in clay fraction initially enlarges the volume and viscosity of the interstitial fluid, liquefying the flow and enhancing runout, while a further increase leads to very viscous flows with high yield strength, reducing runout. These results highlight the importance and further need of research on the relation between debris-flow composition and runout distance. Our experiments further provide valuable insight on the effects of debris-flow composition on depositional mechanisms and deposit morphology.
Effects of confidence and anxiety on flow state in competition.
Koehn, Stefan
2013-01-01
Confidence and anxiety are important variables that underlie the experience of flow in sport. Specifically, research has indicated that confidence displays a positive relationship and anxiety a negative relationship with flow. The aim of this study was to assess potential direct and indirect effects of confidence and anxiety dimensions on flow state in tennis competition. A sample of 59 junior tennis players completed measures of Competitive State Anxiety Inventory-2d and Flow State Scale-2. Following predictive analysis, results showed significant positive correlations between confidence (intensity and direction) and anxiety symptoms (only directional perceptions) with flow state. Standard multiple regression analysis indicated confidence as the only significant predictor of flow. The results confirmed a protective function of confidence against debilitating anxiety interpretations, but there were no significant interaction effects between confidence and anxiety on flow state.
Effect of gas quantity on two-phase flow characteristics of a mixed-flow pump
Qiang Fu; Fan Zhang; Rongsheng Zhu; Xiuli Wang
2016-01-01
The inlet gas quantity has a great influence on the performance and inner flow characteristics of a mixed-flow pump. In this article, both numerical and experimental methods are used to carry out this research work. The effects under the steady gas volume fraction state and the transient gas quantity variation process on the mixed-flow pump are investigated and compared in detail. It could be concluded that the head of the mixed-flow pump shows slight decline at the low gas volume fraction st...
Effect of mean flow on the interaction between turbulence and zonal flow
International Nuclear Information System (INIS)
Uzawa, Ken; Kishimoto, Yasuaki; Li Jiquan
2006-01-01
The effects of an external mean flow on the generation of zonal flow in drift wave turbulence are theoretically studied in terms of a modulational instability analysis. A dispersion relation for the zonal flow instability having complex frequency ω q =Ω q +iγ q is derived, which depends on the external mean flow's amplitude |φ f | and radial wave number k f . As an example, we chose an ion temperature gradient (ITG) turbulence-driven zonal flow as the mean flow acting on an electron temperature gradient (ETG) turbulence-zonal flow system. The growth rate of the zonal flow γ q is found to be suppressed, showing a relation γ q =γ q0 (1 - α|φ f | 2 k f 2 ), where γ q0 is the growth rate in the absence of mean flow and α is a positive numerical constant. This formula is applicable to a strong shearing regime where the zonal flow instability is stabilized at α|φ f 2 |k f 2 ≅ 1. Meanwhile, the suppression is accompanied by an increase of the real frequency |Ω q |. The underlying physical mechanism of the suppression is discussed. (author)
Anthropogenic effect on avalanche and debris flow activity
S. A. Sokratov; Yu. G. Seliverstov; A. L. Shnyparkov; K. P. Koltermann
2013-01-01
The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoida...
Effects of Potential Lane-Changing Probability on Uniform Flow
International Nuclear Information System (INIS)
Tang Tieqiao; Huang Haijun; Shang Huayan
2010-01-01
In this paper, we use the car-following model with the anticipation effect of the potential lane-changing probability (Acta Mech. Sin. 24 (2008) 399) to investigate the effects of the potential lane-changing probability on uniform flow. The analytical and numerical results show that the potential lane-changing probability can enhance the speed and flow of uniform flow and that their increments are related to the density.
Rosemurgy, A S; McAllister, E W; Godellas, C V; Goode, S E; Albrink, M H; Fabri, P J
1995-12-01
With the advent of transjugular intrahepatic porta-systemic stent shunt and the wider application of the surgically placed small diameter prosthetic H-graft portacaval shunt (HGPCS), partial portal decompression in the treatment of portal hypertension has received increased attention. The clinical results supporting the use of partial portal decompression are its low incidence of variceal rehemorrhage due to decreased portal pressures and its low rate of hepatic failure, possibly due to maintenance of blood flow to the liver. Surprisingly, nothing is known about changes in portal hemodynamics and effective hepatic blood flow following partial portal decompression. To prospectively evaluate changes in portal hemodynamics and effective hepatic blood flow brought about by partial portal decompression, the following were determined in seven patients undergoing HGPCS: intraoperative pre- and postshunt portal vein pressures and portal vein-inferior vena cava pressure gradients, intraoperative pre- and postshunt portal vein flow, and pre- and postoperative effective hepatic blood flow. With HGPCS, portal vein pressures and portal vein-inferior vena cava pressure gradients decreased significantly, although portal pressures remained above normal. In contrast to the significant decreases in portal pressures, portal vein blood flow and effective hepatic blood flow do not decrease significantly. Changes in portal vein pressures and portal vein-inferior vena cava pressure gradients are great when compared to changes in portal vein flow and effective hepatic blood flow. Reduction of portal hypertension with concomitant maintenance of hepatic blood flow may explain why hepatic dysfunction is avoided following partial portal decompression.
Effective diffusion in time-periodic linear planar flow
International Nuclear Information System (INIS)
Indeikina, A.; Chang, H.
1993-01-01
It is shown that when a point source of solute is inserted into a time-periodic, unbounded linear planar flow, the large-time, time-average transport of the solute can be described by classical anisotropic diffusion with constant effective diffusion tensors. For a given vorticity and forcing period, elongational flow is shown to be the most dispersive followed by simple shear and rotational flow. Large-time diffusivity along the major axis of the time-average concentration ellipse, whose alignment is predicted from the theory, is shown to increase with vorticity for all flows and decrease with increasing forcing frequency for elongational flow and simple shear. For the interesting case of rotational flow, there exist discrete resonant frequencies where the time-average major diffusivity reaches local maxima equal to the time-average steady flow case with zero forcing frequency
Inertial Effects on Flow and Transport in Heterogeneous Porous Media.
Nissan, Alon; Berkowitz, Brian
2018-02-02
We investigate the effects of high fluid velocities on flow and tracer transport in heterogeneous porous media. We simulate fluid flow and advective transport through two-dimensional pore-scale matrices with varying structural complexity. As the Reynolds number increases, the flow regime transitions from linear to nonlinear; this behavior is controlled by the medium structure, where higher complexity amplifies inertial effects. The result is, nonintuitively, increased homogenization of the flow field, which leads in the context of conservative chemical transport to less anomalous behavior. We quantify the transport patterns via a continuous time random walk, using the spatial distribution of the kinetic energy within the fluid as a characteristic measure.
Effect of material flows on energy intensity in process industries
Energy Technology Data Exchange (ETDEWEB)
Liu, Liru; Aye, Lu [International Technologies Center (IDTC), Department of Civil and Environmental Engineering, The University of Melbourne, Victoria 3010 (Australia); Lu, Zhongwu [Institute of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zhang, Peihong [Department of Municipal and Environmental Engineering, Shenyang Architecture University, Shenyang 110168 (China)
2006-09-15
Many energy-intensive process industries have complex material flows, which have a strong effect on the overall energy intensity of the final product (OEIF). This problem, however, has only been recognised qualitatively due to the lack of quantitative analysis methods. This paper presents an in-depth quantitative analysis of the effect of material flows on energy intensity in process industries. Based on the concept of a standard material flow diagram (SMFD), as used in steel manufacturing, the SMFD for a generic process industry was first developed. Then material flow scenarios were addressed in a practical material flow diagram (PMFD) using the characteristics of practical process industries. The effect of each material flow deviating from a SMFD on the OEIF was analysed. The steps involved in analysing the effect of material flows in a PMFD on its energy intensity are also discussed in detail. Finally, using 1999 statistical data from the Chinese Zhenzhou alumina refinery plant, the PMFD and SMFD for this plant were constructed as a case study. The effect of material flows on the overall energy intensity of alumina (OEIA) was thus analysed quantitatively. To decrease OEIA, the process variations which decrease the product ratios could be employed in all except in multi-supplied fraction cases. In these cases, the fractions from the stream with lower energy intensities should be increased. (author)
Effects of Core Cavity on a Flow Distribution
Energy Technology Data Exchange (ETDEWEB)
Kwon, Tae-Soon; Kim, Kihwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
The axial pressure drop is removed in the free core condition, But the actual core has lots of fuel bundles and mixing vanes to the flow direction. The axial pressure drop induces flow uniformity. In a uniform flow having no shear stress, the cross flow or cross flow mixing decreases. The mixing factor is important in the reactor safety during a Steam Line Break (SLB) or Main Steam Line Break (MSLB) transients. And the effect of core cavity is needed to evaluate the realistic core mixing factor quantification. The multi-dimensional flow mixing phenomena in a core cavity has been studied using a CFD code. The 1/5-scale model was applied for the reactor flow analysis. A single phase water flow conditions were considered for the 4-cold leg and DVI flows. To quantify the mixing intensity, a boron scalar was introduced to the ECC injection water at cold legs and DVI nozzles. The present CFD pre-study was performed to quantify the effects of core structure on the mixing phenomena. The quantified boron mixing scalar in the core simulator model represented the effect of core cavity on the core mixing phenomena. This simulation results also give the information for sensor resolution to measure the boron concentration in the experiments and response time to detect mixing phenomena at the core and reactor vessel.
Torsion effect on fully developed flow in a helical pipe
Kao, Hsiao C.
1987-01-01
Two techniques, a series expansion method of perturbed Poiseuille flow valid for low Dean numbers and a solution of the complete Navier-Stokes equation applicable to intermediate Dean values, are used to investigate the torsion effect on the fully developed laminar flow in a helical pipe of constant circular cross section. For the secondary flow patterns, the results show that the presence of torsion can produce a significant effect if the ratio of the curvature to the torsion is of order unity. The secondary flow is distorted in these cases. It is noted that the torsion effect is, however, usually small, and that the secondary flow has the usual pattern of a pair of counter-rotating vortices of nearly equal strength.
Acute effects of hemodialysis on salivary flow rate and composition
Bots, C. P.; Brand, H. S.; Veerman, E. C. I.; Valentijn-Benz, M.; Henskens, Y. M. C.; Valentijn, R. M.; Vos, P. F.; Bijlsma, J. A.; ter Wee, P. M.; van Amerongen, B. M.; Nieuw Amerongen, A. V.
2007-01-01
To evaluate acute effects of hemodialysis (HD) on the salivary flow rate, pH and biochemical composition before, during and after completion of a dialysis session. Unstimulated whole saliva (UWS) and chewing-stimulated whole saliva (CH-SWS) were collected in 94 HD patients. Salivary flow rate, pH,
Linking flow, water quality and potential effects on aquatic biota ...
African Journals Online (AJOL)
Linking the potential effects of altered water quality on aquatic biota, that may result from a change in the flow (discharge) regime, is an essential step in the maintenance of riverine ecological functioning. Determination of the environmental flow requirement of a river (as well as other activities, such as classifying the ...
Geometrical effects on the airfoil flow separation and transition
Zhang, Wei; Cheng, Wan; Gao, Wei; Qamar, Adnan; Samtaney, Ravi
2015-01-01
We present results from direct numerical simulations (DNS) of incompressible flow over two airfoils, NACA-4412 and NACA-0012-64, to investigate the effects of the airfoil geometry on the flow separation and transition patterns at Re=104 and 10
Effect of fluocinolone acetonide cream on human skin blood flow
International Nuclear Information System (INIS)
Chimoskey, J.E.; Holloway, A. Jr.; Flanagan, W.J.
1975-01-01
Blood flow rate was measured in the forearm skin of human subjects exposed to ultraviolet irradiation. Blood flow was determined by the 133 Xe disappearance technique 18 hr after ultraviolet (UV) irradiation with a Westinghouse RS sunlamp held 10 inches from the skin for 10 min. Ultraviolet irradiation caused skin blood flow to increase. Application of fluocinolone acetonide cream, 0.025 percent, 4 times in the 16 hr following UV irradiation had no effect on either control skin blood flow or the UV-induced hyperemia
Side Flow Effect on Surface Generation in Nano Cutting.
Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong
2017-12-01
The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} , {110} , and {110} are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.
Predicting bifurcation angle effect on blood flow in the microvasculature.
Yang, Jiho; Pak, Y Eugene; Lee, Tae-Rin
2016-11-01
Since blood viscosity is a basic parameter for understanding hemodynamics in human physiology, great amount of research has been done in order to accurately predict this highly non-Newtonian flow property. However, previous works lacked in consideration of hemodynamic changes induced by heterogeneous vessel networks. In this paper, the effect of bifurcation on hemodynamics in a microvasculature is quantitatively predicted. The flow resistance in a single bifurcation microvessel was calculated by combining a new simple mathematical model with 3-dimensional flow simulation for varying bifurcation angles under physiological flow conditions. Interestingly, the results indicate that flow resistance induced by vessel bifurcation holds a constant value of approximately 0.44 over the whole single bifurcation model below diameter of 60μm regardless of geometric parameters including bifurcation angle. Flow solutions computed from this new model showed substantial decrement in flow velocity relative to other mathematical models, which do not include vessel bifurcation effects, while pressure remained the same. Furthermore, when applying the bifurcation angle effect to the entire microvascular network, the simulation results gave better agreements with recent in vivo experimental measurements. This finding suggests a new paradigm in microvascular blood flow properties, that vessel bifurcation itself, regardless of its angle, holds considerable influence on blood viscosity, and this phenomenon will help to develop new predictive tools in microvascular research. Copyright © 2016 Elsevier Inc. All rights reserved.
Richardson effects in turbulent buoyant flows
Biggi, Renaud; Blanquart, Guillaume
2010-11-01
Rayleigh Taylor instabilities are found in a wide range of scientific fields from supernova explosions to underwater hot plumes. The turbulent flow is affected by the presence of buoyancy forces and may not follow the Kolmogorov theory anymore. The objective of the present work is to analyze the complex interactions between turbulence and buoyancy. Towards that goal, simulations have been performed with a high order, conservative, low Mach number code [Desjardins et. al. JCP 2010]. The configuration corresponds to a cubic box initially filled with homogeneous isotropic turbulence with heavy fluid on top and light gas at the bottom. The initial turbulent field was forced using linear forcing up to a Reynolds number of Reλ=55 [Meneveau & Rosales, POF 2005]. The Richardson number based on the rms velocity and the integral length scale was varied from 0.1 to 10 to investigate cases with weak and strong buoyancy. Cases with gravity as a stabilizer of turbulence (gravity pointing up) were also considered. The evolution of the turbulent kinetic energy and the total kinetic energy was analyzed and a simple phenomenological model was proposed. Finally, the energy spectra and the isotropy of the flow were also investigated.
Effects of ship motions on laminar flow in tubes
Energy Technology Data Exchange (ETDEWEB)
Yan, B.H., E-mail: yanbh1986@163.co [Department of Nuclear Science and Engineering, Naval University of Engineering, 717 Jiefang Street, Wuhan 430033 (China); Yu, L. [Department of Nuclear Science and Engineering, Naval University of Engineering, 717 Jiefang Street, Wuhan 430033 (China); Yang, Y.H. [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China)
2010-01-15
The thermal-hydraulics of barge-mounted floating nuclear desalination plants is the incentive for this study. Laminar flow in tubes in heaving motion is modeled. The friction factor and heat transfer coefficient are obtained. All the equations of laminar flow in steady state are applicable for heeling motion. The effect of ship motions on the laminar developing region is also analyzed. The ship motions can weaken the boundary layer in the laminar developing region and strengthen the laminar frictional resistance. The effect of ship motions on the instability of laminar flow is also investigated. The ship motions do not affect the instability point, but they can shorten the distance between the instability point and the transition point, and cause the transition from laminar flow to turbulent flow to occur earlier.
Electrokinetic Flow in Microchannels with Finite Reservoir Size Effects
International Nuclear Information System (INIS)
Yan, D; Yang, C; Nguyen, N-T; Huang, X
2006-01-01
In electrokinetically-driven microfluidic applications, reservoirs are indispensable and have finite sizes. During operation processes, as the liquid level difference in reservoirs keeps changing as time elapses, the flow characteristics in a microchannel exhibit a combination of the electroosmotic flow and the time-dependent induced backpressure-driven flow. In this work, an assessment of the finite reservoir size effect on electroosmotic flows is presented theoretically and experimentally. A model is developed to describe the timedependent electrokinetic flow with finite reservoir size effects. The theoretical analysis shows that under certain conditions the finite reservoir size effect is significant. The important parameters that describe the effect of finite reservoir size on the flow characteristics are discussed. A new concept denoted as 'effective pumping period' is introduced to characterize the reservoir size effect. The proposed model clearly identifies the mechanisms of the finitereservoir size effects and is further confirmed by using micro-PIV technique. The results of this study can be used for facilitating the design of microfluidic devices
The effect of topography on pyroclastic flow mobility
Ogburn, S. E.; Calder, E. S.
2010-12-01
Pyroclastic flows are among the most destructive volcanic phenomena. Hazard mitigation depends upon accurate forecasting of possible flow paths, often using computational models. Two main metrics have been proposed to describe the mobility of pyroclastic flows. The Heim coefficient, height-dropped/run-out (H/L), exhibits an inverse relationship with flow volume. This coefficient corresponds to the coefficient of friction and informs computational models that use Coulomb friction laws. Another mobility measure states that with constant shear stress, planimetric area is proportional to the flow volume raised to the 2/3 power (A∝V^(2/3)). This relationship is incorporated in models using constant shear stress instead of constant friction, and used directly by some empirical models. Pyroclastic flows from Soufriere Hills Volcano, Montserrat; Unzen, Japan; Colima, Mexico; and Augustine, Alaska are well described by these metrics. However, flows in specific valleys exhibit differences in mobility. This study investigates the effect of topography on pyroclastic flow mobility, as measured by the above mentioned mobility metrics. Valley width, depth, and cross-sectional area all influence flow mobility. Investigating the appropriateness of these mobility measures, as well as the computational models they inform, indicates certain circumstances under which each model performs optimally. Knowing which conditions call for which models allows for better model selection or model weighting, and therefore, more realistic hazard predictions.
Anthropogenic effect on avalanche and debris flow activity
Directory of Open Access Journals (Sweden)
S. A. Sokratov
2013-01-01
Full Text Available The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoidable changes of the natural environment as the result of a construction and of use of the constructed infrastructure to be account for in corresponding planning of the protection measures.
Numerical studies of transverse curvature effects on transonic flow stability
Macaraeg, M. G.; Daudpota, Q. I.
1992-01-01
A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.
Effect of polymer additives on transition in pipe flow
Energy Technology Data Exchange (ETDEWEB)
Castro, W; Squire, W
1967-09-01
Small amounts of long-chain, water-soluble polymers have a marked effect on turbulent flow resulting in appreciable reduction of turbulent friction. The maximum reduction in pipe flow resistance is obtained at such low concentrations that the density and viscosity are not altered appreciably. The minimum friction curve varies as Re-2/3 and appears to be the same for all effective additives tested. The transition process is affected by these additives. Quantitative results are presented showing a reduction in the intensity of the turbulent flashes and the fraction of the time the flow is turbulent at a given Reynolds number. (13 refs.)
EFFECT OF ION ∇ B DRIFT DIRECTION ON TURBULENCE FLOW AND FLOW SHEAR
International Nuclear Information System (INIS)
FENZI, C; McKEE, G.R; BURRELL, K.H; CARLSTROM, T.N; FONCK, R.J; GROEBNER, R.J
2003-01-01
The divertor magnetic geometry has a significant effect on the poloidal flow and resulting flow shear of turbulence in the outer region of L-mode tokamak plasmas, as determined via two-dimensional measurements of density fluctuations with Beam Emission Spectroscopy on DIII-D. Plasmas with similar parameters, except that in one case the ion (del)B drift points towards the divertor X-point (lower single-null, LSN), and in the other case, the ion (del)B drift points away from the divertor X-point (upper single-null, USN), are compared. Inside of r/a=0.9, the turbulence characteristics (amplitude, flow direction, correlation lengths) are similar in both cases, while near r/a=0.92, a dramatic reversal of the poloidal flow of turbulence relative to the core flow direction is observed in plasmas with the ion (del)B drift pointing towards the divertor X-point. No such flow reversal is observed in plasmas with the ion (del)B drift pointing away from the divertor X-point. This poloidal flow reversal results in a significantly larger local shear in the poloidal turbulence flow velocity in plasmas with the ion (del)B drift pointing towards the divertor X-point. Additionally, these plasmas locally exhibit significant dispersion, with two distinct and counter-propagating turbulence modes. Likewise, the radial correlation length of the turbulence is reduced in these plasmas, consistent with biorthogonal decomposition measurements of dominant turbulence structures. The naturally occurring turbulence flow shear in these LSN plasmas may facilitate the LH transition that occurs at an input power of roughly one-half to one-third that of corresponding plasmas with the ion (del)B drift pointing away from the X-point
International Nuclear Information System (INIS)
Yan Chaoxing; Yan Changqi; Sun Licheng; Xing Dianchuan; Wang Yang
2013-01-01
On the basis of visual observation, the effects of aspect ratio on relationship between flow resistance and flow regime were investigated experimentally for two-phase flow in three rectangular channels with the same cross-section width of 43 mm and different heights of 1.41, 3 and 10 mm, respectively. According to the criteria in terms of restriction factor C o , the former two channels belong to narrow channel, whereas the last one is conventional channel. The experimental results show that the two-phase pressure drops in rectangular channel with different aspect ratios have different variation trends with the increase of the gas velocity. For the 10 mm channel, the gravitational pressure drop makes the major percentage of total pressure drop at low gas velocity while the frictional pressure drop is dominant for the 1.41 mm and 3 mm channels. With the increase of the gas flow rate, the frictional pressure drop contributes more to total pressure drop. The range of churn flow can be distinguished from its pressure drop characteristic in 10 mm channel. (authors)
Effects of Car Accidents on Three-Lane Traffic Flow
Directory of Open Access Journals (Sweden)
Jianzhong Chen
2014-01-01
Full Text Available A three-lane traffic flow model is proposed to investigate the effect of car accidents on the traffic flow. The model is an extension of the full velocity difference (FVD model by taking into account the lane changing. The extended lane-changing rules are presented to model the lane-changing behaviour. The cases that the car accidents occupy the exterior or interior lane, the medium lane, and two lanes are studied by numerical simulations. The time-space diagrams and the current diagrams are presented, and the traffic jams are investigated. The results show that the car accident has a different effect on the traffic flow when it occupies different lanes. The car accidents have a more serious effect on the whole road when they occupy two lanes. The larger the density is, the greater the influence on the traffic flow becomes.
Effect of the mitral valve on diastolic flow patterns
International Nuclear Information System (INIS)
Seo, Jung Hee; Vedula, Vijay; Mittal, Rajat; Abraham, Theodore; Dawoud, Fady; Luo, Hongchang; Lardo, Albert C.
2014-01-01
The leaflets of the mitral valve interact with the mitral jet and significantly impact diastolic flow patterns, but the effect of mitral valve morphology and kinematics on diastolic flow and its implications for left ventricular function have not been clearly delineated. In the present study, we employ computational hemodynamic simulations to understand the effect of mitral valve leaflets on diastolic flow. A computational model of the left ventricle is constructed based on a high-resolution contrast computed-tomography scan, and a physiological inspired model of the mitral valve leaflets is synthesized from morphological and echocardiographic data. Simulations are performed with a diode type valve model as well as the physiological mitral valve model in order to delineate the effect of mitral-valve leaflets on the intraventricular flow. The study suggests that a normal physiological mitral valve promotes the formation of a circulatory (or “looped”) flow pattern in the ventricle. The mitral valve leaflets also increase the strength of the apical flow, thereby enhancing apical washout and mixing of ventricular blood. The implications of these findings on ventricular function as well as ventricular flow models are discussed
International Nuclear Information System (INIS)
Shirani, E.; Zirak, S.
2001-01-01
Compressible flows for unsteady, inviscid and viscous cases have been studied. Important features of flows such as formation of shock waves across the flow in an unsteady flow as well as interaction of shock waves with boundary layers and their effects on the flow around the blades have been analyzed. Jameson control volume approach was used to spatially integrate the flow equations and the fourth order Runge-Kutta method was used for time integration. The obtained finite difference equations were used to simulate inviscid and viscous flows in V KI cascades and the effects of viscosity, angle of attack, bal de pitches and back pressure on the flow were obtained. It was shown that when the flow was assumed inviscid, the error on the distribution of pressure on the blades were about ten percent. Finally, unsteady flow were simulated and formation of shock waves and their motions were analyzed
Directory of Open Access Journals (Sweden)
Renata Frasson de Azevedo
2003-10-01
Full Text Available A latência do produto de distorção das emissões otoacústicas é definido como o tempo que o estimulo acústico leva para alcançar o local gerador da emissão otoacústica na cóclea e retornar ao meato acústico externo, no local do registro. A latência das emissões otoacústicas pode ser um instrumento útil para analisar mudanças na maturação coclear assim como os micromecanismos cocleares, já que há uma relação entre a latência das emissões otoacústicas produto de distorção EOAPD e a onda viajante coclear. Estudos em adultos mostram uma diminuição da latência com o aumento da freqüência sonora, variando de 13.8 ms em 787 Hz a 4.4 ms em 5 Hz. Esta diminuição ocorre devido à organização tonotópica da cóclea. São escassos os trabalhos nesta área e não são encontrados critérios de normalidade para estas medidas, principalmente em recém-nascidos. OBJETIVO: Sendo assim, o objetivo deste trabalho foi caracterizar as medidas da latência das EOAPD em neonatos nascidos a termo e não pertencentes ao grupo de risco para perda auditiva. FORMA DE ESTUDO: Caso controle. MATERIAL E MÉTODO: Foram avaliados 31 neonatos, de ambos os sexos e nascidos a termo, sem intercorrências. O procedimento utilizado foi o programa Latencygram. As freqüências testadas foram de 3 a 6 KHz na intensidade de 70 dBNA para f1 e f2. RESULTADO: Os resultados obtidos mostraram uma diminuição da latência com o aumento da freqüência sonora e uma diferença entre os sexos.Latency of distortion product otoacoustic emissions (DPOE is defined as the time that the acoustic stimulus takes to reach the site generating the otoacoustic emission, inside de cochlea, and the return to the external acoustic meatus, to be register. DPOE latency may serve as a useful tool to study cochlear maturational changes as well as the micromechanics of the cochlea, since a relationship between DPE latency and the cochlear traveling wave was observed. Studies on
Effect of gas quantity on two-phase flow characteristics of a mixed-flow pump
Directory of Open Access Journals (Sweden)
Qiang Fu
2016-04-01
Full Text Available The inlet gas quantity has a great influence on the performance and inner flow characteristics of a mixed-flow pump. In this article, both numerical and experimental methods are used to carry out this research work. The effects under the steady gas volume fraction state and the transient gas quantity variation process on the mixed-flow pump are investigated and compared in detail. It could be concluded that the head of the mixed-flow pump shows slight decline at the low gas volume fraction state, while it decreases sharply at the high gas volume fraction state and then decreases with the increasing gas quantity. There is an obvious asymmetric blade vapor density on the blade suction side under each cavitation state. The cavities can be weakened obviously by increasing the inlet gas volume fraction within a certain range. It has little influence on the internal unsteady flow of the mixed-flow pump when the gas volume fraction is less than 10%, but the pump starts to operate with a great unsteady characteristic when the inlet gas volume fraction increases to 15%.
The effects of radiogenic heat on groundwater flow
International Nuclear Information System (INIS)
Beddoes, R.J.; Tammemagi, H.Y.
1986-03-01
The effects of radiogenic heat released by a nuclear waste repository on the groundwater flow in the neighbouring rock mass is reviewed. The report presents an overview of the hydrogeologic properties of crystalline rocks in the Canadian Shield and also describes the mathematical theory of groundwater flow and heat transfer in both porous media and fractured rock. Numerical methods for the solution of the governing equations are described. A number of case histories are described where analyses of flow systems have been performed both with and without radiogenic heat sources. A number of relevant topics are reviewed such as the role of the porous medium model, boundary conditions and, most importantly, the role of complex coupled processes where the effects of heat and water flow are intertwined with geochemical and mechanical processes. The implications to radioactive waste disposal are discussed
Effects of peatland drainage management on peak flows
C. E. Ballard; N. McIntyre; H. S. Wheater
2011-01-01
Open ditch drainage has historically been a common land management practice in upland blanket peats, particularly in the UK. However, peatland drainage is now generally considered to have adverse effects on the upland environment, including increased peak flows. As a result, drain blocking has become a common management strategy in the UK over recent years, although there is only anecdotal evidence to suggest that this might decrease peak flows. The change in the hydrologica...
Gas flow characteristics of a time modulated APPJ: the effect of gas heating on flow dynamics
International Nuclear Information System (INIS)
Zhang, S; Sobota, A; Van Veldhuizen, E M; Bruggeman, P J
2015-01-01
This work investigates the flow dynamics of a radio-frequency (RF) non-equilibrium argon atmospheric pressure plasma jet. The RF power is at a frequency of 50 Hz or 20 kHz. Combined flow pattern visualizations (obtained by shadowgraphy) and gas temperature distributions (obtained by Rayleigh scattering) are used to study the formation of transient vortex structures in initial flow field shortly after the plasma is switched on and off in the case of 50 Hz modulation. The transient vortex structures correlate well with observed temperature differences. Experimental results of the fast modulated (20 kHz) plasma jet that does not induce changes of the gas temperature are also presented. The latter result suggests that momentum transfer by ions does not have dominant effect on the flow pattern close to the tube. It is argued that the increased gas temperature and corresponding gas velocity increase at the tube exit due to the plasma heating increases the admixing of surrounding air and reduces the effective potential core length. With increasing plasma power a reduction of the effective potential core length is observed with a minimum length for 5.6 W after which the length extends again. Possible mechanisms related to viscosity effects and ionic momentum transfer are discussed. (paper)
Rarefaction effects in gas flows over curved surfaces
Dongari, Nishanth; White, Craig; Scanlon, Thomas J.; Zhang, Yonghao; Reese, Jason M.
2012-11-01
The fundamental test case of gas flow between two concentric rotating cylinders is considered in order to investigate rarefaction effects associated with the Knudsen layers over curved surfaces. We carry out direct simulation Monte Carlo simulations covering a wide range of Knudsen numbers and accommodation coefficients, and for various outer-to-inner cylinder radius ratios. Numerical data is compared with classical slip flow theory and a new power-law (PL) wall scaling model. The PL model incorporates Knudsen layer effects in near-wall regions by taking into account the boundary limiting effects on the molecular free paths. The limitations of both theoretical models are explored with respect to rarefaction and curvature effects. Torque and velocity profile comparisons also convey that mere prediction of integral flow parameters does not guarantee the accuracy of a theoretical model, and that it is important to ensure that prediction of the local flowfield is in agreement with simulation data.
Effect of toroidal plasma flow and flow shear on global MHD modes
International Nuclear Information System (INIS)
Chu, M.S.; Greene, J.M.; Jensen, T.H.; Miller, R.L.; Bondeson, A.; Johnson, R.W.; Mauel, M.E.
1995-01-01
The effect of a subsonic toroidal flow on the linear magnetohydrodynamic stability of a tokamak plasma surrounded by an external resistive wall is studied. A complex non-self-adjoint eigenvalue problem for the stability of general kink and tearing modes is formulated, solved numerically, and applied to high β tokamaks. Results indicate that toroidal plasma flow, in conjunction with dissipation in the plasma, can open a window of stability for the position of the external wall. In this window, stable plasma beta values can significantly exceed those predicted by the Troyon scaling law with no wall. Computations utilizing experimental data indicate good agreement with observations
Hall effects on MHD flow past an accelerated plate
Directory of Open Access Journals (Sweden)
Deka R.K.
2008-01-01
Full Text Available The simultaneous effects of rotation and Hall current on the hydromagnetic flow past an accelerated horizontal plate relative to a rotating fluid is presented. It is found that for given values of m (Hall parameter, M (Hartmann number and an imposed rotation parameter Ω satisfying Ω = M 2m/(1 + m2, the transverse motion (transverse to the main flow disappears and the fluid moves in the direction of the plate only. The effects of the parameters m, M and Ω on the axial and transverse velocity profiles are shown graphically, whereas the effects of the parameters on the skin-friction components are shown by tabular values.
Surface roughness effects on heat transfer in Couette flow
International Nuclear Information System (INIS)
Elia, G.G.
1981-01-01
A cell theory for viscous flow with rough surfaces is applied to two basic illustrative heat transfer problems which occur in Couette flow. Couette flow between one adiabatic surface and one isothermal surface exhibits roughness effects on the adiabatic wall temperature. Two types of rough cell adiabatic surfaces are studied: (1) perfectly insulating (the temperature gradient vanishes at the boundary of each cell); (2) average insulating (each cell may gain or lose heat but the total heat flow at the wall is zero). The results for the roughness on a surface in motion are postulated to occur because of fluid entrainment in the asperities on the moving surface. The symmetry of the roughness effects on thermal-viscous dissipation is discussed in detail. Explicit effects of the roughness on each surface, including combinations of roughness values, are presented to enable the case where the two surfaces may be from different materials to be studied. The fluid bulk temperature rise is also calculated for Couette flow with two ideal adiabatic surfaces. The effect of roughness on thermal-viscous dissipation concurs with the viscous hydrodynamic effect. The results are illustrated by an application to lubrication. (Auth.)
Experimental Observations on a Low Strain Counter-Flow Diffusion Flame: Flow and Bouyancy Effects
Sutula, J. A.; Torero, J. L.; Ezekoye, O. A.
1999-01-01
Diffusion flames are of great interest in fire safety and many industrial processes. The counter-flow configuration provides a constant strain flow, and therefore is ideal to study the structure of diffusion flames. Most studies have concentrated on the high velocity, high strain limit, since buoyantly induced instabilities will disintegrate the planar flame as the velocity decreases. Only recently, experimental studies in microgravity conditions have begun to explore the low strain regimes. Numerical work has shown the coupling between gas phase reaction rates, soot reaction rates, and radiation. For these programs, size, geometry and experimental conditions have been chosen to keep the flame unaffected by the physical boundaries. When the physical boundaries can not be considered infinitely far from the reaction zone discrepancies arise. A computational study that includes boundary effects and accounts for the deviations occurring when the major potential flow assumptions are relaxed was presented by Borlik et al. This development properly incorporates all heat loss terms and shows the possibility of extinction in the low strain regime. A major constraint of studying the low strain regime is buoyancy. Buoyant instabilities have been shown to have a significant effect on the nature of reactants and heat transport, and can introduce instabilities on the flow that result in phenomena such as flickering or fingering. The counter-flow configuration has been shown to provide a flame with no symmetry disrupting instabilities for inlet velocities greater than 50 mm/s. As the velocity approaches this limit, the characteristic length of the experiment has to be reduced to a few millimetres so as to keep the Rayleigh number (Ra(sub L) = (Beta)(g(sub 0))(L(exp 3) del T)/(alpha(v))) below 2000. In this work, a rectangular counter-flow burner was used to study a two-dimensional counter-flow diffusion flame. Flow visualisation and Particle Image Velocimetry served to describe
The effect of blood cell count on coronary flow in patients with coronary slow flow phenomenon.
Soylu, Korhan; Gulel, Okan; Yucel, Huriye; Yuksel, Serkan; Aksan, Gokhan; Soylu, Ayşegül İdil; Demircan, Sabri; Yılmaz, Ozcan; Sahin, Mahmut
2014-09-01
The coronary slow flow phenomenon (CSFP) is a coronary artery disease with a benign course, but its pathological mechanisms are not yet fully understood.The purpose of this controlled study was to investigate the cellular content of blood in patients diagnosed with CSFP and the relationship of this with coronary flow rates. Selective coronary angiographies of 3368 patients were analyzed to assess Thrombolysis in Myocardial Infarction (TIMI) frame count (TFC) values. Seventy eight of them had CSFP, and their demographic and laboratory findings were compared with 61 patients with normal coronary flow. Patients' demographic characteristics were similar in both groups. Mean corrected TFC (cTFC) values were significantly elevated in CSFP patients (p<0.001). Furthermore, hematocrit and hemoglobin values, and eosinophil and basophil counts of the CSFP patients were significantly elevated compared to the values obtained in the control group (p=0.005, p=0.047, p=0.001 and p=0.002, respectively). The increase observed in hematocrit and eosinophil levels showed significant correlations with increased TFC values (r=0.288 and r=0.217, respectively). Significant changes have been observed in the cellular composition of blood in patients diagnosed with CSFP as compared to the patients with normal coronary blood flow. The increases in hematocrit levels and in the eosinophil and basophil counts may have direct or indirect effects on the rate of coronary blood flow.
Effects of swirl in turbulent pipe flows : computational studies
Energy Technology Data Exchange (ETDEWEB)
Nygaard, Frode
2011-07-01
The primary objective of this doctoral thesis was to investigate the effect of swirl in steady turbulent pipe flows. The work has been carried out by a numerical approach, with direct numerical simulations as the method of choice. A key target to pursue was the effects of the swirl on the wall friction in turbulent pipe flows. The motivation came from studies of rotating pipe flows in which drag reduction was achieved. Drag reduction was reported to be due to the swirl favourably influencing the coherent turbulent structures in the near-wall region. Based on this, it was decided to investigate if similar behaviour could be obtained by inducing a swirl in a pipe with a stationary wall. To do a thorough investigation of the general three-dimensional swirl flow and particularly of the swirl effects; chosen variations of mean and turbulent flow parameters were explored together with complementary flow visualizations. Two different approaches in order to induce the swirl in the turbulent pipe flow, have been carried out. However, the present thesis might be regarded to be comprised of three parts. The first part consists of the first approach to induce the swirl. Here a prescribed circumferential force was implemented in a serial open source Navier-Stokes solver. In the second approach, the swirl was intended induced by implementing structures at the wall. Simulations of flows through a pipe with one or more helical fin(s) at the pipe wall was decided to be performed. In order to pursue this approach, it was found necessary to do a parallelization of the existing serial numerical code. The key element of this parallelization has been included as a part of the present work. Additionally, the helical fin(s) were implemented into the code by use of an immersed boundary method. A validation of this work is also documented in the thesis. The work done by parallelizing the code and implementing an immersed boundary method constitutes the second part of the present thesis. The
Numerical investigation of MHD flow with Soret and Dufour effect
Hayat, Tasawar; Nasir, Tehreem; Khan, Muhammad Ijaz; Alsaedi, Ahmed
2018-03-01
This paper describes the flow due to an exponentially curved surface subject to Soret and Dufour effects. Nonlinear velocity is considered. Exponentially curved stretchable sheet induced the flow. Fluid is electrical conducting through constant applied magnetic field. The governing flow expressions are reduced to ordinary ones and then tackled by numerical technique (Built-in-Shooting). Impacts of various flow variables on the dimensionless velocity, concentration and temperature fields are graphically presented and discussed in detail. Skin friction coefficient and Sherwood and Nusselt numbers are studied through graphs. Furthermore it is observed that Soret and Dufour variables regulate heat and mass transfer rates. It is also noteworthy that velocity decays for higher magnetic variable. Skin friction magnitude decays via curvature and magnetic variables. Also mass transfer gradient or rate of mass transport enhances for higher estimations of curvature parameter and Schmidt number.
Field-effect Flow Control in Polymer Microchannel Networks
Sniadecki, Nathan; Lee, Cheng S.; Beamesderfer, Mike; DeVoe, Don L.
2003-01-01
A new Bio-MEMS electroosmotic flow (EOF) modulator for plastic microchannel networks has been developed. The EOF modulator uses field-effect flow control (FEFC) to adjust the zeta potential at the Parylene C microchannel wall. By setting a differential EOF pumping rate in two of the three microchannels at a T-intersection with EOF modulators, the induced pressure at the intersection generated pumping in the third, field-free microchannel. The EOF modulators are able to change the magnitude and direction of the pressure pumping by inducing either a negative or positive pressure at the intersection. The flow velocity is tracked by neutralized fluorescent microbeads in the microchannels. The proof-of-concept of the EOF modulator described here may be applied to complex plastic ,microchannel networks where individual microchannel flow rates are addressable by localized induced-pressure pumping.
Effects of equipment and technique on peak flow measurements
Directory of Open Access Journals (Sweden)
O'Driscoll B Ronan
2006-06-01
Full Text Available Abstract Background Different lung function equipment and different respiratory manoeuvres may produce different Peak Expiratory Flow (PEF results. Although the PEF is the most common lung function test, there have been few studies of these effects and no previous study has evaluated both factors in a single group of patients. Methods We studied 36 subjects (PEF range 80–570 l/min. All patients recorded PEF measurements using a short rapid expiration following maximal inspiration (PEF technique or a forced maximal expiration to residual volume (FVC technique. Measurements were made using a Wright's peak flow meter, a turbine spirometer and a Fleisch pneumotachograph spirometer. Results The mean PEF was 8.7% higher when the PEF technique was used (compared with FVC technique, p Conclusion Peak flow measurements are affected by the instruction given and by the device and Peak Flow scale used. Patient management decisions should not be based on PEF measurement made on different instruments.
Effects of physical properties on thermo-fluids cavitating flows
Chen, T. R.; Wang, G. Y.; Huang, B.; Li, D. Q.; Ma, X. J.; Li, X. L.
2015-12-01
The aims of this paper are to study the thermo-fluid cavitating flows and to evaluate the effects of physical properties on cavitation behaviours. The Favre-averaged Navier-Stokes equations with the energy equation are applied to numerically investigate the liquid nitrogen cavitating flows around a NASA hydrofoil. Meanwhile, the thermodynamic parameter Σ is used to assess the thermodynamic effects on cavitating flows. The results indicate that the thermodynamic effects on the thermo-fluid cavitating flows significantly affect the cavitation behaviours, including pressure and temperature distribution, the variation of physical properties, and cavity structures. The thermodynamic effects can be evaluated by physical properties under the same free-stream conditions. The global sensitivity analysis of liquid nitrogen suggests that ρv, Cl and L significantly influence temperature drop and cavity structure in the existing numerical framework, while pv plays the dominant role when these properties vary with temperature. The liquid viscosity μl slightly affects the flow structure via changing the Reynolds number Re equivalently, however, it hardly affects the temperature distribution.
Effective flow-accelerated corrosion programs in nuclear facilities
International Nuclear Information System (INIS)
Esselman, Thomas C.; McBrine, William J.
2004-01-01
Piping Flow-Accelerated Corrosion Programs in nuclear power generation facilities are classically comprised of the selection of inspection locations with the assistance of a predictive methodology such as the Electric Power Research Institute computer codes CHECMATE or CHECWORKS, performing inspections, conducting structural evaluations on the inspected components, and implementing the appropriate sample expansion and corrective actions. Performing such a sequence of steps can be effective in identifying thinned components and implementing appropriate short term and long term actions necessary to resolve flow-accelerated corrosion related problems. A maximally effective flow-accelerated corrosion (FAC) program requires an understanding of many programmatic details. These include the procedural control of the program, effective use of historical information, managing the activities performed during a limited duration outage, allocating resources based on risk allocation, having an acute awareness of how the plant is operated, investigating components removed from the plant, and several others. This paper will describe such details and methods that will lead to a flow-accelerated corrosion program that effectively minimizes the risk of failure due to flow-accelerated corrosion and provide full and complete documentation of the program. (author)
Flow and axial dispersion in a sinusoidal-walled tube: Effects of inertial and unsteady flows
Richmond, Marshall C.; Perkins, William A.; Scheibe, Timothy D.; Lambert, Adam; Wood, Brian D.
2013-12-01
In this work, we consider a sinusoidal-walled tube (a three-dimensional tube with sinusoidally-varying diameter) as a simplified conceptualization of flow in porous media. Direct numerical simulation using computational fluid dynamics (CFD) methods was used to compute velocity fields by solving the Navier-Stokes equations, and also to numerically solve the volume averaging closure problem, for a range of Reynolds numbers (Re) spanning the low-Re to inertial flow regimes, including one simulation at Re=449 for which unsteady flow was observed. The longitudinal dispersion observed for the flow was computed using a random walk particle tracking method, and this was compared to the longitudinal dispersion predicted from a volume-averaged macroscopic mass balance using the method of volume averaging; the results of the two methods were consistent. Our results are compared to experimental measurements of dispersion in porous media and to previous theoretical results for both the low-Re, Stokes flow regime and for values of Re representing the steady inertial regime. In the steady inertial regime, a power-law increase in the effective longitudinal dispersion (DL) with Re was found, and this is consistent with previous results. This rapid rate of increase is caused by trapping of solute in expansions due to flow separation (eddies). One unsteady (but non-turbulent) flow case (Re=449) was also examined. For this case, the rate of increase of DL with Re was smaller than that observed at lower Re. Velocity fluctuations in this regime lead to increased rates of solute mass transfer between the core flow and separated flow regions, thus diminishing the amount of tailing caused by solute trapping in eddies and thereby reducing longitudinal dispersion. The observed tailing was further explored through analysis of concentration skewness (third moment) and its assymptotic convergence to conventional advection-dispersion behavior (skewness = 0). The method of volume averaging was
Sub-Grid Modeling of Electrokinetic Effects in Micro Flows
Chen, C. P.
2005-01-01
Advances in micro-fabrication processes have generated tremendous interests in miniaturizing chemical and biomedical analyses into integrated microsystems (Lab-on-Chip devices). To successfully design and operate the micro fluidics system, it is essential to understand the fundamental fluid flow phenomena when channel sizes are shrink to micron or even nano dimensions. One important phenomenon is the electro kinetic effect in micro/nano channels due to the existence of the electrical double layer (EDL) near a solid-liquid interface. Not only EDL is responsible for electro-osmosis pumping when an electric field parallel to the surface is imposed, EDL also causes extra flow resistance (the electro-viscous effect) and flow anomaly (such as early transition from laminar to turbulent flow) observed in pressure-driven microchannel flows. Modeling and simulation of electro-kinetic effects on micro flows poses significant numerical challenge due to the fact that the sizes of the double layer (10 nm up to microns) are very thin compared to channel width (can be up to 100 s of m). Since the typical thickness of the double layer is extremely small compared to the channel width, it would be computationally very costly to capture the velocity profile inside the double layer by placing sufficient number of grid cells in the layer to resolve the velocity changes, especially in complex, 3-d geometries. Existing approaches using "slip" wall velocity and augmented double layer are difficult to use when the flow geometry is complicated, e.g. flow in a T-junction, X-junction, etc. In order to overcome the difficulties arising from those two approaches, we have developed a sub-grid integration method to properly account for the physics of the double layer. The integration approach can be used on simple or complicated flow geometries. Resolution of the double layer is not needed in this approach, and the effects of the double layer can be accounted for at the same time. With this
Effects of shear flow on phase nucleation and crystallization.
Mura, Federica; Zaccone, Alessio
2016-04-01
Classical nucleation theory offers a good framework for understanding the common features of new phase formation processes in metastable homogeneous media at rest. However, nucleation processes in liquids are ubiquitously affected by hydrodynamic flow, and there is no satisfactory understanding of whether shear promotes or slows down the nucleation process. We developed a classical nucleation theory for sheared systems starting from the molecular level of the Becker-Doering master kinetic equation and we analytically derived a closed-form expression for the nucleation rate. The theory accounts for the effect of flow-mediated transport of molecules to the nucleus of the new phase, as well as for the mechanical deformation imparted to the nucleus by the flow field. The competition between flow-induced molecular transport, which accelerates nucleation, and flow-induced nucleus straining, which lowers the nucleation rate by increasing the nucleation energy barrier, gives rise to a marked nonmonotonic dependence of the nucleation rate on the shear rate. The theory predicts an optimal shear rate at which the nucleation rate is one order of magnitude larger than in the absence of flow.
A hydrodynamic model for granular material flows including segregation effects
Gilberg, Dominik; Klar, Axel; Steiner, Konrad
2017-06-01
The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.
Characterization of non equilibrium effects on high quality critical flows
International Nuclear Information System (INIS)
Camelo, E.; Lemonnier, H.; Ochterbeck, J.
1995-01-01
The appropriate design of various pieces of safety equipment such as relief systems, relies on the accurate description of critical flow phenomena. Most of the systems of industrial interest are willing to be described by one-dimensional area-averaged models and a large fraction of them involves multi-component high gas quality flows. Within these circumstances, the flow is very likely to be of an annular dispersed nature and its description by two-fluid models requires various closure relations. Among the most sensitive closures, there is the interfacial area and the liquid entrained fraction. The critical flowrate depends tremendously on the accurate description of the non equilibrium which results from the correctness of the closure equations. In this study, two-component flows are emphasized and non equilibrium results mainly form the differences in the phase velocities. It is therefore of the utmost importance to have reliable data to characterize non equilibrium phenomena and to assess the validity of the closure models. A comprehensive description of air-water nozzle flows, with emphasis on the effect of the nozzle geometry, has been undertaken and some of the results are presented here which helps understanding the overall flow dynamics. Besides the critical flowrate, the presented material includes pressure profiles, droplet size and velocity, liquid film flowrate and liquid film thickness
Characterization of non equilibrium effects on high quality critical flows
Energy Technology Data Exchange (ETDEWEB)
Camelo, E.; Lemonnier, H.; Ochterbeck, J. [Commissariat a l Energie Atomique, Grenoble (France)] [and others
1995-09-01
The appropriate design of various pieces of safety equipment such as relief systems, relies on the accurate description of critical flow phenomena. Most of the systems of industrial interest are willing to be described by one-dimensional area-averaged models and a large fraction of them involves multi-component high gas quality flows. Within these circumstances, the flow is very likely to be of an annular dispersed nature and its description by two-fluid models requires various closure relations. Among the most sensitive closures, there is the interfacial area and the liquid entrained fraction. The critical flowrate depends tremendously on the accurate description of the non equilibrium which results from the correctness of the closure equations. In this study, two-component flows are emphasized and non equilibrium results mainly form the differences in the phase velocities. It is therefore of the utmost importance to have reliable data to characterize non equilibrium phenomena and to assess the validity of the closure models. A comprehensive description of air-water nozzle flows, with emphasis on the effect of the nozzle geometry, has been undertaken and some of the results are presented here which helps understanding the overall flow dynamics. Besides the critical flowrate, the presented material includes pressure profiles, droplet size and velocity, liquid film flowrate and liquid film thickness.
Pulsatile flow effects on the hemodynamics of intracranial aneurysms.
Le, Trung B; Borazjani, Iman; Sotiropoulos, Fotis
2010-11-01
High-resolution numerical simulations are carried out to systematically investigate the effect of the incoming flow waveform on the hemodynamics and wall shear stress patterns of an anatomic sidewall intracranial aneurysm model. Various wave forms are constructed by appropriately scaling a typical human waveform such that the waveform maximum and time-averaged Reynolds numbers, the Womersley number (α), and the pulsatility index (PI) are systematically varied within the human physiologic range. We show that the waveform PI is the key parameter that governs the vortex dynamics across the aneurysm neck and the flow patterns within the dome. At low PI, the flow in the dome is similar to a driven cavity flow and is characterized by a quasi-stationary shear layer that delineates the parent artery flow from the recirculating flow within the dome. At high PI, on the other hand, the flow is dominated by vortex ring formation, transport across the neck, and impingement and breakdown at the distal wall of the aneurysm dome. We further show that the spatial and temporal characteristics of the wall shear stress field on the aneurysm dome are strongly correlated with the vortex dynamics across the neck. We finally argue that the ratio between the characteristic time scale of transport by the mean flow across the neck and the time scale of vortex ring formation can be used to predict for a given sidewall aneurysm model the critical value of the waveform PI for which the hemodynamics will transition from the cavity mode to the vortex ring mode.
Effect of sheared flows on neoclassical tearing modes
Energy Technology Data Exchange (ETDEWEB)
Sen, A [Institute for Plasma Research, Bhat, Gandhinagar (India); Chandra, D; Kaw, P [Institute for Plasma Research, Bhat, Gandhinagar (India); Bora, M P [Physics Dept., Gauhati University, Guwahati (India); Kruger, S [Tech-X, Boulder, CO (United States); Ramos, J [Plasma Science and Fusion Center, MIT, Cambridge, MA (United States)
2005-01-01
The influence of toroidal sheared equilibrium flows on the nonlinear evolution of classical and neoclassical tearing modes (NTMs) is studied through numerical solutions of a set of reduced generalized MHD equations that include viscous force effects based on neoclassical closures. In general, differential flow is found to have a strong stabilizing influence leading to lower saturated island widths for the classical (m/n = 2/1) mode and reduced growth rates for the (m/n = 3/1) neoclassical mode. Velocity shear on the other hand is seen to make a destabilizing contribution. An analytic model calculation, consisting of a generalized Rutherford island evolution equation that includes shear flow effects is also presented and the numerical results are discussed in the context of this model. (author)
Friedman, Jonathan M.
2018-01-01
The Upper Colorado River Endangered Fish Recovery Program has requested experimental flow releases from Flaming Gorge Dam for (1) elevated summer base flows to promote larval endangered Colorado pikeminnow, and (2) midsummer spike flows to disadvantage spawning invasive smallmouth bass. This white paper explores the effects of these proposed flow modifications on riparian vegetation and sediment deposition downstream along the Green River. Although modest in magnitude, the elevated base flows and possible associated reductions in magnitude or duration of peak flows would exacerbate a long-term trend of flow stabilization on the Green River that is already leading to proliferation of vegetation including invasive tamarisk along the channel and associated sediment deposition, channel narrowing and channel simplification. Midsummer spike flows could promote establishment of late-flowering plants like tamarisk. Because channel narrowing and simplification threaten persistence and quality of backwater and side channel features needed by endangered fish, the proposed flow modifications could lead to degradation of fish habitat. Channel narrowing and vegetation encroachment could be countered by increases in peak flows or reductions in base flows in some years and by prescription of rapid flow declines following midsummer spike flows. These strategies for reducing vegetation encroachment would need to be balanced with flow
Assessment of turbulent flow effects on the vessel wall using four-dimensional flow MRI.
Ziegler, Magnus; Lantz, Jonas; Ebbers, Tino; Dyverfeldt, Petter
2017-06-01
To explore the use of MR-estimated turbulence quantities for the assessment of turbulent flow effects on the vessel wall. Numerical velocity data for two patient-derived models was obtained using computational fluid dynamics (CFD) for two physiological flow rates. The four-dimensional (4D) Flow MRI measurements were simulated at three different spatial resolutions and used to investigate the estimation of turbulent wall shear stress (tWSS) using the intravoxel standard deviation (IVSD) of velocity and turbulent kinetic energy (TKE) estimated near the vessel wall. Accurate estimation of tWSS using the IVSD is limited by the spatial resolution achievable with 4D Flow MRI. TKE, estimated near the wall, has a strong linear relationship to the tWSS (mean R 2 = 0.84). Near-wall TKE estimates from MR simulations have good agreement to CFD-derived ground truth (mean R 2 = 0.90). Maps of near-wall TKE have strong visual correspondence to tWSS. Near-wall estimation of TKE permits assessment of relative maps of tWSS, but direct estimation of tWSS is challenging due to limitations in spatial resolution. Assessment of tWSS and near-wall TKE may open new avenues for analysis of different pathologies. Magn Reson Med 77:2310-2319, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Effects of peatland drainage management on peak flows
Directory of Open Access Journals (Sweden)
C. E. Ballard
2012-07-01
Full Text Available Open ditch drainage has historically been a common land management practice in upland blanket peats, particularly in the UK. However, peatland drainage is now generally considered to have adverse effects on the upland environment, including increased peak flows. As a result, drain blocking has become a common management strategy in the UK over recent years, although there is only anecdotal evidence to suggest that this might decrease peak flows. The change in the hydrological regime associated with the drainage of blanket peat and the subsequent blocking of drains is poorly understood, therefore a new physics-based model has been developed that allows the exploration of the associated hydrological processes. A series of simulations is used to explore the response of intact, drained and blocked drain sites at field scales. While drainage is generally found to increase peak flows, the effect of drain blocking appears to be dependent on local conditions, sometimes decreasing and sometimes increasing peak flows. Based on insights from these simulations we identify steep smooth drains as those that would experience the greatest reduction in field-scale peak flows if blocked and recommend that future targeted field studies should be focused on examining surface runoff characteristics.
Flow effects on the stability of z-pinches
International Nuclear Information System (INIS)
Shumlak, U.; Hartman, C.W.
1996-01-01
The effect of an axial flow on the m = 1 kink instability in z-pinches is studied numerically by reducing the linearized ideal MHD equations to a one-dimensional eigenvalue equation for the radial displacement. The derivation of the displacement equation for equilibria with axial flows will be presented. A diffuse z-pinch equilibrium is chosen that is made marginally stable to the m = 0 sausage mode by tailoring the pressure profile. The principle result reveals that a sheared axial flow does stabilize the kink mode when the shear exceeds a threshold value. Additionally, the m = 0 sausage mode is driven from marginal stability into the stable regime which suggests that the equilibrium pressure profile control can be relaxed. Fast z-pinches such as liner implosions are plagued by the Rayleigh-Taylor instability which destroys the liner and disrupts the current path before the liner arrives on axis. A sheared axial flow in a liner may quench the Rayleigh-Taylor instability in the same way that it quenches MHD instabilities in a diffuse z-pinch. Simulation results will be presented showing the effect of a sheared axial flow on the Rayleigh-Taylor instability in a fast liner implosion
Biofilm Effect on Flow Structure over a Permeable Bed
Kazemifar, F.; Blois, G.; Aybar, M.; Perez-Calleja, P.; Nerenberg, R.; Sinha, S.; Hardy, R. J.; Best, J.; Sambrook Smith, G.; Christensen, K. T.
2017-12-01
Biofilms constitute an important form of bacterial life in aquatic environments and are present at the fluid-solid interfaces in natural and industrial settings, such as water distribution systems and riverbeds among others. The permeable, heterogeneous, and deformable structure of biofilms can influence mass and momentum transport between the subsurface and freestream. However, this interaction is not fully understood, in part due to technical obstacles impeding quantitative experimental investigations. In this work, the effect of biofilm on flow structure over a permeable bed is studied. Experiments are conducted in a closed water channel equipped with an idealized two-dimensional permeable bed. Prior to conducting flow experiments, the models are placed within an independent recirculating reactor for biofilm growth. Once a targeted biofilm growth stage is achieved, the models are transferred to the water channel and subjected to transitional and turbulent flows. Long-distance microscopic particle image velocimetry measurements are performed to quantify the effect of biofilm on the turbulence structure of the free flow as well as the freestream-subsurface flow interaction.
International Nuclear Information System (INIS)
Michitsugu Mori; Kenichi Tezuka; Yasushi Takeda
2006-01-01
Flow profile factors (PFs), which adjust measurements to real flow rates, also strongly depend on flow profiles. To determine profile factors for actual power plants, manufactures of flowmeters usually conduct factory calibration tests under ambient flow conditions. Indeed, flow measurements with high accuracy for reactor feedwater require them to conduct calibration tests under real conditions, such as liquid conditions and piping layouts. On the contrary, as nuclear power plants are highly aging, readings of flowmeters for reactor feedwater systems drift due to the changes of flow profiles. The causes of those deviations are affected by the change of wall roughness of inner surface of pipings. We have conducted experiments to quantify the effects of flow patterns on the PFs due to pipe roughness and asymmetric flow, and the results of our experiments have shown the effects of elbows and pipe inner roughness, which strongly affect to the creation of the flow patterns. Those changes of flow patterns lead to large errors in measurements with transit time (time-of-flight: TOF) ultrasonic flow meters. In those experiments, changes of pipe roughness result in the changes of PFs with certain errors. Therefore, we must take into account those effects in order to measure the flow rates of feedwater with better accuracy in actual power plants. (authors)
Murki, Srinivas; Das, Ratan Kumar; Sharma, Deepak; Kumar, Praveen
2015-01-01
The clinical effects of a pre-fixed flow of air-oxygen versus a flow titrated according to visible bubbling are not well understood. To compare the effects of a fixed flow (5 L/min) and titrated flow (flow just enough to ensure bubbling) at different set pressures on delivered intra-prong pressure, gas exchange and clinical parameters in preterm infants on bubble CPAP for respiratory distress. Preterm infants rate, set pressure, FiO2, SpO2, Silverman retraction score, respiratory rate, abdominal girth, and blood gases were recorded. The delivered intra-prong pressure was measured by an electronic manometer. 69 recordings were made in 54 infants. For each of the set CPAP pressures (4, 5, and 6 cm H2O), the mean delivered pressure with a fixed flow of 5 L/min was higher than that delivered by the titrated flow. During the fixed flow epoch, the delivered pressure was closer to and higher than the set pressure resulting in higher PaO2 and lower PaCO2 as compared to titrated flow epoch. In the titrated flow period, the delivered pressure was consistently lower than the set pressure. In preterm infants on bubble CPAP with set pressures of 4-6 cm H2O, a fixed flow of 5 L/min is more effective than a flow titrated to ensure adequate visible bubbling. It achieves higher delivered pressures, better oxygenation and ventilation.
Ekman effects in a rotating flow over bottom topography
Zavala Sansón, L.; Heijst, van G.J.F.
2002-01-01
This paper presents a general two-dimensional model for rotating barotropic flows over topography. The model incorporates in a vorticity–stream function formulation both inviscid topography effects, associated with stretching and squeezing of fluid columns enforced by their motion over variable
The poverty effect of remittance flows: evidence from Georgia
Czech Academy of Sciences Publication Activity Database
Uzagalieva, Ainura; Menezes, A. G.
2009-01-01
Roč. 21, č. 4 (2009), s. 453-474 ISSN 1463-1377 Institutional research plan: CEZ:AV0Z70850503 Keywords : poverty effects of emmigration * remittance flows * Gergia * computable general equilibrium model Subject RIV: AH - Economics Impact factor: 0.196, year: 2009
Effects of Parallel Channel Interactions, Steam Flow, Liquid Subcool ...
African Journals Online (AJOL)
Tests were performed to examine the effects of parallel channel interactions, steam flow, liquid subcool and channel heat addition on the delivery of liquid from the upper plenum into the channels and lower plenum of Boiling Water Nuclear Power Reactors during reflood transients. Early liquid delivery into the channels, ...
Effect of radiation and porosity parameter on hydromagnetic flow ...
African Journals Online (AJOL)
The aim of this paper is to study the momentum and the heat transfer characteristics in incompressible electrically conducting boundary layer flow over an exponentially stretching sheet under the effect of magnetic field with thermal radiation through porous medium. The governing boundary layer equations are converted ...
Energy Technology Data Exchange (ETDEWEB)
Lee, Kanghee; Shin, Changhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Olala, Stephen; Mureithi, Njuki [BWC/AECL/NSERC Chair of Fluid-Structure Interaction, Ecole Polytechnique, Montreal (Canada)
2015-05-15
U bend region of operating SG is excited by the inclined cross flow due to the gradual change of hydraulic resistance force. The effect of tube array's flexibility direction on FEI is investigated by Khalvatti for rotated triangular tube in single phase (air) cross flow. He showed that FEI strongly depend on the flexibility angle. Reducing bundle flexibility to the flow direction ranging from 90 (out-of-flow direction) to 0 (in-flow direction) degree has a nonlinearly-varying stabilizing effect. Joly studies the same problem under high void fraction in two phase cross flow over 70 % to 90 %. With the Joly's experimental work, there is oddly low-valued Conner's constant in case of higher degree of angle of attack. This gives the motivation to our experimental study for fluid elastic instability of tube array in two phase cross flow. As the flow rate goes up, tube response was measured for each steady state flow condition by the strain gauge. Damping, peak frequency, and the critical velocity were estimated from the response spectrum. It seems that the flow regime for high void fraction can destabilize tube array with preferential flexibility over 60 degree. Because an intermittent flow is inherently unstable compared to the uniform bubbly flow, thus out-of-flow motion of tubes can be more fragile to the unstably rising intermittent flow. From the visual inspection, lateral tube motion seems to block the flow path periodically. Enlarged bubble in an intermittent flow regime can be squeezed-up at the flow gap between tubes.
Hu, Jialin; Du, Qiang; Liu, Jun; Wang, Pei; Liu, Guang; Liu, Hongrui; Du, Meimei
2017-08-01
Although many literatures have been focused on the underneath flow and loss mechanism, very few experiments and simulations have been done under the engines' representative working conditions or considering the real cavity structure as a whole. This paper aims at realizing the goal of design of efficient turbine and scrutinizing the velocity distribution in the vicinity of the rim seal. With the aid of numerical method, a numerical model describing the flow pattern both in the purge flow spot and within the mainstream flow path is established, fluid migration and its accompanied flow mechanism within the realistic cavity structure (with rim seal structure and considering mainstream & secondary air flow's interaction) is used to evaluate both the flow pattern and the underneath flow mechanism within the inward rotating cavity. Meanwhile, the underneath flow and loss mechanism are also studied in the current paper. The computational results show that the sealing air flow's ingestion and ejection are highly interwound with each other in both upstream and downstream flow of the rim seal. Both the down-stream blades' potential effects as well as the upstream blades' wake trajectory can bring about the ingestion of the hot gas flow within the cavity, abrupt increase of the static pressure is believed to be the main reason. Also, the results indicate that sealing air flow ejected through the rear cavity will cause unexpected loss near the outlet section of the blades in the downstream of the HP rotor passages.
Nuclear dynamics with the (finite range) Gogny force: flow effects
International Nuclear Information System (INIS)
Sebille, F.; Royer, G.; Schuck, P.; Gregoire, C.
1988-01-01
We introduce for the first time the effective finite range interaction of Gogny in the semi-classical description of heavy ion reactions based on the Landau-Vlasov equation. The characteristics of the flow for heavy ion collisions are studied as functions of the incident energy, the impact parameter and the mass number. The momentum dependence in the mean field together with the non linearities in the collision kernel decrease the flow in contradiction with other calculations; the origins of this discrepancy are studied in details
Geometrical effects on the airfoil flow separation and transition
Zhang, Wei
2015-04-25
We present results from direct numerical simulations (DNS) of incompressible flow over two airfoils, NACA-4412 and NACA-0012-64, to investigate the effects of the airfoil geometry on the flow separation and transition patterns at Re=104 and 10 degrees incidence. The two chosen airfoils are geometrically similar except for maximum camber (respectively 4%C and 0 with C the chord length), which results in a larger projection area with respect to the incoming flow for the NACA-4412 airfoil, and a larger leeward surface curvature at the leading edge for the NACA-0012-64 airfoil. The governing equations are discretized using an energy conservative fourth-order spatial discretization scheme. An assessment on the two-point correlation indicates that a spanwise domain size of 0.8C is sufficiently large for the present simulations. We discuss flow separation at the airfoil leading edge, transition of the separated shear layer to three-dimensional flow and subsequently to turbulence. Numerical results reveal a stronger adverse pressure gradient field in the leading edge region of the NACA-0012-64 airfoil due to the rapidly varying surface curvature. As a result, the flow experiences detachment at x/C=0.08, and the separated shear layer transition via Kelvin-Helmholtz mechanism occurs at x/C=0.29 with fully developed turbulent flow around x/C=0.80. These flow development phases are delayed to occur at much downstream positions, respectively, observed around x/C=0.25, 0.71 and 1.15 for the NACA-4412 airfoil. The turbulent intensity, measured by the turbulent fluctuations and turbulent Reynolds stresses, are much larger for NACA-0012-64 from the transition onset until the airfoil trailing edge, while turbulence develops significantly downstream of the trailing edge for the NACA-4412 airfoil. For both airfoils, our DNS results indicate that the mean Reynolds stress u\\'u\\'/U02 reaches its maximum value at a distance from the surface approximately equal to the displacement
International Nuclear Information System (INIS)
Satoh, Tomonori; Ugachi, Hirokazu; Tsukada, Takashi; Uchida, Shunsuke
2008-01-01
The major mechanism of Flow accelerated corrosion (FAC) is the dissolution of the protective oxide on carbon steel, which is enhanced by mass transfer and erosion under high flow velocity conditions. In this study, the effects of alloy composition and flow velocity on FAC of carbon steel were evaluated by measuring FAC rate of tube type carbon steel specimens in the neutral water condition at 150degC. Obtained results are summarized in follows. 1) High FAC rate was depended upon the v 1.2 in the tube type specimen made of the standard alloy. 2) FAC was mitigated for the carbon steel with more than 0.03% of Cr content. 3) FAC rate decreased as Ni content increased in more than 0.1% of Ni content. 4) The difference in chemical composition of oxide film between Ni added carbon steel and Cr added one was confirmed. The hematite rich oxide was observed for Ni added carbon steel. 5) The effects of Cu on FAC rate was not observed up to 0.1% of Cu content. (author)
Energy Technology Data Exchange (ETDEWEB)
Zhu, Hongjun, E-mail: ticky863@126.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan (China); State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan (China); Pan, Qian; Zhang, Wenli; Feng, Guang; Li, Xue [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan (China)
2014-07-01
Highlights: • A combined FSI–CFD and DPM computational method is used to investigate flow erosion and deformation of needle valve. • The numerical model is validated with the comparison of measured and predicted erosion rate. • Effects of operation, structure and fluid parameters on flow erosion and flow-induced deformation are discussed. • Particle diameter has the most significant effect on flow erosion. • Inlet rate has the most obvious effect on flow-induced deformation. - Abstract: A three-dimensional fluid–structure interaction (FSI) computational model coupling with a combined continuum and discrete model has been used to predict the flow erosion rate and flow-induced deformation of needle valve. Comparisons with measured data demonstrate good agreement with the predictions of erosion rate. The flow field distribution of gas-particle flow and the erosion rate and deformation of valve core are captured under different operating and structural conditions with different fluid parameters. The effects of inlet velocity, valve opening and inlet valve channel size, particle concentration, particle diameter and particle phase components are discussed in detail. The results indicate that valve tip has the most severe erosion and deformation, and flow field, erosion rate and deformation of valve are all sensitive to inlet condition changes, structural changes and fluid properties changes. The effect of particle diameter on erosion is the most significant, while the influence of inlet rate on deformation is the greatest one.
Flow effects on benthic stream invertebrates and ecological processes
Koprivsek, Maja; Brilly, Mitja
2010-05-01
Flow is the main abiotic factor in the streams. Flow affects the organisms in many direct and indirect ways. The organisms are directly affected by various hydrodynamic forces and mass transfer processes like drag forces, drift, shear stress, food and gases supply and washing metabolites away. Indirect effects on the organisms are determining and distribution of the particle size and structure of the substrate and determining the morphology of riverbeds. Flow does not affect only on individual organism, but also on many ecological effects. To expose just the most important: dispersal of the organisms, habitat use, resource acquisition, competition and predator-prey interactions. Stream invertebrates are adapted to the various flow conditions in many kinds of way. Some of them are avoiding the high flow with living in a hyporeic zone, while the others are adapted to flow with physical adaptations (the way of feeding, respiration, osmoregulation and resistance to draught), morphological adaptations (dorsoventrally flattened shape of organism, streamlined shape of organism, heterogeneous suckers, silk, claws, swimming hair, bristles and ballast gravel) or with behaviour. As the flow characteristics in a particular stream vary over a broad range of space and time scales, it is necessary to measure accurately the velocity in places where the organisms are present to determine the actual impact of flow on aquatic organisms. By measuring the mean flow at individual vertical in a single cross-section, we cannot get any information about the velocity situation close to the bottom of the riverbed where the stream invertebrates are living. Just measuring the velocity near the bottom is a major problem, as technologies for measuring the velocity and flow of natural watercourses is not adapted to measure so close to the bottom. New researches in the last two decades has shown that the thickness of laminar border layer of stones in the stream is only a few 100 micrometers, what
Effect of finite cavity width on flow oscillation in a low-Mach-number cavity flow
Energy Technology Data Exchange (ETDEWEB)
Zhang, Ke; Naguib, Ahmed M. [Michigan State University, East Lansing, MI (United States)
2011-11-15
The current study is focused on examining the effect of the cavity width and side walls on the self-sustained oscillation in a low Mach number cavity flow with a turbulent boundary layer at separation. An axisymmetric cavity geometry is employed in order to provide a reference condition that is free from any side-wall influence, which is not possible to obtain with a rectangular cavity. The cavity could then be partially filled to form finite-width geometry. The unsteady surface pressure is measured using microphone arrays that are deployed on the cavity floor along the streamwise direction and on the downstream wall along the azimuthal direction. In addition, velocity measurements using two-component Laser Doppler Anemometer are performed simultaneously with the array measurements in different azimuthal planes. The compiled data sets are used to investigate the evolution of the coherent structures generating the pressure oscillation in the cavity using linear stochastic estimation of the velocity field based on the wall-pressure signature on the cavity end wall. The results lead to the discovery of pronounced harmonic pressure oscillations near the cavity's side walls. These oscillations, which are absent in the axisymmetric cavity, are linked to the establishment of a secondary mean streamwise circulating flow pattern near the side walls and the interaction of this secondary flow with the shear layer above the cavity. (orig.)
International Nuclear Information System (INIS)
Bhadelia, R.A.; Wolpert, S.M.
1998-01-01
Our purpose was to assess the effect of alterations in the cranial venous outflow on cerebrospinal fluid (CSF) flow waveforms using phase-contrast MRI. Thirteen healthy subjects were assessed for CSF flow and cerebral vascular flow at the C2-3 level, both before and after jugular venous compression (JVC). The flow waveforms were assessed both as an aggregate, and after dividing subjects in two groups based on percent jugular venous flow (PJVF) i. e. jugular outflow expressed as percent of cerebral arterial inflow. Group 1: 7 subjects with PJVF more than and including median (predominantly jugular outflow); Group 2: 6 subjects with PJVF less than median (predominantly extra-jugular outflow). CSF waveforms: JVC produced rounding of contours and flattening of dicrotic waves, with the effect being greater in group 1 than group 2. In group 1, systolic upslopes of the waveforms increased. No significant aggregate amplitude changes were noted; amplidutes increased in group 1 (P = 0.001), and decreased in group 2 (P = 0.03). Temporal interval to the maximum CSF systolic flow significantly increased in group 1. Vascular flow: Arterial flow significantly decreased in group 1. Jugular flow significantly decreased in both groups. The results suggest that CSF flow waveforms are sensitive to alterations in the cranial venous outflow. Changes in group 1 are most likely because of an elevation in intracranial pressure. Analysis of CSF flow waveforms appears a promising noninvasive tool for assessment of cranial compartment. (orig.)
Preferential flow through intact soil cores: Effects of matrix head
Energy Technology Data Exchange (ETDEWEB)
Langner, H.W.; Gaber, H.M.; Wraith, J.M.; Huwe, B.; Inskeep, W.P.
1999-12-01
Continuous soil pores may act as pathways for preferential flow depending on their size and water status (filled or drained), the latter being largely controlled by the soil matrix head (h). The literature contains a wide range of proposed minimal pore sizes that may contribute to preferential flow. The objective of this study was to examine the relationship between h (and corresponding pore sizes) and preferential solute transport in a naturally structured soil. Tracer ({sup 3}H{sub 2}O and pentafluorobenzoic acid, [PFBA]) miscible displacement experiments were performed at several h values in intact soil cores (15-cm diameter, 30-cm length) using an apparatus especially suited to maintain constant h while collecting large effluent volumes. To test for the occurrence of preferential flow, observed breakthrough curves (BTCs) were evaluated for physical nonequilibrium (PNE) using a comparison between fitted local equilibrium (PNE) and PNE models. Fitting results of the observed BTCs indicated absence of PNE in all solute transport experiments at h {le} {minus}10 cm. Experiments at h {ge} {minus}5 cm consistently exhibited PNE conditions, indicating the presence of preferential flow. These results suggest that soil pores with effective radii of 150 {micro}m and smaller (water-filled at h = {minus}10 cm) do not contribute to preferential flow. Observed pore water velocities were not indicative of the presence or absence of preferential flow conditions. Continuous measurements of soil water content ({theta}) using time domain reflectometry (TDR) revealed that at h = {minus}10 cm, <2% of the soil volume had drained.
Effects of flow gradients on directional radiation of human voice.
Pulkki, Ville; Lähivaara, Timo; Huhtakallio, Ilkka
2018-02-01
In voice communication in windy outdoor conditions, complex velocity gradients appear in the flow field around the source, the receiver, and also in the atmosphere. It is commonly known that voice emanates stronger towards the downstream direction when compared with the upstream direction. In literature, the atmospheric effects are used to explain the stronger emanation in the downstream direction. This work shows that the wind also has an effect to the directivity of voice also favouring the downstream direction. The effect is addressed by measurements and simulations. Laboratory measurements are conducted by using a large pendulum with a loudspeaker mimicking the human head, whereas practical measurements utilizing the human voice are realized by placing a subject through the roof window of a moving car. The measurements and a simulation indicate congruent results in the speech frequency range: When the source faces the downstream direction, stronger radiation coinciding with the wind direction is observed, and when it faces the upstream direction, radiation is not affected notably. The simulated flow gradients show a wake region in the downstream direction, and the simulated acoustic field in the flow show that the region causes a wave-guide effect focusing the sound in the direction.
Numerical simulation of wall roughness effects in cavitating flow
International Nuclear Information System (INIS)
Echouchene, F.; Belmabrouk, H.; Le Penven, L.; Buffat, M.
2011-01-01
Hydrodynamic cavitation has an important effect on the performance of Diesel injectors. It influences the nature of the fuel spray and the efficiency of the combustion process. In the present study, we investigate numerically the effect of wall roughness in the cavitating and turbulent flow developing inside a Diesel injector. The mixture model based on a single fluid is adopted and the commercial Fluent software is used to solve the transport equations. The discharge coefficient C d is computed for different cavitation numbers and wall roughness heights. Profiles of density mixture, vapor volume fraction, mean velocity and turbulent kinetic energy are reported. The effects of wall roughness and injection pressure are analyzed.
Fogt, Jennifer S; Jones-Jordan, Lisa A; Barr, Joseph T
2018-01-01
New designs of eye wash stations have been developed in which the direction of water flow from the fountain has been reversed, with two water streams originating nasally in both eyes and flowing toward the temporal side of each eye. No study has been done to determine the ideal direction of water flow coming from the eye wash in relation to the eye. Ophthalmic eye examinations were conducted before and after the use of two eye wash stations with opposite water flow directionality. Fluorescein was instilled in both eyes before using an eye wash to measure the effectiveness of the water flow. Subjects were surveyed upon their experiences using the eye washes. Ophthalmic examination found no significant difference in the efficacy of the eye washes with nasal-to-temporal water flow when compared to temporal-to-nasal water flow direction.
Directory of Open Access Journals (Sweden)
Mahesh Varpe
2013-01-01
Full Text Available This paper explores the effect of inlet shear flow on the tip leakage flow in an axial flow compressor cascade. A flow with a high shear rate is generated in the test section of an open circuit cascade wind tunnel by using a combination of screens with a prescribed solidity. It is observed that a stable shear flow of shear rate 1.33 is possible and has a gradual decay rate until 15 times the height of the shear flow generator downstream. The computational results obtained agree well with the available experimental data on the baseline configuration. The detailed numerical analysis shows that the tip clearance improves the blade loading near the tip through the promotion of favorable incidence by the tip leakage flow. The tip clearance shifts the centre of pressure on the blade surface towards the tip. It, however, has no effect on the distribution of end wall loss and deviation angle along the span up to 60% from the hub. In the presence of a shear inflow, the end wall effects are considerable. On the other hand, with a shear inflow, the effects of tip leakage flow are observed to be partly suppressed. The shear flow reduces the tip leakage losses substantially in terms of kinetic energy associated with it.
Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces
Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David
2014-10-01
An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.
Directory of Open Access Journals (Sweden)
Alfredo R. Dell'Aringa
2004-06-01
Full Text Available Com a descoberta das Emissões Otoacústicas (EOA, tornou-se possível analisar e investigar as funções auditivas das células ciliadas externas do órgão da audição. Podem ser espontâneas, evocadas transientes ou por produto de distorção. O teste das EOAEs-DP caracteriza-se por ser um exame objetivo, rápido, indolor, não-invasivo e de fácil aplicação tanto para clínica como para programas de triagem auditiva. FORMA DE ESTUDO: Coorte transversal. MATERIAL E MÉTODO: Foram avaliadas 105 crianças entre 2 e 7 anos de idade da creche "Lar da Criança", de Marília, SP. A avaliação constou de exame otorrinolaringológico completo e EOAEs-DP. Todas estas crianças, após prévia autorização dos responsáveis, foram submetidas a exame otorrinolaringológico completo e EOAEs-DP. RESULTADOS: Os resultados demonstraram que das 105 crianças avaliadas, 44,76% apresentavam cerume. 12 crianças permaneceram com cerume mesmo após uso de ceruminolítico e lavagem auricular ou não apresentaram consentimento informado de seus responsáveis. Portanto, estas foram excluídas do trabalho sendo o restante, 93 crianças, submetidas a avaliação das EOAEs-DP Após a realização das EOAEs-DP, verificou-se que 5,37% das crianças apresentaram exames alterados, sendo que 60% destas eram do sexo masculino e 60% com acometimento bilateral. DISCUSSÃO: Os resultados encontrados foram inferiores aos citados na literatura, assim como o predomínio do sexo masculino. Além disso, notou-se alta prevalência de cerume nos pacientes testados. CONCLUSÃO: É essencial uma avaliação otorrinolaringológica completa prévia. O exame de EOAEs-DP pode ser realizado em crianças para detecção precoce e prevenção de falhas no desenvolvimento cognitivo e psicoemocional.With the discovery of otoacustic emissions it has begun possible to analyze the auditive functions of external hair cells in the auditive cortex. The OAE can be spontaneous transients by
Directory of Open Access Journals (Sweden)
Rosângela Melo Vasconcelos
2008-08-01
Full Text Available Após os cinco anos de idade, a principal queixa em crianças que não ouvem normalmente é a dificuldade de aprendizagem. OBJETIVOS: Comparar os resultados suspeitos de perda auditiva pela triagem com os exames de emissões otoacústicas evocadas (EOAE transientes (EOAT e por produto de distorção (EOAPD, com dados dos exames audiométricos; observar qual dos dois procedimentos de EOAE responde melhor para triagem em escolares. MATERIAL E MÉTODOS: Avaliar 451 escolares da 1ª série do ensino fundamental, em escolas públicas de São Luís. Foram feitos, na própria escola, os exames otoscópicos com remoção de cerume quando necessário e os exames de EOAT e EOAPD em todos os escolares. Nas crianças que apresentaram alteração em algum dos exames de EOAT e/ou EOAPD foram realizadas a audiometria e imitanciometria. FORMA DE ESTUDO: Prospectivo Transversal. RESULTADOS: Freqüência de 18,6% de rolhas de cerume. Após triagem com EOAT e EOAPD não foi encontrada diferença estatisticamente significante quando comparamos os resultados dos exames que falharam somente nas EOAT e EOAPD com dados dos exames audiométricos, no entanto quando comparado esses dados com falha nos dois exames houve diferença significante (pPast five years of age, the main complaint of children who are hard of hearing is that they have difficulty in learning. AIM: Compare these results to suspected hearing loss, through triage with the exams of evoked otoacoustic emissions (EOAE transients (TEOAE and by distortion product (DPEOAE, using data from audiometric exams; observe which of the procedures of EOAE better respond to school children triage. MATERIALS AND METHODS: To evaluate 451 school children, grade one students, from the public schools in São Luís. At school, otoscopic exams with the removal of wax and the TEOAE and DPEOAE exams were also carried on all school children. Audiometry and acoustic impedance were performed on the children who presented
Research for rolling effects on flow pattern of gas-water flow in horizontal tubes
International Nuclear Information System (INIS)
Luan Feng; Yan Changqi
2007-01-01
The flow pattern transition of two-phase flow is caused by the inertial force resulted from rolling and incline of horizontal tubes under rolling state. an experimental study on the flow patterns of gas-water flow was carried out in horizontal tubes under rolling state, which rolling period is 15 second and rolling angle is 10 degrees, and a pattern flow picture is shown. It was found that there are two flow patterns in one rolling period under some gas flux and water flux. (authors)
Graphene field-effect transistor application for flow sensing
Directory of Open Access Journals (Sweden)
Łuszczek Maciej
2017-01-01
Full Text Available Microflow sensors offer great potential for applications in microfluidics and lab-on-a-chip systems. However, thermal-based sensors, which are commonly used in modern flow sensing technology, are mainly made of materials with positive temperature coefficients (PTC and suffer from a self-heating effect and slow response time. Therefore, the design of novel devices and careful selection of materials are required to improve the overall flow sensor performance. In this work we propose graphene field-effect transistor (GFET to be used as microflow sensor. Temperature distribution in graphene channel was simulated and the analysis of heat convection was performed to establish the relation between the fluidic flow velocity and the temperature gradient. It was shown that the negative temperature coefficient (NTC of graphene could enable the self-protection of the device and should minimize sensing error from currentinduced heating. It was also argued that the planar design of the GFET sensor makes it suitable for the real application due to supposed mechanical stability of such a construction.
Effects of continuum breakdown on hypersonic aerothermodynamics for reacting flow
Holman, Timothy D.; Boyd, Iain D.
2011-02-01
This study investigates the effects of continuum breakdown on the surface aerothermodynamic properties (pressure, stress, and heat transfer rate) of a sphere in a Mach 25 flow of reacting air in regimes varying from continuum to a rarefied gas. Results are generated using both continuum [computational fluid dynamics (CFD)] and particle [direct simulation Monte Carlo (DSMC)] approaches. The DSMC method utilizes a chemistry model that calculates the backward rates from an equilibrium constant. A preferential dissociation model is modified in the CFD method to better compare with the vibrationally favored dissociation model that is utilized in the DSMC method. Tests of these models are performed to confirm their validity and to compare the chemistry models in both numerical methods. This study examines the effect of reacting air flow on continuum breakdown and the surface properties of the sphere. As the global Knudsen number increases, the amount of continuum breakdown in the flow and on the surface increases. This increase in continuum breakdown significantly affects the surface properties, causing an increase in the differences between CFD and DSMC. Explanations are provided for the trends observed.
Numerical optimization of conical flow waveriders including detailed viscous effects
Bowcutt, Kevin G.; Anderson, John D., Jr.; Capriotti, Diego
1987-01-01
A family of optimized hypersonic waveriders is generated and studied wherein detailed viscous effects are included within the optimization process itself. This is in contrast to previous optimized waverider work, wherein purely inviscid flow is used to obtain the waverider shapes. For the present waveriders, the undersurface is a streamsurface of an inviscid conical flowfield, the upper surface is a streamsurface of the inviscid flow over a tapered cylinder (calculated by the axisymmetric method of characteristics), and the viscous effects are treated by integral solutions of the boundary layer equations. Transition from laminar to turbulent flow is included within the viscous calculations. The optimization is carried out using a nonlinear simplex method. The resulting family of viscous hypersonic waveriders yields predicted high values of lift/drag, high enough to break the L/D barrier based on experience with other hypersonic configurations. Moreover, the numerical optimization process for the viscous waveriders results in distinctly different shapes compared to previous work with inviscid-designed waveriders. Also, the fine details of the viscous solution, such as how the shear stress is distributed over the surface, and the location of transition, are crucial to the details of the resulting waverider geometry. Finally, the moment coefficient variations and heat transfer distributions associated with the viscous optimized waveriders are studied.
Opposing flow in square porous annulus: Influence of Dufour effect
International Nuclear Information System (INIS)
Athani, Abdulgaphur; Al-Rashed, Abdullah A. A. A.; Khaleed, H. M. T.
2016-01-01
Heat and mass transfer in porous medium is very important area of research which is also termed as double diffusive convection or thermo-solutal convection. The buoyancy ratio which is the ratio of thermal to concentration buoyancy can have negative values thus leading to opposing flow. This article is aimed to study the influence of Dufour effect on the opposing flow in a square porous annulus. The partial differential equations that govern the heat and mass transfer behavior inside porous medium are solved using finite element method. A three node triangular element is used to divide the porous domain into smaller elements. Results are presented with respect to geometric and physical parameters such as duct diameter ratio, Rayleigh number, radiation parameter etc. It is found that the heat transfer increase with increase in Rayleigh number and radiation parameter. It is observed that Dufour coefficient has more influence on velocity profile.
Opposing flow in square porous annulus: Influence of Dufour effect
Energy Technology Data Exchange (ETDEWEB)
Athani, Abdulgaphur, E-mail: abbu.bec@gmail.com [Dept. of Mechanical Engineering, Anjuman Institute of Technology & Management, Bhatkal (India); Al-Rashed, Abdullah A. A. A., E-mail: aa.alrashed@paaet.edu.kw [Dept. of Automotive and Marine Engineering Technology, College of Technological Studies, The Public Authority for Applied Education and Training (Kuwait); Khaleed, H. M. T., E-mail: khalid-tan@yahoo.com [Dept of Mechanical Engineering, Faculty of Engineering, Islamic University, Madinah Munawwarra (Saudi Arabia)
2016-06-21
Heat and mass transfer in porous medium is very important area of research which is also termed as double diffusive convection or thermo-solutal convection. The buoyancy ratio which is the ratio of thermal to concentration buoyancy can have negative values thus leading to opposing flow. This article is aimed to study the influence of Dufour effect on the opposing flow in a square porous annulus. The partial differential equations that govern the heat and mass transfer behavior inside porous medium are solved using finite element method. A three node triangular element is used to divide the porous domain into smaller elements. Results are presented with respect to geometric and physical parameters such as duct diameter ratio, Rayleigh number, radiation parameter etc. It is found that the heat transfer increase with increase in Rayleigh number and radiation parameter. It is observed that Dufour coefficient has more influence on velocity profile.
SOLAR ROTATION EFFECTS ON THE HELIOSHEATH FLOW NEAR SOLAR MINIMA
International Nuclear Information System (INIS)
Borovikov, Sergey N.; Pogorelov, Nikolai V.; Ebert, Robert W.
2012-01-01
The interaction between fast and slow solar wind (SW) due to the Sun's rotation creates corotating interaction regions (CIRs), which further interact with each other creating complex plasma structures at large heliospheric distances. We investigate the global influence of CIRs on the SW flow in the inner heliosheath between the heliospheric termination shock (TS) and the heliopause. The stream interaction model takes into account the major global effects due to slow-fast stream interaction near solar minima. The fast and slow wind parameters are derived from the Ulysses observations. We investigate the penetration of corotating structures through the TS and their further propagation through the heliosheath. It is shown that the heliosheath flow structure may experience substantial modifications, including local decreases in the radial velocity component observed by Voyager 1.
Spatial stochasticity and non-continuum effects in gas flows
Energy Technology Data Exchange (ETDEWEB)
Dadzie, S. Kokou, E-mail: k.dadzie@glyndwr.ac.uk [Mechanical and Aeronautical Engineering, Glyndwr University, Mold Road, Wrexham LL11 2AW (United Kingdom); Reese, Jason M., E-mail: jason.reese@strath.ac.uk [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom)
2012-02-06
We investigate the relationship between spatial stochasticity and non-continuum effects in gas flows. A kinetic model for a dilute gas is developed using strictly a stochastic molecular model reasoning, without primarily referring to either the Liouville or the Boltzmann equations for dilute gases. The kinetic equation, a stochastic version of the well-known deterministic Boltzmann equation for dilute gas, is then associated with a set of macroscopic equations for the case of a monatomic gas. Tests based on a heat conduction configuration and sound wave dispersion show that spatial stochasticity can explain some non-continuum effects seen in gases. -- Highlights: ► We investigate effects of molecular spatial stochasticity in non-continuum regime. ► Present a simplify spatial stochastic kinetic equation. ► Present a spatial stochastic macroscopic flow equations. ► Show effects of the new model on sound wave dispersion prediction. ► Show effects of the new approach in density profiles in a heat conduction.
Effects of midazolam on cerebral blood flow in human volunteers
International Nuclear Information System (INIS)
Forster, A.; Juge, O.; Morel, D.
1982-01-01
The effects of intravenously administered midazolam on cerebral blood flow were evaluated in eight healthy volunteers using the 133 Xe inhalation technique. Six minutes after an intravenous dose of 0.15 mg/kg midazolam, the cerebral blood flow decreased significantly (P less than 0.001) from a value of 40.6 +/- 3.3 to a value of 27.0 +/- 5.0 ml . 100 g-1 . min-1. Cerebrovascular resistance (CVR) increased from 2.8 +/- 0.2 to 3.9 to 0.6 mmHg/(ml . 100 g-1 . min-1)(P less than 0.001). Mean arterial blood pressure decreased significantly (P less than 0.05) from 117 +/- 8 to 109 +/- 9 mmHg and arterial carbon dioxide tension increased from 33.9 +/- 2.3 to 38.6 +/- 3.2 mmHg (P less than 0.05). Arterial oxygen tension remained stable throughout the study, 484 +/- 95 mmHg before the administration of midazolam and 453 +/- 76 mmHg after. All the subjects slept after the injection of the drug and had anterograde amnesia of 24.5 +/- 5 min. The decrease in mean arterial blood pressure was probably not important since it remained in the physiologic range for cerebral blood flow autoregulation. The increase in arterial carbon dioxide tension observed after the midazolam injection may have partially counteracted the effect of this new benzodiazepine on cerebral blood flow. Our data suggest that midazolam might be a safe agent to use for the induction of anethesia in neurosurgical patients with intracranial hypertension
Gas flow rate and powder flow rate effect on properties of laser metal deposited Ti6Al4V
CSIR Research Space (South Africa)
Pityana, S
2013-03-01
Full Text Available . The powder flow rate and the gas flow rate were varied to study their effect on the physical, metallurgical and mechanical properties of the deposits. The physical properties studied are: the track width, the track height and the deposit weight...
Gong, J.; Rossen, W.R.
2014-01-01
Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling the flow behavior of fractured formations. The effect of connectivity on flow properties is well documented. We focus here on the influence of fracture aperture distribution. We model a
Gong, J.; Rossen, W.R.
2017-01-01
Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling flow behavior of naturally fractured reservoirs. The effect of connectivity on flow properties is well documented. In this paper, however, we focus here on the influence of fracture
Combined effects of radiation and chemical reaction on MHD flow ...
African Journals Online (AJOL)
(2016) have studied unsteady MHD flow in porous media over exponentially accelerated plate ... boundary layer flow of heat and mass transfer over a moving vertical plate with suction. ... flow considering free convection over a porous plate.
Effect of aerosolized acetylcholine on bronchial blood flow.
Charan, N B; Carvalho, P; Johnson, S R; Thompson, W H; Lakshminarayan, S
1998-08-01
We studied the effects of aerosolized as well as intravenous infusion of acetylcholine on bronchial blood flow in six anesthetized sheep. Intravenous infusion of acetylcholine, at a dose of 2 microg/kg, increased bronchial blood flow from 45 +/- 15 (SE) to 74 +/- 30 ml/min, and vascular conductance increased by 76 +/- 22%. In contrast, aerosolized acetylcholine at doses of 2 and 20 microg/kg decreased bronchial vascular conductance by approximately 10%. At an aerosolized dose of 200 microg/kg, the bronchial vascular conductance increased by approximately 15%, and there was no further increase in conductance when the aerosolized dose was increased to 2,000 microg/kg. Pretreatment of animals with a nitric oxide synthase inhibitor, Nomega-nitro-L-arginine methyl ester hydrochloride, partially blocked the vasodilatory effects of intravenous acetylcholine and completely blocked the vasodilatory effects of high-dose aerosolized acetylcholine. These data suggest that aerosolized acetylcholine does not readily penetrate the vascular wall of bronchial circulatory system and, therefore, has minimal vasodilatory effects on the bronchial vasculature.
Effect of gas temperature on flow rate characteristics of an averaging pitot tube type flow meter
Energy Technology Data Exchange (ETDEWEB)
Yeo, Seung Hwa; Lee, Su Ryong; Lee, Choong Hoon [Seoul National University of Science and Technology, Seoul (Korea, Republic of)
2015-01-15
The flow rate characteristics passing through an averaging Pitot tube (APT) while constantly controlling the flow temperature were studied through experiments and CFD simulations. At controlled temperatures of 25, 50, 75, and 100 .deg .C, the flow characteristics, in this case the upstream, downstream and static pressure at the APT flow meter probe, were measured as the flow rate was increased. The flow rate through the APT flow meter was represented using the H-parameter (hydraulic height) obtained by a combination of the differential pressure and the air density measured at the APT flow meter probe. Four types of H-parameters were defined depending on the specific combination. The flow rate and the upstream, downstream and static pressures measured at the APT flow meter while changing the H-parameters were simulated by means of CFD. The flow rate curves showed different features depending on which type of H-parameter was used. When using the constant air density value in a standard state to calculate the H-parameters, the flow rate increased linearly with the H-parameter and the slope of the flow rate curve according to the H-parameter increased as the controlled target air temperature was increased. When using different air density levels corresponding to each target air temperature to calculate the H-parameter, the slope of the flow rate curve according to the H-parameter was constant and the flow rate curve could be represented by a single line. The CFD simulation results were in good agreement with the experimental results. The CFD simulations were performed while increasing the air temperature to 1200 K. The CFD simulation results for high air temperatures were similar to those at the low temperature ranging from 25 to 100 .deg. C.
Effect of gas temperature on flow rate characteristics of an averaging pitot tube type flow meter
International Nuclear Information System (INIS)
Yeo, Seung Hwa; Lee, Su Ryong; Lee, Choong Hoon
2015-01-01
The flow rate characteristics passing through an averaging Pitot tube (APT) while constantly controlling the flow temperature were studied through experiments and CFD simulations. At controlled temperatures of 25, 50, 75, and 100 .deg .C, the flow characteristics, in this case the upstream, downstream and static pressure at the APT flow meter probe, were measured as the flow rate was increased. The flow rate through the APT flow meter was represented using the H-parameter (hydraulic height) obtained by a combination of the differential pressure and the air density measured at the APT flow meter probe. Four types of H-parameters were defined depending on the specific combination. The flow rate and the upstream, downstream and static pressures measured at the APT flow meter while changing the H-parameters were simulated by means of CFD. The flow rate curves showed different features depending on which type of H-parameter was used. When using the constant air density value in a standard state to calculate the H-parameters, the flow rate increased linearly with the H-parameter and the slope of the flow rate curve according to the H-parameter increased as the controlled target air temperature was increased. When using different air density levels corresponding to each target air temperature to calculate the H-parameter, the slope of the flow rate curve according to the H-parameter was constant and the flow rate curve could be represented by a single line. The CFD simulation results were in good agreement with the experimental results. The CFD simulations were performed while increasing the air temperature to 1200 K. The CFD simulation results for high air temperatures were similar to those at the low temperature ranging from 25 to 100 .deg. C.
The effect of magnetohydrodynamic nano fluid flow through porous cylinder
Widodo, Basuki; Arif, Didik Khusnul; Aryany, Deviana; Asiyah, Nur; Widjajati, Farida Agustini; Kamiran
2017-08-01
This paper concerns about the analysis of the effect of magnetohydrodynamic nano fluid flow through horizontal porous cylinder on steady and incompressible condition. Fluid flow is assumed opposite gravity and induced by magnet field. Porous cylinder is assumed had the same depth of porous and was not absorptive. The First thing to do in this research is to build the model of fluid flow to obtain dimentional governing equations. The dimentional governing equations are consist of continuity equation, momentum equation, and energy equation. Furthermore, the dimensional governing equations are converted to non-dimensional governing equation by using non-dimensional parameters and variables. Then, the non-dimensional governing equations are transformed into similarity equations using stream function and solved using Keller-Box method. The result of numerical solution further is obtained by taking variation of magnetic parameter, Prandtl number, porosity parameter, and volume fraction. The numerical results show that velocity profiles increase and temperature profiles decrease when both of the magnetic and the porosity parameter increase. However, the velocity profiles decrease and the temperature profiles increase when both of the magnetic and the porosity parameter increase.
Experimental effect of flow depth on ratio discharge in lateral intakes in river bend
International Nuclear Information System (INIS)
Masjedi, A; Foroushani, E P
2012-01-01
Open-channel dividing flow is characterized by the inflow and outflow discharges, the upstream and downstream water depths, and the recirculation flow in the branch channel. In general, diversion flow can be categorized as natural and artificial flow. Natural flow diversion usually occurs as braiding or cut-off in bend rivers, while artificial flow is man-made to divert flow by lateral intake channels for water supply. This study presents the results of a laboratory research into effect intake flow depth on ratio discharge in lateral intakes in 180 degree bend. Investigation on lateral intake and determination of intake flow depth is among the most important issues in lateral intake on ratio discharge with model intake flow depth were measured in a laboratory flume under clear-water. Experiments were conducted for various intake flow depths and with different discharges. It was found that by increasing the flow depth at 180 degree flume bend, ratio discharge increases.
Analytical effective tensor for flow-through composites
Sviercoski, Rosangela De Fatima [Los Alamos, NM
2012-06-19
A machine, method and computer-usable medium for modeling an average flow of a substance through a composite material. Such a modeling includes an analytical calculation of an effective tensor K.sup.a suitable for use with a variety of media. The analytical calculation corresponds to an approximation to the tensor K, and follows by first computing the diagonal values, and then identifying symmetries of the heterogeneity distribution. Additional calculations include determining the center of mass of the heterogeneous cell and its angle according to a defined Cartesian system, and utilizing this angle into a rotation formula to compute the off-diagonal values and determining its sign.
Effects of couple stresses in MHD channel flow
International Nuclear Information System (INIS)
Soundalgekar, V.M.; Aranake, R.N.
1977-01-01
An analysis of fully developed MHD channel flow of an electrically conducting incompressible fluid, taking into account the couple stresses, is carried out. Exact solutions are derived for velocity profiles, current density, skin-friction and coefficient of mass flux. They are influenced by the magnetic field, the loading parameter k, and the non-dimensional parameter (a=b 1 /lambda). Their variations with respect to M, k and a are represented graphically, this is followed by a physical discussion. It is observed that the couple stresses are more effective in the presence of a very weak magnetic field. (Auth.)
Strain gradient crystal plasticity effects on flow localization
DEFF Research Database (Denmark)
Borg, Ulrik
2007-01-01
for metals described by the reformulated Fleck-Hutchinson strain gradient plasticity theory. The theory is implemented numerically within a finite element framework using slip rate increments and displacement increments as state variables. The formulation reduces to the classical crystal plasticity theory...... in the absence of strain gradients. The model is used to study the effect of an internal material length scale on the localization of plastic flow in shear bands in a single crystal under plane strain tension. It is shown that the mesh sensitivity is removed when using the nonlocal material model considered...
Virtual mass effects in two-phase flow. Topical report
International Nuclear Information System (INIS)
Cheng, L.Y.; Drew, D.A.; Lahey, R.T. Jr.
1978-03-01
The effect of virtual mass on phase separation during the acceleration of a two-phase mixture was studied. Virtual mass can be regarded as an induced inertia on the dispersed phase which is accelerating relative to the continuous phase, and it was found that the virtual mass acceleration is objective, implying an invariance with respect to reference frame. An objective form of the virtual acceleration was derived and required parameters were determined for limiting cases. Analyses determined that experiments on single bubble nozzle/diffuser flow cannot readily discriminate between various virtual mass acceleration models
Effect of asynchrony on numerical simulations of fluid flow phenomena
Konduri, Aditya; Mahoney, Bryan; Donzis, Diego
2015-11-01
Designing scalable CFD codes on massively parallel computers is a challenge. This is mainly due to the large number of communications between processing elements (PEs) and their synchronization, leading to idling of PEs. Indeed, communication will likely be the bottleneck in the scalability of codes on Exascale machines. Our recent work on asynchronous computing for PDEs based on finite-differences has shown that it is possible to relax synchronization between PEs at a mathematical level. Computations then proceed regardless of the status of communication, reducing the idle time of PEs and improving the scalability. However, accuracy of the schemes is greatly affected. We have proposed asynchrony-tolerant (AT) schemes to address this issue. In this work, we study the effect of asynchrony on the solution of fluid flow problems using standard and AT schemes. We show that asynchrony creates additional scales with low energy content. The specific wavenumbers affected can be shown to be due to two distinct effects: the randomness in the arrival of messages and the corresponding switching between schemes. Understanding these errors allow us to effectively control them, rendering the method's feasibility in solving turbulent flows at realistic conditions on future computing systems.
Technological effect of vibroprocessing by flows of organic granular media
Lebedev, V. A.; Shishkina, A. P.; Davydova, I. V.; Morozova, A. V.
2018-03-01
The analysis of approaches to modeling of vibrational processing by granulated media is carried out. The vibroprocessing model which provides effective finishing of the surfaces of the parts due to the stone fruit organic media granules is developed. The model is based on the granule flow energy impact on the surface being treated. As the main characteristic of the organic media processing, a specific volumetric metal scrap is used, the physical meaning of which is the increase rate in the thickness of the material removed from the surface at a given velocity and pressure of the medium. It is shown that the metal scrap depends on the medium flow velocity, the height of the loading column of the granular medium, and the conditions for the formation of a medium stationary circulation motion. Based on the analysis of the results of experimental studies of the influence of amplitude-frequency characteristics on the removal of metal in the process of vibroprocessing with abrasive granules, the dependence of the specific volume metal removal is proposed for organic media processing, taking into account the threshold amplitude and frequency of oscillations of the working chamber, at which the effect of surface treatment is observed. The established set of relationships describing the effective conditions for vibroprocessing with stone organic media was obtained using experimental data, which allows us to assume that the model obtained is valid.
Numerical simulation of wall roughness effects in cavitating flow
Energy Technology Data Exchange (ETDEWEB)
Echouchene, F. [Laboratoire d' electronique et de microelectronique, Departement de Physique, Faculte des Sciences de Monastir, 5000 (Tunisia); Belmabrouk, H., E-mail: frchouchene@yahoo.fr [Laboratoire d' electronique et de microelectronique, Departement de Physique, Faculte des Sciences de Monastir, 5000 (Tunisia); Le Penven, L.; Buffat, M. [LMFA UMR CNRS 5509, Universite de Claude Bernard Lyon 1, Ecole Centrale de Lyon, INSA de Lyon (France)
2011-10-15
Hydrodynamic cavitation has an important effect on the performance of Diesel injectors. It influences the nature of the fuel spray and the efficiency of the combustion process. In the present study, we investigate numerically the effect of wall roughness in the cavitating and turbulent flow developing inside a Diesel injector. The mixture model based on a single fluid is adopted and the commercial Fluent software is used to solve the transport equations. The discharge coefficient C{sub d} is computed for different cavitation numbers and wall roughness heights. Profiles of density mixture, vapor volume fraction, mean velocity and turbulent kinetic energy are reported. The effects of wall roughness and injection pressure are analyzed.
Effective slip lengths for flows over surfaces with nanobubbles: the effects of finite slip
International Nuclear Information System (INIS)
Hendy, S C; Lund, N J
2009-01-01
We consider effective slip lengths for flows of simple liquids over surfaces contaminated by gaseous nanobubbles. In particular, we examine whether the effects of finite slip over the liquid-bubble interface are important in limiting effective slip lengths over such surfaces. Using an expression that interpolates between the perfect slip and finite slip regimes for flow over bubbles, we conclude that for the bubble dimensions and coverages typically reported in the literature the effects of finite slip are secondary, reducing effective slip lengths by only 10%. Further, we find that nanobubbles do not significantly increase slip lengths beyond those reported for bare hydrophobic surfaces.
Measurement of effective renal plasma flow in congestive heart failure
International Nuclear Information System (INIS)
Tauxe, W.N.; Dubovsky, E.V.; Mantle, J.A.; Dustan, H.P.; Logic, J.R.
1981-01-01
In the management of patients with congestive heart failure (CHF), it is often desirable to have precise knowledge of overall renal function, including the effective renal plasma flow (ERPF). It has long been recognized that ERPF is diminished in CHF. Since glomerular filtration rate is often decreased to a much lesser extent, other noninvasive procedures such as the measurement of creatinine clearances may not be entirely suitable. ERPF determination by the single plasma sampling (SPS) method affords a rapid, simple, noninvasive, and economical technique that is quite accurate and reproducible. A SPS method has been well-tested in patients following renal transplantation plus a wide variety of nephrological disorders. We have been concerned whether the SPS method would be valid in volume expanded patients. In 28 determinations of ERPF in patients with CHF, and in five patients who did not have CHF, we have found the SPS estimation of ERPF to yield results that are not clinically significantly different from those obtained by the detailed compartmental analysis method. The volumes of 131 I-orthoiodohippurate (OIH) distribution were found to be somewhat higher in CHF than in controls, but fractional rate constants were proportionately lower so that intercompartmental flow rates and OIH concentrations were not different from controls. Therefore, the SPS estimation of ERPF is valid in patients with CHF and may be useful in monitoring the renal effects of various hemodynamic and pharmacological interventions. (orig.)
Effect of flow parameters on flare stack generator noise
International Nuclear Information System (INIS)
Dinn, T.S.
1998-01-01
The SoundPLAN Computer Noise Model was used to determine the general effect of flare noise in a community adjacent to a petrochemical plant. Tests were conducted to determine the effect of process flow conditions and the pulsating flame on the flare stack generator noise from both a refinery flare and process flare. Flaring under normal plant operations, the flaring of fuel gas and the flaring of hydrogen were the three conditions that were tested. It was shown that the steam flow rate was the determining factor in the flare stack generated noise. Variations in the water seal level in the flare line surge tank increased or decreased the gas flowrate, which resulted in a pulsating flame. The period and amplitude of the pulsating noise from the flare stacks was determined by measuring several parameters. Flare stack noise oscillations were found to be greater for the process flare than for the refinery flare stack. It was suggested that minimizing the amount of steam fed to the flare and improving the burner design would minimize noise. 2 tabs., 6 figs
Surfactant Effect on the Average Flow Generation Near Curved Interface
Klimenko, Lyudmila; Lyubimov, Dmitry
2018-02-01
The present work is devoted to the average flow generation near curved interface with a surfactant adsorbed on the surface layer. The investigation was carried out for a liquid drop embedded in a viscous liquid with a different density. The liquid flows inside and outside the drop are generated by small amplitude and high frequency vibrations. Surfactant exchange between the drop surface and the surrounding liquid is limited by the process of adsorption-desorption. It was assumed that the surfactant is soluble in the surrounding liquid, but not soluble in the liquid drop. Surrounding liquid and the liquid in the drop are considered incompressible. Normal and shear viscous stresses balance at the interface is performed under the condition that the film thickness of the adsorbed surfactant is negligible. The problem is solved under assumption that the shape of the drop in the presence of adsorbed surfactant remains spherical symmetry. The effective boundary conditions for the tangential velocity jump and shear stress jump, describing the above generation have been obtained by matched asymptotic expansions method. The conditions under which the drop surface can be considered as a quasi-solid are determined. It is shown that in the case of the significant effect of surfactant on the surface tension, the dominant mechanism for the generation is the Schlichting mechanisms under vibrations.
Effects of Chaos in Peristaltic Flows: Towards Biological Applications
Wakeley, Paul W.; Blake, John R.; Smith, David J.; Gaffney, Eamonn A.
2006-11-01
One in seven couples in the Western World will have problems conceiving naturally and with the cost of state provided fertility treatment in the United Kingdom being over USD 3Million per annum and a round of treatment paid for privately costing around USD 6000, the desire to understand the mechanisms of infertility is leading to a renewed interest in collaborations between mathematicians and reproductive biologists. Hydrosalpinx is a condition in which the oviduct becomes blocked, fluid filled and dilated. Many women with this condition are infertile and the primary method of treatment is in vitro fertilisation, however, it is found that despite the embryo being implanted into the uterus, the hydrosalpinx adversely affects the implantation rate. We shall consider a mathematical model for peristaltic flow with an emphasis towards modelling the fluid flow in the oviducts and the uterus of humans. We shall consider the effects of chaotic behavior on the system and demonstrate that under certain initial conditions trapping regions can be formed and discuss our results with a view towards understanding the effects of hydrosalpinx.
International Nuclear Information System (INIS)
Li, Zhihui; Ma, Qiang; Wu, Junlin; Jiang, Xinyu; Zhang, Hanxin
2014-01-01
Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body
International Nuclear Information System (INIS)
Hussain, M.; Khan, J.A.
2004-01-01
A numerical study of flow in distributor of Francis Turbine is carried out by using two different techniques of flow zone generation. Distributor of GAMM Francis Turbine is used for present calculation. In present work, flow is assumed to be periodic around the distributor in steady state conditions, therefore computational domain consists of only one blade channel (one stay vane and one guide vane). The distributor computational domain is bounded up stream by cylindrical and downstream by conical patches. The first one corresponds to the spiral casing outflow section, while the second one is considered to be the distributor outlet or runner inlet. Upper and lower surfaces are generated by the revolution of hub and shroud edges. Single connected and multiple connected techniques are considered to generate distributor flow zone for numerical flow analysis of GAMM Francis turbine. The tetrahedral meshes are generated in both the flow zones. Same boundary conditions are applied for both the equivalent flow zones. The three dimensional, laminar flow analysis for both the distributor flow zones of the GAMM Francis turbine operating at the best efficiency point is performed. Gambit and G- Turbo are used as a preprocessor while calculations are done by using Fluent. Finally, numerical results obtained on the distributor outlet are compared with the available experimental data to validate the two different methodologies and examine their accuracy. (author)
International Nuclear Information System (INIS)
Fukano, Tohru; Tominaga, Akira; Morikawa, Kengo.
1986-01-01
The aspect of a liquid film flowing near a flat plate type obstacle was observed, and the liquid film thickness and the entrainment were measured under a wide range of gas and liquid flow rates. The results are summarized as follows: (1) The configurations of film flows near the obstacle are classified according to whether (a) the liquid film climbs over the obstacle or not, (b) the air flows under the obstacle or not, or (c) the liquid film swells or sinks just upstream or downstream of the obstacle. (2) The lower the liquid flow rate, the larger the effect of the obstacle on the film thickness. (3) The generation of entrainment is regulated by the obstacle when the air volumetric flux is high and by the disturbance wave when it is low. (author)
Two-dimensional analysis of motion artifacts, including flow effects
International Nuclear Information System (INIS)
Litt, A.M.; Brody, A.S.; Spangler, R.A.; Scott, P.D.
1990-01-01
The effects of motion on magnetic resonance images have been theoretically analyzed for the case of a point-like object in simple harmonic motion and for other one-dimensional trajectories. The authors of this paper extend this analysis to a generalized two-dimensional magnetization with an arbitrary motion trajectory. The authors provide specific solutions for the clinically relevant cases of the cross-sections of cylindrical objects in the body, such as the aorta, which has a roughly one-dimensional, simple harmonic motion during respiration. By extending the solution to include inhomogeneous magnetizations, the authors present a model which allows the effects of motion artifacts and flow artifacts to be analyzed simultaneously
Effects of couple stresses on MHD Couette flow
International Nuclear Information System (INIS)
Soundalgekar, V.M.; Aranake, R.N.
1978-01-01
An exact analysis of the effects of the couple stresses on the MHD Couette flow of an electrically conducting, viscous incompressible fluid is carried out. Closed form solutions are derived for the velocity, the current density, the skin-friction at the lower plate, the force to move the upper plate, and the coefficient of mass flux for (i) A→infinity, and (ii) 2M/A 1, where a is the couple stress parameter and M is the Hartmann number. These are shown graphically followed by a discussion. During the course of discussion the effects of A are quantitatively compared with those in the ordinary case. It is observed that in the presence of a magnetic field the skin friction is affected by the couple stresses. (Auth.)
Debris flow-induced topographic changes: effects of recurrent debris flow initiation.
Chen, Chien-Yuan; Wang, Qun
2017-08-12
Chushui Creek in Shengmu Village, Nantou County, Taiwan, was analyzed for recurrent debris flow using numerical modeling and geographic information system (GIS) spatial analysis. The two-dimensional water flood and mudflow simulation program FLO-2D were used to simulate debris flow induced by rainfall during typhoon Herb in 1996 and Mindulle in 2004. Changes in topographic characteristics after the debris flows were simulated for the initiation of hydrological characteristics, magnitude, and affected area. Changes in topographic characteristics included those in elevation, slope, aspect, stream power index (SPI), topographic wetness index (TWI), and hypsometric curve integral (HI), all of which were analyzed using GIS spatial analysis. The results show that the SPI and peak discharge in the basin increased after a recurrence of debris flow. The TWI was higher in 2003 than in 2004 and indicated higher potential of landslide initiation when the slope of the basin was steeper. The HI revealed that the basin was in its mature stage and was shifting toward the old stage. Numerical simulation demonstrated that the parameters' mean depth, maximum depth, affected area, mean flow rate, maximum flow rate, and peak flow discharge were increased after recurrent debris flow, and peak discharge occurred quickly.
Held, J P; Daniel, G B
1991-10-01
The effect of flunixin meglumine on renal function was studied in 6 healthy horses by use of nonimaging nuclear medicine techniques. Effective renal plasma flow (ERPF) and effective renal blood flow (ERBF) were determined by plasma clearance of 131I-orthoiodohippuric acid before and after administration of flunixin meglumine. Mean ERPF and ERBF was 6.03 ml/min/kg and 10.7 ml/min/kg, respectively, before treatment and was 5.7 ml/min/kg and 9.7 ml/min/kg, respectively, after treatment. Although ERPF and ERBF decreased after flunixin meglumine administration, the difference was not statistically significant.
Effects of traveling waves on flow separation and turbulence
Akbarzadeh, Amir Mahdi; Borazjani, Iman; scientific computing; biofluids laboratory Team
2017-11-01
Stable leading edge vortex (LEV) is observed in many flying, hovering and also some aquatic creatures. However, the LEV stability in aquatic animal, in contrast to hovering ones, is not well understood. Here, we study the flow over an inclined plate with an undulatory motion inspired from aquatic swimmers using our immersed boundary, large-eddy simulations (LES). The angle of attack is five degrees and Reynolds number (Re) is 20,000. The undulation is a traveling wave, which has a constant amplitude of 0.01 with respect to chord length and a different wavelength and Strouhal number (St =fA/U, f: frequency, A: amplitude, and U: free stream velocity) for each case. Over a fixed plate the LEV becomes unstable as it reaches the trailing edge and sheds to the wake, whereas over the undulating plate with St =0.2 the LEV becomes stable. The visualization of time average results shows there is a favorable pressure gradient along the tangential direction in cases the LEV becomes stable, which we explain analytically by showing the correlation between the average pressure gradient, St, and wavelength. Finally, the effects of undulatory moving walls of a channel flow on the turbulent statistics is shown. This work was partly supported by the National Science Foundation (NSF) CAREER Grant CBET 1453982, and the Center of Computational Research (CCR) of University at Buffalo.
Effects from Unsaturated Zone Flow during Oscillatory Hydraulic Testing
Lim, D.; Zhou, Y.; Cardiff, M. A.; Barrash, W.
2014-12-01
In analyzing pumping tests on unconfined aquifers, the impact of the unsaturated zone is often neglected. Instead, desaturation at the water table is often treated as a free-surface boundary, which is simple and allows for relatively fast computation. Richards' equation models, which account for unsaturated flow, can be compared with saturated flow models to validate the use of Darcy's Law. In this presentation, we examine the appropriateness of using fast linear steady-periodic models based on linearized water table conditions in order to simulate oscillatory pumping tests in phreatic aquifers. We compare oscillatory pumping test models including: 1) a 2-D radially-symmetric phreatic aquifer model with a partially penetrating well, simulated using both Darcy's Law and Richards' Equation in COMSOL; and 2) a linear phase-domain numerical model developed in MATLAB. Both COMSOL and MATLAB models are calibrated to match oscillatory pumping test data collected in the summer of 2013 at the Boise Hydrogeophysical Research Site (BHRS), and we examine the effect of model type on the associated parameter estimates. The results of this research will aid unconfined aquifer characterization efforts and help to constrain the impact of the simplifying physical assumptions often employed during test analysis.
Transitional Flow in an Arteriovenous Fistula: Effect of Wall Distensibility
McGah, Patrick; Leotta, Daniel; Beach, Kirk; Aliseda, Alberto
2012-11-01
Arteriovenous fistulae are created surgically to provide adequate access for dialysis in patients with end-stage renal disease. Transitional flow and the subsequent pressure and shear stress fluctuations are thought to be causative in the fistula failure. Since 50% of fistulae require surgical intervention before year one, understanding the altered hemodynamic stresses is an important step toward improving clinical outcomes. We perform numerical simulations of a patient-specific model of a functioning fistula reconstructed from 3D ultrasound scans. Rigid wall simulations and fluid-structure interaction simulations using an in-house finite element solver for the wall deformations were performed and compared. In both the rigid and distensible wall cases, transitional flow is computed in fistula as evidenced by aperiodic high frequency velocity and pressure fluctuations. The spectrum of the fluctuations is much more narrow-banded in the distensible case, however, suggesting a partial stabilizing effect by the vessel elasticity. As a result, the distensible wall simulations predict shear stresses that are systematically 10-30% lower than the rigid cases. We propose a possible mechanism for stabilization involving the phase lag in the fluid work needed to deform the vessel wall. Support from an NIDDK R21 - DK08-1823.
Mach Number effects on turbulent superstructures in wall bounded flows
Kaehler, Christian J.; Bross, Matthew; Scharnowski, Sven
2017-11-01
Planer and three-dimensional flow field measurements along a flat plat boundary layer in the Trisonic Wind Tunnel Munich (TWM) are examined with the aim to characterize the scaling, spatial organization, and topology of large scale turbulent superstructures in compressible flow. This facility is ideal for this investigation as the ratio of boundary layer thickness to test section spanwise extent ratio is around 1/25, ensuring minimal sidewall and corner effects on turbulent structures in the center of the test section. A major difficulty in the experimental investigation of large scale features is the mutual size of the superstructures which can extend over many boundary layer thicknesses. Using multiple PIV systems, it was possible to capture the full spatial extent of large-scale structures over a range of Mach numbers from Ma = 0.3 - 3. To calculate the average large-scale structure length and spacing, the acquired vector fields were analyzed by statistical multi-point methods that show large scale structures with a correlation length of around 10 boundary layer thicknesses over the range of Mach numbers investigated. Furthermore, the average spacing between high and low momentum structures is on the order of a boundary layer thicknesses. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures of the Deutsche Forschungsgemeinschaft.
[Rainfall effects on the sap flow of Hedysarum scoparium.
Yang, Qiang; Zha, Than Shan; Jia, Xin; Qin, Shu Gao; Qian, Duo; Guo, Xiao Nan; Chen, Guo Peng
2016-03-01
In arid and semi-arid areas, plant physiological responses to water availability depend largely on the intensity and frequency of rain events. Knowledge on the responses of xerophytic plants to rain events is important for predicting the structure and functioning of dryland ecosystems under changing climate. The sap flow of Hedysarum scoparium in the Mu Us Sand Land was continuously measured during the growing season of 2012 and 2013. The objectives were to quantify the dynamics of sap flow under different weather conditions, and to examine the responses of sap flow to rain events of different sizes. The results showed that the daily sap flow rates of H. scoparium were lower on rainy days than on clear days. On clear days, the sap flow of H. scoparium showed a midday plateau, and was positively correlated with solar radiation and relative humidity. On rainy days, the sap flow fluctuated at low levels, and was positively correlated with solar radiation and air temperature. Rain events not only affected the sap flow on rainy days through variations in climatic factors (e.g., solar radiation and air temperature), but also affected post-rainfall sap flow velocities though changes in soil moisture. Small rain events (sap flow, whereas large rain events (>20 mm) significantly increased the sap flow on days following rainfall. Rain-wetted soil conditions not only resulted in higher sap flow velocities, but also enhanced the sensitivity of sap flow to solar radiation, vapor pressure deficit and air temperature.
EFFECTS OF TRADE FLOW LIBERALIZATION: CASE OF ASEAN, NAFTA & MERCOSUR
Directory of Open Access Journals (Sweden)
Hasan Mahmutović
2018-04-01
Full Text Available An important factor and the inescapable link of the globalization process are economic integrations, which by the liberalization of trade flows contributes significantly to the interconnection of countries, thus directly affecting the enhancement of the value of macroeconomic parameters at the level of the formed integration. The aim of this paper is to examine the effects of economic integration on the example of ASEAN, NAFTA and MERCOSUR integration, which, along with the European Union, represent the most relevant integrations in the world. The analysis showed, as a consequence of the integration, increased volume of trade exchange, increased FDI level and achieved real economic growth on the level of integration. However, the analysis has shown, in particular in the ASEAN area, that there is still a problem of uneven distribution of income and fairer implementation of regional policy, in order to integrate growth generated into the development of less developed areas.
Effect of anxiety on cortical cerebral blood flow and metabolism
International Nuclear Information System (INIS)
Gur, R.C.; Gur, R.E.; Resnick, S.M.; Skolnick, B.E.; Alavi, A.; Reivich, M.
1987-01-01
The relation between anxiety and cortical activity was compared in two samples of normal volunteers. One group was studied with the noninvasive xenon-133 inhalation technique for measuring cerebral blood flow (CBF) and the other with positron emission tomography (PET) using 18 Flurodeoxyglucose ( 18 FDG) for measuring cerebral metabolic rates (CMR) for glucose. The inhalation technique produced less anxiety than the PET procedure, and for low anxiety subjects, there was a linear increase in CBF with anxiety. For higher anxiety subjects, however, there was a linear decrease in CBF with increased anxiety. The PET group manifested a linear decrease in CMR with increased anxiety. The results indicate that anxiety can have systematic effects on cortical activity, and this should be taken into consideration when comparing data from different procedures. They also suggest a physiologic explanation of a fundamental behavioral law that stipulates a curvilinear, inverted-U relationship between anxiety and performance
Flow structures around a flapping wing considering ground effect
Van Truong, Tien; Kim, Jihoon; Kim, Min Jun; Park, Hoon Cheol; Yoon, Kwang Joon; Byun, Doyoung
2013-07-01
Over the past several decades, there has been great interest in understanding the aerodynamics of flapping flight, namely the two flight modes of hovering and forward flight. However, there has been little focus on the aerodynamic characteristics during takeoff of insects. In a previous study we found that the Rhinoceros Beetle ( Trypoxylusdichotomus) takes off without jumping, which is uncommon for other insects. In this study we built a scaled-up electromechanical model of a flapping wing and investigated fluid flow around the beetle's wing model. In particular, the present dynamically scaled mechanical model has the wing kinematics pattern achieved from the real beetle's wing kinematics during takeoff. In addition, we could systematically change the three-dimensional inclined motion of the flapping model through each stroke. We used digital particle image velocimetry with high spatial resolution, and were able to qualitatively and quantitatively study the flow field around the wing at a Reynolds number of approximately 10,000. The present results provide insight into the aerodynamics and the evolution of vortical structures, as well as the ground effect experienced by a beetle's wing during takeoff. The main unsteady mechanisms of beetles have been identified and intensively analyzed as the stability of the leading edge vortex (LEV) during strokes, the delayed stall during upstroke, the rotational circulation in pronation periods, and wake capture in supination periods. Due to the ground effect, the LEV was enhanced during half downstroke, and the lift force could thus be increased to lift the beetle during takeoff. This is useful for researchers in developing a micro air vehicle that has a beetle-like flapping wing motion.
Hardie, Scott A.; Bobbi, Chris J.
2018-03-01
Defining the ecological impacts of water extraction from free-flowing river systems in altered landscapes is challenging as multiple stressors (e.g., flow regime alteration, increased sedimentation) may have simultaneous effects and attributing causality is problematic. This multiple-stressor context has been acknowledged in environmental flows science, but is often neglected when it comes to examining flow-ecology relationships, and setting and implementing environmental flows. We examined the impacts of land and water use on rivers in the upper Ringarooma River catchment in Tasmania (south-east Australia), which contains intensively irrigated agriculture, to support implementation of a water management plan. Temporal and spatial and trends in river condition were assessed using benthic macroinvertebrates as bioindicators. Relationships between macroinvertebrate community structure and environmental variables were examined using univariate and multivariate analyses, focusing on the impacts of agricultural land use and water use. Structural changes in macroinvertebrate communities in rivers in the catchment indicated temporal and spatial declines in the ecological condition of some stretches of river associated with agricultural land and water use. Moreover, water extraction appeared to exacerbate impairment associated with agricultural land use (e.g., reduced macroinvertebrate density, more flow-avoiding taxa). The findings of our catchment-specific bioassessments will underpin decision-making during the implementation of the Ringarooma water management plan, and highlight the need to consider compounding impacts of land and water use in environmental flows and water planning in agricultural landscapes.
Hardie, Scott A; Bobbi, Chris J
2018-03-01
Defining the ecological impacts of water extraction from free-flowing river systems in altered landscapes is challenging as multiple stressors (e.g., flow regime alteration, increased sedimentation) may have simultaneous effects and attributing causality is problematic. This multiple-stressor context has been acknowledged in environmental flows science, but is often neglected when it comes to examining flow-ecology relationships, and setting and implementing environmental flows. We examined the impacts of land and water use on rivers in the upper Ringarooma River catchment in Tasmania (south-east Australia), which contains intensively irrigated agriculture, to support implementation of a water management plan. Temporal and spatial and trends in river condition were assessed using benthic macroinvertebrates as bioindicators. Relationships between macroinvertebrate community structure and environmental variables were examined using univariate and multivariate analyses, focusing on the impacts of agricultural land use and water use. Structural changes in macroinvertebrate communities in rivers in the catchment indicated temporal and spatial declines in the ecological condition of some stretches of river associated with agricultural land and water use. Moreover, water extraction appeared to exacerbate impairment associated with agricultural land use (e.g., reduced macroinvertebrate density, more flow-avoiding taxa). The findings of our catchment-specific bioassessments will underpin decision-making during the implementation of the Ringarooma water management plan, and highlight the need to consider compounding impacts of land and water use in environmental flows and water planning in agricultural landscapes.
Preliminary Results of Testing of Flow Effects on Evaporator Scaling
Energy Technology Data Exchange (ETDEWEB)
Hu, M.Z.
2002-02-15
This investigation has focused on the effects of fluid flow on solids deposition from solutions that simulate the feed to the 2H evaporator at the Savannah River Site. Literature studies indicate that the fluid flow (or shear) affects particle-particle and particle-surface interactions and thus the phenomena of particle aggregation in solution and particle deposition (i.e., scale formation) onto solid surfaces. Experimental tests were conducted with two configurations: (1) using a rheometer to provide controlled shear conditions and (2) using controlled flow of reactive solution through samples of stainless steel tubing. All tests were conducted at 80 C and at high silicon and aluminum concentrations, 0.133 M each, in solutions containing 4 M sodium hydroxide and 1 A4 each of sodium nitrate and sodium nitrite. Two findings from these experiments are important for consideration in developing approaches for reducing or eliminating evaporator scaling problems: (1) The rheometer tests suggested that for the conditions studied, maximum solids deposition occurs at a moderate shear rate, approximately 12 s{sup -1}. That value is expected to be on the order of shear rates that will occur in various parts of the evaporator system; for instance, a 6 gal/min single-phase liquid flow through the 2-in. lift or gravity drain lines would result in a shear rate of approximately 16 s{sup -1}. These results imply that engineering approaches aimed at reducing deposits through increased mixing would need to generate shear near all surfaces significantly greater than 12 s{sup -1}. However, further testing is needed to set a target value for shear that is applicable to evaporator operation. This is because the measured trend is not statistically significant at the 95% confidence interval due to variability in the results. In addition, testing at higher temperatures and lower concentrations of aluminum and silicon would more accurately represent conditions in the evaporator. Without
Effect of plasma actuator control parameters on a transitional flow
Das Gupta, Arnob; Roy, Subrata
2018-04-01
This study uses a wall-resolved implicit large eddy simulation to investigate the effects of different surface dielectric barrier discharge actuator parameters such as the geometry of the electrodes, frequency, amplitude of actuation and thermal effect. The actuator is used as a tripping device on a zero-pressure gradient laminar boundary layer flow. It is shown that the standard linear actuator creates structures like the Tollmien-Schlichting wave transition. The circular serpentine, square serpentine and spanwise actuators have subharmonic sinuous streak breakdown and behave like oblique wave transition scenario. The spanwise and square actuators cause comparably faster transition to turbulence. The square actuator adds energy into the higher spanwise wavenumber modes resulting in a faster transition compared to the circular actuator. When the Strouhal number of actuation is varied, the transition does not occur for a value below 0.292. Higher frequencies with same amplitude of actuation lead to faster transition. Small changes (<4%) in the amplitude of actuation can have a significant impact on the transition location which suggests that an optimal combination of frequency and amplitude exists for highest control authority. The thermal bumps approximating the actuator heating only shows localized effects on the later stages of transition for temperatures up to 373 K and can be ignored for standard actuators operating in subsonic regimes.
Effects of confinement & surface roughness in electrorheological flows
Helal, Ahmed; Telleria, Maria J.; Wang, Julie; Strauss, Marc; Murphy, Mike; McKinley, Gareth; Hosoi, A. E.
2014-11-01
Electrorheological (ER) fluids are dielectric suspensions that exhibit a fast, reversible change in rheological properties with the application of an external electric field. Upon the application of the electric field, the material develops a field-dependent yield stress that is typically modeled using a Bingham plastic model. ER fluids are promising for designing small, cheap and rapidly actuated hydraulic devices such as rapidly-switchable valves, where fluid flowing in a microchannel can be arrested by applying an external electric field. In the lubrication limit, for a Bingham plastic fluid, the maximum pressure the channel can hold, before yielding, is a function of the field-dependent yield stress, the length of the channel and the electrode gap. In practice, the finite width of the channel and the surface roughness of the electrodes could affect the maximum yield pressure but a quantitative understanding of these effects is currently lacking. In this study, we experimentally investigate the effects of the channel aspect ratio (width/height) and the effects of electrode roughness on the performance of ER valves. Based on this quantitative analysis, we formulate new performance metrics for ER valves as well as design rules for ER valves that will help guide and optimize future designs.
Energy Technology Data Exchange (ETDEWEB)
Boogar, Rahman Sadeghi; Gheshlaghi, Reza; Mahdavi, Mahmood Akhavan [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)
2013-01-15
A microchannel was fabricated with glass tubes to investigate the effect of viscosity, surface tension, and flow rate on the liquid-liquid two-phase flow regime. Water and gasoil were selected as aqueous and organic working fluids, respectively. The two fluids were injected into the microchannel and created either slug or parallel profile depending on the applied conditions. The range of Reynolds and capillary numbers was chosen in such a way that neither inertia nor interfacial tension forces were negligible. Xanthan gum was used to increase viscosity and Triton X-100 (TX-100) and Sodium Dodecyl Sulfate (SDS) were used to reduce the interfacial tension. The results demonstrated that higher value of viscosity and flow rate increased interfacial area, but slug flow regime remained unchanged. The two surfactants showed different effects on the flow regime and interfacial area. Addition of TX-100 did not change the slug flow but decreased the interfacial area. In contrast, addition of SDS increased interfacial area by decreasing the slug’s length in the low concentrations and by switching from slug to parallel regime at high concentrations.
Effects of Long Cycles in Cash Flows on Present Value
Bell, Peter N
2015-01-01
This paper explores how present value varies over time when the underlying cash flow has a deterministic period. I assume that cash flows are known with certainty and follow a cycle with a long or short period. When the cash flow has a short period, the present value is relatively stable over time because the present value calculation smooths out several cycles. However, when the cash flow has a long period the present value itself develops a long and large cycle. These results are driven...
Nuclear-Coupled Flow Instabilities and Their Effects on Dryout
Energy Technology Data Exchange (ETDEWEB)
M. Ishii; X. Sunn; S. Kuran
2004-09-27
Nuclear-coupled flow/power oscillations in boiling water reactors (BWRs) are investigated experimentally and analytically. A detailed literature survey is performed to identify and classify instabilities in two-phase flow systems. The classification and the identification of the leading physical mechanisms of the two-phase flow instabilities are important to propose appropriate analytical models and scaling criteria for simulation. For the purpose of scaling and the analysis of the nonlinear aspects of the coupled flow/power oscillations, an extensive analytical modeling strategy is developed and used to derive both frequency and time domain analysis tools.
Unsteady coupling effects of wet steam in steam turbines flows
International Nuclear Information System (INIS)
Blondel, Frederic
2014-01-01
In addition to conventional turbomachinery problems, both the behavior and performances of steam turbines are highly dependent on the vapour thermodynamic state and the presence of a liquid phase. EDF, the main French electricity producer, is interested in further developing its' modelling capabilities and expertise in this area to allow for operational studies and long-term planning. This PhD thesis explores the modelling of wetness formation and growth in a steam turbine and an analysis of the coupling between the liquid phase and the main flow unsteadiness. To this end, the work in this thesis took the following approach. Wetness was accounted for using a homogeneous model coupled with transport equations to take into account the effects of non-equilibrium phenomena, such as the growth of the liquid phase and nucleation. The real gas attributes of the problem demanded adapted numerical methods. Before their implementation in the 3D elsA solver, the accuracy of the chosen models was tested using a developed one-dimensional nozzle code. In this manner, various condensation models were considered, including both poly-dispersed and monodispersed behaviours of the steam. Finally, unsteady coupling effects were observed from several perspectives (1D, 1D - 3D, 3D), demonstrating the ability of the method of moments to sustain unsteady phenomena which were not apparent in a simple monodispersed model. (author)
Numerical Study of the Inertia Effect on Flow Distribution in Micro-gap Plate Heat Exchanger
International Nuclear Information System (INIS)
Park, Jang Min; Yoon, Seok Ho; Lee, Kong Hoon; Song Chan Ho
2014-01-01
This paper presents numerical study on flow and heat transfer characteristics in micro-gap plate heat exchanger. In particular, we investigate the effect of flow inertia on the flow distribution from single main channel to multiple parallel micro-gaps. The flow regime of the main channel is varied from laminar regime (Reynolds number of 100) to turbulent regime (Reynolds number of 10000) by changing the flow rate, and non-uniformity of the flow distribution and temperature field is evaluated quantitatively based on the standard deviation. The flow distribution is found to be significantly affected by not only the header design but also the flow rate of the main channel. It is also observed that the non-uniformity of the temperature field has its maximum at the intermediate flow regime
Effects of lower plenum flow structure on core inlet flow of ABWR
International Nuclear Information System (INIS)
Watanabe, Shun; Abe, Yutaka; Kaneko, Akiko; Watanabe, Fumitoshi; Tezuka, Kenichi
2010-01-01
The evaluation of coolant flow structure at a lower plenum of an advanced boiling water reactor (ABWR) in which there are many structures is very important in order to improve generating power. Although the simulation results by CFD (Computational Fluid Dynamics) codes can predict such complicated flow in the lower plenum, it is required to establish the database of flow structure in lower plenum of ABWR experimentally for the benchmark of the CFD codes. In the model of the lower plenum, we measured velocity profiles with LDV and PIV. And differential pressure of constructed model is measured with differential pressure instrument. It was identified that the velocity and differential pressure profiles also showed the tendency to be flat in the core inlet. Moreover, vortexes were observed around side entry orifice by PIV measurement. (author)
Liquid flow rate effects during partial evaporation in a falling film micro contactor
Moschou, P.; Croon, de M.H.J.M.; Schaaf, van der J.; Schouten, J.C.
2013-01-01
The focus of this study is the investigation of the effect of liquid flow rate on partial evaporation, enhanced by convective nitrogen flow, in a falling film micro contactor. Experiments are performed at different flow rates and for a certain heating liquid temperature. The temperatures of the gas
Sefidgar, Mostafa; Soltani, M; Raahemifar, Kaamran; Bazmara, Hossein
2015-01-01
A solid tumor is investigated as porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multiscale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. The mathematical method involves processes such as blood flow through vessels and solute and fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model predicts.
International Nuclear Information System (INIS)
Marchitto, A.; Fossa, M.; Guglielmini, G.
2012-01-01
Uniform fluid distribution is essential for efficient operation of chemical-processing equipment such as contactors, reactors, mixers, burners and in most refrigeration equipment, where two phases are acting together. To obtain optimum distribution, proper consideration must be given to flow behaviour in the distributor, flow conditions upstream and downstream of the distributor, and the distribution requirements (fluid or phase) of the equipment. Even though the principles of single phase distribution have been well developed for more than three decades, they are frequently not taken in the right account by equipment designers when a mixture is present, and a significant fraction of process equipment consequently suffers from maldistribution. The experimental investigation presented in this paper is aimed at understanding the main mechanisms which drive the flow distribution inside a two-phase horizontal header in order to design improved distributors and to optimise the flow distribution inside compact heat exchanger. Experimentation was devoted to establish the influence of the inlet conditions and of the channel/distributor geometry on the phase/mass distribution into parallel vertical channels. The study is carried out with air–water mixtures and it is based on the measurement of component flow rates in individual channels and on pressure drops across the distributor. The effects of the operating conditions, the header geometry and the inlet port nozzle were investigated in the ranges of liquid and gas superficial velocities of 0.2–1.2 and 1.5–16.5 m/s, respectively. In order to control the main flow direction inside the header, different fitting devices were tested; the insertion of a co-axial, multi-hole distributor inside the header has confirmed the possibility of greatly improving the liquid and gas flow distribution by the proper selection of position, diameter and number of the flow openings between the supplying distributor and the system of
Fourteen Steps to More Effective Cash Flow Management
Neugebauer, Roger
2004-01-01
Managing cash flow is an incredibly important skill for a center director. Even a center with an annual budget showing a healthy surplus may experience brief periods where funds in the checkbook are insufficient to pay all the bills. To discover how successful directors manage cash flow in tight times, the author surveyed members of the "Exchange…
Effects of groove shape of notch on the flow characteristics of spool valve
International Nuclear Information System (INIS)
Ye, Yi; Yin, Chen-Bo; Li, Xing-Dong; Zhou, Wei-jin; Yuan, Feng-feng
2014-01-01
Highlights: • Flow characteristics of notches are studied using CFD simulation and experiment. • Test data is fitted by least square method to analyze discharge coefficient. • The stable value of discharge coefficient is deduced. • Effects of groove shape on steady flow force and throttling stiffness are performed. • The groove shape has significant effects on the flow characteristics. - Abstract: The grooves of notches of hydraulic spool valves are usually designed into various shapes for their desired flow characteristics. The aim of this paper is to clarify the effects of the groove shape on the flow characteristics through computational fluid dynamics (CFD) and experimental investigations. The RNG k–ε turbulence model is used to simulate the pressure distributions of the flow fields inside three notches with their corresponding typical structural grooves in order to analyze the changes of restricted locations along with the openings and, furthermore, to calculate the flow areas of the notches. The accuracy of the employed model is demonstrated by comparing the computational results with the experimental data. Additionally, the flow rate vs. pressure drop data obtained from the experiment is fitted by least square method. On this basis, the discharge coefficient as a function of groove geometry, flow condition, fitting coefficients and its stable value is deduced, proving to be quite consistent with the experimental result. Thanks to the jet flow angles estimated by CFD simulation, the steady flow forces are calculated, which show good agreement with the experimental results except for some small differences. Finally, the throttling stiffness of the three notches is investigated, with that of divergent U-shape groove falls between spheroid-shape groove and triangle-shape groove. Similar results are found for steady flow force. The results indicate that the groove shape has significant effects on the flow characteristics (flow area, discharge
Modelling of structural effects on chemical reactions in turbulent flows
Energy Technology Data Exchange (ETDEWEB)
Gammelsaeter, H.R.
1997-12-31
Turbulence-chemistry interactions are analysed using algebraic moment closure for the chemical reaction term. The coupling between turbulence and chemical length and time scales generate a complex interaction process. This interaction process is called structural effects in this work. The structural effects are shown to take place on all scales between the largest scale of turbulence and the scales of the molecular motions. The set of equations describing turbulent correlations involved in turbulent reacting flows are derived. Interactions are shown schematically using interaction charts. Algebraic equations for the turbulent correlations in the reaction rate are given using the interaction charts to include the most significant couplings. In the frame of fundamental combustion physics, the structural effects appearing on the small scales of turbulence are proposed modelled using a discrete spectrum of turbulent scales. The well-known problem of averaging the Arrhenius law, the specific reaction rate, is proposed solved using a presumed single variable probability density function and a sub scale model for the reaction volume. Although some uncertainties are expected, the principles are addressed. Fast chemistry modelling is shown to be consistent in the frame of algebraic moment closure when the turbulence-chemistry interaction is accounted for in the turbulent diffusion. The modelling proposed in this thesis is compared with experimental data for an laboratory methane flame and advanced probability density function modelling. The results show promising features. Finally it is shown a comparison with full scale measurements for an industrial burner. All features of the burner are captured with the model. 41 refs., 33 figs.
Assessing the Hydrogeomorphic Effects of Environmental Flows using Hydrodynamic Modeling.
Gregory, Angela; Morrison, Ryan R; Stone, Mark
2018-04-13
Water managers are increasingly using environmental flows (e-flows) as a tool to improve ecological conditions downstream from impoundments. Recent studies have called for e-flow approaches that explicitly consider impacts on hydrogeomorphic processes when developing management alternatives. Process-based approaches are particularly relevant in river systems that have been highly modified and where water supplies are over allocated. One-dimensional (1D) and two-dimensional (2D) hydrodynamic models can be used to resolve hydrogeomorphic processes at different spatial and temporal scales to support the development, testing, and refinement of e-flow hypotheses. Thus, the objective of this paper is to demonstrate the use of hydrodynamic models as a tool for assisting stakeholders in targeting and assessing environmental flows within a decision-making framework. We present a case study of e-flows on the Rio Chama in northern New Mexico, USA, where 1D and 2D hydrodynamic modeling was used within a collaborative process to implement an e-flow experiment. A specific goal of the e-flow process was to improve spawning habitat for brown trout by flushing fine sediments from gravel features. The results revealed that the 2D hydrodynamic model provided much greater insight with respect to hydrodynamic and sediment transport processes, which led to a reduction in the recommended e-flow discharge. The results suggest that 2D hydrodynamic models can be useful tools for improving process understanding, developing e-flow recommendations, and supporting adaptive management even when limited or no data are available for model calibration and validation.
Effect of cavitation on flow structure of a tip vortex
Matthieu, Dreyer; Reclari, Martino; Farhat, Mohamed
2013-11-01
Tip vortices, which may develop in axial turbines and marine propellers, are often associated with the occurrence of cavitation because of the low pressure in their core. Although this issue has received a great deal of attention, it is still unclear how the phase transition affects the flow structure of such a vortex. In the present work, we investigate the change of the vortex structure due to cavitation incipience. The measurement of the velocity field is performed in the case of a tip vortex generated by an elliptical hydrofoil placed in the test section of EPFL high speed cavitation tunnel. To this end, a 3D stereo PIV is used with fluorescent seeding particles. A cost effective method is developed to produce in-house fluorescent seeding material, based on polyamide particles and Rhodamine-B dye. The amount of cavitation in the vortex core is controlled by the inlet pressure in the test section, starting with the non-cavitating case. We present an extensive analysis of the vorticity distribution, the vortex intensity and core size for various cavitation developments. This research is supported by CCEM and swisselectric research.
Effects of flow unsteadiness on the wall shear stress
International Nuclear Information System (INIS)
Amiri, K; Cervantes, M J; Raisee, M
2012-01-01
Measurements were performed on pulsating fully turbulent flows in a pipe test rig with a diameter of 100 mm. Sinusoidal oscillatory flow at different frequencies was superimposed on a mean flow of averaged Reynolds number Re=20000 based on the pipe diameter. The measurements have been performed at different forcing frequencies (0.001 + < 0.08) covering all the oscillatory regimes; quasi-steady, relaxation, quasi laminar and high frequency. The amplitude of the flow oscillation was small enough to allow a linear response in the measurements, i.e., all flow parameters showed an oscillatory behavior at the frequency of the flow. The amplitude of the oscillatory flow was about 10% of the mean velocity in all cases. The results include mean and phase averaged values of different parameters. The centerline velocity was measured by a 2D LDA system. Hot film and constant temperature anemometry system was used to determine the wall shear stress. Bulk velocity and pressure gradient along the pipe were also acquired. The results showed a good agreement with the previous analytical, experimental and numerical results available in the literature.
International Nuclear Information System (INIS)
Pruess, K.
1995-06-01
This paper examines the conceptualization of multiphase flow processes on the macroscale, as needed in field applications. It emphasizes that upscaling from the pore-level will in general not only introduce effective parameters but will also give rise to ''effective processes,'' i.e., the emergence of new physical effects that may not have a microscopic counterpart. ''Phase dispersion'' is discussed as an example of an effective process for the migration and remediation of non-aqueous phase liquid (NAPL) contaminants in heterogeneous media. An approximate space-and-time scaling invariance is derived for gravity-driven liquid flow in unsaturated two-dimensional porous media (fractures). Issues for future experimental and theoretical work are identified
Detection and effects of pump low-flow operation
International Nuclear Information System (INIS)
Casada, D.A.; Greene, R.H.
1993-01-01
Operating experience and previous studies have shown that a significant cause of pump problems and failures can result from low- flow operation. Operation at low-flow rates can create unstable flows within the pump impeller and casing. This condition can result in an increased radial and axial thrust on the rotor, which in turn causes higher shaft stresses, increased shaft deflection, and potential bearing and mechanical seal problems. Two of the more serious results of low-flow pump operation are cavitation and recirculation. Cavitation is the formation and subsequent collapse of vapor bubbles in any flow that is at an ambient pressure less than the vapor pressure of the liquid medium. It is the collapse of these vapor bubbles against the metal surfaces of the impeller or casing that causes surface pitting, erosion, and deterioration. Pump recirculation more damaging than cavitation. If located at the impeller eye, recirculation damages the inlet areas of the casing. At the impeller tips, recirculation alters the outside diameter of the impeller. If recirculation occurs around impeller shrouds, it damages thrust bearings. Recirculation also erodes impellers, diffusers, and volutes and causes failure of mechanical seals and bearings. This paper reports on a utility pump failure caused by low-flow induced phenomena. ORNL is investigating the results of low-flow pump operations by evaluating the types of measurements and diagnostic techniques that are currently used by licensees to detect pump degradation. A new, enhanced application of motor current and power data analysis has been developed that uses a signal comparison methodology to produce an instability ratio indicative of normal or unstable flow conditions. Examples of this type of low-flow detection technique are presented in this paper along with a brief discussion of the various types of technologies currently being used by licensees to evaluate pump operation and determine possible degradation
Blood flow analysis with considering nanofluid effects in vertical channel
Noreen, S.; Rashidi, M. M.; Qasim, M.
2017-06-01
Manipulation of heat convection of copper particles in blood has been considered peristaltically. Two-phase flow model is used in a channel with insulating walls. Flow analysis has been approved by assuming small Reynold number and infinite length of wave. Coupled equations are solved. Numerical solution are computed for the pressure gradient, axial velocity function and temperature. Influence of attention-grabbing parameters on flow entities has been analyzed. This study can be considered as mathematical representation to the vibrance of physiological systems/tissues/organs provided with medicine.
Energy Technology Data Exchange (ETDEWEB)
Kellner, Erik [Dept. of Forest Ecology, Univ. of Helsinki (Finland)
2007-02-15
In this report it is examined to what extent the variation in hydraulic conductivity within a peatland and adjoining sediments would affect the flow patterns within it under some certain hydraulic-head gradients and other certain border conditions. The first part of the report contains a short review of organic and mineral-soil sediment types and characteristics and what we know about present peatlands and underlying sediments in the SKB investigation areas today. In the next part, a 2-dimensional model is used to simulate flows and transports in different settings of a peatland, with the objective of studying the effects of some particular factors: 1. The magnitude of the hydraulic conductivity of the peat and of underlying layers. 2. Presence and positions of cracks in underlying clay layers. 3. Anisotropy and heterogeneity in peat hydraulic conductivity. 4. The size of the water recharge at the peatland surface. 5. The seasonal variation of the water recharge. The modelling results show that the importance of flow direction decreases with decreasing hydraulic conductivity in the peatland. This occurs as the convective flux is slowed down and the transport is taken over by the diffusive flux. Because the lowest hydraulic conductivity layer to large extent determines the size of the flow, presence of a low-conductivity layer, such as a layer of clay, is an important factor. Presence of cracks in such tight layers can increase the transport of solutes into the peat. The highest inflow rates are reached when such cracks occur in discharge areas with strong upward flow. On the other hand, a conservative solute can spread efficiently if there is a crack in low-flow locations. The effect of anisotropy is found to be small, partly because the horizontal gradients become smaller as distances are larger. The effect of layers with high or low permeability varies depending on the location and the prevailing gradients. One tight layer has a strong effect on the flow pattern
International Nuclear Information System (INIS)
Kellner, Erik
2007-02-01
In this report it is examined to what extent the variation in hydraulic conductivity within a peatland and adjoining sediments would affect the flow patterns within it under some certain hydraulic-head gradients and other certain border conditions. The first part of the report contains a short review of organic and mineral-soil sediment types and characteristics and what we know about present peatlands and underlying sediments in the SKB investigation areas today. In the next part, a 2-dimensional model is used to simulate flows and transports in different settings of a peatland, with the objective of studying the effects of some particular factors: 1. The magnitude of the hydraulic conductivity of the peat and of underlying layers. 2. Presence and positions of cracks in underlying clay layers. 3. Anisotropy and heterogeneity in peat hydraulic conductivity. 4. The size of the water recharge at the peatland surface. 5. The seasonal variation of the water recharge. The modelling results show that the importance of flow direction decreases with decreasing hydraulic conductivity in the peatland. This occurs as the convective flux is slowed down and the transport is taken over by the diffusive flux. Because the lowest hydraulic conductivity layer to large extent determines the size of the flow, presence of a low-conductivity layer, such as a layer of clay, is an important factor. Presence of cracks in such tight layers can increase the transport of solutes into the peat. The highest inflow rates are reached when such cracks occur in discharge areas with strong upward flow. On the other hand, a conservative solute can spread efficiently if there is a crack in low-flow locations. The effect of anisotropy is found to be small, partly because the horizontal gradients become smaller as distances are larger. The effect of layers with high or low permeability varies depending on the location and the prevailing gradients. One tight layer has a strong effect on the flow pattern
Energy Technology Data Exchange (ETDEWEB)
Khazaee, I. [Department of Mechanical Engineering, Torbat-e-jam branch, Islamic Azad University, Torbat-e-jam (Iran, Islamic Republic of); Mohammadiun, M. [Department of Mechanical Engineering, Shahrood branch, Islamic Azad University, Shahrood (Iran, Islamic Republic of)
2012-07-01
In this paper a complete three-dimensional and two phase CFD model for flow distribution in an open channel investigated. The finite volume method (FVM) with a dynamic Sub grid-scale was carried out for seven cases of different aspect ratios, different inclination angles or slopes and convergence-divergence condition. The volume of fluid (VOF) method was used to allow the free-surface to deform freely with the underlying turbulence. The discharge through open channel flow is often evaluated by velocity-area integration method from the measurement of velocity at discrete locations in the measuring section. The variation of velocity along horizontal and vertical directions is thus very important to decide the location of the sensors. The aspect ratio of the channel, slope of the channel and divergence- convergence of the channel have investigated and the results show that the depth of water at the end of the channel is higher at AR=0.8 against the AR=0.4 and AR=1.2. Also it is clear that by increasing the inclination angle or slope of the channel in case1, case4 and case5 the depth of the water increases. Also it is clear that the outlet mass flow rate is at a minimum value at a range of inclination angle of the channel.
Inlet effects on vertical-downward air–water two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Qiao, Shouxu; Mena, Daniel; Kim, Seungjin, E-mail: skim@psu.edu
2017-02-15
Highlights: • Inlet effects on two-phase flow parameters in vertical-downward flow are studied. • Flow regimes in the vertical-downward two-phase flow are defined. • Vertical-downward flow regime maps for three inlet configurations are developed. • Frictional pressure loss analysis for three different inlets is performed. • Database of local two-phase flow parameters for each inlet configuration. - Abstract: This paper focuses on investigating the geometric effects of inlets on global and local two-phase flow parameters in vertical-downward air–water two-phase flow. Flow visualization, frictional pressure loss analysis, and local experiments are performed in a test facility constructed from 50.8 mm inner diameter acrylic pipes. Three types of inlets of interest are studied: (1) two-phase flow injector without a flow straightener (Type A), (2) two-phase flow injector with a flow straightener (Type B), and (3) injection through a horizontal-to-vertical-downward 90° vertical elbow (Type C). A detailed flow visualization study is performed to characterize flow regimes including bubbly, slug, churn-turbulent, and annular flow. Flow regime maps for each inlet are developed and compared to identify the effects of each inlet. Frictional pressure loss analysis shows that the Lockhart–Martinelli method is capable of correlating the frictional loss data acquired for Type B and Type C inlets with a coefficient value of C = 25, but additional data may be needed to model the Type A inlet. Local two-phase flow parameters measured by a four-sensor conductivity probe in four bubbly and near bubbly flow conditions are analyzed. It is observed that vertical-downward two-phase flow has a characteristic center-peaked void profile as opposed to a wall-peaked profile as seen in vertical-upward flow. Furthermore, it is shown that the Type A inlet results in the most pronounced center-peaked void fraction profile, due to the coring phenomenon. Type B and Type C inlets
Effects of Roughness and Thermal Inhomogeneities on Urban Flows
National Research Council Canada - National Science Library
Fernando, H
2004-01-01
The Environmental Fluid Dynamics group at Arizona State University has been involved in research related to the studies of urban airsheds from the standpoint of multi-scale flow transport and analysis...
Sander, Christin Y; Mandeville, Joseph B; Wey, Hsiao-Ying; Catana, Ciprian; Hooker, Jacob M; Rosen, Bruce R
2017-01-01
The potential effects of changes in blood flow on the delivery and washout of radiotracers has been an ongoing question in PET bolus injection studies. This study provides practical insight into this topic by experimentally measuring cerebral blood flow (CBF) and neuroreceptor binding using simultaneous PET/MRI. Hypercapnic challenges (7% CO 2 ) were administered to non-human primates in order to induce controlled increases in CBF, measured with pseudo-continuous arterial spin labeling. Simultaneously, dopamine D 2 /D 3 receptor binding of [ 11 C]raclopride or [ 18 F]fallypride was monitored with dynamic PET. Experiments showed that neither time activity curves nor quantification of binding through binding potentials ( BP ND ) were measurably affected by CBF increases, which were larger than two-fold. Simulations of experimental procedures showed that even large changes in CBF should have little effect on the time activity curves of radiotracers, given a set of realistic assumptions. The proposed method can be applied to experimentally assess the flow sensitivity of other radiotracers. Results demonstrate that CBF changes, which often occur due to behavioral tasks or pharmacological challenges, do not affect PET [ 11 C]raclopride or [ 18 F]fallypride binding studies and their quantification. The results from this study suggest flow effects may have limited impact on many PET neuroreceptor tracers with similar properties.
Effect of air flow on tubular solar still efficiency.
Thirugnanasambantham, Arunkumar; Rajan, Jayaprakash; Ahsan, Amimul; Kandasamy, Vinothkumar
2013-01-01
An experimental work was reported to estimate the increase in distillate yield for a compound parabolic concentrator-concentric tubular solar still (CPC-CTSS). The CPC dramatically increases the heating of the saline water. A novel idea was proposed to study the characteristic features of CPC for desalination to produce a large quantity of distillate yield. A rectangular basin of dimension 2 m × 0.025 m × 0.02 m was fabricated of copper and was placed at the focus of the CPC. This basin is covered by two cylindrical glass tubes of length 2 m with two different diameters of 0.02 m and 0.03 m. The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. THE EXPERIMENTAL STUDY WAS OPERATED WITH TWO MODES: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively.
Effect of tropicamide on ocular blood flow in the rabbit
International Nuclear Information System (INIS)
Delgado, D.; Michel, P.; Jaanus, S.D.
1982-01-01
Intracardiac injection of 15 microspheres labeled with 85 Sr (strontium) and 141 Ce (cerium) were used to determine ocular blood flow in seven rabbits before and 25 min after bilateral application of tropicamide to the cornea. By using two different isotopes distinguishable under gammaspectrometry, each animal served as its own control. After administration of two drops of 1% tropicamide, no significant difference in blood flow between treated and untreated eyes was observed
Radial Flow Effects On A Retreating Rotor Blade
2014-05-01
birds , marine life and even insect wings. In some cases such as helicopters, wind turbines and compres- sors, dynamic stall becomes the primary...on dynamic stall and reverse flow as applied to a helicopter rotor in forward flight and a wind turbine operating at a yaw angle. While great...occurring on a retreating blade with a focus on dynamic stall and reverse flow as applied to a helicopter rotor in forward flight and a wind turbine
Effect of transient flow on premature dryout in tube
International Nuclear Information System (INIS)
Ishigai, S.; Nakanishi, S.; Yamauchi, S.; Masuda, T.
1974-01-01
The influence of abrupt flow change on the critical heat flux in the high quality steam-water two-phase flow was studied mainly by experiments. The measured reduction in the critical heat flux is compared with the result of a simplified analysis based on the kinematic wave theory and the film vanishing hypothesis. It is concluded that the reduction is due to ''premature dryout'' caused by the deceleration of the liquid film. (U.S.)
Detection and effects of pump low-flow operation
International Nuclear Information System (INIS)
Casada, D.A.; Greene, R.H.
1994-01-01
Operating experience and previous studies performed for the Nuclear Plant Aging Research Program have shown that a significant cause of pump problems and failures can result from low-flow operation. Operation at low-flow rates can create unstable flows within the pump impeller and casing. This condition can result in an increased radial and axial thrust on the rotor, which in turn causes higher shaft stresses, increased shaft deflection, and potential bearing and mechanical seal problems. Two of the more serious results of low-flow pump operation are cavitation and recirculation. Both of these conditions can be characterized by crackling sounds that accompany a substantial increase in vibration and noise level, and a reduction in total head and output capacity. Cavitation is the formation and subsequent collapse of vapor bubbles in any flow that is at an ambient pressure less than the vapor pressure of the liquid medium. It is the collapse of these vapor bubbles against the metal surfaces of the impeller or casing that causes surface pitting, erosion, and deterioration. Pump recirculation, reversal of a portion of the flow back through the impeller, can be potentially more damaging than cavitation. If located at the impeller eye, recirculation damages the inlet areas of the casing. At the impeller tips, recirculation alters the outside diameter of the impeller. If recirculation occurs around impeller shrouds, it damages thrust bearings. Recirculation also erodes impellers, diffusers, and volutes and causes failure of mechanical seals and bearings. This paper reports on a utility pump failure cause by low-flow induced phenomena. ORNL has continued to investigate the results of low-flow pump operations by evaluating the types of measurements and diagnostic techniques that are currently used by licensees to detect pump degradation
CFD analysis of the effect of rolling motion on the flow distribution at the core inlet
International Nuclear Information System (INIS)
Yan, B.H.; Zhang, G.; Gu, H.Y.
2012-01-01
Highlights: ► The flow distribution at the core inlet in rolling motion is investigated. ► In rolling motion, the variation of flow distribution factor is not regular. ► The minimum flow distribution factor could be decreased by rolling motion. ► The effect of rolling motion diminishes with Reynolds number increasing. ► Effect of rolling motion in single loop operation is more significant. - Abstract: The flow distribution at the core inlet in rolling motion is investigated with software CFX12.0. The calculation results were in agreement with experimental data in steady state. As the increasing of rolling amplitude and the decreasing of rolling period, the effect of rolling motion on the flow distribution factor and the flowing behavior increases. In rolling motion, the variation of flow distribution factor is not regular. The rolling motion could decrease the minimum flow distribution factor. The effect of rolling motion on the coolant field and flow distribution diminishes with the Reynolds number increasing. The effect of rolling motion on the flow distribution in the case of single loop operation is more significant than that in the case of double loops operation.
Flow Accelerated Corrosion: Effect of Water Chemistry and Database Construction
Energy Technology Data Exchange (ETDEWEB)
Lee, Eun Hee; Kim, Kyung Mo; Lee, Gyeong Geun; Kim, Dong Jin [KAERI, Daejeon (Korea, Republic of)
2016-05-15
Flow accelerated corrosion (FAC) of carbon steel piping in pressurized water reactors (PWRs) has been a major issue in nuclear industry. Severe accidents at Surry Unit 2 in 1986 and Mihama Unit 3 in 2004 initiated the world wide interest in this area. FAC is a dissolution process of the protective oxide layer on carbon steel or low-alloy steel when these parts are exposed to flowing water (single-phase) or wet steam (two-phase). In a single-phase flow, a scalloped, wavy, or orange peel and in a two-phase flow, tiger striping is observed, respectively. FAC is affected by many parameters, like material composition, pH, dissolved oxygen (DO), flow velocity, system pressure, and steam quality. This paper describes the water chemistry factors influencing on FAC and the database is then constructed using literature data. In order to minimize FAC in NPPs, the optimal method is to control water chemistry parameters. However, quantitative data about FAC have not been published for proprietary reason even though qualitative behaviors of FAC have been well understood. A database was constructed using experimental data in literature. Accurate statistical analysis will be performed using this database to identify the relationship between the FAC rate and test environment.
Resonant communicators, effective communicators. Communicator’s flow and credibility
Directory of Open Access Journals (Sweden)
Irene García-Ureta, Ph.D
2012-01-01
Full Text Available Communication studies have been integrating the latest developments in cognitive sciences and acknowledging the importance of understanding the subjective processes involved in communication. This article argues that communication studies should also take into account the psychology of the communicator. This article presents the theoretical basis and the results of a training programme designed for audiovisual communicators. The programme is based on the theories of self-efficacy and flow and seeks to improve students’ communication competencies through the use of presentation techniques and psychological skills to tackle communication apprehension. The programme involves an active methodology that is based on modelling, visualisation, immediate feedback and positive reinforcement. A repeated-measures ANOVA shows that the programme successfully decreases the level of communication apprehension, improves the perceived self-efficacy, improves the psychological state needed to perform better in front of the cameras (flow, and improves students’ communication skills. A path analysis proved that the perceived self-efficacy and anxiety levels predict the level of flow during the communication act. At the end of the training programme, those who experienced higher levels of flow and enjoyment during the communication task achieved higher quality levels in their communication exercise. It is concluded that the concepts of self-efficacy and flow facilitate advancing in the understanding of the factors that determine a communicator’s credibility and ability to connect with the audience.
The effects of hypoxemia on myocardial blood flow during exercise.
Paridon, S M; Bricker, J T; Dreyer, W J; Reardon, M; Smith, E O; Porter, C B; Michael, L; Fisher, D J
1989-03-01
We evaluated the adequacy of regional and transmural blood flow during exercise and rapid pacing after 1 wk of hypoxemia. Seven mature mongrel dogs were made hypoxemic (mean O2 saturation = 72.4%) by anastomosis of left pulmonary artery to left atrial appendage. Catheters were placed in the left atrium, right atrium, pulmonary artery, and aorta. Atrial and ventricular pacing wires were placed. An aortic flow probe was placed to measure cardiac output. Ten nonshunted dogs, similarly instrumented, served as controls. Recovery time was approximately 1 wk. Cardiac output, mean aortic pressure, and oxygen saturation were measured at rest, with ventricular pacing, atrial pacing, and with treadmill exercise. Ventricular and atrial pace and exercise were at a heart rate of 200. Right ventricular free wall, left ventricular free wall, and septal blood flow were measured with radionuclide-labeled microspheres. Cardiac output, left atrial blood pressure, and aortic blood pressure were similar between the two groups of dogs in all testing states. Myocardial blood flow was significantly higher in the right and left ventricular free wall in the hypoxemic animals during resting and exercise testing states. Myocardial oxygen delivery was similar between the two groups of animals. Pacing resulted in an increase in myocardial blood flow in the control animals but not the hypoxemic animals.(ABSTRACT TRUNCATED AT 250 WORDS)
Klein, Barbara D.; Rossin, Don; Guo, Yi Maggie; Ro, Young K.
2010-01-01
The authors investigated the effects of flow on learning outcomes in a graduate-level operations management course. Flow was assessed through an overall flow score, four dimensions of flow, and three characteristics of flow activities. Learning outcomes were measured objectively through multiple-choice quiz scores and subjectively using measures…
The Condensation effect on the two-phase flow stability
International Nuclear Information System (INIS)
Abdou Mohamed, Hesham Nagah
2005-01-01
considering riser condensation and of correcting the localized friction due to the presence of the two-phase mixture in the two-phase region.These effects are more important for high heating power and high inlet subcooling. CAREM 25 nuclear power reactor is investigated to get the stability boundary map. The flow instability regions are appeared at low and high core power. In the low heat flux range, the trends of the thermal equilibrium - equal velocity (homogeneous) model and the thermal non equilibrium - non equal velocity model are the same because the steam quality is small.In the high heat flux range, for the subcooled boiling number and the phase change number, the marginal stability boundaries are crossed in a point, determining tow different regions, of high and low inlet subcooling.For the first region, the steam quality calculation of the first model is greater and has the effect of stabilizing the system more than the second one.For the second region, the two-phase region length calculation of the first model is smaller and has the effect of stabilizing the system less than the second one. In general, the model predicts a more stable system with an increase in inlet restriction or riser condensation or system pressure or a decrease in exit restriction [es
Zhang, Haiping; Chen, Ruihong; Li, Feipeng; Chen, Ling
2015-03-01
To investigate the effects of flow rate on phytoplankton dynamics and related environment variables, a set of enclosure experiments with different flow rates were conducted in an artificial lake. We monitored nutrients, temperature, dissolved oxygen, pH, conductivity, turbidity, chlorophyll- a and phytoplankton levels. The lower biomass in all flowing enclosures showed that flow rate significantly inhibited the growth of phytoplankton. A critical flow rate occurred near 0.06 m/s, which was the lowest relative inhibitory rate. Changes in flow conditions affected algal competition for light, resulting in a dramatic shift in phytoplankton composition, from blue-green algae in still waters to green algae in flowing conditions. These findings indicate that critical flow rate can be useful in developing methods to reduce algal bloom occurrence. However, flow rate significantly enhanced the inter-relationships among environmental variables, in particular by inducing higher water turbidity and vegetative reproduction of periphyton ( Spirogyra). These changes were accompanied by a decrease in underwater light intensity, which consequently inhibited the photosynthetic intensity of phytoplankton. These results warn that a universal critical flow rate might not exist, because the effect of flow rate on phytoplankton is interlinked with many other environmental variables.
Effect of coil embolization on blood flow through a saccular cerebral ...
Indian Academy of Sciences (India)
875–887. c Indian Academy of Sciences. Effect of ... on the coil porosity and permeability apart from the nature of flow pulsations and its ..... Leuprecht A and Perktold K 2001 Computer simulation of non-Newtonian effects of blood flow in large.
Polluted soil leaching: unsaturated conditions and flow rate effects
Directory of Open Access Journals (Sweden)
Chourouk Mathlouthi
2017-04-01
Full Text Available In this study, soil samples are extracted from a polluted site at different depths. Soils texture and pollutant presence are different with depth. Preliminary analyzes showed pollution by heavy metals. To simulate soil leaching operation in static condition, a series of leaching tests are conducted in laboratory column under conditions of upflow unsaturated soil. Electrical conductivity and pH measurements on the recovered leachate are performed. Different flow rates are tested. Comparison of different profiles shows that the dissolved pollutants are concentrated in the upper soil levels and disperse weakly in the lower parts which confirm the nature of anthropogenic pollution of heavy metals. Water mobilizes a high amount of dissolved ionic substances up to 80% of the initial concentration. The increase in flow rate requires more pore volume injected to achieve the maximum clearance rate. The down flow condition extracts a small amount of dissolved substances.
'More is less'. The tax effects of ignoring flow externalities
International Nuclear Information System (INIS)
Sandal, Leif K.; Steinshamn, Stein Ivar; Grafton, R. Quentin
2003-01-01
Using a model of non-linear, non-monotone decay of the stock pollutant, and starting from the same initial conditions, the paper shows that an optimal tax that corrects for both stock and flow externalities may result in a lower tax, fewer cumulative emissions (less decay in emissions) and higher output at the steady state than a corrective tax that ignores the flow externality. This 'more is less' result emphasizes that setting a corrective tax that ignores the flow externality, or imposing a corrective tax at too low a level where there exists only a stock externality, may affect both transitory and steady-state output, tax payments and cumulative emissions. The result has important policy implications for decision makers setting optimal corrective taxes and targeted emission limits whenever stock externalities exist
Local effects in flow-accelerated corrosion wall thinning
International Nuclear Information System (INIS)
Pietralik, J.
2006-01-01
'Full text:' There is enough evidence that flow conditions play the dominant role locally in Flow-Accelerated Corrosion (FAC) under certain conditions, e.g., in CANDU feeders. While chemistry and materials set the overall potential for FAC, which can be low or high, flow conditions determine the local distribution of wall thinning. This relationship is not new and recent accurate measurements of FAC rate of a plant feeder bend confirm that the relationship between flow local conditions expressed by local mass transfer coefficient and FAC rate in CANDU feeder bends is close. There is also a lot of other direct and indirect, experimental and laboratory evidence about this relationship. This knowledge can be useful for minimizing inspection, predicting new locations for inspection, predicting the location with the highest FAC rate for a given piping component, e.g., feeder element, and determining what components or feeders and to what extent they should be replaced. It applies also to heat exchangers and steam generators. The objective of this paper is to examine the relationship between FAC rate and local flow parameters. For FAC, the most important flow parameter is mass transfer coefficient. The mass transfer coefficient describes the intensity of the transport of corrosion products from the oxide-water interface into the bulk water. Therefore, this parameter can be used for predicting the local distribution of FAC rate. It could also be used in planning experiments because time-varying surface roughness can explain the time-dependence of FAC rates. The paper presents plant and laboratory evidence about the relationship. In addition, it shows correlations for mass transfer coefficient in components that are highly susceptible to FAC. The role of surface roughness, wall shear stress, and local turbulence is also discussed. (author)
Shear flow effects on ion thermal transport in tokamaks
International Nuclear Information System (INIS)
Tajima, T.; Horton, W.; Dong, J.Q.; Kishimoto, Y.
1995-03-01
From various laboratory and numerical experiments, there is clear evidence that under certain conditions the presence of sheared flows in a tokamak plasma can significantly reduce the ion thermal transport. In the presence of plasma fluctuations driven by the ion temperature gradient, the flows of energy and momentum parallel and perpendicular to the magnetic field are coupled with each other. This coupling manifests itself as significant off-diagonal coupling coefficients that give rise to new terms for anomalous transport. The authors derive from the gyrokinetic equation a set of velocity moment equations that describe the interaction among plasma turbulent fluctuations, the temperature gradient, the toroidal velocity shear, and the poloidal flow in a tokamak plasma. Four coupled equations for the amplitudes of the state variables radially extended over the transport region by toroidicity induced coupling are derived. The equations show bifurcations from the low confinement mode without sheared flows to high confinement mode with substantially reduced transport due to strong shear flows. Also discussed is the reduced version with three state variables. In the presence of sheared flows, the radially extended coupled toroidal modes driven by the ion temperature gradient disintegrate into smaller, less elongated vortices. Such a transition to smaller spatial correlation lengths changes the transport from Bohm-like to gyrobohm-like. The properties of these equations are analyzed. The conditions for the improved confined regime are obtained as a function of the momentum-energy deposition rates and profiles. The appearance of a transport barrier is a consequence of the present theory
Effect of Entrainment and Overflow Occurrences on Concentration Profile in PUREX Flow Sheet
International Nuclear Information System (INIS)
Ueda, Yoshinori; Ishii, Junichi; Matsumoto, Shiro
2003-01-01
A deviation in the operational condition of a mixer settler and a centrifugal contactor causes an entrainment or an overflow, which affects the concentration profile. Although there has been no quantitative study about the effect of such abnormal flows on the concentration profile, the occurrence of such abnormal flows has been severely restricted for a PUREX flow sheet. However, the restriction of abnormal flows can be relaxed when the effect of such flows is limited within the allowable range such that the concentration of the product does not deviate from its specification. This relaxation could serve to benefit a continuous operation under a certain degree of deviation from the operational condition and a smaller design load of a solvent extractor. From this viewpoint, the relationship between the magnitude of abnormal flows and the effect of them on the process was studied quantitatively using a specially developed code in a wide range of PUREX flow sheet conditions, and the possibility of this relaxation was investigated. The results showed that the effect of the abnormal flow on the concentration in the organic outflow or aqueous raffinate was dominated by the leakage fraction under normal conditions regardless of each specific flow sheet condition. The common correlations were found between the leakage fraction of uranium and plutonium under the occurrence of abnormal flows and that under no abnormal flow for the stripping and extracting conditions, respectively. Comparing the given correlations and the usual specification of the leakage fraction of uranium and plutonium suggested that the restriction of the abnormal flows could be relaxed for a usual PUREX flow sheet
Effective slip for Stokes flow between two grooved walls with an arbitrary phase shift
Energy Technology Data Exchange (ETDEWEB)
Ng, Chiu-On, E-mail: cong@hku.hk [Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road (Hong Kong)
2017-04-15
This work aims to determine how the effective slip length for a wall-bounded flow may depend on, among other geometrical parameters, the phase shift between patterns on the two walls. An analytical model is developed for Stokes flow through a channel bounded by walls patterned with a regular array of rectangular ribs and grooves, where the patterns on the two walls can be misaligned by any phase shift. This study incorporates several previous studies as limiting or special cases. It is shown that the phase shift can have qualitatively different effects on the flow rate and effective slip length, depending on the flow direction. In a narrow channel, increasing the phase shift may mildly decrease the flow rate and effective slip length for flow parallel to the grooves, but can dramatically increase the flow rate and effective slip length for flow transverse to the grooves. It is found that unless the channel height is much larger than the period of the wall pattern, the effect due to wall confinement has to be taken into account on evaluating the effective slip lengths. (paper)
Effects of mixing methods on phase distribution in vertical bubble flow
International Nuclear Information System (INIS)
Monji, Hideaki; Matsui, Goichi; Sugiyama, Takayuki.
1992-01-01
The mechanism of the phase distribution formation in a bubble flow is one of the most important problems in the control of two-phase flow systems. The effect of mixing methods on the phase distribution was experimentally investigated by using upward nitrogen gas-water bubble flow under the condition of fixed flow rates. The experimental results show that the diameter of the gas injection hole influences the phase distribution through the bubble size. The location of the injection hole and the direction of injection do not influence the phase distribution of fully developed bubble flow. The transitive equivalent bubble size from the coring bubble flow to the sliding bubble flow corresponds to the bubble shape transition. The analytical results show that the phase distribution may be predictable if the phase profile is judged from the bubble size. (author)
Experimental study on effects of double pumps switching on water supply flow rate
International Nuclear Information System (INIS)
Wang Xin; Han Weishi
2012-01-01
Flow characteristics in the process of switching one centrifugal pump to the other was investigated experimentally using a closed loop with two centrifugal pumps and two check valves. Characteristics of the check valves responding and the flow rate changing during the process of switching was studied by experimental data analysis. The results show that in the switching process with high and low original flow rate, the restoring time is 26 s and 21 s respectively; the lowest flow rates are 59.4% and 87.2% out of that in normal water supply, and the average deficit of feed water is 20.8% and 7.5% respectively. Compared to double-pump switching with low flow rate, a longer transition time. more intense flow fluctuations and increased water loss are observed with high flow rate, which has significantly effects on the stability of water supply. (authors)
The effect of inlet distorted flow on steady and unsteady performance of a centrifugal compressor
International Nuclear Information System (INIS)
Park, Jae Hyoung; Kang, Shin Hyoung
2005-01-01
Effects of inlet distorted flow on performance, stall and surge are experimentally investigated for a high-speed centrifugal compressor. Tested results for the distorted inlet flow cases are compared with the result of the undistorted one. The performance of compressor is slightly deteriorated due to the inlet distortion. The inlet distortion does not affect the number of stall cell and the propagation velocity. It also does not change stall inception flow rate. However, as the distortion increases, stall starts at the higher flow rate for low speed at the lower flow rate for high speed. For 50,000 rpm stall occurs as the flow rate decreases, however disappears for the smaller flow rate. This is due to the interaction of surge and stall. After the stall and surge interact, the number of stall cell decreases
Density effect on the mixing efficiency and flow modes in T-shaped micromixers
Directory of Open Access Journals (Sweden)
Lobasov Alexander
2017-01-01
Full Text Available Flow patterns and mixing of liquids with different densities in T-shaped micromixers are numerically investigated at Reynolds number range from 1 to 250. The density ratio of the mixing media varies from 1 to 2; its effect on the flow structure and the mixing is studied. The dependences of the mixing efficiency and the pressure difference in this mixer on the density ratio and the Reynolds number are obtained. It is shown that the density ratio has a considerable effect on the flow structure, especially before the transition from the symmetric to the asymmetric flow pattern.
Flow in a circular expansion pipe flow: effect of a vortex perturbation on localised turbulence
Energy Technology Data Exchange (ETDEWEB)
Selvam, Kamal; Peixinho, Jorge [Laboratoire Ondes Milieux Complexes, CNRS and Université du Havre, F-76600 Le Havre (France); Willis, Ashley P, E-mail: jorge.peixinho@univ-lehavre.fr [School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH (United Kingdom)
2016-12-15
We report the results of three-dimensional direct numerical simulations for incompressible viscous fluid in a circular pipe flow with a sudden expansion. At the inlet, a parabolic velocity profile is applied together with a finite amplitude perturbation in the form of a vortex with its axis parallel to the axis of the pipe. At sufficiently high Reynolds numbers the recirculation region breaks into a turbulent patch that changes position axially, depending on the strength of the perturbation. This vortex perturbation is believed to produce a less abrupt transition than in previous studies, which applied a tilt perturbation, as the localised turbulence is observed via the formation of a wavy structure at a low order azimuthal mode, which resembles an optimally amplified perturbation. For large vortex amplitude, the localised turbulence remains at a constant axial position. It is further investigated using proper orthogonal decomposition, which indicates that the centre region close to the expansion is highly energetic. (paper)
Very deep hole concept. Thermal effects on groundwater flow
Energy Technology Data Exchange (ETDEWEB)
Marsic, Niko; Grundfelt, Bertil; Wiborgh, Marie [Kemakta Konsult AB, Stockholm (Sweden)
2006-09-15
,055 nodes. The results of the calculations were evaluated using tracking of particle starting in different positions in the deposition holes. The travel times for these particles to the surface were calculated. The particle tracking was performed for individual time steps assuming that the conditions of that time step remained constant throughout the particle travel times. This is of course not true, in particular as the calculated travel times are much longer that the duration of the heat pulse from the deposited spent fuel. A more refined variant of the grid including 1,245,680 finite elements corresponding to 2,525,744 nodes was tested in order to verify that the discretisation used was adequate. In this case, all elements inside the repository area and those closest to this area were refined by a factor of two in each of the three dimensions. The elements constituting the boreholes were left unchanged. The results of this test show that both the flow pattern and the calculated Darcy velocities are significantly affected by the disretisation while the calculated particle travel times were little influenced. Because of the little difference of travel times and due to the fact that the computational times of the larger grid were hard to manage within a reasonable project schedule, it was decided to use the smaller grid for the calculations. A large number of calculations were performed in which the sensitivity of the results with respect to different combinations of surface hydraulic gradients, heat output from the deposited spent fuel and fracture zone orientations was tested. In general, the calculated travel times for the particles are extremely long, in the order of 1-100 Myrs. The thermal output from the spent fuel is insufficient to alter the stability of the near-stagnant saline groundwater present at depth in the rock. However, the performed sensitivity analysis showed effects on the Darcy velocities, flow field and calculated hypothetical travel times, but the
Very deep hole concept. Thermal effects on groundwater flow
International Nuclear Information System (INIS)
Marsic, Niko; Grundfelt, Bertil; Wiborgh, Marie
2006-09-01
results of the calculations were evaluated using tracking of particle starting in different positions in the deposition holes. The travel times for these particles to the surface were calculated. The particle tracking was performed for individual time steps assuming that the conditions of that time step remained constant throughout the particle travel times. This is of course not true, in particular as the calculated travel times are much longer that the duration of the heat pulse from the deposited spent fuel. A more refined variant of the grid including 1,245,680 finite elements corresponding to 2,525,744 nodes was tested in order to verify that the discretisation used was adequate. In this case, all elements inside the repository area and those closest to this area were refined by a factor of two in each of the three dimensions. The elements constituting the boreholes were left unchanged. The results of this test show that both the flow pattern and the calculated Darcy velocities are significantly affected by the disretisation while the calculated particle travel times were little influenced. Because of the little difference of travel times and due to the fact that the computational times of the larger grid were hard to manage within a reasonable project schedule, it was decided to use the smaller grid for the calculations. A large number of calculations were performed in which the sensitivity of the results with respect to different combinations of surface hydraulic gradients, heat output from the deposited spent fuel and fracture zone orientations was tested. In general, the calculated travel times for the particles are extremely long, in the order of 1-100 Myrs. The thermal output from the spent fuel is insufficient to alter the stability of the near-stagnant saline groundwater present at depth in the rock. However, the performed sensitivity analysis showed effects on the Darcy velocities, flow field and calculated hypothetical travel times, but the differences do
Mechanical effects of water flow on fish eggs and larvae
International Nuclear Information System (INIS)
Ulanowicz, R.E.
1975-01-01
The impact of mechanical stresses on ichthyoplankton entrained in power plant cooling systems has long been considered negligible. Arguments and evidence exist, however, to show that such a supposition is not universally true, especially in nuclear power plants. The mechanisms of mechanical damage can be detailed in terms of pressure change, acceleration, and shear stress within the fluid flow field. (U.S.)
Hall effects on MHD flow past an accelerated plate
International Nuclear Information System (INIS)
Soundalgekar, V.M.; Ravi, S.; Hiremath, S.B.
1980-01-01
An exact solution of the MHD flow of an incompressible, electrically conducting, viscous fluid past a uniformly accelerated plate is presented. The velocity profiles are shown graphically and the numerical values of axial and transverse components of skin friction are tabulated. At high values of the Hall parameter, ωtau, the velocity is found to be oscillatory near the plate. (author)
The poverty effect of remittance flows: evidence from Georgia
Czech Academy of Sciences Publication Activity Database
Uzagalieva, Ainura; Menezes, A. G.
-, 06/2009 (2009), s. 1-44 ISSN N Institutional research plan: CEZ:AV0Z70850503 Keywords : poverty * remittance flows * Georgia Subject RIV: AH - Economics http://www.deg.uac.pt/~ceeapla/pt/pdf/ paper s/ Paper 06-2009.pdf
Effects of flow balancing on active magnetic regenerator performance
DEFF Research Database (Denmark)
Eriksen, Dan; Engelbrecht, Kurt; Bahl, Christian
2016-01-01
Experiments with a recently constructed rotary multi-bed active magnetic regnenerator (AMR) prototype have revealed strong impacts on the temperature span from variations in the resistances of the flow channels carrying heat transfer fluid in and out of the regenerator beds. In this paper we show...
Effect of turbulent flow on the double electric layer
International Nuclear Information System (INIS)
Rutten, F. van.
1978-01-01
The existence of the double electric layer could explain the local deposition of corrosion products in water cooled reactors. It is shown that turbulent flow tends to drive the ions away from the wall, disturbs the diffuse layer and enables the electric field to extend further into the liquid phase. This electric field attracts the particles to the walls by electrophoresis [fr
The poverty effect of remittance flows: evidence from Georgia
Czech Academy of Sciences Publication Activity Database
Uzagalieva, Ainura
-, 11/2008 (2008), s. 1-22 ISSN N Institutional research plan: CEZ:AV0Z70850503 Keywords : poverty * remittance flows * Georgia Subject RIV: AH - Economics http://www.deg.uac.pt/~ceeapla/pt/pdf/papers/Paper11-2008.pdf
EFFECTS OF HEAT-FLOW AND HYDROTHERMAL FLUIDS FROM ...
African Journals Online (AJOL)
Volcanic intrusions and hydrothermal activity have modified the diagenetic minerals. In the Ulster Basin, UK, most of the authigenic mineralization in the Permo-Triassic sandstones pre-dated tertiary volcanic intrusions. The hydrothermal fluids and heat-flow from the volcanic intrusions did not affect quartz and feldspar ...
Ecosystem effects of environmental flows: Modelling and experimental floods in a dryland river
Shafroth, P.B.; Wilcox, A.C.; Lytle, D.A.; Hickey, J.T.; Andersen, D.C.; Beauchamp, Vanessa B.; Hautzinger, A.; McMullen, L.E.; Warner, A.
2010-01-01
Successful environmental flow prescriptions require an accurate understanding of the linkages among flow events, geomorphic processes and biotic responses. We describe models and results from experimental flow releases associated with an environmental flow program on the Bill Williams River (BWR), Arizona, in arid to semiarid western U.S.A. Two general approaches for improving knowledge and predictions of ecological responses to environmental flows are: (1) coupling physical system models to ecological responses and (2) clarifying empirical relationships between flow and ecological responses through implementation and monitoring of experimental flow releases. We modelled the BWR physical system using: (1) a reservoir operations model to simulate reservoir releases and reservoir water levels and estimate flow through the river system under a range of scenarios, (2) one- and two-dimensional river hydraulics models to estimate stage-discharge relationships at the whole-river and local scales, respectively, and (3) a groundwater model to estimate surface- and groundwater interactions in a large, alluvial valley on the BWR where surface flow is frequently absent. An example of a coupled, hydrology-ecology model is the Ecosystems Function Model, which we used to link a one-dimensional hydraulic model with riparian tree seedling establishment requirements to produce spatially explicit predictions of seedling recruitment locations in a Geographic Information System. We also quantified the effects of small experimental floods on the differential mortality of native and exotic riparian trees, on beaver dam integrity and distribution, and on the dynamics of differentially flow-adapted benthic macroinvertebrate groups. Results of model applications and experimental flow releases are contributing to adaptive flow management on the BWR and to the development of regional environmental flow standards. General themes that emerged from our work include the importance of response
Gravity-driven groundwater flow and slope failure potential: 1. Elastic effective-stress model
Iverson, Richard M.; Reid, Mark E.
1992-01-01
Hilly or mountainous topography influences gravity-driven groundwater flow and the consequent distribution of effective stress in shallow subsurface environments. Effective stress, in turn, influences the potential for slope failure. To evaluate these influences, we formulate a two-dimensional, steady state, poroelastic model. The governing equations incorporate groundwater effects as body forces, and they demonstrate that spatially uniform pore pressure changes do not influence effective stresses. We implement the model using two finite element codes. As an illustrative case, we calculate the groundwater flow field, total body force field, and effective stress field in a straight, homogeneous hillslope. The total body force and effective stress fields show that groundwater flow can influence shear stresses as well as effective normal stresses. In most parts of the hillslope, groundwater flow significantly increases the Coulomb failure potential Φ, which we define as the ratio of maximum shear stress to mean effective normal stress. Groundwater flow also shifts the locus of greatest failure potential toward the slope toe. However, the effects of groundwater flow on failure potential are less pronounced than might be anticipated on the basis of a simpler, one-dimensional, limit equilibrium analysis. This is a consequence of continuity, compatibility, and boundary constraints on the two-dimensional flow and stress fields, and it points to important differences between our elastic continuum model and limit equilibrium models commonly used to assess slope stability.
A study on effects of cash flow patterns and auditors’ opinions in predicting financial distress
Directory of Open Access Journals (Sweden)
Fatemeh Namvar
2013-07-01
Full Text Available Bankruptcy has been one of the most important issues among investors in stock market and there are literally different techniques for predicting bankruptcy. In this paper, we study on effects of cash flow patterns and auditors’ opinions in predicting financial distress on some 80 selected firms traded on Tehran Stock Exchange over the period 2005-2011. In this study, the combination of cash flow patterns represent firm’s resource allocations and operational capabilities interacted with their strategy choices. In additions, predictions about each individual cash flow components, operational, investment, financial, are derived from economic theory, which forms a basis for the life proxy. We use cash flow patterns in the decline stage and compare the results with auditors’ opinions. The results indicate that cash flow patterns could predict financial distress companies in Iran. In addition, the effective cash flow patterns in predicting financial distress is more than auditors’ feedbacks.
The Effect of Confluence Angle on the Flow Pattern at a Rectangular Open-Channel
Directory of Open Access Journals (Sweden)
F. Rooniyan
2014-02-01
Full Text Available Flow connection in channels is a phenomenon which frequently happens in rivers, water and drainage channels and urban sewage systems. The phenomenon appears to be more complex in rivers than in channels, especially at the y-junction bed joint that causes erosion and sedimentation at some areas resulting to morphological changes. Flow behavior at the channel junction area depends on variables such as channel geometry, discharge ratio, tributary width and y-junction connection angle of the channel, bed level changes at the bed joint, flow characteristic at the bed joint upstream and flow Froude number in different sections. In this research, fluent numerical model and junction angles of 30o, 45o & 60o are used to analyze and evaluate the effect of channel junction geometry on the flow pattern and the flow separation zone dimensions in different ratios of flow discharge (upstream channel discharge to total discharge of the flow. Results for two ratios of flow discharge are represented. Results are in agreement with earlier studies and it is shown that the change of the channel crossing angle affects the flow pattern in the main channel and also that the dimensions of the created separation zone in the main channel become larger when the crossing angle increases. This phenomenon can also be observed when the flow discharge ratio is lower. Analysis showed that the least dimension of the separation zone will be at the crossing angle of 45o .
Evaluation of core modeling effect on transients for multi-flow zone design of SFR
International Nuclear Information System (INIS)
Shin, Andong; Choi, Yong Won
2016-01-01
SFR core is composed of different types of assemblies including fuel driver, reflector, blanket, control, safety drivers and other drivers. Modeling of different types of assemblies is inevitable in general. But modeling of core flow zones of with different channels needs a lot of effort and could be a challenge for system code modeling due to its limitation on the number of modeling components. In this study, core modeling effect on SFR transient was investigated with flow-zone model and averaged inner core channel model to improve modeling efficiency and validation of simplified core model for EBR-II loss of flow transient case with the modified TRACE code for SFRs. Core modeling effect on the loss flow transient was analyzed with flow-zoned channel model, single averaged inner core model and highest flow channel with averaged inner core channel model for EBR-II SHRT-17 test core. Case study showed that estimations of transient pump and channel flow as well as channel outlet temperatures were similar for all cases macroscopically. Comparing the result of the base case (flow-zone channel inner core model) and the case 2 (highest flow channel considered averaged inner core channel model), flow and channel outlet temperature response were closer than the case1 (single averaged inner core model)
Evaluation of core modeling effect on transients for multi-flow zone design of SFR
Energy Technology Data Exchange (ETDEWEB)
Shin, Andong; Choi, Yong Won [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2016-10-15
SFR core is composed of different types of assemblies including fuel driver, reflector, blanket, control, safety drivers and other drivers. Modeling of different types of assemblies is inevitable in general. But modeling of core flow zones of with different channels needs a lot of effort and could be a challenge for system code modeling due to its limitation on the number of modeling components. In this study, core modeling effect on SFR transient was investigated with flow-zone model and averaged inner core channel model to improve modeling efficiency and validation of simplified core model for EBR-II loss of flow transient case with the modified TRACE code for SFRs. Core modeling effect on the loss flow transient was analyzed with flow-zoned channel model, single averaged inner core model and highest flow channel with averaged inner core channel model for EBR-II SHRT-17 test core. Case study showed that estimations of transient pump and channel flow as well as channel outlet temperatures were similar for all cases macroscopically. Comparing the result of the base case (flow-zone channel inner core model) and the case 2 (highest flow channel considered averaged inner core channel model), flow and channel outlet temperature response were closer than the case1 (single averaged inner core model)
Effect of the design change of the LSSBP on core flow distribution of APR+ Reactor
International Nuclear Information System (INIS)
Kim, Kihwan; Euh, Dong-Jin; Choi, Hae-Seob; Kwon, Tae-Soon
2014-01-01
The uniform core inlet flow distribution of an Advanced Power Reactor Plus (APR+) is required to prevent the failure rate of the HIPER fuel assembly and improve the core thermal margin. KEPCO-E and C and KAERI proposed a design change of the Lower Support Structure Bottom Plate (LSSBP), since the core flow rates were intense near the outer region of the intact LSSBP in a previous study. In this study, an experiment was carried out to evaluate the effect of the design change of the LSSBP on the core flow distribution using the APR+ Core Flow and Pressure (ACOP) test facility. The results showed great improvement on the core flow distribution under a 4-pump balanced flow condition. Under the 4-pump balanced flow condition, fifteen tests were repeated using the ACOP test facility to verify the effect of the 50% blocked flow area at the outer region of the LSSBP on the core inlet flow distribution. The profiles of the core inlet mass flow rates were analyzed using ensemble averaged values, and compared with that of the intact LSSBP. The results showed great improvement for the overall core region. The change in design of the LSSBP is expected to improve the hydraulic performance of an APR+ reactor
Effect of Free Stream Turbulence on the Flow-Induced Background Noise of In-Flow Microphones
Allen, Christopher S.; Olson, Lawrence E. (Technical Monitor)
1998-01-01
fluctuating surface pressure is sensed by the diaphragm as noise. The second mechanism is caused by the convection of smaller sized turbulence, on the order of the probe cross-section, which passes nearby or strikes the probe giving rise to a fluctuating pressure at the sensor orifice. And, the third mechanism is related to fine scale turbulence through its effects on boundary layer growth and transition to a turbulent boundary layer. The method for relating the probe self-noise to the freestream turbulence will be based on the method of K. J. Young5 from Boeing, who developed the technique and presented flow noise results for a Bruel & Kjaer Type 0385, 1/4 inch (6.35 mm) nose cone. The experimental set-up used in the present experiment is similar to that of Young and is described in the present paper. Finally, flow noise predictions are made using the empirical correlations. These predictions are then compared with actual flow noise measurements made in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames Research Center.
Field Effect Flow Control in a Polymer T-Intersection Microfluidic Network
Sniadecki, Nathan J.; Chang, Richard; Beamesderfer, Mike; Lee, Cheng S.; DeVoe, Don L.
2003-01-01
We present a study of induced pressure pumping in a polymer microchannel due to differential electroosmotic flow @OF) rates via field-effect flow control (FEFC). The experimental results demonstrate that the induced pressure pumping is dependent on the distance of the FEFC gate from the cathodic gate. A proposed flow model based on a linearly-decaying zeta potential profile is found to successfully predict experimental trends.
Effect of Dielectric Barrier Discharge Plasma Actuators on Non-equilibrium Hypersonic Flows
2014-10-28
results for MIG with the US3D code devel- oped at the University of Minnesota.61 US3D is an unstruc- tured CFD code for hypersonic flow solution used...Effect of dielectric barrier discharge plasma actuators on non-equilibrium hypersonic flows Ankush Bhatia,1 Subrata Roy,1 and Ryan Gosse2 1Applied...a cylindrical body in Mach 17 hypersonic flow is presented. This application focuses on using sinusoidal dielectric barrier discharge plasma actuators
Effects of thermohydraulics on clad ballooning, flow blockage and coolability in a LOCA
International Nuclear Information System (INIS)
Erbacher, F.J.; Neitzel, H.J.; Wiehr, K.
1983-01-01
Thermohydraulic boundary conditions have a dominating effect on clad ballooning, flow blockage and coolability: Increasing heat transfer to the fluid decreases the total circumferential strain; Countercurrent flow in a combined injection leads to a relatively small flow blockage; Burst claddings exhibit premature quenching. Differences in the test results obtained in several countries are mainly due to different thermohydraulic test conditions; all test data are consistent with the understanding elaborated within the REBEKA program. Core coolability in a LOCA can be maintained. (author)
International Nuclear Information System (INIS)
Jung, Byung Ryul; Park, Hu Shin; Chung, Duk Muk; Baik, Se Jin
2000-01-01
The effects of feedwater flow fraction introduced into the downcomer region have been evaluated in terms of steam generator performance based on the same steam generator thermal output for the Korea Standard Nuclear Power Plant (KSNP) steam generator. The KSNP steam generator design has an integral axial flow economizer which is designed such that most of the feedwater is introduced through the economizer region and only a portion of feedwater through the downcomer region. The feedwater flow introduced into the downcomer region is not normally controlled during the power operation. However, the actual feedwater fraction into the downcomer region may differ from the design flow depending on the as-built system and component characteristics. Investigated in this paper were the downcomer feedwater flow effects on the steam pressure, circulation ratio, internal void fraction and velocity distribution in the tube bundle region at the steady state operation using SAFE and ATHOS3 codes. The results show that the steam pressure increases and the resultant total feedwater flow increases with reducing the downcomer feedwater flow fraction for the same steam generator thermal output. The slight off-design condition of downcomer feedwater flow fraction renders no significant effect on the steam generator performance such as circulation ratios, steam qualities, void fractions and internal velocity distributions. The evaluation shows that the slight off-design downcomer feedwater flow fraction deviation up to ± 5% is acceptable for the steam generator performance
Effects of Gogny type interactions on the nuclear flow
International Nuclear Information System (INIS)
Sebille, F.; De La Mota, V.; Jouault, B.; Schuck, P.
1995-01-01
A flow analysis on symmetric and asymmetric reactions from 100 to 400 MeV/n is performed in the framework of the semi-classical Landau-Vlasov approach. In this energy range our results present two different trends. At lower energies it is governed by the momentum dependence of the nuclear optical potential, whereas at higher energies its density dependence plays a crucial role leading to a rather pronounced sensitivity of the incompressibility modulus. The non-locality of the nuclear interaction is relevant for asymmetric colliding systems. With an incompressibility modulus in the vicinity of 200 MeV, an excellent quantitative description of the flow behavior with incident energy and impact parameter or the system mass is provided. (authors)., 26 refs., 6 figs., 3 tabs
Effects of macropores on groundwater flow and transport of radionuclides
International Nuclear Information System (INIS)
Huff, D.D.; DeAngelis, D.L.; Yeh, G.T.
1983-01-01
In humid environments, recent findings have shown that an important component of runoff and associated solute moves rapidly through large continuous voids. Thus, consideration of radionuclide transport in subsurface flow is incomplete without explicit treatment of continuous macropores and interaction between macropore flow and the soil matrix. A computer model, FRACPORT, that simulates the transport of a solute through a fractured porous matrix has been developed. The model employs the Integrated Compartment Method and uses the approach of dividing the porous media into compartments comprising fractures or porous material. The fracture region and a small portion of the porous matrix are simulated using a shorter time step than for the remaining porous matrix. This allows substantial savings in computational time. The model should be useful for analyses of generic problems associated with water and radionuclide transport in macropore systems at shallow-land disposal sites in humid environments. 14 references, 6 figures, 1 table
Nitrogen transformations in wetlands: Effects of water flow patterns
Energy Technology Data Exchange (ETDEWEB)
Davidsson, T.
1997-11-01
In this thesis, I have studied nitrogen turnover processes in water meadows. A water meadow is a wetland where water infiltrates through the soil of a grassland field. It is hypothesized that infiltration of water through the soil matrix promotes nutrient transformations compared to surface flow of water, by increasing the contact between water, nutrients, soil organic matter and bacteria. I have studied how the balance between nitrogen removal (denitrification, assimilative uptake, adsorption) and release (mineralization, desorption) processes are affected by water flow characteristics. Mass balance studies and direct denitrification measurements at two field sites showed that, although denitrification was high, net nitrogen removal in the water meadows was poor. This was due to release of ammonium and dissolved organic nitrogen (DON) from the soils. In laboratory studies, using {sup 15}N isotope techniques, I have shown that nitrogen turnover is considerably affected by hydrological conditions and by soil type. Infiltration increased virtually all the nitrogen processes, due to deeper penetration of nitrate and oxygen, and extended zones of turnover processes. On the contrary, soils and sediments with surface water flow, diffusion is the main transfer mechanism. The relation between release and removal processes sometimes resulted in shifts towards net nitrogen production. This occurred in infiltration treatments when ammonium efflux was high in relation to denitrification. It was concluded that ammonium and DON was of soil origin and hence not a product of dissimilatory nitrate reduction to ammonium. Both denitrification potential and mineralization rates were higher in peaty than in sandy soil. Vertical or horizontal subsurface flow is substantial in many wetland types, such as riparian zones, tidal salt marshes, fens, root-zone systems and water meadows. Moreover, any environment where aquatic and terrestrial ecosystems meet, and where water level fluctuates
ASSESSMENT OF CORRUPTION EFFECT ON FOREIGN INVESTMENT FLOWS
Sprinģis, Māris
2011-01-01
The purpose of the present paper is to investigate the impact of corruption on foreign direct investment (FDI) flows. Using data from the International Monetary Fund, Transparency International and United Nations conference about commerce and development data bases a cross-section econometric model was estimated to evaluate in which way and how strong corruption influence FDI inflows. Econometric modelling covers the period from year 2000 to 2007 and the data about 82 world countries that con...
Effect of pregnancy on regional cerebral blood flow
International Nuclear Information System (INIS)
Nagamachi, Shigeki; Hoshi, Hiroaki; Jinnouchi, Seishi; Ohnishi, Takashi; Futami, Shigemi; Watanabe, Katsushi; Ikeda, Tomoaki; Mori, Norimasa
1993-01-01
Regional cerebral blood flow (r-CBF) of 10 pregnant women were quantified by 133 Xe SPECT study with inhalation method before and after artificial abortion. During pregnancy, value of r-CBF in each region except occipital lobe was significantly higher than that of the post abortion. Arterial blood gas was analyzed after SPECT procedure. P co2 concentration increased significantly after artificial abortion. Although its mechanism is unknown, our preliminary work demonstrates that r-CBF increased by pregnancy. (author)
Magnus effect on laminar flow around a rotating cylinder
International Nuclear Information System (INIS)
Amarante, J.C.A.
1989-01-01
The laminar flow around a rotating cylinder is studied, through the numerical solution of the full Navier-Stokes equations, for Reynolds number, based on cylinder radius, varying between 0.5 and 25 and for non-dimensional tangential velocities of the body surface between zero and 8. The Taylor and Hughes method is employed in the theoretical investigation. The Magnus lift coefficient and the drag coefficient are obtained and the presure and vorticity distribution are calculated. (author)
Rapp, Jennifer L.; Reilly, Pamela A.
2017-11-14
BackgroundThe U.S. Geological Survey (USGS), in cooperation with the Virginia Department of Environmental Quality (DEQ), reviewed a previously compiled set of linear regression models to assess their utility in defining the response of the aquatic biological community to streamflow depletion.As part of the 2012 Virginia Healthy Watersheds Initiative (HWI) study conducted by Tetra Tech, Inc., for the U.S. Environmental Protection Agency (EPA) and Virginia DEQ, a database with computed values of 72 hydrologic metrics, or indicators of hydrologic alteration (IHA), 37 fish metrics, and 64 benthic invertebrate metrics was compiled and quality assured. Hydrologic alteration was represented by simulation of streamflow record for a pre-water-withdrawal condition (baseline) without dams or developed land, compared to the simulated recent-flow condition (2008 withdrawal simulation) including dams and altered landscape to calculate a percent alteration of flow. Biological samples representing the existing populations represent a range of alteration in the biological community today.For this study, all 72 IHA metrics, which included more than 7,272 linear regression models, were considered. This extensive dataset provided the opportunity for hypothesis testing and prioritization of flow-ecology relations that have the potential to explain the effect(s) of hydrologic alteration on biological metrics in Virginia streams.
Renormalization-group flow of the effective action of cosmological large-scale structures
Floerchinger, Stefan
2017-01-01
Following an approach of Matarrese and Pietroni, we derive the functional renormalization group (RG) flow of the effective action of cosmological large-scale structures. Perturbative solutions of this RG flow equation are shown to be consistent with standard cosmological perturbation theory. Non-perturbative approximate solutions can be obtained by truncating the a priori infinite set of possible effective actions to a finite subspace. Using for the truncated effective action a form dictated by dissipative fluid dynamics, we derive RG flow equations for the scale dependence of the effective viscosity and sound velocity of non-interacting dark matter, and we solve them numerically. Physically, the effective viscosity and sound velocity account for the interactions of long-wavelength fluctuations with the spectrum of smaller-scale perturbations. We find that the RG flow exhibits an attractor behaviour in the IR that significantly reduces the dependence of the effective viscosity and sound velocity on the input ...
Augmentative effect of pulsatility on the wall shear stress in tube flow.
Nakata, M; Tatsumi, E; Tsukiya, T; Taenaka, Y; Nishimura, T; Nishinaka, T; Takano, H; Masuzawa, T; Ohba, K
1999-08-01
Wall shear stress (WSS) has been considered to play an important role in the physiological and metabolic functions of the vascular endothelial cells. We investigated the effects of the pulse rate and the maximum flow rate on the WSS to clarify the influence of pulsatility. Water was perfused in a 1/2 inch transparent straight cylinder with a nonpulsatile centrifugal pump and a pulsatile pneumatic ventricular assist device (VAD). In nonpulsatile flow (NF), the flow rate was changed 1 to 6 L/min by 1 L/min increments to obtain standard values of WSS at each flow rate. In pulsatile flow (PF), the pulse rate was controlled at 40, 60, and 80 bpm, and the maximum flow rate was varied from 3.3 to 12.0 L/min while the mean flow rate was kept at 3 L/min. The WSS was estimated from the velocity profile at measuring points using the laser illuminated fluorescence method. In NF, the WSS was 12.0 dyne/cm2 at 3 L/min and 33.0 dyne/cm2 at 6 L/min. In PF, the pulse rate change with the same mean, and the maximum flow rate did not affect WSS. On the other hand, the increase in the maximum flow rate at the constant mean flow rate of 3 L/min augmented the mean WSS from 13.1 to 32.9 dyne/cm2. We concluded that the maximum flow rate exerted a substantial augmentative effect on WSS, and the maximum flow rate was a dominant factor of pulsatility in this effect.
Effects of homogeneous condensation in compressible flows: Ludwieg-tube experiments and simulations
Luo, X.; Lamanna, G.; Holten, A.P.C.; Dongen, van M.E.H.
2007-01-01
Effects of homogeneous nucleation and subsequent droplet growth in compressible flows in humid nitrogen are investigated numerically and exptl. A Ludwieg tube is employed to produce expansion flows. Corresponding to different configurations, three types of expt. are carried out in such a tube.
DEFF Research Database (Denmark)
van der Horst, Sander; van de Wiel, Jelmer E.; Ferreira, Carlos Simao
2016-01-01
Blades on a Vertical Axis Wind Turbine (VAWT) experience curved streamlines, caused by the rotation of the turbine. This phenomenon is known as flow curvature and has effects on the aerodynamic loading of the blades. Several authors have proposed methods to account for flow curvature, resulting...
Effectiveness of Side Force Models for Flow Simulations Downstream of Vortex Generators
Florentie, L.; van Zuijlen, A.H.; Hulshoff, S.J.; Bijl, H.
2017-01-01
Vortex generators (VGs) are a widely used means of flow control, and predictions of their influence are vital for efficient designs. However, accurate CFD simulations of their effect on the flow field by means of a body fitted mesh are computationally expensive. Therefore the BAY and jBAY models,
Effect of Retarding Force on Mass Flow Rates of Fluid at Different ...
African Journals Online (AJOL)
... mathematical model and software visualization to view the effect of retarding forces on the mass flow rate in term of visualization. C-sharp (C#) is the chosen program and this enable compares and us to determine the mass flow rates patterns in relation to retarding force in form of graphical tables at different temperature.
Field effect control of electro-osmotic flow in microfluidic networks
van der Wouden, E.J.
2006-01-01
This thesis describes the development of a Field Effect Flow Control (FEFC) system for the control of Electro Osmotic Flow (EOF) in microfluidic networks. For this several aspects of FEFC have been reviewed and a process to fabricate microfluidic channels with integrated electrodes has been
Effect of delta wing on the particle flow in a novel gas supersonic separator
DEFF Research Database (Denmark)
Wen, Chuang; Yang, Yan; Walther, Jens Honore
2016-01-01
The present work presents numerical simulations of the complex particle motion in a supersonic separator with a delta wing located in the supersonic flow. The effect of the delta wing on the strong swirling flow is analysed using the Discrete Particle Method. The results show that the delta wings...
The Effect of Flow Frequency on Internet Addiction to Different Internet Usage Activities
Yang, Hui-Ling; Wu, Wei-Pang
2017-01-01
This study investigated the online flow frequency among college students in regard to different internet activities, and analyzed the effect of flow frequency on internet addiction. This study surveyed 525 undergraduate internet users in Taiwan by using convenience sampling to question participants. In this paper, analysis of variance (ANOVA) was…
Flow-induced correlation effects within a linear chain in a polymer melt
Stepanyan, R.; Slot, J.J.M.; Molenaar, J.; Tchesnokov, M.A.
2005-01-01
A framework for a consistent description of the flow-induced correlation effects within a linear polymer chain in a melt is proposed. The formalism shows how correlations between chain segments in the flow can be incorporated into a hierarchy of distribution functions for tangent vectors. The
Lilley, D. G.; Scharrer, G. L.
1984-01-01
The results of a time-mean flow characterization of nonswirling and swirling inert flows in a combustor are reported. The five-hole pitot probe technique was used in axisymmetric test sections with expansion ratios of 1 and 1.5. A prominent corner recirculation zone identified in nonswirling expanding flows decreased in size with swirling flows. The presence of a downstream nozzle led to an adverse pressure gradient at the wall and a favorable gradient near the centerline. Reducing the expansion ratio reduced the central recirculation length. No significant effect was introduced in the flowfield by a gradual expansion.
The effect of mixing-vane arrangements in a subchannel turbulent flow
International Nuclear Information System (INIS)
Ikeno, Tsutomu; Murata, Tamotsu; Kajishima, Takeo
2006-01-01
Large eddy simulation (LES) of developed turbulent flows in a rod bundle was carried out for four spacer designs. The mixing-vanes attached at the spacer were inclined at 30degC or 20deg; they were arranged to promote the swirling or convective flow. These arrangements are possible elements to compose an actual rod bundle. Our LES technique with a consistent higher-order immersed boundary method and a one-equation dynamic sub-grid scale model contributed to an efficient treatment of the complex wall configurations of rods and spacers. The computational results reasonably reproduced experimental results for the drag coefficient and the decay rate of swirling flow. The profiles of the axial velocities and the turbulence intensities indicated reasonable trend for the turbulent flow in the rod bundle. The effect of mixing-vane arrangement on the lateral flows was successfully clarified: the cross flow took the longer way on the rod surface than the swirling flow and then was more significantly influenced by momentum diffusion at the no-slip wall. Therefore, the largely inclined mixing-vanes promoted the cross flow only in the neighborhood of the spacer, the swirling flow inside a subchannel could reach farther downstream than the cross flow. (author)
Effective Wall Friction in Wall-Bounded 3D Dense Granular Flows.
Artoni, Riccardo; Richard, Patrick
2015-10-09
We report numerical simulations on granular shear flows confined between two flat but frictional sidewalls. Novel regimes differing by their strain localization features are observed. They originate from the competition between dissipation at the sidewalls and dissipation in the bulk of the flow. The effective friction at sidewalls is characterized (effective friction coefficient and orientation of the friction force) for each regime, and its interdependence with slip and force fluctuations is pointed out. We propose a simple scaling law linking the slip velocity to the granular temperature in the main flow direction which leads naturally to another scaling law for the effective friction.
Effects of non-uniform core flow on peak cladding temperature: MOXY/SCORE sensitivity calculations
Energy Technology Data Exchange (ETDEWEB)
Chang, S.C.
1979-08-15
The MOXY/SCORE computer program is used to evaluate the potential effect on peak cladding temperature of selective cooling that may result from a nonuniform mass flux at the core boundaries during the blowdown phase of the LOFT L2-4 test. The results of this study indicate that the effect of the flow nonuniformity at the core boundaries will be neutralized by a strong radial flow redistribution in the neighborhood of core boundaries. The implication is that the flow nonuniformity at the core boundaries has no significant effect on the thermal-hydraulic behavior and cladding temperature at the hot plane.
Effects of non-uniform core flow on peak cladding temperature: MOXY/SCORE sensitivity calculations
International Nuclear Information System (INIS)
Chang, S.C.
1979-01-01
The MOXY/SCORE computer program is used to evaluate the potential effect on peak cladding temperature of selective cooling that may result from a nonuniform mass flux at the core boundaries during the blowdown phase of the LOFT L2-4 test. The results of this study indicate that the effect of the flow nonuniformity at the core boundaries will be neutralized by a strong radial flow redistribution in the neighborhood of core boundaries. The implication is that the flow nonuniformity at the core boundaries has no significant effect on the thermal-hydraulic behavior and cladding temperature at the hot plane
Conveyor belt effect in the flow through a tube of a viscous fluid with spinning particles.
Felderhof, B U
2012-04-28
The extended Navier-Stokes equations describing the steady-state hydrodynamics of a viscous fluid with spinning particles are solved for flow through a circular cylindrical tube. The flow caused by an applied torque density in the azimuthal direction and linear in the radial distance from the axis is compared with the flow caused by a uniform applied force density directed along the axis of the tube. In both cases the flow velocity is of Poiseuille type plus a correction. In the first case the flow velocity is caused by the conveyor belt effect of spinning particles. The corrections to the Poiseuille flow pattern in the two cases differ only by a proportionality factor. The spin velocity profiles in the two cases are also proportional.
Axial slit wall effect on the flow instability and heat transfer in rotating concentric cylinders
Energy Technology Data Exchange (ETDEWEB)
Liu, Dong; Chao, Chang Qing; Wang, Ying Ze; Zhu, Fang Neng [School of Energy and Power Engineering, Jiangsu University, Zhenjiang (China); Kim, Hyoung Bum [School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju (Korea, Republic of)
2016-12-15
The slit wall effect on the flow instability and heat transfer characteristics in Taylor-Couette flow was numerically studied by changing the rotating Reynolds number and applying the negative temperature gradient. The concentric cylinders with slit wall are seen in many rotating machineries. Six different models with the slit number 0, 6, 9, 12, 15 and 18 were investigated in this study. The results show the axial slit wall enhances the Taylor vortex flow and suppresses the azimuthal variation of wavy Taylor vortex flow. When negative temperature gradient exists, the results show that the heat transfer augmentation appears from laminar Taylor vortex to turbulent Taylor flow regime. The heat transfer enhancement become stronger as increasing the Reynolds number and slit number. The larger slit number model also accelerates the flow transition regardless of the negative temperature gradient or isothermal condition.
Axial slit wall effect on the flow instability and heat transfer in rotating concentric cylinders
International Nuclear Information System (INIS)
Liu, Dong; Chao, Chang Qing; Wang, Ying Ze; Zhu, Fang Neng; Kim, Hyoung Bum
2016-01-01
The slit wall effect on the flow instability and heat transfer characteristics in Taylor-Couette flow was numerically studied by changing the rotating Reynolds number and applying the negative temperature gradient. The concentric cylinders with slit wall are seen in many rotating machineries. Six different models with the slit number 0, 6, 9, 12, 15 and 18 were investigated in this study. The results show the axial slit wall enhances the Taylor vortex flow and suppresses the azimuthal variation of wavy Taylor vortex flow. When negative temperature gradient exists, the results show that the heat transfer augmentation appears from laminar Taylor vortex to turbulent Taylor flow regime. The heat transfer enhancement become stronger as increasing the Reynolds number and slit number. The larger slit number model also accelerates the flow transition regardless of the negative temperature gradient or isothermal condition
Effects of endothelium-derived nitric oxide on skin and digital blood flow in humans.
Coffman, J D
1994-12-01
The effects of NG-monomethyl-L-arginine (L-NMMA) on total finger and forearm, and dorsal finger and forearm skin, blood flows were studied in the basal state and during reflex sympathetic vasoconstriction in normal subjects. Total flows were measured by venous occlusion plethysmography and skin flows by laser-Doppler flowmetry (LDF). L-NMMA in doses of 2, 4, and 8 microM/min given by constant infusion via a brachial artery catheter significantly decreased finger blood flow, forearm blood flow, and vascular conductances. At 8 microM/min, total finger blood flow decreased 38.4% and forearm blood flow decreased 24.8%. Dorsal finger and forearm skin LDF were also significantly decreased (25 and 37% at 8 microM/min). Body cooling significantly decreased finger blood flow (73.6%), vascular conductance, and finger LDF (59.7%). L-NMMA had no effect on total finger blood flow or dorsal finger LDF during body cooling. Nitric oxide or related compounds contribute to the basal dilator tone of the dorsal finger and forearm skin but not during reflex sympathetic vasoconstriction.
Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.; Savinell, Robert F.
2018-04-01
Redox flow batteries with flow field designs have been demonstrated to boost their capacities to deliver high current density and power density in medium and large-scale energy storage applications. Nevertheless, the fundamental mechanisms involved with improved current density in flow batteries with serpentine flow field designs have been not fully understood. Here we report a three-dimensional model of a serpentine flow field over a porous carbon electrode to examine the distributions of pressure driven electrolyte flow penetrations into the porous carbon electrodes. We also estimate the maximum current densities associated with stoichiometric availability of electrolyte reactant flow penetrations through the porous carbon electrodes. The results predict reasonably well observed experimental data without using any adjustable parameters. This fundamental work on electrolyte flow distributions of limiting reactant availability will contribute to a better understanding of limits on electrochemical performance in flow batteries with serpentine flow field designs and should be helpful to optimizing flow batteries.
Numerical modeling of the effects of roughness on flow and eddy formation in fractures
Directory of Open Access Journals (Sweden)
Scott Briggs
2017-02-01
Full Text Available The effect of roughness on flow in fractures was investigated using lattice Boltzmann method (LBM. Simulations were conducted for both statistically generated hypothetical fractures and a natural dolomite fracture. The effect of increasing roughness on effective hydraulic aperture, Izbash and Forchheimer parameters with increasing Reynolds number (Re ranging from 0.01 to 500 was examined. The growth of complex flow features, such as eddies arising near the fracture surface, was directly associated with changes in surface roughness. Rapid eddy growth above Re values of 1, followed by less rapid growth at higher Re values, suggested a three-zone nonlinear model for flow in rough fractures. This three-zone model, relating effective hydraulic conductivity to Re, was also found to be appropriate for the simulation of water flow in the natural dolomite fracture. Increasing fracture roughness led to greater eddy volumes and lower effective hydraulic conductivities for the same Re values.
Effect of cold cap boundary conditions on Joule-heating flow in the sloping bottom cavity
International Nuclear Information System (INIS)
Zhou, Jiaju; Tanaka, Hiromasa; Tsuzuki, Nobuyoshi; Kikura, Hiroshige
2015-01-01
Flow behavior in a sloping bottom cavity is observed to study the effect of cavity shape on flow behavior for Joule-heating flow. In the former study, a simple cubic cavity is applied to study the chaotic flow behavior of Joule-heating convection due to simplification as the real melter case is complicated. In this study, a sloping bottom cavity of the dimension one-fifth of the actual melter is applied to study the detail flow behavior. Carbon electrodes and top cooling surface are placed to make Joule-heating and the chaotic flow behavior. The working fluid is 80%wt Glycerol-water solution with LiCl as electrolyte. To observe the chaotic flow behavior spatio-temporally, Ultrasonic Velocity Profiler (UVP) is applied in this experiment to obtain the one-dimensional continuous velocity profiles in the center line of cavity. Particle Image Velocity (PIV) method is also applied to observe the two-dimensional flow behavior and to examine the cross-check between UVP and PIV for the chaotic flow behavior with temperature distribution. The flow profiles of the former cubic cavity and the sloping bottom cavity are compared changing voltage magnitude and cooling temperature of the electrodes side to analyze the effect of cavity shape under Joule-heating condition. The flow behavior in the upper part of the sloping bottom cavity is similar to that in the cubic cavity in the experiment in whole cavity, the range down-flow achieved is larger than the cubic cavity. (author)
Effect of Flow Channel Shape on Performance in Reverse Electrodialysis
Energy Technology Data Exchange (ETDEWEB)
Kwon, Kilsung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Deok Han; Kim, Daejoong [Sogang Univ., Seoul (Korea, Republic of)
2017-05-15
Reverse electrodialysis (RED), which generates electrical energy from the difference in concentration of two solutions, has been actively studied owing to its high potential and the increased interest in renewable energy resulting from the Paris Agreement on climate change. For RED commercialization, its power density needs to be maximized, and therefore various methods have been discussed. In this paper, the power density was measured using various flow shapes based on the aspect ratio, opening ratio, and number of distribution channels. We found that the power density is enhanced with a decrease in the aspect ratio and an increase in the opening ratio and number of distribution channels.
Flux surface shaping effects on tokamak edge turbulence and flows
International Nuclear Information System (INIS)
Kendl, A.; Scott, B.D.
2004-01-01
The influence of shaping of magnetic flux surfaces in tokamaks on gyro-fluid edge turbulence is studied numerically. Magnetic field shaping in tokamaks is mainly due to elongation, triangularity, shift and the presence of a divertor X-point. A series of tokamak configurations with varying elongation 1 ≤ κ ≥ 2 and triangularity 0 ≤ δ ≤ 0.4, and an actual ASDEX Upgrade divertor configuration are obtained with the equilibrium code HELENA and implemented into the gyro-fluid turbulence code GEM. The study finds minimal impact on the zonal flow physics itself, but strong impact on the turbulence and transport. (authors)
Flux surface shaping effects on tokamak edge turbulence and flows
Energy Technology Data Exchange (ETDEWEB)
Kendl, A. [Innsbruck Univ., Institut fuer Theoretische Physik, Association EURATOM (Austria); Scott, B.D. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching bei Muenchen (Germany)
2004-07-01
The influence of shaping of magnetic flux surfaces in tokamaks on gyro-fluid edge turbulence is studied numerically. Magnetic field shaping in tokamaks is mainly due to elongation, triangularity, shift and the presence of a divertor X-point. A series of tokamak configurations with varying elongation 1 {<=} {kappa} {>=} 2 and triangularity 0 {<=} {delta} {<=} 0.4, and an actual ASDEX Upgrade divertor configuration are obtained with the equilibrium code HELENA and implemented into the gyro-fluid turbulence code GEM. The study finds minimal impact on the zonal flow physics itself, but strong impact on the turbulence and transport. (authors)
Effect of shock interactions on mixing layer between co-flowing supersonic flows in a confined duct
Rao, S. M. V.; Asano, S.; Imani, I.; Saito, T.
2018-03-01
Experiments are conducted to observe the effect of shock interactions on a mixing layer generated between two supersonic streams of Mach number M _{1} = 1.76 and M _{2} = 1.36 in a confined duct. The development of this mixing layer within the duct is observed using high-speed schlieren and static pressure measurements. Two-dimensional, compressible Reynolds averaged Navier-Stokes equations are solved using the k-ω SST turbulence model in Fluent. Further, adverse pressure gradients are imposed by placing inserts of small ( boundary layer thickness) thickness on the walls of the test section. The unmatched pressures cause the mixing layer to bend and lead to the formation of shock structures that interact with the mixing layer. The mixing layer growth rate is found to increase after the shock interaction (nearly doubles). The strongest shock is observed when a wedge insert is placed in the M _{2} flow. This shock interacts with the mixing layer exciting flow modes that produce sinusoidal flapping structures which enhance the mixing layer growth rate to the maximum (by 1.75 times). Shock fluctuations are characterized, and it is observed that the maximum amplitude occurs when a wedge insert is placed in the M _{2} flow.
Application of effective discharge analysis to environmental flow decision-making
McKay, S. Kyle; Freeman, Mary C.; Covich, A.P.
2016-01-01
Well-informed river management decisions rely on an explicit statement of objectives, repeatable analyses, and a transparent system for assessing trade-offs. These components may then be applied to compare alternative operational regimes for water resource infrastructure (e.g., diversions, locks, and dams). Intra- and inter-annual hydrologic variability further complicates these already complex environmental flow decisions. Effective discharge analysis (developed in studies of geomorphology) is a powerful tool for integrating temporal variability of flow magnitude and associated ecological consequences. Here, we adapt the effectiveness framework to include multiple elements of the natural flow regime (i.e., timing, duration, and rate-of-change) as well as two flow variables. We demonstrate this analytical approach using a case study of environmental flow management based on long-term (60 years) daily discharge records in the Middle Oconee River near Athens, GA, USA. Specifically, we apply an existing model for estimating young-of-year fish recruitment based on flow-dependent metrics to an effective discharge analysis that incorporates hydrologic variability and multiple focal taxa. We then compare three alternative methods of environmental flow provision. Percentage-based withdrawal schemes outcompete other environmental flow methods across all levels of water withdrawal and ecological outcomes.
Tip clearance effect on through-flow and performance of a centrifugal compressor
International Nuclear Information System (INIS)
Eum, Hark Jin; Kang, Young Seok; Kang, Shin Hyoung
2004-01-01
Numerical simulations have been performed to investigate tip clearance effect on through-flow and performance of a centrifugal compressor which has the same configuration of impeller with six different tip clearances. Secondary flow and loss distribution have been surveyed to understand the flow mechanism due to the tip clearance. Tip leakage flow strongly interacts with mainstream flow and considerably changes the secondary flow and the loss distribution inside the impeller passage. A method has been described to quantitatively estimate the tip clearance effect on the performance drop and the efficiency drop. The tip clearance has caused specific work reduction and additional entropy generation. The former, which is called inviscid loss, is independent of any internal loss and the latter, which is called viscous loss, is dependent on every loss in the flow passage. Two components equally affected the performance drop as the tip clearances were small, while the efficiency drop was influenced by the viscous component alone. The additional entropy generation was modeled with all the kinetic energy of the tip leakage flow. Therefore, the present paper can provide how to quantitatively estimate the tip clearance effect on the performance and efficiency
Experimental study on the effect of an artificial cardiac valve on the left ventricular flow
Wang, JiangSheng; Gao, Qi; Wei, RunJie; Wang, JinJun
2017-09-01
The use of artificial valves to replace diseased human heart valves is currently the main solution to address the malfunctioning of these valves. However, the effect of artificial valves on the ventricular flow still needs to be understood in flow physics. The left ventricular flow downstream of a St. Jude Medical (SJM) bileaflet mechanical heart valve (BMHV), which is a widely implanted mechanical bileaflet valve, is investigated with time-resolved particle image velocimetry in the current work. A tilting-disk valve is installed on the aortic orifice to guarantee unidirectional flow. Several post-processing tools are applied to provide combined analyses of the physics involved in the ventricular flow. The triple jet pattern that is closely related to the characteristics of the bileaflet valve is discussed in detail from both Eulerian and Lagrangian views. The effects of large-scale vortices on the transportation of blood are revealed by the combined analysis of the tracking of Lagrangian coherent structures, the Eulerian monitoring of the shear stresses, and virtual dye visualization. It is found that the utilization of the SJM BMHV complicates the ventricular flow and could reduce the efficiency of blood transportation. In addition, the kinematics of the bileaflets is presented to explore the effects of flow structures on their motion. These combined analyses could elucidate the properties of SJM BMHV. Furthermore, they could provide new insights into the understanding of other complex blood flows.
Effect of electromagnetic coupling on MHD flow in the manifold of fusion liquid metal blanket
Energy Technology Data Exchange (ETDEWEB)
Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Meng, Zi; Feng, Jingchao; He, Qingyun
2014-10-15
In fusion liquid metal (LM) blanket, magnetohydrodynamics (MHD) effects will dominate the flow patterns and the heat transfer characteristics of the liquid metal flow. Manifold is a key component in LM blanket in charge of distributing or collecting the liquid metal coolant. In this region, the complex three dimensional MHD phenomena will be occurred, and the velocity, pressure and flow rate distributions may be dramatically influenced. One important aspect is the electromagnetic coupling effect resulting from an exchange of electric currents between two neighboring fluid domains that can lead to modifications of flow distribution and pressure drop compared to that in electrical separated channels. Understanding the electromagnetic coupling effect in manifold is necessary to optimize the liquid metal blanket design. In this work, a numerical study was carried out to investigate the effect of electromagnetic coupling on MHD flow in a manifold region. The typical manifold geometry in LM blanket was considered, a rectangular supply duct entering a rectangular expansion area, finally feeding into 3 rectangular parallel channels. This paper investigated the effect of electromagnetic coupling on MHD flow in a manifold region. Different electromagnetic coupling modes with different combinations of electrical conductivity of walls were studied numerically. The flow distribution and pressure drop of these modes have been evaluated.
Effect of attack angle on flow characteristic of centrifugal fan
Wu, Y.; Dou, H. S.; Wei, Y. K.; Chen, X. P.; Chen, Y. N.; Cao, W. B.
2016-05-01
In this paper, numerical simulation is performed for the performance and internal flow of a centrifugal fan with different operating conditions using steady three-dimensional incompressible Navier-Stokes equations coupled with the RNG k-e turbulent model. The performance curves, the contours of static pressure, total pressure, radial velocity, relative streamlines and turbulence intensity at different attack angles are obtained. The distributions of static pressure and velocity on suction surface and pressure surface in the same impeller channel are compared for various attack angles. The research shows that the efficiency of the centrifugal fan is the highest when the attack angle is 8 degree. The main reason is that the vortex flow in the impeller is reduced, and the jet-wake pattern is weakened at the impeller outlet. The pressure difference between pressure side and suction side is smooth and the amplitude of the total pressure fluctuation is low along the circumferential direction. These phenomena may cause the loss reduced for the attack angle of about 8 degree.
Modeling of surface roughness effects on Stokes flow in circular pipes
Song, Siyuan; Yang, Xiaohu; Xin, Fengxian; Lu, Tian Jian
2018-02-01
Fluid flow and pressure drop across a channel are significantly influenced by surface roughness on a channel wall. The present study investigates the effects of periodically structured surface roughness upon flow field and pressure drop in a circular pipe at low Reynolds numbers. The periodic roughness considered exhibits sinusoidal, triangular, and rectangular morphologies, with the relative roughness (i.e., ratio of the amplitude of surface roughness to hydraulic diameter of the pipe) no more than 0.2. Based upon a revised perturbation theory, a theoretical model is developed to quantify the effect of roughness on fully developed Stokes flow in the pipe. The ratio of static flow resistivity and the ratio of the Darcy friction factor between rough and smooth pipes are expressed in four-order approximate formulations, which are validated against numerical simulation results. The relative roughness and the wave number are identified as the two key parameters affecting the static flow resistivity and the Darcy friction factor.
Modeling study of rarefied gas effects on hypersonic reacting stagnation flows
Wang, Zhihui; Bao, Lin
2014-12-01
Recent development of the near space hypersonic sharp leading vehicles has raised a necessity to fast and accurately predict the aeroheating in hypersonic rarefied flows, which challenges our understanding of the aerothermodynamics and aerothermochemistry. The present flow and heat transfer problem involves complex rarefied gas effects and nonequilibrium real gas effects which are beyond the scope of the traditional prediction theory based on the continuum hypothesis and equilibrium assumption. As a typical example, it has been found that the classical Fay-Riddell equation fails to predict the stagnation point heat flux, when the flow is either rarefied or chemical nonequilibrium. In order to design a more general theory covering the rarefied reacting flow cases, an intuitive model is proposed in this paper to describe the nonequilibrium dissociation-recombination flow along the stagnation streamline towards a slightly blunted nose in hypersonic rarefied flows. Some characteristic flow parameters are introduced, and based on these parameters, an explicitly analytical bridging function is established to correct the traditional theory to accurately predict the actual aeroheating performance. It is shown that for a small size nose in medium density flows, the flow at the outer edge of the stagnation point boundary layer could be highly nonequilibrium, and the aeroheating performance is distinguished from that of the big blunt body reentry flows at high altitudes. As a result, when the rarefied gas effects and the nonequilibrium real gas effects are both significant, the classical similarity law could be questionable, and it is inadequate to directly analogize results from the classical blunt body reentry problems to the present new generation sharp-leading vehicles. In addition, the direct simulation Monte Carlo method is also employed to validate the conclusion.
Characterizing effects of hydropower plants on sub-daily flow regimes
Bejarano, María Dolores; Sordo-Ward, Álvaro; Alonso, Carlos; Nilsson, Christer
2017-07-01
A characterization of short-term changes in river flow is essential for understanding the ecological effects of hydropower plants, which operate by turning the turbines on or off to generate electricity following variations in the market demand (i.e., hydropeaking). The goal of our study was to develop an approach for characterizing the effects of hydropower plant operations on within-day flow regimes across multiple dams and rivers. For this aim we first defined ecologically meaningful metrics that provide a full representation of the flow regime at short time scales from free-flowing rivers and rivers exposed to hydropeaking. We then defined metrics that enable quantification of the deviation of the altered short-term flow regime variables from those of the unaltered state. The approach was successfully tested in two rivers in northern Sweden, one free-flowing and another regulated by cascades of hydropower plants, which were additionally classified based on their impact on short-term flows in sites of similar management. The largest differences between study sites corresponded to metrics describing sub-daily flow magnitudes such as amplitude (i.e., difference between the highest and the lowest hourly flows) and rates (i.e., rise and fall rates of hourly flows). They were closely followed by frequency-related metrics accounting for the numbers of within-day hourly flow patterns (i.e., rises, falls and periods of stability of hourly flows). In comparison, between-site differences for the duration-related metrics were smallest. In general, hydropeaking resulted in higher within-day flow amplitudes and rates and more but shorter periods of a similar hourly flow patterns per day. The impacted flow feature and the characteristics of the impact (i.e., intensity and whether the impact increases or decreases whatever is being described by the metric) varied with season. Our approach is useful for catchment management planning, defining environmental flow targets
Effect of the IMF By component on the ionospheric flow overhead at EISCAT: observations and theory
Directory of Open Access Journals (Sweden)
S. W. H. Cowley
Full Text Available We have analysed a database of ∼300 h of tristatic ionospheric velocity measurements obtained overhead at Tromsø (66.3° magnetic latitude by the EISCAT UHF radar system, for the presence of flow effects associated with the y-component of the IMF. Since it is already known that the flow depends upon IMF Bz, a least-squares multivariate analysis has been used to determine the flow dependence on both IMF By and Bz simultaneously. It is found that significant flow variations with IMF By occur, predominantly in the midnight sector (∼2100–0300 MLT, but also pre-dusk (∼1600–1700 MLT, which are directed eastward for IMF By positive and westward for IMF By negative. The flows are of magnitude 20–30 m s–1 nT–1 in the midnight sector, and smaller, 10–20 m s–1 nT–1, pre-dusk, and are thus associated with significant changes of flow of order a few hundred m s–1 over the usual range of IMF By of about ±5 nT. At other local times the IMF By-related perturbation flows are much smaller, less than ∼5 m s–1 nT–1, and consistent with zero within the uncertainty estimates. We have investigated whether these IMF By-dependent flows can be accounted for quantitatively by a theoretical model in which the equatorial flow in the inner magnetosphere is independent of IMF By, but where distortions of the magnetospheric magnetic field associated with a "penetrating" component of the IMF By field changes the mapping of the field to the ionosphere, and hence the ionospheric flow. We find that the principal flow perturbation produced by this effect is an east-west flow whose sense is determined by the north-south component of the unperturbed flow. Perturbations in the north-south flow are typically smaller by more than an order of magnitude, and generally negligible in terms of observations. Using equatorial flows which are determined from EISCAT data for zero IMF By, to which the corotation flow has been added, the theory predicts the presence
Effect of the IMF By component on the ionospheric flow overhead at EISCAT: observations and theory
Directory of Open Access Journals (Sweden)
H. Khan
2000-12-01
Full Text Available We have analysed a database of ∼300 h of tristatic ionospheric velocity measurements obtained overhead at Tromsø (66.3° magnetic latitude by the EISCAT UHF radar system, for the presence of flow effects associated with the y-component of the IMF. Since it is already known that the flow depends upon IMF Bz, a least-squares multivariate analysis has been used to determine the flow dependence on both IMF By and Bz simultaneously. It is found that significant flow variations with IMF By occur, predominantly in the midnight sector (∼2100–0300 MLT, but also pre-dusk (∼1600–1700 MLT, which are directed eastward for IMF By positive and westward for IMF By negative. The flows are of magnitude 20–30 m s–1 nT–1 in the midnight sector, and smaller, 10–20 m s–1 nT–1, pre-dusk, and are thus associated with significant changes of flow of order a few hundred m s–1 over the usual range of IMF By of about ±5 nT. At other local times the IMF By-related perturbation flows are much smaller, less than ∼5 m s–1 nT–1, and consistent with zero within the uncertainty estimates. We have investigated whether these IMF By-dependent flows can be accounted for quantitatively by a theoretical model in which the equatorial flow in the inner magnetosphere is independent of IMF By, but where distortions of the magnetospheric magnetic field associated with a "penetrating" component of the IMF By field changes the mapping of the field to the ionosphere, and hence the ionospheric flow. We find that the principal flow perturbation produced by this effect is an east-west flow whose sense is determined by the north-south component of the unperturbed flow. Perturbations in the north-south flow are typically smaller by more than an order of magnitude, and generally negligible in terms of observations. Using equatorial flows which are determined from EISCAT data for zero IMF By, to which the corotation flow has been added, the theory predicts the presence
Soret and Hall effects on unsteady MHD free convection flow of ...
African Journals Online (AJOL)
International Journal of Engineering, Science and Technology ... effects on unsteady MHD free convection flow of radiating and chemically reactive fluid ... Expressions for shear stress, rate of heat transfer and rate of mass transfer at the plate ...
Computer modeling of the stalled flow of a rotating cylinder and the reverse magnus effect
Belotserkovskii, S. M.; Kotovskii, V. N.; Nisht, M. I.; Fedorov, R. M.
1985-02-01
Unsteady stalled flow around a rotating cylinder is investigated in a numerical experiment. Attention is mostly given to the reverse Magnus effect which was discovered in tube experiments at some critical rotational speed of the cylinder.
The effects of gender, flow and video game experience on combat identification training.
Plummer, John Paul; Schuster, David; Keebler, Joseph R
2017-08-01
The present study examined the effects of gender, video game experience (VGE), and flow state on multiple indices of combat identification (CID) performance. Individuals were trained on six combat vehicles in a simulation, presented through either a stereoscopic or non-stereoscopic display. Participants then reported flow state, VGE and were tested on their ability to discriminate friend vs. foe and identify both pictures and videos of the trained vehicles. The effect of stereoscopy was not significant. There was an effect of gender across three dependent measures. For the two picture-based measures, the effect of gender was mediated by VGE. Additionally, the effect of gender was moderated by flow state on the identification measures. Overall, the study suggests that gender differences may be overcome by VGE and by achieving flow state. Selection based on these individual differences may be useful for future military simulation. Practitioner Summary: This work investigates the effect of gender, VGE and flow state on CID performance. For three measures of performance, there was a main effect of gender. Gender was mediated by previous VGE on two measures, and gender was moderated by flow state on two measures.
Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise.
Dominelli, Paolo B; Archiza, Bruno; Ramsook, Andrew H; Mitchell, Reid A; Peters, Carli M; Molgat-Seon, Yannick; Henderson, William R; Koehle, Michael S; Boushel, Robert; Sheel, A William
2017-11-01
What is the central question of this study? Does manipulation of the work of breathing during high-intensity exercise alter respiratory and locomotor muscle blood flow? What is the main finding and its importance? We found that when the work of breathing was reduced during exercise, respiratory muscle blood flow decreased, while locomotor muscle blood flow increased. Conversely, when the work of breathing was increased, respiratory muscle blood flow increased, while locomotor muscle blood flow decreased. Our findings support the theory of a competitive relationship between locomotor and respiratory muscles during intense exercise. Manipulation of the work of breathing (WOB) during near-maximal exercise influences leg blood flow, but the effects on respiratory muscle blood flow are equivocal. We sought to assess leg and respiratory muscle blood flow simultaneously during intense exercise while manipulating WOB. Our hypotheses were as follows: (i) increasing the WOB would increase respiratory muscle blood flow and decrease leg blood flow; and (ii) decreasing the WOB would decrease respiratory muscle blood flow and increase leg blood flow. Eight healthy subjects (n = 5 men, n = 3 women) performed a maximal cycle test (day 1) and a series of constant-load exercise trials at 90% of peak work rate (day 2). On day 2, WOB was assessed with oesophageal balloon catheters and was increased (via resistors), decreased (via proportional assist ventilation) or unchanged (control) during the trials. Blood flow was assessed using near-infrared spectroscopy optodes placed over quadriceps and the sternocleidomastoid muscles, coupled with a venous Indocyanine Green dye injection. Changes in WOB were significantly and positively related to changes in respiratory muscle blood flow (r = 0.73), whereby increasing the WOB increased blood flow. Conversely, changes in WOB were significantly and inversely related to changes in locomotor blood flow (r = 0.57), whereby decreasing the
Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment
Energy Technology Data Exchange (ETDEWEB)
Zhang, Chao, E-mail: zhangchao@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Liao, Qiang, E-mail: lqzx@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Chen, Rong, E-mail: rchen@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China); Zhu, Xun, E-mail: zhuxun@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030 (China); Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030 (China)
2015-06-12
The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated.
Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment
International Nuclear Information System (INIS)
Zhang, Chao; Liao, Qiang; Chen, Rong; Zhu, Xun
2015-01-01
The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated
Effect of hyperthermia on blood flow in VX2 tumor transplanted in rabbit
International Nuclear Information System (INIS)
Arita, Takeshi
1994-01-01
Effect of hyperthermia on blood flow was evaluated using VX 2 rabbit carcinoma in both legs. Microwave energy at 2450 MHz was used to heat tumors for 40 minutes. An outer canula of 18 G Erasta was implanted in the depth of 2 cm in tumor to measure the temperature and to maintain at 43.0degC-44.0degC. The blood flow in tumors was evaluated by color doppler flow imaging and dynamic MRI. Disturbance of blood flow in the depth of surface 0 cm to 2 cm in tumors was showed at 10 minutes starting 43.0degC heating and at almost all sites disappearance of blood flow was showed at 40 minutes using color doppler flow imaging. But the blood flow beyond the depth of 2 cm was not so disturbed at 40 minutes, relatively. After hyperthermia T1WI and T2WI in heated tumor were no difference comparing with those in control tumor, but heated tumor showed no enhancement using dynamic MRI with TURBO-FLASH technique and post-enhanced T1WI. Histologically, there was extensive tumor necrosis and thrombus formation in heated tumor after 3 days and 1 week. Therefore color doppler flow imaging and dynamic MRI were considered to be useful for evaluation of blood flow in tumor after and during hyperthermia. (author)
Effect of friction on pebble flow pattern in pebble bed reactor
International Nuclear Information System (INIS)
Li, Yu; Gui, Nan; Yang, Xingtuan; Tu, Jiyuan; Jiang, Shengyao
2016-01-01
Highlights: • A 3D DEM study on particle–wall/particle friction in pebble bed reactor is carried out. • Characteristic values are defined to evaluate features of pebble flow pattern quantitatively. • Particle–wall friction is dominant to determine flow pattern in a specific pebble bed. • Friction effect of hopper part on flow field is more critical than that of cylinder part. • Three cases of 1:1 full scale practical pebble beds are simulated for demonstration. - Abstract: Friction affects pebble flow pattern in pebble-bed high temperature gas-cooled reactor (HTGR) significantly. Through a series of three dimensional DEM (discrete element method) simulations it is shown that reducing friction can be beneficial and create a uniform and consistent flow field required by nuclear engineering. Particle–wall friction poses a decisive impact on flow pattern, and particle–particle friction usually plays a secondary role; relation between particle–wall friction and flow pattern transition is also concluded. Moreover, new criteria are created to describe flow patterns quantitatively according to crucial issues in HTGR like stagnant zone, radial uniformity and flow sequence. Last but not least, it is proved that friction control of hopper part is more important than that of cylinder part in practical pebble beds, so reducing friction between pebbles and hopper surface is the engineering priority.
International Nuclear Information System (INIS)
Borzov, V.Yu.; Rybka, I.V.; Yur'ev, A.S.
1995-01-01
Parameters of the axisymmetric flow around bodies with different bluntness are compared in the case of constant energy supply to the main hypersonic flow. Flow structures, drag coefficients, and expenditure of energy on overcoming drag are analyzed with the effect of thermal energy on the flow taken into account for different bodies with equal volume
DEFF Research Database (Denmark)
Sørensen, Morten Kanne; Fabricius, Ida Lykke
2013-01-01
Compliant porosity in the form of cracks is known to cause significant attenuation and velocity dispersion through pore pressure gradients and consequent relaxation, dubbed squirt flow. Squirt flow from cracks vanish at high confining stress due to crack closing. Studies on clay bearing sandstones......-squirt flow on the bulk modulus of a clay bearing sandstone. The predicted magnitude of the clay-squirt effect on the bulk modulus is compared with experimental data. The clay-squirt effect is found to possibly account for a significant portion of the deviances from Gassmann fluid substitution in claybearing...... sandstones....
Energy Technology Data Exchange (ETDEWEB)
Ali, Farhad, E-mail: farhadaliecomaths@yahoo.com [Department of Mathematics, City University of Science and Information Technology, Peshawar 25000 (Pakistan); Sheikh, Nadeem Ahmad [Department of Mathematics, City University of Science and Information Technology, Peshawar 25000 (Pakistan); Khan, Ilyas [Basic Engineering Sciences Department, College of Engineering Majmaah University, Majmaah 11952 (Saudi Arabia); Saqib, Muhammad [Department of Mathematics, City University of Science and Information Technology, Peshawar 25000 (Pakistan)
2017-02-01
The effects of magnetohydrodynamics on the blood flow when blood is represented as a Casson fluid, along with magnetic particles in a horizontal cylinder is studied. The flow is due to an oscillating pressure gradient. The Laplace and finite Hankel transforms are used to obtain the closed form solutions of the fractional partial differential equations. Effects of various parameters on the flow of both blood and magnetic particles are shown graphically. The analysis shows that, the model with fractional order derivatives bring a remarkable changes as compared to the ordinary model. The study highlights that applied magnetic field reduces the velocities of both the blood and magnetic particles.
Effects of mass transfer on MHD flow of casson fluid with chemical reaction and suction
Directory of Open Access Journals (Sweden)
S. A. Shehzad
2013-03-01
Full Text Available Effect of mass transfer in the magnetohydrodynamic flow of a Casson fluid over a porous stretching sheet is addressed in the presence of a chemical reaction. A series solution for the resulting nonlinear flow is computed. The skin friction coefficient and local Sherwood number are analyzed through numerical values for various parameters of interest. The velocity and concentration fields are illustrated for several pertinent flow parameters. We observed that the Casson parameter and Hartman number have similar effects on the velocity in a qualitative sense. We further analyzed that the concentration profile decreases rapidly in comparison to the fluid velocity when we increased the values of the suction parameter.
International Nuclear Information System (INIS)
Ali, Farhad; Sheikh, Nadeem Ahmad; Khan, Ilyas; Saqib, Muhammad
2017-01-01
The effects of magnetohydrodynamics on the blood flow when blood is represented as a Casson fluid, along with magnetic particles in a horizontal cylinder is studied. The flow is due to an oscillating pressure gradient. The Laplace and finite Hankel transforms are used to obtain the closed form solutions of the fractional partial differential equations. Effects of various parameters on the flow of both blood and magnetic particles are shown graphically. The analysis shows that, the model with fractional order derivatives bring a remarkable changes as compared to the ordinary model. The study highlights that applied magnetic field reduces the velocities of both the blood and magnetic particles.
Wang, Yunong; Cheng, Rongjun; Ge, Hongxia
2017-08-01
In this paper, a lattice hydrodynamic model is derived considering not only the effect of flow rate difference but also the delayed feedback control signal which including more comprehensive information. The control method is used to analyze the stability of the model. Furthermore, the critical condition for the linear steady traffic flow is deduced and the numerical simulation is carried out to investigate the advantage of the proposed model with and without the effect of flow rate difference and the control signal. The results are consistent with the theoretical analysis correspondingly.
Flow within an evaporating glycerol-water binary droplet: Segregation by gravitational effects
Li, Yaxing; Lv, Pengyu; Diddens, Christian; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef
2017-11-01
The flow within an evaporating glycerol-water binary droplet with Bond number Bo PIV for both sessile and pendant droplets during evaporation process, which surprisingly show opposite radial flow directions - inward and outward, respectively. This observation clearly reveals that gravitational effects play a crucial role in controlling flow fields within the evaporating droplets. We theoretically analyse that this gravity-driven effect is caused by density gradients due to the local concentration difference of glycerol within the droplet triggered by different volatilities of the two components during evaporation. Finally, for confirmation, we numerically simulate the process, revealing a good agreement with experimental results.
Effect of weld line shape on material flow during friction stir welding of aluminum and steel
International Nuclear Information System (INIS)
Yasui, Toshiaki; Ando, Naoyuki; Morinaka, Shinpei; Mizushima, Hiroki; Fukumoto, Masahiro
2014-01-01
The effect of weld line shape on material flow during the friction stir welding of aluminum and steel was investigated. The material flow velocity was evaluated with simulated experiments using plasticine as the simulant material. The validity of the simulated experiments was verified by the marker material experiments on aluminum. The circumferential velocity of material around the probe increased with the depth from the weld surface. The effect is significant in cases where the advancing side is located on the outside of curve and those with higher curvature. Thus, there is an influence of weld line shape on material flow
Juvonen, Piia
2012-01-01
ABSTRACT Juvonen, Piia Suvi Päivikki 2012. Effective information flow through efficient supply chain management -Value stream mapping approach - Case Outokumpu Tornio Works. Master`s Thesis. Kemi-Tornio University of Applied Sciences. Business and Culture. Pages 63. Appendices 2. The general aim of this thesis is to explore effective information flow through efficient supply chain management by following one of the lean management principles, value stream mapping. The specific research...
Thermodilution versus inert gas rebreathing for estimation of effective pulmonary blood flow
DEFF Research Database (Denmark)
Christensen, P; Clemensen, P; Andersen, P K
2000-01-01
To compare measurements of the effective pulmonary blood flow (Qep, i.e., nonshunted fraction of cardiac output, Qt) by the inert gas rebreathing (RB) method and the thermodilution (TD) technique in critically ill patients.......To compare measurements of the effective pulmonary blood flow (Qep, i.e., nonshunted fraction of cardiac output, Qt) by the inert gas rebreathing (RB) method and the thermodilution (TD) technique in critically ill patients....
Flow regime effects on non-cavitating injection nozzles over spray behavior
Energy Technology Data Exchange (ETDEWEB)
Payri, R., E-mail: rpayri@mot.upv.e [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia E-46022 (Spain); Salvador, F.J.; Gimeno, J.; Novella, R. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia E-46022 (Spain)
2011-02-15
This paper deals with the influence of flow regime (laminar, transition or turbulent) on the internal flow behavior, and how it affects the spray development in diesel nozzles. In particular, the research described here aims at studying and quantifying the internal flow regime effects on the spray behavior. With this purpose, internal flow results, based on mass flow rate and momentum flux measurements performed on three different tapered nozzles and which helped to determine the flow regime, has been taken into account as a point of departure for the spray behavior analysis. Thus, in this work, spray macroscopic visualization tests have been performed and analyzed which clearly revealed a change in the behavior of the angle and penetration of the spray related to the change of the flow nature. Moreover, with all the experimental data available, it has been possible to relate macroscopic parameters of the spray with those describing the internal flow (momentum and effective velocity) or the geometry of the nozzle (length or diameter) through correlations.
Effect of atrial systole on canine and porcine coronary blood flow.
Bellamy, R F
1981-09-01
A feature of phasic coronary flow patterns recorded in conscious chronically instrumented dogs is the atrial cove--a transient depression of arterial flow that occurs during atrial systole. The association between the hemodynamic effects of atrial systole and the atrial cove was studied in anesthetized dogs and pigs with complete heart block. Many atrial coves are available for study in these preparations because atrial activity continues unabated during the diastolic ventricular arrest that follows cessation of electrical pacing. The effect of atrial systole is to translate the pressure-flow relation found during diastole to a higher intercept pressure without change in slope. The increase in the intercept pressure equals the increase in intramyocardial pressure measured with microtransducers embedded in the left ventricular wall. The decrement in flow during the atrial cove is a direct function of the change in intramyocardial pressure and an inverse function of coronary vascular resistance. Each atrial systole is associated with a forward flow transient in the coronary veins, the peak of which occurs at the same instant as does the nadir of atrial flow. These data suggest that the coronary vessels are acting as collapsible tubes and that the waterfall model of the coronary circulation is applicable. The following sequence is proposed to account for the atrial cove. Atrial systole ejects a bolus of blood into the left ventricle increasing both ventricular cavity and intramyocardial pressures. The increase in intramyocardial pressure raises the back pressure opposing coronary flow, reducing the arterial perfusion pressure gradient and causing flow to fall.
Energy Technology Data Exchange (ETDEWEB)
Duan, Y. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); He, S., E-mail: s.he@sheffield.ac.uk [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)
2017-02-15
Highlights: • Buoyancy may greatly redistribute the flow in a non-uniform channel. • Flow structures in the narrow gap are greatly changed when buoyancy is strong. • Large flow structures exist in wider gap, which is enhanced when heat is strong. • Buoyancy reduces mixing factor caused by large flow structures in narrow gap. - Abstract: It has been a long time since the ‘abnormal’ turbulent intensity distribution and high inter-sub-channel mixing rates were observed in the vicinity of the narrow gaps formed by the fuel rods in nuclear reactors. The extraordinary flow behaviour was first described as periodic flow structures by Hooper and Rehme (1984). Since then, the existences of large flow structures were demonstrated by many researchers in various non-uniform flow channels. It has been proved by many authors that the Strouhal number of the flow structure in the isothermal flow is dependent on the size of the narrow gap, not the Reynolds number once it is sufficiently large. This paper reports a numerical investigation on the effect of buoyancy on the large flow structures. A buoyancy-aided flow in a tightly-packed rod-bundle-like channel is modelled using large eddy simulation (LES) together with the Boussinesq approximation. The behaviour of the large flow structures in the gaps of the flow passage are studied using instantaneous flow fields, spectrum analysis and correlation analysis. It is found that the non-uniform buoyancy force in the cross section of the flow channel may greatly redistribute the velocity field once the overall buoyancy force is sufficiently strong, and consequently modify the large flow structures. The temporal and axial spatial scales of the large flow structures are influenced by buoyancy in a way similar to that turbulence is influenced. These scales reduce when the flow is laminarised, but start increasing in the turbulence regeneration region. The spanwise scale of the flow structures in the narrow gap remains more or
Effect Of Low External Flow On Flame Spreading Over ETFE Insulated Wire Under Microgravity
Nishizawa, Katsuhiro; Fujita, Osamu; Ito, Kenichi; Kikuchi, Masao; Olson, Sandra L.; Kashiwagi, Takashi
2003-01-01
Fire safety is one of the most important issues for manned space missions. A likely cause of fires in spacecraft is wire insulation combustion in electrical system. Regarding the wire insulation combustion it important to know the effect of low external flow on the combustion because of the presence of ventilation flow in spacecraft. Although, there are many researches on flame spreading over solid material at low external flows under microgravity, research dealing with wire insulation is very limited. An example of wire insulation combustion in microgravity is the Space Shuttle experiments carried out by Greenberg et al. However, the number of experiments was very limited. Therefore, the effect of low flow velocity is still not clear. The authors have reported results on flame spreading over ETFE (ethylene - tetrafluoroetylene) insulated wire in a quiescent atmosphere in microgravity by 10 seconds drop tower. The authors also performed experiments of polyethylene insulated nichrom wire combustion in low flow velocity under microgravity. The results suggested that flame spread rate had maximum value in low flow velocity condition. Another interesting issue is the effect of dilution gas, especially CO2, which is used for fire extinguisher in ISS. There are some researches working on dilution gas effect on flame spreading over solid material in quiescent atmosphere in microgravity. However the research with low external flow is limited and, of course, the research discussing a relation of the appearance of maximum wire flammability in low flow velocity region with different dilution gas cannot be found yet. The present paper, therefore, investigates the effect of opposed flow with different dilution gas on flame spreading over ETFE insulated wire and change in the presence of the maximum flammability depending on the dilution gas type is discussed within the limit of microgravity time given by ground-based facility.
Fujita, O.; Nishizawa, K.; Ito, K.; Olson, S. L.; Kashigawa, T.
2001-01-01
The effect of slow external flow on solid combustion is very important from the view of fire safety in space because the solid material in spacecraft is generally exposed to the low air flow for ventilation. Further, the effect of low external flow on fuel combustion is generally fundamental information for industrial combustion system, such as gas turbine, boiler incinerator and so on. However, it is difficult to study the effect of low external flow on solid combustion in normal gravity, because the buoyancy-induced flow strongly disturbs the flow field, especially for low flow velocity. In this research therefore, the effect of slow external flow on opposed flame spreading over polyethylene (PE) wire insulation have been investigated in microgravity. The microgravity environment was provided by Japan Microgravity Center (JAMIC) in Japan and KC-135 at NASA GRC. The tested flow velocity range is 0-30cm/s with different oxygen concentration and inert gas component.
An analysis of effect of land use change on river flow variability
Zhang, Tao; Liu, Yuting; Yang, Xinyue; Wang, Xiang
2018-02-01
Land use scenario analysis, SWAT model, flow characteristic indices and flow variability technology were used to analyze the effect of land use quantity and location change on river flow. Results showed that river flow variation caused by land use change from forest to crop was larger than that caused by land use change from forest to grass; Land use change neither from upstream to downstream nor from downstream to upstream had little effect on annual average discharge and maximum annual average discharge. But it had obvious effect on maximum daily discharge; Land use change which occurred in upstream could lead to producing larger magnitude flood more easily; Land use change from forest to crop or grass could increase the number of large magnitude floods and their total duration. And it also could increase the number of small magnitude floods but decrease their duration.
Flow cytogenetic studies in chromosomes and whole cells for the detection of clastogenic effects
International Nuclear Information System (INIS)
Otto, F.J.; Oldiges, H.
1980-01-01
Flow cytometric measurements of the chromosomal DNA content have been used to develop a screening method for the detection of chemically- or physically-induced cytogenetic damage. The reproducibility of this flow cytogenetic assay was shown in a series of subcultures of a Chinese hamster cell clone. The accuracy and sensitivity was tested in cultures treated with chemical mutagens and x-rays. The clastogenic effectiveness was quantified and the dose-effect relationship was established by the increase of the coefficient of variation of the peak of the largest chromosome type in the flow histograms. Since structural chromosome aberrations cause an unequal division of the DNA at mitosis, it is expected that clastogenic effects can be detected also in whole cells of growing populations as an increased dispersion of the cellular DNA content. In order to test this feature, high resolution flow cytometric measurements were performed in x-irradiated hamster cells in vitro and mouse bone marrow cells in vivo
Mak, H. M.; Ng, C. O.
2010-11-01
The present work aims to study low-Reynolds-number flow through a microchannel with superhydrophobic surfaces, which contain a periodic array of parallel ribs on the upper and lower walls. Mimicking impregnation, the liquid is allowed to penetrate the grooves between the ribs which are filled with an inviscid gas. The array of ribs and grooves gives a heterogeneous wall boundary condition to the channel flow, with partial-slip boundary condition on the solid surface and no-shear boundary condition on the liquid-gas interface. Using the method of eigenfunction expansions and domain decomposition, semi-analytical models are developed for four configurations. Two of them are for longitudinal flow and the others are for transverse flow. For each flow orientation, in-phase and out-phase alignments of ribs between the upper and lower walls are analyzed. The effect of the phase alignments of ribs is appreciable when the channel height is sufficiently small. In-phase alignment gives rise to a larger effective slip length in longitudinal flow. On the contrary, out-phase alignment will yield a larger effective slip length in transverse flow. This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China, through Project HKU 7156/09E.
Husain, Taha Murtuza
Large (1--4 x 106 m3) to major (> 4 x 106 m3) dome collapses for andesitic lava domes such as Soufriere Hills Volcano, Montserrat are observed for elevated magma discharge rates (6--13 m3/s). The gas rich magma pulses lead to pressure build up in the lava dome that result in structural failure of the over steepened canyon-like walls which may lead to rockfall or pyroclastic flow. This indicates that dome collapse intimately related to magma extrusion rate. Variation in magma extrusion rate for open-system magma chambers is observed to follow alternating periods of high and low activity. Periodic behavior of magma exhibits a rich diversity in the nature of its eruptive history due to variation in magma chamber size, total crystal content, linear crystal growth rate and magma replenishment rate. Distinguished patterns of growth were observed at different magma flow rates ranging from endogenous to exogenous dome growth for magma with varying strengths. Determining the key parameters that control the transition in flow pattern of the magma during its lava dome building eruption is the main focus. This dissertation examines the mechanical effects on the morphology of the evolving lava dome on the extrusion of magma from a central vent using a 2D particle dynamics model. The particle dynamics model is coupled with a conduit flow model that incorporates the kinetics of crystallization and rheological stiffening to investigate important mechanisms during lava dome building eruptions. Chapter I of this dissertation explores lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional
Simulation analysis of within-day flow fluctuation effects on trout below flaming Gorge Dam.
Energy Technology Data Exchange (ETDEWEB)
Railsback, S. F.; Hayse, J. W.; LaGory, K. E.; Environmental Science Division; EPRI
2006-01-01
In addition to being renewable, hydropower has the advantage of allowing rapid load-following, in that the generation rate can easily be varied within a day to match the demand for power. However, the flow fluctuations that result from load-following can be controversial, in part because they may affect downstream fish populations. At Flaming Gorge Dam, located on the Green River in northeastern Utah, concern has been raised about whether flow fluctuations caused by the dam disrupt feeding at a tailwater trout fishery, as fish move in response to flow changes and as the flow changes alter the amount or timing of the invertebrate drift that trout feed on. Western Area Power Administration (Western), which controls power production on submonthly time scales, has made several operational changes to address concerns about flow fluctuation effects on fisheries. These changes include reducing the number of daily flow peaks from two to one and operating within a restricted range of flows. These changes significantly reduce the value of the power produced at Flaming Gorge Dam and put higher load-following pressure on other power plants. Consequently, Western has great interest in understanding what benefits these restrictions provide to the fishery and whether adjusting the restrictions could provide a better tradeoff between power and non-power concerns. Directly evaluating the effects of flow fluctuations on fish populations is unfortunately difficult. Effects are expected to be relatively small, so tightly controlled experiments with large sample sizes and long study durations would be needed to evaluate them. Such experiments would be extremely expensive and would be subject to the confounding effects of uncontrollable variations in factors such as runoff and weather. Computer simulation using individual-based models (IBMs) is an alternative study approach for ecological problems that are not amenable to analysis using field studies alone. An IBM simulates how a
International Nuclear Information System (INIS)
Naitoh, Masanori; Uchida, Shunsuke; Koshizuka, Seiichi; Ninokata, Hisashi; Anahara, Naoki; Dosaki, Koji; Katono, Kenichi; Akiyama, Minoru; Saitoh, Hiroaki
2007-01-01
Problems in major components and structural materials in nuclear power plants have often been caused by flow induced vibration, corrosion and their overlapping effects. In order to establish safe and reliable plant operation, it is necessary to predict future problems for structural materials based on combined analyses of flow dynamics and corrosion and to mitigate them before they become serious issues for plant operation. An innovative method for flow induced vibration of structures in two phase flow by combined analyses of three dimensional flow dynamics and structures is to be introduced. (author)
Pressure effects on viscosity and flow stability of polyethylene melts during extrusion
Energy Technology Data Exchange (ETDEWEB)
Carreras, Enric Santanach; Kissi, Nadia El; Piau, Jean-Michel; Toussaint, Fabrice; Nigen, Sophie [Domaine Universitaire, Laboratoire de Rheologie, Universite Joseph Fourier-Grenoble I, Institut National Polytechnique de Grenoble, CNRS (UMR 5520), B. P. 53, Grenoble cedex 9 (France)
2006-01-01
In the present work, the effects of pressure on the viscosity and flow stability of four commercial grade polyethylenes (PEs) have been studied: linear-low-density polyethylene copolymer, high-density polyethylene, metallocene polyethylenes with short-chain branches (mPE-SCB), and metallocene polyethylenes with long chain branching (mPE-LCB). The range of shear rates considered covers both stable and unstable flow regimes. ''Enhanced exit-pressure'' experiments have been performed attaining pressures of the order of 500 x 10{sup 5} Pa at the die exit. The necessary experimental conditions have been clearly defined so that dissipative heating can be neglected and pressure effects isolated. The results obtained show an exponential increase in both shear and entrance-flow pressure drop with mean pressure when shear rate is fixed and as long as flow is stable. These pressure effects are described by two pressure coefficients, {beta}{sub S} under shear and, {beta}{sub E} under elongation, that are calculated using time-pressure superposition and that are independent of mean pressure and flow rate. For three out of four PE, pressure coefficient values can be considered equal under shear and under elongation. However, for the mPE-LCB, the pressure coefficient under elongation is found to be about 30% lower than under shear. Flow instabilities in the form of oscillating flows or of upstream instabilities appear at lower shear rates as mean pressure increases. Nevertheless, the critical shear stress at which they are triggered remains independent of mean pressure. Moreover, it is found that the {beta}{sub S} values obtained for stable flows do not differ much from the values obtained during upstream instability regimes, and differ really from pressure effects observed under oscillating flow and slip conditions. (orig.)
Effects of Packed Structure and Operation Conditions on Liquid Flow Behavior in Blast Furnace Hearth
Zuo, Haibin; Hong, Jun; Zhang, Jianliang; Zheng, Jin
The circulating flow of molten iron is an important reason that results in the erosion of blast furnace hearth. In order to prolong the campaign life of blast furnace, it is necessary to analysis the flow state of molten iron. The three-dimensional mathematical model at steady state which takes the standard k-e and porous zone model into consideration is applied to simulate the flow field under different conditions. The results showed that floating of the deadman did strengthen molten iron circulating flow. Increasing the deadman diameter will increase the erosion of hearth and bottom. Deepen the depth of the taphole and reduce the taphole diameter can reduce the circulating flow. Effect of the taphole angle from 10° to 15° is not significant. The results can be used to provide guidance for protecting the blast furnace hearth.
Effect of corner radius in stabilizing the low-Re flow past a cylinder
Zhang, Wei; Samtaney, Ravindra
2017-01-01
We perform global linear stability analysis on low-Re flow past an isolated cylinder with rounded corners. The objective of the present work is to investigate the effect of the cylinder geometry (corner radius) on the stability characteristics of the flow. Our investigation sheds light on new physics that the flow can be stabilized by partially rounding the cylinder in the critical and weakly super-critical flow regimes. The flow is first stabilized and then gradually destabilized as the cylinder varies from square to circular geometry. The sensitivity analysis reveals that the variation of stability is attributed to the different spatial variation trends of the backflow velocity in the near- and far-wake regions for various cylinder geometries. The results from the stability analysis are also verified with those of the direct simulations and very good agreement is achieved.
Effect of corner radius in stabilizing the low-Re flow past a cylinder
Zhang, Wei
2017-08-03
We perform global linear stability analysis on low-Re flow past an isolated cylinder with rounded corners. The objective of the present work is to investigate the effect of the cylinder geometry (corner radius) on the stability characteristics of the flow. Our investigation sheds light on new physics that the flow can be stabilized by partially rounding the cylinder in the critical and weakly super-critical flow regimes. The flow is first stabilized and then gradually destabilized as the cylinder varies from square to circular geometry. The sensitivity analysis reveals that the variation of stability is attributed to the different spatial variation trends of the backflow velocity in the near- and far-wake regions for various cylinder geometries. The results from the stability analysis are also verified with those of the direct simulations and very good agreement is achieved.
Effects of Red Blood Cell Aggregation on the Apparent Viscosity of Blood Flow in Tubes.
Hitt, Darren L.; Lowe, Mary L.
1996-11-01
In arterioles and venules (20-200μ diameter), the low shear rates enable red blood cells to form aggregate structures of varying sizes and morphology. The size and distribution of the aggregates affect the flow impedance within a microvascular network; this effect may be characterized by an "apparent viscosity". In this study, we measure the apparent viscosity of blood flow in 50μ glass tubes as a function of shear rate and red blood cell volume fraction (hematocrit); for a fixed tube geometry and an imposed flow rate, the viscosity is determined by measuring the pressure drop across the tube. To correlate the apparent viscosity with the size and spatial distribution of the aggregates in the flow, video images of the flow are recorded and analyzed using power spectral techniques. Pig blood and sheep blood are used as the models for aggregating and non-aggregating blood, respectively. Supported by NSF PFF Award CTS-9253633
Directory of Open Access Journals (Sweden)
Sindy Giebe
2017-08-01
Full Text Available Tobacco smoking and hemodynamic forces are key stimuli in the development of endothelial dysfunction and atherosclerosis. High laminar flow has an atheroprotective effect on the endothelium and leads to a reduced response of endothelial cells to cardiovascular risk factors compared to regions with disturbed or low laminar flow. We hypothesize that the atheroprotective effect of high laminar flow could delay the development of endothelial dysfunction caused by cigarette smoking. Primary human endothelial cells were stimulated with increasing dosages of aqueous cigarette smoke extract (CSEaq. CSEaq reduced cell viability in a dose-dependent manner. The main mediator of cellular adaption to oxidative stress, nuclear factor erythroid 2-related factor 2 (NRF2 and its target genes heme oxygenase (decycling 1 (HMOX1 or NAD(PH quinone dehydrogenase 1 (NQO1 were strongly increased by CSEaq in a dose-dependent manner. High laminar flow induced elongation of endothelial cells in the direction of flow, activated the AKT/eNOS pathway, increased eNOS expression, phosphorylation and NO release. These increases were inhibited by CSEaq. Pro-inflammatory adhesion molecules intercellular adhesion molecule-1 (ICAM1, vascular cell adhesion molecule-1 (VCAM1, selectin E (SELE and chemokine (C-C motif ligand 2 (CCL2/MCP-1 were increased by CSEaq. Low laminar flow induced VCAM1 and SELE compared to high laminar flow. High laminar flow improved endothelial wound healing. This protective effect was inhibited by CSEaq in a dose-dependent manner through the AKT/eNOS pathway. Low as well as high laminar flow decreased adhesion of monocytes to endothelial cells. Whereas, monocyte adhesion was increased by CSEaq under low laminar flow, this was not evident under high laminar flow.This study shows the activation of major atherosclerotic key parameters by CSEaq. Within this process, high laminar flow is likely to reduce the harmful effects of CSEaq to a certain degree. The
Effect of interfacial layer on water flow in nanochannels: Lattice Boltzmann simulations
Energy Technology Data Exchange (ETDEWEB)
Jin, Yakang [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong 266580 (China); College of Science, China University of Petroleum, Qingdao 266580, Shandong (China); Liu, Xuefeng, E-mail: liuxf@upc.edu.cn [College of Science, China University of Petroleum, Qingdao 266580, Shandong (China); Liu, Zilong [College of Science, China University of Petroleum, Qingdao 266580, Shandong (China); Lu, Shuangfang [Institute of Unconventional Oil & Gas and New Energy, China University of Petroleum, Qingdao 266580, Shandong (China); Xue, Qingzhong, E-mail: xueqingzhong@tsinghua.org.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong 266580 (China); College of Science, China University of Petroleum, Qingdao 266580, Shandong (China); National Production Equipment Research Center, Dongying 257064, Shandong (China)
2016-04-15
A novel interfacial model was proposed to understand water flow mechanism in nanochannels. Based on our pore-throat nanochannel model, the effect of interfacial layer on water flow in nanochannels was quantitatively studied using Lattice Boltzmann method (LBM). It is found that both the permeability of nanochannel and water velocity in the nanochannel dramatically decrease with increasing the thickness of interfacial layer. The permeability of nanochannel with pore radius of 10 nm decreases by about three orders of magnitude when the thickness of interfacial layer is changed from 0 nm to 3 nm gradually. Furthermore, it has been demonstrated that the cross-section shape has a great effect on the water flow inside nanochannel and the effect of interfacial layer on the permeability of nanochannel has a close relationship with cross-section shape when the pore size is smaller than 12 nm. Besides, both pore-throat ratio and throat length can greatly affect water flow in nanochannels, and the influence of interfacial layer on water flow in nanochannels becomes more evident with increasing pore-throat ratio and throat length. Our theoretical results provide a simple and effective method to study the flow phenomena in nano-porous media, particularly to quantitatively study the interfacial layer effect in nano-porous media.
Effects of neuropeptide Y on regulation of blood flow rate in canine myocardium
DEFF Research Database (Denmark)
Svendsen, Jesper Hastrup; Sheikh, S P; Jørgensen, J
1990-01-01
The effect of neuropeptide Y (NPY) on tension development was examined in isolated canine coronary arteries, and the effects on local myocardial blood flow rate were studied in open-chest anesthetized dogs by the local 133Xe washout technique. By immunohistochemistry, numerous NPY-like immunoreac......The effect of neuropeptide Y (NPY) on tension development was examined in isolated canine coronary arteries, and the effects on local myocardial blood flow rate were studied in open-chest anesthetized dogs by the local 133Xe washout technique. By immunohistochemistry, numerous NPY......+. In contrast, intracoronary NPY (0.01-10 micrograms) induced a considerable degree of vasoconstriction; the reduction of blood flow rate was dose related, with a maximum reduction to 52% of control values. The effect of intracoronary NPY (1 microgram) on maximally relaxed arterioles elicited by 30 s...... of ischemia was studied in separate experiments during reactive hyperemia. NPY induced a decrease in maximum blood flow during reactive hyperemia (166.6 vs. 214.6% of preocclusive blood flow rate, mean values; P = 0.05), an increase in the cumulative excess blood flow (61.0 vs. 35.3 ml/100 g; P = 0...
Minimal vascular flows cause strong heat sink effects in hepatic radiofrequency ablation ex vivo.
Lehmann, Kai S; Poch, Franz G M; Rieder, Christian; Schenk, Andrea; Stroux, Andrea; Frericks, Bernd B; Gemeinhardt, Ole; Holmer, Christoph; Kreis, Martin E; Ritz, Jörg P; Zurbuchen, Urte
2016-08-01
The present paper aims to assess the lower threshold of vascular flow rate on the heat sink effect in bipolar radiofrequency ablation (RFA) ex vivo. Glass tubes (vessels) of 3.4 mm inner diameter were introduced in parallel to bipolar RFA applicators into porcine liver ex vivo. Vessels were perfused with flow rates of 0 to 1,500 ml/min. RFA (30 W power, 15 kJ energy input) was carried out at room temperature and 37°C. Heat sink effects were assessed in RFA cross sections by the decrease in ablation radius, area and by a high-resolution sector planimetry. Flow rates of 1 ml/min already caused a significant cooling effect (P ≤ 0.001). The heat sink effect reached a maximum at 10 ml/min (18.4 mm/s) and remained stable for flow rates up to 1,500 ml/min. Minimal vascular flows of ≥1 ml/min cause a significant heat sink effect in hepatic RFA ex vivo. A lower limit for volumetric flow rate was not found. The maximum of the heat sink effect was reached at a flow rate of 10 ml/min and remained stable for flow rates up to 1,500 ml/min. Hepatic inflow occlusion should be considered in RFA close to hepatic vessels. © 2016 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
Effect of flow velocity on erosion-corrosion behaviour of QSn6 alloy
Huang, Weijiu; Zhou, Yongtao; Wang, Zhenguo; Li, Zhijun; Zheng, Ziqing
2018-05-01
The erosion-corrosion behaviour of QSn6 alloy used as propellers in marine environment was evaluated by erosion-corrosion experiments with/without cathodic protection, electrochemical tests and scanning electron microscope (SEM) observations. The analysis was focused on the effect of flow velocity. The dynamic polarization curves showed that the corrosion rate of the QSn6 alloy increased as the flow velocity increased, due to the protective surface film removal at higher velocities. The lowest corrosion current densities of 1.26 × 10‑4 A cm‑2 was obtained at the flow velocity of 7 m s‑1. Because of the higher particle kinetic energies at higher flow velocity, the mass loss rate of the QSn6 alloy increased as the flow velocity increased. The mass loss rate with cathodic protection was lower than that without cathodic protection under the same conditions. Also, the lowest mass loss rate of 0.7 g m‑2 · h‑1 was acquired at the flow velocity of 7 m s‑1 with cathodic protection. However, the increase rate of corrosion rate and mass loss were decreased with increasing the flow velocity. Through observation the SEM morphologies of the worn surfaces, the main wear mechanism was ploughing with/without cathodic protection. The removal rates of the QSn6 alloy increased as the flow velocity increased in both pure erosion and erosion-corrosion, whereas the erosion and corrosion intensified each other. At the flow velocity of 7 m s‑1, the synergy rate (ΔW) exceeded by 5 times the erosion rate (Wwear). Through establishment and observation the erosion-corrosion mechanism map, the erosion-corrosion was the dominant regime in the study due to the contribution of erosion on the mass loss rate exceeded the corrosion contribution. The QSn6 alloy with cathodic protection is feasible as propellers, there are higher security at lower flow velocity, such as the flow velocity of 7 m s‑1 in the paper.
Effects of the fluid flows on enzymatic chemical oscillations
Shklyaev, Oleg; Yashin, Victor; Balazs, Anna
2017-11-01
Chemical oscillations are ubiquitous in nature and have a variety of promising applications. Usually, oscillating chemical systems are analyzed within the context of a reaction-diffusion framework. Here, we examine how fluid flows carrying the reactants can be utilized to modulate the negative feedback loops and time delays that promote chemical oscillations. We consider a model where a chemical reaction network involves two species, X and Y, which undergo transformations catalyzed by respective enzymes immobilized at the bottom wall of a fluid-filled microchamber. The reactions with the enzymes provide a negative feedback in the chemically oscillating system. In particular, the first enzyme, localized on the first patch, promotes production of chemical X, while the second enzyme, immobilized on the second patch, promotes production of chemical Y, which inhibits the production of chemical X. The separation distance between the enzyme-coated patches sets the time delay required for the transportation of X and Y. The chemical transport is significantly enhanced if convective fluxes accompany the diffusive ones. Therefore, the parameter region where oscillations are present is modified. The findings provide guidance to designing micro-scale chemical reactors with improved functionalities.
Study of stream flow effects on bubble motion
International Nuclear Information System (INIS)
Sami, S.S.
1983-01-01
The formation of air bubbles at constant-pressure by submerged orifices was investigated in both quiescent and moving streams inside a vertical tube. Parameters affecting the bubble rise velocity, such as bubble generating frequency and diameter, were studied and analyzed for bubbles rising in a chain and homogeneous mixture. A special technique for measuring bubble motion parameters has been developed, tested, and employed throughout the experimental investigation. The method is based on a water-air impedance variation. Results obtained in stagnant liquid show that increasing the bubble diameter serves to increase bubble rise velocity, while an opposite trend has been observed for stream liquid where the bubble diameter increase reduces the bubble rise velocity. The increase of bubble generation frequency generally increases the bubble rise velocity. Experimental data covered with bubble radial distribution showed symmetrical profiles of bubble velocity and frequency, and the radial distribution of the velocity profiles sometimes has two maxima and one minimum depending on the liquid velocity. Finally, in stagnant liquid, a normalized correlation has been developed to predict the terminal rise velocity in terms of bubble generating frequency, bubble diameter, single bubble rise velocity, and conduit dimensions. Another correlation is presented for forced bubbly flow, where the bubble rise velocity is expressed as a function of bubble generating frequency, bubble diameter, and water superficial velocity
Projected effects of Climate-change-induced flow alterations on stream macroinvertebrate abundances.
Kakouei, Karan; Kiesel, Jens; Domisch, Sami; Irving, Katie S; Jähnig, Sonja C; Kail, Jochem
2018-03-01
Global change has the potential to affect river flow conditions which are fundamental determinants of physical habitats. Predictions of the effects of flow alterations on aquatic biota have mostly been assessed based on species ecological traits (e.g., current preferences), which are difficult to link to quantitative discharge data. Alternatively, we used empirically derived predictive relationships for species' response to flow to assess the effect of flow alterations due to climate change in two contrasting central European river catchments. Predictive relationships were set up for 294 individual species based on (1) abundance data from 223 sampling sites in the Kinzig lower-mountainous catchment and 67 sites in the Treene lowland catchment, and (2) flow conditions at these sites described by five flow metrics quantifying the duration, frequency, magnitude, timing and rate of flow events using present-day gauging data. Species' abundances were predicted for three periods: (1) baseline (1998-2017), (2) horizon 2050 (2046-2065) and (3) horizon 2090 (2080-2099) based on these empirical relationships and using high-resolution modeled discharge data for the present and future climate conditions. We compared the differences in predicted abundances among periods for individual species at each site, where the percent change served as a proxy to assess the potential species responses to flow alterations. Climate change was predicted to most strongly affect the low-flow conditions, leading to decreased abundances of species up to -42%. Finally combining the response of all species over all metrics indicated increasing overall species assemblage responses in 98% of the studied river reaches in both projected horizons and were significantly larger in the lower-mountainous Kinzig compared to the lowland Treene catchment. Such quantitative analyses of freshwater taxa responses to flow alterations provide valuable tools for predicting potential climate-change impacts on species
Numerical analysis of air effect on the powder flow dynamics in the FT4 Powder Rheometer
Directory of Open Access Journals (Sweden)
Nan Wenguang
2017-01-01
Full Text Available The FT4 powder rheometer of Freeman Technology is widely used nowadays in industry for characterisation of particle flow under dynamic conditions of shear strain rate. It measures the work (termed flow energy required to penetrate a rotating impeller into a powder bed. However, little is known about its underlying powder mechanics, i.e. the relationship between the flow energy and the prevailing local shear stress. This has recently been studied, but only for very simple and ideal systems amenable to analysis by DEM. We analyse the effect of gas flow through the powder bed on the flow behaviour of cohesionless particles in FT4 by DEM-CFD simulation. The results show that the relative particle velocities induced by the mean shear speed, is of the same order as that produced by the root of granular temperature. The shear stress in both cases with and without gas flow could be quantified by the inertial number. The flow energy correlates well with the shear stress in front of the blade, and both increase with the inertial number and could be significantly reduced by the upward gas flow.
Effects of inspiratory resistance, inhaled beta-agonists and histamine on canine tracheal blood flow
International Nuclear Information System (INIS)
Kelly, W.T.; Baile, E.M.; Brancatisano, A.; Pare, P.D.; Engel, L.A.
1992-01-01
Tracheobronchial blood flow is potentially important in asthma as it could either influence the clearance of mediators form the airways, thus affecting the duration and severity of bronchoispasm, or enhance oedema formation with a resultant increase in airflow obstruction. In anaesthetized dogs, spontaneously breathing via a tracheostomy, we investigated the effects of three interventions which are relevant to acute asthma attacks and could potentially influence blood flow and its distribution to the mucosa and remaining tissues of the trachea: 1) increased negative intrathoracic pressure swings (-25±1 cmH 2 O) induced by an inspiratory resistance; 2) variable inhaled doses of a beta-adrenoceptor-agonist (terbutaline); and 3) aerosolized histamine sufficient to produce a threefold increase in pulmonary resistance. Microspheres labelled with different radioisotopes were used to measure blood flow. Resistive breathing did not influence tracheobronchial blood flow. Following a large dose of terbutaline, mucosal blood flow (Qmb) increased by 50%. After inhaled histamine, Qmb reached 265% of the baseline value. We conclude that, whereas increased negative pressure swings do not influence tracheobronchial blood flow or its distribution, inhalation of aerosolized terbutaline, corresponding to a conventionally nebulized dose, increases mucosal blood flow. Our results also confirm that inhaled histamine, in a dose sufficient to produce moderate bronchoconstriction, increases tracheal mucosal blood flow in the area of deposition. (au)
Hatzell, Kelsey B; Hatzell, Marta C; Cook, Kevin M; Boota, Muhammad; Housel, Gabrielle M; McBride, Alexander; Kumbur, E Caglan; Gogotsi, Yury
2015-03-03
Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. Chemical oxidation of granular activated carbon (AC) was examined here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (∼21 Pa s) to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g(-1)) without sacrificing flowability (viscosity). The electrical energy required to remove ∼18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (∼60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. It is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.
Effects of inspiratory resistance, inhaled beta-agonists and histamine on canine tracheal blood flow
Energy Technology Data Exchange (ETDEWEB)
Kelly, W.T.; Baile, E.M.; Brancatisano, A.; Pare, P.D.; Engel, L.A. (Dept. of Respiratory Medicine, Westmead Hospital, Westmead, NSW (Australia))
1992-01-01
Tracheobronchial blood flow is potentially important in asthma as it could either influence the clearance of mediators form the airways, thus affecting the duration and severity of bronchoispasm, or enhance oedema formation with a resultant increase in airflow obstruction. In anaesthetized dogs, spontaneously breathing via a tracheostomy, we investigated the effects of three interventions which are relevant to acute asthma attacks and could potentially influence blood flow and its distribution to the mucosa and remaining tissues of the trachea: (1) increased negative intrathoracic pressure swings (-25[+-]1 cmH[sub 2]O) induced by an inspiratory resistance; (2) variable inhaled doses of a beta-adrenoceptor-agonist (terbutaline); and (3) aerosolized histamine sufficient to produce a threefold increase in pulmonary resistance. Microspheres labelled with different radioisotopes were used to measure blood flow. Resistive breathing did not influence tracheobronchial blood flow. Following a large dose of terbutaline, mucosal blood flow (Qmb) increased by 50%. After inhaled histamine, Qmb reached 265% of the baseline value. We conclude that, whereas increased negative pressure swings do not influence tracheobronchial blood flow or its distribution, inhalation of aerosolized terbutaline, corresponding to a conventionally nebulized dose, increases mucosal blood flow. Our results also confirm that inhaled histamine, in a dose sufficient to produce moderate bronchoconstriction, increases tracheal mucosal blood flow in the area of deposition. (au).
Vitreous flow rates through dual pneumatic cutters: effects of duty cycle and cut rate
Directory of Open Access Journals (Sweden)
Abulon DJK
2015-02-01
Full Text Available Dina Joy K Abulon Medical Affairs, Alcon Research, Ltd, Lake Forest, CA, USA Purpose: We aimed to investigate effects of instrument settings on porcine vitreous flow rates through dual pneumatic high-speed vitrectomy probes. Methods: The CONSTELLATION® Vision System was tested with 250, 450, and 650 mmHg of vacuum using six ULTRAVIT® vitrectomy probes of each diameter (25+®, 25, 23, and 20 gauge operated from 500 cuts per minute (cpm up to 5,000 cpm. Duty cycle modes tested included biased open, 50/50, and biased closed. Flow rates were calculated by assessing the change in weight of porcine eyes during vitreous aspiration. Volumetric flow rate was measured with a computer-connected electronic scale. Results: At lower cut rates, the biased open mode produced higher flow than did the 50/50 mode, which produced higher flow than did the biased closed mode. In the biased closed and 50/50 modes, vitreous flow rates tended to increase with increasing cut rate. Vitreous flow rates in the biased open duty cycle mode remained relatively constant across cut rates. Conclusion: Vitreous flow rates through dual pneumatic vitrectomy probes could be manipulated by changing the duty cycle modes on the vitrectomy system. Differences in duty cycle behavior suggest that high-speed cut rates of 5,000 cpm may optimize vitreous aspiration. Keywords: enhanced 25-gauge vitrectomy, 25-gauge vitrectomy, 20-gauge vitrectomy, 23-gauge vitrectomy, aspiration, Constellation Vision System
Directory of Open Access Journals (Sweden)
Eduardo Bezerra Rocha
2007-06-01
Full Text Available OBJETIVO: Detectar precocemente uma possível perda auditiva em crianças de mulheres expostas ao ruído ocupacional durante o período de gestação e verificar se há diferença nos resultados das amplitudes de resposta das emissões otoacústicas - produto de distorção - entre as crianças de mães expostas ao ruído ocupacional e as crianças de mães não-expostas ao ruído ocupacional. MÉTODOS: Crianças de mulheres expostas ao ruído ocupacional durante a gestação e crianças de mulheres não-expostas foram avaliadas através das emissões otoacústicas - produto de distorção -, usando o equipamento GSI 60 DPOEA SYSTEM e empregando a razão de F2/F1 igual a 1,2 e a média geométrica de 2F1-F2. As intensidades das freqüências primárias mantiveram-se fixas, com valores de L1=65 dBNPS e L2=55 dBNPS para F1 e F2, respectivamente. Utilizou-se o teste t-Student em amostras emparelhadas e amostras independentes e o teste não-paramétrico de Wilcoxon. RESULTADOS: Não houve diferença nos valores das medidas das médias das amplitudes de resposta do produto de distorção entre os grupos controle e estudo. Também não houve diferença estatisticamente significante entre os sexos masculino e feminino nas amplitudes de respostas para os grupos controle e estudo, nem entre as orelhas direita e esquerda de cada grupo. CONCLUSÃO: Não foi observado prejuízo auditivo nas crianças de mães expostas ao ruído ocupacional durante a gestação em comparação as crianças de mães não-expostas. Não houve diferença entre as orelhas direita e esquerda e entre os sexos masculino e feminino de cada grupo.AIM: To detect early on a probable hearing loss in children of women exposed to occupational noise during their pregnancy and to verify if there is any difference between the children from those women exposed to occupational noise during their pregnancy and the ones from mothers that do not work under the same conditions. METHODS: Children
Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow.
Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M
2017-09-01
We employ a pairwise force smoothed particle hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows modeling of free-surface flows without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on different types of rough surfaces. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. We study the dependence of the transition between Cassie and Wenzel states on roughness and droplet size, which can be linked to the critical pressure for the given fluid-substrate combination. We observe good agreement between simulations and theoretical predictions. Finally, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the lotus effect. We demonstrate that classical linear scaling relationships between Bond and capillary numbers for droplet flow on flat surfaces also hold for flow on rough surfaces.
Effects of curvature on rarefied gas flows between rotating concentric cylinders
Dongari, Nishanth; White, Craig; Scanlon, Thomas J.; Zhang, Yonghao; Reese, Jason M.
2013-05-01
The gas flow between two concentric rotating cylinders is considered in order to investigate non-equilibrium effects associated with the Knudsen layers over curved surfaces. We investigate the nonlinear flow physics in the near-wall regions using a new power-law (PL) wall-scaling approach. This PL model incorporates Knudsen layer effects in near-wall regions by taking into account the boundary limiting effects on the molecular free paths. We also report new direct simulation Monte Carlo results covering a wide range of Knudsen numbers and accommodation coefficients, and for various outer-to-inner cylinder radius ratios. Our simulation data are compared with both the classical slip flow theory and the PL model, and we find that non-equilibrium effects are not only dependent on Knudsen number and accommodation coefficient but are also significantly affected by the surface curvature. The relative merits and limitations of both theoretical models are explored with respect to rarefaction and curvature effects. The PL model is able to capture some of the nonlinear trends associated with Knudsen layers up to the early transition flow regime. The present study also illuminates the limitations of classical slip flow theory even in the early slip flow regime for higher curvature test cases, although the model does exhibit good agreement throughout the slip flow regime for lower curvature cases. Torque and velocity profile comparisons also convey that a good prediction of integral flow properties does not necessarily guarantee the accuracy of the theoretical model used, and it is important to demonstrate that field variables are also predicted satisfactorily.
Flow effects due to valve and piston motion in an internal combustion engine exhaust port
International Nuclear Information System (INIS)
Semlitsch, Bernhard; Wang, Yue; Mihăescu, Mihai
2015-01-01
Highlights: • Flow regime identification depending on the valve lift during the exhaust stroke. • Analysis of the valve motion effect onto the flow development in the exhaust port. • Physical interpretation of commonly used discharge and flow coefficient formulations. • Illustration of flow effects in junction regions with pulsatile flow. - Abstract: Performance optimization regarding e.g. exhaust valve strategies in an internal combustion engine is often performed based on one-dimensional simulation investigation. Commonly, a discharge coefficient is used to describe the flow behavior in complex geometries, such as the exhaust port. This discharge coefficient for an exhaust port is obtained by laboratory experiments at fixed valve lifts, room temperatures, and low total pressure drops. The present study investigates the consequences of the valve and piston motion onto the energy losses and the discharge coefficient. Therefore, Large Eddy Simulations are performed in a realistic internal combustion geometry using three different modeling strategies, i.e. fixed valve lift and fixed piston, moving piston and fixed valve lift, and moving piston and moving valve, to estimate the energy losses. The differences in the flow field development with the different modeling approaches is delineated and the dynamic effects onto the primary quantities, e.g. discharge coefficient, are quantified. Considering the motion of piston and valves leads to negative total pressure losses during the exhaust cycle, which cannot be observed at fixed valve lifts. Additionally, the induced flow structures develop differently when valve motion is taken into consideration, which leads to a significant disparity of mass flow rates evolving through the two individual valve ports. However, accounting for piston motion and limited valve motion, leads to a minor discharge coefficient alteration of about one to two percent
Modelling food-web mediated effects of hydrological variability and environmental flows.
Robson, Barbara J; Lester, Rebecca E; Baldwin, Darren S; Bond, Nicholas R; Drouart, Romain; Rolls, Robert J; Ryder, Darren S; Thompson, Ross M
2017-11-01
Environmental flows are designed to enhance aquatic ecosystems through a variety of mechanisms; however, to date most attention has been paid to the effects on habitat quality and life-history triggers, especially for fish and vegetation. The effects of environmental flows on food webs have so far received little attention, despite food-web thinking being fundamental to understanding of river ecosystems. Understanding environmental flows in a food-web context can help scientists and policy-makers better understand and manage outcomes of flow alteration and restoration. In this paper, we consider mechanisms by which flow variability can influence and alter food webs, and place these within a conceptual and numerical modelling framework. We also review the strengths and weaknesses of various approaches to modelling the effects of hydrological management on food webs. Although classic bioenergetic models such as Ecopath with Ecosim capture many of the key features required, other approaches, such as biogeochemical ecosystem modelling, end-to-end modelling, population dynamic models, individual-based models, graph theory models, and stock assessment models are also relevant. In many cases, a combination of approaches will be useful. We identify current challenges and new directions in modelling food-web responses to hydrological variability and environmental flow management. These include better integration of food-web and hydraulic models, taking physiologically-based approaches to food quality effects, and better representation of variations in space and time that may create ecosystem control points. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Effects of forskolin on cerebral blood flow: implications for a role of adenylate cyclase
International Nuclear Information System (INIS)
Wysham, D.G.; Brotherton, A.F.; Heistad, D.D.
1986-01-01
We have studied cerebral vascular effects of forskolin, a drug which stimulates adenylate cyclase and potentiates dilator effects of adenosine in other vascular beds. Our goals were to determine whether forskolin is a cerebral vasodilator and whether it potentiates cerebral vasodilator responses to adenosine. We measured cerebral blood flow with microspheres in anesthetized rabbits. Forskolin (10 micrograms/kg per min) increased blood flow (ml/min per 100 gm) from 39 +/- 5 (mean +/- S.E.) to 56 +/- 9 (p less than 0.05) in cerebrum, and increased flow to myocardium and kidney despite a decrease in mean arterial pressure. Forskolin did not alter cerebral oxygen consumption, which indicates that the increase in cerebral blood flow is a direct vasodilator effect and is not secondary to increased metabolism. We also examined effects of forskolin on the response to infusion of adenosine. Cerebral blood flow was measured during infusion of 1-5 microM/min adenosine into one internal carotid artery, under control conditions and during infusion of forskolin at 3 micrograms/kg per min i.v. Adenosine alone increased ipsilateral cerebral blood flow from 32 +/- 3 to 45 +/- 5 (p less than 0.05). Responses to adenosine were not augmented during infusion of forskolin. We conclude that forskolin is a direct cerebral vasodilator and forskolin does not potentiate cerebral vasodilator responses to adenosine
Opposed-flow Flame Spread Over Solid Fuels in Microgravity: the Effect of Confined Spaces
Wang, Shuangfeng; Hu, Jun; Xiao, Yuan; Ren, Tan; Zhu, Feng
2015-09-01
Effects of confined spaces on flame spread over thin solid fuels in a low-speed opposing flow is investigated by combined use of microgravity experiments and computations. The flame behaviors are observed to depend strongly on the height of the flow tunnel. In particular, a non-monotonic trend of flame spread rate versus tunnel height is found, with the fastest flame occurring in the 3 cm high tunnel. The flame length and the total heat release rate from the flame also change with tunnel height, and a faster flame has a larger length and a higher heat release rate. The computation analyses indicate that a confined space modifies the flow around the spreading flame. The confinement restricts the thermal expansion and accelerates the flow in the streamwise direction. Above the flame, the flow deflects back from the tunnel wall. This inward flow pushes the flame towards the fuel surface, and increases oxygen transport into the flame. Such a flow modification explains the variations of flame spread rate and flame length with tunnel height. The present results suggest that the confinement effects on flame behavior in microgravity should be accounted to assess accurately the spacecraft fire hazard.
Effects of surface roughness and electrokinetic heterogeneity on electroosmotic flow in microchannel
Energy Technology Data Exchange (ETDEWEB)
Masilamani, Kannan; Ganguly, Suvankar; Feichtinger, Christian; Bartuschat, Dominik; Rüde, Ulrich, E-mail: suva_112@yahoo.co.in [Department of Computer Science 10 University of Erlangen-Nuremberg, Cauerstr.11 91058 Erlangen (Germany)
2015-06-15
In this paper, a hybrid lattice-Boltzmann and finite-difference (LB-FD) model is applied to simulate the effects of three-dimensional surface roughness and electrokinetic heterogeneity on electroosmotic flow (EOF) in a microchannel. The lattice-Boltzmann (LB) method has been employed to obtain the flow field and a finite-difference (FD) method is used to solve the Poisson-Boltzmann (PB) equation for the electrostatic potential distribution. Numerical simulation of flow through a square cross-section microchannel with designed roughness is conducted and the results are critically analysed. The effects of surface heterogeneity on the electroosmotic transport are investigated for different roughness height, width, roughness interval spacing, and roughness surface potential. Numerical simulations reveal that the presence of surface roughness changes the nature of electroosmotic transport through the microchannel. It is found that the electroosmotic velocity decreases with the increase in roughness height and the velocity profile becomes asymmetric. For the same height of the roughness elements, the EOF velocity rises with the increase in roughness width. For the heterogeneously charged rough channel, the velocity profile shows a distinct deviation from the conventional plug-like flow pattern. The simulation results also indicate locally induced flow vortices which can be utilized to enhance the flow and mixing within the microchannel. The present study has important implications towards electrokinetic flow control in the microchannel, and can provide an efficient way to design a microfluidic system of practical interest. (paper)
de la Mata, Tamara; Llano, Carlos
2013-07-01
Recent literature on border effect has fostered research on informal barriers to trade and the role played by network dependencies. In relation to social networks, it has been shown that intensity of trade in goods is positively correlated with migration flows between pairs of countries/regions. In this article, we investigate whether such a relation also holds for interregional trade of services. We also consider whether interregional trade flows in services linked with tourism exhibit spatial and/or social network dependence. Conventional empirical gravity models assume the magnitude of bilateral flows between regions is independent of flows to/from regions located nearby in space, or flows to/from regions related through social/cultural/ethic network connections. With this aim, we provide estimates from a set of gravity models showing evidence of statistically significant spatial and network (demographic) dependence in the bilateral flows of the trade of services considered. The analysis has been applied to the Spanish intra- and interregional monetary flows of services from the accommodation, restaurants and travel agencies for the period 2000-2009, using alternative datasets for the migration stocks and definitions of network effects.
Numerical simulation of gap effect in supersonic flows
Directory of Open Access Journals (Sweden)
Song Mo
2014-01-01
Full Text Available The gap effect is a key factor in the design of the heat sealing in supersonic vehicles subjected to an aerodynamic heat load. Built on S-A turbulence model and Roe discrete format, the aerodynamic environment around a gap on the surface of a supersonic aircraft was simulated by the finite volume method. As the presented results indicate, the gap effect depends not only on the attack angle, but also on the Mach number.
Effect of Water Flows on Ship Traffic in Narrow Water Channels Based on Cellular Automata
Directory of Open Access Journals (Sweden)
Hu Hongtao
2017-11-01
Full Text Available In narrow water channels, ship traffic may be affected by water flows and ship interactions. Studying their effects can help maritime authorities to establish appropriate management strategies. In this study, a two-lane cellular automation model is proposed. Further, the behavior of ship traffic is analyzed by setting different water flow velocities and considering ship interactions. Numerical experiment results show that the ship traffic density-flux relation is significantly different from the results obtained by classical models. Furthermore, due to ship interactions, the ship lane-change rate is influenced by the water flow to a certain degree.
Effects of graphite surface roughness on bypass flow computations for an HTGR
Energy Technology Data Exchange (ETDEWEB)
Tung, Yu-Hsin, E-mail: touushin@gmail.com [Idaho National Laboratory, P.O. Box 1625, M.S. 3855, Idaho Falls, ID (United States); Johnson, Richard W., E-mail: Rich.Johnson@inl.gov [Idaho National Laboratory, P.O. Box 1625, M.S. 3855, Idaho Falls, ID (United States); Sato, Hiroyuki, E-mail: sato.hiroyuki09@jaea.go.jp [Idaho National Laboratory, P.O. Box 1625, M.S. 3855, Idaho Falls, ID (United States)
2012-11-15
Highlights: Black-Right-Pointing-Pointer CFD calculations are made of bypass flow between graphite blocks in HTGR. Black-Right-Pointing-Pointer Several turbulence models are employed to compare to friction and heat transfer correlations. Black-Right-Pointing-Pointer Parameters varied include bypass gap width and surface roughness. Black-Right-Pointing-Pointer Surface roughness causes increases in max fuel and coolant temperatures. Black-Right-Pointing-Pointer Surface roughness does not cause increase in outlet coolant temperature variation. - Abstract: Bypass flow in a prismatic high temperature gas reactor (HTGR) occurs between graphite blocks as they sit side by side in the core. Bypass flow is not intentionally designed to occur in the reactor, but is present because of tolerances in manufacture, imperfect installation and expansion and shrinkage of the blocks from heating and irradiation. It is desired to increase the knowledge of the effects of such flow; it has been suggested that it may be as much as 20% of the total helium coolant flow [INL Report 2007, INL/EXT-07-13289]. Computational fluid dynamic (CFD) simulations can provide estimates of the scale and impacts of bypass flow. Previous CFD calculations have examined the effects of bypass gap width, level and distribution of heat generation and effects of shrinkage. The present contribution examines the effects of graphite surface roughness on the bypass flow for different relative roughness factors for three gap widths. Such calculations should be validated using specific bypass flow measurements. While such experiments are currently underway for the specific reference prismatic HTGR design for the next generation nuclear plant (NGNP) program of the U.S. Dept. of Energy, the data are not yet available. To enhance confidence in the present calculations, wall shear stress and heat transfer results for several turbulence models and their associated wall treatments are first compared for steady flow in a
On the inverse Magnus effect for flow past a rotating cylinder
John, Benzi; Gu, Xiao-Jun; Barber, Robert W.; Emerson, David R.
2016-11-01
Flow past a rotating cylinder has been investigated using the direct simulation Monte Carlo method. The study focuses on the occurrence of the inverse Magnus effect under subsonic flow conditions. In particular, the variations in the coefficients of lift and drag have been investigated as a function of the Knudsen and Reynolds numbers. Additionally, a temperature sensitivity study has been carried out to assess the influence of the wall temperature on the computed aerodynamic coefficients. It has been found that both the Reynolds number and the cylinder wall temperature significantly affect the drag as well as the onset of lift inversion in the transition flow regime.
The effect of potassium quercetin phosphate on the nutritional blood flow of mouse heart
International Nuclear Information System (INIS)
Tang Yunzhao; Tao Ran; Hao Yibin; Wang Zhiping; Fan Guangcan; Gao Zhou
1991-01-01
The effect of potassium quercetin phosphate (PQP) on the nutritional blood flow of mouse heart was evaluated with the radioactive tracer 99m Tc-hexakis-2-methoxyisobutyl isonitrile (MIBI). The result showed that the uptake of 99m Tc-MIBI by mouse heart (per gram) in the PQP-treated group (ip 200 mg/kg) was increased by 55.36% as compared with control group. This suggests that PQP can increase the nutritional blood flow of mouse heart. 99m Tc-MIBI may take the place of 86 Rb in evaluating nutritional blood flow of myocardium in animals and men
Flow predictions for MHD channels with an approximation for three-dimensional effects
International Nuclear Information System (INIS)
Blottner, F.G.
1978-01-01
A finite-difference procedure has been formulated for predicting the flow properties across channels. A quasi-two-dimensional approach has been developed which allows the three-dimensional channel effects to be taken into account. Comparison of the numerical solutions with experimental results show that this approach is a reasonable approximation for MHD flow conditions if there is not significant merging of the wall boundary layers. The resulting code provides a technique to obtain the flow details in the symmetry plane of the channel and requires only a small amount of computer time
The Effect of the Volume Flow rate on the Efficiency of a Solar Collector
DEFF Research Database (Denmark)
Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon
rates. Theoretically, a simplified model of the solar collector panel is built by means of the CFD (Computational Fluid Dynamics) code Fluent, where the geometry of the collector panel except the casing is fully modeled. Both lateral and longitudinal heat conduction in the absorber fins, the heat...... transfer from the absorber to the solar collector fluid and the heat loss from the absorber are considered. Flow and temperature distribution in the collector panel are investigated with buoyancy effect. Measurements are carried out with the solar collector panel. Collector efficiencies are measured......The flow distribution inside a collector panel with an area of 12.5 m² and with 16 parallel connected horizontal fins and the effect of the flow nonuniformity on the risk of boiling and on the collector efficiency have been theoretically and experimentally investigated for different volume flow...
Effects of flow and colony morphology on the thermal boundary layer of corals
DEFF Research Database (Denmark)
Jimenez, Isabel M; Kühl, Michael; Larkum, Anthony W D
2011-01-01
The thermal microenvironment of corals and the thermal effects of changing flow and radiation are critical to understanding heat-induced coral bleaching, a stress response resulting from the destruction of the symbiosis between corals and their photosynthetic microalgae. Temperature microsensor...... measurements at the surface of illuminated stony corals with uneven surface topography (Leptastrea purpurea and Platygyra sinensis) revealed millimetre-scale variations in surface temperature and thermal boundary layer (TBL) that may help understand the patchy nature of coral bleaching within single colonies....... The effect of water flow on the thermal microenvironment was investigated in hemispherical and branching corals (Porites lobata and Stylophora pistillata, respectively) in a flow chamber experiment. For both coral types, the thickness of the TBL decreased exponentially from 2.5 mm at quasi-stagnant flow (0...
Effect of magnetic field on Blasius and Sakiadis flow of nanofluids past an inclined plate
Directory of Open Access Journals (Sweden)
S.P. Anjali Devi
2017-11-01
Full Text Available A theoretical study on the effect of magnetic field on the classical Blasius and Sakiadis flow of nanofluids over an inclined plate is presented in this paper. The governing partial differential equations are converted into ordinary differential equations using suitable similarity transformations. The transformed boundary layer equations are solved numerically using MATLAB (bvp4c. Two types of nanoparticles are chosen namely copper and alumina in the base fluid of water with the Prandtl number (Pr = 6.2. The effects of the governing physical parameters over the velocity, temperature, skin friction coefficient and reduced Nusselt number for both the Blasius and Sakiadis flows are displayed graphically. The characteristics of physical and engineering interest are discussed in detail. Keywords: Nanofluid, Blasius flow, Sakiadis flow, MHD, Inclined plate, Mixed convection
Effect of sildenafil citrate (Viagra) on coronary flow in normal subjects.
Ishikura, Fuminobu; Beppu, Shintaro; Ueda, Hiroaki; Nehra, Ajay; Khandheria, Bijoy K
2008-01-01
The purpose of this study was to evaluate the effect of sildenafil citrate (Viagra) on coronary function in normal subjects. The study assessed mean blood pressure, left anterior descending coronary artery (LAD) flow, and echocardiographic variables before and 30 and 60 minutes after taking 50 mg of sildenafil citrate. The mean velocity of LAD flow was assessed with Doppler flow imaging. The study subjects were 6 healthy male volunteers (mean age 37 years). The mean velocity of LAD flow increased 60 minutes after taking sildenafil citrate, but there were no other changes. Two volunteers felt mild flashing and one had mild headache during the study. Sildenafil citrate caused vasodilatation in a normal coronary artery without systemic pressure drops. These results suggest that the agent itself did not have negative effects on the heart in normal subjects.
The effect of valve strategy on in-cylinder flow and combustion
Energy Technology Data Exchange (ETDEWEB)
Soederberg, F
1997-01-01
This paper examines the effects of different valve strategies and their effect on in-cylinder flow and combustion. A conventional four valve per cylinder otto engine was modified to enable optical access. The flow measurements were made with a two-component laser Doppler velocimetry system. The combustion was monitored by running pressure data from a pressure transducer through a one-zone heat release model. The results show that when the valves operate normally a barrel flow is present and when one valve is closed a swirling flow occurs. No increase in turbulence was found with later phasing, except in the case of very late inlet valve opening and port deactivation. This resulted in a jet with high turbulence, making the combustion fast and stable, even with a very lean mixture ({lambda}=1.8). 6 refs, 44 figs, 4 tabs
Tumor blood flow modifying effects of electrochemotherapy. A potential vascular targeted mechanism
International Nuclear Information System (INIS)
Sersa, G.; Cemazar, M.; Miklavcic, D.
2003-01-01
Background. The aim of this study was to determine the tumor blood flow modifying, and potential vascular targeted effect of electrochemotherapy with bleomycin or cisplatin. Materials and methods. Electrochemotherapy was performed by application of short intense electric pulses to the tumors after systemic administration of bleomycin or cisplatin. Evaluated were antitumor effectiveness of electrochemotherapy by tumor measurement, tumor blood flow modifying effect by Patent blue staining technique, and sensitivity of endothelial and tumor cells to the drugs and electrochemotherapy by clonogenicity assay. Results. Electrochemotherapy was effective in treatment of SA-1 tumors in A/J mice resulting in substantial tumor growth delay and also tumor cures. Tumor blood flow reduction following electrochemotherapy correlated well with its antitumor effectiveness. Virtually complete shut down of the tumor blood flow was observed already at 24 h after electrochemotherapy with bleomycin whereas only 50% reduction was observed after electrochemotherapy with cisplatin. Sensitivity of human endothelial HMEC-1 cells to electrochemotherapy suggests a vascular targeted effect for electrochemotherapy in vivo with bleomycin as well as with cisplatin. Conclusion. These results show that, in addition to direct electroporation of tumor cells, other vascular targeted mechanisms are involved in electrochemotherapy with bleomycin or cisplatin, potentially mediated by tumor blood flow reduction, and enhanced tumor cell death as a result of endothelial damage by electrochemotherapy. (author)
Effects of rolling on characteristics of single-phase water flow in narrow rectangular ducts
International Nuclear Information System (INIS)
Xing Dianchuan; Yan Changqi; Sun Licheng; Xu Chao
2012-01-01
Highlights: ► Mass flow rate and friction pressure drop with different pressure head are compared. ► The effect of pressure head on flow fluctuation is considered theoretically. ► Time-mean and real-time friction pressure drop in different rolling motion are studied. ► Rolling motion influences the fluctuation of friction pressure drop in two aspects. ► New correlation for frictional coefficient in rolling motion is achieved. - Abstract: Experimental and theoretical studies of rolling effects on characteristics of single-phase water flow in narrow rectangular ducts are performed under ambient temperature and pressure. Two types of pressure head are supplied by elevate water tank and pump respectively. The results show that the frictional pressure drop under rolling condition fluctuates periodically, with its amplitude decaying as mean Reynolds number increase and the rolling amplitude decrease, while the amplitude is nearly invariable with rolling period. Rolling motion influences the fluctuation amplitude of frictional pressure drop in two aspects, on the one hand, rolling reduced periodical pulsing flow leads to the fluctuation of the frictional pressure drop, on the other hand, additional force acting on fluid near the wall due to the rolling motion makes local frictional resistance oscillate periodically. The mass flow rate oscillates periodically in rolling motion with the pressure head supplied by water tank, while its fluctuation is so weak that could be neglected for the case of the pressure head supplied by pump. An empirical correlation for the frictional coefficient under rolling condition is achieved, and the experimental data is well correlated. A mathematical model is also developed to study the effect of pressure head on mass flow rate fluctuation in rolling motion. The fluctuation amplitude of the mass flow rate decreases rapidly with a higher pressure head. Comparing with the vertical condition, rolling motion nearly has no effects on
General constraints on the effect of gas flows in the chemical evolution of galaxies
International Nuclear Information System (INIS)
Edmunds, M.G.
1990-01-01
The basic equations for the chemical evolution of galaxies in which the 'simple' closed box model is modified to allow any form of inflow or outflow are examined. It is found that there are quite general limiting constraints on the effects that such flows can have. Some implications for the actual chemical evolution of galaxies are discussed, and the constraints should also be useful in understanding the behaviour of detailed numerical models of galactic chemical evolution involving gas flows. (author)
Wall roughness effects on flow and scouring in curved channels with gravel bed
Hersberger, Daniel S.
2002-01-01
Wall roughness effects on flow and scouring in curved channels with gravel bed In the narrow valleys in Alpine regions, rivers frequently flow across constructed zones, passing through villages and cities. Due to limited space, the protection from high floods often needs to be ensured by protection walls. During floods, these protection walls may be endangered by scour phenomena, especially if they are located in bends. In the past, the potential danger of underscoured structures was reduced ...
Effective Wall Friction in Wall-Bounded 3D Dense Granular Flows
Artoni, Riccardo; Richard, Patrick
2015-01-01
to be published in Physical Review LettersThe numerical simulations were carried out at theCCIPL (Centre de Calcul Intensif des Pays de la Loire)under the project MTEEGD; We report numerical simulations on granular shear flows confined between two flat but frictional sidewalls. Novel regimes differing by their strain localization features are observed. They originate from the competition between dissipation at the sidewalls and dissipation in the bulk of the flow. The effective friction at si...
Effect of flow obstacles with various leading and trailing edges on critical heat flux
International Nuclear Information System (INIS)
Pioro, I.L.; Groeneveld, D.C.; Groeneveld, D.C.; Cheng, S.C.; Antoshko, Y.V.
2001-01-01
A joint investigation has been performed by the University of Ottawa and Chalk River Laboratories that examined the effect of the shape of the leading and trailing edges of the turbulence enhancing devices ('flow obstacles') on critical heat flux (CHF). The objective of this study was to gain a better overall understanding of the limit of CHF improvement for various obstacle designs and the impact of flow conditions on the improvements. (author)
Downstream wind flow path diversion and its effects on the performance of vertical axis wind turbine
International Nuclear Information System (INIS)
Maganhar, A.L.
2015-01-01
In the present experimental study efforts have been made to analysis path diversion effect of downstream wind flow on performance of vertical axis wind turbine (VAWT). For the blockage of downstream wind flow path at various linear displaced positions, a normal erected flat wall, semi-circular and cylindrical shapes were tested for path diverting geometries. Performance of VAWT in terms of improved rotor speed up to 45% was achieved. (author)
Nested separatrices in simple shear flows: the effect of localized disturbances on stagnation lines
Wilson, M.C.T.; Gaskell, P.H.; Savage, M.D.
2005-01-01
The effects of localized two-dimensional disturbances on the structure of shear flows featuring a stagnation line are investigated. A simple superposition of a planar Couette flow and Moffatt's [J. Fluid Mech. 18, 1--18 (1964)] streamfunction for the decay of a disturbance between infinite stationary parallel plates shows that in general the stagnation line is replaced by a chain of alternating elliptic and hyperbolic stagnation points with a separation equal to 2.78 times the half-gap betwee...
Computational Study of Thrombus Formation and Clotting Factor Effects under Venous Flow Conditions
2016-04-26
domain used in our thrombus formation simulations. Fig. 2 B shows the 3D geometry of the flow-chamber section consisting of two channels measuring 250 60...ArticleComputational Study of Thrombus Formation and Clotting Factor Effects under Venous Flow ConditionsVijay Govindarajan,1 Vineet Rakesh,1 Jaques...understanding of thrombus formation as a physicochemical process that has evolved to protect the integrity of the human vasculature is critical to our ability to
Rheologic effects of crystal preferred orientation in upper mantle flow near plate boundaries
Blackman, Donna; Castelnau, Olivier; Dawson, Paul; Boyce, Donald
2016-04-01
Observations of anisotropy provide insight into upper mantle processes. Flow-induced mineral alignment provides a link between mantle deformation patterns and seismic anisotropy. Our study focuses on the rheologic effects of crystal preferred orientation (CPO), which develops during mantle flow, in order to assess whether corresponding anisotropic viscosity could significantly impact the pattern of flow. We employ a coupled nonlinear numerical method to link CPO and the flow model via a local viscosity tensor field that quantifies the stress/strain-rate response of a textured mineral aggregate. For a given flow field, the CPO is computed along streamlines using a self-consistent texture model and is then used to update the viscosity tensor field. The new viscosity tensor field defines the local properties for the next flow computation. This iteration produces a coupled nonlinear model for which seismic signatures can be predicted. Results thus far confirm that CPO can impact flow pattern by altering rheology in directionally-dependent ways, particularly in regions of high flow gradient. Multiple iterations run for an initial, linear stress/strain-rate case (power law exponent n=1) converge to a flow field and CPO distribution that are modestly different from the reference, scalar viscosity case. Upwelling rates directly below the spreading axis are slightly reduced and flow is focused somewhat toward the axis. Predicted seismic anisotropy differences are modest. P-wave anisotropy is a few percent greater in the flow 'corner', near the spreading axis, below the lithosphere and extending 40-100 km off axis. Predicted S-wave splitting differences would be below seafloor measurement limits. Calculations with non-linear stress/strain-rate relation, which is more realistic for olivine, indicate that effects are stronger than for the linear case. For n=2-3, the distribution and strength of CPO for the first iteration are greater than for n=1, although the fast seismic
Effects of atmospheric pressure conditions on flow rate of an elastomeric infusion pump.
Wang, Jong; Moeller, Anna; Ding, Yuanpang Samuel
2012-04-01
The effects of pressure conditions, both hyperbaric and hypobaric, on the flow rate of an elastomeric infusion pump were investigated. The altered pressure conditions were tested with the restrictor outlet at two different conditions: (1) at the same pressure condition as the Infusor elastomeric balloon and (2) with the outlet exposed to ambient conditions. Five different pressure conditions were tested. These included ambient pressure (98-101 kilopascals [kPa]) and test pressures controlled to be 10 or 20 kPa below or 75 or 150 kPa above the ambient pressure. A theoretical calculation based on the principles of fluid mechanics was also used to predict the pump's flow rate at various ambient conditions. The conditions in which the Infusor elastomeric pump and restrictor outlet were at the same pressure gave rise to average flow rates within the ±10% tolerance of the calculated target flow rate of 11 mL/hr. The flow rate of the Infusor pump decreased when the pressure conditions changed from hypobaric to ambient. The flow rate increased when the pressure conditions changed from hyperbaric to ambient. The flow rate of the Infusor elastomeric pump was not affected when the balloon reservoir and restrictor outlet were at the same pressure. The flow rate varied from 58.54% to 377.04% of the labeled flow rate when the pressure applied to the reservoir varied from 20 kPa below to 150 kPa above the pressure applied to the restrictor outlet, respectively. The maximum difference between observed flow rates and those calculated by applying fluid mechanics was 4.9%.
International Nuclear Information System (INIS)
John, Bibin; Surendranath, Srikanth; Natarajan, Ganesh; Kulkarni, Vinayak
2016-01-01
Highlights: • Leading edge bluntness based separation control has been analysed numerically for 2D and axi-symmetric flows. • Differential growth of entropy layer in the streamwise direction in these cases leads to different interaction with respective boundary layers. • Separation control is found possible for planar flows beyond a critical radius called as equivalent radius. • No equivalent radius has been noticed in axi-symmertric flows in the present studies due to thin entropy layer and lack of favourable pressure gradient. - Abstract: Present investigations are centered on passive control of shock wave boundary layer interaction (SWBLI) for double cone and double wedge configurations with leading edge bluntness. This study seeks the differences in the flow physics of SWBLI in case of two dimensional (2D) and axisymmetric flow fields. In-house developed second order accurate finite-volume 2D axisymmetric compressible flow solver is employed for these studies. It is observed that the idea of leading edge bluntness offers reduction in separation bubble for 2D flow fields, whereas it leads to enhanced separation zone in case of axisymmetric flow fields. Relevant flow physics is well explored herein using wall pressure profile and relative thicknesses of boundary layer and entropy layer. Thicker entropy layer and stronger favorable pressure gradient are found responsible for the possibility of separation control in case of 2D flow fields. Thin entropy layer due to three dimensional relieving effect and its swallowing by the boundary layer are attributed for higher separation bubble size in case of cone with range of radii under consideration.
Wind-induced flow velocity effects on nutrient concentrations at Eastern Bay of Lake Taihu, China.
Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Jianwei; Gao, Xiaomeng; Wang, Wencai; Acharya, Kumud
2017-07-01
Shallow lakes are highly sensitive to respond internal nutrient loading due to wind-induced flow velocity effects. Wind-induced flow velocity effects on nutrient suspension were investigated at a long narrow bay of large shallow Lake Taihu, the third largest freshwater lake in China. Wind-induced reverse/compensation flow and consistent flow field probabilities at vertical column of the water were measured. The probabilities between the wind field and the flow velocities provided a strong correlation at the surface (80.6%) and the bottom (65.1%) layers of water profile. Vertical flow velocity profile analysis provided the evidence of delay response time to wind field at the bottom layer of lake water. Strong wind field generated by the west (W) and west-north-west (WNW) winds produced displaced water movements in opposite directions to the prevailing flow field. An exponential correlation was observed between the current velocities of the surface and the bottom layers while considering wind speed as a control factor. A linear model was developed to correlate the wind field-induced flow velocity impacts on nutrient concentration at the surface and bottom layers. Results showed that dominant wind directions (ENE, E, and ESE) had a maximum nutrient resuspension contribution (nutrient resuspension potential) of 34.7 and 43.6% at the surface and the bottom profile layers, respectively. Total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) average concentrations were 6.38, 1.5, and 0.03 mg/L during our field experiment at Eastern Bay of Lake Taihu. Overall, wind-induced low-to-moderate hydrodynamic disturbances contributed more in nutrient resuspension at Eastern Bay of Lake Taihu. The present study can be used to understand the linkage between wind-induced flow velocities and nutrient concentrations for shallow lakes (with uniform morphology and deep margins) water quality management and to develop further models.
Effects of Unified Power Flow Controller (UPFC) on Distance Relay ...
African Journals Online (AJOL)
This paper investigates the effects of UPFC on Distance Relay tripping characteristics in Nigerian 330kV (North-Central) Network. Its operation is based on impedance measurement at the relaying point. However, the system performance is often impeded by certain operational or structural factors such as load angle, the ...
Effects of different tastants on parotid saliva flow and composition
Neyraud, E.; Heinzerling, C.I.; Bult, J.H.F.; Mesmin, C.; Dransfield, E.
2009-01-01
Saliva from parotid glands plays a role in taste perception. Parotid saliva is also stimulated by tastants. The aim of this work is to investigate the effects of different tastants on the parotid salivary response in six subjects. Five tastants were given in different concentrations in solution and
Effect of blade sweep on inlet flow in axial compressor cascades
Directory of Open Access Journals (Sweden)
Hao Chang
2015-02-01
Full Text Available This paper presents comparative numerical studies to investigate the effects of blade sweep on inlet flow in axial compressor cascades. A series of swept and straight cascades was modeled in order to obtain a general understanding of the inlet flow field that is induced by sweep. A computational fluid dynamics (CFD package was used to simulate the cascades and obtain the required three-dimensional (3D flow parameters. A circumferentially averaged method was introduced which provided the circumferential fluctuation (CF terms in the momentum equation. A program for data reduction was conducted to obtain a circumferentially averaged flow field. The influences of the inlet flow fields of the cascades were studied and spanwise distributions of each term in the momentum equation were analyzed. The results indicate that blade sweep does affect inlet radial equilibrium. The characteristic of radial fluid transfer is changed and thus influencing the axial velocity distributions. The inlet flow field varies mainly due to the combined effect of the radial pressure gradient and the CF component. The axial velocity varies consistently with the incidence variation induced by the sweep, as observed in the previous literature. In addition, factors that might influence the radial equilibrium such as blade camber angles, solidity and the effect of the distance from the leading edge are also taken into consideration and comparatively analyzed.
The Effect of Uniform Background Flow on Vortex Ring Formation and Pinch-off
Krueger, Paul S.; Dabiri, John O.; Gharib, Morteza
2002-11-01
Experimental investigations of vortex ring formation are extended to include the effects of a uniform background flow, in a manner relevant to the locomotion of aquatic animals utilizing jet propulsion. Gharib et. al. [J. Fluid Mech. 360, 121 (1998)] generated vortex rings using a piston/cylinder apparatus with relatively large discharge times to demonstrate that the vortex ring at the leading edge of the jet attains its maximum circulation at a piston stroke-to-diameter ratio L/D of 4. This "formation number" is robust over a range of piston motions and cylinder boundary conditions, and can be explained in terms of the Kelvin-Benjamin variational principle. To determine the effect of background flow on formation number and pinch-off of the leading vortex ring, uniform co-flow is established in a large annulus surrounding the vortex generator. The ratio of co-flow velocity to piston velocity is varied between 0 and 1. In addition, the co-flow is initiated at times both before and after the start of vortex ring formation. We present results for stroke ratios L/D = 2 and L/D = 8, in order to discern effects of the co-flow on the leading vortex ring in isolation and in the presence of a trailing jet.
The importance of context dependency for understanding the effects of low flow events on fish
Walters, Annika W.
2014-01-01
The natural hydrology of streams and rivers has been extensively altered by dam construction, water diversion, and climate change. An increased frequency of low-flow events will affect fish by changing habitat availability, resource availability, and reproductive cues. I reviewed the literature to characterize the approaches taken to assess low-flow events and fish, the main effects of low-flow events on fish, and the associated mechanistic drivers. Most studies are focused on temperate streams and are comparative in nature. Decreased stream flow is associated with decreased survival, growth, and abundance of fish populations and shifts in community composition, but effects are variable. This variability in effects is probably caused by context dependence. I propose 3 main sources of context dependence that drive the variation in fish responses to low-flow events: attributes of the low-flow event, attributes of the habitat, and attributes of the fish. Awareness of these sources of context dependence can help managers interpret and explain data, predict vulnerability of fish communities, and prioritize appropriate management actions.
Effect of bed configuration on pebble flow uniformity and stagnation in the pebble bed reactor
International Nuclear Information System (INIS)
Gui, Nan; Yang, Xingtuan; Tu, Jiyuan; Jiang, Shengyao
2014-01-01
Highlights: • Pebble flow uniformity and stagnation characteristics are very important for HTR-PM. • Arc- and brachistochrone-shaped configuration effects are studied by DEM simulation. • Best bed configurations with uniform flow and no stagnated pebbles are suggested. • Detailed quantified characteristics of bed configuration effects are shown for explanation. - Abstract: Pebble flow uniformity and stagnation characteristics are very important for the design of pebble bed high temperature gas-cooled reactor. Pebble flows inside some specifically designed contraction configurations of pebble bed are studied by discrete element method. The results show the characteristics of stagnation rates, recycling rates, radial distribution of pebble velocity and residence time. It is demonstrated clearly that the bed with a brachistochrone-shaped configuration achieves optimum levels of flow uniformity and recycling rate concentration, and almost no pebbles are stagnated in the bed. Moreover, the optimum choice among the arc-shaped bed configurations is demonstrated too. Detailed information shows the quantified characteristics of bed configuration effects on flow uniformity. In addition, a good design of the pebble bed configuration is suggested
Effect of Thickness-to-Chord Ratio on Flow Structure of Low Swept Delta Wing
Gulsacan, Burak; Sencan, Gizem; Yavuz, Mehmet Metin
2017-11-01
The effect of thickness-to-chord (t/C) ratio on flow structure of a delta wing with sweep angle of 35 degree is characterized in a low speed wind tunnel using laser illuminated smoke visualization, particle image velocimetry, and surface pressure measurements. Four different t/C ratio varying from 4.75% to 19% are tested at angles of attack 4, 6, 8, and 10 degrees for Reynolds numbers Re =10,000 and 35,000. The results indicate that the effect of thickness-to-chord ratio on flow structure is quite substantial, such that, as the wing thickness increases, the flow structure transforms from leading edge vortex to three-dimensional separated flow regime. The wing with low t/C ratio of 4.75% experiences pronounced surface separation at significantly higher angle of attack compared to the wing with high t/C ratio. The results might explain some of the discrepancies reported in previously conducted studies related to delta wings. In addition, it is observed that the thickness of the shear layer separated from windward side of the wing is directly correlated with the thickness of the wing. To conclude, the flow structure on low swept delta wing is highly affected by t/C ratio, which in turn might indicate the potential usage of wing thickness as an effective flow control parameter.
Effects of intranasal medicines on microcirculatory blood flow of nasal cavity
Directory of Open Access Journals (Sweden)
Svistunov A.A.
2012-09-01
Full Text Available The article describes the new method of assessment of microcirculatory blood perfusion and introduction of this method into the study of intranasal drugs effects on mucosal blood flow in the nasal cavity. The research work presents some different groups of drugs — decongestants, physical solutions for irrigation therapy and local corticosteroids. It has been revealed that intranasal decongestants have a significant effect on the intranasal blood flow, but their intake affects the mucosal membrane of the nasal cavity. Other drugs have not shown such negative effects and have not caused tachyphylaxis. Therefore these medicines may be recommended for more common use in ENT-practice.
arXiv Lightcone Effective Hamiltonians and RG Flows
Fitzpatrick, A. Liam; Katz, Emanuel; Vitale, Lorenzo G.; Walters, Matthew T.
We present a prescription for an effective lightcone (LC) Hamiltonian that includes the effects of zero modes, focusing on the case of Conformal Field Theories (CFTs) deformed by relevant operators. We show how the prescription resolves a number of issues with LC quantization, including i) the apparent non-renormalization of the vacuum, ii) discrepancies in critical values of bare parameters in equal-time vs LC quantization, and iii) an inconsistency at large N in CFTs with simple AdS duals. We describe how LC quantization can drastically simplify Hamiltonian truncation methods applied to some large N CFTs, and discuss how the prescription identifies theories where these simplifications occur. We demonstrate and check our prescription in a number of examples.
Pattern formation in diffusive excitable systems under magnetic flow effects
Mvogo, Alain; Takembo, Clovis N.; Ekobena Fouda, H. P.; Kofané, Timoléon C.
2017-07-01
We study the spatiotemporal formation of patterns in a diffusive FitzHugh-Nagumo network where the effect of electromagnetic induction has been introduced in the standard mathematical model by using magnetic flux, and the modulation of magnetic flux on membrane potential is realized by using memristor coupling. We use the multi-scale expansion to show that the system equations can be reduced to a single differential-difference nonlinear equation. The linear stability analysis is performed and discussed with emphasis on the impact of magnetic flux. It is observed that the effect of memristor coupling importantly modifies the features of modulational instability. Our analytical results are supported by the numerical experiments, which reveal that the improved model can lead to nonlinear quasi-periodic spatiotemporal patterns with some features of synchronization. It is observed also the generation of pulses and rhythmics behaviors like breathing or swimming which are important in brain researches.
Effective viscous flow properties for fiber suspensions under concentrated conditions
International Nuclear Information System (INIS)
Christensen, R.M.
1993-01-01
The effective longitudinal and transverse shear viscosities are derived for an aligned fiber suspension. The solutions are valid under very concentrated conditions for a hexagonal arrangement of the single size fibers. The results compliment the classical dilute suspension forms at the other extreme of concentration. Empirical forms are constructed to cover the full range of volume fraction of the fiber phase. Also, single size spherical particle suspensions are given a similar treatment to that of the fiber case
An electrochemical study of the flow rate effect on the oxide film of SA106 Gr.C piping
International Nuclear Information System (INIS)
Hong, S. M.; Kim, J. H.; Kim, I. S.
2002-01-01
Effect of water flow rate on the oxide film of SA106 Gr.C piping was evaluated quantitatively through electrochemical method. It was carried out with weight change experiments, polarization tests, and EIS tests with rig that simulates water flow. Without water flow, the oxide film is so stable that it effectively blocks current exchange. With water flow, the oxide film was damaged and electrochemical current density and oxide film properties, C dl and R p were significantly changed
The Effects of Sweeping Jet Actuator Parameters on Flow Separation Control
Koklu, Mehti
2015-01-01
A parametric experimental study was performed with sweeping jet actuators (fluidic oscillators) to determine their effectiveness in controlling flow separation on an adverse pressure gradient ramp. Actuator parameters that were investigated include blowing coefficients, operation mode, pitch and spreading angles, streamwise location, aspect ratio, and scale. Surface pressure measurements and surface oil flow visualization were used to characterize the effects of these parameters on the actuator performance. 2D Particle Image Velocimetry measurements of the flow field over the ramp and hot-wire measurements of the actuator's jet flow were also obtained for selective cases. In addition, the sweeping jet actuators were compared to other well-known flow control techniques such as micro-vortex generators, steady blowing, and steady vortex-generating jets. The results confirm that the sweeping jet actuators are more effective than steady blowing and steady vortex-generating jets. The results also suggest that an actuator with a larger spreading angle placed closer to the location where the flow separates provides better performance. For the cases tested, an actuator with an aspect ratio, which is the width/depth of the actuator throat, of 2 was found to be optimal. For a fixed momentum coefficient, decreasing the aspect ratio to 1 produced weaker vortices while increasing the aspect ratio to 4 reduced coverage area. Although scaling down the actuator (based on the throat dimensions) from 0.25 inch x 0.125 inch to 0.15 inch x 0.075 inch resulted in similar flow control performance, scaling down the actuator further to 0.075 inch x 0.0375 inch reduced the actuator efficiency by reducing the coverage area and the amount of mixing in the near-wall region. The results of this study provide insight that can be used to design and select the optimal sweeping jet actuator configuration for flow control applications.
Effects of water chemistry on flow accelerated corrosion and liquid droplet impingement
International Nuclear Information System (INIS)
Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Uehara, Yasushi; Koshizuka, Seiichi; Lister, Derek H.
2009-01-01
Overlapping effects of flow dynamics and corrosion are important issues to determine reliability and lifetime of major structures and components in light water reactor plants. Flow accelerated corrosion (FAC) and liquid droplet impingement (LDI) are typical phenomena due to both interactions. In order to evaluation local wall thinning due to FAC and LDI, 6 step evaluation procedures have been proposed. (1) Flow pattern along the flow path was obtained with 1D computational flow dynamics (CFD) codes, (2) Corrosive conditions, e.g., oxygen concentration along the flow path were calculated with a hydrazine oxygen reaction code for FAC evaluation, while flow pattern of liquid droplets in high velocity steam and possibility of their collision to pipe inner surface were evaluated for LDI evaluation. (3) Mass transfer coefficient at the structure surface was calculated with 3D CFD codes for FAC evaluation, while frequency of oxide film rupture due to droplet collision was calculated for LDI evaluation. (4) High risk zones for FAC/LDI occurrence were evaluated by coupling major parameters, and then, (5) Wall thinning rates were calculated with the coupled model of static electrochemical analysis and dynamic double oxide layer analysis at the identified high FAC/LDI risk zone. (author)
The effect of visualizing the flow of multimedia content among and inside devices.
Lee, Dong-Seok
2009-05-01
This study introduces a user interface, referred to as the flow interface, which provides a graphical representation of the movement of content among and inside audio/video devices. The proposed interface provides a different frame of reference with content-oriented visualization of the generation, manipulation, storage, and display of content as well as input and output. The flow interface was applied to a VCR/DVD recorder combo, one of the most complicated consumer products. A between-group experiment was performed to determine whether the flow interface helps users to perform various tasks and to examine the learning effect of the flow interface, particularly in regard to hooking up and recording tasks. The results showed that participants with access to the flow interface performed better in terms of success rate and elapsed time. In addition, the participants indicated that they could easily understand the flow interface. The potential of the flow interface for application to other audio video devices, and design issues requiring further consideration, are discussed.
The effects of fenoldopam on coronary conduit blood flow after coronary artery bypass graft surgery.
LENUS (Irish Health Repository)
Halpenny, M
2012-02-03
OBJECTIVE: To quantify the effects of fenoldopam, 0.1 microg\\/kg\\/min, on left internal mammary artery (LIMA) and saphenous vein blood flow after coronary anastomosis. DESIGN: Prospective, randomized, double-blind, placebo-controlled trial. SETTING: University teaching hospital, single institution. PARTICIPANTS: Thirty-one American Society of Anesthesiologists III patients undergoing elective coronary revascularization. INTERVENTIONS: A perivascular ultrasonic flow probe (Linton Instrumentation, Norfolk, UK) was placed around the LIMA and saphenous vein graft after coronary anastomosis. MEASUREMENTS AND MAIN RESULTS: Immediately before and at 5-minute intervals for 15 minutes after starting the infusion, blood flow was measured in the LIMA and one saphenous vein graft using a transit time ultrasonic flow probe. Heart rate, blood pressure, and central venous pressure were documented at these time points. Administration of fenoldopam, 0.1 microg\\/kg\\/min, did not alter heart rate or blood pressure. A small, nonsignificant increase in LIMA blood flow occurred during the 15-minute study period (30 +\\/- 12 to 35 +\\/- 10 mL\\/min) in patients who received fenoldopam. No significant changes occurred in the placebo group. CONCLUSIONS: The findings indicate that fenoldopam, 0.1 microg\\/kg\\/min, did not influence coronary conduit blood flow to a clinically significant extent. The small increase in LIMA blood flow may be of greater importance in high-risk patients or in the prevention of coronary arterial spasm.
Effect of the momentum dependence of nuclear symmetry potential on the transverse and elliptic flows
International Nuclear Information System (INIS)
Zhang, Lei; Du, Yun; Zuo, Guang-Hua; Gao, Yuan; Yong, Gao-Chan
2012-01-01
In the framework of the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model, the effect of the momentum dependence of nuclear symmetry potential on nuclear transverse and elliptic flows in the neutron-rich reaction 132 Sn+ 124 Sn at a beam energy of 400MeV/nucleon is studied. We find that the momentum dependence of nuclear symmetry potential affects the rapidity distribution of the free neutron to proton ratio, the neutron and the proton transverse flows as a function of rapidity. The momentum dependence of nuclear symmetry potential affects the neutron-proton differential transverse flow more evidently than the difference of neutron and proton transverse flows as well as the difference of proton and neutron elliptic flows. It is thus better to probe the symmetry energy by using the difference of neutron and proton flows since the momentum dependence of nuclear symmetry potential is still an open question. And it is better to probe the momentum dependence of nuclear symmetry potential by using the neutron-proton differential transverse flow the rapidity distribution of the free neutron to proton ratio. (orig.)
Laan, E.; van Lunsen, R. H.; Everaerd, W.
2001-01-01
AIMS: To compare the effects of 3 months' tibolone treatment with the effects of placebo on sexual function (in particular, vaginal blood flow, and sexual desire and arousability) and climacteric symptoms in postmenopausal women. METHODS: A randomized, double-blind, cross-over study was conducted in
Potential effects of whole-body vibration exercises on blood flow ...
African Journals Online (AJOL)
Feasible clinical strategies such as whole-body vibration exercise (WBVE) are being used without a clear understanding of its effects. The aim of the present study is to review the effects of the WBVE on blood flow kinetics and its feasibility in different populations. Material and Methods: The level of evidence (LE) of selected ...
Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM-1.
Bhowmick, Tridib; Berk, Erik; Cui, Xiumin; Muzykantov, Vladimir R; Muro, Silvia
2012-02-10
Delivery of drugs into the endothelium by nanocarriers targeted to endothelial determinants may improve treatment of vascular maladies. This is the case for intercellular adhesion molecule 1 (ICAM-1), a glycoprotein overexpressed on endothelial cells (ECs) in many pathologies. ICAM-1-targeted nanocarriers bind to and are internalized by ECs via a non-classical pathway, CAM-mediated endocytosis. In this work we studied the effects of endothelial adaptation to physiological flow on the endocytosis of model polymer nanocarriers targeted to ICAM-1 (anti-ICAM/NCs, ~180 nm diameter). Culturing established endothelial-like cells (EAhy926 cells) and primary human umbilical vein ECs (HUVECs) under 4 dyn/cm(2) laminar shear stress for 24 h resulted in flow adaptation: cell elongation and formation of actin stress fibers aligned to the flow direction. Fluorescence microscopy showed that flow-adapted cells internalized anti-ICAM/NCs under flow, although at slower rate versus non flow-adapted cells under static incubation (~35% reduction). Uptake was inhibited by amiloride, whereas marginally affected by filipin and cadaverine, implicating that CAM-endocytosis accounts for anti-ICAM/NC uptake under flow. Internalization under flow was more modestly affected by inhibiting protein kinase C, which regulates actin remodeling during CAM-endocytosis. Actin recruitment to stress fibers that maintain the cell shape under flow may delay uptake of anti-ICAM/NCs under this condition by interfering with actin reorganization needed for CAM-endocytosis. Electron microscopy revealed somewhat slow, yet effective endocytosis of anti-ICAM/NCs by pulmonary endothelium after i.v. injection in mice, similar to that of flow-adapted cell cultures: ~40% (30 min) and 80% (3 h) internalization. Similar to cell culture data, uptake was slightly faster in capillaries with lower shear stress. Further, LPS treatment accelerated internalization of anti-ICAM/NCs in mice. Therefore, regulation of endocytosis
Effect of age on cerebral blood flow during hypothermic cardiopulmonary bypass
International Nuclear Information System (INIS)
Brusino, F.G.; Reves, J.G.; Smith, L.R.; Prough, D.S.; Stump, D.A.; McIntyre, R.W.
1989-01-01
Cerebral blood flow was measured in 20 patients by xenon 133 clearance methodology during nonpulsatile hypothermic cardiopulmonary bypass to determine the effect of age on regional cerebral blood flow during these conditions. Measurements of cerebral blood flow at varying perfusion pressures were made in patients arbitrarily divided into two age groups at nearly identical nasopharyngeal temperature, hematocrit value, and carbon dioxide tension and with equal cardiopulmonary bypass flows of 1.6 L/min/m2. The range of mean arterial pressure was 30 to 110 mm Hg for group I (less than or equal to 50 years of age) and 20 to 90 mm Hg for group II (greater than or equal to 65 years of age). There was no significant difference (p = 0.32) between the mean arterial pressure in group I (54 +/- 28 mm Hg) and that in group II (43 +/- 21 mm Hg). The range of cerebral blood flow was 14.8 to 29.2 ml/100 gm/min for group I and 13.8 to 37.5 ml/100 gm/min for group II. There was no significant difference (p = 0.37) between the mean cerebral blood flow in group I (21.5 +/- 4.6 ml/100 gm/min) and group II (24.3 +/- 8.1 ml/100 gm/min). There was a poor correlation between mean arterial pressure and cerebral blood flow in both groups: group I, r = 0.16 (p = 0.67); group II, r = 0.5 (p = 0.12). In 12 patients, a second cerebral blood flow measurements was taken to determine the effect of mean arterial pressure on cerebral blood flow in the individual patient. Changes in mean arterial pressure did not correlate with changes in cerebral blood flow (p less than 0.90). We conclude that age does not alter cerebral blood flow and that cerebral blood flow autoregulation is preserved in elderly patients during nonpulsatile hypothermic cardiopulmonary bypass
Effect of Varying Hemodynamic and Vascular Conditions on Fractional Flow Reserve: An In Vitro Study.
Kolli, Kranthi K; Min, James K; Ha, Seongmin; Soohoo, Hilary; Xiong, Guanglei
2016-06-30
The aim of this study was to investigate the impact of varying hemodynamic conditions on fractional flow reserve (ratio of pressure distal [Pd] and proximal [Pa] to stenosis under hyperemia) in an in vitro setting. Failure to achieve maximal hyperemia and the choice of hyperemic agents may have differential effects on coronary hemodynamics and, consequently, on the determination of fractional flow reserve. An in vitro flow system was developed to experimentally model the physiological coronary circulation as flow-dependent stenosis resistance in series with variable downstream resistance. Five idealized models with 30% to 70% diameter stenosis severity were fabricated using VeroClear rigid material in an Objet260 Connex printer. Mean aortic pressure was maintained at 7 levels (60-140 mm Hg) from hypotension to hypertension using a needle valve that mimicked adjustable microcirculatory resistance. A range of physiological flow rates was applied by a steady flow pump and titrated by a flow sensor. The pressure drop and the pressure ratio (Pd/Pa) were assessed for the 7 levels of aortic pressure and differing flow rates. The in vitro experimental data were coupled with pressure-flow relationships from clinical data for populations with and without myocardial infarction, respectively, to evaluate fractional flow reserve. The curve for pressure ratio and flow rate demonstrated a quadratic relationship with a decreasing slope. The absolute decrease in fractional flow reserve in the group without myocardial infarction (with myocardial infarction) was on the order of 0.03 (0.02), 0.05 (0.02), 0.07 (0.05), 0.17 (0.13) and 0.20 (0.24), respectively, for 30%, 40%, 50%, 60%, and 70% diameter stenosis, for an increase in aortic pressure from 60 to 140 mm Hg. The fractional flow reserve value, an index of physiological stenosis significance, was observed to decrease with increasing aortic pressure for a given stenosis in this idealized in vitro experiment for vascular
Experimental Investigation of Hysteretic Dynamic Capillarity Effect in Unsaturated Flow
Zhuang, Luwen; Hassanizadeh, S. Majid; Qin, Chao-Zhong; de Waal, Arjen
2017-11-01
The difference between average pressures of two immiscible fluids is commonly assumed to be the same as macroscopic capillary pressure, which is considered to be a function of saturation only. However, under transient conditions, a dependence of this pressure difference on the time rate of saturation change has been observed by many researchers. This is commonly referred to as dynamic capillarity effect. As a first-order approximation, the dynamic term is assumed to be linearly dependent on the time rate of change of saturation, through a material coefficient denoted by τ. In this study, a series of laboratory experiments were carried out to quantify the dynamic capillarity effect in an unsaturated sandy soil. Primary, main, and scanning drainage experiments, under both static and dynamic conditions, were performed on a sandy soil in a small cell. The value of the dynamic capillarity coefficient τ was calculated from the air-water pressure differences and average saturation values during static and dynamic drainage experiments. We found a dependence of τ on saturation, which showed a similar trend for all drainage conditions. However, at any given saturation, the value of τ for primary drainage was larger than the value for main drainage and that was in turn larger than the value for scanning drainage. Each data set was fit a simple log-linear equation, with different values of fitting parameters. This nonuniqueness of the relationship between τ and saturation and possible causes is discussed.
International Nuclear Information System (INIS)
Swiontkowski, M.F.; Tepic, S.; Perren, S.M.; Moor, R.; Ganz, R.; Rahn, B.A.
1986-01-01
Laser Doppler flowmetry (LDF) was used to measure bone blood flow in the rabbit femoral condyles. To correlate the LDF output signal blood cell flux to in vivo blood flow, simultaneous measurements using LDF and 85 Sr-labeled microspheres were made in an adult rabbit model. There was no correlation between the two methods for blood flow in the femoral condyles and the correlation between the two methods for blood flow in the femoral head does not achieve statistical significance. An LDF signal of 0.4 V was approximately equal to a microsphere measured flow rate of 0.4 ml blood/g bone/min. The strength of the correlation in the latter case may have been affected by (a) large arteriovenous shunts, (b) inadequate mixing of the microspheres with a left ventricular injection, and (c) insufficient numbers of microspheres present in the bone samples. When LDF was used to evaluate the effect of elevated intracapsular pressure on femoral head blood flow in skeletally mature rabbits, femoral head subchondral bone blood flow declined with increasing intracapsular pressure from a baseline value of 0.343 +/- 0.036 to a value of 0.127 +/- 0.27 at 120 cm of water pressure. The decline in femoral head blood flow was statistically significant at pressures of 40 cm of water or higher (p less than 0.001), and evaluation of sections of the proximal femora made from preterminal disulphine blue injections confirmed these findings. Intracapsular tamponade has an adverse effect on femoral head blood flow beginning well below central venous pressure and should be considered in the pathophysiology of posttraumatic and nontraumatic necrosis of the femoral head. Laser Doppler flowmetry was easy to use and appears to be a reproducible technique for evaluating femoral head blood flow, offering distinct advantages over the microsphere technique for measuring bone blood flow
Effect of flow and active mixing on bacterial growth in a colon-like geometry
Cremer, Jonas; Segota, Igor; Arnoldini, Markus; Groisman, Alex; Hwa, Terence
The large intestine harbors bacteria from hundreds of species, with bacterial densities reaching up to 1012 cells per gram. Many different factors influence bacterial growth dynamics and thus bacterial density and microbiota composition. One dominant force is flow which can in principle lead to a washout of bacteria from the proximal colon. Active mixing by Contractions of the colonic wall together with bacterial growth might counteract such flow-forces and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate Contractions. We investigate growth along the channel under a steady nutrient inflow. In the limits of no or very frequent Contractions, the device behaves like a plug-flow reactor and a chemostat respectively. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term.
Effect of flow on corrosion in catenary risers and its corrosion inhibitor performance
Energy Technology Data Exchange (ETDEWEB)
Ferreira, Pedro Altoe; Magalhaes, Alvaro Augusto Oliveira; Silva, Jussara de Mello [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Kang, Cheolho; More, Parimal P. [Det Norske Veritas (DNV), Oslo (Norway)
2009-07-01
In oil and gas production, multiphase flow is often encountered and a range of different flow patterns can be experienced in pipelines. The flow regime transition and flow characteristics can be changed with the change of pipeline topography, which affects the corrosion and the performance of corrosion inhibitor in these multiphase pipelines. This paper outlines on the effect of inclination on the flow characteristics and their subsequent effect on corrosion rates. Also, this paper presents on the performance of three candidate corrosion inhibitors under severe slugging conditions at low water cut. For the simulation of offshore flow lines and risers, the experiments were carried out in a 44 m long, 10 cm diameter, three different pipeline inclinations of 0, 3 and 45 degrees. Light condensate oil with a viscosity of 2.5 cP at room temperature was used and water cut was 20%. The results indicated that the baseline corrosion rate in 45 degrees showed higher than other inclinations. Each corrosion inhibitor showed a different inhibitor performance. (author)
Negara, Ardiansyah
2015-03-04
Numerical investigations of two-phase flows in anisotropic porous media have been conducted. In the flow model, the permeability has been considered as a full tensor and is implemented in the numerical scheme using the multipoint flux approximation within the framework of finite difference method. In addition, the experimenting pressure field approach is used to obtain the solution of the pressure field, which makes the matrix of coefficient of the global system easily constructed. A number of numerical experiments on the flow of two-phase system in two-dimensional porous medium domain are presented. In this work, the gravity is included in the model to capture the possible buoyancy-driven effects due to density differences between the two phases. Different anisotropy scenarios have been considered. From the numerical results, interesting patterns of the flow, pressure, and saturation fields emerge, which are significantly influenced by the anisotropy of the absolute permeability field. It is found that the two-phase system moves along the principal direction of anisotropy. Furthermore, the effects of anisotropy orientation on the flow rates and the cross flow index are also discussed in the paper.
Negara, Ardiansyah; Salama, Amgad; Sun, Shuyu
2015-01-01
Numerical investigations of two-phase flows in anisotropic porous media have been conducted. In the flow model, the permeability has been considered as a full tensor and is implemented in the numerical scheme using the multipoint flux approximation within the framework of finite difference method. In addition, the experimenting pressure field approach is used to obtain the solution of the pressure field, which makes the matrix of coefficient of the global system easily constructed. A number of numerical experiments on the flow of two-phase system in two-dimensional porous medium domain are presented. In this work, the gravity is included in the model to capture the possible buoyancy-driven effects due to density differences between the two phases. Different anisotropy scenarios have been considered. From the numerical results, interesting patterns of the flow, pressure, and saturation fields emerge, which are significantly influenced by the anisotropy of the absolute permeability field. It is found that the two-phase system moves along the principal direction of anisotropy. Furthermore, the effects of anisotropy orientation on the flow rates and the cross flow index are also discussed in the paper.
Rožman, Marko; Acuña, Vicenç; Petrović, Mira
2018-02-01
A mesocosm case study was conducted to gain understanding and practical knowledge on biofilm emerging contaminants biodegradation capacity under stressor and multiple stressor conditions. Two real life scenarios: I) biodegradation in a pristine intermittent stream experiencing acute pollution and II) biodegradation in a chronically polluted intermittent stream, were examined via a multifactorial experiment using an artificial stream facility. Stream biofilms were exposed to different water flow conditions i.e. permanent and intermittent water flow. Venlafaxine, a readily biodegradable pharmaceutical was used as a measure of biodegradation capacity while pollution was simulated by a mixture of four emerging contaminants (erythromycin, sulfisoxazole, diclofenac and imidacloprid in addition to venlafaxine) in environmentally relevant concentrations. Biodegradation kinetics monitored via LC-MS/MS was established, statistically evaluated, and used to link biodegradation with stress events. The results suggest that the effects of intermittent flow do not hinder and may even stimulate pristine biofilm biodegradation capacity. Chronic pollution completely reduced biodegradation in permanent water flow experimental treatments while no change in intermittent streams was observed. A combined effect of water flow conditions and emerging contaminants exposure on biodegradation was found. The decrease in biodegradation due to exposure to emerging contaminants is significantly greater in streams with permanent water flow suggesting that the short and medium term biodegradation capacity in intermittent systems may be preserved or even greater than in perennial streams. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of energetic coherent motions on the power and wake of an axial-flow turbine
Chamorro, L. P.; Hill, C.; Neary, V. S.; Gunawan, B.; Arndt, R. E. A.; Sotiropoulos, F.
2015-05-01
A laboratory experiment examined the effects of energetic coherent motions on the structure of the wake and power fluctuations generated by a model axial-flow hydrokinetic turbine. The model turbine was placed in an open-channel flow and operated under subcritical conditions. The incoming flow was locally perturbed with vertically oriented cylinders of various diameters. An array of three acoustic Doppler velocimeters aligned in the cross-stream direction and a torque transducer were used to collect high-resolution and synchronous measurements of the three-velocity components of the incoming and wake flow as well as the turbine power. A strong scale-to-scale interaction between the large-scale and broadband turbulence shed by the cylinders and the turbine power revealed how the turbulence structure modulates the turbine behavior. In particular, the response of the turbine to the distinctive von Kármán-type vortices shed from the cylinders highlighted this phenomenon. The mean and fluctuating characteristics of the turbine wake are shown to be very sensitive to the energetic motions present in the flow. Tip vortices were substantially dampened and the near-field mean wake recovery accelerated in the presence of energetic motions in the flow. Strong coherent motions are shown to be more effective than turbulence levels for triggering the break-up of the spiral structure of the tip-vortices.
The effect of wall geometry in particle-laden turbulent flow
Abdehkakha, Hoora; Iaccarino, Gianluca
2016-11-01
Particle-laden turbulent flow plays a significant role in various industrial applications, as turbulence alters the exchange of momentum and energy between particles and fluid flow. In wall-bounded flows, inhomogeneity in turbulent properties is the primary cause of turbophoresis that leads the particles toward the walls. Conversely, shear-induced lift force on the particles can become important if large scale vortical structures are present. The objective of this study is to understand the effects of geometry on fluid flows and consequently on particles transport and concentration. Direct numerical simulations combined with point particle Lagrangian tracking are performed for several geometries such as a pipe, channel, square duct, and squircle (rounded-corners duct). In non-circular ducts, anisotropic and inhomogeneous Reynolds stresses are the most influential phenomena that produce the secondary flows. It has been shown that these motions can have a significant impact on transporting momentum, vorticity, and energy from the core of the duct to the corners. The main focus of the present study is to explore the effects of near the wall structures and secondary flows on turbophoresis, lift, and particle concentration.
International Nuclear Information System (INIS)
Lear, J.L.; Raff, U.; Jain, R.; Horgan, J.G.
1988-01-01
The authors incorporated their recently developed radionuclide first pass-technique for the quantitative measurement of renal transplant perfusion into routine DTPA imaging. Using this technique they investigated the effects of acute tubular necrosis (ATN), rejection, and cyclosporing toxicity on renal blood flow in a series of 80 studies in 35 patients, with independent evaluation of renal function. Transplant flow values were as follows: normal functioning, 439 mL/min +-83; ATN 248 mL/min +-63; rejection, 128 mL/min +-58; cyclosporing toxicity, 284 mL/min +-97; (normal flow in nontransplanted kidneys, approximately 550 mL/min). Differences between normal functioning, ATN, and rejection were significant (P < .05). Interestingly, immediate postsurgical hyperemia frequently occurred, with flow values sometimes exceeding 700 mL/min
The effect of gas and fluid flows on nonlinear lateral vibrations of rotating drill strings
Khajiyeva, Lelya; Kudaibergenov, Askar; Kudaibergenov, Askat
2018-06-01
In this work we develop nonlinear mathematical models describing coupled lateral vibrations of a rotating drill string under the effect of external supersonic gas and internal fluid flows. An axial compressive load and a torque also affect the drill string. The mathematical models are derived by the use of Novozhilov's nonlinear theory of elasticity with implementation of Hamilton's variation principle. Expressions for the gas flow pressure are determined according to the piston theory. The fluid flow is considered as added mass inside the curved tube of the drill string. Using an algorithm developed in the Mathematica computation program on the basis of the Galerkin approach and the stiffness switching method the numerical solution of the obtained approximate differential equations is found. Influences of the external loads, drill string angular speed of rotation, parameters of the gas and fluid flows on the drill string vibrations are shown.
Bending the law: tidal bending and its effects on ice viscosity and flow
Rosier, S.; Gudmundsson, G. H.
2017-12-01
Many ice shelves are subject to strong ocean tides and, in order to accommodate this vertical motion, the ice must bend within the grounding zone. This tidal bending generates large stresses within the ice, changing its effective viscosity. For a confined ice shelf, this is particularly relevant because the tidal bending stresses occur along the sidewalls, which play an important role in the overall flow regime of the ice shelf. Hence, tidal bending stresses will affect both the mean and time-varying components of ice shelf flow. GPS measurements reveal strong variations in horizontal ice shelf velocities at a variety of tidal frequencies. We show, using full-Stokes viscoelastic modelling, that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of horizontal ice shelf flow. Furthermore, our model shows that in the absence of a vertical tidal forcing, the mean flow of the ice shelf is reduced considerably.
Effects of external boundary layer flow on jet noise in flight
Sarohia, V.; Massier, P. F.
1976-01-01
The effects on jet flow of the external boundary layer flow emanating from the trailing edge of an engine cowl in flight has been shown to be the main reason for the disparity between predicted and experimental results obtained from flight measurements. Flight simulation experiments indicate that the external boundary layer flow tends to shield the jet flow in flight. This in turn modifies the jet noise source in flight and consequently the radiated noise from aircraft in flight. Close to 90 deg angle to the intake and in the forward quadrant, this study indicates that the far field jet noise and its spectrum scales approximately with the absolute jet velocity instead of the relative velocity as has been assumed in the existing prediction models.
Effects of High-Intensity Blood Flow Restriction Exercise on Muscle Fatigue
Directory of Open Access Journals (Sweden)
Neto Gabriel R.
2014-07-01
Full Text Available Strength training combined with blood flow restriction (BFR have been used to improve the levels of muscle adaptation. The aim of this paper was to investigate the acute effect of high intensity squats with and without blood flow restriction on muscular fatigue levels. Twelve athletes (aged 25.95 ± 0.84 years were randomized into two groups: without Blood Flow Restriction (NFR, n = 6 and With Blood Flow Restriction (WFR, n = 6 that performed a series of free weight squats with 80% 1-RM until concentric failure. The strength of the quadriceps extensors was assessed in a maximum voluntary isometric contraction integrated to signals from the surface electromyogram. The average frequency showed significant reductions in the WFR group for the vastus lateralis and vastus medialis muscles, and intergroup only for the vastus medialis. In conclusion, a set of squats at high intensity with BFR could compromise muscle strength immediately after exercise, however, differences were not significant between groups.
Numerical study of effect of compressor swirling flow on combustor design in a MTE
Mu, Yong; Wang, Chengdong; Liu, Cunxi; Liu, Fuqiang; Hu, Chunyan; Xu, Gang; Zhu, Junqiang
2017-08-01
An effect of the swirling flow on the combustion performance is studied by the computational fluid dynamics (CFD) in a micro-gas turbine with a centrifugal compressor, dump diffuser and forward-flow combustor. The distributions of air mass and the Temperature Pattern Factor (as: Overall Temperature Distribution Factor -OTDF) in outlet are investigated with two different swirling angles of compressed air as 0° and 15° in three combustors. The results show that the influences of swirling flow on the air distribution and OTDF cannot be neglected. Compared with no-swirling flow, the air through outer liner is more, and the air through the inner liner is less, and the pressure loss is bigger under the swirling condition in the same combustor. The Temperature Pattern Factor changes under the different swirling conditions.
The effect of surfactant on stratified and stratifying gas-liquid flows
Heiles, Baptiste; Zadrazil, Ivan; Matar, Omar
2013-11-01
We consider the dynamics of a stratified/stratifying gas-liquid flow in horizontal tubes. This flow regime is characterised by the thin liquid films that drain under gravity along the pipe interior, forming a pool at the bottom of the tube, and the formation of large-amplitude waves at the gas-liquid interface. This regime is also accompanied by the detachment of droplets from the interface and their entrainment into the gas phase. We carry out an experimental study involving axial- and radial-view photography of the flow, in the presence and absence of surfactant. We show that the effect of surfactant is to reduce significantly the average diameter of the entrained droplets, through a tip-streaming mechanism. We also highlight the influence of surfactant on the characteristics of the interfacial waves, and the pressure gradient that drives the flow. EPSRC Programme Grant EP/K003976/1.
International Nuclear Information System (INIS)
Kajihara, Tomoyuki; Kaiho, Kazuhiro; Okawa, Tomio
2014-01-01
Subcooled flow boiling plays an important role in boiling water reactors because it influences the heat transfer performance from fuel rods, two-phase flow stabilities, and neutron moderation characteristics. In the present study, flow visualization of water subcooled flow boiling in a vertical heated channel was carried out to investigate the mechanisms of void fraction development. The two surfaces of distinctly different contact angles were used as the heated surface to investigate the effect of the surface wettability. It was observed that with an increase in the wall heat flux, more nucleation sites were activated and larger bubbles were produced at low-frequency. It was considered that formation of these large bubbles primarily contributed to the void fraction development. (author)
INVESTIGATING THE EFFECT OF SLURRY SEAWATER FLOW IN CARBON-STEEL ELBOWS
Directory of Open Access Journals (Sweden)
Mohamed Shehadeh
2013-12-01
Full Text Available Understanding the failure mechanism due to erosion helps in introducing predictive means for parts that are vulnerable to erosion–corrosion effects, such as elbows. This paper is concerned with studying the behavior of steel elbows working in erosive environments. Rates of iron losses due to both flow rate variations and sand concentration variations were investigated. In order to avoid interference from other parts of the system, a PVC test rig, fitted with only one steel elbow at a time, was constructed. The flow rate was controlled to cover both the laminar and turbulent flow regimes. The sand concentration varied from nil up to 9 grams per liter. A spectrophotometer was utilized to measure the quantity of iron losses. Results showed that the critical sand concentration for the erosion mechanism is 3 g/l. Also an empirical formula was developed for estimating the erosion-corrosion rate in laminar and turbulent flow regimes with different sand contamination levels.
Numerical analysis of non-Newtonian rheology effect on hydrocyclone flow field
Directory of Open Access Journals (Sweden)
Lin Yang
2015-03-01
Full Text Available In view of the limitations of the existing Newton fluid effects on the vortex flow mechanism study, numerical analysis of non Newton fluid effects was presented. Using Reynolds stress turbulence model (RSM and mixed multiphase flow model (Mixture of FLUENT (fluid calculation software and combined with the constitutive equation of apparent viscosity of non-Newtonian fluid, the typical non-Newtonian fluid (drilling fluid, polymer flooding sewage and crude oil as medium and Newton flow field (water as medium were compared by quantitative analysis. Based on the research results of water, the effects of non-Newtonian rheology on the key parameters including the combined vortex motion index n and tangential velocity were analyzed. The study shows that: non-Newtonian rheology has a great effect on tangential velocity and n value, and tangential velocity decreases with non-Newtonian increasing. The three kinds of n values (constant segment are: 0.564(water, 0.769(polymer flooding sewage, 0.708(drilling fluid and their variation amplitudes are larger than Newtonian fluid. The same time, non-Newtonian rheology will lead to the phenomenon of turbulent drag reduction in the vortex flow field. Compared with the existing formula calculation results shown, the calculation result of non-Newtonian rheology is most consistent with the simulation result, and the original theory has large deviations. The study provides reference for theory research of non-Newtonian cyclone separation flow field.
Performance improvement of a cross-flow hydro turbine by air layer effect
International Nuclear Information System (INIS)
Choi, Y D; Yoon, H Y; Inagaki, M; Ooike, S; Kim, Y J; Lee, Y H
2010-01-01
The purpose of this study is not only to investigate the effects of air layer in the turbine chamber on the performance and internal flow of the cross-flow turbine, but also to suggest a newly developed air supply method. Field test is performed in order to measure the output power of the turbine by a new air supply method. CFD analysis on the performance and internal flow of the turbine is conducted by an unsteady state calculation using a two-phase flow model in order to embody the air layer effect on the turbine performance effectively.The result shows that air layer effect on the performance of the turbine is considerable. The air layer located in the turbine runner passage plays the role of preventing a shock loss at the runner axis and suppressing a recirculation flow in the runner. The location of air suction hole on the chamber wall is very important factor for the performance improvement. Moreover, the ratio between air from suction pipe and water from turbine inlet is also significant factor of the turbine performance.
MHD effects of the solar wind flow around planets
Directory of Open Access Journals (Sweden)
H. K. Biernat
2000-01-01
Full Text Available The study of the interaction of the solar wind with magnetized and unmagnetized planets forms a central topic of space research. Focussing on planetary magnetosheaths, we review some major developments in this field. Magnetosheath structures depend crucially on the orientation of the interplanetary magnetic field, the solar wind Alfvén Mach number, the shape of the obstacle (axisymmetric/non-axisymmetric, etc., the boundary conditions at the magnetopause (low/high magnetic shear, and the degree of thermal anisotropy of the plasma. We illustrate the cases of Earth, Jupiter and Venus. The terrestrial magnetosphere is axisymmetric and has been probed in-situ by many spacecraft. Jupiter's magnetosphere is highly non-axisymmetric. Furthermore, we study magnetohydrodynamic effects in the Venus magnetosheath.
Effect of air on water capillary flow in silica nanochannels
DEFF Research Database (Denmark)
Zambrano, Harvey; Walther, Jens Honore; Oyarzua, Elton
2013-01-01
, with the fabrication of microsystems integrated by nanochannels, a thorough understanding of the transport of fluids in nanoconfinement is required for a successful operation of the functional parts of such devices. In this work, Molecular Dynamics simulations are conducted to study the spontaneous imbibition of water...... in sub 10 nm silica channels. The capillary filling speed is computed in channels subjected to different air pressures. In order to describe the interactions between the species, an effective force field is developed, which is calibrated by reproducing the water contact angle. The results show...... that the capillary filling speed qualitatively follows the classical Washburn model, however, quantitatively it is lower than expected. Furthermore, it is observed that the deviations increase as air pressure is higher. We attribute the deviations to amounts of air trapped at the silica-water interface which leads...
The effect of boarders on emergency department process flow.
Fogarty, Eoin; Saunders, Jean; Cummins, Fergal
2014-05-01
Emergency department (ED) overcrowding with boarders and waiting times are a significant concern in many countries. We aim to show the relationship between boarders in the ED and the percentage time to disposition in under 6 h for our ED patients. A review was carried out to show the percentage of patients presenting to the ED compliant with a 6-h standard per day compared to the number of attendances, the number of admissions to the hospital, and the number of boarders in the ED per day. Over the 2-year study period, there was an average 0.37% fall in the ED's rate of compliance per day, with a 6-h standard for each boarder in the ED. Boarding patients in the ED has a negative effect on compliance with our 6-h standard of time to disposition. Copyright © 2014 Elsevier Inc. All rights reserved.
The Effect of Flowing Water on Turbine Rotor Vibrations
Energy Technology Data Exchange (ETDEWEB)
Jansson, Ida
2010-07-01
There is a lack of standardized rules on how the fluid in the turbine should be included in rotor models of hydraulic machinery. This thesis is an attempt to shed some light on this issue. We approach the problem from two viewpoints, situated at place at a hydropower plant and by mathematical analysis. One goal of the thesis is to develop a measurement system that monitors the instantaneous pressure at several locations of a runner blade on a 10 MW Kaplan prototype in Porjus along Lule river. Paper A outlines the development of the measurement system and the instrumentation of the runner blade. Miniature piezo-resistive pressure transducers were mounted flush to the surface. If instrumentation is successful, the pressure field of the runner blade could be measured simultaneously as the loads and displacements of the guide bearings and the generator. The second objective is concerned with how the motion-induced fluid force affects the dynamic behaviour of the rotor. Inertia and angular momentum of the fluid and shrouding are expected to influence the dynamic behaviour of the turbine. Paper B scrutinizes this assumption by presenting a simple fluid-rotor model that captures the effects of inertia and angular momentum of the fluid on the motion of a confined cylinder. The simplicity of the model allows for powerful analytical solution methods. The results show that fluid inertia, angular momentum and shrouding of hydraulic turbines could have substantial effects on lateral rotor vibrations. This calls for further investigation with a more complex fluid-rotor model that accounts for flexural bending modes.
The effects of curvature on the flow field in rapidly rotating gas centrifuges
International Nuclear Information System (INIS)
Wood, H.G.; Jordan, J.A.
1984-01-01
The effects of curvature on the fluid dynamics of rapidly rotating gas centrifuges are studied. A governing system of a linear partial differential equation and boundary conditions is derived based on a linearization of the equations for viscous compressible flow. This system reduces to the Onsager pancake model if the effects of curvature are neglected. Approximations to the solutions of the governing equations with and without curvature terms are obtained via a finite-element method. Two examples are considered: first where the flow is driven by a thermal gradient at the wall of the centrifuge, and then for the flow being driven by the introduction and removal of mass through the ends of the centrifuge. Comparisons of the results obtained show that, especially for the second example, the inclusion of the terms due to curvature in the model can have an appreciable effect on the solution. (author)
Artificial blood-flow controlling effects of inhomogeneity of twisted magnetic fields
Nakagawa, Hidenori; Ohuchi, Mikio
2017-06-01
We developed a blood-flow controlling system using magnetic therapy for some types of nervous diseases. In our research, we utilized overlapped extremely low frequency (ELF) fields for the most effective blood-flow for the system. Results showed the possibility that the inhomogeneous region obtained by overlapping the fields at 50 Hz, namely, a desirably twisted field revealed a significant difference in induced electromotive forces at the insertion points of electrodes. In addition, ELF exposures with a high inhomogeneity of the twisted field at 50 Hz out of phase were more effective in generating an induced electromotive difference by approximately 31%, as contrasted with the difference generated by the exposure in phase. We expect that the increase of the inhomogeneity of the twisted field around a blood vessel can produce the most effective electromotive difference in the blood, and also moderately affect the excitable cells relating to the autonomic nervous system for an outstanding blood-flow control in vivo.
Dyasnoor, Sujatha; Kamath, Shwetha; Khader, Nishat Fatima Abdul
2017-01-01
Xerostomia and hyposalivation are associated with diabetes. Research is sparse regarding electrostimulation as a mainstream therapy for salivary gland hypofunction. To clinically evaluate the effectiveness of transcutaneous electric nerve stimulation (TENS) therapy in stimulating whole salivary flow among patients with xerostomia and hyposalivation caused by diabetes mellitus. Forty patients between age 30 to 75 years with diabetes mellitus categorized as controlled or uncontrolled who had subjective symptoms of xerostomia and an objective sign of hyposalivation were included in a prospective study. Unstimulated saliva through the "low forced spitting" method and stimulated saliva collection using TENS were assessed and compared. Longer-term effects of TENS application were evaluated by recalling the patient 24 hours later. A statistically significant increase in stimulated whole saliva after TENS application in continuous mode (p diabetes. Burst mode inferred a statistically significant decrease in salivary flow (p diabetes with xerostomia and hyposalivation, TENS was highly effective in stimulating whole salivary flow.
Effects of rotation on flow in an asymmetric rib-roughened duct: LES study
International Nuclear Information System (INIS)
Borello, D.; Salvagni, A.; Hanjalić, K.
2015-01-01
Highlights: • Ribbed duct reproduces most of the phenomena occurring in internal cooling channels of blade turbines (rotor and stator). • LES analysis of the flow in a ribbed duct was carried out aiming at detecting the influence of rotation on the turbulence. • In destabilizing conditions, rotation enhances turbulence close to the ribbed duct thus enhancing removal of fluid from the wall and improving mixing. • In stabilizing conditions, turbulence is suppressed by rotation close to the ribbed wall. - Abstract: We report on large-eddy simulations (LES) of fully-developed asymmetric flow in a duct of a rectangular cross-section in which square-sectioned, equally-spaced ribs oriented perpendicular to the flow direction, were mounted on one of the walls. The configuration mimics a passage of internal cooling of a gas-turbine blade. The duct flow at a Reynolds number Re = 15,000 (based on hydraulic diameter D_h and bulk flow velocity U_0) was subjected to clock-wise (stabilising) and anti-clock-wise (destabilising) orthogonal rotation at a moderate rotational number Ro = ΩD_h/U_0 = 0.3, where Ω is the angular velocity. The LES results reproduced well the available experimental results of Coletti et al. (2011) (in the mid-plane adjacent to the ribbed wall) and provided insight into the whole duct complementing the reference PIV measurement. We analyzed the effects of stabilising and destabilising rotation on the flow, vortical structures and turbulence statistics by comparison with the non-rotating case. The analysis includes the identification of depth of penetration of the rib-effects into the bulk flow, influence of flow three-dimensionality and the role of secondary motions, all shown to be strongly affected by the rotation and its direction.
Castellarin, A.; Galeati, G.; Ceola, S.; Pugliese, A.; Ventura, M.; Montanari, A.
2017-12-01
The anthropogenic alteration of the natural flow regime of a river for hydropower production can significantly modify the processes and functions associated with fluvial ecosystems. In order to preserve the fluvial habitat downstream of dams and diversion structures, environmental flows are commonly defined. Such environmental flows are generally computed from empirical methodologies, which are seldom based on site-specific studies, and may not be representative of local ecological and hydraulic conditions. Here we present the results of a quantitative analysis on the effectiveness of two alternative environmental flow scenarios prescribed in Central Italy (time-invariant experimental and empirically-based flow release versus time-variant hydrogeomorphologically-based flow release) and their impact on hydropower production and fish habitat suitability. The latter is examined by means of several models of habitat suitability curve, which is a well-known approach capable of analysing fluvial species preferences as a function of key eco-hydraulic features, such as water depth, flow velocity and river substrate. The results show an evident loss of hydropower production moving from the time-invariant experimental flow release to the hydrogeomorphological one (nearly 20% at the annual scale). Concerning the effects in terms of fish habitat suitability, our outcomes are less obvious, since they are species- and life stage-specific. The proposed analysis, which can be easily adapted to different riparian habitats and hydrological contexts, is a useful tool to guide the derivation of optimal water resource management strategies in order to ensure both hydropower production and fluvial ecosystem protection.
Directory of Open Access Journals (Sweden)
Yu. M. Timofeev
2016-01-01
Full Text Available The turbulent-flow throttles are used in pneumatic systems and gas-supply ones to restrict or measure gas mass flow. It is customary to install the throttles in joints of pipelines (in teejoints and cross tees or in joints of pipelines with pneumatic automation devices Presently, in designing the pneumatic systems and gas-supply ones a gas mass flow through a throttle is calculated by a known equation derived from the Saint-Venant-Vantсel formula for the adiabatic flow of ideal gas through a nozzle from an unrestrictedly high capacity tank. Neglect of gas velocity at the throttle inlet is one of the assumptions taken in the development of the above equation. As may be seen in practice, in actual systems the diameters of the throttle and the pipe wherein it is mounted can be commensurable. Neglect of the inlet velocity therewith can result in an error when determining the required throttle diameter in design calculation and a flow rate in checking calculation, as well as when measuring a flow rate in the course of the test. The theoretical study has revealed that the flow velocity at the throttle inlet is responsible for two parameter values: the outlet flow velocity and the critical pressure ratio, which in turn determine the gas mass flow value. To calculate the gas mass flow, the dependencies are given in the paper, which allow taking into account the flow rate at the throttle inlet. The analysis of obtained dependencies has revealed that the degree of influence of inlet flow rate upon the mass flow is defined by two parameters: pressure ratio at the throttle and open area ratio of the throttle and the pipe wherein it is mounted. An analytical investigation has been pursued to evaluate the extent to which the gas mass flow through the throttle is affected by the inlet flow rate. The findings of the investigation and the indications for using the present dependencies are given in this paper. By and large the investigation allowed the
The plastic flow localization effect on crystalline material
International Nuclear Information System (INIS)
Pajot, A.
2011-01-01
Irradiation affects the mechanical properties of materials. In particular, an increase of yield strength followed by a decrease of ductility and a reduction of the elongation to fracture are observed above a threshold irradiation dose. The last two phenomena are correlated with the appearance of bands free of defects (clear bands) in which plastic deformation is confined. These bands also determine accumulation of dislocations at grain boundaries, thereby favouring local grain decohesion and possibly initiating fracture. Clear bands have an important impact on metal resistance, nevertheless our level of understanding is not sufficient to evaluate quantitatively their effect on the loss of ductility and reduction of elongation to fracture that are observed experimentally. A clear band is a microstructural defect, created when loading an irradiated material. Its complex interaction with defects on the nano scale affects the behaviour of the metal at the macroscopic scale. A full understanding implies the application of a multi scale modeling approach. This explains why, even though clear bands have first been
Robotic milking: Technology, farm design, and effects on work flow.
Rodenburg, Jack
2017-09-01
Robotic milking reduces labor demands on dairy farms of all sizes and offers a more flexible lifestyle for farm families milking up to 250 cows. Because milking is voluntary, barn layouts that encourage low-stress access by providing adequate open space near the milking stations and escape routes for waiting cows improve milking frequency and reduce fetching. Because lame cows attend less often, preventing lameness with comfortable stalls, clean alley floors, and effective foot bathing warrants special emphasis in robotic dairies. Variable milking intervals create challenges for foot bathing, sorting and handling, and dealing with special-needs cows. Appropriate cow routing and separation options at the milking stations are needed to address these challenges and ensure that the expected labor savings are realized. Protocols and layout and gating should make it possible for a herd worker to complete all handling tasks alone. Free traffic and guided traffic systems yield similar results when excellent management is applied or when the number of cows is well below capacity. In less ideal circumstances, guided traffic and the use of commitment pens result in longer standing times and stress, particularly for lower ranking cows, and poor management with free traffic results in more labor for fetching. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Collective flow effects observed with the Plastic Ball
International Nuclear Information System (INIS)
Gustafsson, H.A.; Gutbrod, H.H.; Kolb, B.
1984-01-01
At the Bevalac, collisions of Ca + Ca and Nb + Nb at 400 MeV/nucleon have been studied with the Plastic Ball/Plastic Wall detector. The Plastic Ball covers the angular region between 10 0 and 160 0 . It consists of 815 detectors where each module is a ΔE-E telescope capable of identifying the hydrogen and helium isotopes and positive pions. The ΔE measurement is performed with a 4-mm thick CaF crystal and the E counter is a 36-cm long plastic scintillator. Both signals are read out by a single photomultiplier tube. Due to the different decay times of the two scintillators, ΔE and E information can be separated by gating two different ADC-s at different times. The positive pions are additionally identified by measuring the delayed decay. The Platic Wall, placed 6 m downstream from the target, covers the angular range from 0 0 to 10 0 and measures time of flight, energy loss and position of the reaction products. In addition, the information from the inner counters (0 0 to 2 0 ) is used to produce a trigger signal. Data show two different collection effects
The effect of a small creek valley on drainage flows in the Rocky Flats region
International Nuclear Information System (INIS)
Porch, W.
1996-01-01
Regional scale circulation and mountain-plain interactions and effects on boundary layer development are important for understanding the fate of an atmospheric release from Rocky Flats, Colorado. Numerical modeling of Front Range topographic effects near Rocky Flats have shown that though the Front Range dominates large scale flow features, small-scale terrain features near Rocky Flats are important to local transport during nighttime drainage flow conditions. Rocky Flats has been the focus of interest for the Department of Energy's Atmospheric Studies in Complex Terrain (ASCOT) program
Hall effects on unsteady MHD flow between two rotating disks with non-coincident parallel axes
Energy Technology Data Exchange (ETDEWEB)
Barik, R.N., E-mail: barik.rabinarayan@rediffmail.com [Department of Mathematics, Trident Academy of Technology, Bhubaneswar (India); Dash, G.C., E-mail: gcdash@indiatimes.com [Department of Mathematics, S.O.A. University, Bhubaneswar (India); Rath, P.K., E-mail: pkrath_1967@yahoo.in [Department of Mathematics, B.R.M. International Institute of Technology, Bhubaneswar (India)
2013-01-15
Hall effects on the unsteady MHD rotating flow of a viscous incompressible electrically conducting fluid between two rotating disks with non-coincident parallel axes have been studied. There exists an axisymmetric solution to this problem. The governing equations are solved by applying Laplace transform method. It is found that the torque experienced by the disks decreases with an increase in either the Hall parameter, m or the rotation parameter, S{sup 2}. Further, the axis of rotation has no effect on the fluid flow. (author)
Hall effects on unsteady MHD flow between two rotating disks with non-coincident parallel axes
International Nuclear Information System (INIS)
Barik, R.N.; Dash, G.C.; Rath, P.K.
2013-01-01
Hall effects on the unsteady MHD rotating flow of a viscous incompressible electrically conducting fluid between two rotating disks with non-coincident parallel axes have been studied. There exists an axisymmetric solution to this problem. The governing equations are solved by applying Laplace transform method. It is found that the torque experienced by the disks decreases with an increase in either the Hall parameter, m or the rotation parameter, S 2 . Further, the axis of rotation has no effect on the fluid flow. (author)
Assessment of glomerular filtration rate and effective renal plasma flow in cystic fibrosis
International Nuclear Information System (INIS)
Spino, M.; Chai, R.P.; Isles, A.F.; Balfe, J.W.; Brown, R.G.; Thiessen, J.J.; MacLeod, S.M.
1985-01-01
A study was conducted to examine renal function in 10 healthy control subjects and eight patients with cystic fibrosis in stable condition. Sequential bolus injections of /sup 99m/Tc-DTPA and 125 I-OIH were administered to assess glomerular filtration rate and effective renal plasma flow, respectively. Blood was subsequently collected for 3 hours, and urine for 24 hours. Renal clearances of both radioisotope markers were virtually identical in patients and controls. Inasmuch as neither glomerular filtration rate nor effective renal plasma flow was enhanced in patients with cystic fibrosis, increased clearance of drugs in these patients is unlikely to be the result of enhanced glomerular filtration or tubular secretion
Effect of pore size distribution and flow segregation on dispersion in porous media
International Nuclear Information System (INIS)
Carbonell, R.G.
1978-11-01
In order to study the effect of the pore size distribution and flow segregation on dispersion in a porous media, the dispersion of solute in an array of parallel pores is considered. Equations are obtained for the dispersion coefficient in laminar and turbulent flow, as a function of the particle Peclet number. The theory fits quite well cumulative experimental data from various researchers in the Peclet number range from 10 -3 to 10 6 . The model also predicts some trends, backed by experimental data, regarding the effect of particle size, particle size distribution and fluid velocity on dispersion
Computations of the Magnus effect for slender bodies in supersonic flow
Sturek, W. B.; Schiff, L. B.
1980-01-01
A recently reported Parabolized Navier-Stokes code has been employed to compute the supersonic flow field about spinning cone, ogive-cylinder, and boattailed bodies of revolution at moderate incidence. The computations were performed for flow conditions where extensive measurements for wall pressure, boundary layer velocity profiles and Magnus force had been obtained. Comparisons between the computational results and experiment indicate excellent agreement for angles of attack up to six degrees. The comparisons for Magnus effects show that the code accurately predicts the effects of body shape and Mach number for the selected models for Mach numbers in the range of 2-4.
Effect of ribbed and smooth coolant cross-flow channel on film cooling
International Nuclear Information System (INIS)
Peng, Wei; Sun, Xiaokai; Jiang, Peixue; Wang, Jie
2017-01-01
Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.
Effect of ribbed and smooth coolant cross-flow channel on film cooling
Energy Technology Data Exchange (ETDEWEB)
Peng, Wei; Sun, Xiaokai [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); Jiang, Peixue, E-mail: jiangpx@tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Educations, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Wang, Jie [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)
2017-05-15
Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.
Energy Technology Data Exchange (ETDEWEB)
Huang, Xu-Guang [Physics Department and Center for Particle Physics and Field Theory, Fudan University, Shanghai 200433 (China); Yin, Yi [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Liao, Jinfeng [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)
2016-12-15
We report our recent progress on the search of Chiral Magnetic Effect (CME) by developing new measurements as well as by hydrodynamic simulations of CME and background effects, with both approaches addressing the pressing issue of separating flow-driven background contributions and possible CME signal in current heavy ion collision measurements.
Effects of isoflurane anesthesia and pilocarpine on rat parotid saliva flow
DEFF Research Database (Denmark)
Knudsen, Jacob Dronninglund; Nauntofte, Birgitte; Josipovic, M
2011-01-01
The purpose of this study was to investigate the effects of isoflurane on unstimulated and pilocarpine-stimulated parotid saliva secretion. Ten male Sprague-Dawley rats weighing 350-400 g were randomized into two groups, and the saliva flow rate and lag phase were measured at two doses of isoflur......The purpose of this study was to investigate the effects of isoflurane on unstimulated and pilocarpine-stimulated parotid saliva secretion. Ten male Sprague-Dawley rats weighing 350-400 g were randomized into two groups, and the saliva flow rate and lag phase were measured at two doses...... of isoflurane in a crossover study design. Increasing the isoflurane concentration from 1% to 2% was associated with a 19% decrease in saliva secretion rate, and the lag to saliva secretion was increased by 155%. To clarify whether the effect of isoflurane (1.5%) on the parotid flow varied with stimulus...... intensity, we measured the parotid flow induced by seven different doses of pilocarpine on sham-irradiated rats and rats irradiated with single doses of 15 Gy. A maximal pilocarpine response was obtained with 1.5 mg/kg in both irradiated and sham-irradiated rats; however, the parotid flow of the irradiated...
Inlet effects on roll-wave development in shallow turbulent open-channel flows
Directory of Open Access Journals (Sweden)
Campomaggiore Francesca
2016-03-01
Full Text Available The present work investigates the effect of the flow profile induced by an inlet condition on the roll-wave evolution in turbulent clear-water flows. The study employs theoretical and numerical analyses. Firstly, the influence of the inlet condition on the spatial evolution of a single perturbation in a hypercritical flow is examined through the expansion near a wavefront analysis. The results show that an accelerated unperturbed profile reduces the disturbance spatial growth. A decelerated profile causes an increase. The effect of the flow profile on the spatial evolution of roll-wave trains is then numerically investigated solving the Saint Venant equations with a second-order Runge-Kutta Total Variation Diminishing (TVD Finite Volume scheme. The numerical simulations comply with the analytical results for the initial and transition phases of the roll-wave development. The unperturbed profile influences even the roll-waves statistical characteristics in the final stage, with a more evident effect in case of accelerated profiles. The influence of the flow profile should be therefore accounted for in the formulation of predictive criteria for roll-waves appearance based on the estimation of the disturbance spatial growth rate.
Effects of emergency department expansion on emergency department patient flow.
Mumma, Bryn E; McCue, James Y; Li, Chin-Shang; Holmes, James F
2014-05-01
Emergency department (ED) crowding is an increasing problem associated with adverse patient outcomes. ED expansion is one method advocated to reduce ED crowding. The objective of this analysis was to determine the effect of ED expansion on measures of ED crowding. This was a retrospective study using administrative data from two 11-month periods before and after the expansion of an ED from 33 to 53 adult beds in an academic medical center. ED volume, staffing, and hospital admission and occupancy data were obtained either from the electronic health record (EHR) or from administrative records. The primary outcome was the rate of patients who left without being treated (LWBT), and the secondary outcome was total ED boarding time for admitted patients. A multivariable robust linear regression model was used to determine whether ED expansion was associated with the outcome measures. The mean (±SD) daily adult volume was 128 (±14) patients before expansion and 145 (±17) patients after. The percentage of patients who LWBT was unchanged: 9.0% before expansion versus 8.3% after expansion (difference = 0.6%, 95% confidence interval [CI] = -0.16% to 1.4%). Total ED boarding time increased from 160 to 180 hours/day (difference = 20 hours, 95% CI = 8 to 32 hours). After daily ED volume, low-acuity area volume, daily wait time, daily boarding hours, and nurse staffing were adjusted for, the percentage of patients who LWBT was not independently associated with ED expansion (p = 0.053). After ED admissions, ED intensive care unit (ICU) admissions, elective surgical admissions, hospital occupancy rate, ICU occupancy rate, and number of operational ICU beds were adjusted for, the increase in ED boarding hours was independently associated with the ED expansion (p = 0.005). An increase in ED bed capacity was associated with no significant change in the percentage of patients who LWBT, but had an unintended consequence of an increase in ED boarding hours. ED expansion alone does
Effects of Urbanization on the Flow Regimes of Semi-Arid Southern California Streams
Hawley, R. J.; Bledsoe, B. P.; Stein, E. D.
2010-12-01
Stream channel erosion and associated habitat degradation are pervasive in streams draining urban areas in the southwestern US. The prevalence of these impacts results from the inherent sensitivity of streams in semi-arid climates to changes in flow and sediment regimes, and past inattention to management of geomorphically effective flows. Addressing this issue is difficult due to the lack of data linking ranges of flow (from small to large runoff events) to geomorphic channel response. Forty-three U. S. Geological Survey gages with record lengths greater than ~15 yrs and watershed areas less than ~250 square kilometers were used to empirically model the effects of urbanization on streams in southern California. The watersheds spanned a gradient of urban development and ranged from 0 to 23% total impervious area in 2001. With little flow control at the subdivision scale to date, most impervious area in the region is relatively well-connected to surface-drainage networks. Consequently, total impervious area was an effective surrogate for urbanization, and emerged as a significant (p approach expands on previous scaling procedures to produce histogram-style cumulative flow duration graphs for ungaged sites based on urbanization extent and other watershed descriptors. Urbanization resulted in proportionally-longer durations of all geomorphically-effective flows, with a more pronounced effect on the durations of moderate flows. For example, an average watershed from the study domain with ~20% imperviousness could experience five times as many days of mean daily flows on the order of 100 cfs (3 cubic meters per second) and approximately three times as many days on the order of 1,000 cfs (30 cubic meters per second) relative to the undeveloped setting. Increased duration of sediment-transporting flows is a primary driver of accelerated changes in channel form that are often concurrent with urbanization throughout southern California, particularly in unconfined, fine
Kahveci, E. E.; Taymaz, I.
2018-03-01
In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.
Schutter, M.; Crocker, J.; Paijmans, A.J.; Janse, M.; Osinga, R.; Verreth, J.A.J.; Wijffels, R.H.
2010-01-01
To study the effect of water flow on coral growth, four series of ten coral nubbins of Galaxea fascicularis were exposed to four different flow regimes (0, 10, 20, and 25 cm s-1, bidirectional flow) for 42 weeks. Buoyant weight, surface area, and polyp number were measured at regular intervals. Net
Effect of water and air flow on concentric tubular solar water desalting system
International Nuclear Information System (INIS)
Arunkumar, T.; Jayaprakash, R.; Ahsan, Amimul; Denkenberger, D.; Okundamiya, M.S.
2013-01-01
Highlights: ► We optimized the augmentation of condense by enhanced desalination methodology. ► We measured ambient together with solar radiation intensity. ► The effect of cooling air and water flowing over the cover was studied. -- Abstract: This work reports an innovative design of tubular solar still with a rectangular basin for water desalination with flowing water and air over the cover. The daily distillate output of the system is increased by lowering the temperature of water flowing over it (top cover cooling arrangement). The fresh water production performance of this new still is observed in Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore (11° North, 77° East), India. The water production rate with no cooling flow was 2050 ml/day (410 ml/trough). However, with cooling air flow, production increased to 3050 ml/day, and with cooling water flow, it further increased to 5000 ml/day. Despite the increased cost of the water cooling system, the increased output resulted in the cost of distilled water being cut in roughly half. Diurnal variations of a few important parameters are observed during field experiments such as water temperature, cover temperature, air temperature, ambient temperature and distillate output.
Effect of 3-D moderator flow configurations on the reactivity of CANDU nuclear reactors
International Nuclear Information System (INIS)
Zadeh, Foad Mehdi; Etienne, Stephane; Chambon, Richard; Marleau, Guy; Teyssedou, Alberto
2017-01-01
Highlights: • 3-D CFD simulations of CANDU-6 moderator flows are presented. • A thermal-hydraulic code using thermal physical fluid properties is used. • The numerical approach and convergence is validated against available data. • Flow configurations are correlated using Richardson’s number. • The interaction between moderator temperatures with reactivity is determined. - Abstract: The reactivity of nuclear reactors can be affected by thermal conditions prevailing within the moderator. In CANDU reactors, the moderator and the coolant are mechanically separated but not necessarily thermally isolated. Hence, any variation of moderator flow properties may change the reactivity. Until now, nuclear reactor calculations have been performed by assuming uniform moderator flow temperature distribution. However, CFD simulations have predicted large time dependent flow fluctuations taking place inside the calandria, which can bring about local temperature variations that can exceed 50 °C. This paper presents robust CANDU 3-D CFD moderator simulations coupled to neutronic calculations. The proposed methodology makes it possible to study not only different moderator flow configurations but also their effects on the reactor reactivity coefficient.
Effects of Building‒roof Cooling on Flow and Distribution of Reactive Pollutants in street canyons
Park, S. J.; Choi, W.; Kim, J.; Jeong, J. H.
2016-12-01
The effects of building‒roof cooling on flow and dispersion of reactive pollutants were investigated in the framework of flow dynamics and chemistry using a coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons in the presence of building‒roof cooling. A portal vortex was generated in street canyon, producing dominant reverse and outward flows near the ground in all the cases. The building‒roof cooling increased horizontal wind speeds at the building roof and strengthened the downward motion near the downwind building in the street canyon, resultantly intensifying street canyon vortex strength. The flow affected the distribution of primary and secondary pollutants. Concentrations of primary pollutants such as NOx, VOC and CO was high near the upwind building because the reverse flows were dominant at street level, making this area the downwind region of emission sources. Concentration of secondary pollutant such as O3 was lower than the background near the ground, where NOX concentrations were high. Building‒roof cooling decreased the concentration of primary pollutants in contrasted to those under non‒cooling conditions. In contrast, building‒roof cooling increased O3 by reducing NO concentrations in urban street canyon compared to concentrations under non‒cooling conditions.
Numerical investigation of the air injection effect on the cavitating flow in Francis hydro turbine
Chirkov, D. V.; Shcherbakov, P. K.; Cherny, S. G.; Skorospelov, V. A.; Turuk, P. A.
2017-09-01
At full and over load operating points, some Francis turbines experience strong self-excited pressure and power oscillations. These oscillations are occuring due to the hydrodynamic instability of the cavitating fluid flow. In many cases, the amplitude of such pulsations may be reduced substantially during the turbine operation by the air injection/ admission below the runner. Such an effect is investigated numerically in the present work. To this end, the hybrid one-three-dimensional model of the flow of the mixture "liquid-vapor" in the duct of a hydroelectric power station, which was proposed previously by the present authors, is augmented by the second gaseous component — the noncondensable air. The boundary conditions and the numerical method for solving the equations of the model are described. To check the accuracy of computing the interface "liquid-gas", the numerical method was applied at first for solving the dam break problem. The algorithm was then used for modeling the flow in a hydraulic turbine with air injection below the runner. It is shown that with increasing flow rate of the injected air, the amplitude of pressure pulsations decreases. The mechanism of the flow structure alteration in the draft tube cone has been elucidated, which leads to flow stabilization at air injection.
Embodied memory: effective and stable perception by combining optic flow and image structure.
Pan, Jing Samantha; Bingham, Ned; Bingham, Geoffrey P
2013-12-01
Visual perception studies typically focus either on optic flow structure or image structure, but not on the combination and interaction of these two sources of information. Each offers unique strengths in contrast to the other's weaknesses. Optic flow yields intrinsically powerful information about 3D structure, but is ephemeral. It ceases when motion stops. Image structure is less powerful in specifying 3D structure, but is stable. It remains when motion stops. Optic flow and image structure are intrinsically related in vision because the optic flow carries one image to the next. This relation is especially important in the context of progressive occlusion, in which optic flow provides information about the location of targets hidden in subsequent image structure. In four experiments, we investigated the role of image structure in "embodied memory" in contrast to memory that is only in the head. We found that either optic flow (Experiment 1) or image structure (Experiment 2) alone were relatively ineffective, whereas the combination was effective and, in contrast to conditions requiring reliance on memory-in-the-head, much more stable over extended time (Experiments 2 through 4). Limits well documented for visual short memory (that is, memory-in-the-head) were strongly exceeded by embodied memory. The findings support J. J. Gibson's (1979/1986, The Ecological Approach to Visual Perception, Boston, MA, Houghton Mifflin) insights about progressive occlusion and the embodied nature of perception and memory.
EFFECTS OF SLOTTED BLADING ON SECONDARY FLOW IN HIGHLY LOADED COMPRESSOR CASCADE
Directory of Open Access Journals (Sweden)
RAMZI MDOUKI
2013-10-01
Full Text Available With the aim to increase allowable blade loadings and enlarge stable operating range in highly loaded compressor, this work is carried out in order to explore the potential of passive control via slotted bladings in linear cascade configurations under both design and stall conditions. Through an extensive 2D-numerical study, the effects of location, width and slope of slots were analysed and the best configuration was identified. Based on the optimal slot, the 3D aerodynamic performances of cascade were studied and the influence of slotted blading to control endwall flow was investigated. Both 2D and 3D calculations are performed on steady RANS solver with standard k-epsilon turbulence model and low Mach number regime. The total loss coefficient, turning angle and flow visualizations on the blade and end-wall surfaces are adopted to describe the different configurations. The obtained results show, for 2D situation, that a maximum of 28.3% reduction in loss coefficient had been reached and the flow turning was increased with approximately 5°. Concerning 3D flow fields the slots marked their benefit at large incoming flow angles which delays the separation on both end wall and blade suction surface at mid span. However, at design conditions, the slotted blades are not able to control secondary flows near the wall and so, lose their potential.
Effects of cord compression on fetal blood flow distribution and O2 delivery
International Nuclear Information System (INIS)
Itskovitz, J.; LaGamma, E.F.; Rudolph, A.M.
1987-01-01
The authors used the radionuclide microsphere technique in nine fetal lambs to examine the effect of partial cord compression on distribution of cardiac output and O 2 delivery to fetal organs and venous flow patterns. With a 50% reduction in umbilical blood flow the fraction of fetal cardiac output distributed to the brain, heart, carcass, kidneys, and gastrointestinal tract increased. Pulmonary blood flow fell. O 2 delivery to the brain and myocardium was maintained but was reduced to peripheral, renal, and gastrointestinal circulations. Hepatic blood flow decreased and O 2 delivery fell by 75%. The proportion of umbilical venous blood passing through the ductus venosus increased from 43.9 to 71.8%. The preferential distribution of ductus venosus blood flow through the foramen ovale was enhanced and the proportion of O 2 delivery to upper body organs derived from the ductus venosus increased. Abdominal inferior vena caval blood flow increased, and it was also preferentially distributed through the foramen ovale and constituted the major fraction of the arterial blood supply to the upper body organs. Thus cord compression modified the distribution of cardiac output and the patterns of venous returns in the fetus. This pattern of circulatory response differs from that observed with other causes of reduced O 2 delivery
Simulation of the effect of defence structures on granular flows using SPH
Directory of Open Access Journals (Sweden)
P. Lachamp
2002-01-01
Full Text Available This paper presents the SPH (Smoothed Particles Hydrodynamics numerical method adapted to complex rheology and free surface flow. It has been developed to simulate the local effect of a simple obstacle on a granular flow. We have introduced this specific rheology to the classical formalism of the method and thanks to experimental devices, we were able to validate the results. Two viscosity values have been simultaneously computed to simulate "plugs" and "dead zone" with the same code. First, some experiments have been done on a simple inclined slope to show the accuracy of the numerical results. We have fixed the mass flow rate to see the variations of the flow depth according to the channel slope. Then we put a weir to block the flow and we analysed the dependence between the obstacle height and the length of influence upstream from the obstacle. After having shown that numerical results were consistent, we have studied speed profiles and pressure impact on the structure. Also results with any topography will be presented. This will have a great interest to study real flow over natural topography while using the model for decision help.
The effect of ankle joint immobilization on lower limb venous flow.
Craik, Johnathan D; Clark, Amanda; Hendry, James; Sott, Andrea H; Hamilton, Paul D
2015-01-01
Below-knee cast immobilization is associated with an increased risk of developing deep vein thrombosis secondary to venous stasis. We investigated the effect of weight-bearing in a below-knee cast or pneumatic walking boot on lower limb venous blood flow. Duplex ultrasonography was used to measure venous blood flow in the popliteal vein of 10 healthy volunteers. Venous blood flow was measured while at rest, ambulating non-weight-bearing, partial weight-bearing, and full weight-bearing. Measurements were performed without ankle joint immobilization, with the ankle immobilized in a neutral cast, and with the ankle immobilized in a pneumatic walking boot in both neutral and equinus. There was no significant reduction in venous blood flow measurements between full weight-bearing without ankle joint immobilization and full weight-bearing in a neutral cast or neutral pneumatic walking boot. However, venous blood flow was reduced when partial weight-bearing (50%) and when full weight-bearing in a pneumatic walking boot in equinus. These results demonstrate that venous blood flow returned to normal levels when the subjects were permitted to fully bear weight in below-knee casts or walking boots, provided that the ankle joint was not in equinus. Weight-bearing status and ankle joint position should be appreciated during decisions for the provision of chemical thromboprophylaxis. © The Author(s) 2014.
Fuel density effect on near nozzle flow field in small laminar coflow diffusion flames
Xiong, Yuan
2015-01-01
Flow characteristics in small coflow diffusion flames were investigated with a particular focus on the near-nozzle region and on the buoyancy force exerted on fuels with densities lighter and heavier than air (methane, ethylene, propane, and n-butane). The flow-fields were visualized through the trajectories of seed particles. The particle image velocimetry technique was also adopted for quantitative velocity field measurements. The results showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle, emphasizing the importance of the relative density of the fuel to that of the air on the flow-field. Nozzle heating influenced the near-nozzle flow-field particularly among lighter fuels (methane and ethylene). Numerical simulations were also conducted, focusing specifically on the effect of specifying inlet boundary conditions for fuel. The results showed that a fuel inlet boundary with a fully developed velocity profile for cases with long tubes should be specified inside the fuel tube to permit satisfactory prediction of the flow-field. The calculated temperature fields also indicated the importance of the selection of the location of the inlet boundary, especially in testing various combustion models that include soot in small coflow diffusion flames. © 2014 The Combustion Institute.
Effect of flow configuration on moderator temperature distribution for 700 MWe Calandria
International Nuclear Information System (INIS)
Bharj, Jaspal Singh; Sahaya, R.R.; Dharne, S.P.
2009-01-01
The Calandria of a Pressurized Heavy Water Reactor (PHWR) is essentially a horizontal cylindrical vessel housing a matrix of horizontal tubes called Calandria tubes within which is contained the pressure tubes that house the fuel bundles. In addition there are horizontal and vertical flux control and shutdown devices. The Calandria is filled with heavy water moderator at a pressure slightly above the atmosphere. A large amount of heat (about 125 MWth) is generated within the moderator mainly due to neutron slowing down and attenuation of gamma radiations. This heat generation gives rise to a strong buoyancy-driven natural convection flow. In the proposed configuration of 700 MWe PHWR Calandria, moderator inlet diffusers are directed upwards and the outlet nozzles are at the bottom of the Calandria. The basis for the above said inlet/outlet configuration depends upon the various factors like space availability, NPSH requirement for the moderator pumps, and interference of flow with the other components inside the Calandria. This configuration is not conducive for the buoyancy-dominated flows generated due to large volumetric heat generation in the moderator. In order to see the effects of changes in flow configuration by re-orienting the inlet/outlet, a CFD study was undertaken for moderator flows in the conceptual Calandria. In the study, the moderator inlet diffusers direct the cool moderator towards the bottom of the Calandria and hot moderator flows out through the outlets in the upper half of the Calandria. The results of the study with various flow configurations show that modification in moderator flow configuration in Calandria, by way of introduction of moderator in the downward direction through diffusers and provision of the exits from the upper portion of the Calandria, results in significant reduction of the maximum temperature of moderator in Calandria. Further, the temperature distribution in the Calandria in the proposed configurations is much more
International Nuclear Information System (INIS)
Pedrosa, M.A.; Hidalgo, C.; Alonso, A.; Calderon, E.; Orozco, O.; Pablos, J.L. de
2005-01-01
Experimental results have shown that the generation of spontaneous perpendicular sheared flow (i.e. the naturally occurring shear layer) requires a minimum plasma density or gradient in the TJ-II stellarator. This finding has been observed by means of multiple plasma diagnostics, including probes, fast cameras, reflectometry and HIBP. The obtained shearing rate of the naturally occurring shear layer results in general comparable to the one observed during biasing-improved confinement regimes. It has been found that there is a coupling between the onset of sheared flow development and an increase in the level of plasma edge fluctuations pointing to turbulence as the main ingredient of the radial electric field drive; once the shear flow develops the level of turbulence tends to decrease. The link between the development of sheared flows and plasma density in TJ-II has been observed in different magnetic configurations and plasma regimes. Preliminary results show that the threshold density value depends on the iota value and on the magnetic ripple (plasma volume). Recent experiments carried out in the LHD stellarator have shown that edge sheared flows are also affected by the magnitude of edge magnetic ripple: the threshold density to trigger edge sheared flows increases with magnetic ripple . Those results have been interpreted as an evidence of the importance of neoclassical effect in the physics of ExB sheared flows. For some TJ-II magnetic configurations with higher edge iota (ι/2π≥ 1.8) there is a sharp increase in the edge density gradient simultaneous to a strong reduction of fluctuations and transport and a slight increase of the shearing rate and perpendicular rotation (≥2 km/s) as density increases above the threshold. The role of the edge ripple, the presence of edge rational surfaces and properties of turbulent transport are considered as possible ingredients to explain the spontaneous development of edge sheared flows in TJ-II. (author)
Effects of the Observed Meridional Flow Variations since 1996 on the Sun's Polar Fields
Hathaway, David H.; Upton, Lisa
2013-01-01
The cause of the low and extended minimum in solar activity between Sunspot Cycles 23 and 24 was the small size of Sunspot Cycle 24 itself - small cycles start late and leave behind low minima. Cycle 24 is small because the polar fields produced during Cycle 23 were substantially weaker than those produced during the previous cycles and those (weak) polar fields are the seeds for the activity of the following cycle. The polar fields are produced by the latitudinal transport of magnetic flux that emerged in low-latitude active regions. The polar fields thus depend upon the details of both the flux emergence and the flux transport. We have measured the flux transport flows (differential rotation, meridional flow, and supergranules) since 1996 and find systematic and substantial variation in the meridional flow alone. Here we present experiments using a Surface Flux Transport Model in which magnetic field data from SOHO/MDI and SDO/HMI are assimilated into the model only at latitudes between 45-degrees north and south of the equator (this assures that the details of the active region flux emergence are well represented). This flux is then transported in both longitude and latitude by the observed flows. In one experiment the meridional flow is given by the time averaged (and north-south symmetric) meridional flow profile. In the second experiment the time-varying and north-south asymmetric meridional flow is used. Differences between the observed polar fields and those produced in these two experiments allow us to ascertain the effects of these meridional flow variations on the Sun s polar fields.
International Nuclear Information System (INIS)
Wang Xiaodong; Yan Weimon; Duan Yuanyuan; Weng Fangbor; Jung Guobin; Lee Chiyuan
2010-01-01
This work numerically investigates the effect of the channel size on the cell performance of proton exchange membrane (PEM) fuel cells with serpentine flow fields using a three-dimensional, two-phase model. The local current densities in the PEM, oxygen mass flow rates and liquid water concentrations at the interface of the cathode gas diffusion layer and catalyst layer were analyzed to understand the channel size effect. The predictions show that smaller channel sizes enhance liquid water removal and increase oxygen transport to the porous layers, which improve cell performance. Additionally, smaller channel sizes also provide more uniform current density distributions in the cell. However, as the channel size decreases, the total pressure drops across the cell increases, which leads to more pump work. With taking into account the pressure losses, the optimal cell performance occurs for a cell with a flow channel cross-sectional area of 0.535 x 0.535 mm 2 .
Effective renal blod flow and canalicular function of kidneys obliterating endarteritis
International Nuclear Information System (INIS)
Davydova, L.I.; Zajtsev, V.T.; Kononenko, E.I.; Gorbenko, L.V.; Karpovich, I.P.; Troyan, V.I.; Skripko, V.A.; Belousova, L.G.; Pavlova, T.S.
1978-01-01
Effective renal blood flow (general and separate) as well as the secretory-evacuatory function of the canalicular system of kidneys in 39 patients with obliterating endarteritis and in 20 persons of a control group have been studied by means of hippuran 131 I. Considerable decrease in the effective renal blood flow has been revealed. The decrease in blood flow with the increase in the ischemia degree turned out to be insignificant. The total function of kidneys is reduced in the 2-5 stages of diseases. Indices of secretory - evacuatory function of canals were changed. Indices of the total function of kidneys and intrarenal hemodynamics are the most informative when studying the state of this organ
Assessment of the transition strip effect in the transonic flow over the sounding rocket Sonda III
International Nuclear Information System (INIS)
Filho, J B P Falcão; Reis, M L C C; Francisco, C P F; Silva, L M
2016-01-01
Measurements of normalized pressure distribution are carried out over a 1:8 scale half-model of the Sonda III sounding rocket. The objective is to analyze the effect of the implementation of transition devices on the flow over the vehicle. Measurements show that the presence of the transition devices affect pressure distributions in different Mach numbers around the inter-stage region of Sonda III depending on its location and independently of the turbulent transition method employed. The study of these effects plays a significant role for future developments, since transition phenomena and the modification of the boundary layer behaviour due to the expansion can alter the load distributions and the turbulent structures of the flow. Furthermore, the experimental verification of such phenomena is crucial for the correct implementation of computational fluid dynamics calculations, as they might be able to capture the correct flow behaviour in these regions. (paper)
Ouazib, Nabila; Salhi, Yacine; Si-Ahmed, El-Khider; Legrand, Jack; Degrez, G.
2017-07-01
Numerical methods for solving convection-diffusion-reaction (CDR) scalar transport equation in three-dimensional flow are used in the present investigation. The flow is confined between two concentric cylinders both the inner cylinder and the outer one are allowed to rotate. Direct numerical simulations (DNS) have been achieved to study the effects of the gravitational and the centrifugal potentials on the stability of incompressible Taylor-Couette flow. The Navier-Stokes equations and the uncoupled convection-diffusion-reaction equation are solved using a spectral development in one direction combined together with a finite element discretization in the two remaining directions. The complexity of the patterns is highlighted. Since, it increases as the rotation rates of the cylinders increase. In addition, the effect of the counter-rotation of the cylinders on the mass transfer is pointed out.
Two-phase flow in porous media: power-law scaling of effective permeability
Energy Technology Data Exchange (ETDEWEB)
Groeva, Morten; Hansen, Alex, E-mail: Morten.Grova@ntnu.no, E-mail: Alex.Hansen@ntnu.no [Department of Physics, NTNU, NO-7491 Trondheim (Norway)
2011-09-15
A recent experiment has reported power-law scaling of effective permeability of two-phase flow with respect to capillary number for a two-dimensional model porous medium. In this paper, we consider the simultaneous flow of two phases through a porous medium under steady-state conditions, fixed total flow-rate and saturation, using a two-dimensional network simulator. We obtain power-law exponents for the scaling of effective permeability with respect to capillary number. The simulations are performed both for viscosity matched fluids and for a high viscosity ratio resembling that of air and water. Good power-law behaviour is found for both cases. Different exponents are found, depending on saturation.
Effects of turbulence and flow inclination on the performance of cup anemometers in the field
DEFF Research Database (Denmark)
Papadopoulos, K.H.; Stefantos, N.C.; Schmidt Paulsen, U.
2001-01-01
Four commercial and one research cup anemometers were comparatively tested in a complex terrain site to quantify the effects of turbulence and flow inclination on the wind speed measurements. The difference of the mean wind speed reading between the anemometers was as much as 2% for wind directions...... where the mean flow was horizontal. This difference was large enough to be attributed to the well-known overspeeding effect related to the differing distance constant (ranging from 1.7 to 5 m) of the cup anemometers. The application of a theoretical model of the cup-anemometer behaviour in a three...... to correct the 10-min mean wind speed. The necessary information for the correction is the turbulent intensity (preferably in the vertical direction) and the mean flow inclination. For demanding applications, the angular response parameters of cup anemometers should be taken into account. The incorporation...
International Nuclear Information System (INIS)
Núñez, M A; Mendoza, R
2015-01-01
Several methods to estimate the velocity field of atmospheric flows, have been proposed to the date for applications such as emergency response systems, transport calculations and for budget studies of all kinds. These applications require a wind field that satisfies the conservation of mass but, in general, estimated wind fields do not satisfy exactly the continuity equation. An approach to reduce the effect of using a divergent wind field as input in the transport-diffusion equations, was proposed in the literature. In this work, a linear local analysis of a wind field, is used to show analytically that the perturbation of a large-scale nondivergent flow can yield a divergent flow with a substantially different structure. The effects of these structural changes in transport calculations are illustrated by means of analytic solutions of the transport equation
Geometric effects of spacer grid in an annulus flow channel during reflooding period
International Nuclear Information System (INIS)
Cho, S.; Chun, S. Y.; Kim, B. D.; Park, J. K.; Yun, Y. J.; Baek, W. P.
2004-01-01
A number of studies on the reflooding phase were actively carried out from the early 70's due to its importance for the safety of the nuclear reactor. (Martini et al., 1973; Henry, 1974; Chung, 1978;) However, few studies have presented the spacer grid effect during the reflooding period. Since the grid is an obstruction in the flow passage, it causes an increased pressure drop due to form and skin friction losses. On the other hand, the spacer grid tends to increase the local wall heat transfer. The present work has been performed in a vertical annulus flow channel with various flow conditions. The objective of this paper is to evaluate the effects of a swirl-vane spacer grid on the rewetting phenomena during the reflooding phase
Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery
International Nuclear Information System (INIS)
Shah, A.A.; Al-Fetlawi, H.; Walsh, F.C.
2010-01-01
A model for hydrogen evolution in an all-vanadium redox flow battery is developed, coupling the dynamic conservation equations for charge, mass and momentum with a detailed description of the electrochemical reactions. Bubble formation at the negative electrode is included in the model, taking into account the attendant reduction in the liquid volume and the transfer of momentum between the gas and liquid phases, using a modified multiphase-mixture approach. Numerical simulations are compared to experimental data for different vanadium concentrations and mean linear electrolyte flow rates, demonstrating good agreement. Comparisons to simulations with negligible hydrogen evolution demonstrate the effect of gas evolution on the efficiency of the battery. The effects of reactant concentration, flow rate, applied current density and gas bubble diameter on hydrogen evolution are investigated. Significant variations in the gas volume fraction and the bubble velocity are predicted, depending on the operating conditions.
International Nuclear Information System (INIS)
Hossain, M.A.; Arbad, O.
1988-07-01
Effect of buoyancy force in a laminar uniform forced convection flow past a semi-infinite vertical plate has been analyzed near the leading edge, taking into account the viscous dissipation. The coupled non-linear locally similar equations, which govern the flow, are solved by the method of parametric differentiation. Effects of the buoyancy force and the heat due to viscous dissipation on the flow and the temperature fields as well as on the wall shear-stress and the heat transfer at the surface of the plate are shown graphically for the values of the Prandtl number σ ranging from 10 -1 to 1.0. (author). 20 refs, 3 figs, 2 tabs
Effect of pulse pressure on borehole stability during shear swirling flow vibration cementing.
Directory of Open Access Journals (Sweden)
Zhihua Cui
Full Text Available The shear swirling flow vibration cementing (SSFVC technique rotates the downhole eccentric cascade by circulating cementing fluid. It makes the casing eccentrically revolve at high speed around the borehole axis. It produces strong agitation action to the annulus fluid, makes it in the state of shear turbulent flow, and results in the formation of pulse pressure which affects the surrounding rock stress. This study was focused on 1 the calculation of the pulse pressure in an annular turbulent flow field based on the finite volume method, and 2 the analysis of the effect of pulse pressure on borehole stability. On the upside, the pulse pressure is conducive to enhancing the liquidity of the annulus fluid, reducing the fluid gel strength, and preventing the formation of fluid from channeling. But greater pulse pressure may cause lost circulation and even formation fracturing. Therefore, in order to ensure smooth cementing during SSFVC, the effect of pulse pressure should be considered when cementing design.
Radiative effects on turbulent buoyancy-driven air flow in open square cavities
International Nuclear Information System (INIS)
Zamora, B.; Kaiser, A.S.
2016-01-01
The effects of the radiative effects and the air variable properties (density, viscosity and thermal conductivity) on the buoyancy-driven flows established in open square cavities are investigated. Two-dimensional, laminar, transitional and turbulent simulations are obtained, considering both uniform wall temperature and uniform heat flux heating conditions. In transitional and turbulent cases, the low- Reynolds k-ω turbulence model is employed. The average Nusselt number and the dimensionless mass-flow rate have been obtained for a wide range of the Rayleigh number varying from 10 3 to 10 16 . The results obtained taking into account the variable thermophysical properties of air are compared to those calculated assuming constant properties and the Boussinesq approximation. In addition, the influence of considering surface radiative effects on the differences reached for the Nusselt number and the mass flow rate obtained with several intensities of heating is studied; specifically, the effects of thermal radiation on the appearance of the burnout phenomenon is analyzed. The changes produced in the flow patterns into the cavity when the radiative heat transfer and the effects of variation of properties are relevant, are also shown. (authors)
Kellogg, Kevin; Liu, Peiyuan; Lamarche, Casey; Hrenya, Christine
2017-11-01
In flows of cohesive particles, agglomerates will readily form and break. These agglomerates are expected to complicate how particles interact with the surrounding fluid in multiphase flows, and consequently how the solids flow. In this work, a dilute flow of particles driven by gas against gravity is studied. A continuum framework, composed of a population balance to predict the formation of agglomerates, and kinetic-theory-based balances, is used to predict the flow of particles. The closures utilized for the birth and death rates due to aggregation and breakage in the population balance take into account how the impact velocity (the granular temperature) affects the outcome of a collision as aggregation, rebound, or breakage. The agglomerate size distribution and solids velocity predicted by the continuum framework are compared to discrete element method (DEM) simulations, as well to experimental results of particles being entrained from the riser of a fluidized bed. Dow Corning Corporation.
Effect of angle on flow-induced vibrations of pinniped vibrissae.
Directory of Open Access Journals (Sweden)
Christin T Murphy
Full Text Available Two types of vibrissal surface structures, undulated and smooth, exist among pinnipeds. Most Phocidae have vibrissae with undulated surfaces, while Otariidae, Odobenidae, and a few phocid species possess vibrissae with smooth surfaces. Variations in cross-sectional profile and orientation of the vibrissae also exist between pinniped species. These factors may influence the way that the vibrissae behave when exposed to water flow. This study investigated the effect that vibrissal surface structure and orientation have on flow-induced vibrations of pinniped vibrissae. Laser vibrometry was used to record vibrations along the whisker shaft from the undulated vibrissae of harbor seals (Phoca vitulina and northern elephant seals (Mirounga angustirostris and the smooth vibrissae of California sea lions (Zalophus californianus. Vibrations along the whisker shaft were measured in a flume tank, at three orientations (0°, 45°, 90° to the water flow. The results show that vibration frequency and velocity ranges were similar for both undulated and smooth vibrissae. Angle of orientation, rather than surface structure, had the greatest effect on flow-induced vibrations. Vibration velocity was up to 60 times higher when the wide, flat aspect of the whisker faced into the flow (90°, compared to when the thin edge faced into the flow (0°. Vibration frequency was also dependent on angle of orientation. Peak frequencies were measured up to 270 Hz and were highest at the 0° orientation for all whiskers. Furthermore, CT scanning was used to quantify the three-dimensional structure of pinniped vibrissae that may influence flow interactions. The CT data provide evidence that all vibrissae are flattened in cross-section to some extent and that differences exist in the orientation of this profile with respect to the major curvature of the hair shaft. These data support the hypothesis that a compressed cross-sectional profile may play a key role in reducing self
Film cooling effects on the tip flow characteristics of a gas turbine blade
Directory of Open Access Journals (Sweden)
Jin Wang
2015-03-01
Full Text Available An experimental investigation of the tip flow characteristics between a gas turbine blade tip and the shroud was conducted by a pressure-test system and a particle image velocimetry (PIV system. A three-times scaled profile of the GE-E3 blade with five film cooling holes was used as specimen. The effects on flow characteristics by the rim width and the groove depth of the squealer tip were revealed. The rim widths were (a 0.9%, (b 2.1%, and (c 3.0% of the axial chord, and the groove depths were (a 2.8%, (b 4.8%, and (c 10% of the blade span. Several pressure taps on the top plate above the blades were connected to pressure gauges. By a CCD camera the PIV system recorded the velocity field around the leading edge zone including the five cooling holes. The flow distributions both in the tip clearance and in the passage were revealed, and the influence of the inlet velocity was determined. In this work, the tip flow characteristics with and without film cooling were investigated. The effects of different global blowing ratios of M=0.5, 1.0, 1.3 and 2.5 were established. It was found that decreasing the rim width resulted in a lower mass flow rate of the leakage flow, and the pressure distributions from the leading edge to the trailing edge showed a linearly increasing trend. It was also found that if the inlet velocity was less than 1.5 m/s, the flow field in the passage far away from the suction side appeared as a stagnation zone.
Energy Technology Data Exchange (ETDEWEB)
Sadeghi-Goughari, Moslem [Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Hosseini, Mohammad [Sirjan University of Technology, Sirjan (Iran, Islamic Republic of)
2015-02-15
The vibrational behavior of a viscous nanoflow-conveying single-walled carbon nanotube (SWCNT) was investigated. The nonuniformity of the flow velocity distribution caused by the viscosity of fluid and the small-size effects on the flow field was considered. Euler-Bernoulli beam model was used to investigate flow-induced vibration of the nanotube, while the non-uniformity of the flow velocity and the small-size effects of the flow field were formulated through Knudsen number (Kn), as a discriminant parameter. For laminar flow in a circular nanotube, the momentum correction factor was developed as a function of Kn. For Kn = 0 (continuum flow), the momentum correction factor was found to be 1.33, which decreases by the increase in Kn may even reach near 1 for the transition flow regime. We observed that for passage of viscous flow through a nanotube with the non-uniform flow velocity, the critical continuum flow velocity for divergence decreased considerably as opposed to those for the uniform flow velocity, while by increasing Kn, the difference between the uniform and non-uniform flow models may be reduced. In the solution part, the differential transformation method (DTM) was used to solve the governing differential equations of motion.
International Nuclear Information System (INIS)
Sadeghi-Goughari, Moslem; Hosseini, Mohammad
2015-01-01
The vibrational behavior of a viscous nanoflow-conveying single-walled carbon nanotube (SWCNT) was investigated. The nonuniformity of the flow velocity distribution caused by the viscosity of fluid and the small-size effects on the flow field was considered. Euler-Bernoulli beam model was used to investigate flow-induced vibration of the nanotube, while the non-uniformity of the flow velocity and the small-size effects of the flow field were formulated through Knudsen number (Kn), as a discriminant parameter. For laminar flow in a circular nanotube, the momentum correction factor was developed as a function of Kn. For Kn = 0 (continuum flow), the momentum correction factor was found to be 1.33, which decreases by the increase in Kn may even reach near 1 for the transition flow regime. We observed that for passage of viscous flow through a nanotube with the non-uniform flow velocity, the critical continuum flow velocity for divergence decreased considerably as opposed to those for the uniform flow velocity, while by increasing Kn, the difference between the uniform and non-uniform flow models may be reduced. In the solution part, the differential transformation method (DTM) was used to solve the governing differential equations of motion.
Directory of Open Access Journals (Sweden)
Soraya de Carvalho Rocha
2013-04-01
Full Text Available OBJETIVO: avaliar o perfil audiométrico e de emissões otoacústicas evocadas por produto de distorção em gestores de trânsito, expostos a monóxido de carbono e ruído, bem como constatar a presença de ambos agentes nos postos de trabalho. MÉTODO:estudo transversal, descritivo, com 37 gestores do trânsito, submetidos a anamnese, meatoscopia, audiometria tonal e emissões otoacústicas, distribuídos em: G1, composto por 18 indivíduos sem histórico de exposição concomitante a monóxido de carbono e ruído; e, G2, formado por 19 trabalhadores expostos simultaneamente aos dois agentes. Para pesquisa da presença dos agentes no ambiente foram utilizadas audiodosímetrias e avaliações de curta duração com medidor instantâneo. As variáveis de anamnese foram analisadas segundo o teste t Student e Mann-Whitney. Para as medidas de otoemissões acústicas e de limiares tonais utilizou-se testes de qui-quadrado (χ2 ou exato de Fisher e dos postos sinalizados de Wilcoxon com significância de 5%. RESULTADOS: foi constatada presença de monóxido de carbono e ruído durante a atividade dos trabalhadores. Não foi observada diferença significante na idade e tempo de função. O G2 obteve média de limiares tonais maior que G1, para orelha direita, em 1KHz (p=0,050 e para orelha esquerda em 3KHz (p=0,016 e 4KHz (p=0,028; e, comparados os limiares tonais alterados G2 apresentou diferença maior em 3KHz na orelha esquerda (p=0,003. Nas emissões otoacústicas, G2 apresentou maior ausência de respostas que G1 em 2.730Hz e 3.218Hz (p=0.016 para orelha direita. CONCLUSÃO: trabalhadores expostos a monóxido de carbono e ruído apresentaram piores resultados audiométricos e nas emissões otoacústicas quando comparado ao grupo de não expostos.
Ke, Ming; Cai, Shaoxi; Zou, Misha; Zhao, Yi; Li, Bo; Chen, Sijia; Chen, Longcong
2018-01-29
To build a microfluidic device with various morphological features of the tumor vasculature for study of the effects of tumor vascular structures on the flow field and tumor cellular flow behaviors. The designed microfluidic device was able to approximatively simulate the in vivo structures of tumor vessels and the flow within it. In this models, the influences of the angle of bifurcation, the number of branches, and the narrow channels on the flow field and the influence of vorticity on the retention of HepG2 cells were significant. Additionally, shear stress below physiological conditions of blood circulation has considerable effect on the formation of the lumen-like structures (LLSs) of HepG2 cells. These results can provide some data and reference in the understanding of the interaction between hemorheological properties and tumor vascular structures in solid tumors. Copyright © 2018. Published by Elsevier Inc.
Blade bowing effects on radial equilibrium of inlet flow in axial compressor cascades
Directory of Open Access Journals (Sweden)
Han XU
2017-10-01
Full Text Available The circumferentially averaged equation of the inlet flow radial equilibrium in axial compressor was deduced. It indicates that the blade inlet radial pressure gradient is closely related to the radial component of the circumferential fluctuation (CF source item. Several simplified cascades with/without aerodynamic loading were numerically studied to investigate the effects of blade bowing on the inlet flow radial equilibrium. A data reduction program was conducted to obtain the CF source from three-dimensional (3D simulation results. Flow parameters at the passage inlet were focused on and each term in the radial equilibrium equation was discussed quantitatively. Results indicate that the inviscid blade force is the inducement of the inlet CF due to geometrical asymmetry. Blade bowing induces variation of the inlet CF, thus changes the radial pressure gradient and leads to flow migration before leading edge (LE in the cascades. Positive bowing drives the inlet flow to migrate from end walls to mid-span and negative bowing turns it to the reverse direction to build a new equilibrium. In addition, comparative studies indicate that the inlet Mach number and blade loading can efficiently impact the effectiveness of blade bowing on radial equilibrium in compressor design.
Directory of Open Access Journals (Sweden)
A. H. ELBATRAN
2015-07-01
Full Text Available Helical channels have a wide range of applications in petroleum engineering, nuclear, heat exchanger, chemical, mineral and polymer industries. They are used in the separation processes for fluids of different densities. The centrifugal force, free surface and geometrical effects of the helical channel make the flow pattern more complicated; hence it is very difficult to perform physical experiment to predict channel performance. Computational Fluid Dynamics (CFD can be suitable alternative for studying the flow pattern characteristics in helical channels. The different ranges of dimensional parameters, such as curvature and torsion, often cause various flow regimes in the helical channels. In this study, the effects of physical parameters such as curvature, torsion, Reynolds number, Froude number and Dean Number on the characteristics of the turbulent flow in helical rectangular channels have been investigated numerically, using a finite volume RANSE code Fluent of Ansys workbench 10.1 UTM licensed. The physical parameters were reported for range of curvature (δ of 0.16 to 0.51 and torsion (λ of 0.032 to 0.1 .The numerical results of this study showed that the decrease in the channel curvature and the increase in the channel torsion numbers led to the increase of the flow velocity inside the channel and the change in the shape of water free surface at given Dean, Reynolds and Froude numbers.
The effects of arbitrary injection angle and flow conditions on venturi-jet mixer
Directory of Open Access Journals (Sweden)
Sundararaj S.
2012-01-01
Full Text Available This paper describes the effect of jet injection angle, cross flow Reynolds number and velocity ratio on entrainment and mixing of jet with incompressible cross flow in venturi-jet mixer. Five different jet injection angles 45o, 60o, 90o, 125o, 135o are tested to evaluate the entrainment of jet and mixing performances of the mixer. Tracer concentration along the downstream of the jet injection, cross flow velocity, jet velocity and pressure drop across the mixer are determined experimentally to characterize the mixing performance of the mixer. The experiments show that the performance of a venturi-jet-mixer substantially improves at high injection angle and can be augmented still by increasing velocity ratio. The jet deflects much and penetrates less in the cross flow as the cross flow Reynolds number is increased. The effect could contribute substantially to the better mixing index with moderate pressure drop. Normalized jet profile, concentration decay, jet velocity profile are computed from equations of conservation of mass, momentum and concentration written in natural co-ordinate systems. The comparison between the experimental and numerical results confirms the accuracy of the simulations. Correlations for jet trajectory and entrainment ratio of the mixer are obtained by multivariate-linear regression analysis using power law.
Effects of governing parameters on steady-state inter-wrapper flow in an LMFBR
International Nuclear Information System (INIS)
Moriya, Shoichi
2001-01-01
Hydraulic experiments were performed using a 1/8th scale rectangular model, based on a Japanese demonstration fast breeder reactor design, in order to study fundamental characteristics of interwrapper flows occurring under steady state conditions in an LMFBR. The steady state interwrapper flow of which direction was downward in the center region and upward in the peripheral region of a core barrel was observed because of the radial static pressure gradient in the upper part of the core barrel, produced by a core blockage effect resulting from an above core structure with a perforated skirt. Thermal stratification phenomena were moreover observed in the interwrapper region, created by the hot steady state interwrapper flow from an upper plenum and the cold leakage flow through the separated plate of the core barrel. The thermal interface was generated in higher part of the core barrel when the core blockage effect was smaller and Richardson number and the leakage flow rate ratio were larger. Significant temperature fluctuations occurred in the peripheral region of the core barrel, when the difference between the interface elevations in the center and peripheral regions of the core barrel was enough large. (author)
The effect of carbon nanotube chirality on the spiral flow of copper atoms in their cores
International Nuclear Information System (INIS)
Lim, M.C.G.; Zhong, Z.W.
2012-01-01
The effect of carbon nanotube (CNT) chirality on the flow of copper atoms along its core has been investigated using molecular dynamics simulations. The investigation is conducted using CNTs of different chirality, and different flow conditions such as temperatures, bias voltages and the initial positions of the copper atoms. The results show that the atoms flow in a spiral fashion along the CNT channels. The effect is most evident in the CNT channel with zigzag CNTs. The movement of the copper atoms is more erratic when the temperature is increased at a low biased voltage, regardless of the types of channel used. The initial positions of the copper atoms affect the way they converge as they move downstream along the channel. A bias voltage of 4 V favours the initiation of a spiral flow, especially when the position of the copper atoms is far from the central axis of the channel. -- Highlights: ► We model the transportation of copper atoms in armchair and zigzag CNT channels. ► The spiral flow of copper atoms occurs in a semiconductor–semiconductor CNT. ► The compact copper mass is predicted to occur at 673 K with a 4 V bias voltage.
Effects of magnetic field, sheared flow and ablative velocity on the Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Li, D.; Zhang, W.L.; Wu, Z.W.
2005-01-01
It is found that magnetic field has a stabilization effect whereas the sheared flow has a destabilization effect on the RT instability in the presence of sharp interface. RT instability only occurs in the long wave region and can be completely suppressed if the stabilizing effect of magnetic field dominates. The RT instability increases with wave number and flow shear, and acts much like a Kelvin-Helmholtz instability when destabilizing effect of sheared flow dominates. It is shown that both of ablation velocity and magnetic filed have stabilization effect on RT instability in the presence of continued interface. The stabilization effect of magnetic field takes place for whole waveband and becomes more significant for the short wavelength. The RT instability can be completely suppressed by the cooperated effect of magnetic field and ablation velocity so that the ICF target shell may be unnecessary to be accelerated to very high speed. The growth rate decreases as the density scale length increases. The stabilization effect of magnetic field is more significant for the short density scale length. (author)
Directory of Open Access Journals (Sweden)
Emiliano Díez
2018-03-01
Full Text Available Research from multiple areas in neuroscience suggests a link between self-locomotion and memory. In two free recall experiments with adults, we looked for a link between (a memory, and (b the coherence of movement and optic flow. In both experiments, participants heard lists of words while on a treadmill and wearing a virtual reality (VR headset. In the first experiment, the VR scene and treadmill were stationary during encoding. During retrieval, all participants walked forward, but the VR scene was stationary, moved forward, or moved backwards. In the second experiment, during encoding all participants walked forward and viewed a forward-moving VR scene. During retrieval, all participants continued to walk forward but the VR scene was stationary, forward-moving, or backward-moving. In neither experiment was there a significant difference in the amount recalled, or output order strategies, attributable to differences in movement conditions. Thus, any effects of movement on memory are more limited than theories of hippocampal function and theories in cognitive psychology anticipate.
Nonequilibrium capillarity effects in two?phase flow through porous media at different scales
Bottero, S.; Hassanizadeh, S.M.; Kleingeld, P.J.; Heimovaara, T.J.
2011-01-01
A series of primary drainage experiments was carried out in order to investigate nonequilibrium capillarity effects in two?phase flow through porous media. Experiments were performed with tetrachloroethylene (PCE) and water as immiscible fluids in a sand column 21 cm long. Four drainage experiments
Nonequilibrium capillarity effects in two-phase flow through porous media at different scales
Bottero, S.; Hassanizadeh, S.M.; Kleingeld, P.J.; Heimovaara, T.J.
2011-01-01
A series of primary drainage experiments was carried out in order to investigate nonequilibrium capillarity effects in two-phase flow through porous media. Experiments were performed with tetrachloroethylene (PCE) and water as immiscible fluids in a sand column 21 cm long. Four drainage experiments
Botulinum toxin effect on salivary flow rate in children with cerebral palsy.
Jongerius, P.H.; Rotteveel, J.J.; Limbeek, J. van; Gabreëls, F.J.M.; Hulst, K. van; Hoogen, F.J.A. van den
2004-01-01
OBJECTIVE: To investigate the effectiveness of botulinum neurotoxin (BoNT) type A in reducing salivary flow rate in children with cerebral palsy (CP) with severe drooling. METHODS: During a controlled clinical trial, single-dose BoNT injections into the submandibular salivary glands were compared
Interaction of magnetic field in flow of Maxwell nanofluid with convective effect
Energy Technology Data Exchange (ETDEWEB)
Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589 (Saudi Arabia); Muhammad, Taseer, E-mail: taseer_qau@yahoo.com [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Chen, G.Q. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589 (Saudi Arabia); Laboratory of Systems Ecology, College of Engineering, Peking University, Beijing 100871 (China); Abbas, Ibrahim A. [Mathematics Department (Khulais), Faculty of Science and Arts, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)
2015-09-01
Magnetohydrodynamic (MHD) three-dimensional flow of Maxwell nanofluid subject to the convective boundary condition is investigated. The flow is generated by a bidirectional stretching surface. Thermophoresis and Brownian motion effects are present. Fluid is electrically conducted in the presence of a constant applied magnetic field. Unlike the previous cases even in the absence of nanoparticles, the correct formulation for the flow of Maxwell fluid in the presence of a magnetic field is established. Newly proposed boundary condition with the zero nanoparticles mass flux at the boundary is employed. The governing nonlinear boundary layer equations through appropriate transformations are reduced in the nonlinear ordinary differential system. The resulting nonlinear system has been solved for the velocities, temperature and nanoparticles concentration distributions. Convergence of the constructed solutions is verified. Effects of emerging parameters on the temperature and nanoparticles concentration are plotted and discussed. Numerical values of local Nusselt number are computed and analyzed. It is observed that the effects of magnetic parameter and the Biot number on the temperature and nanoparticles concentration are quite similar. Both the temperature and nanoparticles concentration are enhanced for the increasing value of magnetic parameter and Biot number. - Highlights: • Three-dimensional flow of Maxwell fluid. • Consideration of nanoparticles effect. • Formulation through convective condition. • Analysis in magnetohydrodynamic regime. • Utilization of new condition associated with mass flux.
Screening Effect of Plasma Flow on RMP Penetration in EXTRAP T2R
Frassinetti, Lorenzo; Olofsson, Erik; Brunsell, Per; Menmuir, Sheena; Drake, James
2011-10-01
The penetration of resonant magnetic perturbations (RMP) can be screened by plasma flow and the understanding of this phenomenon is important for ELM mitigation techniques. This work studies the screening effect in EXTRAP T2R. EXTRAP T2R is equipped with a feedback system able to suppress all error fields and to produce one or more external perturbations in a controlled fashion. The EXTRAP T2R feedback system is used to generate a RMP that interacts with the dynamics of its corresponding tearing mode (TM). The level of RMP penetration is quantified by analyzing the RMP effect on the TM amplitude and velocity. To study the screening effect, the flow is changed by applying a second perturbation that is non resonant (non-RMP). This produces the flow reduction without perturbing significantly the other parameters. By modifying the amplitude of the non-RMP, an experimental study of the flow effect on the RMP penetration is performed. Experimental results are compared with the model described in [Fitzpatrick R et al., Phys. Plasmas 8, 4489 (2001)].
Displacement of one Newtonian fluid by another: density effects in axial annular flow
DEFF Research Database (Denmark)
Szabo, Peter; Hassager, Ole
1997-01-01
The arbitrary Lagrange-Euler (ALE) finite elementtechnique is used to simulate 3D displacement oftwo immiscible Newtonian fluids in vertical annular wells. For equally viscous fluids the effect of distinct fluid densities is investigated in the region of low to intermediate Reynolds numbers......, the efficiency of the displacement is analysed for various flow situations....
Surface tension effects on vertical upward annular flows in a small diameter pipe
Energy Technology Data Exchange (ETDEWEB)
Sadatomi, Michio, E-mail: sadatomi@mech.kumamoto-u.ac.jp [Dept. of Advanced Mechanical Systems, Kumamoto Univ., 39-1, Kurokami 2-chome, Chuou-ku, Kumamoto 860-8555 (Japan); Kawahara, Akimaro [Dept. of Advanced Mechanical Systems, Kumamoto Univ., 39-1, Kurokami 2-chome, Chuou-ku, Kumamoto 860-8555 (Japan); Suzuki, Aruta [Plant Design & Engineering Dept., Environment, Energy & Plant Headquarters, Hitachi Zosen Corporation, 7-89, Nankokita 1-chome, Suminoe-ku, Osaka, 559-8559 (Japan)
2016-12-15
Highlights: • Surface tension effects were clarified on annular flow in a small diameter pipe. • The mean liquid film thickness became thinner with decreasing of surface tension. • The liquid droplet fraction and the interfacial shear stress became higher with it. • New prediction methods for the above parameters were developed and validated. - Abstract: Experiments were conducted to study the surface tension effects on vertical upward annular flows in a 5 mm I.D. pipe using water and low surface tension water with a little surfactant as the test liquid and air as the test gas. Firstly, the experimental results on the mean liquid film thickness, the liquid droplet fraction and the interfacial shear stress in annular flows together with some flow pictures are presented to clarify the surface tension effects. From these, the followings are clarified: In the low surface tension case, the liquid film surface becomes rough, the liquid film thickness thin, the liquid droplet fraction high, and the interfacial shear stress high. Secondary, correlations in literatures for the respective parameters are tested against the present data. The test results show that no correlation for the respective parameters could predict well the present data. Thus, correlations are revised by accounting for the surface tension effects. The results of the experiments, the correlations tests and their revisions mentioned above are presented in the present paper.
Non-isothermal effects on multi-phase flow in porous medium
DEFF Research Database (Denmark)
Singh, Ashok; Wang, W; Park, C. H.
2010-01-01
In this paper a ppT -formulation for non-isothermal multi-phase flow is given including diffusion and latent heat effects. Temperature and pressure dependencies of governing parameters are considered, in particular surface tension variation on phase interfaces along with temperature changes. A we...
Self-pumping effects and radiation linewidth of Josephson flux-flow oscillators
DEFF Research Database (Denmark)
Koshelets, V.P.; Shitov, S.V.; Shchukin, A.V.
1997-01-01
Flux-flow oscillators (FFO's) are being developed for integration with a SIS mixer for use in submillimeter wave receivers, The present work contains a detailed experimental study of the dc, microwave, and noise properties of Nb-AlOx-Nb FFO's, A model based on the Josephson self-pumping effect...
Effect of Hartmann layer resolution for MHD flow in a straight ...
Indian Academy of Sciences (India)
851–861. c Indian Academy of Sciences. Effect of Hartmann layer resolution for MHD flow in a straight, conducting duct at high Hartmann numbers. SHARANYA SUBRAMANIAN1,∗, P K SWAIN2,. A V DESHPANDE1 and P SATYAMURTHY2. 1Mechanical Engineering Department, Veermata Jijabai Technological Institute,.
An improved modeling framework for capturing the effects of dynamic resistance to overland flow is developed for intensively managed landscapes. The framework builds on the WEPP model but it removes the limitations of the “equivalent” plane and static roughness assumption. The enhanced model therefo...
Effects of bed-load movement on flow resistance over bed forms
Indian Academy of Sciences (India)
Abstract. The effect of bed-load transport on flow resistance of alluvial channels with undulated bed was experimentally investigated. The experiments were carried out in a tilting flume 250mm wide and 12·5m long with glass-sides of rectan- gular cross-section and artificial dune shaped floor that was made from Plexi-glass.
Gope, E.T.; Sass-Klaassen, U.G.W.; Irvine, K.; Beevers, L.; Hes, E.M.
2015-01-01
The impounding of the Zambezi River by Kariba dam has regulated the river discharge of the Middle Zambezi river. This has been implicated in the failure of regeneration of Faidherbia albida in the downstream flood plain. This study aimed (1) to assess the effect of the altered flow regime of the
Hall effect on MHD flow of visco-elastic micro-polar fluid layer ...
African Journals Online (AJOL)
Department of Mathematics, Meerut College, Meerut, Uttar Pradesh, INDIA ... the micro-polar heat conduction parameter has stabilizing effect when. 1. 2. ∈> ...... 1964, Elastico-viscous boundary layer flow, Proceedings of the Cambridge Philosophical Society, ... fluid”, Indian Journal of Pure and Applied Mathematics, Vol.
Directory of Open Access Journals (Sweden)
Cheng-Chin Liu
2016-01-01
Full Text Available Typhoon Morakot hit southern Taiwan in 2009, bringing 48-hr of heavy rainfall [close to the Probable Maximum Precipitation (PMP] to the Tsengwen Reservoir catchment. This extreme rainfall event resulted from the combined (co-movement effect of two climate systems (i.e., typhoon and southwesterly air flow. Based on the traditional PMP estimation method (i.e., the storm transposition method, STM, two PMP estimation approaches, i.e., Amplification Index (AI and Independent System (IS approaches, which consider the combined effect are proposed in this work. The AI approach assumes that the southwesterly air flow precipitation in a typhoon event could reach its maximum value. The IS approach assumes that the typhoon and southwesterly air flow are independent weather systems. Based on these assumptions, calculation procedures for the two approaches were constructed for a case study on the Tsengwen Reservoir catchment. The results show that the PMP estimates for 6- to 60-hr durations using the two approaches are approximately 30% larger than the PMP estimates using the traditional STM without considering the combined effect. This work is a pioneer PMP estimation method that considers the combined effect of a typhoon and southwesterly air flow. Further studies on this issue are essential and encouraged.
Continuous-flow cardiac assistance : effects on aortic valve function in a mock loop
Tuzun, E.; Rutten, M.C.M.; Dat, M.; Kadipasaoglu, C.; Vosse, van de F.N.; Mol, de B.A.J.M.
2011-01-01
Background As the use of left ventricular assist devices (LVADs) to treat end-stage heart failure has become more widespread, leaflet fusion—with resul-tant aortic regurgitation—has been observed more frequently. To quantitatively assess the effects of nonpulsatile flow on aortic valve function, we
DEFF Research Database (Denmark)
Nielsen, Roni; Jorsal, Anders; Iversen, Peter
2017-01-01
BACKGROUND: The glucagon-like peptide-1 analog liraglutide increases heart rate and may be associated with more cardiac events in chronic heart failure (CHF) patients. We studied whether this could be ascribed to effects on myocardial glucose uptake (MGU), myocardial blood flow (MBF) and MBF rese...
Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows.
Li, Qing; Luo, K H
2014-05-01
The pseudopotential lattice Boltzmann (LB) model is a popular model in the LB community for simulating multiphase flows. Recently, several thermal LB models, which are based on the pseudopotential LB model and constructed within the framework of the double-distribution-function LB method, were proposed to simulate thermal multiphase flows [G. Házi and A. Márkus, Phys. Rev. E 77, 026305 (2008); L. Biferale, P. Perlekar, M. Sbragaglia, and F. Toschi, Phys. Rev. Lett. 108, 104502 (2012); S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012); M. R. Kamali et al., Phys. Rev. E 88, 033302 (2013)]. The objective of the present paper is to show that the effect of the forcing term on the temperature equation must be eliminated in the pseudopotential LB modeling of thermal flows. First, the effect of the forcing term on the temperature equation is shown via the Chapman-Enskog analysis. For comparison, alternative treatments that are free from the forcing-term effect are provided. Subsequently, numerical investigations are performed for two benchmark tests. The numerical results clearly show that the existence of the forcing-term effect will lead to significant numerical errors in the pseudopotential LB modeling of thermal flows.
Effects of Particles Collision on Separating Gas–Particle Two-Phase Turbulent Flows
Sihao, L. V.; Yang, Weihua; Li, Xiangli; Li, Guohui
2013-01-01
A second-order moment two-phase turbulence model incorporating a particle temperature model based on the kinetic theory of granular flow is applied to investigate the effects of particles collision on separating gas–particle two-phase turbulent
COST-EFFECTIVENESS OF CONTINUOUS-FLOW LEFT VENTRICULAR ASSIST DEVICES
Neyt, Mattias; Van den Bruel, Ann; Smit, Yolba; De Jonge, Nicolaas; Erasmus, Michiel; Van Dijk, Diederik; Vlayen, Joan
Objectives: Mechanical circulatory support through left ventricular assist devices (LVADs) improves survival and quality of life for patients with end-stage heart failure who are ineligible for cardiac transplantation. Our aim was to calculate the cost-effectiveness of continuous-flow LVADs.
Effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-ion collisions
Jaiswal, Amaresh; Bhaduri, Partha Pratim
2018-04-01
We study the effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-ion collisions. We use the Glauber model to generate initial conditions and ignore hydrodynamic expansion in the transverse direction. We employ the Beer-Lambert law to allow for the transmittance of produced hadrons in the medium and calculate the anisotropy generated due to the suppression of particles traversing through the medium. To separate non-flow contribution due to surface bias effects, we ignore hydrodynamic expansion in the transverse direction and consider purely longitudinal boost-invariant expansion. We calculate the transverse momentum dependence of elliptic flow, generated from an anisotropic escape mechanism due to surface bias effects, for various centralities in √{sN N}=200 GeV Au +Au collisions at the Relativistic Heavy Ion Collider and √{sN N}=2.76 TeV Pb +Pb collisions at the Large Hadron Collider. We find that the surface bias effects make a sizable contribution to the total elliptic flow observed in heavy-ion collisions, indicating that the viscosity of the QCD matter extracted from hydrodynamic simulations may be underestimated.
Effects of Unsteady Flow Past An Infinite Vertical Plate With Variable ...
African Journals Online (AJOL)
The effects of unsteady flow past an infinite vertical plate with variable temperature and constant mass flux are investigated. Laplace transform technique is used to obtain velocity and concentration fields. The computation of the results indicates that the velocity profiles increase with increase in Grashof numbers, mass ...
Effects of captopril on cerebral blood flow in normotensive and hypertensive rats
International Nuclear Information System (INIS)
Barry, D.I.; Paulson, O.B.; Jarden, J.O.; Juhler, M.; Graham, D.I.; Strandgaard, S.
1984-01-01
Cerebrovascular effects of the angiotensin converting enzyme inhibitor captopril were examined in normotensive and hypertensive rats. Cerebral blood flow was measured with the intracarotid 133 xenon injection method in halothane-anesthetized animals. The blood-brain barrier permeability of captopril (determined with an integral-uptake method) was negligible, the permeability-surface area product in most brain regions being 1 X 10(-5) cm3/g per second, that is, three to four times lower than that of sodium ion. When administered into the cerebral ventricles to bypass the blood-brain barrier, captopril had no effect on cerebral blood flow: furthermore, cerebral blood flow autoregulation (studied by raising and lowering blood pressure) was identical to that in controls. In contrast, when given intravenously, captopril had a marked effect on cerebral blood flow autoregulation--both the lower and upper limits of autoregulation being shifted to a lower pressure (by about 20 to 30 and 50 to 60 mm Hg, respectively), and the autoregulatory range was shortened by about 40 mm Hg. This effect may be ascribed to inhibition of converting enzyme in the cerebral blood vessels rather than within the brain
Effect of viscous dissipation on mixed convection flow in a vertical ...
African Journals Online (AJOL)
International Journal of Engineering, Science and Technology .... third kind for flow over a flat plate and in the thermal entrance region of a rectangular channel. ... on mixed convection in a vertical channel using Robin boundary conditions was ... Hajmohammadi and Nourazar (2014) studied the effect of a thin gas layer in ...
Effect of ship motions and flow stability in a small marine reactor driven by natural circulation
International Nuclear Information System (INIS)
Yoritsune, Tsutomu; Ishida, Toshihisa
2001-12-01
By using a small reactor as a power source for investigations and developments under sea, widely expanded activity is expectable. In this case, as for a nuclear reactor, small-size and lightweightness, and simplification of a system are needed with the safety. In JAERI, very small reactors for submersible research vessel (Deep-sea Reactor DRX and submersible Compact Reactor SCR) have been designed on the basis of needs investigation of sea research. Although the reactor is a PWR type, self-pressurization and natural circulation system are adopted in a primary system for small size and lightweightness. The fluid flow condition of the reactor core outlet is designed to be the two-phase with a low quality. Although the flow of a primary system is the two-phase flow with a low quality, the density wave oscillation may occur according to operating conditions. Moreover, since there are ship motions of heaving (the vertical direction acceleration) etc., when a submersible research vessel navigates on the sea surface, the circulation flow of the primary system is directly influenced by this external force. In order to maintain stable operations of the reactor, it is necessary to clarify effects of the flow stability characteristic of the primary coolant system and the external force. Until now, as for the flow stability of a nuclear reactor itself, many research reports have been published including the nuclear-coupled thermal oscillation of BWRs such as LaSalle-2, WNP-2 etc. As for the effect of external force, it is reported that the acceleration change based on a seismic wave affects the reactor core flow and the reactor power in a BWR. On the other hand, also in a PWR, since adoption of natural circulation cooling is considered for a generation 4 reactor, it is thought that the margin of the reactor core flow stability becomes an important parameter in the design. The reactor coolant flow mentioned in this report is the two-phase natural circulation flow coupled with
Directory of Open Access Journals (Sweden)
Jian Duan
Full Text Available Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface
Berdanier, Reid Adam
The effect of rotor tip clearances in turbomachinery applications has been a primary research interest for nearly 80 years. Over that time, studies have shown increased tip clearance in axial flow compressors typically has a detrimental effect on overall pressure rise capability, isentropic efficiency, and stall margin. With modern engine designs trending toward decreased core sizes to increase propulsive efficiency (by increasing bypass ratio) or additional compression stages to increase thermal efficiency by increasing the overall pressure ratio, blade heights in the rear stages of the high pressure compressor are expected to decrease. These rear stages typically feature smaller blade aspect ratios, for which endwall flows are more important, and the rotor tip clearance height represents a larger fraction of blade span. As a result, data sets collected with large relative rotor tip clearance heights are necessary to facilitate these future small core design goals. This research seeks to characterize rotor tip leakage flows for three tip clearance heights in the Purdue three-stage axial compressor facility (1.5%, 3.0%, and 4.0% as a percentage of overall annulus height). The multistage environment of this compressor provides the unique opportunity to examine tip leakage flow effects due to stage matching, stator-rotor interactions, and rotor-rotor interactions. The important tip leakage flow effects which develop as a result of these interactions are absent for previous studies which have been conducted using single-stage machines or isolated rotors. A series of compressor performance maps comprise points at four corrected speeds for each of the three rotor tip clearance heights. Steady total pressure and total temperature measurements highlight the effects of tip leakage flows on radial profiles and wake shapes throughout the compressor. These data also evaluate tip clearance effects on efficiency, stall margin, and peak pressure rise capability. An emphasis of
Can Hall effect trigger Kelvin-Helmholtz instability in sub-Alfvénic flows?
Pandey, B. P.
2018-05-01
In the Hall magnetohydrodynamics, the onset condition of the Kelvin-Helmholtz instability is solely determined by the Hall effect and is independent of the nature of shear flows. In addition, the physical mechanism behind the super- and sub-Alfvénic flows becoming unstable is quite different: the high-frequency right circularly polarized whistler becomes unstable in the super-Alfvénic flows whereas low-frequency, left circularly polarized ion-cyclotron wave becomes unstable in the presence of sub-Alfvénic shear flows. The growth rate of the Kelvin-Helmholtz instability in the super-Alfvénic case is higher than the corresponding ideal magnetohydrodynamic rate. In the sub-Alfvénic case, the Hall effect opens up a new, hitherto inaccessible (to the magnetohydrodynamics) channel through which the partially or fully ionized fluid can become Kelvin-Helmholtz unstable. The instability growth rate in this case is smaller than the super-Alfvénic case owing to the smaller free shear energy content of the flow. When the Hall term is somewhat smaller than the advection term in the induction equation, the Hall effect is also responsible for the appearance of a new overstable mode whose growth rate is smaller than the purely growing Kelvin-Helmholtz mode. On the other hand, when the Hall diffusion dominates the advection term, the growth rate of the instability depends only on the Alfvén -Mach number and is independent of the Hall diffusion coefficient. Further, the growth rate in this case linearly increases with the Alfvén frequency with smaller slope for sub-Alfvénic flows.
Fogt JS; Jones-Jordan LA; Barr JT
2018-01-01
Jennifer S Fogt, Lisa A Jones-Jordan, Joseph T Barr The Ohio State University College of Optometry, Columbus, OH, USA Introduction: New designs of eye wash stations have been developed in which the direction of water flow from the fountain has been reversed, with two water streams originating nasally in both eyes and flowing toward the temporal side of each eye. No study has been done to determine the ideal direction of water flow coming from the eye wash in relation to the eye. Materials ...
Compartment model for the measurement of the effective renal plasma flow by radionuclidenephrography
International Nuclear Information System (INIS)
Ryabov, S.I.; Degtyareva, O.A.
1988-01-01
By reason of model ideas on hippuran kinetics radionuclide nephrograms were split up into a renal component and a component of the tissue background. New indices for the evaluation of renal function symmetry were proposed comprising the proportional determination of the effective renal plasma flow as well as of the symmetrical blood flow. For early diagnosis of latent renal dysfunction a new index is proposed characterizing the excretory renal transport as to local renal blood supply. Empirical indices of 120 patients suffering from chronic glomerulonephritis and pyelonephritis, resp., are stated
Study the effect of nitrogen flow rate on tribological properties of tantalum nitride based coatings
Chauhan, Dharmesh B.; Chauhan, Kamlesh V.; Sonera, Akshay L.; Makwana, Nishant S.; Dave, Divyeshkumar P.; Rawal, Sushant K.
2018-05-01
Tantalum Nitride (TaN) based coatings are well-known for their high temperature stability and chemical inertness. We have studied the effect of nitrogen flow rate variation on the structural and tribological properties of TaN based coating deposited by RF magnetron sputtering process. The nitrogen flow rate was varied from 5 to 30 sccm. X-ray diffractometer (XRD) and Atomic Force Microscopy (AFM) were used to determine structure and surface topography of coating. Pin on disc tribometer was used to determine tribological properties of coating. TaN coated brass and mild steel substrates shows higher wear resistance compared to uncoated substrates of brass and mild steel.
Effect of Reynolds number and inflow parameters on mean and turbulent flow over complex topography
DEFF Research Database (Denmark)
Kilpatrick, Ryan; Hangan, Horia; Siddiqui, Kamran
2016-01-01
inflow conditions were tested in order to isolate the impact of key parameters such as Reynolds number, inflow shear profile, and effective roughness, on flow behaviour over the escarpment. The results show that the mean flow behaviour was generally not affected by the Reynolds number; however, a slight...... (TKE) over the escarpment was found be a strong function of inflow roughness and a weak function of the Reynolds number. The local change in the inflow wind shear was found to have the most significant influence on the TKE magnitude, which more closely approximated the full-scale TKE data, a result...
Gravity Effect on Two-Phase Immiscible Flows in Communicating Layered Reservoirs
DEFF Research Database (Denmark)
Zhang, Xuan; Shapiro, Alexander; Stenby, Erling Halfdan
2012-01-01
An upscaling method is developed for two-phase immiscible i