WorldWideScience

Sample records for flow cytometric nuclear

  1. Comparison of Five Nuclear Isolation Buffers for Flow Cytometric ...

    African Journals Online (AJOL)

    Jocky

    2012-02-23

    Feb 23, 2012 ... species. A systematic comparison of nuclear lysis buffers has been ... All experiments were carried out with 3 replicates (n = 3) per treatment. ... Na2EDTA, 0.5 mM spermine.4HCl, 80 mM KCl, 20 mM NaCl, 0.1%. (v/v) Triton ...

  2. Flow cytometric characterization of cerebrospinal fluid cells.

    Science.gov (United States)

    de Graaf, Marieke T; de Jongste, Arjen H C; Kraan, Jaco; Boonstra, Joke G; Sillevis Smitt, Peter A E; Gratama, Jan W

    2011-09-01

    Flow cytometry facilitates the detection of a large spectrum of cellular characteristics on a per cell basis, determination of absolute cell numbers and detection of rare events with high sensitivity and specificity. White blood cell (WBC) counts in cerebrospinal fluid (CSF) are important for the diagnosis of many neurological disorders. WBC counting and differential can be performed by microscopy, hematology analyzers, or flow cytometry. Flow cytometry of CSF is increasingly being considered as the method of choice in patients suspected of leptomeningeal localization of hematological malignancies. Additionally, in several neuroinflammatory diseases such as multiple sclerosis and paraneoplastic neurological syndromes, flow cytometry is commonly performed to obtain insight into the immunopathogenesis of these diseases. Technically, the low cellularity of CSF samples, combined with the rapidly declining WBC viability, makes CSF flow cytometry challenging. Comparison of flow cytometry with microscopic and molecular techniques shows that each technique has its own advantages and is ideally combined. We expect that increasing the number of flow cytometric parameters that can be simultaneously studied within one sample, will further refine the information on CSF cell subsets in low-cellular CSF samples and enable to define cell populations more accurately. Copyright © 2011 International Clinical Cytometry Society.

  3. Simultaneous flow cytometric quantification of plant nuclear DNA contents over the full range of described angiosperm 2C values.

    Science.gov (United States)

    Galbraith, David W

    2009-08-01

    Flow cytometry provides a rapid, accurate, and simple means to determine nuclear DNA contents (C-value) within plant homogenates. This parameter is extremely useful in a number of applications in basic and applied plant biology; for example, it provides an important starting point for projects involving whole genome sequencing, it facilitates characterization of plant species within natural and agricultural settings, it allows facile identification of engineered plants that are euploid or that represent desired ploidy classes, it points toward studies concerning the role of C-value in plant growth and development and in response to the environment and in terms of evolutionary fitness, and, in uncovering new and unexpected phenomena (for example endoreduplication), it uncovers new avenues of scientific enquiry. Despite the ease of the method, C-values have been determined for only around 2% of the described angiosperm (flowering plant) species. Within this small subset, one of the most remarkable observations is the range of 2C values, which spans at least two orders of magnitude. In determining C-values for new species, technical issues are encountered which relate both to requirement for a method that can provide accurate measurements across this extended dynamic range, and that can accommodate the large amounts of debris which accompanies flow measurements of plant homogenates. In this study, the use of the Accuri C6 flow cytometer for the analysis of plant C-values is described. This work indicates that the unusually large dynamic range of the C6, a design feature, coupled to the linearity of fluorescence emission conferred by staining of nuclei using propidium iodide, allows simultaneous analysis of species whose C-values span that of almost the entire described angiosperms. Copyright 2009 International Society for Advancement of Cytometry.

  4. Flow cytometric analysis of variation in the level of nuclear DNA endoreduplication in the cotyledons amongst Vigna radiata cultivars

    Czech Academy of Sciences Publication Activity Database

    Pal, A.; Vrána, Jan; Doležel, Jaroslav

    2004-01-01

    Roč. 57, č. 3 (2004), s. 262-266 ISSN 0008-7114 R&D Projects: GA AV ČR IBS5038104 Grant - others:Indian National Science Academy(IN) INSA Institutional research plan: CEZ:AV0Z5038910 Keywords : Cotyledon * endoreduplication * flow cytometry Subject RIV: GE - Plant Breeding Impact factor: 0.366, year: 2004

  5. A flow cytometric assay for simultaneously measuring the ...

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... daughter cells, leading to a characteristic flow cytometric profile where a ... cell recognition without any impact on bone marrow hemato- ... cells of various cancer cells that load CFSE concentration ... (B) Target cells (R1) were further analyzed in an FL1/FL3 dot plot, ..... hematopoietic cell transplantation.

  6. A flow cytometric assay for simultaneously measuring the ...

    African Journals Online (AJOL)

    This research objective was to exploit a novel method for measuring the proliferation, cytotoxicity of cytokine-induced killer (CIK) cells using carboxyfluorescein succinimidyl ester/proliferation index (CFSE/PI) and flow cytometric assay. As cells divide, CFSE is apportioned equally between the two daughter cells, leading to a ...

  7. Flow cytometric and morphological analyses of Pinus pinaster somatic embryogenesis.

    Science.gov (United States)

    Marum, Liliana; Loureiro, João; Rodriguez, Eleazar; Santos, Conceição; Oliveira, M Margarida; Miguel, Célia

    2009-09-25

    An approach combining morphological profiling and flow cytometric analysis was used to assess genetic stability during the several steps of somatic embryogenesis in Pinus pinaster. Embryogenic cell lines of P. pinaster were established from immature zygotic embryos excised from seeds obtained from open-pollinated trees. During the maturation stage, phenotype of somatic embryos was characterized as being either normal or abnormal. Based upon the prevalent morphological traits, different types of abnormal embryos underwent further classification and quantification. Nuclear DNA content of maritime pine using the zygotic embryos was estimated to be 57.04 pg/2C, using propidium iodide flow cytometry. According to the same methodology, no significant differences (P< or =0.01) in DNA ploidy were detected among the most frequently observed abnormal phenotypes, embryogenic cell lines, zygotic and normal somatic embryos, and somatic embryogenesis-derived plantlets. Although the differences in DNA ploidy level do not exclude the occurrence of a low level of aneuploidy, the results obtained point to the absence of major changes in ploidy level during the somatic embryogenesis process of this economically important species. Therefore, our primary goal of true-to-typeness was assured at this level.

  8. Technical discussions II - Flow cytometric analysis

    NARCIS (Netherlands)

    Cunningham, A; Cid, A; Buma, AGJ

    In this paper the potencial of flow cytometry as applied to the aquatic life sciences is discussed. The use of flow cytometry for studying the ecotoxicology of phytoplankton was introduced. On the other hand, the new flow cytometer EUROPA was presented. This is a multilaser machine which has been

  9. Flow cytometric life cycle analysis in cellular radiation biology

    International Nuclear Information System (INIS)

    Wood, J.C.S.

    1982-01-01

    Three approaches to flow cytometric histogram analysis were developed: (1) differential histogram analysis, (2) DNA histogram analysis, and (3) multiparameter data analysis. These techniques were applied to an important unresolved problem in radiation biology. The initial responses to irradiation of a mammalian cell which occur during the first two cell cycles following the irradiation are of considerable interest to the radiation biologist. During the first two post-irradiation cell cycles, cells which ultimately will survive repair radiation-induced damage, while some cells begin to express some of the radiation-induced nuclear and chomatin damage. Caffeine- and thymidine-treated, and untreated gamma-irradiated cell populations were studied with respect to the radiation-induced G2 delay, deficient DNA synthesis, and the appearance of cells with abnormal DNA contents. It is hypothesized that the measured deficiency in DNA synthesis observed in the first post-irradiation cell cycle may be a result of daughter cells from abnormal first post-irradiation mitoses

  10. Flow cytometric fingerprinting for microbial strain discrimination and physiological characterization.

    Science.gov (United States)

    Buysschaert, Benjamin; Kerckhof, Frederiek-Maarten; Vandamme, Peter; De Baets, Bernard; Boon, Nico

    2018-02-01

    The analysis of microbial populations is fundamental, not only for developing a deeper understanding of microbial communities but also for their engineering in biotechnological applications. Many methods have been developed to study their characteristics and over the last few decades, molecular analysis tools, such as DNA sequencing, have been used with considerable success to identify the composition of microbial populations. Recently, flow cytometric fingerprinting is emerging as a promising and powerful method to analyze bacterial populations. So far, these methods have primarily been used to observe shifts in the composition of microbial communities of natural samples. In this article, we apply a flow cytometric fingerprinting method to discriminate among 29 Lactobacillus strains. Our results indicate that it is possible to discriminate among 27 Lactobacillus strains by staining with SYBR green I and that the discriminatory power can be increased by combined SYBR green I and propidium iodide staining. Furthermore, we illustrate the impact of physiological changes on the fingerprinting method by demonstrating how flow cytometric fingerprinting is able to discriminate the different growth phases of a microbial culture. The sensitivity of the method is assessed by its ability to detect changes in the relative abundance of a mix of polystyrene beads down to 1.2%. When a mix of bacteria was used, the sensitivity was as between 1.2% and 5%. The presented data demonstrate that flow cytometric fingerprinting is a sensitive and reproducible technique with the potential to be applied as a method for the dereplication of bacterial isolates. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  11. Flow cytometric determination of micronucleus frequency.

    Science.gov (United States)

    Elhajouji, Azeddine; Lukamowicz-Rajska, Magdalena

    2013-01-01

    During the last two decades the micronucleus (MN) test has been extensively used as a genotoxicity screening tool of chemicals and in a variety of exploratory and mechanistic investigations. The MN is a biomarker for chromosomal damage or mitotic abnormalities, since it can originate from chromosome fragments or whole chromosomes that fail to be incorporated into daughter nuclei during mitosis (Fenech et al., Mutagenesis 26:125-132, 2011; Kirsch-Volders et al., Arch Toxicol 85:873-899, 2011). The simplicity of scoring, accuracy, amenability to automation by image analysis or flow cytometry, and readiness to be applied to a variety of cell types either in vitro or in vivo have made it a versatile tool that has contributed to a large extent in our understanding of key toxicological issues related to genotoxins and their effects at the cellular and organism levels. Recently, the final acceptance of the in vitro MN test guideline 487 (OECD Guideline for Testing of Chemicals, In vitro mammalian cell micronucleus test 487. In vitro mammalian cell micronucleus test (MNVIT). Organization for Economic Cooperation and Development, Paris, 2010) together with the standard in vivo MN test OECD guideline 474 (OECD Guideline for The Testing of Chemicals, Mammalian erythrocyte micronucleus test no. 474. Organization for Economic Cooperation and Development, Paris, 1997) will further position the assay as a key driver in the determination of the genotoxicity potential in exploratory research as well as in the regulatory environment. This chapter covers to some extent the protocol designs and experimental steps necessary for a successful performance of the MN test and an accurate analysis of the MN by the flow cytometry technique.

  12. Predictive value of the flow cytometric PCNA - assay (proliferating cell nuclear antigen) in head and neck tumors after accelerated-hyperfractionated radiochemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wenz, F; Lohr, F; Rudat, V; Dietz, A; Flentje, M; Wannenmacher, M

    1995-07-01

    Purpose/Objective: Proliferation of surviving tumor cells during fractionated radiotherapy may limit tumor control, especially in rapidly proliferating tumors. It has been widely accepted, that this may play a major role in head and neck tumors. Several methods for the assessment of tumor proliferation have been developed, however, most of them are either laborious, invasive or potentially toxic. Today, the gold standard is the flow cytometric BrdUrd assay. We present a flow cytometric method for detection of PCNA, which is an intranuclear proliferation associated protein, in solid human head and neck tumors and how these data correlate with outcome. Materials and Methods: Pretherapeutic biopsies of 20 inoperable patients with squamous cell carcinoma of the head and neck (T3-4N2M0) were examined. The tissue was disaggregated with pepsin/HCl, antibody staining was performed using the clone PC10. Biparametric flow cytometry was performed after a FITC conjugated secondary antibody and propidiumjodine staining was applied. The PCNA-index (i.e. percentage PCNA-positive cells), the DNA-index and the S-phase fraction (SPF, euploid tumors only) were determined. The therapy consisted of combined accelerated-hyperfractionated radiochemotherapy (66 Gy in 5 wks, concomittant boost of 1.6 Gy/d in wks 4+5, Carboplatin in wks 1+5). The median follow-up time was 14 mths (5 - 28), the clinical partners (V.R., A.D.) were 'blinded' towards the PCNA-values. Results: 13 patients suffered from disease progession and 11 died. The actuarial median survival and disease free survival (DFS) were 14.4 and 10.7 mths, respectively. The PCNA-values ranged from 3.2 to 70% (median 9%), there were 7 aneuploid and 13 euploid tumors. SFP in the euploid tumors ranged from 4 to 14.5% (median 10.5%). Neither SFP nor ploidy had a significant influence on the outcome. The patients were divided according to their PCNA-value in higher (n=10) and lower (n=10) than the median. The survival and DFS were 13

  13. Uncovering Aberrant Mutant PKA Function with Flow Cytometric FRET

    Directory of Open Access Journals (Sweden)

    Shin-Rong Lee

    2016-03-01

    Full Text Available Biology has been revolutionized by tools that allow the detection and characterization of protein-protein interactions (PPIs. Förster resonance energy transfer (FRET-based methods have become particularly attractive as they allow quantitative studies of PPIs within the convenient and relevant context of living cells. We describe here an approach that allows the rapid construction of live-cell FRET-based binding curves using a commercially available flow cytometer. We illustrate a simple method for absolutely calibrating the cytometer, validating our binding assay against the gold standard isothermal calorimetry (ITC, and using flow cytometric FRET to uncover the structural and functional effects of the Cushing-syndrome-causing mutation (L206R on PKA’s catalytic subunit. We discover that this mutation not only differentially affects PKAcat’s binding to its multiple partners but also impacts its rate of catalysis. These findings improve our mechanistic understanding of this disease-causing mutation, while illustrating the simplicity, general applicability, and power of flow cytometric FRET.

  14. Multivariate analysis of flow cytometric data using decision trees.

    Science.gov (United States)

    Simon, Svenja; Guthke, Reinhard; Kamradt, Thomas; Frey, Oliver

    2012-01-01

    Characterization of the response of the host immune system is important in understanding the bidirectional interactions between the host and microbial pathogens. For research on the host site, flow cytometry has become one of the major tools in immunology. Advances in technology and reagents allow now the simultaneous assessment of multiple markers on a single cell level generating multidimensional data sets that require multivariate statistical analysis. We explored the explanatory power of the supervised machine learning method called "induction of decision trees" in flow cytometric data. In order to examine whether the production of a certain cytokine is depended on other cytokines, datasets from intracellular staining for six cytokines with complex patterns of co-expression were analyzed by induction of decision trees. After weighting the data according to their class probabilities, we created a total of 13,392 different decision trees for each given cytokine with different parameter settings. For a more realistic estimation of the decision trees' quality, we used stratified fivefold cross validation and chose the "best" tree according to a combination of different quality criteria. While some of the decision trees reflected previously known co-expression patterns, we found that the expression of some cytokines was not only dependent on the co-expression of others per se, but was also dependent on the intensity of expression. Thus, for the first time we successfully used induction of decision trees for the analysis of high dimensional flow cytometric data and demonstrated the feasibility of this method to reveal structural patterns in such data sets.

  15. Leukocytospermia and sperm preparation - a flow cytometric study

    Directory of Open Access Journals (Sweden)

    Perticarari Sandra

    2009-01-01

    Full Text Available Abstract Background Leukocytes represent the predominant source of reactive oxygen species both in seminal plasma and in sperm suspensions and have been demonstrated to negatively influence sperm function and fertilization rate in assisted reproduction procedures. Peroxidase test is the standard method recommended by WHO to detect semen leukocytes but it may be inaccurate. The aims of this study were (i to compare the efficiency of swim-up and density-gradient centrifugation techniques in removing seminal leukocytes, (ii to examine the effect of leukocytes on sperm preparation, and (iii to compare flow cytometry and peroxidase test in determining leukocyte concentration in semen using a multiparameter flow cytometric method. Methods Semen samples from 126 male partners of couples undergoing infertility investigations were analyzed for leukocytospermia using standard optical microscopy and flow cytometry. Sixty-nine out of 126 samples were also processed using simultaneously the swim-up and density-gradient centrifugation techniques. A multiparameter flow cytometric analysis to assess simultaneously sperm concentration, sperm viability, sperm apoptosis, and leukocyte concentration was carried out on neat and prepared sperm. Results Both sperm preparation methods removed most seminal leukocytes. However, the concentration of leukocytes was significantly lower after swim-up compared to that after density-gradient centrifugation preparation. Leukocytes concentration, either initial or in prepared fractions, was not correlated with sperm parameters (optical microscopy and flow cytometry parameters after semen processing. There was no correlation between leukocyte concentration in the ejaculate and sperm recovery rate, whereas a significant correlation was found between the concentration of the residual leukocytes in prepared fractions and viable sperm recovery rate. Although the overall concordance between the flow cytometry and the optical

  16. Discrimination of bromodeoxyuridine labelled and unlabelled mitotic cells in flow cytometric bromodeoxyuridine/DNA analysis

    DEFF Research Database (Denmark)

    Jensen, P O; Larsen, J K; Christensen, I J

    1994-01-01

    Bromodeoxyuridine (BrdUrd) labelled and unlabelled mitotic cells, respectively, can be discriminated from interphase cells using a new method, based on immunocytochemical staining of BrdUrd and flow cytometric four-parameter analysis of DNA content, BrdUrd incorporation, and forward and orthogonal...... light scatter. The method was optimized using the human leukemia cell lines HL-60 and K-562. Samples of 10(5) ethanol-fixed cells were treated with pepsin/HCl and stained as a nuclear suspension with anti-BrdUrd antibody, FITC-conjugated secondary antibody, and propidium iodide. Labelled mitoses could...

  17. The cytometric future: it ain't necessarily flow!

    Science.gov (United States)

    Shapiro, Howard M

    2011-01-01

    Initial approaches to cytometry for classifying and characterizing cells were based on microscopy; it was necessary to collect relatively high-resolution images of cells because only a few specific reagents usable for cell identification were available. Although flow cytometry, now the dominant cytometric technology, typically utilizes lenses similar to microscope lenses for light collection, improved, more quantitative reagents allow the necessary information to be acquired in the form of whole-cell measurements of the intensities of light transmission, scattering, and/or fluorescence.Much of the cost and complexity of both automated microscopes and flow cytometers arises from the necessity for them to measure one cell at a time. Recent developments in digital camera technology now offer an alternative in which one or more low-magnification, low-resolution images are made of a wide field containing many cells, using inexpensive light-emitting diodes (LEDs) for illumination. Minimalist widefield imaging cytometers can provide a smaller, less complex, and substantially less expensive alternative to flow cytometry, critical in systems intended for in resource-poor areas. Minimalism is, likewise, a good philosophy in developing instrumentation and methodology for both clinical and large-scale research use; it simplifies quality assurance and compliance with regulatory requirements, as well as reduces capital outlays, material costs, and personnel training requirements. Also, importantly, it yields "greener" technology.

  18. Detection of circulating immune complexes by Raji cell assay: comparison of flow cytometric and radiometric methods

    International Nuclear Information System (INIS)

    Kingsmore, S.F.; Crockard, A.D.; Fay, A.C.; McNeill, T.A.; Roberts, S.D.; Thompson, J.M.

    1988-01-01

    Several flow cytometric methods for the measurement of circulating immune complexes (CIC) have recently become available. We report a Raji cell flow cytometric assay (FCMA) that uses aggregated human globulin (AHG) as primary calibrator. Technical advantages of the Raji cell flow cytometric assay are discussed, and its clinical usefulness is evaluated in a method comparison study with the widely used Raji cell immunoradiometric assay. FCMA is more precise and has greater analytic sensitivity for AHG. Diagnostic sensitivity by the flow cytometric method is superior in systemic lupus erythematosus (SLE), rheumatoid arthritis, and vasculitis patients: however, diagnostic specificity is similar for both assays, but the reference interval of FCMA is narrower. Significant correlations were found between CIC levels obtained with both methods in SLE, rheumatoid arthritis, and vasculitis patients and in longitudinal studies of two patients with cerebral SLE. The Raji cell FCMA is recommended for measurement of CIC levels to clinical laboratories with access to a flow cytometer

  19. Flow cytometric DNA ploidy analysis of ovarian granulosa cell tumors

    NARCIS (Netherlands)

    D. Chadha; C.J. Cornelisse; A. Schabert (A.)

    1990-01-01

    textabstractAbstract The nuclear DNA content of 50 ovarian tumors initially diagnosed as granulosa cell tumors was measured by flow cytometry using paraffin-embedded archival material. The follow-up period of the patients ranged from 4 months to 19 years. Thirty-eight tumors were diploid or

  20. Flow cytometric method for measuring chromatin fragmentation in fixed sperm from yellow perch (Perca flavescens).

    Science.gov (United States)

    Jenkins, J A; Draugelis-Dale, R O; Pinkney, A E; Iwanowicz, L R; Blazer, V S

    2015-03-15

    Declining harvests of yellow perch, Perca flavescens, in urbanized watersheds of Chesapeake Bay have prompted investigations of their reproductive fitness. The purpose of this study was to establish a flow cytometric technique for DNA analysis of fixed samples sent from the field to provide reliable gamete quality measurements. Similar to the sperm chromatin structure assay, measures were made on the susceptibility of nuclear DNA to acid-induced denaturation, but used fixed rather than live or thawed cells. Nuclei were best exposed to the acid treatment for 1 minute at 37 °C followed by the addition of cold (4 °C) propidium iodide staining solution before flow cytometry. The rationale for protocol development is presented graphically through cytograms. Field results collected in 2008 and 2009 revealed DNA fragmentation up to 14.5%. In 2008, DNA fragmentation from the more urbanized watersheds was significantly greater than from reference sites (P = 0.026) and in 2009, higher percentages of haploid testicular cells were noted from the less urbanized watersheds (P = 0.032) indicating better reproductive condition at sites with less urbanization. For both years, total and progressive live sperm motilities by computer-assisted sperm motion analysis ranged from 19.1% to 76.5%, being significantly higher at the less urbanized sites (P < 0.05). This flow cytometric method takes advantage of the propensity of fragmented DNA to be denatured under standard conditions, or 1 minute at 37 °C with 10% buffered formalin-fixed cells. The study of fixed sperm makes possible the restrospective investigation of germplasm fragmentation, spermatogenic ploidy patterns, and chromatin compaction levels from samples translocated over distance and time. The protocol provides an approach that can be modified for other species across taxa. Published by Elsevier Inc.

  1. Flow cytometric DNA analysis of ducks accumulating 137Cs on a reactor reservoir

    International Nuclear Information System (INIS)

    George, L.S.; Dallas, C.E.; Brisbin, I.L. Jr.; Evans, D.L.

    1991-01-01

    The objective of this study was to detect red blood cell (rbc) DNA abnormalities in male, game-farm mallard ducks as they ranged freely and accumulated 137Cs (radiocesium) from an abandoned nuclear reactor cooling reservoir. Prior to release, the ducks were tamed to enable recapture at will. Flow cytometric measurements conducted at intervals during the first year of exposure yielded cell cycle percentages of DNA (G0/G1, S, G2 + M phases) of rbc, as well as coefficients of variation (CV) in the G0/G1 phase. DNA histograms of exposed ducks were compared with two sets of controls which were maintained 30 and 150 miles from the study site. 137Cs live wholebody burdens were also measured in these animals in a parallel kinetics study, and an approximate steady-state equilibrium was attained after about 8 months. DNA histograms from 2 of the 14 contaminated ducks revealed DNA aneuploid-like patterns after 9 months exposure. These two ducks were removed from the experiment at this time, and when sampled again 1 month later, one continued to exhibit DNA aneuploidy. None of the control DNA histograms demonstrated DNA aneuploid-like patterns. There were no significant differences in cell cycle percentages at any time point between control and exposed animals. A significant increase in CV was observed at 9 months exposure, but after removal of the two ducks with DNA aneuploidy, no significant difference was detected in the group monitored after 12 months exposure. An increased variation in the DNA and DNA aneuploidy could, therefore, be detected in duck rbc using flow cytometric analysis, with the onset of these effects being related to the attainment of maximal levels of 137Cs body burdens in the exposed animals

  2. Quantifying Distribution of Flow Cytometric TCR-Vβ Usage with Economic Statistics.

    Directory of Open Access Journals (Sweden)

    Kornelis S M van der Geest

    Full Text Available Measuring changes of the T cell receptor (TCR repertoire is important to many fields of medicine. Flow cytometry is a popular technique to study the TCR repertoire, as it quickly provides insight into the TCR-Vβ usage among well-defined populations of T cells. However, the interpretation of the flow cytometric data remains difficult, and subtle TCR repertoire changes may go undetected. Here, we introduce a novel means for analyzing the flow cytometric data on TCR-Vβ usage. By applying economic statistics, we calculated the Gini-TCR skewing index from the flow cytometric TCR-Vβ analysis. The Gini-TCR skewing index, which is a direct measure of TCR-Vβ distribution among T cells, allowed us to track subtle changes of the TCR repertoire among distinct populations of T cells. Application of the Gini-TCR skewing index to the flow cytometric TCR-Vβ analysis will greatly help to gain better understanding of the TCR repertoire in health and disease.

  3. Discrimination of bromodeoxyuridine labelled and unlabelled mitotic cells in flow cytometric bromodeoxyuridine/DNA analysis

    DEFF Research Database (Denmark)

    Jensen, P O; Larsen, J K; Christensen, I J

    1994-01-01

    Bromodeoxyuridine (BrdUrd) labelled and unlabelled mitotic cells, respectively, can be discriminated from interphase cells using a new method, based on immunocytochemical staining of BrdUrd and flow cytometric four-parameter analysis of DNA content, BrdUrd incorporation, and forward and orthogona...

  4. Immunologic status of children with thyroid cancer living near Chernobyl (flow cytometric and electron microscopic study)

    International Nuclear Information System (INIS)

    Zak, K.P.; Gruzov, M.A.; Bolshova, B.V.; Afanasyeva, V.V.; Shlyakhovenko, V.S.; Vishnevskaya, O.A.; Tronko, N.D.

    1996-01-01

    It hag been carded out a light, election microscopic and flow cytometric study of blood leukocyte of children with malignant tumors (papillary carcinoma) of thyroid gland who were living at the moment of the accident near Chernobyl. The results obtained point out the presence of some disturbances of immune status of these children

  5. Cluster Analysis of Flow Cytometric List Mode Data on a Personal Computer

    NARCIS (Netherlands)

    Bakker Schut, Tom C.; Bakker schut, T.C.; de Grooth, B.G.; Greve, Jan

    1993-01-01

    A cluster analysis algorithm, dedicated to analysis of flow cytometric data is described. The algorithm is written in Pascal and implemented on an MS-DOS personal computer. It uses k-means, initialized with a large number of seed points, followed by a modified nearest neighbor technique to reduce

  6. A flow cytometric technique for quantification and differentiation of bacteria in bulk tank milk

    DEFF Research Database (Denmark)

    Holm, C.; Mathiasen, T.; Jespersen, Lene

    2004-01-01

    were defined: region 1 includes bacteria mainly associated with poor hygiene, region 2 includes psychrotrophic hygiene bacteria and region 3 includes bacteria mainly related to mastitis. The ability of the flow cytometric technique to predict the main cause of elevated bacterial counts on routine...

  7. DNA flow cytometric analysis in variable types of hydropic placentas

    Directory of Open Access Journals (Sweden)

    Fatemeh Atabaki pasdar

    2015-05-01

    Full Text Available Background: Differential diagnosis between complete hydatidiform mole, partial hydatidiform mole and hydropic abortion, known as hydropic placentas is still a challenge for pathologists but it is very important for patient management. Objective: We analyzed the nuclear DNA content of various types of hydropic placentas by flowcytometry. Materials and Methods: DNA ploidy analysis was performed in 20 non-molar (hydropic and non-hydropic spontaneous abortions and 20 molar (complete and partial moles, formalin-fixed, paraffin-embedded tissue samples by flow cytometry. The criteria for selection were based on the histopathologic diagnosis. Results: Of 10 cases histologically diagnosed as complete hydatiform mole, 9 cases yielded diploid histograms, and 1 case was tetraploid. Of 10 partial hydatidiform moles, 8 were triploid and 2 were diploid. All of 20 cases diagnosed as spontaneous abortions (hydropic and non-hydropic yielded diploid histograms. Conclusion: These findings signify the importance of the combined use of conventional histology and ploidy analysis in the differential diagnosis of complete hydatidiform mole, partial hydatidiform mole and hydropic abortion.

  8. Novel nuclei isolation buffer for flow cytometric genome size estimation of Zingiberaceae: a comparison with common isolation buffers.

    Science.gov (United States)

    Sadhu, Abhishek; Bhadra, Sreetama; Bandyopadhyay, Maumita

    2016-11-01

    Cytological parameters such as chromosome numbers and genome sizes of plants are used routinely for studying evolutionary aspects of polyploid plants. Members of Zingiberaceae show a wide range of inter- and intrageneric variation in their reproductive habits and ploidy levels. Conventional cytological study in this group of plants is severely hampered by the presence of diverse secondary metabolites, which also affect their genome size estimation using flow cytometry. None of the several nuclei isolation buffers used in flow cytometry could be used very successfully for members of Zingiberaceae to isolate good quality nuclei from both shoot and root tissues. The competency of eight nuclei isolation buffers was compared with a newly formulated buffer, MB01, in six different genera of Zingiberaceae based on the fluorescence intensity of propidium iodide-stained nuclei using flow cytometric parameters, namely coefficient of variation of the G 0 /G 1 peak, debris factor and nuclei yield factor. Isolated nuclei were studied using fluorescence microscopy and bio-scanning electron microscopy to analyse stain-nuclei interaction and nuclei topology, respectively. Genome contents of 21 species belonging to these six genera were determined using MB01. Flow cytometric parameters showed significant differences among the analysed buffers. MB01 exhibited the best combination of analysed parameters; photomicrographs obtained from fluorescence and electron microscopy supported the superiority of MB01 buffer over other buffers. Among the 21 species studied, nuclear DNA contents of 14 species are reported for the first time. Results of the present study substantiate the enhanced efficacy of MB01, compared to other buffers tested, in the generation of acceptable cytograms from all species of Zingiberaceae studied. Our study facilitates new ways of sample preparation for further flow cytometric analysis of genome size of other members belonging to this highly complex polyploid family

  9. Image cytometric nuclear texture features in inoperable head and neck cancer: a pilot study

    International Nuclear Information System (INIS)

    Strojan-Flezar, Margareta; Lavrencak, Jaka; Zganec, Mario; Strojan, Primoz

    2011-01-01

    Image cytometry can measure numerous nuclear features which could be considered a surrogate end-point marker of molecular genetic changes in a nucleus. The aim of the study was to analyze image cytometric nuclear features in paired samples of primary tumor and neck metastasis in patients with inoperable carcinoma of the head and neck. Image cytometric analysis of cell suspensions prepared from primary tumor tissue and fine needle aspiration biopsy cell samples of neck metastases from 21 patients treated with concomitant radiochemotherapy was performed. Nuclear features were correlated with clinical characteristics and response to therapy. Manifestation of distant metastases and new primaries was associated (p<0.05) with several chromatin characteristics from primary tumor cells, whereas the origin of index cancer and disease response in the neck was related to those in the cells from metastases. Many nuclear features of primary tumors and metastases correlated with the TNM stage. A specific pattern of correlation between well-established prognostic indicators and nuclear features of samples from primary tumors and those from neck metastases was observed. Image cytometric nuclear features represent a promising candidate marker for recognition of biologically different tumor subgroups

  10. Flow cytometric assessment of viability of lactic acid bacteria

    NARCIS (Netherlands)

    Bunthof, C.J.; Bloemen, K.; Breeuwer, P.; Rombouts, F.M.; Abee, T.

    2001-01-01

    The viability of lactic acid bacteria is crucial for their applications as dairy starters and as probiotics. We investigated the usefulness of flow cytometry (FCM) for viability assessment of lactic acid bacteria. The esterase substrate carboxyfluorescein diacetate (cFDA) and the dye exclusion DNA

  11. Flow cytometric applications of tumor biology: prospects and pitfalls

    International Nuclear Information System (INIS)

    Raju, M.R.; Johnson, T.S.; Tokita, N.; Gillette, E.L.

    1979-01-01

    A brief review of cytometry instrumentation and its potential applications in tumor biology is presented using our recent data. Age-distribution measurements of cells from spontaneous dog tumors and cultured cells after exposure to x rays, alpha particles, or adriamycin are shown. The data show that DNA fluorescence measurements have application in the study of cell kinetics after either radiation or drug treatment. Extensive and careful experimentation is needed to utilize the sophisticated developments in flow cytometry instrumentation

  12. Flow cytometric applications to tumour biology: prospects and pitfalls

    International Nuclear Information System (INIS)

    Raju, M.R.; Johnson, T.S.; Tokita, N.; Gillette, E.L.

    1980-01-01

    A brief review of cytometry instrumentation and its potential applications in tumour biology is presented. DNA distribution measurements of cells from spontaneous dog tumours and cultured cells after exposure to X-rays, alpha particles or adriamycin are shown. The data show that DNA fluorescence measurements have application in the study of cell kinetics after either radiation or drug treatment. Extensive and careful experimentation is needed, however, to utilize the sophisticated developments in flow cytometry instrumentation. (author)

  13. Flow cytometric chromosome sorting in plants: The next generation

    Czech Academy of Sciences Publication Activity Database

    Vrána, Jan; Šimková, Hana; Kubaláková, Marie; Čihalíková, Jarmila; Doležel, Jaroslav

    2012-01-01

    Roč. 57, č. 3 (2012), s. 331-337 ISSN 1046-2023 R&D Projects: GA ČR GAP501/10/1740 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional research plan: CEZ:AV0Z50380511 Keywords : Chromosome sorting * Flow cytometry * Fluorescence in situ hybridization Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.641, year: 2012

  14. Solid KHT tumor dispersal for flow cytometric cell kinetic analysis

    International Nuclear Information System (INIS)

    Pallavicini, M.G.; Folstad, L.J.; Dunbar, C.

    1981-01-01

    A bacterial neutral protease was used to disperse KHT solid tumors into single cell suspensions suitable for routine cell kinetic analysis by flow cytometry and for clonogenic cell survival. Neutral protease disaggregation under conditions which would be suitable for routine tumor dispersal was compared with a trypsin/DNase procedure. Cell yield, clonogenic cell survival, DNA distributions of untreated and drug-perturbed tumors, rates of radioactive precursor incorporation during the cell cycle, and preferential cell cycle phase-specific cell loss were investigated. Tumors dispersed with neutral protease yielded approximately four times more cells than those dispersed with trypsin/DNase and approximately a 1.5-fold higher plating efficiency in a semisolid agar system. Quantitative analysis of DNA distributions obtained from untreated and cytosine-arabinoside-perturbed tumors produced similar results with both dispersal procedures. The rates of incorporation of tritiated thymidine during the cell cycle were also similar with neutral protease and trypsin/DNase dispersal. Preferential phase-specific cell loss was not obseved with either technique. We find that neutral protease provides good single cell suspensions of the KHT tumor for cell survival measurements and for cell kinetic analysis of drug-induced perturbations by flow cytometry. In addition, the high cell yields facilitate electronic cell sorting where large numbers of cells are often required

  15. A flow cytometric method for assessing viability of intraerythrocytic hemoparasites.

    Science.gov (United States)

    Wyatt, C R; Goff, W; Davis, W C

    1991-06-24

    We have developed a rapid, reliable method of evaluating growth and viability of intraerythrocytic protozoan hemoparasites. The assay involves the selective uptake and metabolic conversion of hydroethidine to ethidium by live parasites present in intact erythrocytes. The red fluorescence imparted by ethidium intercalated into the DNA of the parasite permits the use of flow cytometry to distinguish infected erythrocytes with viable parasites from uninfected erythrocytes and erythrocytes containing dead parasites. Comparison of the fluorochromasia technique of enumerating the number and viability of hemoparasites in cultured erythrocytes with enumeration in Giemsa-stained films and uptake of [3H]hypoxanthine demonstrated the fluorochromasia technique yields comparable results. Studies with the hemoparasite, Babesia bovis, have shown the fluorochromasia technique can also be used to monitor the effect of parasiticidal drugs on parasites in vitro. The cumulative studies with the fluorochromasia assay suggest the assay will also prove useful in investigations focused on analysis of the immune response to hemoparasites and growth in vitro.

  16. Coexpression of multidrug resistance involve proteins: a flow cytometric analysis.

    Science.gov (United States)

    Boutonnat, J; Bonnefoix, T; Mousseau, M; Seigneurin, D; Ronot, X

    1998-01-01

    Cross resistance to multiple natural cytotoxic products represents a major obstacle in myeloblastic acute leukaemia (AML). Multidrug resistance (MDR) often involves overexpression of plasma membrane drug transporter P-glycoprotein (PGP) or the resistance associated protein (MRP). Recently, a protein overexpressed in a non-PGP MDR lung cancer cell line and termed lung resistance related protein (LRP) was identified. These proteins are known to be associated with a bad prognosis in AML. We have developed a triple indirect labelling analysed by flow cytometry to detect the coexpression of these proteins. Since no cell line expressing all three antigens is known, we mixed K562 cells (resistant to Adriblastine, PGP+, MRP-, LRP-) with GLC4 cells (resistant to Adriblastine, PGP-, MRP+, LRP+) to create a model system to test the method. The antibodies used were UIC2 for PGP, MRPm6 for MRP and LRP56 for LRP. They were revealed by Fab'2 coupled with Fluoresceine-isothiocyanate, Phycoerythrin or Tricolor with isotype specificity. Cells were fixed and permeabilized after PGP labelling because MRPm6 and LRP56 recognize intracellular epitopes. PGP and LRP were easily detected. MRP is expressed at relatively low levels and was more difficult to detect because in the triple labelling the non specific staining was higher than in a single labelling. Despite the increased background in the triple labelling we were able to detect coexpression of PGP, MRP, LRP by flow cytometry. This method appears to be very useful to detect coexpression of markers in AML. Such coexpression could modify the therapeutic approach with revertants.

  17. Ultrastructural and flow cytometric analyses of lipid accumulation in microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, J.A.; Hand, R.E. Jr.; Mann, R.C.

    1986-12-01

    Lipid accumulation in three species of microalgae was investigated with flow cytometry (FCM) and transmission electron microscopy (TEM). Previous studies using batch cultures of a algae have led to the assumption that lipid accumulation in microalgae is a gradual process requiring at least several days for completion. However, FCM reveals, through changes in the chlorophyll:lipid ratio, that the time span required for individual cells to change metabolic state is short. Simultaneous FCM measurements of chlorophyll and nile red (neutral lipid) fluorescence in individual cells of nitrogen-deficient Isochrysis populations revealed a bimodal population distribution as one stage in the lipid accumulation process. The fact that two discrete populations exist, with few cells in an intermediate stage, suggests rapid response to a liqid trigger. Interpretations of light and electron microscopic observations are consistent with this hypothesis. The time required for an entire population to achieve maximum lipid content is considerably longer than that required for a single cell, due to the variation in response time among cells. In this study high lipid cultures were sometimes obtained by using FCM to separate high lipid cells from the remainder of the population. FCM holds much promise for strain enhancement but considerable developmental work, directed at providing more consistent results, remains to be done. 8 refs., 35 figs.

  18. Use of LysoTracker dyes: a flow cytometric study of autophagy.

    Science.gov (United States)

    Chikte, Shaheen; Panchal, Neelam; Warnes, Gary

    2014-02-01

    The flow cytometric use of LysoTracker dyes was employed to investigate the autophagic process and to compare this with the upregulation of autophagy marker, the microtubule-associated protein LC3B. Although the mechanism of action of LysoTracker dyes is not fully understood, they have been used in microscopy to image acidic spherical organelles, and their use in flow cytometry has not been thoroughly investigated in the study of autophagy. This investigation uses numerous autophagy-inducing agents including chloroquine (CQ), rapamycin, low serum (used to analyze patient cells as well as easier to use and significantly less costly. Copyright © 2013 International Society for Advancement of Cytometry.

  19. Flow cytometric analysis of microbial contamination in food industry technological lines--initial study.

    Science.gov (United States)

    Józwa, Wojciech; Czaczyk, Katarzyna

    2012-04-02

    Flow cytometry constitutes an alternative for traditional methods of microorganisms identification and analysis, including methods requiring cultivation step. It enables the detection of pathogens and other microorganisms contaminants without the need to culture microbial cells meaning that the sample (water, waste or food e.g. milk, wine, beer) may be analysed directly. This leads to a significant reduction of time required for analysis allowing monitoring of production processes and immediate reaction in case of contamination or any disruption occurs. Apart from the analysis of raw materials or products on different stages of manufacturing process, the flow cytometry seems to constitute an ideal tool for the assessment of microbial contamination on the surface of technological lines. In the present work samples comprising smears from 3 different surfaces of technological lines from fruit and vegetable processing company from Greater Poland were analysed directly with flow cytometer. The measured parameters were forward and side scatter of laser light signals allowing the estimation of microbial cell contents in each sample. Flow cytometric analysis of the surface of food industry production lines enable the preliminary evaluation of microbial contamination within few minutes from the moment of sample arrival without the need of sample pretreatment. The presented method of fl ow cytometric initial evaluation of microbial state of food industry technological lines demonstrated its potential for developing a robust, routine method for the rapid and labor-saving detection of microbial contamination in food industry.

  20. Karyological and flow cytometric evidence of triploid specimens in Bufo viridis (Amphibia Anura

    Directory of Open Access Journals (Sweden)

    D Cavallo

    2010-01-01

    Full Text Available Karyological and flow cytometric (FCM analyses were performed on a group of 14 green toads of the Bufo viridis species from seven Eurasian populations. Both approaches gave concordant results concerning the DNA ploidy level. All the populations examined were represented exclusively by diploid or tetraploid specimens, except one, where triploids were found. Results evidenced an interpopulation variability in DNA content against the same ploidy level, as well as an unusually high number of triploids in a particular reproductive place. The origin of polyploidy and the presence and persistence of a high number of triploids in a particular population are discussed.

  1. Flow cytometric of reticulocytes quantification: radio-induction medullary aplasia application

    International Nuclear Information System (INIS)

    Dubner, D.; Perez, M.; Gisone, P.

    1996-01-01

    Flow cytometric reticulocyte quantification was assayed in ten patients undergoing bone marrow transplantation (BMT) with previous conditioning by chemotherapy and total body irradiation. A reticulocyte maturity index (RMI) was determined taking into account the RNA content. With the aim of testing the utility of RMI as an early predictor of functional recovery in marrow aplasia, other hematological indicators as neutrophils count were comparatively evaluated. Mean time elapsed between BMT and engraftment evidence by RMI was 17,6 days. In six patients the RMI was the earliest indicator of functional recovery. The applicability of this assay in the pursuit of radioinduced bone marrow aplasia is discussed. (authors). 4 refs., 4 figs., 2 tabs

  2. Quality control in the application of flow cytometric assays of genetic damage due to environmental contaminants

    International Nuclear Information System (INIS)

    McCreedy, C.D.; Jagoe, C.H.; Brisbin, I.L. Jr.; Wentworth, R.W.; Dallas, C.E.

    1995-01-01

    Clinical technologies, such as flow cytometry, are increasingly adopted by environmental toxicologists to identify resource damage associated with exposure to xenobiotics. One application of flow cytometry allows the rapid determination of the DNA content of large numbers of individual cells, and can be used to detect aneuploidy or other genetic abnormalities. The laboratory has used this methodology in studies of genetic toxicology of fish, birds, arid mammals exposed to organic pollutants, metals and radionuclides, However, without appropriate quality controls, false positive results and other artifacts can arise from sample handling and preparations, inter and intra-individual variations, instrument noise and other sources. The authors describe the routine measures this laboratory employs to maintain quality control of genomic DNA analysis, including the control of staining conditions, machine standardization, pulse-width doublet discrimination, and, in particular, the use of internal controls and the use of time as a cytometric parameter. Neglect of these controls can produce erroneous results, leading to conclusions of genetic abnormalities when none are present. Conversely, attention to these controls, routinely used in clinical settings, facilitates the interpretation of flow cytometric data and allows the application of this sensitive indicator of genotoxic effects to a variety of environmental problems

  3. Flow cytometric techniques for detection of candidate cancer stem cell subpopulations in canine tumour models.

    Science.gov (United States)

    Blacking, T M; Waterfall, M; Samuel, K; Argyle, D J

    2012-12-01

    The cancer stem cell (CSC) hypothesis proposes that tumour growth is maintained by a distinct subpopulation of 'CSC'. This study applied flow cytometric methods, reported to detect CSC in both primary and cultured cancer cells of other species, to identify candidate canine subpopulations. Cell lines representing diverse canine malignancies, and cells derived from spontaneous canine tumours, were evaluated for expression of stem cell-associated surface markers (CD34, CD44, CD117 and CD133) and functional properties [Hoecsht 33342 efflux, aldehyde dehydrogenase (ALDH) activity]. No discrete marker-defined subsets were identified within established cell lines; cells derived directly from spontaneous tumours demonstrated more heterogeneity, although this diminished upon in vitro culture. Functional assays produced variable results, suggesting context-dependency. Flow cytometric methods may be adopted to identify putative canine CSC. Whilst cell lines are valuable in assay development, primary cells may provide a more rewarding model for studying tumour heterogeneity in the context of CSC. However, it will be essential to fully characterize any candidate subpopulations to ensure that they meet CSC criteria. © 2011 Blackwell Publishing Ltd.

  4. Vortex-dislodged cells from bone marrow trephine biopsy yield satisfactory results for flow cytometric immunophenotyping.

    Science.gov (United States)

    Bommannan, K; Sachdeva, M U S; Gupta, M; Bose, P; Kumar, N; Sharma, P; Naseem, S; Ahluwalia, J; Das, R; Varma, N

    2016-10-01

    A good bone marrow (BM) sample is essential in evaluating many hematologic disorders. An unsuccessful BM aspiration (BMA) procedure precludes a successful flow cytometric immunophenotyping (FCI) in most hematologic malignancies. Apart from FCI, most ancillary diagnostic techniques in hematology are less informative. We describe the feasibility of FCI in vortex-dislodged cell preparation obtained from unfixed trephine biopsy (TB) specimens. In pancytopenic patients and dry tap cases, routine diagnostic BMA and TB samples were complemented by additional trephine biopsies. These supplementary cores were immediately transferred into sterile tubes filled with phosphate-buffered saline, vortexed, and centrifuged. The cell pellet obtained was used for flow cytometric immunophenotyping. Of 7955 BMAs performed in 42 months, 34 dry tap cases were eligible for the study. Vortexing rendered a cell pellet in 94% of the cases (32 of 34), and FCI rendered a rapid diagnosis in 100% of the cases (32 of 32) where cell pellets were available. We describe an efficient procedure which could be effectively utilized in resource-limited centers and reduce the frequency of repeat BMA procedures. © 2016 John Wiley & Sons Ltd.

  5. A flow cytometric assay technology based on quantum dots-encoded beads

    International Nuclear Information System (INIS)

    Wang Haiqiao; Liu Tiancai; Cao Yuancheng; Huang Zhenli; Wang Jianhao; Li Xiuqing; Zhao Yuandi

    2006-01-01

    A flow cytometric detecting technology based on quantum dots (QDs)-encoded beads has been described. Using this technology, several QDs-encoded beads with different code were identified effectively, and the target molecule (DNA sequence) in solution was also detected accurately by coupling to its complementary sequence probed on QDs-encoded beads through DNA hybridization assay. The resolution of this technology for encoded beads is resulted from two longer wavelength fluorescence identification signals (yellow and red fluorescent signals of QDs), and the third shorter wavelength fluorescence signal (green reporting signal of fluorescein isothiocyanate (FITC)) for the determination of reaction between probe and target. In experiment, because of QDs' unique optical character, only one excitation light source was needed to excite the QDs and probe dye FITC synchronously comparing with other flow cytometric assay technology. The results show that this technology has present excellent repeatability and good accuracy. It will become a promising multiple assay platform in various application fields after further improvement

  6. Multiplex competitive microbead-based flow cytometric immunoassay using quantum dot fluorescent labels

    International Nuclear Information System (INIS)

    Yu, Hye-Weon; Kim, In S.; Niessner, Reinhard; Knopp, Dietmar

    2012-01-01

    Highlights: ► First time, duplex competitive bead-based flow cytometric immunoassay was developed using ODs. ► Antibody-coated QD detection probes and antigen-immobilized microspheres were synthesized. ► The two model target analytes were low molecular weight compounds of microbial and chemical origin. ► The determination of different water types was possible after simple filtration of samples. - Abstract: In answer to the ever-increasing need to perform the simultaneous analysis of environmental hazards, microcarrier-based multiplex technologies show great promise. Further integration with biofunctionalized quantum dots (QDs) creates new opportunities to extend the capabilities of multicolor flow cytometry with their unique fluorescence properties. Here, we have developed a competitive microbead-based flow cytometric immunoassay using QDs fluorescent labels for simultaneous detection of two analytes, bringing the benefits of sensitive, rapid and easy-of-manipulation analytical tool for environmental contaminants. As model target compounds, the cyanobacterial toxin microcystin-LR and the polycyclic aromatic hydrocarbon compound benzo[a]pyrene were selected. The assay was carried out in two steps: the competitive immunological reaction of multiple targets using their exclusive sensing elements of QD/antibody detection probes and antigen-coated microsphere, and the subsequent flow cytometric analysis. The fluorescence of the QD-encoded microsphere was thus found to be inversely proportional to target analyte concentration. Under optimized conditions, the proposed assay performed well within 30 min for the identification and quantitative analysis of the two environmental contaminants. For microcystin-LR and benzo[a]pyrene, dose–response curves with IC 50 values of 5 μg L −1 and 1.1 μg L −1 and dynamic ranges of 0.52–30 μg L −1 and 0.13–10 μg L −1 were obtained, respectively. Recovery was 92.6–106.5% for 5 types of water samples like bottled

  7. Flow Cytometric Analysis of T, B, and NK Cells Antigens in Patients with Mycosis Fungoides

    Directory of Open Access Journals (Sweden)

    Serkan Yazıcı

    2015-01-01

    Full Text Available We retrospectively analyzed the clinicopathological correlation and prognostic value of cell surface antigens expressed by peripheral blood mononuclear cells in patients with mycosis fungoides (MF. 121 consecutive MF patients were included in this study. All patients had peripheral blood flow cytometry as part of their first visit. TNMB and histopathological staging of the cases were retrospectively performed in accordance with International Society for Cutaneous Lymphomas/European Organization of Research and Treatment of Cancer (ISCL/EORTC criteria at the time of flow cytometry sampling. To determine prognostic value of cell surface antigens, cases were divided into two groups as stable and progressive disease. 17 flow cytometric analyses of 17 parapsoriasis (PP and 11 analyses of 11 benign erythrodermic patients were included as control groups. Fluorescent labeled monoclonal antibodies were used to detect cell surface antigens: T cells (CD3+, CD4+, CD8+, TCRαβ+, TCRγδ+, CD7+, CD4+CD7+, CD4+CD7−, and CD71+, B cells (HLA-DR+, CD19+, and HLA-DR+CD19+, NKT cells (CD3+CD16+CD56+, and NK cells (CD3−CD16+CD56+. The mean value of all cell surface antigens was not statistically significant between parapsoriasis and MF groups. Along with an increase in cases of MF stage statistically significant difference was found between the mean values of cell surface antigens. Flow cytometric analysis of peripheral blood cell surface antigens in patients with mycosis fungoides may contribute to predicting disease stage and progression.

  8. Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle signatures in joint diseases.

    Directory of Open Access Journals (Sweden)

    Bence György

    Full Text Available INTRODUCTION: Microvesicles (MVs, earlier referred to as microparticles, represent a major type of extracellular vesicles currently considered as novel biomarkers in various clinical settings such as autoimmune disorders. However, the analysis of MVs in body fluids has not been fully standardized yet, and there are numerous pitfalls that hinder the correct assessment of these structures. METHODS: In this study, we analyzed synovial fluid (SF samples of patients with osteoarthritis (OA, rheumatoid arthritis (RA and juvenile idiopathic arthritis (JIA. To assess factors that may confound MV detection in joint diseases, we used electron microscopy (EM, Nanoparticle Tracking Analysis (NTA and mass spectrometry (MS. For flow cytometry, a method commonly used for phenotyping and enumeration of MVs, we combined recent advances in the field, and used a novel approach of differential detergent lysis for the exclusion of MV-mimicking non-vesicular signals. RESULTS: EM and NTA showed that substantial amounts of particles other than MVs were present in SF samples. Beyond known MV-associated proteins, MS analysis also revealed abundant plasma- and immune complex-related proteins in MV preparations. Applying improved flow cytometric analysis, we demonstrate for the first time that CD3(+ and CD8(+ T-cell derived SF MVs are highly elevated in patients with RA compared to OA patients (p=0.027 and p=0.009, respectively, after Bonferroni corrections. In JIA, we identified reduced numbers of B cell-derived MVs (p=0.009, after Bonferroni correction. CONCLUSIONS: Our results suggest that improved flow cytometric assessment of MVs facilitates the detection of previously unrecognized disease-associated vesicular signatures.

  9. Automatic analysis of flow cytometric DNA histograms from irradiated mouse male germ cells

    International Nuclear Information System (INIS)

    Lampariello, F.; Mauro, F.; Uccelli, R.; Spano, M.

    1989-01-01

    An automatic procedure for recovering the DNA content distribution of mouse irradiated testis cells from flow cytometric histograms is presented. First, a suitable mathematical model is developed, to represent the pattern of DNA content and fluorescence distribution in the sample. Then a parameter estimation procedure, based on the maximum likelihood approach, is constructed by means of an optimization technique. This procedure has been applied to a set of DNA histograms relative to different doses of 0.4-MeV neutrons and to different time intervals after irradiation. In each case, a good agreement between the measured histograms and the corresponding fits has been obtained. The results indicate that the proposed method for the quantitative analysis of germ cell DNA histograms can be usefully applied to the study of the cytotoxic and mutagenic action of agents of toxicological interest such as ionizing radiations.18 references

  10. Evaluation of Prognostic Factors Following Flow-Cytometric DNA Analysis after Cytokeratin Labelling: I. Breast Cancer

    Directory of Open Access Journals (Sweden)

    Pauline Wimberger

    2002-01-01

    Full Text Available In gynecologic oncology valid prognostic factors are necessary to estimate the course of disease and to define biologically similar subgroups for analysis of therapeutic efficacy. The presented study is a prospective study concerning prognostic significance of DNA ploidy and S‐phase fraction in breast cancer following enrichment of tumor cells by cytokeratin labelling. Epithelial cells were labeled by FITC‐conjugated cytokeratin antibody (CK 5, 6, 8, and CK 17 prior to flow cytometric cell cycle analysis in 327 fresh specimens of primary breast cancer. Univariate analysis in breast cancer detected the prognostic significance of DNA‐ploidy, S‐phase fraction and CV (coefficient of variation of G0G1‐peak of tumor cells for clinical outcome, especially for nodal‐negative patients. Multivariate analysis could not confirm prognostic evidence of DNA‐ploidy and S‐phase fraction. In conclusion, in breast cancer no clinical significance for determination of DNA‐parameters was found.

  11. Flow cytometric determination of radiation-induced chromosome damage and its correlation with cell survival

    International Nuclear Information System (INIS)

    Welleweerd, J.; Wilder, M.E.; Carpenter, S.G.; Raju, M.R.

    1984-01-01

    Chinese hamster M3-1 cells were irradiated with several doses of x rays or α particles from 238 Pu. Propidium iodide-stained chromosome suspensions were prepared at different times after irradiation; cells were also assayed for survival. The DNA histograms of these chromosomes showed increased background counts with increased doses of radiation. This increase in background was cell-cycle dependent and was correlated with cell survival. The correlation between radiation-induced chromosome damage and cell survival was the same for X rays and α particles. Data are presented which indicate that flow cytometric analysis of chromosomes of irradiated cell populations can be a useful adjunct to classical cytogenic analysis of irradiation-induced chromosomal damage by virtue of its ability to express and measure chromosomal damage not seen by classical cytogenic methods

  12. Clonal heterogeneity of small-cell anaplastic carcinoma of the lung demonstrated by flow-cytometric DNA analysis

    DEFF Research Database (Denmark)

    Vindeløv, L L; Hansen, H H; Christensen, I J

    1980-01-01

    Flow-cytometric DNA analysis yields information on ploidy and proliferative characteristics of a cell population. The analysis was implemented on small-cell anaplastic carcinoma of the lung using a rapid detergent technique for the preparation of fine-needle aspirates for DNA determination and a ...

  13. Biotinylation of interleukin-2 (IL-2) for flow cytometric analysis of IL-2 receptor expression. Comparison of different methods

    NARCIS (Netherlands)

    M.O. de Jong (Marg); H. Rozemuller (Henk); J.G.J. Bauman (J. G J); J.W.M. Visser (Jan)

    1995-01-01

    textabstractThe main prerequisites for the use of biotinylated ligands to study the expression of growth factor receptors on heterogeneous cell populations, such as peripheral blood or bone marrow, by flow cytometric methods, are that the biotinylated ligand retains its binding ability and that

  14. A novel flow cytometric assay for measurement of In Vivo pulmonary neutrophil phagocytosis

    Directory of Open Access Journals (Sweden)

    Gentry-Nielsen Martha J

    2006-07-01

    Full Text Available Abstract Background Phagocytosis assays are traditionally performed in vitro using polymorphonuclear leukocytes (PMNs isolated from peripheral blood or the peritoneum and heat-killed, pre-opsonized organisms. These assays may not adequately mimic the environment within the infected lung. Our laboratory therefore has developed a flow cytometric in vivo phagocytosis assay that enables quantification of PMN phagocytosis of viable bacteria within the lungs of rats. In these studies, rats are injected transtracheally with lipopolysaccharide (LPS to recruit PMNs to their lungs. They are then infected with live 5(-and 6 carboxyfluorescein diacetate succinimidyl ester (CFDA/SE labeled type 3 Streptococcus pneumoniae. Bronchoalveolar lavage is performed and resident alveolar macrophages and recruited PMNs are labeled with monoclonal antibodies specific for surface epitopes on each cell type. Three color flow cytometry is utilized to identify the cell types, quantify recruitment, and determine uptake of the labeled bacteria. Results The viability of the alveolar macrophages and PMNs isolated from the lavage fluid was >95%. The values of the percentage of PMNs in the lavage fluid as well as the percentage of PMNs associated with CFSE-labeled S. pneumoniae as measured through flow cytometry showed a high degree of correlation with the results from manual counting of cytospin slides. Conclusion This assay is suitable for measuring bacterial uptake within the infected lung. It can be adapted for use with other organisms and/or animal model systems.

  15. Quantification of circulating mature endothelial cells using a whole blood four-color flow cytometric assay.

    Science.gov (United States)

    Jacques, Nathalie; Vimond, Nadege; Conforti, Rosa; Griscelli, Franck; Lecluse, Yann; Laplanche, Agnes; Malka, David; Vielh, Philippe; Farace, Françoise

    2008-09-15

    Circulating endothelial cells (CEC) are currently proposed as a potential biomarker for measuring the impact of anti-angiogenic treatments in cancer. However, the lack of consensus on the appropriate method of CEC measurement has led to conflicting data in cancer patients. A validated assay adapted for evaluating the clinical utility of CEC in large cohorts of patients undergoing anti-angiogenic treatments is needed. We developed a four-color flow cytometric assay to measure CEC as CD31(+), CD146(+), CD45(-), 7-amino-actinomycin-D (7AAD)(-) events in whole blood. The distinctive features of the assay are: (1) staining of 1 ml whole blood, (2) use of a whole blood IgPE control to measure accurately background noise, (3) accumulation of a large number of events (almost 5 10(6)) to ensure statistical analysis, and (4) use of 10 microm fluorescent microbeads to evaluate the event size. Assay reproducibility was determined in duplicate aliquots of samples drawn from 20 metastatic cancer patients. Assay linearity was tested by spiking whole blood with low numbers of HUVEC. Five-color flow cytometric experiments with CD144 were performed to confirm the endothelial origin of the cells. CEC were measured in 20 healthy individuals and 125 patients with metastatic cancer. Reproducibility was good between duplicate aliquots (r(2)=0.948, mean difference between duplicates of 0.86 CEC/ml). Detected HUVEC correlated with spiked HUVEC (r(2)=0.916, mean recovery of 100.3%). Co-staining of CD31, CD146 and CD144 confirmed the endothelial nature of cells identified as CEC. Median CEC levels were 6.5/ml (range, 0-15) in healthy individuals and 15.0/ml (range, 0-179) in patients with metastatic carcinoma (p<0.001). The assay proposed here allows reproducible and sensitive measurement of CEC by flow cytometry and could help evaluate CEC as biomarkers of anti-angiogenic therapies in large cohorts of patients.

  16. Determination of chitin content in fungal cell wall: an alternative flow cytometric method.

    Science.gov (United States)

    Costa-de-Oliveira, Sofia; Silva, Ana P; Miranda, Isabel M; Salvador, Alexandre; Azevedo, Maria M; Munro, Carol A; Rodrigues, Acácio G; Pina-Vaz, Cidália

    2013-03-01

    The conventional methods used to evaluate chitin content in fungi, such as biochemical assessment of glucosamine release after acid hydrolysis or epifluorescence microscopy, are low throughput, laborious, time-consuming, and cannot evaluate a large number of cells. We developed a flow cytometric assay, efficient, and fast, based on Calcofluor White staining to measure chitin content in yeast cells. A staining index was defined, its value was directly related to chitin amount and taking into consideration the different levels of autofluorecence. Twenty-two Candida spp. and four Cryptococcus neoformans clinical isolates with distinct susceptibility profiles to caspofungin were evaluated. Candida albicans clinical isolate SC5314, and isogenic strains with deletions in chitin synthase 3 (chs3Δ/chs3Δ) and genes encoding predicted GlycosylPhosphatidylInositol (GPI)-anchored proteins (pga31Δ/Δ and pga62Δ/Δ), were used as controls. As expected, the wild-type strain displayed a significant higher chitin content (P relationship between chitin content and antifungal drug susceptibility phenotype was found, an association was established between the paradoxical growth effect in the presence of high caspofungin concentrations and the chitin content. This novel flow cytometry protocol revealed to be a simple and reliable assay to estimate cell wall chitin content of fungi. Copyright © 2013 International Society for Advancement of Cytometry.

  17. Laser-based flow cytometric analysis of genotoxicity of humans exposed to ionizing radiation during the Chernobyl accident

    International Nuclear Information System (INIS)

    Jensen, R.H.; Bigbee, W.L.; Langlois, R.G.; Grant, S.G.; Pleshanov, P.G.; Chirkov, A.A.; Pilinskaya, M.A.

    1990-01-01

    An analytical technique has been developed that allows laser-based flow cytometric measurement of the frequency of red blood cells that have lost allele-specific expression of a cell surface antigen due to genetic toxicity in bone marrow precursor cells. Previous studies demonstrated a correlation of such effects with the exposure of each individual to mutagenic phenomena, such as ionizing radiation, and the effects can persist for the lifetime of each individual. During the emergency response to the nuclear power plant accident at Chernobyl, Ukraine, USSR, a number of people were exposed to whole body doses of ionizing radiation. Some of these individuals were tested with this laser-based assay and found to express a dose-dependent increase in the frequency of variant red blood cells that appears to be a persistent biological effect. All data indicate that this assay might well be used as a biodosimeter to estimate radiation dose and also as an element to be used for estimating the risk of each individual to develop cancer due to radiation exposure. 17 refs., 5 figs

  18. Flow cytometric analysis of cell-surface and intracellular antigens in leukemia diagnosis.

    Science.gov (United States)

    Knapp, W; Strobl, H; Majdic, O

    1994-12-15

    New technology allows highly sensitive flow cytometric detection and quantitative analysis of intracellular antigens in normal and malignant hemopoietic cells. With this technology, the earliest stages of myeloid and lymphoid differentiation can easily and reliably be identified using antibodies directed against (pro-)myeloperoxidase/MPO, CD22 and CD3 antigens, respectively. Particularly for the analysis of undifferentiated acute myeloblastic leukemia (AML) cells, the immunological demonstration of intracellular MPO or its enzymatically inactive proforms is highly relevant, since other myeloid marker molecules such as CD33, CD13, or CDw65 are either not restricted to the granulomonocytic lineage or appear later in differentiation. By combining MPO staining with staining for lactoferrin (LF), undifferentiated cells can be distinguished from the granulomonocytic maturation compartment in bone marrow, since LF is selectively expressed from the myelocyte stage of differentiation onward. The list of informative intracellular antigens to be used in leukemia cell analysis will certainly expand in the near future. One candidate, intracellular CD68, has already been tested by us, and results are presented. Also dealt within this article are surface marker molecules not (as yet) widely used in leukemia cell analysis but with the potential to provide important additional information. Among them are the surface structures CD15, CD15s, CDw65, CD79a (MB-1), CD79b (B29), CD87 (uPA-R), and CD117 (c-kit).

  19. Flow cytometric quantitation of phagocytosis in heparinized complete blood with latex particles and Candida albicans

    Directory of Open Access Journals (Sweden)

    Jesús M. Egido

    1997-12-01

    Full Text Available We report a rapid method for the flow cytometric quantitation of phagocytosis in heparinized complete peripherial blood (HCPB, using commercially available phycoerythrin-conjugated latex particles of 1µm diameter. The method is faster and shows greater reproducibility than Bjerknes' (1984 standard technique using propidium iodide-stained Candida albicans, conventionally applied to the leukocytic layer of peripherial blood but here modified for HCPB. We also report a modification of Bjerknes' Intracellular Killing Test to allow its application to HCPB.Se da cuenta de un método rápido para la cuantización del flujo citométrico de la fagocitosis en sangre periférica completamente heparinizada (HCPB, mediante la utilización de partículas de látex phycoerythrin-conjugadas de 1µm de diámetro disponibles comercialmente. El método es más rápido y presenta mayor reproducibilidad que la técnica estandar de Bjerknes' (1984 utilizando propidium iodide-teñida Candida albicans, aplicada convencionalmente a la capa leucocitica de sangre periférica pero modificada por HCPB. Tambien damos cuenta de una modificación de Bjerknes' Intracellular Killing Test para permitir su aplicación a HCPB.

  20. Flow cytometric probing of mitochondrial function in equine peripheral blood mononuclear cells

    Directory of Open Access Journals (Sweden)

    Coignoul Freddy

    2007-09-01

    Full Text Available Abstract Background The morphopathological picture of a subset of equine myopathies is compatible with a primary mitochondrial disease, but functional confirmation in vivo is still pending. The cationic dye JC-1 exhibits potential-dependent accumulation in mitochondria that is detectable by a fluorescence shift from green to orange. As a consequence, mitochondrial membrane potential can be optically measured by the orange/green fluorescence intensity ratio. A flow cytometric standardized analytic procedure of the mitochondrial function of equine peripheral blood mononuclear cells is proposed along with a critical appraisal of the crucial questions of technical aspects, reproducibility, effect of time elapsed between blood sampling and laboratory processing and reference values. Results The JC-1-associated fluorescence orange and green values and their ratio were proved to be stable over time, independent of age and sex and hypersensitive to intoxication with a mitochondrial potential dissipator. Unless time elapsed between blood sampling and laboratory processing does not exceed 5 hours, the values retrieved remain stable. Reference values for clinically normal horses are given. Conclusion Whenever a quantitative measurement of mitochondrial function in a horse is desired, blood samples should be taken in sodium citrate tubes and kept at room temperature for a maximum of 5 hours before the laboratory procedure detailed here is started. The hope is that this new test may help in confirming, studying and preventing equine myopathies that are currently imputed to mitochondrial dysfunction.

  1. A flow-cytometric gram-staining technique for milk-associated bacteria.

    Science.gov (United States)

    Holm, Claus; Jespersen, Lene

    2003-05-01

    A Gram-staining technique combining staining with two fluorescent stains, Oregon Green-conjugated wheat germ agglutinin (WGA) and hexidium iodide (HI) followed by flow-cytometric detection is described. WGA stains gram-positive bacteria while HI binds to the DNA of all bacteria after permeabilization by EDTA and incubation at 50 degrees C for 15 min. For WGA to bind to gram-positive bacteria, a 3 M potassium chloride solution was found to give the highest fluorescence intensity. A total of 12 strains representing some of the predominant bacterial species in bulk tank milk and mixtures of these were stained and analyzed by flow cytometry. Overall, the staining method showed a clear differentiation between gram-positive and gram-negative bacterial populations. For stationary-stage cultures of seven gram-positive bacteria and five gram-negative bacteria, an average of 99% of the cells were correctly interpreted. The method was only slightly influenced by the growth phase of the bacteria or conditions such as freezing at -18 degrees C for 24 h. For any of these conditions, an average of at least 95% of the cells were correctly interpreted. When stationary-stage cultures were stored at 5 degrees C for 14 days, an average of 86% of the cells were correctly interpreted. The Gram-staining technique was applied to the flow cytometry analysis of bulk tank milk inoculated with Staphylococcus aureus and Escherichia coli. These results demonstrate that the technique is suitable for analyzing milk samples without precultivation.

  2. THE EFFECT OF LABELING INTENSITY, ESTIMATED BY REAL-TIME CONFOCAL LASER SCANNING MICROSCOPY, ON FLOW CYTOMETRIC APPEARANCE AND IDENTIFICATION OF IMMUNOCHEMICALLY LABELED MARINE DINOFLAGELLATES

    NARCIS (Netherlands)

    VRIELING, EG; DRAAIJER, A; VANZEIJL, WJM; PEPERZAK, L; GIESKES, WWC; VEENHUIS, M; Zeijl, Wilhelmus J.M. van

    Two different fluorescein isothiocyanate (FITC) conjugates were used to analyze the effect of labeling intensity on the flow cytometric appearance of marine dinoflagellates labeled with antibodies that specifically recognized the outer cell wall. Location of the labeling was revealed by

  3. Flow cytometric immunobead assay for quantitative detection of platelet autoantibodies in immune thrombocytopenia patients.

    Science.gov (United States)

    Zhai, Juping; Ding, Mengyuan; Yang, Tianjie; Zuo, Bin; Weng, Zhen; Zhao, Yunxiao; He, Jun; Wu, Qingyu; Ruan, Changgeng; He, Yang

    2017-10-23

    Platelet autoantibody detection is critical for immune thrombocytopenia (ITP) diagnosis and prognosis. Therefore, we aimed to establish a quantitative flow cytometric immunobead assay (FCIA) for ITP platelet autoantibodies evaluation. Capture microbeads coupled with anti-GPIX, -GPIb, -GPIIb, -GPIIIa and P-selectin antibodies were used to bind the platelet-bound autoantibodies complex generated from plasma samples of 250 ITP patients, 163 non-ITP patients and 243 healthy controls, a fluorescein isothiocyanate (FITC)-conjugated secondary antibody was the detector reagent and mean fluorescence intensity (MFI) signals were recorded by flow cytometry. Intra- and inter-assay variations of the quantitative FCIA assay were assessed. Comparisons of the specificity, sensitivity and accuracy between quantitative and qualitative FCIA or monoclonal antibody immobilization of platelet antigen (MAIPA) assay were performed. Finally, treatment process was monitored by our quantitative FCIA in 8 newly diagnosed ITPs. The coefficient of variations (CV) of the quantitative FCIA assay were respectively 9.4, 3.8, 5.4, 5.1 and 5.8% for anti-GPIX, -GPIb, -GPIIIa, -GPIIb and -P-selectin autoantibodies. Elevated levels of autoantibodies against platelet glycoproteins GPIX, GPIb, GPIIIa, GPIIb and P-selectin were detected by our quantitative FCIA in ITP patients compared to non-ITP patients or healthy controls. The sensitivity, specificity and accuracy of our quantitative assay were respectively 73.13, 81.98 and 78.65% when combining all 5 autoantibodies, while the sensitivity, specificity and accuracy of MAIPA assay were respectively 41.46, 90.41 and 72.81%. A quantitative FCIA assay was established. Reduced levels of platelet autoantibodies could be confirmed by our quantitative FCIA in ITP patients after corticosteroid treatment. Our quantitative assay is not only good for ITP diagnosis but also for ITP treatment monitoring.

  4. Genome size variation among and within Camellia species by using flow cytometric analysis.

    Directory of Open Access Journals (Sweden)

    Hui Huang

    Full Text Available BACKGROUND: The genus Camellia, belonging to the family Theaceae, is economically important group in flowering plants. Frequent interspecific hybridization together with polyploidization has made them become taxonomically "difficult taxa". The DNA content is often used to measure genome size variation and has largely advanced our understanding of plant evolution and genome variation. The goals of this study were to investigate patterns of interspecific and intraspecific variation of DNA contents and further explore genome size evolution in a phylogenetic context of the genus. METHODOLOGY/PRINCIPAL FINDINGS: The DNA amount in the genus was determined by using propidium iodide flow cytometry analysis for a total of 139 individual plants representing almost all sections of the two subgenera, Camellia and Thea. An improved WPB buffer was proven to be suitable for the Camellia species, which was able to counteract the negative effects of secondary metabolite and generated high-quality results with low coefficient of variation values (CV <5%. Our results showed trivial effects on different tissues of flowers, leaves and buds as well as cytosolic compounds on the estimation of DNA amount. The DNA content of C. sinensis var. assamica was estimated to be 1C = 3.01 pg by flow cytometric analysis, which is equal to a genome size of about 2940 Mb. CONCLUSION: Intraspecific and interspecific variations were observed in the genus Camellia, and as expected, the latter was larger than the former. Our study suggests a directional trend of increasing genome size in the genus Camellia probably owing to the frequent polyploidization events.

  5. Flow cytometric analysis of lectin binding to in vitro-cultured Perkinsus marinus surface carbohydrates

    Science.gov (United States)

    Gauthier, J.D.; Jenkins, J.A.; La Peyre, Jerome F.

    2004-01-01

    Parasite surface glycoconjugates are frequently involved in cellular recognition and colonization of the host. This study reports on the identification of Perkinsus marinus surface carbohydrates by flow cytometric analyses of fluorescein isothiocyanate-conjugated lectin binding. Lectin-binding specificity was confirmed by sugar inhibition and Kolmogorov-Smirnov statistics. Clear, measurable fluorescence peaks were discriminated, and no parasite autofluorescence was observed. Parasites (GTLA-5 and Perkinsus-1 strains) harvested during log and stationary phases of growth in a protein-free medium reacted strongly with concanavalin A and wheat germ agglutinin, which bind to glucose-mannose and N-acetyl-D-glucosamine (GlcNAc) moieties, respectively. Both P. marinus strains bound with lower intensity to Maclura pomifera agglutinin, Bauhinia purpurea agglutinin, soybean agglutinin (N-acetyl-D-galactosamine-specific lectins), peanut agglutinin (PNA) (terminal galactose specific), and Griffonia simplicifolia II (GlcNAc specific). Only background fluorescence levels were detected with Ulex europaeus agglutinin I (L-fucose specific) and Limulus polyphemus agglutinin (sialic acid specific). The lectin-binding profiles were similar for the 2 strains except for a greater relative binding intensity of PNA for Perkinsus-1 and an overall greater lectin-binding capacity of Perkinsus-1 compared with GTLA-5. Growth stage comparisons revealed increased lectin-binding intensities during stationary phase compared with log phase of growth. This is the first report of the identification of surface glycoconjugates on a Perkinsus spp. by flow cytometry and the first to demonstrate that differential surface sugar expression is growth phase and strain dependent. ?? American Society of Parasitologists 2004.

  6. Flow cytometric kinetic assay of the activity of Na+/H+ antiporter in mammalian cells.

    Science.gov (United States)

    Dolz, María; O'Connor, José-Enrique; Lequerica, Juan L

    2004-10-01

    The Na(+)/H(+) exchanger (NHE) of mammalian cells is an integral membrane protein that extrudes H(+) ion in exchange for extracellular Na(+) and plays a crucial role in the regulation of intracellular pH (pHi). Thus, when pHi is lowered, NHE extrudes protons at a rate depending of pHi that can be expressed as pH units/s. To abolish the activity of other cellular pH-restoring systems, cells were incubated in bicarbonate-free Dulbecco's modified Eagle's medium buffered with HEPES. Flow cytometry was used to determine pHi with 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester or 5-(and-6)-carboxy SNARF-1 acetoxymethyl ester acetate, and the appropriate fluorescence ratios were measured. The calibration of fluorescence ratios versus pHi was established by using ionophore nigericin. The activity of NHE was calculated by a kinetic flow cytometric assay as the slope at time 0 of the best-fit curve of pHi recovery versus time after intracellular acidification with a pulse of exogenous sodium propionate. The kinetic method allowed determination of the pHi-dependent activity of NHE in cell lines and primary cell cultures. NHE activity values were demonstrated to be up to 0.016 pH units/s within the pHi range of 7.3 to 6.3. The inhibition of NHE activity by the specific inhibitor ethyl isopropyl amiloride was easily detected by this method. The assay conditions can be used to relate variations in pHi with the activity of NHE and provide a standardized method to compare between different cells, inhibitors, models of ischemia by acidification, and other relevant experimental or clinical situations.

  7. Flow cytometric detection of micronuclei by combined staining of DNA and membranes

    International Nuclear Information System (INIS)

    Wessels, J.M.; Nuesse, M.

    1995-01-01

    A new staining method is presented for flow cytometric measurement of micronuclei (MN) in cell cultures and human lymphocytes using membrane-specific fluorescent dyes in addition to DNA staining. Several combinations of fluorescent membrane and DNA dyes were studied for a better discrimination of MN from debris in a suspension of nuclei and micronuclei. For staining of membranes, the lipophilic dyes 2-hydroxyethyl-7,12,17-tris(methoxyethyl)porphycene (HEPn) and 1,6-diphenyl-1,3,5-hexatriene (DPH) were used in combination with ethidium bromide (EB), proflavine (PF), and Hoechst 33258 (HO). Due to their spectral properties, HO or EB combined with HEPn were not as suitable for the discrimination of MN from debris as was HEPn in combination with PF. With HEPn in combination with PF, however, additional noise was found at low fluorescence intensities, probably due to free fluorescent dye molecules in the solution. The optimal simultaneous staining of membranes and DNA was obtained using a combination of DPH and EB. The induction of MN in Chinese hamster and mouse NIH-3T3 cells by UV-B illumination was studied with this new staining technique. UV-B illumination (280-360 nm) induced MN in both cell lines. Chinese hamster cells were found to be more sensitive to these wavelengths. Illumination with wavelengths above 360 nm did not induce MN in either cell line. The results obtained from human lymphocytes using the combination of EB or DPH were comparable to the results obtained with the combination of EB and HO. 23 refs., 7 figs

  8. A novel flow cytometric HTS assay reveals functional modulators of ATP binding cassette transporter ABCB6.

    Science.gov (United States)

    Polireddy, Kishore; Khan, Mohiuddin Md Taimur; Chavan, Hemantkumar; Young, Susan; Ma, Xiaochao; Waller, Anna; Garcia, Matthew; Perez, Dominique; Chavez, Stephanie; Strouse, Jacob J; Haynes, Mark K; Bologa, Cristian G; Oprea, Tudor I; Tegos, George P; Sklar, Larry A; Krishnamurthy, Partha

    2012-01-01

    ABCB6 is a member of the adenosine triphosphate (ATP)-binding cassette family of transporter proteins that is increasingly recognized as a relevant physiological and therapeutic target. Evaluation of modulators of ABCB6 activity would pave the way toward a more complete understanding of the significance of this transport process in tumor cell growth, proliferation and therapy-related drug resistance. In addition, this effort would improve our understanding of the function of ABCB6 in normal physiology with respect to heme biosynthesis, and cellular adaptation to metabolic demand and stress responses. To search for modulators of ABCB6, we developed a novel cell-based approach that, in combination with flow cytometric high-throughput screening (HTS), can be used to identify functional modulators of ABCB6. Accumulation of protoporphyrin, a fluorescent molecule, in wild-type ABCB6 expressing K562 cells, forms the basis of the HTS assay. Screening the Prestwick Chemical Library employing the HTS assay identified four compounds, benzethonium chloride, verteporfin, tomatine hydrochloride and piperlongumine, that reduced ABCB6 mediated cellular porphyrin levels. Validation of the identified compounds employing the hemin-agarose affinity chromatography and mitochondrial transport assays demonstrated that three out of the four compounds were capable of inhibiting ABCB6 mediated hemin transport into isolated mitochondria. However, only verteporfin and tomatine hydrochloride inhibited ABCB6's ability to compete with hemin as an ABCB6 substrate. This assay is therefore sensitive, robust, and suitable for automation in a high-throughput environment as demonstrated by our identification of selective functional modulators of ABCB6. Application of this assay to other libraries of synthetic compounds and natural products is expected to identify novel modulators of ABCB6 activity.

  9. A novel flow cytometric HTS assay reveals functional modulators of ATP binding cassette transporter ABCB6.

    Directory of Open Access Journals (Sweden)

    Kishore Polireddy

    Full Text Available ABCB6 is a member of the adenosine triphosphate (ATP-binding cassette family of transporter proteins that is increasingly recognized as a relevant physiological and therapeutic target. Evaluation of modulators of ABCB6 activity would pave the way toward a more complete understanding of the significance of this transport process in tumor cell growth, proliferation and therapy-related drug resistance. In addition, this effort would improve our understanding of the function of ABCB6 in normal physiology with respect to heme biosynthesis, and cellular adaptation to metabolic demand and stress responses. To search for modulators of ABCB6, we developed a novel cell-based approach that, in combination with flow cytometric high-throughput screening (HTS, can be used to identify functional modulators of ABCB6. Accumulation of protoporphyrin, a fluorescent molecule, in wild-type ABCB6 expressing K562 cells, forms the basis of the HTS assay. Screening the Prestwick Chemical Library employing the HTS assay identified four compounds, benzethonium chloride, verteporfin, tomatine hydrochloride and piperlongumine, that reduced ABCB6 mediated cellular porphyrin levels. Validation of the identified compounds employing the hemin-agarose affinity chromatography and mitochondrial transport assays demonstrated that three out of the four compounds were capable of inhibiting ABCB6 mediated hemin transport into isolated mitochondria. However, only verteporfin and tomatine hydrochloride inhibited ABCB6's ability to compete with hemin as an ABCB6 substrate. This assay is therefore sensitive, robust, and suitable for automation in a high-throughput environment as demonstrated by our identification of selective functional modulators of ABCB6. Application of this assay to other libraries of synthetic compounds and natural products is expected to identify novel modulators of ABCB6 activity.

  10. Flow cytometric chemosensitivity assay using JC‑1, a sensor of mitochondrial transmembrane potential, in acute leukemia.

    Science.gov (United States)

    Yokosuka, Tomoko; Goto, Hiroaki; Fujii, Hisaki; Naruto, Takuya; Takeuchi, Masanobu; Tanoshima, Reo; Kato, Hiromi; Yanagimachi, Masakatsu; Kajiwara, Ryosuke; Yokota, Shumpei

    2013-12-01

    The purpose of the study is to establish a simple and relatively inexpensive flow cytometric chemosensitivity assay (FCCA) for leukemia to distinguish leukemic blasts from normal leukocytes in clinical samples. We first examined whether the FCCA with the mitochondrial membrane depolarization sensor, 5, 50, 6, 60-tetrachloro-1, 10, 3, 30 tetraethyl benzimidazolo carbocyanine iodide (JC-1), could detect drug-induced apoptosis as the conventional FCCA by annexin V/7-AAD detection did and whether it was applicable in the clinical samples. Second, we compared the results of the FCCA for prednisolone (PSL) with clinical PSL response in 18 acute lymphoblastic leukemia (ALL) patients to evaluate the reliability of the JC-1 FCCA. Finally, we performed the JC-1 FCCA for bortezomib (Bor) in 25 ALL or 11 acute myeloid leukemia (AML) samples as the example of the clinical application of the FCCA. In ALL cells, the results of the JC-1 FCCA for nine anticancer drugs were well correlated with those of the conventional FCCA using anti-annexin V antibody (P < 0.001). In the clinical samples from 18 children with ALL, the results of the JC-1 FCCA for PSL were significantly correlated with the clinical PSL response (P = 0.005). In ALL samples, the sensitivity for Bor was found to be significantly correlated with the sensitivity for PSL (P = 0.005). In AML samples, the Bor sensitivity was strongly correlated with the cytarabine sensitivity (P = 0.0003). This study showed the reliability of a relatively simple and the FCCA using JC-1, and the possibility for the further clinical application.

  11. Ligand receptor dynamics at streptavidin-coated particle surfaces: A flow cytometric and spectrofluorimetric study

    Energy Technology Data Exchange (ETDEWEB)

    Buranda, T. [Univ. of New Mexico School of Medicine, Albuquerque, NM (United States)]|[Univ. of New Mexico, Albuquerque, NM (United States); Jones, G.M. [Univ. of New Mexico School of Medicine, Albuquerque, NM (United States); Nolan, J.P.; Keij, J. [Los Alamos National Labs., NM (United States); Lopez, G.P. [Univ. of New Mexico, Albuquerque, NM (United States); Sklar, L.A. [Univ. of New Mexico School of Medicine, Albuquerque, NM (United States)]|[Los Alamos National Lab., NM (United States)

    1999-04-29

    The authors have studied the binding of 5-((N-(5-(N-(6-(biotinoyl)amino)hexanoyl)amino)pentyl)thioureidyl)fluorescein (fluorescein biotin) to 6.2 {micro}m diameter, streptavidin-coated polystyrene beads using a combination of fluorimetric and flow cytometric methods. They have determined the average number of binding sites per bead, the extent of fluorescein quenching upon binding to the bead, and the association and dissociation kinetics. The authors estimate the site number to be {approx}1 million per bead. The binding of the fluorescein biotin ligand occurs in steps where the insertion of the biotin moiety into one receptor pocket is followed immediately by the capture of the fluorescein moiety by a neighboring binding pocket; fluorescence quenching is a consequence of this secondary binding. At high surface coverage, the dominant mechanism of quenching appears to be via the formation of nonfluorescent nearest-neighbor aggregates. At early times, the binding process is characterized by biphasic association and dissociation kinetics which are remarkably dependent on the initial concentration of the ligand. The rate constant for binding to the first receptor pocket of a streptavidin molecule is {approx}(1.3 {+-} 0.3) {times} 10{sup 7} 1{sup {minus}1} S{sup {minus}1}. The rate of binding of a second biotin may be reduced due to steric interference. The early time dissociative behavior is in sharp contrast to the typical stability associated with this system. The early time dissociative behavior is in sharp contrast to the typical stability associated with this system. The dissociation rate constant is as high as 0.05 s{sup {minus}1} shortly after binding, but decreases by 3 orders of magnitude after 3 h of binding. Potential sources for the time dependence of the dissociation rate constant are discussed.

  12. Air sampling to assess potential generation of aerosolized viable bacteria during flow cytometric analysis of unfixed bacterial suspensions

    Science.gov (United States)

    Carson, Christine F; Inglis, Timothy JJ

    2018-01-01

    This study investigated aerosolized viable bacteria in a university research laboratory during operation of an acoustic-assisted flow cytometer for antimicrobial susceptibility testing by sampling room air before, during and after flow cytometer use. The aim was to assess the risk associated with use of an acoustic-assisted flow cytometer analyzing unfixed bacterial suspensions. Air sampling in a nearby clinical laboratory was conducted during the same period to provide context for the existing background of microorganisms that would be detected in the air. The three species of bacteria undergoing analysis by flow cytometer in the research laboratory were Klebsiella pneumoniae, Burkholderia thailandensis and Streptococcus pneumoniae. None of these was detected from multiple 1000 L air samples acquired in the research laboratory environment. The main cultured bacteria in both locations were skin commensal and environmental bacteria, presumed to have been disturbed or dispersed in laboratory air by personnel movements during routine laboratory activities. The concentrations of bacteria detected in research laboratory air samples were reduced after interventional cleaning measures were introduced and were lower than those in the diagnostic clinical microbiology laboratory. We conclude that our flow cytometric analyses of unfixed suspensions of K. pneumoniae, B. thailandensis and S. pneumoniae do not pose a risk to cytometer operators or other personnel in the laboratory but caution against extrapolation of our results to other bacteria and/or different flow cytometric experimental procedures. PMID:29608197

  13. Analytical validation of a flow cytometric protocol for quantification of platelet microparticles in dogs.

    Science.gov (United States)

    Cremer, Signe E; Krogh, Anne K H; Hedström, Matilda E K; Christiansen, Liselotte B; Tarnow, Inge; Kristensen, Annemarie T

    2018-06-01

    Platelet microparticles (PMPs) are subcellular procoagulant vesicles released upon platelet activation. In people with clinical diseases, alterations in PMP concentrations have been extensively investigated, but few canine studies exist. This study aims to validate a canine flow cytometric protocol for PMP quantification and to assess the influence of calcium on PMP concentrations. Microparticles (MP) were quantified in citrated whole blood (WB) and platelet-poor plasma (PPP) using flow cytometry. Anti-CD61 antibody and Annexin V (AnV) were used to detect platelets and phosphatidylserine, respectively. In 13 healthy dogs, CD61 + /AnV - concentrations were analyzed with/without a calcium buffer. CD61 + /AnV - , CD61 + /AnV + , and CD61 - /AnV + MP quantification were validated in 10 healthy dogs. The coefficient of variation (CV) for duplicate (intra-assay) and parallel (inter-assay) analyses and detection limits (DLs) were calculated. CD61 + /AnV - concentrations were higher in calcium buffer; 841,800 MP/μL (526,000-1,666,200) vs without; 474,200 MP/μL (278,800-997,500), P < .05. In WB, PMP were above DLs and demonstrated acceptable (<20%) intra-assay and inter-assay CVs in 9/10 dogs: 1.7% (0.5-8.9) and 9.0% (0.9-11.9), respectively, for CD61 + /AnV - and 2.4% (0.2-8.7) and 7.8% (0.0-12.8), respectively, for CD61 + /AnV + . Acceptable CVs were not seen for the CD61 - /AnV + MP. In PPP, quantifications were challenged by high inter-assay CV, overlapping DLs and hemolysis and lipemia interfered with quantification in 5/10 dogs. Calcium induced higher in vitro PMP concentrations, likely due to platelet activation. PMP concentrations were reliably quantified in WB, indicating the potential for clinical applications. PPP analyses were unreliable due to high inter-CV and DL overlap, and not obtainable due to hemolysis and lipemia interference. © 2018 American Society for Veterinary Clinical Pathology.

  14. Novel flow cytometric analysis of the progress and route of internalization of a monoclonal anti-carcinoembryonic antigen (CEA) antibody.

    Science.gov (United States)

    Ford, C H; Tsaltas, G C; Osborne, P A; Addetia, K

    1996-03-01

    A flow cytometric method of studying the internalization of a monoclonal antibody (Mab) directed against carcinoembryonic antigen (CEA) has been compared with Western blotting, using three human colonic cancer cell lines which express varying amounts of the target antigen. Cell samples incubated for increasing time intervals with fluoresceinated or unlabelled Mab were analyzed using flow cytometry or polyacrylamide gel electrophoresis and Western blotting. SDS/PAGE analysis of cytosolic and membrane components of solubilized cells from the cell lines provided evidence of non-degraded internalized anti-CEA Mab throughout seven half hour intervals, starting at 5 min. Internalized anti-CEA was detected in the case of high CEA expressing cell lines (LS174T, SKCO1). Very similar results were obtained with an anti-fluorescein flow cytometric assay. Given that these two methods consistently provided comparable results, use of flow cytometry for the detection of internalized antibody is suggested as a rapid alternative to most currently used methods for assessing antibody internalization. The question of the endocytic route followed by CEA-anti-CEA complexes was addressed by using hypertonic medium to block clathrin mediated endocytosis.

  15. Flow cytometric analysis of expression of interleukin-2 receptor beta chain (p70-75) on various leukemic cells

    International Nuclear Information System (INIS)

    Hoshino, S.; Oshimi, K.; Tsudo, M.; Miyasaka, M.; Teramura, M.; Masuda, M.; Motoji, T.; Mizoguchi, H.

    1990-01-01

    We analyzed the expression of the interleukin-2 receptor (IL-2R) beta chain (p70-75) on various leukemic cells from 44 patients by flow cytometric analysis using the IL-2R beta chain-specific monoclonal antibody, designated Mik-beta 1. Flow cytometric analysis demonstrated the expression of the IL-2R beta chain on granular lymphocytes (GLs) from all eight patients with granular lymphocyte proliferative disorders (GLPDs), on adult T-cell leukemia (ATL) cells from all three patients with ATL, and on T-cell acute lymphoblastic leukemia (T-ALL) cells from one of three patients with T-ALL. Although GLs from all the GLPD patients expressed the IL-2R beta chain alone and not the IL-2R alpha chain (Tac-antigen: p55), ATL and T-ALL cells expressing the beta chain coexpressed the alpha chain. In two of seven patients with common ALL (cALL) and in both patients with B-cell chronic lymphocytic leukemia, the leukemic cells expressed the alpha chain alone. Neither the alpha chain nor the beta chain was expressed on leukemic cells from the remaining 28 patients, including all 18 patients with acute nonlymphocytic leukemia, five of seven patients with cALL, all three patients with multiple myeloma, and two of three patients with T-ALL. These results indicate that three different forms of IL-2R chain expression exist on leukemic cells: the alpha chain alone; the beta chain alone; and both the alpha and beta chains. To examine whether the results obtained by flow cytometric analysis actually reflect functional aspects of the expressed IL-2Rs, we studied the specific binding of 125I-labeled IL-2 (125I-IL-2) to leukemic cells in 18 of the 44 patients. In addition, we performed 125I-IL-2 crosslinking studies in seven patients. The results of IL-2R expression of both 125I-IL-2 binding assay and crosslinking studies were in agreement with those obtained by flow cytometric analysis

  16. Micronuclei frequency in circulating erythrocytes from rainbow trout (Oncorhynchus mykiss) subjected to radiation, an image analysis and flow cytometric study

    International Nuclear Information System (INIS)

    Schultz, N.; Norrgren, L.; Grawe, J.; Johannisson, A.; Medhage, O.

    1993-01-01

    Rainbow trout (oncorhynchus mykiss) were exposed to a single X-ray dose of 4 Gy. The frequency of micronuclei in the peripheral erythrocytes was investigated at regular intervals up to 58 days after the exposure. A flow cytometric method and a semi-automatic image analysis method were used to estimate the micronuclei frequency. The results show that both methods can detect an increased frequency of micronuclei in peripheral erythrocytes from exposed fish. However, the semi-automatic image analysis method was the most stable and sensitive. (Author)

  17. Flow cytometric and radioisotopic determinations of platelet survival time in normal cats and feline leukemia virus-infected cats

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, R.M.; Boyce, J.T.; Kociba, G.J.

    1986-01-01

    This study demonstrates the potential usefulness of a flow cytometric technique to measure platelet survival time in cats utilizing autologous platelets labeled in vitro with fluorescein isothiocyanate (FITC). When compared with a 51Cr method, no significant differences in estimated survival times were found. Both the 51Cr and FITC-labeling procedures induced similar changes in platelet shape and collagen-induced aggregation. Platelets labeled with FITC had significantly greater volumes compared with those of glutaraldehyde-fixed platelets. These changes were primarily related to the platelet centrifugation and washing procedures rather than the labels themselves. This novel technique potentially has wide applicability to cell circulation time studies as flow cytometry equipment becomes more readily available. Problems with the technique are discussed. In a preliminary study of the platelet survival time in feline leukemia virus (FeLV)-infected cats, two of three cats had significantly reduced survival times using both flow cytometric and radioisotopic methods. These data suggest increased platelet turnover in FeLV-infected cats.

  18. Flow cytometric and radioisotopic determinations of platelet survival time in normal cats and feline leukemia virus-infected cats

    International Nuclear Information System (INIS)

    Jacobs, R.M.; Boyce, J.T.; Kociba, G.J.

    1986-01-01

    This study demonstrates the potential usefulness of a flow cytometric technique to measure platelet survival time in cats utilizing autologous platelets labeled in vitro with fluorescein isothiocyanate (FITC). When compared with a 51Cr method, no significant differences in estimated survival times were found. Both the 51Cr and FITC-labeling procedures induced similar changes in platelet shape and collagen-induced aggregation. Platelets labeled with FITC had significantly greater volumes compared with those of glutaraldehyde-fixed platelets. These changes were primarily related to the platelet centrifugation and washing procedures rather than the labels themselves. This novel technique potentially has wide applicability to cell circulation time studies as flow cytometry equipment becomes more readily available. Problems with the technique are discussed. In a preliminary study of the platelet survival time in feline leukemia virus (FeLV)-infected cats, two of three cats had significantly reduced survival times using both flow cytometric and radioisotopic methods. These data suggest increased platelet turnover in FeLV-infected cats

  19. Rapid Detection and Enumeration of Giardia lamblia Cysts in Water Samples by Immunomagnetic Separation and Flow Cytometric Analysis ▿ †

    Science.gov (United States)

    Keserue, Hans-Anton; Füchslin, Hans Peter; Egli, Thomas

    2011-01-01

    Giardia lamblia is an important waterborne pathogen and is among the most common intestinal parasites of humans worldwide. Its fecal-oral transmission leads to the presence of cysts of this pathogen in the environment, and so far, quantitative rapid screening methods are not available for various matrices, such as surface waters, wastewater, or food. Thus, it is necessary to establish methods that enable reliable rapid detection of a single cyst in 10 to 100 liters of drinking water. Conventional detection relies on cyst concentration, isolation, and confirmation by immunofluorescence microscopy (IFM), resulting in low recoveries and high detection limits. Many different immunomagnetic separation (IMS) procedures have been developed for separation and cyst purification, so far with variable but high losses of cysts. A method was developed that requires less than 100 min and consists of filtration, resuspension, IMS, and flow cytometric (FCM) detection. MACS MicroBeads were used for IMS, and a reliable flow cytometric detection approach was established employing 3 different parameters for discrimination from background signals, i.e., green and red fluorescence (resulting from the distinct pattern emitted by the fluorescein dye) and sideward scatter for size discrimination. With spiked samples, recoveries exceeding 90% were obtained, and false-positive results were never encountered for negative samples. Additionally, the method was applicable to naturally occurring cysts in wastewater and has the potential to be automated. PMID:21685159

  20. Flow-cytometric analysis of mouse embryonic stem cell lipofection using small and large DNA constructs.

    Science.gov (United States)

    McLenachan, Samuel; Sarsero, Joseph P; Ioannou, Panos A

    2007-06-01

    Using the lipofection reagent LipofectAMINE 2000 we have examined the delivery of plasmid DNA (5-200 kb) to mouse embryonic stem (mES) cells by flow cytometry. To follow the physical uptake of lipoplexes we labeled DNA molecules with the fluorescent dye TOTO-1. In parallel, expression of an EGFP reporter cassette in constructs of different sizes was used as a measure of nuclear delivery. The cellular uptake of DNA lipoplexes is dependent on the uptake competence of mES cells, but it is largely independent of DNA size. In contrast, nuclear delivery was reduced with increasing plasmid size. In addition, linear DNA is transfected with lower efficiency than circular DNA. Inefficient cytoplasmic trafficking appears to be the main limitation in the nonviral delivery of large DNA constructs to the nucleus of mES cells. Overcoming this limitation should greatly facilitate functional studies with large genomic fragments in embryonic stem cells.

  1. A Protocol for the Comprehensive Flow Cytometric Analysis of Immune Cells in Normal and Inflamed Murine Non-Lymphoid Tissues

    Science.gov (United States)

    Yu, Yen-Rei A.; O’Koren, Emily G.; Hotten, Danielle F.; Kan, Matthew J.; Kopin, David; Nelson, Erik R.; Que, Loretta; Gunn, Michael D.

    2016-01-01

    Flow cytometry is used extensively to examine immune cells in non-lymphoid tissues. However, a method of flow cytometric analysis that is both comprehensive and widely applicable has not been described. We developed a protocol for the flow cytometric analysis of non-lymphoid tissues, including methods of tissue preparation, a 10-fluorochrome panel for cell staining, and a standardized gating strategy, that allows the simultaneous identification and quantification of all major immune cell types in a variety of normal and inflamed non-lymphoid tissues. We demonstrate that our basic protocol minimizes cell loss, reliably distinguishes macrophages from dendritic cells (DC), and identifies all major granulocytic and mononuclear phagocytic cell types. This protocol is able to accurately quantify 11 distinct immune cell types, including T cells, B cells, NK cells, neutrophils, eosinophils, inflammatory monocytes, resident monocytes, alveolar macrophages, resident/interstitial macrophages, CD11b- DC, and CD11b+ DC, in normal lung, heart, liver, kidney, intestine, skin, eyes, and mammary gland. We also characterized the expression patterns of several commonly used myeloid and macrophage markers. This basic protocol can be expanded to identify additional cell types such as mast cells, basophils, and plasmacytoid DC, or perform detailed phenotyping of specific cell types. In examining models of primary and metastatic mammary tumors, this protocol allowed the identification of several distinct tumor associated macrophage phenotypes, the appearance of which was highly specific to individual tumor cell lines. This protocol provides a valuable tool to examine immune cell repertoires and follow immune responses in a wide variety of tissues and experimental conditions. PMID:26938654

  2. A flow-cytometric NK-cytotoxicity assay adapted for use in rat repeated dose toxicity studies

    International Nuclear Information System (INIS)

    Marcusson-Staahl, Maritha; Cederbrant, Karin

    2003-01-01

    A recent regulatory document for immunotoxicity testing of new pharmaceutical drugs includes cytotoxic natural killer (NK)-cell function as a required parameter in repeated dose toxicity studies. The classical 51 Cr-release assay is the conventional test for cytotoxicity testing but several drawbacks with this assay has increased the demand for new reliable test systems. Here, we describe the optimisation of a flow-cytometric cytotoxicity assay especially adapted for regulatory rat studies in drug development. The test principle is based on target cell labelling with 5-(6)-carboxy-fluorescein succinimidyl ester (CFSE) and subsequent DNA-labelling with propidium iodide (PI) for identification of target cells with compromised cell membranes. The results are expressed as percentage of dead targets on a cell-to-cell basis. The final format of the assay includes 0.5 ml peripheral blood, 1.25x10 5 effector cells per sample, and collection of 500 target events by flow-cytometry. When NKR-P1+ cells were removed from the effector cell population by magnetic depletion the relative proportion decreased from 6 to 0.08%. The corresponding cytotoxic activity decreased from 68 to 8%. Also, the cytotoxic activity showed a significant and positive correlation with the proportion of NK-cells present in the effector cell suspension. Thus, the cytotoxicity measured is almost exclusively exerted by NK-cells. The current flow-cytometric test benefits from using peripheral blood as a source for effector cells since it will not conflict with the use of spleen for histopathological investigations in repeated dose toxicity studies. Additionally, since only a minimal number of effector cells are required per sample repeated testing of the same animal is enabled

  3. Flow cytometric evaluation of physico-chemical impact on Gram-positive and Gram-negative bacteria

    Science.gov (United States)

    Fröhling, Antje; Schlüter, Oliver

    2015-01-01

    Since heat sensitivity of fruits and vegetables limits the application of thermal inactivation processes, new emerging inactivation technologies have to be established to fulfill the requirements of food safety without affecting the produce quality. The efficiency of inactivation treatments has to be ensured and monitored. Monitoring of inactivation effects is commonly performed using traditional cultivation methods which have the disadvantage of the time span needed to obtain results. The aim of this study was to compare the inactivation effects of peracetic acid (PAA), ozonated water (O3), and cold atmospheric pressure plasma (CAPP) on Gram-positive and Gram-negative bacteria using flow cytometric methods. E. coli cells were completely depolarized after treatment (15 s) with 0.25% PAA at 10°C, and after treatment (10 s) with 3.8 mg l−1 O3 at 12°C. The membrane potential of CAPP treated cells remained almost constant at an operating power of 20 W over a time period of 3 min, and subsequently decreased within 30 s of further treatment. Complete membrane permeabilization was observed after 10 s O3 treatment, but treatment with PAA and CAPP did not completely permeabilize the cells within 2 and 4 min, respectively. Similar results were obtained for esterase activity. O3 inactivates cellular esterase but esterase activity was detected after 4 min CAPP treatment and 2 min PAA treatment. L. innocua cells and P. carotovorum cells were also permeabilized instantaneously by O3 treatment at concentrations of 3.8 ± 1 mg l−1. However, higher membrane permeabilization of L. innocua and P. carotovorum than of E. coli was observed at CAPP treatment of 20 W. The degree of bacterial damage due to the inactivation processes is highly dependent on treatment parameters as well as on treated bacteria. Important information regarding the inactivation mechanisms can be obtained by flow cytometric measurements and this enables the definition of critical process parameters. PMID

  4. Flow cytometric evaluation of physico-chemical impact on Gram-positive and Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Antje eFröhling

    2015-09-01

    Full Text Available Since heat sensitivity of fruits and vegetables limits the application of thermal inactivation processes, new emerging inactivation technologies have to be established to fulfil the requirements of food safety without affecting the produce quality. The efficiency of inactivation treatments has to be ensured and monitored. Monitoring of inactivation effects is commonly performed using traditional cultivation methods which have the disadvantage of the time span needed to obtain results.The aim of this study was to compare the inactivation effects of peracetic acid (PAA, ozonated water (O3 and cold atmospheric pressure plasma (CAPP on Gram-positive and Gram-negative bacteria using flow cytometric methods. E. coli cells were completely depolarized after treatment (15 s with 0.25 % PAA at 10 °C, and after treatment (10 s with 3.8 mg l-1 O3 at 12°C. The membrane potential of CAPP treated cells remained almost constant at an operating power of 20 W over a time period of 3 min, and subsequently decreased within 30 s of further treatment. Complete membrane permeabilization was observed after 10 s O3 treatment, but treatment with PAA and CAPP did not completely permeabilize the cells within 2 min and 4 min, respectively. Similar results were obtained for esterase activity. O3 inactivates cellular esterase but esterase activity was detected after 4 min CAPP treatment and 2 min PAA treatment. L. innocua cells and P. carotovorum cells were also permeabilized instantaneously by O3 treatment at concentrations of 3.8 ± 1 mg l-1. However, higher membrane permeabilization of L. innocua and P. carotovorum than of E. coli was observed at CAPP treatment of 20 W. The degree of bacterial damage due to the inactivation processes is highly dependent on treatment parameters as well as on treated bacteria. Important information regarding the inactivation mechanisms can be obtained by flow cytometric measurements and this enables the definition of critical process

  5. Clinical flow cytometric screening of SAP and XIAP expression accurately identifies patients with SH2D1A and XIAP/BIRC4 mutations.

    Science.gov (United States)

    Gifford, Carrie E; Weingartner, Elizabeth; Villanueva, Joyce; Johnson, Judith; Zhang, Kejian; Filipovich, Alexandra H; Bleesing, Jack J; Marsh, Rebecca A

    2014-07-01

    X-linked lymphoproliferative disease is caused by mutations in two genes, SH2D1A and XIAP/BIRC4. Flow cytometric methods have been developed to detect the gene products, SAP and XIAP. However, there is no literature describing the accuracy of flow cytometric screening performed in a clinical lab setting. We reviewed the clinical flow cytometric testing results for 656 SAP and 586 XIAP samples tested during a 3-year period. Genetic testing was clinically performed as directed by the managing physician in 137 SAP (21%) and 115 XIAP (20%) samples. We included these samples for analyses of flow cytometric test accuracy. SH2D1A mutations were detected in 15/137 samples. SAP expression was low in 13/15 (sensitivity 87%, CI 61-97%). Of the 122 samples with normal sequencing, SAP was normal in 109 (specificity 89%, CI 82-94%). The positive predictive values (PPVs) and the negative predictive values (NPVs) were 50% and 98%, respectively. XIAP/BIRC4 mutations were detected in 19/115 samples. XIAP expression was low in 18/19 (sensitivity 95%, CI 73-100%). Of the 96 samples with normal sequencing, 59 had normal XIAP expression (specificity 61%, CI 51-71%). The PPVs and NPVs were 33% and 98%, respectively. Receiver-operating characteristic analysis was able to improve the specificity to 75%. Clinical flow cytometric screening tests for SAP and XIAP deficiencies offer good sensitivity and specificity for detecting genetic mutations, and are characterized by high NPVs. We recommend these tests for patients suspected of having X-linked lymphoproliferative disease type 1 (XLP1) or XLP2. © 2014 Clinical Cytometry Society.

  6. Flow cytometric evaluation of peripheral blood and bone marrow and fine-needle aspirate samples from multiple sites in dogs with multicentric lymphoma.

    Science.gov (United States)

    Joetzke, Alexa E; Eberle, Nina; Nolte, Ingo; Mischke, Reinhard; Simon, Daniela

    2012-06-01

    To determine whether the extent of disease in dogs with lymphoma can be assessed via flow cytometry and to evaluate the suitability of fine-needle aspirates from the liver and spleen of dogs for flow cytometric examination. 44 dogs with multicentric B-cell (n = 35) or T-cell lymphoma (9) and 5 healthy control dogs. Procedures-Peripheral blood and bone marrow samples and fine-needle aspirates of lymph node, liver, and spleen were examined via flow cytometry. Logarithmically transformed T-cell-to-B-cell percentage ratio (log[T:B]) values were calculated. Thresholds defined by use of log(T:B) values of samples from control dogs were used to determine extranodal lymphoma involvement in lymphoma-affected dogs; results were compared with cytologic findings. 12 of 245 (5%) samples (9 liver, 1 spleen, and 2 bone marrow) had insufficient cellularity for flow cytometric evaluation. Mean log(T:B) values of samples from dogs with B-cell lymphoma were significantly lower than those of samples from the same site in dogs with T-cell lymphoma and in control dogs. In dogs with T-cell lymphoma, the log(T:B) of lymph node, bone marrow, and spleen samples was significantly higher than in control dogs. Of 165 samples assessed for extranodal lymphoma involvement, 116 (70%) tested positive via flow cytometric analysis; results agreed with cytologic findings in 133 of 161 (83%) samples evaluated via both methods. Results suggested that flow cytometry may aid in detection of extranodal lymphoma involvement in dogs, but further research is needed. Most fine-needle aspirates of liver and spleen were suitable for flow cytometric evaluation.

  7. Microscopic and flow cytometric study of micronuclei in iododeoxyuridine labelled cells irradiated with soft X-rays

    International Nuclear Information System (INIS)

    Ludwikow, G.; Staalnacke, C.G.; Johanson, K.J.; Sundell-Bergman, S.; Richter, S.; Swedish Univ. of Agricultural Sciences, Uppsala; Uppsala Univ.

    1990-01-01

    Iododeoxyuridine labelled (IUdR(+)) and unlabelled (IUdR(-)) CHO cells irradiated with 2 Gy of soft X-rays showed only minor differences in the kinetics of micronuclei formation during the first 20 hours postirradiation period. Between 20 to 40 hours, the IUdR(-) cells showed approximately a constant number of micronuclei while the number of micronuclei in IUdR(+) cells was still increasing. The frequency of micronuclei was higher in IUdR(+) cells compared to IUdR(-) cells at 24 hours after irradiation with various doses up to 4.0 Gy. Dose modifying factors were found to be 1.3 (microscopic evaluation) and 1.8 (flow cytometric evaluation). Flow cytometry with use of two parameters, fluorescence from propidium iodide and light scattering, seems to be a good tool to estimate the frequency of micronuclei in CHO cells in the dose range up to about 4 Gy. At higher doses perturbation of the cell cycle and the appearance of dying cells will influence the results. (orig.)

  8. Immuno-flow cytometric detection of the ichthyotoxic dinoflagellates Gyrodinium aureolum and Gymnodinium nagasakiense: independence of physiological state

    Science.gov (United States)

    Vrieling, Engel G.; van de Poll, Willem H.; Vriezekolk, Gertie; Gieskes, Winfried W. C.

    1997-05-01

    The ichthyotoxic dinoflagellates Gyrodinium aureolum and Gymnodinium nagasakiense were cultured under different environmental conditions to test possible variability in immunochemical labelling intensity of cell-surface antigens using species-specific monoclonal antibodies. Variation of antigen abundance (which is directly related to labelling intensity) at the cell surface, determined by immuno-flow cytometry of cells labelled with FITC, appeared to be small but significant compared to control cultures. In general, a minor decrease in FIX fluorescence was recorded during exponential growth, followed by an increase during stationary growth. FITC fluorescence was correlated with cell size, shape and structure. This suggests a constant number of antigens per unit of cell surface. In all cultures, immunochemically labelled cells were distinguished clearly from unlabelled cells; immuno-flow cytometric identification is apparently not affected by growth conditions. Only at the end of the stationary growth phase in batch cultures did the FITC fluorescence values drop, which suggests that unhealthy, dying or lysing cells may either alter the composition of the cell surface or just fail to express the antigen.

  9. CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia

    Science.gov (United States)

    Retnakumari, Archana; Jayasimhan, Jasusri; Chandran, Parwathy; Menon, Deepthy; Nair, Shantikumar; Mony, Ullas; Koyakutty, Manzoor

    2011-07-01

    Protein stabilized gold nanoclusters (Au-NCs) are biocompatible, near-infrared (NIR) emitting nanosystems having a wide range of biomedical applications. Here, we report the development of a Au-NC based targeted fluorescent nano-bioprobe for the flow-cytometric detection of acute myeloid leukaemia (AML) cells. Au-NCs with ~ 25-28 atoms showing bright red-NIR fluorescence (600-750 nm) and average size of ~ 0.8 nm were prepared by bovine serum albumin assisted reduction-cum-stabilization in aqueous phase. The protein protected clusters were conjugated with monoclonal antibody against CD33 myeloid antigen, which is overexpressed in ~ 99.2% of the primitive population of AML cells, as confirmed by immunophenotyping using flow cytometry. Au-NC-CD33 conjugates having average size of ~ 12 nm retained bright fluorescence over an extended duration of ~ a year, as the albumin protein protects Au-NCs against degradation. Nanotoxicity studies revealed excellent biocompatibility of Au-NC conjugates, as they showed no adverse effect on the cell viability and inflammatory response. Target specificity of the conjugates for detecting CD33 expressing AML cells (KG1a) in flow cytometry showed specific staining of ~ 95.4% of leukaemia cells within 1-2 h compared to a non-specific uptake of ~ 8.2% in human peripheral blood cells (PBMCs) which are CD33low. The confocal imaging also demonstrated the targeted uptake of CD33 conjugated Au-NCs by leukaemia cells, thus confirming the flow cytometry results. This study demonstrates that novel nano-bioprobes can be developed using protein protected fluorescent nanoclusters of Au for the molecular receptor targeted flow cytometry based detection and imaging of cancer cells.

  10. CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia

    International Nuclear Information System (INIS)

    Retnakumari, Archana; Jayasimhan, Jasusri; Chandran, Parwathy; Menon, Deepthy; Nair, Shantikumar; Mony, Ullas; Koyakutty, Manzoor

    2011-01-01

    Protein stabilized gold nanoclusters (Au-NCs) are biocompatible, near-infrared (NIR) emitting nanosystems having a wide range of biomedical applications. Here, we report the development of a Au-NC based targeted fluorescent nano-bioprobe for the flow-cytometric detection of acute myeloid leukaemia (AML) cells. Au-NCs with ∼ 25-28 atoms showing bright red-NIR fluorescence (600-750 nm) and average size of ∼ 0.8 nm were prepared by bovine serum albumin assisted reduction-cum-stabilization in aqueous phase. The protein protected clusters were conjugated with monoclonal antibody against CD33 myeloid antigen, which is overexpressed in ∼ 99.2% of the primitive population of AML cells, as confirmed by immunophenotyping using flow cytometry. Au-NC-CD33 conjugates having average size of ∼ 12 nm retained bright fluorescence over an extended duration of ∼ a year, as the albumin protein protects Au-NCs against degradation. Nanotoxicity studies revealed excellent biocompatibility of Au-NC conjugates, as they showed no adverse effect on the cell viability and inflammatory response. Target specificity of the conjugates for detecting CD33 expressing AML cells (KG1a) in flow cytometry showed specific staining of ∼ 95.4% of leukaemia cells within 1-2 h compared to a non-specific uptake of ∼ 8.2% in human peripheral blood cells (PBMCs) which are CD33 low . The confocal imaging also demonstrated the targeted uptake of CD33 conjugated Au-NCs by leukaemia cells, thus confirming the flow cytometry results. This study demonstrates that novel nano-bioprobes can be developed using protein protected fluorescent nanoclusters of Au for the molecular receptor targeted flow cytometry based detection and imaging of cancer cells.

  11. CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Retnakumari, Archana; Jayasimhan, Jasusri; Chandran, Parwathy; Menon, Deepthy; Nair, Shantikumar; Mony, Ullas; Koyakutty, Manzoor, E-mail: manzoork@aims.amrita.edu, E-mail: ullasmony@aims.amrita.edu [Amrita Centre for Nanoscience and Molecular Medicine, Amrita Institute of Medical Science, Cochin 682 041 (India)

    2011-07-15

    Protein stabilized gold nanoclusters (Au-NCs) are biocompatible, near-infrared (NIR) emitting nanosystems having a wide range of biomedical applications. Here, we report the development of a Au-NC based targeted fluorescent nano-bioprobe for the flow-cytometric detection of acute myeloid leukaemia (AML) cells. Au-NCs with {approx} 25-28 atoms showing bright red-NIR fluorescence (600-750 nm) and average size of {approx} 0.8 nm were prepared by bovine serum albumin assisted reduction-cum-stabilization in aqueous phase. The protein protected clusters were conjugated with monoclonal antibody against CD33 myeloid antigen, which is overexpressed in {approx} 99.2% of the primitive population of AML cells, as confirmed by immunophenotyping using flow cytometry. Au-NC-CD33 conjugates having average size of {approx} 12 nm retained bright fluorescence over an extended duration of {approx} a year, as the albumin protein protects Au-NCs against degradation. Nanotoxicity studies revealed excellent biocompatibility of Au-NC conjugates, as they showed no adverse effect on the cell viability and inflammatory response. Target specificity of the conjugates for detecting CD33 expressing AML cells (KG1a) in flow cytometry showed specific staining of {approx} 95.4% of leukaemia cells within 1-2 h compared to a non-specific uptake of {approx} 8.2% in human peripheral blood cells (PBMCs) which are CD33{sup low}. The confocal imaging also demonstrated the targeted uptake of CD33 conjugated Au-NCs by leukaemia cells, thus confirming the flow cytometry results. This study demonstrates that novel nano-bioprobes can be developed using protein protected fluorescent nanoclusters of Au for the molecular receptor targeted flow cytometry based detection and imaging of cancer cells.

  12. Flow cytometric-membrane potential detection of sodium channel active marine toxins: application to ciguatoxins in fish muscle and feasibility of automating saxitoxin detection.

    Science.gov (United States)

    Manger, Ronald; Woodle, Doug; Berger, Andrew; Dickey, Robert W; Jester, Edward; Yasumoto, Takeshi; Lewis, Richard; Hawryluk, Timothy; Hungerford, James

    2014-01-01

    Ciguatoxins are potent neurotoxins with a significant public health impact. Cytotoxicity assays have allowed the most sensitive means of detection of ciguatoxin-like activity without reliance on mouse bioassays and have been invaluable in studying outbreaks. An improvement of these cell-based assays is presented here in which rapid flow cytometric detection of ciguatoxins and saxitoxins is demonstrated using fluorescent voltage sensitive dyes. A depolarization response can be detected directly due to ciguatoxin alone; however, an approximate 1000-fold increase in sensitivity is observed in the presence of veratridine. These results demonstrate that flow cytometric assessment of ciguatoxins is possible at levels approaching the trace detection limits of our earlier cytotoxicity assays, however, with a significant reduction in analysis time. Preliminary results are also presented for detection of brevetoxins and for automation and throughput improvements to a previously described method for detecting saxitoxins in shellfish extracts.

  13. Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis.

    Science.gov (United States)

    Suzuki, Hiroshi; Toyooka, Tatsushi; Ibuki, Yuko

    2007-04-15

    Many classes of nanoparticles have been synthesized and widely applied, however, there is a serious lack of information concerning their effects on human health and the environment. Considering that their use will increase, accurate and cost-effective measurement techniques for characterizing "nanotoxicity" are required. One major toxicological concern is that nanoparticles are easily taken up in the human body. In this study, we developed a method of evaluating the uptake potential of nanosized particles using flow cytometric light scatter. Suspended titanium dioxide (TiO2) particles (5, 23, or 5000 nm) were added to Chinese hamster ovary cells. Observation by confocal laser scanning microscopy showed that the TiO2 particles easily moved to the cytoplasm of the cultured mammalian cells, not to the nucleus. The intensity of the side-scattered light revealed that the particles were taken up in the cells dose-, time-, and size-dependently. In addition, surface-coating of TiO2 particles changed the uptake into the cells, which was accurately reflected in the intensity of the side-scattered light. The uptake of other nanoparticles such as silver (Ag) and iron oxide (Fe3O4) also could be detected. This method could be used for the initial screening of the uptake potential of nanoparticles as an index of "nanotoxicity".

  14. Flow cytometric analysis of immunoglobulin heavy chain expression in B-cell lymphoma and reactive lymphoid hyperplasia

    Science.gov (United States)

    Grier, David D; Al-Quran, Samer Z; Cardona, Diana M; Li, Ying; Braylan, Raul C

    2012-01-01

    The diagnosis of B-cell lymphoma (BCL) is often dependent on the detection of clonal immunoglobulin (Ig) light chain expression. In some BCLs, the determination of clonality based on Ig light chain restriction may be difficult. The aim of our study was to assess the utility of flow cytometric analysis of surface Ig heavy chain (HC) expression in lymphoid tissues in distinguishing lymphoid hyperplasias from BCLs, and also differentiating various BCL subtypes. HC expression on B-cells varied among different types of hyperplasias. In follicular hyperplasia, IgM and IgD expression was high in mantle cells while germinal center cells showed poor HC expression. In other hyperplasias, B cell compartments were blurred but generally showed high IgD and IgM expression. Compared to hyperplasias, BCLs varied in IgM expression. Small lymphocytic lymphomas had lower IgM expression than mantle cell lymphomas. Of importance, IgD expression was significantly lower in BCLs than in hyperplasias, a finding that can be useful in differentiating lymphoma from reactive processes. PMID:22400070

  15. Long-term preservation of Tetraselmis indica (Chlorodendrophyceae, Chlorophyta) for flow cytometric analysis: Influence of fixative and storage temperature.

    Science.gov (United States)

    Naik, Sangeeta Mahableshwar; Anil, Arga Chandrashekar

    2017-08-01

    Immediate enumeration of phytoplankton is seldom possible. Therefore, fixation and subsequent storage are required for delayed analysis. This study investigated the influence of glutaraldehyde (GA) concentrations (0.25%, 0.5%, and 1%) and storage temperatures (-80°C LN2 , -80°C, -20°C, and 5°C) on Tetraselmis indica for flow cytometric analysis. Cell recovery, granularity, and membrane permeability were independent of GA concentration whereas cell size and chlorophyll autofluorescence were concentration dependent. After an initial cell loss (16-19%), no cell loss was observed when samples were stored at 5°C. Cell recovery was not influenced by storage temperature until 4months but later samples preserved at -80°C LN2 , -80°C, and -20°C resulted in ~41% cell loss. Although maximum cell recovery with minimal effect on cell integrity was obtained at 5°C, autofluorescence was retained better at -80°C LN2 and -80°C. This suggests that in addition to fixative, the choice of storage temperature is equally important. Thus for long-term preservation, especially to retain autofluorescence, the use of lower concentration (0.25%) of GA when stored at a lower temperature (-80°C LN2 and -80°C) while a higher concentration (1%) of GA when stored at a higher temperature (5°C) is recommended. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Flow Cytometric Evaluation of Human Neutrophil Apoptosis During Nitric Oxide Generation In Vitro: The Role of Exogenous Antioxidants

    Directory of Open Access Journals (Sweden)

    Zofia Sulowska

    2005-01-01

    in vitro. The effect of exogenous supply of NO donors such as SNP, SIN-1, and GEA-3162 on the course of human neutrophil apoptosis and the role of extracellular antioxidants in this process was investigated. Isolated from peripheral blood, neutrophils were cultured in the presence or absence of NO donor compounds and antioxidants for 8, 12, and 20 hours. Apoptosis of neutrophils was determined in vitro by flow cytometric analysis of cellular DNA content and Annexin V protein binding to the cell surface. Exposure of human neutrophils to GEA-3162 and SIN-1 significantly accelerates and enhances their apoptosis in vitro in a time-dependent fashion. In the presence of SNP, intensification of apoptosis has not been revealed until 12 hours after the culture. The inhibition of GEA-3162- and SIN-1-mediated neutrophil apoptosis by superoxide dismutase (SOD but not by catalase (CAT was observed. Our results show that SOD and CAT can protect neutrophils against NO-donors-induced apoptosis and suggest that the interaction of NO and oxygen metabolites signals may determine the destructive or protective role of NO donor compounds during apoptotic neutrophil death.

  17. Evaluation of flow cytometric HIT assays in relation to an IgG-Specific immunoassay and clinical outcome.

    Science.gov (United States)

    Kerényi, Adrienne; Beke Debreceni, Ildikó; Oláh, Zsolt; Ilonczai, Péter; Bereczky, Zsuzsanna; Nagy, Béla; Muszbek, László; Kappelmayer, János

    2017-09-01

    Heparin-induced thrombocytopenia (HIT) is a severe side effect of heparin treatment caused by platelet activating IgG antibodies generated against the platelet factor 4 (PF4)-heparin complex. Thrombocytopenia and thrombosis are the leading clinical symptoms of HIT. The clinical pretest probability of HIT was evaluated by the 4T score system. Laboratory testing of HIT was performed by immunological detection of antibodies against PF4-heparin complex (EIA) and two functional assays. Heparin-dependent activation of donor platelets by patient plasma was detected by flow cytometry. Increased binding of Annexin-V to platelets and elevated number of platelet-derived microparticles (PMP) were the indicators of platelet activation. EIA for IgG isotype HIT antibodies was performed in 405 suspected HIT patients. Based on negative EIA results, HIT was excluded in 365 (90%) of cases. In 40 patients with positive EIA test result functional tests were performed. Platelet activating antibodies were detected in 17 cases by Annexin V binding. PMP count analysis provided nearly identical results. The probability of a positive flow cytometric assay result was higher in patients with elevated antibody titer. 71% of patients with positive EIA and functional assay had thrombosis. EIA is an important first line laboratory test in the diagnosis of HIT; however, HIT must be confirmed by a functional test. Annexin V binding and PMP assays using flow cytometry are functional HIT tests convenient in a clinical diagnostic laboratory. The positive results of functional assays may predict the onset of thrombosis. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  18. Flow cytometric analysis of platelet cyclooxygenase-1 and -2 and surface glycoproteins in patients with immune thrombocytopenia and healthy individuals.

    Science.gov (United States)

    Rubak, Peter; Kristensen, Steen D; Hvas, Anne-Mette

    2017-06-01

    Immature platelets may contain more platelet enzymes such as cyclooxygenase (COX)-1 and COX-2 than mature platelets. Patients with immune thrombocytopenia (ITP) have a higher fraction of immature platelets and can therefore be utilized as a biological model for investigating COX-1 and COX-2 platelet expression. The aims were to develop flow cytometric assays for platelet COX-1 and COX-2 and to investigate the COX-1 and COX-2 platelet expression, platelet turnover, and platelet glycoproteins in ITP patients (n = 10) compared with healthy individuals (n = 30). Platelet count and platelet turnover parameters (mean platelet volume (MPV), immature platelet fraction (IPF), and immature platelet count (IPC)) were measured by flow cytometry (Sysmex XE-5000). Platelet COX-1, COX-2, and the glycoproteins (GP)IIb, IX, Ib, Ia, and IIIa were all analyzed by flow cytometry (Navios) and expressed as median fluorescence intensity. COX analyses were performed in both whole blood and platelet rich plasma (PRP), whereas platelet glycoproteins were analyzed in whole blood only. ITP patients had significantly lower platelet count (55 × 10 9 /L) than healthy individuals (240 × 10 9 /L, p platelet count and IPC (both p-values Platelet COX-1 expression was higher in ITP patients than healthy individuals using whole blood (p COX-1 platelet turnover and COX-1 expression (all p-values platelet turnover and COX-1 and COX-2 expressions (all p-values platelet turnover in ITP patients (all p-values 0.14, rho = 0.11-0.28). In conclusion, ITP patients expressed higher COX-1 and platelet glycoprotein levels than healthy individuals. COX-1 and platelet glycoproteins demonstrated positive correlations with platelet turnover in ITP patients. In healthy individuals, COX-1 and COX-2 expression correlated positively with platelet turnover. PRP was more sensitive compared with whole blood as regards determination of COX. Therefore, PRP is the recommended matrix for investigating COX-1 and COX-2 in

  19. Flow cytometric osmotic fragility test and eosin-5'-maleimide dye-binding tests are better than conventional osmotic fragility tests for the diagnosis of hereditary spherocytosis.

    Science.gov (United States)

    Arora, R D; Dass, J; Maydeo, S; Arya, V; Radhakrishnan, N; Sachdeva, A; Kotwal, J; Bhargava, M

    2018-03-24

    Hereditary spherocytosis (HS) is the most common inherited hemolytic anemia with heterogeneous clinico-laboratory manifestations. We evaluated the flow-cytometric tests: eosin-5'-maleimide (EMA) and flow-cytometric osmotic fragility test (FOFT) and the conventional osmotic fragility tests (OFT) for the diagnosis of hereditary spherocytosis (HS). One hundred two suspected HS patients underwent EMA, FOFT, incubated OFT (IOFT), and room temperature OFT (RT-OFT). In addition, 10 cases of immune hemolytic anemia (IHA) were included, and performance of the above 4 tests was evaluated. For EMA and FOFT, 5 normal controls were assessed together with the patients and cutoffs were calculated using receiver-operator-characteristics curve (ROC) analysis. The best cutoff for %EMA decrease was 12.5%, and for FOFT, %residual red cells (%RRC) was 25.6%. The sensitivity and specificity of RT-OFT was 62.06% and 86.3%, respectively, while that of IOFT was 79.31% and 87.67%, respectively. Both flow cytometric tests performed better. Sensitivity and specificity of EMA was 86.2% and 93.9% respectively, and that of FOFT was 96.6% and 98.63%, respectively. The combination of the FOFT with IOFT or EMA dye-binding test yields a sensitivity of 100%, but with EMA, it had a higher specificity. Hb/MCHC was a predictor of the severity of the disease while %EMA decrease and %RRC did not correlate with severity of the disease. Flow-cytometric osmotic fragility test is the best possible single test followed by EMA for diagnosis of HS. A combination of FOFT and EMA can correctly diagnose 100% patients. These tests are likely to replace conventional OFTs in future. © 2018 John Wiley & Sons Ltd.

  20. Automated flow cytometric analysis across large numbers of samples and cell types.

    Science.gov (United States)

    Chen, Xiaoyi; Hasan, Milena; Libri, Valentina; Urrutia, Alejandra; Beitz, Benoît; Rouilly, Vincent; Duffy, Darragh; Patin, Étienne; Chalmond, Bernard; Rogge, Lars; Quintana-Murci, Lluis; Albert, Matthew L; Schwikowski, Benno

    2015-04-01

    Multi-parametric flow cytometry is a key technology for characterization of immune cell phenotypes. However, robust high-dimensional post-analytic strategies for automated data analysis in large numbers of donors are still lacking. Here, we report a computational pipeline, called FlowGM, which minimizes operator input, is insensitive to compensation settings, and can be adapted to different analytic panels. A Gaussian Mixture Model (GMM)-based approach was utilized for initial clustering, with the number of clusters determined using Bayesian Information Criterion. Meta-clustering in a reference donor permitted automated identification of 24 cell types across four panels. Cluster labels were integrated into FCS files, thus permitting comparisons to manual gating. Cell numbers and coefficient of variation (CV) were similar between FlowGM and conventional gating for lymphocyte populations, but notably FlowGM provided improved discrimination of "hard-to-gate" monocyte and dendritic cell (DC) subsets. FlowGM thus provides rapid high-dimensional analysis of cell phenotypes and is amenable to cohort studies. Copyright © 2015. Published by Elsevier Inc.

  1. Microbial Eco-Physiology of the human intestinal tract: a flow cytometric approach

    NARCIS (Netherlands)

    Amor, Ben K.

    2004-01-01

    This thesis describes a multifaceted approach to further enhance our view of the complex human intestinal microbial ecosystem. This approach combines me advantages of flow cyrometry (FCM), a single cell and high-throughput technology, and molecular techniques that have proven themselves to be

  2. Synthesis of new, UV-photoactive dansyl derivatives for flow cytometric studies on bile acid uptake.

    Science.gov (United States)

    Rohacova, Jana; Marin, M Luisa; Martínez-Romero, Alicia; O'Connor, José-Enrique; Gomez-Lechon, M Jose; Donato, M Teresa; Castell, Jose V; Miranda, Miguel A

    2009-12-07

    Four new fluorescent derivatives of cholic acid have been synthesized; they incorporate a dansyl moiety at 3alpha-, 3beta-, 7alpha- or 7beta- positions. These cholic acid analogs are UV photoactive and also exhibit green fluorescence. In addition, they have been demonstrated to be suitable for studying the kinetics of bile acid transport by flow cytometry.

  3. A flow cytometric method for characterization of circulating cell-derived microparticles in plasma

    DEFF Research Database (Denmark)

    Nielsen, Morten Hjuler; Beck-Nielsen, Henning; Andersen, Morten Nørgaard

    2014-01-01

    BACKGROUND AND AIM: Previous studies on circulating microparticles (MPs) indicate that the majority of MPs are of a size below the detection limit of most standard flow cytometers. The objective of the present study was to establish a method to analyze MP subpopulations above the threshold...

  4. Flow cytometric analysis of microbial contamination in food industry technological lines – initial study

    OpenAIRE

    Katarzyna Czaczyk; Wojciech Juzwa

    2012-01-01

    Background. Flow cytometry constitutes an alternative for traditional methods of microorganisms identifi cation and analysis, including methods requiring cultivation step. It enables the detection of pathogens and other microorganisms contaminants without the need to culture microbial cells meaning that the sample (water, waste or food e.g. milk, wine, beer) may be analysed directly. This leads to a signifi cant reduction of time required for analysis allowing monitoring of production process...

  5. Flow cytometric determination of osmotic behaviour of animal erythrocytes toward their engineering for drug delivery

    Directory of Open Access Journals (Sweden)

    Kostić Ivana T.

    2015-01-01

    Full Text Available Despite the fact that the methods based on the osmotic properties of the cells are the most widely used for loading of drugs in human and animal erythrocytes, data related to the osmotic properties of erythrocytes derived from animal blood are scarce. This work was performed with an aim to investigate the possibility of use the flow cytometry as a tool for determination the osmotic behaviour of porcine and bovine erythrocytes, and thus facilitate the engineering of erythrocytes from animal blood to be drug carriers. The method of flow cytometry successfully provided the information about bovine and porcine erythrocyte osmotic fragility, and made the initial steps in assessment of erythrocyte shape in a large number of erythrocytes. Although this method is not able to confirm the swelling of pig erythrocytes, it indicated to the differences in pig erythrocytes that had basic hematological parameters inside and outside the reference values. In order to apply/use the porcine and bovine erythrocytes as drug carriers, the method of flow cytometry, confirming the presence of osmotically different fractions of red blood cells, indicated that various amounts of the encapsulated drug in porcine and bovine erythrocytes can be expected.

  6. Flow Cytometric Detection of PrPSc in Neurons and Glial Cells from Prion-Infected Mouse Brains.

    Science.gov (United States)

    Yamasaki, Takeshi; Suzuki, Akio; Hasebe, Rie; Horiuchi, Motohiro

    2018-01-01

    In prion diseases, an abnormal isoform of prion protein (PrP Sc ) accumulates in neurons, astrocytes, and microglia in the brains of animals affected by prions. Detailed analyses of PrP Sc -positive neurons and glial cells are required to clarify their pathophysiological roles in the disease. Here, we report a novel method for the detection of PrP Sc in neurons and glial cells from the brains of prion-infected mice by flow cytometry using PrP Sc -specific staining with monoclonal antibody (MAb) 132. The combination of PrP Sc staining and immunolabeling of neural cell markers clearly distinguished neurons, astrocytes, and microglia that were positive for PrP Sc from those that were PrP Sc negative. The flow cytometric analysis of PrP Sc revealed the appearance of PrP Sc -positive neurons, astrocytes, and microglia at 60 days after intracerebral prion inoculation, suggesting the presence of PrP Sc in the glial cells, as well as in neurons, from an early stage of infection. Moreover, the kinetic analysis of PrP Sc revealed a continuous increase in the proportion of PrP Sc -positive cells for all cell types with disease progression. Finally, we applied this method to isolate neurons, astrocytes, and microglia positive for PrP Sc from a prion-infected mouse brain by florescence-activated cell sorting. The method described here enables comprehensive analyses specific to PrP Sc -positive neurons, astrocytes, and microglia that will contribute to the understanding of the pathophysiological roles of neurons and glial cells in PrP Sc -associated pathogenesis. IMPORTANCE Although formation of PrP Sc in neurons is associated closely with neurodegeneration in prion diseases, the mechanism of neurodegeneration is not understood completely. On the other hand, recent studies proposed the important roles of glial cells in PrP Sc -associated pathogenesis, such as the intracerebral spread of PrP Sc and clearance of PrP Sc from the brain. Despite the great need for detailed analyses

  7. Flow cytometric measurement of RNA synthesis using bromouridine labelling and bromodeoxyuridine antibodies

    DEFF Research Database (Denmark)

    Jensen, P O; Larsen, J; Christiansen, J

    1993-01-01

    human leukemia cell line, stained as a methanol-fixed nuclear suspension. The BrUrd-induced fluorescence signals were highest with the antibody ABDM (Partec), moderate but reproducible with B-44 (Becton Dickinson), variable or low with BR-3 and IU-4 (Caltag), and not detectable with Bu20a (DAKO...... the variation of RNA synthesis during the cell cycle. The BrUrd incorporation was high in the S and G2 phase, variable in G1, and negligible in mitosis. Similar results were obtained using other cell types....

  8. Flow cytometric monitoring of influenza A virus infection in MDCK cells during vaccine production

    Directory of Open Access Journals (Sweden)

    Reichl Udo

    2008-04-01

    Full Text Available Abstract Background In cell culture-based influenza vaccine production the monitoring of virus titres and cell physiology during infection is of great importance for process characterisation and optimisation. While conventional virus quantification methods give only virus titres in the culture broth, data obtained by fluorescence labelling of intracellular virus proteins provide additional information on infection dynamics. Flow cytometry represents a valuable tool to investigate the influences of cultivation conditions and process variations on virus replication and virus yields. Results In this study, fluorescein-labelled monoclonal antibodies against influenza A virus matrix protein 1 and nucleoprotein were used for monitoring the infection status of adherent Madin-Darby canine kidney cells from bioreactor samples. Monoclonal antibody binding was shown for influenza A virus strains of different subtypes (H1N1, H1N2, H3N8 and host specificity (human, equine, swine. At high multiplicity of infection in a bioreactor, the onset of viral protein accumulation in adherent cells on microcarriers was detected at about 2 to 4 h post infection by flow cytometry. In contrast, a significant increase in titre by hemagglutination assay was detected at the earliest 4 to 6 h post infection. Conclusion It is shown that flow cytometry is a sensitive and robust method for the monitoring of viral infection in fixed cells from bioreactor samples. Therefore, it is a valuable addition to other detection methods of influenza virus infection such as immunotitration and RNA hybridisation. Thousands of individual cells are measured per sample. Thus, the presented method is believed to be quite independent of the concentration of infected cells (multiplicity of infection and total cell concentration in bioreactors. This allows to perform detailed studies on factors relevant for optimization of virus yields in cell cultures. The method could also be used for process

  9. Flow cytometric measurement of DNA level and steroid hormone receptor assay in breast cancer

    International Nuclear Information System (INIS)

    Zubrikhina, G.N.; Kuz'mina, Eh.V.; Bassalyk, L.S.; Murav'eva, N.I.

    1989-01-01

    DNA level measured by flow cytometry and estrogen and progesteron receptors assayed in tissue samples obtained from 85 malignant and 16 benign lesions of the breast. All the benign tumors revealed 2c DNA content and most of them were receptor-negative, while 74.1% of breast carcinomas displayed aneuploidy. Three patients (3.5%) had two lines of aneuploid cells. Many aneuploid tumors were receptor-negative. Preoperative radiation treatmet (14-20 Gy) did not significantly influence the level of steroid hormone receptors in tumors. Estrogen receptor level was higher in menopausal patients than in premenopausal ones

  10. Quick cytogenetic screening of breeding bulls using flow cytometric sperm DNA histogram analysis.

    Science.gov (United States)

    Nagy, Szabolcs; Polgár, Péter J; Andersson, Magnus; Kovács, András

    2016-09-01

    The aim of the present study was to test the FXCycle PI/RNase kit for routine DNA analyses in order to detect breeding bulls and/or insemination doses carrying cytogenetic aberrations. In a series of experiments we first established basic DNA histogram parameters of cytogenetically healthy breeding bulls by measuring the intraspecific genome size variation of three animals, then we compared the histogram profiles of bulls carrying cytogenetic defects to the baseline values. With the exception of one case the test was able to identify bulls with cytogenetic defects. Therefore, we conclude that the assay could be incorporated into the laboratory routine where flow cytometry is applied for semen quality control.

  11. Flow cytometric analysis of regulatory T cells during hyposensitization of acquired allergic contact dermatitis.

    Science.gov (United States)

    Fraser, Kathleen; Abbas, Mariam; Hull, Peter R

    2014-01-01

    We previously demonstrated that repeated intradermal steroid injections administered at weekly intervals into positive patch-test sites induce hyposensitization and desensitization. To examine changes in CD4CD25CD127lo/ regulatory T cells during the attenuation of the patch-test response. Ten patients with known allergic contact dermatitis were patch tested weekly for 10 weeks. The patch-test site was injected intradermally with 2 mg triamcinolone. At weeks 1 and 7, a biopsy was performed on the patch-test site in 6 patients, and flow cytometry was performed assessing CD4CD25CD127lo/ regulatory T cells. Secondary outcomes were clinical score, reaction size, erythema, and temperature. Statistical analysis included regression, correlation, and repeated-measures analysis of variance. The percentage of CD4CD25CD127lo/ regulatory T cells, measured by flow cytometry, increased from week 1 to week 7 by an average of 19.2%. The average grade of patch-test reaction decreased from +++ (vesicular reaction) to ++ (palpable erythema). The mean drop in temperature following treatment was 0.28°C per week. The mean area decreased 8.6 mm/wk over 10 weeks. Intradermal steroid injections of weekly patch-test reactions resulted in hyposensitization of the allergic contact dermatitis reaction. CD4CD25CD127lo/ regulatory T cells showed a tendency to increase; however, further studies are needed to determine if this is significant.

  12. Flow cytometric measurement of the metabolism of benzo [a] pyrene by mouse liver cells in culture

    International Nuclear Information System (INIS)

    Bartholomew, J.C.; Wade, C.G.; Dougherty, K.

    1984-01-01

    The metabolism of benzo[a]pyrene in individual cells was monitored by flow cytometry. The measurements are based on the alterations that occur in the fluorescence emission spectrum of benzo[a]pyrene when it is converted to various metabolities. Using present instrumentation the technique could easily detect 1 x 10/sup 6/ molecules per cells of benzo [a]pyrene and 1 x 10/sup 7/ molecules per cell of the diol epoxide. The analysis of C3H IOT 1/2 mouse fibroblasts growing in culture indicated that there was heterogeneity in the conversion of the parent compound into diol epoxide derivative suggesting that some variation in sensitivity to transformation by benzo[a]pyrene may be due to differences in cellular metabolism

  13. Whole blood flow cytometric analysis of Ureaplasma-stimulated monocytes from pregnant women.

    Science.gov (United States)

    Friedland, Yael D; Lee-Pullen, Tracey F; Nathan, Elizabeth; Watts, Rory; Keelan, Jeffrey A; Payne, Matthew S; Ireland, Demelza J

    2015-06-01

    We hypothesised that circulating monocytes of women with vaginal colonisation with Ureaplasma spp., genital microorganisms known to cause inflammation-driven preterm birth, would elicit a tolerised cytokine response to subsequent in vitro Ureaplasma parvum serovar 3 (UpSV3) stimulation. Using multi-parameter flow cytometry, we found no differences with regard to maternal colonisation status in the frequency of TNF-α-, IL-6-, IL-8- and IL-1β-expressing monocytes in response to subsequent UpSV3 stimulation (P > 0.10 for all cytokines). We conclude that vaginal Ureaplasma spp. colonisation does not specifically tolerise monocytes of pregnant women towards decreased responses to subsequent stimulation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. DEA 1 expression on dog erythrocytes analyzed by immunochromatographic and flow cytometric techniques.

    Science.gov (United States)

    Acierno, M M; Raj, K; Giger, U

    2014-01-01

    The Dog erythrocyte antigen (DEA) 1 blood group system was thought to contain types DEA 1.1 and 1.2 (and possibly 1.3 [A3]). However, DEA 1.2+ dogs are very rare and newer typing methods reveal varying degrees of DEA 1 positivity. To assess if variation in DEA 1 positivity is because of quantitative differences in surface antigen expression. To determine expression patterns in dogs over time and effects of blood storage (4°C). To evaluate DEA 1.2+ samples by DEA 1 typing methods. Anticoagulated blood samples from 66 dogs in a research colony and from a hospital, and 9 previously typed DEA 1.2+ dogs from an animal blood bank. Research study: Samples were analyzed by flow cytometry and immunochromatographic strip using a monoclonal anti-DEA 1 antibody. Twenty dogs were DEA 1-, whereas 46 dogs were weakly to strongly DEA 1+. Antigen quantification revealed excellent correlation between strip and flow cytometry (r = 0.929). Both methods reclassified DEA 1.2+ samples as weakly to moderately DEA 1+, but they were not retyped with the polyclonal anti-DEA 1.1/1.X antibodies. Dogs and blood samples retained their relative DEA 1 antigen densities over time. The blood group system DEA 1 is a continuum from negative to strongly positive antigen expression. Previously typed DEA 1.2+ appears to be DEA 1+. These findings further the understanding of the DEA 1 system and suggest that all alleles within the DEA 1 system have a similarly based epitope recognized by the monoclonal antibody. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  15. Flow cytometric analysis of lymphocytes and lymphocyte subpopulations in induced sputum from patients with asthma

    Directory of Open Access Journals (Sweden)

    Yutaro Shiota

    2000-01-01

    Full Text Available Study objectives were to compare the numbers of lymphocytes and lymphocyte subpopulations in induced sputum from asthmatic patients and from healthy subjects, and to determine the effect of inhaled anti-asthmatic steroid therapy on these cell numbers. Hypertonic saline inhalation was used to non-invasively induce sputum samples in 34 patients with bronchial asthma and 21 healthy subjects. The sputum samples were reduced with dithioerythritol and absolute numbers of lymphocytes and lymphocyte subpopulations were assessed by direct immunofluorescence and flow cytometry. To assess the effect of beclomethasone dipropionate (BDP on induced sputum, numbers of lymphocytes and lymphocyte subpopulations in sputum also were evaluated after 4 weeks of BDP inhalation treatment in seven asthmatic patients. An adequate sample was obtained in 85.3% of patients with asthma and in 79.2% of the healthy subjects. Induced sputum from patients with asthma had increased numbers of lymphocytes (P = 0.009; CD4+ cells (P = 0.044; CD4+ cells-bearing interleukin-2 receptor (CD25; P = 0.016; and CD4+ cells bearing human histocompatibility leukocyte antigen (HLA-DR (P = 0.033. CD8+ cells were not increased in asthmatic patients. In patients treated with inhaled steroids, numbers of lymphocytes, CD4+ cells, CD25-bearing CD4+ cells and HLA-DR-bearing CD4+ cells in sputum decreased from pretreatment numbers (P = 0.016, 0.002, 0.003 and 0.002, respectively. Analysis of lymphocytes in induced sputum by flow cytometry is useful in assessing bronchial inflammation, and activated CD4+ lymphocytes may play a key role in the pathogenesis of airway inflammation in bronchial asthma.

  16. Performance of the flow cytometric E-screen assay in screening estrogenicity of pure compounds and environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Vanparys, Caroline, E-mail: caroline.vanparys@ua.ac.be [Laboratory of Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Antwerp (Belgium); Depiereux, Sophie; Nadzialek, Stephanie [Research Unit in Organismal Biology (URBO), University of Namur (FUNDP), Namur (Belgium); Robbens, Johan; Blust, Ronny [Laboratory of Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Antwerp (Belgium); Kestemont, Patrick [Research Unit in Organismal Biology (URBO), University of Namur (FUNDP), Namur (Belgium); De Coen, Wim [Laboratory of Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Antwerp (Belgium); European Chemicals Agency (ECHA), Helsinki (Finland)

    2010-09-15

    In vitro estrogenicity screens are believed to provide a first prioritization step in hazard characterization of endocrine disrupting chemicals. When applied to complex environmental matrices or mixture samples, they have been indicated valuable in estimating the overall estrogen-mimicking load. In this study, the performance of an adapted format of the classical E-screen or MCF-7 cell proliferation assay was profoundly evaluated to rank pure compounds as well as influents and effluents of sewage treatment plants (STPs) according to estrogenic activity. In this adapted format, flow cytometric cell cycle analysis was used to allow evaluation of the MCF-7 cell proliferative effects after only 24 h of exposure. With an average EC{sub 50} value of 2 pM and CV of 22%, this assay appears as a sensitive and reproducible system for evaluation of estrogenic activity. Moreover, estrogenic responses of 17 pure compounds corresponded well, qualitatively and quantitatively, with other in vitro and in vivo estrogenicity screens, such as the classical E-screen (R{sup 2} = 0.98), the estrogen receptor (ER) binding (R{sup 2} = 0.84) and the ER transcription activation assay (R{sup 2} = 0.87). To evaluate the applicability of this assay for complex samples, influents and effluents of 10 STPs covering different treatment processes, were compared and ranked according to estrogenic removal efficiencies. Activated sludge treatment with phosphorus and nitrogen removal appeared most effective in eliminating estrogenic activity, followed by activated sludge, lagoon and filter bed. This is well in agreement with previous findings based on chemical analysis or biological activity screens. Moreover, ER blocking experiments indicated that cell proliferative responses were mainly ER mediated, illustrating that the complexity of the end point, cell proliferation, compared to other ER screens, does not hamper the interpretation of the results. Therefore, this study, among other E-screen studies

  17. Histopathologic and Flow-Cytometric Analysis of Neoplastic and Benign “background” Tissue in Breast Carcinoma Resections

    Directory of Open Access Journals (Sweden)

    Daniel W. Visscher

    1998-01-01

    Full Text Available Two-color, multiparametric synthesis phase fraction (SPF analysis of cytokeratin-labeled epithelial cells was flow cytometrically performed on both benign (SPFb and malignant tissue samples (if available, SPFt from 132 mastectomy/lumpectomy specimens. These data were then correlated with clinicopathologic features, including (1 tumor differentiation, (2 the proportion of tumor comprised of duct carcinoma-in situ (DCIS, and (3 the histology of accompanying benign breast tissue, classified by predominant microscopic pattern as intact, normal terminal duct lobular units (NTDLU, 34% of cases, atrophic (AT, 33% of cases, proliferative fibrocystic (PFC, 26% of cases, and non-proliferative fibrocystic (NPFC, 7% of cases. SPFt was inversely correlated with extent of DCIS (DCIS =0 – 20% tumor volume – 12.7% mean SPFt, vs. DCIS >20% tumor volume – 6.4% mean SPFt, p = 0.001. SPFt also correlated with the histology of background benign breast tissue (NTDLU – 14.8% mean SPFt vs. AT – 6.9% mean SPFt vs. PFC – 12.7% mean SPFt, p = 0.05 but it did not correlate with patient age or SPFb (overall mean =0.73%. SPFb was correlated with patient age (>56 yr – 0.59% mean SPFb vs. < yr – 0.84% mean SPFb, p = 0.02, with background histology (NTDLU – 1.1% mean SPFb vs. AT – 0.43% mean SPFb vs. PFC – 0.70% mean SPFb, p < 0.02 and with the grade of the neoplasm (well/moderate – 0.58% mean vs. poorly differentiated – 0.85% mean, p = 0.04. Patients having a background of PFC were significantly older than patients with a background of NTDLU (45.2 yr vs. 60.2 yr, p = 0.01.

  18. Performance of the flow cytometric E-screen assay in screening estrogenicity of pure compounds and environmental samples

    International Nuclear Information System (INIS)

    Vanparys, Caroline; Depiereux, Sophie; Nadzialek, Stephanie; Robbens, Johan; Blust, Ronny; Kestemont, Patrick; De Coen, Wim

    2010-01-01

    In vitro estrogenicity screens are believed to provide a first prioritization step in hazard characterization of endocrine disrupting chemicals. When applied to complex environmental matrices or mixture samples, they have been indicated valuable in estimating the overall estrogen-mimicking load. In this study, the performance of an adapted format of the classical E-screen or MCF-7 cell proliferation assay was profoundly evaluated to rank pure compounds as well as influents and effluents of sewage treatment plants (STPs) according to estrogenic activity. In this adapted format, flow cytometric cell cycle analysis was used to allow evaluation of the MCF-7 cell proliferative effects after only 24 h of exposure. With an average EC 50 value of 2 pM and CV of 22%, this assay appears as a sensitive and reproducible system for evaluation of estrogenic activity. Moreover, estrogenic responses of 17 pure compounds corresponded well, qualitatively and quantitatively, with other in vitro and in vivo estrogenicity screens, such as the classical E-screen (R 2 = 0.98), the estrogen receptor (ER) binding (R 2 = 0.84) and the ER transcription activation assay (R 2 = 0.87). To evaluate the applicability of this assay for complex samples, influents and effluents of 10 STPs covering different treatment processes, were compared and ranked according to estrogenic removal efficiencies. Activated sludge treatment with phosphorus and nitrogen removal appeared most effective in eliminating estrogenic activity, followed by activated sludge, lagoon and filter bed. This is well in agreement with previous findings based on chemical analysis or biological activity screens. Moreover, ER blocking experiments indicated that cell proliferative responses were mainly ER mediated, illustrating that the complexity of the end point, cell proliferation, compared to other ER screens, does not hamper the interpretation of the results. Therefore, this study, among other E-screen studies, supports the use of

  19. Flow cytometric assessment of microbial abundance in the near-field area of seawater reverse osmosis concentrate discharge

    KAUST Repository

    Van Der Merwe, Riaan

    2014-06-01

    The discharge of concentrate and other process waters from seawater reverse osmosis (SWRO) plant operations into the marine environment may adversely affect water quality in the near-field area surrounding the outfall. The main concerns are the increase in salt concentration in receiving waters, which results in a density increase and potential water stratification near the outfall, and possible increases in turbidity, e.g., due to the discharge of filter backwash waters. Changes in ambient water quality may affect microbial abundance in the area, for example by hindering the photosynthesis process or disrupting biogenesis. It is widely accepted that marine biodiversity is lower in more extreme conditions, such as high salinity environments. As aquatic microbial communities respond very rapidly to changes in their environment, they can be used as indicators for monitoring ambient water quality. The objective of this study was to assess possible changes in microbial abundance as a result of concentrate discharge into the near-field area (<. 25. m) surrounding the outfall of the King Abdullah University of Science and Technology (KAUST) SWRO plant. Flow cytometric (FCM) analysis was conducted in order to rapidly determine microbial abundance on a single-cell level in 107 samples, taken by diving, from the discharge area, the intake area and two control sites. FCM analysis combined the measurement of distinct scatter of cells and particles, autofluorescence of cyanobacteria and algae, and fluorescence after staining of nucleic acids with SYBR® Green for a total bacterial count. The results indicate that changes in microbial abundance in the near-field area of the KAUST SWRO outfall are minor and appear to be the result of a dilution effect rather than a direct impact of the concentrate discharge. © 2014 Elsevier B.V.

  20. Flow cytometric analysis of lymphocyte subset in patients with neutropenia among atomic bomb survivors

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Nobutaka; Kimura, Akiro [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine

    1998-12-01

    In 51 patients (atomic bomb survivors 50, unexposed persons 1) who have had neutropenia for two years or more under indistinct cause, cell surface antigen was analyzed by flow cytometry. Twenty-nine cases of survivors were diagnosed as NK cell leukemia or NK cell cytosis because analysis data showed CD3(-), CD56(+) and CD57(+/-). Six cases were diagnosed as NK like T cell hypercytosis because analysis data showed CD3(+), CD56(+/-) and CD57(+). As for 15 cases, CD56(+) cell number was in range of 15.96{+-}5.35 of a normal person, and no relation with NK cell was recognized. But, CD4/CD8 ratio was higher than 2.1, and gain of T helper cell was recognized. One unexposed persons was diagnosed as chronic NK cell leukemia because analysis data showed CD3(-), CD56(+) and CD57(+). Anti-neutrophil antibody wasn't recognized. Cytotoxic activity for K562 and Raji cell line showed high value compared with that of a normal person. Epstein Barr virus wasn't detected. (K.H.)

  1. Stability of eosin-5'-maleimide dye used in flow cytometric analysis for red cell membrane disorders.

    Science.gov (United States)

    Mehra, Simmi; Tyagi, Neetu; Dorwal, Pranav; Pande, Amit; Jain, Dharmendra; Sachdev, Ritesh; Raina, Vimarsh

    2015-06-01

    The eosin-5'-maleimide (EMA) binding test using flow cytometry is a common method to measure reduced mean channel fluorescence (MCF) of EMA-labeled red blood cells (RBCs) from patients with red cell membrane disorders. The basic principle of the EMA-RBC binding test involves the covalent binding of EMA to lysine-430 on the first extracellular loop of band 3 protein. In the present study, the MCF of EMA was analyzed for samples derived from 12 healthy volunteers (controls) to determine the stability (i.e., the percentage decrease in fluorescence) of EMA over a period of 1 year. Comparison of periodical MCF readings over time, that is, at 2-month intervals, showed that there were no significant changes in mean channel fluorescence for up to 6 months; however, there was a significant decrease in MCF at 8 months. For optimal dye utilization, EMA remained stable only for up to 6 months. Therefore, we recommend reconstitution of the dye every 6 months when implementing this test and storage at -80℃ in dark conditions.

  2. Flow cytometric analysis of cell killing by the jumper ant venom peptide pilosulin 1.

    Science.gov (United States)

    King, M A; Wu, Q X; Donovan, G R; Baldo, B A

    1998-08-01

    Pilosulin 1 is a synthetic 56-amino acid residue polypeptide that corresponds to the largest allergenic polypeptide found in the venom of the jumper ant Myrmecia pilosula. Initial experiments showed that pilosulin 1 lysed erythrocytes and killed proliferating B cells. Herein, we describe how flow cytometry was used to investigate the cytotoxicity of the peptide for human white blood cells. Cells were labeled with fluorochrome-conjugated antibodies, incubated with the peptide and 7-aminoactinomycin D (7-AAD), and then analyzed. The effects of varying the peptide concentration, serum concentration, incubation time, and incubation temperature were measured, and the cytotoxicity of pilosulin 1 was compared with that of the bee venom peptide melittin. The antibodies and the 7-AAD enabled the identification of cell subpopulations and dead cells, respectively. It was possible, using the appropriate mix of antibodies and four-color analysis, to monitor the killing of three or more cell subpopulations simultaneously. We found that 1) pilosulin 1 killed cells within minutes, with kinetics similar to those of melittin; 2) pilosulin 1 was a slightly more potent cytotoxic agent than melittin; 3) both pilosulin 1 and melittin were more potent against mononuclear leukocytes than against granulocytes; and 4) serum inhibited killing by either peptide.

  3. Flow cytometric assessment of DNA damage in the fish Catla catla (Ham.) exposed to gamma radiation

    International Nuclear Information System (INIS)

    Anbumani, S.; Mohankumar, Mary N.; Selvanayagam, M.

    2012-01-01

    Environmental mutagens such as ionizing radiation and chemicals induce DNA damage in a wide variety of organisms. The International Commission on Radiological Protection (lCRP) has recently emphasized the need to protect non-human biota from the potential effects of ionizing radiation. Radiation exposures to non-humans can occur as a result of low-level radioactive discharges into the environment. Molecular genetic effects at low-level radiation exposures are largely unexplored and systematic studies using sensitive biomarkers are required to assess DNA damage in representative non-human species. The objective of the study was to detect DNA damage in the fish Catla catla exposed to gamma radiation using flow cytometry at different time intervals. Increases in the coefficient of variation (CV) of the G 0 /G 1 peak, indicating abnormal DNA distributions were observed in fish exposed to gamma radiation than in controls. Significant increase in the CV was observed from day 12-90 and thereafter decreased. This increase in CV might be due to DNA damage in the cell populations at G 0 /G 1 phase or deletions and duplications caused by improper repair of chromosomes in the cell-cycle machinery. Ionizing radiation induced cell-cycle perturbations and apoptosis were also observed after gamma radiation exposure. (author)

  4. Identification of ataxia telangiectasia heterozygotes by flow cytometric analysis of X-ray damage

    International Nuclear Information System (INIS)

    Rudolph, N.S.

    1989-01-01

    Flow cytometry was used to identify heterozygotes for the autosomal recessive DNA-repair deficiency disease ataxia telangiectasia (AT). Confluent G 0 /G 1 fibroblasts from 4 homozygotes (at/at), 5 obligate heterozygates (at/+) and 7 presumed normal (+/+) were X-irradiated with 200 Rad and subcultured immediately in medium containing 5-bromodeoxyuridine (BrdU). Cells were harvested 72 h later and stained with fluoresceinated anti-BrdU antibody to identify cells that had entered S phase. They were counterstained with propidium iodide to measure total DNA content. On the basis of relative release from G 0 /G 1 , the at/+ strains as a group were distinguished from both the presumed +/+ strains and at/at strains, although the individual values for some strains did show overlap between genotypes. When 10 cell strains were coded and analyzed in 'blind' experiments, all 4 heterozygotes were correctly assigned. By a similar assay in which exponentially growing cultures were pulsed briefly with BrdU 8 h after irradiation with 400 Rad and then harvested immediately, presumed +/+ cells as a group could be distinguished from at/at cells but not from at/- cells. This combination of assays assists in the identification of all 3 AT genotypes. This should be of both basic and diagnostic use, particularly in families known to segregate AT. (author). 37 refs.; 3 figs.; 5 tabs

  5. Chemosensitivity of human small cell carcinoma of the lung detected by flow cytometric DNA analysis of drug-induced cell cycle perturbations in vitro

    DEFF Research Database (Denmark)

    Engelholm, S A; Spang-Thomsen, M; Vindeløv, L L

    1986-01-01

    A method based on detection of drug-induced cell cycle perturbation by flow cytometric DNA analysis has previously been described in Ehrlich ascites tumors as a way to estimate chemosensitivity. The method is extended to test human small-cell carcinoma of the lung. Three tumors with different...... sensitivities to melphalan in nude mice were used. Tumors were disaggregated by a combined mechanical and enzymatic method and thereafter have incubated with different doses of melphalan. After incubation the cells were plated in vitro on agar, and drug induced cell cycle changes were monitored by flow...

  6. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method

    KAUST Repository

    Prest, Emmanuelle I E C; Hammes, Frederik A.; Kö tzsch, Stefan; van Loosdrecht, Mark C.M.; Vrouwenvelder, Johannes S.

    2013-01-01

    Flow cytometry (FCM) is a rapid, cultivation-independent tool to assess and evaluate bacteriological quality and biological stability of water. Here we demonstrate that a stringent, reproducible staining protocol combined with fixed FCM operational and gating settings is essential for reliable quantification of bacteria and detection of changes in aquatic bacterial communities. Triplicate measurements of diverse water samples with this protocol typically showed relative standard deviation values and 95% confidence interval values below 2.5% on all the main FCM parameters. We propose a straightforward and instrument-independent method for the characterization of water samples based on the combination of bacterial cell concentration and fluorescence distribution. Analysis of the fluorescence distribution (or so-called fluorescence fingerprint) was accomplished firstly through a direct comparison of the raw FCM data and subsequently simplified by quantifying the percentage of large and brightly fluorescent high nucleic acid (HNA) content bacteria in each sample. Our approach enables fast differentiation of dissimilar bacterial communities (less than 15min from sampling to final result), and allows accurate detection of even small changes in aquatic environments (detection above 3% change). Demonstrative studies on (a) indigenous bacterial growth in water, (b) contamination of drinking water with wastewater, (c) household drinking water stagnation and (d) mixing of two drinking water types, univocally showed that this FCM approach enables detection and quantification of relevant bacterial water quality changes with high sensitivity. This approach has the potential to be used as a new tool for application in the drinking water field, e.g. for rapid screening of the microbial water quality and stability during water treatment and distribution in networks and premise plumbing. © 2013 Elsevier Ltd.

  7. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring

    KAUST Repository

    Van Nevel, S.

    2017-02-08

    Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically < 1% of all bacteria). FCM measurements are reproducible with relative standard deviations below 3% and can be available within 15 min of samples arriving in the laboratory. High throughput sample processing and complete automation are feasible and FCM analysis is arguably less expensive than HPC when measuring more than 15 water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water.

  8. Flow cytometric assay for analysis of cytotoxic effects of potential drugs on human peripheral blood leukocytes

    Science.gov (United States)

    Nieschke, Kathleen; Mittag, Anja; Golab, Karolina; Bocsi, Jozsef; Pierzchalski, Arkadiusz; Kamysz, Wojciech; Tarnok, Attila

    2014-03-01

    Toxicity test of new chemicals belongs to the first steps in the drug screening, using different cultured cell lines. However, primary human cells represent the human organism better than cultured tumor derived cell lines. We developed a very gentle toxicity assay for isolation and incubation of human peripheral blood leukocytes (PBL) and tested it using different bioactive oligopeptides (OP). Effects of different PBL isolation methods (red blood cell lysis; Histopaque isolation among others), different incubation tubes (e.g. FACS tubes), anticoagulants and blood sources on PBL viability were tested using propidium iodide-exclusion as viability measure (incubation time: 60 min, 36°C) and flow cytometry. Toxicity concentration and time-depended effects (10-60 min, 36 °C, 0-100 μg /ml of OP) on human PBL were analyzed. Erythrocyte lysis by hypotonic shock (dH2O) was the fastest PBL isolation method with highest viability (>85%) compared to NH4Cl-Lysis (49%). Density gradient centrifugation led to neutrophil granulocyte cell loss. Heparin anticoagulation resulted in higher viability than EDTA. Conical 1.5 mL and 2 mL micro-reaction tubes (both polypropylene (PP)) had the highest viability (99% and 97%) compared to other tubes, i.e. three types of 5.0 mL round-bottom tubes PP (opaque-60%), PP (blue-62%), Polystyrene (PS-64%). Viability of PBL did not differ between venous and capillary blood. A gentle reproducible preparation and analytical toxicity-assay for human PBL was developed and evaluated. Using our assay toxicity, time-course, dose-dependence and aggregate formation by OP could be clearly differentiated and quantified. This novel assay enables for rapid and cost effective multiparametric toxicological screening and pharmacological testing on primary human PBL and can be adapted to high-throughput-screening.°z

  9. Flow Cytometric Analysis of Leishmania Reactive CD4+/CD8+ Lymphocyte Proliferation in Cutaneous Leishmaniasis

    Directory of Open Access Journals (Sweden)

    H Keshavarz

    2008-12-01

    Full Text Available Background: Determination of the division history of T cells in vitro is helpful in the study of effector mechanisms against infections. Technique described here uses the intracellular fluorescent label carboxyfluorescein diacetate succinimidyl ester (CFSE to monitor the proliferation. Methods: In a cross sectional study, blood samples were collected from 7 volunteers with history of cutaneous leishmania­sis (CL and one healthy control from endemic areas in Isfahan province who referred to the Center for Research and Training in Skin Diseases and Leprosy (CRTSDL, then CD4+/CD8+ lymphocytes and CD14+ monocytes were isolated from peri­pheral blood mononuclear cells (PBMC using mAbs and magnetic nanoparticles. CFSE labeled CD4+ or CD8+ lympho­cytes cultured with autologous monocytes in the presence of PHA, SLA, live Leishmania major or as control with­out sti­mulation. Cells were harvested after 7 days and were analyzed using flow cytometry. Results: Five consecutive divisions were monitored separately. Stimulation of CD4+ or CD8+ lymphocytes from CL sub­jects with SLA showed a significant difference in proliferation comparing with unstimulated cells (P< 0.05. The signifi­cant difference in the percentages of CD4+ cells stimulated with SLA was revealed at different divisions for each subject. In CD8+ lymphocyte, significant stronger stimulation of SLA was evident later in the proliferation process. The mean number of divisions in both CD4+/CD8+ lymphocytes stimulated with SLA was significantly greater than when stimulated with live L. major (P=0.007 / P=0.012, respectively Conclusion: The percentage of divided cells might be calculated separately in each division. The cells remained active following CFSE staining and there is possibility of functional analysis simultaneously.

  10. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring

    KAUST Repository

    Van Nevel, S.; Koetzsch, S.; Proctor, C.R.; Besmer, M.D.; Prest, E.I.; Vrouwenvelder, Johannes S.; Knezev, A.; Boon, N.; Hammes, F.

    2017-01-01

    Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically < 1% of all bacteria). FCM measurements are reproducible with relative standard deviations below 3% and can be available within 15 min of samples arriving in the laboratory. High throughput sample processing and complete automation are feasible and FCM analysis is arguably less expensive than HPC when measuring more than 15 water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water.

  11. Flow-cytometric determination of high-density-lipoprotein binding sites on human leukocytes

    International Nuclear Information System (INIS)

    Schmitz, G.; Wulf, G.; Bruening, T.A.; Assmann, G.

    1987-01-01

    In this method, leukocytes were isolated from 6 mL of EDTA-blood by density-gradient centrifugation and subsequently incubated with rhodamine isothiocyanate (RITC)-conjugated high-density lipoproteins (HDL). The receptor-bound conjugate particles were determined by fluorescent flow cytometry and compared with 125 I-labeled HDL binding data for the same cells. Human granulocytes express the highest number of HDL binding sites (9.4 x 10(4)/cell), followed by monocytes (7.3 x 10(4)/cell) and lymphocytes (4.0 x 10(4)/cell). Compared with conventional analysis of binding of 125 I-labeled HDL in tissue-culture dishes, the present determination revealed significantly lower values for nonspecific binding. In competition studies, the conjugate competes for the same binding sites as 125 I-labeled HDL. With the use of tetranitromethane-treated HDL3, which fails to compete for the HDL receptor sites while nonspecific binding is not affected, we could clearly distinguish between 37 degrees C surface binding and specific 37 degrees C uptake of RITC-HDL3, confirming that the HDL receptor leads bound HDL particles into an intracellular pathway rather than acting as a docking type of receptor. Patients with familial dysbetalipoproteinemia showed a significantly higher number of HDL binding sites in the granulocyte population but normal in lymphocytes and monocytes, indicating increased uptake of cholesterol-containing lipoproteins. In patients with familial hypercholesterolemia, HDL binding was increased in all three cell types, indicating increased cholesterol uptake and increased cholesterol synthesis. The present method allows rapid determination of HDL binding sites in leukocytes from patients with various forms of hyper- and dyslipoproteinemias

  12. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method

    KAUST Repository

    Prest, Emmanuelle I E C

    2013-12-01

    Flow cytometry (FCM) is a rapid, cultivation-independent tool to assess and evaluate bacteriological quality and biological stability of water. Here we demonstrate that a stringent, reproducible staining protocol combined with fixed FCM operational and gating settings is essential for reliable quantification of bacteria and detection of changes in aquatic bacterial communities. Triplicate measurements of diverse water samples with this protocol typically showed relative standard deviation values and 95% confidence interval values below 2.5% on all the main FCM parameters. We propose a straightforward and instrument-independent method for the characterization of water samples based on the combination of bacterial cell concentration and fluorescence distribution. Analysis of the fluorescence distribution (or so-called fluorescence fingerprint) was accomplished firstly through a direct comparison of the raw FCM data and subsequently simplified by quantifying the percentage of large and brightly fluorescent high nucleic acid (HNA) content bacteria in each sample. Our approach enables fast differentiation of dissimilar bacterial communities (less than 15min from sampling to final result), and allows accurate detection of even small changes in aquatic environments (detection above 3% change). Demonstrative studies on (a) indigenous bacterial growth in water, (b) contamination of drinking water with wastewater, (c) household drinking water stagnation and (d) mixing of two drinking water types, univocally showed that this FCM approach enables detection and quantification of relevant bacterial water quality changes with high sensitivity. This approach has the potential to be used as a new tool for application in the drinking water field, e.g. for rapid screening of the microbial water quality and stability during water treatment and distribution in networks and premise plumbing. © 2013 Elsevier Ltd.

  13. Gastric lymphomas in Turkey. Analysis of prognostic factors with special emphasis on flow cytometric DNA content.

    Science.gov (United States)

    Aydin, Z D; Barista, I; Canpinar, H; Sungur, A; Tekuzman, G

    2000-07-01

    In contrast to DNA ploidy, to the authors' knowledge the prognostic significance of S-phase fraction (SPF) in gastric lymphomas has not been determined. In the current study, the prognostic significance of various parameters including SPF and DNA aneuploidy were analyzed and some distinct epidemiologic and biologic features of gastric lymphomas in Turkey were found. A series of 78 gastric lymphoma patients followed at Hacettepe University is reported. DNA flow cytometry was performed for 34 patients. The influence of various parameters on survival was investigated with the log rank test. The Cox proportional hazards model was fitted to identify independent prognostic factors. The median age of the patients was 50 years. There was no correlation between patient age and tumor grade. DNA content analysis revealed 4 of the 34 cases to be aneuploid with DNA index values < 1.0. The mean SPF was 33.5%. In the univariate analysis, surgical resection of the tumor, modified Ann Arbor stage, performance status, response to first-line chemotherapy, lactate dehydrogenase (LDH) level, and SPF were important prognostic factors for disease free survival (DFS). The same parameters, excluding LDH level, were important for determining overall survival (OS). In the multivariate analysis, surgical resection of the tumor, disease stage, performance status, and age were found to be important prognostic factors for OS. To the authors' knowledge the current study is the first to demonstrate the prognostic significance of SPF in gastric lymphomas. The distinguishing features of Turkish gastric lymphoma patients are 1) DNA indices of aneuploid cases that all are < 1.0, which is a unique feature; 2) a lower percentage of aneuploid cases; 3) a higher SPF; 4) a younger age distribution; and 5) lack of an age-grade correlation. The authors conclude that gastric lymphomas in Turkey have distinct biologic and epidemiologic characteristics. Copyright 2000 American Cancer Society.

  14. A Novel Tool for High-Throughput Screening of Granulocyte-Specific Antibodies Using the Automated Flow Cytometric Granulocyte Immunofluorescence Test (Flow-GIFT

    Directory of Open Access Journals (Sweden)

    Xuan Duc Nguyen

    2011-01-01

    Full Text Available Transfusion-related acute lung injury (TRALI is a severe complication related with blood transfusion. TRALI has usually been associated with antibodies against leukocytes. The flow cytometric granulocyte immunofluorescence test (Flow-GIFT has been introduced for routine use when investigating patients and healthy blood donors. Here we describe a novel tool in the automation of the Flow-GIFT that enables a rapid screening of blood donations. We analyzed 440 sera from healthy female blood donors for the presence of granulocyte antibodies. As positive controls, 12 sera with known antibodies against anti-HNA-1a, -b, -2a; and -3a were additionally investigated. Whole-blood samples from HNA-typed donors were collected and the test cells isolated using cell sedimentation in a Ficoll density gradient. Subsequently, leukocytes were incubated with the respective serum and binding of antibodies was detected using FITC-conjugated antihuman antibody. 7-AAD was used to exclude dead cells. Pipetting steps were automated using the Biomek NXp Multichannel Automation Workstation. All samples were prepared in the 96-deep well plates and analyzed by flow cytometry. The standard granulocyte immunofluorescence test (GIFT and granulocyte agglutination test (GAT were also performed as reference methods. Sixteen sera were positive in the automated Flow-GIFT, while five of these sera were negative in the standard GIFT (anti—HNA 3a, n = 3; anti—HNA-1b, n = 1 and GAT (anti—HNA-2a, n = 1. The automated Flow-GIFT was able to detect all granulocyte antibodies, which could be only detected in GIFT in combination with GAT. In serial dilution tests, the automated Flow-GIFT detected the antibodies at higher dilutions than the reference methods GIFT and GAT. The Flow-GIFT proved to be feasible for automation. This novel high-throughput system allows an effective antigranulocyte antibody detection in a large donor population in order to prevent TRALI due to transfusion of

  15. A novel tool for high-throughput screening of granulocyte-specific antibodies using the automated flow cytometric granulocyte immunofluorescence test (Flow-GIFT).

    Science.gov (United States)

    Nguyen, Xuan Duc; Dengler, Thomas; Schulz-Linkholt, Monika; Klüter, Harald

    2011-02-03

    Transfusion-related acute lung injury (TRALI) is a severe complication related with blood transfusion. TRALI has usually been associated with antibodies against leukocytes. The flow cytometric granulocyte immunofluorescence test (Flow-GIFT) has been introduced for routine use when investigating patients and healthy blood donors. Here we describe a novel tool in the automation of the Flow-GIFT that enables a rapid screening of blood donations. We analyzed 440 sera from healthy female blood donors for the presence of granulocyte antibodies. As positive controls, 12 sera with known antibodies against anti-HNA-1a, -b, -2a; and -3a were additionally investigated. Whole-blood samples from HNA-typed donors were collected and the test cells isolated using cell sedimentation in a Ficoll density gradient. Subsequently, leukocytes were incubated with the respective serum and binding of antibodies was detected using FITC-conjugated antihuman antibody. 7-AAD was used to exclude dead cells. Pipetting steps were automated using the Biomek NXp Multichannel Automation Workstation. All samples were prepared in the 96-deep well plates and analyzed by flow cytometry. The standard granulocyte immunofluorescence test (GIFT) and granulocyte agglutination test (GAT) were also performed as reference methods. Sixteen sera were positive in the automated Flow-GIFT, while five of these sera were negative in the standard GIFT (anti-HNA 3a, n = 3; anti-HNA-1b, n = 1) and GAT (anti-HNA-2a, n = 1). The automated Flow-GIFT was able to detect all granulocyte antibodies, which could be only detected in GIFT in combination with GAT. In serial dilution tests, the automated Flow-GIFT detected the antibodies at higher dilutions than the reference methods GIFT and GAT. The Flow-GIFT proved to be feasible for automation. This novel high-throughput system allows an effective antigranulocyte antibody detection in a large donor population in order to prevent TRALI due to transfusion of blood products.

  16. Color encoded microbeads-based flow cytometric immunoassay for polycyclic aromatic hydrocarbons in food

    International Nuclear Information System (INIS)

    Meimaridou, Anastasia; Haasnoot, Willem; Noteboom, Linda; Mintzas, Dimitrios; Pulkrabova, Jana; Hajslova, Jana; Nielen, Michel W.F.

    2010-01-01

    Food contamination caused by chemical hazards such as persistent organic pollutants (POPs) is a worldwide public health concern and requires continuous monitoring. The chromatography-based analysis methods for POPs are accurate and quite sensitive but they are time-consuming, laborious and expensive. Thus, there is a need for validated simplified screening tools, which are inexpensive, rapid, have automation potential and can detect multiple POPs simultaneously. In this study we developed a flow cytometry-based immunoassay (FCIA) using a color-encoded microbeads technology to detect benzo[a]pyrene (BaP) and other polycyclic aromatic hydrocarbons (PAHs) in buffer and food extracts as a starting point for the future development of rapid multiplex assays including other POPs in food, such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs). A highly sensitive assay for BaP was obtained with an IC 50 of 0.3 μg L -1 using a monoclonal antibody (Mab22F12) against BaP, similar to the IC 50 of a previously described enzyme-linked immunosorbent assay (ELISA) using the same Mab. Moreover, the FCIA was 8 times more sensitive for BaP compared to a surface plasmon resonance (SPR)-based biosensor immunoassay (BIA) using the same reagents. The selectivity of the FCIAs was tested, with two Mabs against BaP for 25 other PAHs, including two hydroxyl PAH metabolites. Apart from BaP, the FCIAs can detect PAHs such as indenol[1,2,3-cd]pyrene (IP), benz[a]anthracene (BaA), and chrysene (CHR) which are also appointed by the European Food Safety Authority (EFSA) as suitable indicators of PAH contamination in food. The FCIAs results were in agreement with those obtained with gas chromatography-mass spectrometry (GC-MS) for the detection of PAHs in real food samples of smoked carp and wheat flour and has great potential for the future routine application of this assay in a simplex or multiplex format in combination with simplified extraction procedure which are

  17. 2006 Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia.

    Science.gov (United States)

    Wood, Brent L; Arroz, Maria; Barnett, David; DiGiuseppe, Joseph; Greig, Bruce; Kussick, Steven J; Oldaker, Teri; Shenkin, Mark; Stone, Elizabeth; Wallace, Paul

    2007-01-01

    Immunophenotyping by flow cytometry has become standard practice in the evaluation and monitoring of patients with hematopoietic neoplasia. However, despite its widespread use, considerable variability continues to exist in the reagents used for evaluation and the format in which results are reported. As part of the 2006 Bethesda Consensus conference, a committee was formed to attempt to define a consensus set of reagents suitable for general use in the diagnosis and monitoring of hematopoietic neoplasms. The committee included laboratory professionals from private, public, and university hospitals as well as large reference laboratories that routinely operate clinical flow cytometry laboratories with an emphasis on lymphoma and leukemia immunophenotyping. A survey of participants successfully identified the cell lineage(s) to be evaluated for each of a variety of specific medical indications and defined a set of consensus reagents suitable for the initial evaluation of each cell lineage. Elements to be included in the reporting of clinical flow cytometric results for leukemia and lymphoma evaluation were also refined and are comprehensively listed. The 2006 Bethesda Consensus conference represents the first successful attempt to define a set of consensus reagents suitable for the initial evaluation of hematopoietic neoplasia. Copyright 2007 Clinical Cytometry Society.

  18. Flow Cytometric Quantification of Peripheral Blood Cell β-Adrenergic Receptor Density and Urinary Endothelial Cell-Derived Microparticles in Pulmonary Arterial Hypertension.

    Directory of Open Access Journals (Sweden)

    Jonathan A Rose

    Full Text Available Pulmonary arterial hypertension (PAH is a heterogeneous disease characterized by severe angiogenic remodeling of the pulmonary artery wall and right ventricular hypertrophy. Thus, there is an increasing need for novel biomarkers to dissect disease heterogeneity, and predict treatment response. Although β-adrenergic receptor (βAR dysfunction is well documented in left heart disease while endothelial cell-derived microparticles (Ec-MPs are established biomarkers of angiogenic remodeling, methods for easy large clinical cohort analysis of these biomarkers are currently absent. Here we describe flow cytometric methods for quantification of βAR density on circulating white blood cells (WBC and Ec-MPs in urine samples that can be used as potential biomarkers of right heart failure in PAH. Biotinylated β-blocker alprenolol was synthesized and validated as a βAR specific probe that was combined with immunophenotyping to quantify βAR density in circulating WBC subsets. Ec-MPs obtained from urine samples were stained for annexin-V and CD144, and analyzed by a micro flow cytometer. Flow cytometric detection of alprenolol showed that βAR density was decreased in most WBC subsets in PAH samples compared to healthy controls. Ec-MPs in urine was increased in PAH compared to controls. Furthermore, there was a direct correlation between Ec-MPs and Tricuspid annular plane systolic excursion (TAPSE in PAH patients. Therefore, flow cytometric quantification of peripheral blood cell βAR density and urinary Ec-MPs may be useful as potential biomarkers of right ventricular function in PAH.

  19. Flow Cytometric Quantification of Peripheral Blood Cell β-Adrenergic Receptor Density and Urinary Endothelial Cell-Derived Microparticles in Pulmonary Arterial Hypertension.

    Science.gov (United States)

    Rose, Jonathan A; Wanner, Nicholas; Cheong, Hoi I; Queisser, Kimberly; Barrett, Patrick; Park, Margaret; Hite, Corrine; Naga Prasad, Sathyamangla V; Erzurum, Serpil; Asosingh, Kewal

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a heterogeneous disease characterized by severe angiogenic remodeling of the pulmonary artery wall and right ventricular hypertrophy. Thus, there is an increasing need for novel biomarkers to dissect disease heterogeneity, and predict treatment response. Although β-adrenergic receptor (βAR) dysfunction is well documented in left heart disease while endothelial cell-derived microparticles (Ec-MPs) are established biomarkers of angiogenic remodeling, methods for easy large clinical cohort analysis of these biomarkers are currently absent. Here we describe flow cytometric methods for quantification of βAR density on circulating white blood cells (WBC) and Ec-MPs in urine samples that can be used as potential biomarkers of right heart failure in PAH. Biotinylated β-blocker alprenolol was synthesized and validated as a βAR specific probe that was combined with immunophenotyping to quantify βAR density in circulating WBC subsets. Ec-MPs obtained from urine samples were stained for annexin-V and CD144, and analyzed by a micro flow cytometer. Flow cytometric detection of alprenolol showed that βAR density was decreased in most WBC subsets in PAH samples compared to healthy controls. Ec-MPs in urine was increased in PAH compared to controls. Furthermore, there was a direct correlation between Ec-MPs and Tricuspid annular plane systolic excursion (TAPSE) in PAH patients. Therefore, flow cytometric quantification of peripheral blood cell βAR density and urinary Ec-MPs may be useful as potential biomarkers of right ventricular function in PAH.

  20. Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content

    Czech Academy of Sciences Publication Activity Database

    Loureiro, J.; Rodriguez, E.; Doležel, Jaroslav; Santos, C.

    2006-01-01

    Roč. 98, - (2006), s. 515-527 ISSN 0305-7364 R&D Projects: GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511 Keywords : genome size * flow cytometry * nuclear DNA content Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.448, year: 2006

  1. Stereologic, histopathologic, flow cytometric, and clinical parameters in the prognostic evaluation of 74 patients with intraoral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Bundgaard, T; Sørensen, Flemming Brandt; Gaihede, M

    1992-01-01

    , tumor size, and the TNM classification. RESULTS: The investigation showed a significant difference between the volume-weighted mean nuclear volume (nuclear vv) of oral leukoplakia (n = 29) and oral squamous cell carcinomas (P = 0.001). The value of the parameters as prognostic indicators of survival......BACKGROUND AND METHODS: A consecutive series of all 78 incident cases of intraoral squamous cell carcinoma occurring during a 2-year period in a population of 1.4 million inhabitants were evaluated by histologic score (the modified classification of Jacobsson et al.), flow cytometry, stereology...

  2. Automated analysis of flow cytometric data for measuring neutrophil CD64 expression using a multi-instrument compatible probability state model.

    Science.gov (United States)

    Wong, Linda; Hill, Beth L; Hunsberger, Benjamin C; Bagwell, C Bruce; Curtis, Adam D; Davis, Bruce H

    2015-01-01

    Leuko64™ (Trillium Diagnostics) is a flow cytometric assay that measures neutrophil CD64 expression and serves as an in vitro indicator of infection/sepsis or the presence of a systemic acute inflammatory response. Leuko64 assay currently utilizes QuantiCALC, a semiautomated software that employs cluster algorithms to define cell populations. The software reduces subjective gating decisions, resulting in interanalyst variability of state modeling (PSM). Four hundred and fifty-seven human blood samples were processed using the Leuko64 assay. Samples were analyzed on four different flow cytometer models: BD FACSCanto II, BD FACScan, BC Gallios/Navios, and BC FC500. A probability state model was designed to identify calibration beads and three leukocyte subpopulations based on differences in intensity levels of several parameters. PSM automatically calculates CD64 index values for each cell population using equations programmed into the model. GemStone software uses PSM that requires no operator intervention, thus totally automating data analysis and internal quality control flagging. Expert analysis with the predicate method (QuantiCALC) was performed. Interanalyst precision was evaluated for both methods of data analysis. PSM with GemStone correlates well with the expert manual analysis, r(2) = 0.99675 for the neutrophil CD64 index values with no intermethod bias detected. The average interanalyst imprecision for the QuantiCALC method was 1.06% (range 0.00-7.94%), which was reduced to 0.00% with the GemStone PSM. The operator-to-operator agreement in GemStone was a perfect correlation, r(2) = 1.000. Automated quantification of CD64 index values produced results that strongly correlate with expert analysis using a standard gate-based data analysis method. PSM successfully evaluated flow cytometric data generated by multiple instruments across multiple lots of the Leuko64 kit in all 457 cases. The probability-based method provides greater objectivity, higher

  3. Simultaneous use of multiplex ligation-dependent probe amplification assay and flow cytometric DNA ploidy analysis in patients with acute leukemia.

    Science.gov (United States)

    Reyes-Núñez, Virginia; Galo-Hooker, Evelyn; Pérez-Romano, Beatriz; Duque, Ricardo E; Ruiz-Arguelles, Alejandro; Garcés-Eisele, Javier

    2018-01-01

    The aim of this work was to simultaneously use multiplex ligation-dependent probe amplification (MLPA) assay and flow cytometric DNA ploidy analysis (FPA) to detect aneuploidy in patients with newly diagnosed acute leukemia. MLPA assay and propidium iodide FPA were used to test samples from 53 consecutive patients with newly diagnosed acute leukemia referred to our laboratory for immunophenotyping. Results were compared by nonparametric statistics. The combined use of both methods significantly increased the rate of detection of aneuploidy as compared to that obtained by each method alone. The limitations of one method are somehow countervailed by the other and vice versa. MPLA and FPA yield different yet complementary information concerning aneuploidy in acute leukemia. The simultaneous use of both methods might be recommended in the clinical setting. © 2017 International Clinical Cytometry Society. © 2017 International Clinical Cytometry Society.

  4. Japanese Society for Laboratory Hematology flow cytometric reference method of determining the differential leukocyte count: external quality assurance using fresh blood samples.

    Science.gov (United States)

    Kawai, Y; Nagai, Y; Ogawa, E; Kondo, H

    2017-04-01

    To provide target values for the manufacturers' survey of the Japanese Society for Laboratory Hematology (JSLH), accurate standard data from healthy volunteers were needed for the five-part differential leukocyte count. To obtain such data, JSLH required an antibody panel that achieved high specificity (particularly for mononuclear cells) using simple gating procedures. We developed a flow cytometric method for determining the differential leukocyte count (JSLH-Diff) and validated it by comparison with the flow cytometric differential leukocyte count of the International Council for Standardization in Haematology (ICSH-Diff) and the manual differential count obtained by microscopy (Manual-Diff). First, the reference laboratory performed an imprecision study of JSLH-Diff and ICSH-Diff, as well as performing comparison among JSLH-Diff, Manual-Diff, and ICSH-Diff. Then two reference laboratories and seven participating laboratories performed imprecision and accuracy studies of JSLH-Diff, Manual-Diff, and ICSH-Diff. Simultaneously, six manufacturers' laboratories provided their own representative values by using automated hematology analyzers. The precision of both JSLH-Diff and ICSH-Diff methods was adequate. Comparison by the reference laboratory showed that all correlation coefficients, slopes and intercepts obtained by the JSLH-Diff, ICSH-Diff, and Manual-Diff methods conformed to the criteria. When the imprecision and accuracy of JSLH-Diff were assessed at seven laboratories, the CV% for lymphocytes, neutrophils, monocytes, eosinophils, and basophils was 0.5~0.9%, 0.3~0.7%, 1.7~2.6%, 3.0~7.9%, and 3.8~10.4%, respectively. More than 99% of CD45 positive leukocytes were identified as normal leukocytes by JSLH-Diff. When JSLH-Diff method were validated by comparison with Manual-Diff and ICSH-Diff, JSLH-Diff showed good performance as a reference method. © 2016 John Wiley & Sons Ltd.

  5. Flow Cytometric DNA Analysis Using Cytokeratin Labeling for Identification of Tumor Cells in Carcinomas of the Breast and the Female Genital Tract

    Directory of Open Access Journals (Sweden)

    Rainer Kimmig

    2001-01-01

    Full Text Available Flow cytometric assessment of DNA‐ploidy and S‐phase fraction in malignant tumors is compromised by the heterogeneity of cell subpopulations derived from the malignant and surrounding connective tissue, e.g., tumor, stromal and inflammatory cells. To evaluate the effect on quality of DNA cell cycle analysis and determination of DNA ploidy, cytokeratin labeling of epithelial cells was used for tumor cell enrichment in breast, ovarian, cervical and endometrial cancer prior to DNA analysis. In a prospective study, tumor cell subpopulations of 620 malignant tumors were labeled by a FITC‐conjugated cytokeratin antibody (CK 5, 6, CK18 and CK 5, 6, 8 and CK 17, respectively prior to flow cytometric cell cycle analysis. Compared to total cell analysis, detection rate of DNA‐aneuploid tumors following cytokeratin labeling was increased from 62% to 76.5% in breast cancer, from 68% to 77% in ovarian cancer, from 60% to 80% in cervical cancer and from 30% to 53% in endometrial cancer. Predominantly in DNA‐diploid tumors, a significantly improved detection of S‐phase fraction of the tumor cells was shown due to the elimination of contaminating nonproliferating “normal cells”. S‐phase fraction following tumor cell enrichment was increased by 10% (mean following cytokeratin staining in ovarian and endometrial cancer, by 30% in breast cancer and even by 70% in cervical cancer compared to total cell analysis. Thus, diagnostic accuracy of DNA‐analysis was enhanced by cytokeratin labeling of tumor cells for all tumor entities investigated.

  6. Effect of acidic pH on flow cytometric detection of bacteria stained with SYBR Green I and their distinction from background

    International Nuclear Information System (INIS)

    Baldock, Daniel; Nocker, Andreas; Nebe-von-Caron, Gerhard; Bongaerts, Roy

    2013-01-01

    Unspecific background caused by biotic or abiotic particles, cellular debris, or autofluorescence is a well-known interfering parameter when applying flow cytometry to the detection of microorganisms in combination with fluorescent dyes. We present here an attempt to suppress the background signal intensity and thus to improve the detection of microorganisms using the nucleic acid stain SYBR ® Green I. It has been observed that the fluorescent signals from SYBR Green I are greatly reduced at acidic pH. When lowering the pH of pre-stained samples directly prior to flow cytometric analysis, we hypothesized that the signals from particles and cells with membrane damage might therefore be reduced. Signals from intact cells, temporarily maintaining a neutral cytosolic pH, should not be affected. We show here that this principle holds true for lowering background interference, whereas the signals of membrane-compromised dead cells are only affected weakly. Signals from intact live cells at low pH were mostly comparable to signals without acidification. Although this study was solely performed with SYBR ® Green I, the principle of low pH flow cytometry (low pH-FCM) might hold promise when analyzing complex matrices with an abundance of non-cellular matter, especially when expanded to non-DNA binding dyes with a stronger pH dependence of fluorescence than SYBR Green I and a higher pK a value. (paper)

  7. A Fast, Easy, and Customizable Eight-Color Flow Cytometric Method for Analysis of the Cellular Content of Bronchoalveolar Lavage Fluid in the Mouse.

    Science.gov (United States)

    Daubeuf, François; Becker, Julien; Aguilar-Pimentel, Juan Antonio; Ebel, Claudine; Hrabě de Angelis, Martin; Hérault, Yann; Frossard, Nelly

    2017-06-19

    The cell composition of bronchoalveolar lavage fluid (BAL) is an important indicator of airway inflammation. It is commonly determined by cytocentrifuging leukocytes on slides, then staining, identifying, and counting them as eosinophils, neutrophils, macrophages, or lymphocytes according to morphological criteria under light microscopy, where it is not always easy to distinguish macrophages from lymphocytes. We describe here a one-step, easy-to-use, and easy-to-customize 8-color flow cytometric method for performing differential cell count and comparing it to morphological counts on stained cytospins. This method identifies BAL cells by a simultaneous one-step immunolabeling procedure using antibodies to identify T cells, B cells, neutrophils, eosinophils, and macrophages. Morphological analysis of flow-sorted cell subsets is used to validate this protocol. An important advantage of this basic flow cytometry protocol is the ability to customize it by the addition of antibodies to study receptor expression at leukocyte cell surfaces and identify subclasses of inflammatory cells as needed. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  8. Flow cytometric analysis of p21 protein expression on irradiated human lymphocytes; Analise por citometria de fluxo da expressao da proteina p21 em linfocitos humanos irradiados

    Energy Technology Data Exchange (ETDEWEB)

    Santos, N.F.G.; Amaral, A., E-mail: neyliane@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear. Laboratorio de Modelagem e Biodosimetria Aplicada; Freitas-Silva, R. [Universidade Federal de Pernambuco (UFPE), Garanhuns, PE (Brazil). Departamento de Ciencias Naturais e Exatas; Pereira, V.R.A. [Fundacao Oswaldo Cruz (FIOCRUZ), Recife, PE (Brazil). Centro de Pesquisas Aggeu Magalhaes. Departamento de Imunologia. Lab. de Imunoparasitologia; Tasat, D.R. [Universidad Nacional de General San Martin, Buenos Aires (Argentina). Escuela de Ciencia y Tecnologia. Laboratorio de Biologia Celular del Pulmon

    2013-08-15

    Cell cycle blockage in G1 is a mechanism p21 protein-regulated and coupled to DNA damage response to permit genetic content analysis, damage repair and cell death. Analysis of proteins that participates of this response has progressed with new analytic tools, and data contributes to comprehension of radioinduced molecular events as well as to new approaches on practices that employ ionizing radiation. On this perspective, the aim of this research was to evaluate, by flow cytometry, p21 expression on irradiated human lymphocytes, maintained under different experimental conditions. Peripheral blood samples from 10 healthy subjects were irradiated with doses of 0 (non-irradiated), 1, 2 and 4 Gy. Lymphocytes were processed to analysis on ex vivo (no cultured) condition and after 24; 48 and 72 hours culture, with and without phytohemagglutinin stimulation. p21 protein expression levels were measured by flow cytometry, as percentage values. Results indicate that flow cytometric assay allows detection of changes on p21 expression, since it was detected significant increase on phytohemagglutinin-stimulated samples, for all times, against basal expression (ex vivo). However, it was not observed significant alterations on p21 protein radioinduced levels, for all doses, times and culture conditions analyzed. These results not indicate so p21 protein as bioindicator of ionizing radiation exposure. Nevertheless, data confirmation may to require analysis of a more numerous population. (author)

  9. Response of Syngonium podophyllum L. ‘White Butterfly’ shoot cultures to alternative media additives and gelling agents, and flow cytometric analysis of regenerants

    Directory of Open Access Journals (Sweden)

    JAIME A. TEIXEIRA DA SILVA

    2015-05-01

    Full Text Available Abstract. Teixeira da Silva JA. 2015. Response of Syngonium podophyllum L. ‘White Butterfly’ shoot cultures to alternative media additives and gelling agents, and flow cytometric analysis of regenerants. Nusantara Bioscience 7: 26-32. Syngonium podophyllum L. (arrowhead vine is a popular leafy indoor pot plant whose tissue culture has been established, primarily through in vitro shoot culture, but several interesting aspects have not yet been explored. In this study, cv. ‘White Butterfly’ was used to investigate the response of shoot formation to alternative gelling agents and media additives. Gellan gum (Gelrite® at 2 g/L resulted in greater leaf production, plantlet fresh weight and higher chlorophyll content (SPAD value than all other gelling agents tested, including agar, Bacto agar, phytagel, oatmeal agar, potato dextrose agar, barley starch and corn starch, when on a basal Hyponex® (NPK = 6.5: 6: 19; 3 g/L medium. Several alternative liquid medium additives tested (low and full fat milk, Coca-Cola®, coffee, Japanese green, Oolong and Darjeeling teas negatively impacted plant growth, stunted roots and decreased chlorophyll content (SPAD value of leaves. Plant growth on medium with refined sucrose or table sugar responded similarly. Poor growth was observed when crude extract from a high rebaudioside-containing stevia (Stevia rebaudiana Bertoni line - an artificial sweetener - was used. Leaf tissue from the control did not show any endopolyploidy but low levels of endopolyploidy (8C were detected in some treatments.

  10. Molecular pathways of early CD105-positive erythroid cells as compared with CD34-positive common precursor cells by flow cytometric cell-sorting and gene expression profiling

    International Nuclear Information System (INIS)

    Machherndl-Spandl, S; Suessner, S; Danzer, M; Proell, J; Gabriel, C; Lauf, J; Sylie, R; Klein, H-U; Béné, M C; Weltermann, A; Bettelheim, P

    2013-01-01

    Special attention has recently been drawn to the molecular network of different genes that are responsible for the development of erythroid cells. The aim of the present study was to establish in detail the immunophenotype of early erythroid cells and to compare the gene expression profile of freshly isolated early erythroid precursors with that of the CD34-positive (CD34 + ) compartment. Multiparameter flow cytometric analyses of human bone marrow mononuclear cell fractions (n=20) defined three distinct early erythroid stages. The gene expression profile of sorted early erythroid cells was analyzed by Affymetrix array technology. For 4524 genes, a differential regulation was found in CD105-positive erythroid cells as compared with the CD34 + progenitor compartment (2362 upregulated genes). A highly significant difference was observed in the expression level of genes involved in transcription, heme synthesis, iron and mitochondrial metabolism and transforming growth factor-β signaling. A comparison with recently published data showed over 1000 genes that as yet have not been reported to be upregulated in the early erythroid lineage. The gene expression level within distinct pathways could be illustrated directly by applying the Ingenuity software program. The results of gene expression analyses can be seen at the Gene Expression Omnibus repository

  11. Cytometric analysis of irradiation damaged chromosomes

    International Nuclear Information System (INIS)

    Wilder, M.E.; Raju, M.R.

    1982-01-01

    Irradiation of cells in interphase results in dose-dependent damage to DNA which is discernable by flow-cytometric analysis of chromosomes. The quantity (and possibly the quality) of chromosomal changes is different in survival-matched doses of x and α irradiation. It may, therefore, be possible to use these methods for analysis of dose and type of exposure in unknown cases

  12. Stereologic, histopathologic, flow cytometric, and clinical parameters in the prognostic evaluation of 74 patients with intraoral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Bundgaard, T; Sørensen, Flemming Brandt; Gaihede, M

    1992-01-01

    BACKGROUND AND METHODS: A consecutive series of all 78 incident cases of intraoral squamous cell carcinoma occurring during a 2-year period in a population of 1.4 million inhabitants were evaluated by histologic score (the modified classification of Jacobsson et al.), flow cytometry, stereology, ...

  13. Development of a flow cytometric method to analyze subpopulations of bacteria in probiotic products and dairy starters

    NARCIS (Netherlands)

    Bunthof, C.J.; Abee, T.

    2002-01-01

    Flow cytometry (FCM) is a rapid and sensitive technique that can determine cell numbers and measure various physiological characteristics of individual cells by using appropriate fluorescent probes. Previously, we developed an FCM assay with the viability probes carboxyfluorescein diacetate (cFDA)

  14. Chromosome specific DNA hybridization in suspension for flow cytometric detection of chimerism in bone marrow transplantation and leukemia

    NARCIS (Netherlands)

    G.J.A. Arkesteijn (Ger); C.A.J. Erpelinck (Claudia); A.C.M. Martens (Anton); A. Hagenbeek (Anton)

    1995-01-01

    textabstractFlow cytometry was used to measure the fluorescence intensity of nuclei that were subjected to fluorescent in situ hybridization in suspension with chromosome specific DNA probes. Paraformaldehyde-fixed nuclei were protein digested with trypsin and hybridized simultaneously with a

  15. [Standardization of the quantitative flow cytometric test with anti-D antibodies for fetomaternal hemorrhage in RhD negative women].

    Science.gov (United States)

    Spychalska, Justyna; Uhrynowska, Małgorzata; Pyl, Hanna; Klimczak-Jajor, Edyta; Kopeć, Izabella; Peciakowska, Małgorzata; Gutowska, Renata; Gawlak, Maciej; Słomska, Sylwia; Dąbkowska, Syiwia; Szczecina, Roman; Dębska, Marzena; Brojer, Ewa

    2015-07-01

    In order to determine the appropriate dose of anti-D immunoglobulin to be administered as a preventive measure against hemolytic disease of the fetus/newborn in the subsequent pregnancy it is necessary to assess the number of fetal red blood cells that infiltrate/penetrate into the maternal circulation as a result of fetomaternal hemorrhage (FMH). One of the quantitative methods of FMH analysis is based on flow cytometry (FACS) which makes use of monoclonal antibodies to RhD antigen (anti-D test). The aim of the study was to further develop the method, evaluate its sensitivity and reproducibility and to compare it with the test based on the detection of fetal hemoglobin (HbF). The FACS study involved 20 RhD negative pregnant women and 80 RhD negative women after delivery. The following monoclonal antibodies were used: BRAD 3 FITC (anti-RhD antigen), CD45 PerCP (anti leukocyte antigen CD45), and anti-HbF PE. The fluorescence intensity of cells incubated with BRAD 3 FITC was demonstrated to depend on the RhD antigen expression, though the anti-D test also detects the weak D variant. The CD45 PerCP antibodies increased the sensitivity of anti-D test since they eliminated the leukocytes which non-specifically bind anti-D from the analysis. The presence of anti-D antibodies in maternal plasma does not affect the quantitative assessment of the fetal RhD positive fetal cells with BRAD 3 FITC. In case of FMH, the results of the anti-D test were similar to those with anti-HbF antibodies. The flow cytometric test with anti-D and anti-CD45 is useful in the assessment of the fetomaternal hemorrhage in RhD negative women. The sensitivity of the test is estimated at 0.05%.

  16. Antibody-modified iron oxide nanoparticles for efficient magnetic isolation and flow cytometric determination of L. pneumophila

    International Nuclear Information System (INIS)

    Bloemen, Maarten; Verbiest, Thierry; Denis, Carla; Meester, Luc De; Peeters, Miet; Gils, Ann; Geukens, Nick

    2015-01-01

    We report on the design of superparamagnetic nanoparticles capable of selectively isolating targeted bacteria (Legionella pneumophila, serogroup 1) from aqueous solutions. The surface of magnetite nanoparticles (NP) was functionalized with a heterobifunctional poly(ethylene glycol) ligand containing reactive groups for covalent coupling of polyclonal antibodies against L. pneumophila. These bioconjugates were used to label and magnetically isolate L. pneumophila. Flow cytometry revealed high separation and efficiency in this regard. The strain specificity and efficiency of the magnetic NP was tested with recombinant strains of E. coli (expressing the red fluorescent protein) and L. pneumophila (expressing the green fluorescent protein). The detection limit of the method (by flow cytometry) is 10 4 cells∙mL -1 . The results indicate that the new multifunctional NPs are capable of selectively attracting pathogens from a complex mixture and with high efficiency. This, conceivably, paves the way to pre-concentration protocols for numerous other pathogens. (author)

  17. Flow cytometric evaluation of antibiotic effects on viability and mitochondrial function of refrigerated spermatozoa of Nile tilapia

    Science.gov (United States)

    Segovia, M.; Jenkins, J.A.; Paniagua-Chavez, C.; Tiersch, T.R.

    2000-01-01

    Improved techniques for storage and evaluation of fish sperm would enhance breeding programs around the world. The goal of this study was to test the effect of antibiotics on refrigerated sperm from Nile tilapia (Oreochromis niloticus) by use of flow cytometry with 2 dual-staining protocols for objective assessment of sperm quality. Concentrations of 1 x 109 sperm/mL were suspended in Ringer's buffer at 318 mOsmol/kg (pH 8.0). The fluorescent stains Sybr 14 (10 ??M), propidium iodide (2.4 mM), and rhodamine 123 (0.13 ??M) were used to assess cell viability and mitochondrial function. Three concentrations of ampicillin, gentamicin, and an antibiotic/antimycotic solution were added to fresh spermatozoa. Motility estimates and flow cytometry measurements were made daily during 7 d of refrigerated storage (4 ??C). The highest concentrations of gentamicin and antibiotic/antimycotic and all 3 concentrations of ampicillin significantly reduced sperm viability. The highest of each of the 3 antibiotic concentrations significantly reduced mitochondrial function. This study demonstrates that objective sperm quality assessments can be made using flow cytometry and that addition of antibiotics at appropriate concentrations can lengthen refrigerated storage time for tilapia spermatozoa. With minor modifications, these protocols can be adapted for use with sperm from other species and with other tissue types.

  18. Flow of nuclear matter

    International Nuclear Information System (INIS)

    Ritter, H.G.; Doss, K.G.R.; Gustafsson, H.A.

    1985-08-01

    The systems Nb + Nb and Au + Au have been measured at different energies at the Bevalac with the Plastic Ball spectrometer. Distributions of the flow angles as a function of charged particle multiplicity are presented. Also shown is a transverse momentum analysis for 400 MeV per nucleon Nb + Nb. 25 refs., 5 figs., 1 tab

  19. Flow cytometric assessment of chicken T cell-mediated immune responses after Newcastle disease virus vaccination and challenge

    DEFF Research Database (Denmark)

    Dalgaard, T. S.; Norup, L. R.; Pedersen, A.R.

    2010-01-01

    . Despite a delayed NDV-specific antibody response to vaccination, L133 appeared to be better protected than L130 in the subsequent infection challenge as determined by the presence of viral genomes. Peripheral blood was analyzed by flow cytometry and responses in vaccinated/challenged birds were studied...... by 5-color immunophenotyping as well as by measuring the proliferative capacity of NDV-specific T cells after recall stimulation. Immunophenotyping identified L133 as having a significantly lower CD4/CD8 ratio and a lower frequency of γδ T cells than L130 in the peripheral T cell compartment...

  20. Flow cytometric examination of apoptotic effect on brain tissue in postnatal period created by intrauterine oxcarbazepine and gabapentin exposure.

    Science.gov (United States)

    Erisgin, Z; Tekelioglu, Y

    For epileptics, pregnancy contains the balance between no seizure period and antiepileptic use having the least teratogenicity risk. The purpose is to analyse with flow cytometry the apoptotic effects on postnatal brain tissue caused by prenatal use of second generation antiepileptics oxcarbazepine (OXC) and gabapentin (GBP) having different effect mechanisms. 30 (n = 5 each group) Wistar albino male rats (45-days-old) are used. First 3 groups are exposed to OXC (100 mg/kg/day), GBP (50 mg/kg/day), and saline, respectively on the 1st-5th prenatal days (preimplantation-implantation period) while the second 3 groups are exposed to the same substances on the 6th-15th prenatal days (organogenesis), respectively. After sacrifice, brain tissue samples were made into suspension with mechanic and enzymatic digestion and examined with flow cytometry. While apoptosis rate appeared high in rats exposed to OXC on the 1st-5th (p effect in three treatment groups, while difference was not significant for PSS and GBP groups (p = 0.847 and p = 0.934), apoptosis rate was significantly high for OXC on the 6th-15th days compared to the 1st-5th days (p < 0.001). It is observed that the use of OXC causes neurotoxicity during preimplantation, implantation and, especially, organogenesis period (neurogenesis) whereas GBP does not (Fig. 3, Ref. 32).

  1. Flow cytometric minimal residual disease monitoring in children with acute lymphoblastic leukemia treated by regimens with reduced intensity

    Directory of Open Access Journals (Sweden)

    A. M. Popov

    2015-01-01

    Full Text Available 191 consecutive unselected children with acute lymphoblastic leukemia aged from 1 to 16 years were enrolled in the study. Bone marrow samples were obtained at the time of initial diagnostics as well as at days 15 (n = 188, 36 (n = 191, and 85 (n = 187 of remission induction. Minimal residual disease (MRD was assessed by 6–10-color flow cytometry. Flow cytometry data at day 15 allowed distinguishing three patients groups with significantly different outcome (p ˂ 0.0001: 35.64 % patients with MRD < 0.1 % represented 5-year event-free survival (EFS of 100 %; 48.40 % cases with 0.1 % ≤ MRD< 10 % had EFS 84.6 ± 4.2 %; 15.96 % patients with very high MRD (≥ 10 % belonged to group with poor outcome (EFS 56.7 ± 9.0 %. At the end of remission induction (day 36 36 children (18.85 % with MRD higher than 0.1 % had significantly worse outcome compared to remaining ones (EFS 49.4 ± 9.0 and 93.5 ± 2.1 % respectively; p ˂ 0.0001. From a clinical standpoint it is relevant to evaluate both low-risk and high-risk criteria. Multivariate analysis showed that day 15 MRD data is better for low-risk patients definition while end-induction MRD is the strongest unfavorable prognostic factor.

  2. Nuclear reactor core flow baffling

    International Nuclear Information System (INIS)

    Berringer, R.T.

    1979-01-01

    A flow baffling arrangement is disclosed for the core of a nuclear reactor. A plurality of core formers are aligned with the grids of the core fuel assemblies such that the high pressure drop areas in the core are at the same elevations as the high pressure drop areas about the core periphery. The arrangement minimizes core bypass flow, maintains cooling of the structure surrounding the core, and allows the utilization of alternative beneficial components such as neutron reflectors positioned near the core

  3. Flow cytometric characterization of phenotype, DNA indices and p53 gene expression in 55 cases of acute leukemia.

    Science.gov (United States)

    Powari, Manish; Varma, Neelam; Varma, Subhash; Marwaha, Ram Kumar; Sandhu, Harpreet; Ganguly, Nirmal Kumar

    2002-06-01

    To characterize the phenotype of acute leukemia cases using flow cytometry, to detect mixed lineage cases and to use DNA index determination, including S-phase fraction (SPF) and p53 detection, to find if there was any correlation of SPF and p53 expression with outcome. Fifty-five cases of acute leukemia were enrolled in this study. A complete hemogram and routine bone marrow examination, including cytochemistry, was done. Mycloperoxidase-negative cases were evaluated on a flow cytometer using monoclonal antibodies. DNA indices were determined by flow cytometry in all cases, and p53 was detected immunohistochemically using the alkaline phosphatase/antialkaline phosphatase technique. Acute myeloblastic leukemia (AML) was diagnosed in 32 cases; acute lymphoblastic leukemia (ALL) was diagnosed in 18 (14 B lineage and 4 T line age). Four cases showed mixed lineage leukemia, and undifferentiated acute leukemia was diagnosed in one case. The mean/range of SPF for these groups were 3.76/0.33-6.91, 6.25/0.15-21.4, 2.89/0.35-10.64, 2.60/0.72-6.94 and 7.34, respectively. Aneuploidy was detected in two cases of B-lineage ALL and tetraploidy in a case of AML-M7, while all others were diploid p53. Was detected in 6 of 55 cases (10.90%). Follow-up was available for 24 patients. Five patients relapsed, and four had B-cell type ALL and were diploid and expressed no p53 gene. SPF% did not show any correlation with outcome. These data suggest that within acute leukemia subtypes, there is a wide variation in SPF. SPF does not seem to correlate with outcome. Immunophenotyping is essential to determine the lineage in myeloperoxidase-negative cases. It is perhaps the only way to diagnose mixed lineage leukemia and aberrant expression of markers presently. The p53 gene was detected less frequently. However, more studies are required from different centers with longer follow-up to evaluate prognostic significance.

  4. Flow cytometric measurement of the metabolism of benzo[a]pyrene by mouse liver cells in culture

    International Nuclear Information System (INIS)

    Bartholomew, J.C.; Wade, C.G.; Dougherty, K.K.

    1984-01-01

    The metabolism of benzo[a]pyrene in individual cells was monitored by flow cytometry. The measurements are based on the alterations that occur in the fluorescence emission spectrum of benzo[a]pyrene when it is converted to various metabolites. Using present instrumentation the technique could easily detect 1x10 6 molecules per cells of benzo[a]pyrene and 1x10 7 molecules per cell of the diol epoxide. The analysis of C3H IOT 1/2 mouse fibroblasts growing in culture indicated that there was heterogeneity in the conversion of the parent compound into diol epoxide derivatives suggesting that some variation in sensitivity to transformation by benzo[a]pyrene may be due to differences in cellular metabolism. The technique allows sensitive detection of metabolites in viable cells, and provides a new approach to the study of factors that influence both metabolism and transformation. (orig.)

  5. Influence of a radioprotector WR-638 on the lymphoid compartment of the irradiated rat thymus: a flow cytometric analysis

    International Nuclear Information System (INIS)

    Dragojevic-Simic, V.; Colic, M.; Gasic, S.

    1994-01-01

    The T cell composition of the thymus of X-ray irradiated (3.5 Gy) Wistar rat protected with WR-638 was analyzed by flow cytometry using monoclonal antibodies directed to the Thy 1.1, CD43, CD2, CD5, CD4, CD8 and class I and II MHC antigens. It was shown that this dose of X-rays caused cyclic changes in thymic cellularity manifested as: primary involution (until day 2), primary regeneration (from days 2 to 14), secondary involution (from days 14 to 21) and secondary regeneration (from days 21 to 30). WR-638 reduced the magnitude of thymocyte depletion in the primary involutive phase of the irradiated thymi. (author)

  6. Genetic stock assessment of spawning arctic cisco (Coregonus autumnalis) populations by flow cytometric determination of DNA content.

    Science.gov (United States)

    Lockwood, S F; Bickham, J W

    1991-01-01

    Intraspecific variation in cellular DNA content was measured in five Coregonus autumnalis spawning populations from the Mackenzie River drainage, Canada, using flow cytometry. The rivers assayed were the Peel, Arctic Red, Mountain, Carcajou, and Liard rivers. DNA content was determined from whole blood preparations of fish from all rivers except the Carcajou, for which kidney tissue was used. DNA content measurements of kidney and blood preparations of the same fish from the Mountain River revealed statistically indistinguishable results. Mosaicism was found in blood preparations from the Peel, Arctic Red, Mountain, and Liard rivers, but was not observed in kidney tissue preparations from the Mountain or Carcajou rivers. The Liard River sample had significantly elevated mean DNA content relative to the other four samples; all other samples were statistically indistinguishable. Significant differences in mean DNA content among spawning stocks of a single species reinforces the need for adequate sample sizes of both individuals and populations when reporting "C" values for a particular species.

  7. [Flow cytometric test using eosin-5'-maleimide (EMA) labelling of red blood for diagnosis of hereditary spherocytosis].

    Science.gov (United States)

    Wang, Jiying; Zheng, Bin; Zhao, Yuping; Chen, Xuejing; Liu, Yan; Bo, Lijin; Zheng, Yizhou; Zhang, Fengkui; Ru, Kun; Wang, Huijun

    2015-07-01

    To investigate the sensitivity and specificity of eosin-5'-maleimide (EMA)assay for the diagnosis of hereditary spherocytosis (HS), and to verify the stability of reagent and samples. EMA flow cytometry test, NaCl-osmotic fragility test and acidified glycerol lysis test were performed using peripheral blood samples from 80 patients with HS and 44 patients with other blood diseases, the sensitivity and specificity of the three methods were compared, and the feasibility of EMA binding test was estimated. The stability of EMA reagent and HS samples stored at different temperatures were tested. Among the 124 tested samples, the sensitivity and specificity of EMA binding test was 0.925 and 0.954, that of NaCl-osmotic fragility test was 0.950 and 0.455, and that of acidified glycerol lysis test was 1.000 and 0.318, respectively. Although the sensitivity of NaCl-osmotic fragility test and acidified glycerol lysis test was a little higher than that of EMA binding test, the specificity of the former two methods was poor, they couldn't clearly distinguish whether spherocytosis is hereditary spherocytosis. The experiment results showed that EMA was sensitive to the temperature and should not be stored in a small aliquots at -80 ℃ over a period of 6 months. The stability of the HS sample was better, 6 days storage at 4 ℃ and 3 days storage at room temperature had no influence on the results. EMA binding test by flow cytometry showed good sensitivity and specificity for HS diagnosis. EMA reagent should be stored at-80 ℃ and the HS samples should be tested within 6 days storage at 4 ℃ and 3 days at room temperature.

  8. Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum.

    Science.gov (United States)

    Rodriguez, Eleazar; Azevedo, Raquel; Fernandes, Pedro; Santos, Conceição

    2011-07-18

    Chromium(VI) is recognized as the most toxic valency of Cr, but its genotoxicity and cytostaticity in plants is still poorly studied. In order to analyze Cr(VI) cyto- and gentotoxicity, Pisum sativum L. plants were grown in soil and watered with solutions with different concentrations of Cr up to 2000 mg/L. After 28 days of exposure, leaves showed no significant variations in either cell cycle dynamics or ploidy level. As for DNA damage, flow cytometric (FCM) histograms showed significant differences in full peak coefficient of variation (FPCV) values, suggesting clastogenicity. This is paralleled by the Comet assay results, showing an increase in DNA damage for 1000 and 2000 mg/L. In roots, exposure to 2000 mg/L resulted in cell cycle arrest at the G(2)/M checkpoint. It was also verified that under the same conditions 40% of the individuals analyzed suffered polyploidization having both 2C and 4C levels. DNA damage analysis by the Comet assay and FCM revealed dose-dependent increases in DNA damage and FPCV. Through this, we have unequivocally demonstrated for the first time in plants that Cr exposure can result in DNA damage, cell cycle arrest, and polyploidization. Moreover, we critically compare the validity of the Comet assay and FCM in evaluating cytogenetic toxicity tests in plants and demonstrate that the data provided by both techniques complement each other and present high correlation levels. In conclusion, the data presented provides new insight on Cr effects in plants in general and supports the use of the parameters tested in this study as reliable endpoints for this metal toxicity in plants. © 2011 American Chemical Society

  9. Optimized multiparametric flow cytometric analysis of circulating endothelial cells and their subpopulations in peripheral blood of patients with solid tumors: a technical analysis.

    Science.gov (United States)

    Zhou, Fangbin; Zhou, Yaying; Yang, Ming; Wen, Jinli; Dong, Jun; Tan, Wenyong

    2018-01-01

    Circulating endothelial cells (CECs) and their subpopulations could be potential novel biomarkers for various malignancies. However, reliable enumerable methods are warranted to further improve their clinical utility. This study aimed to optimize a flow cytometric method (FCM) assay for CECs and subpopulations in peripheral blood for patients with solid cancers. An FCM assay was used to detect and identify CECs. A panel of 60 blood samples, including 44 metastatic cancer patients and 16 healthy controls, were used in this study. Some key issues of CEC enumeration, including sample material and anticoagulant selection, optimal titration of antibodies, lysis/wash procedures of blood sample preparation, conditions of sample storage, sufficient cell events to enhance the signal, fluorescence-minus-one controls instead of isotype controls to reduce background noise, optimal selection of cell surface markers, and evaluating the reproducibility of our method, were integrated and investigated. Wilcoxon and Mann-Whitney U tests were used to determine statistically significant differences. In this validation study, we refined a five-color FCM method to detect CECs and their subpopulations in peripheral blood of patients with solid tumors. Several key technical issues regarding preanalytical elements, FCM data acquisition, and analysis were addressed. Furthermore, we clinically validated the utility of our method. The baseline levels of mature CECs, endothelial progenitor cells, and activated CECs were higher in cancer patients than healthy subjects ( P technical issues found in previously published assays and validated the reproducibility and sensitivity of our proposed method. Future work is required to explore the potential of our optimized method in clinical oncologic applications.

  10. Flow cytometric analysis of FSHR, BMRR1B, LHR and apoptosis in granulosa cells and ovulation rate in merino sheep.

    Science.gov (United States)

    Regan, Sheena L P; McFarlane, James R; O'Shea, Tim; Andronicos, Nicholas; Arfuso, Frank; Dharmarajan, Arun; Almahbobi, Ghanim

    2015-08-01

    The aim of the present study was to determine the direct cause of the mutation-induced, increased ovulation rate in Booroola Merino (BB) sheep. Granulosa cells were removed from antral follicles before ovulation and post-ovulation from BB (n=5) and WT (n=12) Merino ewes. Direct immunofluorescence measurement of mature cell surface receptors using flow cytometry demonstrated a significant up-regulation of FSH receptor (FSHR), transforming growth factor beta type 1, bone morphogenetic protein receptor (BMPR1B), and LH receptor (LHR) in BB sheep. The increased density of FSHR and LHR provide novel evidence of a mechanism for increasing the number of follicles that are recruited during dominant follicle selection. The compounding increase in receptors with increasing follicle size maintained the multiple follicles and reduced the apoptosis, which contributed to a high ovulation rate in BB sheep. In addition, we report a mutation-independent mechanism of down-regulation to reduce receptor density of the leading dominant follicle in sheep. The suppression of receptor density coincides with the cessation of mitogenic growth and steroidogenic differentiation as part of the luteinization of the follicle. The BB mutation-induced attenuation of BMPR1B signaling led to an increased density of the FSHR and LHR and a concurrent reduction in apoptosis to increase the ovulation rate. The role of BMPs in receptor modulation is implicated in the development of multiple ovulations. © 2015 Society for Reproduction and Fertility.

  11. Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation

    Science.gov (United States)

    Paiva, Bruno; Vidriales, Maria-Belén; Cerveró, Jorge; Mateo, Gema; Pérez, Jose J.; Montalbán, Maria A.; Sureda, Anna; Montejano, Laura; Gutiérrez, Norma C.; de Coca, Alfonso García; de las Heras, Natalia; Mateos, Maria V.; López-Berges, Maria C.; García-Boyero, Raimundo; Galende, Josefina; Hernández, Jose; Palomera, Luis; Carrera, Dolores; Martínez, Rafael; de la Rubia, Javier; Martín, Alejandro; Bladé, Joan; Lahuerta, Juan J.; Orfao, Alberto

    2008-01-01

    Minimal residual disease (MRD) assessment is standard in many hematologic malignancies but is considered investigational in multiple myeloma (MM). We report a prospective analysis of the prognostic importance of MRD detection by multiparameter flow cytometry (MFC) in 295 newly diagnosed MM patients uniformly treated in the GEM2000 protocol VBMCP/VBAD induction plus autologous stem cell transplantation [ASCT]). MRD status by MFC was determined at day 100 after ASCT. Progression-free survival (PFS; median 71 vs 37 months, P < .001) and overall survival (OS; median not reached vs 89 months, P = .002) were longer in patients who were MRD negative versus MRD positive at day 100 after ASCT. Similar prognostic differentiation was seen in 147 patients who achieved immunofixation-negative complete response after ASCT. Moreover, MRD− immunofixation-negative (IFx−) patients and MRD− IFx+ patients had significantly longer PFS than MRD+ IFx− patients. Multivariate analysis identified MRD status by MFC at day 100 after ASCT as the most important independent prognostic factor for PFS (HR = 3.64, P = .002) and OS (HR = 2.02, P = .02). Our findings demonstrate the clinical importance of MRD evaluation by MFC, and illustrate the need for further refinement of MM re-sponse criteria. This trial is registered at http://clinicaltrials.gov under identifier NCT00560053. PMID:18669875

  12. Flow cytometric analysis of peripheral blood and tumor-infiltrating regulatory T cells in dogs with oral malignant melanoma.

    Science.gov (United States)

    Tominaga, Makiko; Horiuchi, Yutaka; Ichikawa, Mika; Yamashita, Masao; Okano, Kumiko; Jikumaru, Yuri; Nariai, Yoko; Kadosawa, Tsuyoshi

    2010-05-01

    It is well known that tumor-infiltrating lymphocytes (TILs) and peripheral blood lymphocytes (PBLs) from patients with advanced-stage cancer have a poor immune response. Regulatory T cells (Tregs), characterized by the expression of a cluster of differentiation 4 and intracellular FoxP3 markers, can inhibit antitumor immunoresponse. In the present study, the prevalence of Tregs in peripheral blood and tumor tissue from dogs with oral malignant melanoma was evaluated by triple-color flow cytometry. The percentage of Tregs in the peripheral blood of the dogs with malignancy was significantly increased compared with healthy control dogs, and the percentage of Tregs within tumors was significantly increased compared with Tregs in peripheral blood of dogs with oral malignant melanoma. This finding suggests that the presence of tumor cells induced either local proliferation or selective migration of Tregs to tumor-infiltrated sites. A better understanding of the underlying mechanisms of Treg regulation in patients with cancer may lead to an effective anticancer immunotherapy against canine malignant melanoma and possibly other tumors.

  13. Flow cytometric monitoring of bacterioplankton phenotypic diversity predicts high population-specific feeding rates by invasive dreissenid mussels.

    Science.gov (United States)

    Props, Ruben; Schmidt, Marian L; Heyse, Jasmine; Vanderploeg, Henry A; Boon, Nico; Denef, Vincent J

    2018-02-01

    Species invasion is an important disturbance to ecosystems worldwide, yet knowledge about the impacts of invasive species on bacterial communities remains sparse. Using a novel approach, we simultaneously detected phenotypic and derived taxonomic change in a natural bacterioplankton community when subjected to feeding pressure by quagga mussels, a widespread aquatic invasive species. We detected a significant decrease in diversity within 1 h of feeding and a total diversity loss of 11.6 ± 4.1% after 3 h. This loss of microbial diversity was caused by the selective removal of high nucleic acid populations (29 ± 5% after 3 h). We were able to track the community diversity at high temporal resolution by calculating phenotypic diversity estimates from flow cytometry (FCM) data of minute amounts of sample. Through parallel FCM and 16S rRNA gene amplicon sequencing analysis of environments spanning a broad diversity range, we showed that the two approaches resulted in highly correlated diversity measures and captured the same seasonal and lake-specific patterns in community composition. Based on our results, we predict that selective feeding by invasive dreissenid mussels directly impacts the microbial component of the carbon cycle, as it may drive bacterioplankton communities toward less diverse and potentially less productive states. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. The combination of kinetic and flow cytometric semen parameters as a tool to predict fertility in cryopreserved bull semen.

    Science.gov (United States)

    Gliozzi, T M; Turri, F; Manes, S; Cassinelli, C; Pizzi, F

    2017-11-01

    Within recent years, there has been growing interest in the prediction of bull fertility through in vitro assessment of semen quality. A model for fertility prediction based on early evaluation of semen quality parameters, to exclude sires with potentially low fertility from breeding programs, would therefore be useful. The aim of the present study was to identify the most suitable parameters that would provide reliable prediction of fertility. Frozen semen from 18 Italian Holstein-Friesian proven bulls was analyzed using computer-assisted semen analysis (CASA) (motility and kinetic parameters) and flow cytometry (FCM) (viability, acrosomal integrity, mitochondrial function, lipid peroxidation, plasma membrane stability and DNA integrity). Bulls were divided into two groups (low and high fertility) based on the estimated relative conception rate (ERCR). Significant differences were found between fertility groups for total motility, active cells, straightness, linearity, viability and percentage of DNA fragmented sperm. Correlations were observed between ERCR and some kinetic parameters, and membrane instability and some DNA integrity indicators. In order to define a model with high relation between semen quality parameters and ERCR, backward stepwise multiple regression analysis was applied. Thus, we obtained a prediction model that explained almost half (R 2=0.47, P<0.05) of the variation in the conception rate and included nine variables: five kinetic parameters measured by CASA (total motility, active cells, beat cross frequency, curvilinear velocity and amplitude of lateral head displacement) and four parameters related to DNA integrity evaluated by FCM (degree of chromatin structure abnormality Alpha-T, extent of chromatin structure abnormality (Alpha-T standard deviation), percentage of DNA fragmented sperm and percentage of sperm with high green fluorescence representative of immature cells). A significant relationship (R 2=0.84, P<0.05) was observed between

  15. Flow cytometric sex sorting affects CD4 membrane distribution and binding of exogenous DNA on bovine sperm cells.

    Science.gov (United States)

    Domingues, William Borges; da Silveira, Tony Leandro Rezende; Komninou, Eliza Rossi; Monte, Leonardo Garcia; Remião, Mariana Härter; Dellagostin, Odir Antônio; Corcini, Carine Dahl; Varela Junior, Antônio Sergio; Seixas, Fabiana Kömmling; Collares, Tiago; Campos, Vinicius Farias

    2017-08-01

    Bovine sex-sorted sperm have been commercialized and successfully used for the production of transgenic embryos of the desired sex through the sperm-mediated gene transfer (SMGT) technique. However, sex-sorted sperm show a reduced ability to internalize exogenous DNA. The interaction between sperm cells and the exogenous DNA has been reported in other species to be a CD4-like molecule-dependent process. The flow cytometry-based sex-sorting process subjects the spermatozoa to different stresses causing changes in the cell membrane. The aim of this study was to elucidate the relationship between the redistribution of CD4-like molecules and binding of exogenous DNA to sex-sorted bovine sperm. In the first set of experiments, the membrane phospholipid disorder and the redistribution of the CD4 were evaluated. The second set of experiments was conducted to investigate the effect of CD4 redistribution on the mechanism of binding of exogenous DNA to sperm cells and the efficiency of lipofection in sex-sorted bovine sperm. Sex-sorting procedure increased the membrane phospholipid disorder and induced the redistribution of CD4-like molecules. Both X-sorted and Y-sorted sperm had decreased DNA bound to membrane in comparison with the unsorted sperm; however, the binding of the exogenous DNA was significantly increased with the addition of liposomes. Moreover, we demonstrated that the number of sperm-bound exogenous DNA was decreased when these cells were preincubated with anti-bovine CD4 monoclonal antibody, supporting our hypothesis that CD4-like molecules indeed play a crucial role in the process of exogenous DNA/bovine sperm cells interaction.

  16. Flow cytometric analysis reveals the high levels of platelet activation parameters in circulation of multiple sclerosis patients.

    Science.gov (United States)

    Morel, Agnieszka; Rywaniak, Joanna; Bijak, Michał; Miller, Elżbieta; Niwald, Marta; Saluk, Joanna

    2017-06-01

    The epidemiological studies confirm an increased risk of cardiovascular disease in multiple sclerosis, especially prothrombotic events directly associated with abnormal platelet activity. The aim of our study was to investigate the level of blood platelet activation in the circulation of patients with chronic phase of multiple sclerosis (SP MS) and their reactivity in response to typical platelets' physiological agonists. We examined 85 SP MS patients diagnosed according to the revised McDonald's criteria and 50 healthy volunteers as a control group. The platelet activation and reactivity were assessed using flow cytometry analysis of the following: P-selectin expression (CD62P), activation of GP IIb/IIIa complex (PAC-1 binding), and formation of platelet microparticles (PMPs) and platelet aggregates (PA) in agonist-stimulated (ADP, collagen) and unstimulated whole blood samples. Furthermore, we measured the level of soluble P-selectin (sP-selectin) in plasma using ELISA method, to evaluate the in vivo level of platelet activation, both in healthy and SP MS subjects. We found a statistically significant increase in P-selectin expression, GP IIb/IIIa activation, and formation of PMPs and PA, as well as in unstimulated and agonist-stimulated (ADP, collagen) platelets in whole blood samples from patients with SP MS in comparison to the control group. We also determined the higher sP-selectin level in plasma of SP MS subjects than in the control group. Based on the obtained results, we might conclude that during the course of SP MS platelets are chronically activated and display hyperreactivity to physiological agonists, such as ADP or collagen.

  17. Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis.

    Science.gov (United States)

    Suman, T Y; Radhika Rajasree, S R; Kirubagaran, R

    2015-03-01

    The increasing industrial use of nanomaterials during the last decades poses a potential threat to the environment and in particular to organisms living in the aquatic environment. In the present study, the toxicity of zinc oxide nanoparticles (ZnO NPs) was investigated in Marine algae Chlorella vulgaris (C. vulgaris). High zinc dissociation from ZnONPs, releasing ionic zinc in seawater, is a potential route for zinc assimilation and ZnONPs toxicity. To examine the mechanism of toxicity, C. vulgaris were treated with 50mg/L, 100mg/L, 200mg/L and 300 mg/L ZnO NPs for 24h and 72h. The detailed cytotoxicity assay showed a substantial reduction in the viability dependent on dose and exposure. Further, flow cytometry revealed the significant reduction in C. vulgaris viable cells to higher ZnO NPs. Significant reductions in LDH level were noted for ZnO NPs at 300 mg/L concentration. The activity of antioxidant enzyme superoxide dismutase (SOD) significantly increased in the C. vulgaris exposed to 200mg/L and 300 mg/L ZnO NPs. The content of non-enzymatic antioxidant glutathione (GSH) significantly decreased in the groups with a ZnO NPs concentration of higher than 100mg/L. The level of lipid peroxidation (LPO) was found to increase as the ZnO NPs dose increased. The FT-IR analyses suggested surface chemical interaction between nanoparticles and algal cells. The substantial morphological changes and cell wall damage were confirmed through microscopic analyses (FESEM and CM). Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Use of internal control T-cell populations in the flow cytometric evaluation for T-cell neoplasms.

    Science.gov (United States)

    Hunt, Alicia M; Shallenberger, Wendy; Ten Eyck, Stephen P; Craig, Fiona E

    2016-09-01

    Flow cytometry is an important tool for identification of neoplastic T-cells, but immunophenotypic abnormalities are often subtle and must be distinguished from nonneoplastic subsets. Use of internal control (IC) T-cells in the evaluation for T-cell neoplasms was explored, both as a quality measure and as a reference for evaluating abnormal antigen expression. All peripheral blood specimens (3-month period), or those containing abnormal T-cells (29-month period), stained with CD45 V500, CD2 V450, CD3 PE-Cy7, CD7 PE, CD4 Per-CP-Cy5.5, CD8 APC-H7, CD56 APC, CD16&57 FITC, were evaluated. IC T-cells were identified (DIVA, BD Biosciences) and median fluorescence intensity (MFI) recorded. Selected files were merged and reference templates generated (Infinicyt, Cytognos). IC T-cells were present in all specimens, including those with abnormal T-cells, but subsets were less well-represented. IC T-cell CD3 MFI differed between instruments (p = 0.0007) and subsets (p < 0.001), but not specimen categories, and served as a longitudinal process control. Merged files highlighted small unusual IC-T subsets: CD2+(dim) (0.25% total), CD2- (0.03% total). An IC reference template highlighted neoplastic T-cells, but was limited by staining variability (IC CD3 MFI reference samples different from test (p = 0.003)). IC T-cells present in the majority of specimens can serve as positive and longitudinal process controls. Use of IC T-cells as an internal reference is limited by variable representation of subsets. Analysis of merged IC T-cells from previously analyzed patient samples can alert the interpreter to less-well-recognized non-neoplastic subsets. However, application of a merged file IC reference template was limited by staining variability. © 2016 Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  19. Optimized multiparametric flow cytometric analysis of circulating endothelial cells and their subpopulations in peripheral blood of patients with solid tumors: a technical analysis

    Directory of Open Access Journals (Sweden)

    Zhou F

    2018-03-01

    Full Text Available Fangbin Zhou,1,2 Yaying Zhou,3 Ming Yang,1 Jinli Wen,3 Jun Dong,4 Wenyong Tan1 1Department of Oncology, The Second Clinical Medical College, Shenzhen People’s Hospital, Jinan University, Shenzhen, People’s Republic of China; 2Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, People’s Republic of China; 3Clinical Medical Research Center, The Second Clinical Medical College, Shenzhen People’s Hospital, Jinan University, Shenzhen, People’s Republic of China; 4Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, People’s Republic of China Background: Circulating endothelial cells (CECs and their subpopulations could be potential novel biomarkers for various malignancies. However, reliable enumerable methods are warranted to further improve their clinical utility. This study aimed to optimize a flow cytometric method (FCM assay for CECs and subpopulations in peripheral blood for patients with solid cancers.Patients and methods: An FCM assay was used to detect and identify CECs. A panel of 60 blood samples, including 44 metastatic cancer patients and 16 healthy controls, were used in this study. Some key issues of CEC enumeration, including sample material and anticoagulant selection, optimal titration of antibodies, lysis/wash procedures of blood sample preparation, conditions of sample storage, sufficient cell events to enhance the signal, fluorescence-minus-one controls instead of isotype controls to reduce background noise, optimal selection of cell surface markers, and evaluating the reproducibility of our method, were integrated and investigated. Wilcoxon and Mann–Whitney U tests were used to determine statistically significant differences.Results: In this validation study, we refined a five-color FCM method to detect CECs and their subpopulations in peripheral blood of patients

  20. Flow cytometric immunophenotyping of regulatory T cells in chronic lymphocytic leukemia: comparative assessment of various markers and use of novel antibody panel with CD127 as alternative to transcription factor FoxP3.

    Science.gov (United States)

    Dasgupta, Alakananda; Mahapatra, Manoranjan; Saxena, Renu

    2013-04-01

    This study analyzed the frequency of regulatory T cells (Tregs) in chronic lymphocytic leukemia (CLL) by multiparameter flow cytometric immunophenotyping. Patients showed significantly increased frequencies of Tregs as compared to controls, a significantly higher percentage than that identified by previous studies, possibly indicating a different prognosis of CLL in different parts of the world and, more precisely, a worse prognosis of CLL in the Indian population. A higher frequency of Tregs was also seen in advanced stage of disease with significantly reduced frequencies of Tregs in patients with CLL after chemotherapy. A significant proportion of CD127low/-FoxP3+ Tregs expressed only low levels of CD25. Thus, CD127 appears to be a better marker than CD25 for the identification of CD4+FoxP3+ T cells as potential Tregs. Our results suggest that the specificity and sensitivity of CD4+CD127low/- cells are comparable to those of CD4+FoxP3+, which is the gold standard, and can be used as an alternative. This novel flow cytometric antibody panel with fewer number of antibodies is cost-effective and can be used to enumerate Tregs in resource-limited settings.

  1. Cytometric analysis of mammalian sperm for induced morphologic and DNA content errors

    International Nuclear Information System (INIS)

    Pinkel, D.

    1983-01-01

    Some flow-cytometric and image analysis procedures under development for quantitative analysis of sperm morphology are reviewed. The results of flow-cytometric DNA-content measurements on sperm from radiation exposed mice are also summarized, the results related to the available cytological information, and their potential dosimetric sensitivity discussed

  2. Cytometric approaches to biological dosimetry

    International Nuclear Information System (INIS)

    Burger, G.

    1983-01-01

    Automatic cytometric techniques for detecting chromosomal aberrations are being tested but will not be used in routine examinations for some time to come. Automatic micronuclei counts are more promising but not sufficiently sensitive in the low dose range ( [de

  3. Deep sequencing and flow cytometric characterization of expanded effector memory CD8+CD57+ T cells frequently reveals T-cell receptor Vβ oligoclonality and CDR3 homology in acquired aplastic anemia.

    Science.gov (United States)

    Giudice, Valentina; Feng, Xingmin; Lin, Zenghua; Hu, Wei; Zhang, Fanmao; Qiao, Wangmin; Ibanez, Maria Del Pilar Fernandez; Rios, Olga; Young, Neal S

    2018-05-01

    Oligoclonal expansion of CD8 + CD28 - lymphocytes has been considered indirect evidence for a pathogenic immune response in acquired aplastic anemia. A subset of CD8 + CD28 - cells with CD57 expression, termed effector memory cells, is expanded in several immune-mediated diseases and may have a role in immune surveillance. We hypothesized that effector memory CD8 + CD28 - CD57 + cells may drive aberrant oligoclonal expansion in aplastic anemia. We found CD8 + CD57 + cells frequently expanded in the blood of aplastic anemia patients, with oligoclonal characteristics by flow cytometric Vβ usage analysis: skewing in 1-5 Vβ families and frequencies of immunodominant clones ranging from 1.98% to 66.5%. Oligoclonal characteristics were also observed in total CD8 + cells from aplastic anemia patients with CD8 + CD57 + cell expansion by T-cell receptor deep sequencing, as well as the presence of 1-3 immunodominant clones. Oligoclonality was confirmed by T-cell receptor repertoire deep sequencing of enriched CD8 + CD57 + cells, which also showed decreased diversity compared to total CD4 + and CD8 + cell pools. From analysis of complementarity-determining region 3 sequences in the CD8 + cell pool, a total of 29 sequences were shared between patients and controls, but these sequences were highly expressed in aplastic anemia subjects and also present in their immunodominant clones. In summary, expansion of effector memory CD8 + T cells is frequent in aplastic anemia and mirrors Vβ oligoclonal expansion. Flow cytometric Vβ usage analysis combined with deep sequencing technologies allows high resolution characterization of the T-cell receptor repertoire, and might represent a useful tool in the diagnosis and periodic evaluation of aplastic anemia patients. (Registered at clinicaltrials.gov identifiers: 00001620, 01623167, 00001397, 00071045, 00081523, 00961064 ). Copyright © 2018 Ferrata Storti Foundation.

  4. Multiphase Flow Dynamics 5 Nuclear Thermal Hydraulics

    CERN Document Server

    Kolev, Nikolay Ivanov

    2012-01-01

    The present Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step...

  5. Multiphase flow dynamics 5 nuclear thermal hydraulics

    CERN Document Server

    Kolev, Nikolay Ivanov

    2015-01-01

    This Volume 5 of the successful book package "Multiphase Flow Dynamics" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step demons...

  6. Flow cytometric readout based on Mitotracker Red CMXRos staining of live asexual blood stage malarial parasites reliably assesses antibody dependent cellular inhibition

    DEFF Research Database (Denmark)

    Jogdand, Prajakta S; Singh, Susheel K; Christiansen, Michael

    2012-01-01

    asynchronous and tightly synchronized asexual blood stage cultures of Plasmodium falciparum were stained with CMXRos and subjected to detection by flow cytometry and fluorescence microscopy. The parasite counts obtained by flow cytometry were compared to standard microscopic counts obtained through examination......ABSTRACT: BACKGROUND: Functional in vitro assays could provide insights into the efficacy of malaria vaccine candidates. For estimating the anti-parasite effect induced by a vaccine candidate, an accurate determination of live parasite count is an essential component of most in vitro bioassays....... Although traditionally parasites are counted microscopically, a faster, more accurate and less subjective method for counting parasites is desirable. In this study mitochondrial dye (Mitotracker Red CMXRos) was used for obtaining reliable live parasite counts through flow cytometry. METHODS: Both...

  7. Flow Cytometric DNA index, G-band Karyotyping, and Comparative Genomic Hybridization in Detection of High Hyperdiploidy in Childhood Acute Lymphoblastic Leukemia

    DEFF Research Database (Denmark)

    Nygaard, Ulrikka; Larsen, Jacob; Kristensen, Tim D

    2006-01-01

    High hyperdiploid acute lymphoblastic leukemia in children is related to a good outcome. Because these patients may be stratified to a low-intensity treatment, we have investigated the sensitivity of flow cytometry (FCM), G-band karyotyping (GBK), and high-resolution comparative genomic hybridiza......High hyperdiploid acute lymphoblastic leukemia in children is related to a good outcome. Because these patients may be stratified to a low-intensity treatment, we have investigated the sensitivity of flow cytometry (FCM), G-band karyotyping (GBK), and high-resolution comparative genomic...

  8. An improved flow cytometric method using FACS lysing solution for measurement of ZAP-70 expression in B-cell chronic lymphocytic leukemia

    NARCIS (Netherlands)

    Bekkema, Roelof; Tadema, Afke; Daenen, Simon M. G. J.; Kluin-Nelemans, Hanneke C.; Mulder, Andre B.

    Background: B-cell expression of ZAP-70, normally expressed in T and NK cells, correlates with poor prognosis in B-CLL. Poor discrimination between ZAP-70 positive and negative cells hampers routine application of flow cytometry. We examined the usefulness of FACS Lysing Solution. Methods: ZAP-70

  9. High-Throughput Flow Cytometric Method for the Simultaneous Measurement of CAR-T Cell Characterization and Cytotoxicity against Solid Tumor Cell Lines.

    Science.gov (United States)

    Martinez, Emily M; Klebanoff, Samuel D; Secrest, Stephanie; Romain, Gabrielle; Haile, Samuel T; Emtage, Peter C R; Gilbert, Amy E

    2018-04-01

    High-throughput flow cytometry is an attractive platform for the analysis of adoptive cellular therapies such as chimeric antigen receptor T cell therapy (CAR-T) because it allows for the concurrent measurement of T cell-dependent cellular cytotoxicity (TDCC) and the functional characterization of engineered T cells with respect to percentage of CAR transduction, T cell phenotype, and measurement of T cell function such as activation in a single assay. The use of adherent tumor cell lines can be challenging in these flow-based assays. Here, we present the development of a high-throughput flow-based assay to measure TDCC for a CAR-T construct co-cultured with multiple adherent tumor cell lines. We describe optimal assay conditions (such as adherent cell dissociation techniques to minimize impact on cell viability) that result in robust cytotoxicity assays. In addition, we report on the concurrent use of T cell transduction and activation antibody panels (CD25) that provide further dissection of engineered T cell function. In conclusion, we present the development of a high-throughput flow cytometry method allowing for in vitro interrogation of solid tumor, targeting CAR-T cell-mediated cytotoxicity, CAR transduction, and engineered T cell characterization in a single assay.

  10. Exploring the feasibility of multi-site flow cytometric processing of gut associated lymphoid tissue with centralized data analysis for multi-site clinical trials.

    Directory of Open Access Journals (Sweden)

    Ian McGowan

    Full Text Available The purpose of this study was to determine whether the development of a standardized approach to the collection of intestinal tissue from healthy volunteers, isolation of gut associated lymphoid tissue mucosal mononuclear cells (MMC, and characterization of mucosal T cell phenotypes by flow cytometry was sufficient to minimize differences in the normative ranges of flow parameters generated at two trial sites. Forty healthy male study participants were enrolled in Pittsburgh and Los Angeles. MMC were isolated from rectal biopsies using the same biopsy acquisition and enzymatic digestion protocols. As an additional comparator, peripheral blood mononuclear cells (PBMC were collected from the study participants. For quality control, cryopreserved PBMC from a single donor were supplied to both sites from a central repository (qPBMC. Using a jointly optimized standard operating procedure, cells were isolated from tissue and blood and stained with monoclonal antibodies targeted to T cell phenotypic markers. Site-specific flow data were analyzed by an independent center which analyzed all data from both sites. Ranges for frequencies for overall CD4+ and CD8+ T cells, derived from the qPBMC samples, were equivalent at both UCLA and MWRI. However, there were significant differences across sites for the majority of T cell activation and memory subsets in qPBMC as well as PBMC and MMC. Standardized protocols to collect, stain, and analyze MMC and PBMC, including centralized analysis, can reduce but not exclude variability in reporting flow data within multi-site studies. Based on these data, centralized processing, flow cytometry, and analysis of samples may provide more robust data across multi-site studies. Centralized processing requires either shipping of fresh samples or cryopreservation and the decision to perform centralized versus site processing needs to take into account the drawbacks and restrictions associated with each method.

  11. Exploring the feasibility of multi-site flow cytometric processing of gut associated lymphoid tissue with centralized data analysis for multi-site clinical trials.

    Science.gov (United States)

    McGowan, Ian; Anton, Peter A; Elliott, Julie; Cranston, Ross D; Duffill, Kathryn; Althouse, Andrew D; Hawkins, Kevin L; De Rosa, Stephen C

    2015-01-01

    The purpose of this study was to determine whether the development of a standardized approach to the collection of intestinal tissue from healthy volunteers, isolation of gut associated lymphoid tissue mucosal mononuclear cells (MMC), and characterization of mucosal T cell phenotypes by flow cytometry was sufficient to minimize differences in the normative ranges of flow parameters generated at two trial sites. Forty healthy male study participants were enrolled in Pittsburgh and Los Angeles. MMC were isolated from rectal biopsies using the same biopsy acquisition and enzymatic digestion protocols. As an additional comparator, peripheral blood mononuclear cells (PBMC) were collected from the study participants. For quality control, cryopreserved PBMC from a single donor were supplied to both sites from a central repository (qPBMC). Using a jointly optimized standard operating procedure, cells were isolated from tissue and blood and stained with monoclonal antibodies targeted to T cell phenotypic markers. Site-specific flow data were analyzed by an independent center which analyzed all data from both sites. Ranges for frequencies for overall CD4+ and CD8+ T cells, derived from the qPBMC samples, were equivalent at both UCLA and MWRI. However, there were significant differences across sites for the majority of T cell activation and memory subsets in qPBMC as well as PBMC and MMC. Standardized protocols to collect, stain, and analyze MMC and PBMC, including centralized analysis, can reduce but not exclude variability in reporting flow data within multi-site studies. Based on these data, centralized processing, flow cytometry, and analysis of samples may provide more robust data across multi-site studies. Centralized processing requires either shipping of fresh samples or cryopreservation and the decision to perform centralized versus site processing needs to take into account the drawbacks and restrictions associated with each method.

  12. A heparin-based method for flow cytometric analysis of microparticles directly from platelet-poor plasma in calcium containing buffer

    DEFF Research Database (Denmark)

    Iversen, Line V; Ostergaard, Ole; Nielsen, Christoffer

    2013-01-01

    Characterization of circulating microparticles (MPs) is usually performed by flow cytometry. Annexin V, a protein that Ca(2+)-dependently binds to phosphatidylserine, has been used to define entire microparticle (MP) populations, but not all MPs bind AnxV. Recent reports have correlated Anx...... for comprehensive assessment of circulating MPs directly from platelet-poor plasma with characterization of AnxV-binding and of cellular origin of MPs....

  13. Super-resolved calibration-free flow cytometric characterization of platelets and cell-derived microparticles in platelet-rich plasma.

    Science.gov (United States)

    Konokhova, Anastasiya I; Chernova, Darya N; Moskalensky, Alexander E; Strokotov, Dmitry I; Yurkin, Maxim A; Chernyshev, Andrei V; Maltsev, Valeri P

    2016-02-01

    Importance of microparticles (MPs), also regarded as extracellular vesicles, in many physiological processes and clinical conditions motivates one to use the most informative and precise methods for their characterization. Methods based on individual particle analysis provide statistically reliable distributions of MP population over characteristics. Although flow cytometry is one of the most powerful technologies of this type, the standard forward-versus-side-scattering plots of MPs and platelets (PLTs) overlap considerably because of similarity of their morphological characteristics. Moreover, ordinary flow cytometry is not capable of measurement of size and refractive index (RI) of MPs. In this study, we 1) employed the potential of the scanning flow cytometer (SFC) for identification and characterization of MPs from light scattering; 2) suggested the reference method to characterize MP morphology (size and RI) with high precision; and 3) determined the lowest size of a MP that can be characterized from light scattering with the SFC. We equipped the SFC with 405 and 488 nm lasers to measure the light-scattering profiles and side scattering from MPs, respectively. The developed two-stage method allowed accurate separation of PLTs and MPs in platelet-rich plasma. We used two optical models for MPs, a sphere and a bisphere, in the solution of the inverse light-scattering problem. This solution provides unprecedented precision in determination of size and RI of individual spherical MPs-median uncertainties (standard deviations) were 6 nm and 0.003, respectively. The developed method provides instrument-independent quantitative information on MPs, which can be used in studies of various factors affecting MP population. © 2015 International Society for Advancement of Cytometry.

  14. Flow Cytometric Immunobead Assay for Detection of BCR-ABL1 Fusion Proteins in Chronic Myleoid Leukemia: Comparison with FISH and PCR Techniques

    Science.gov (United States)

    Recchia, Anna Grazia; Caruso, Nadia; Bossio, Sabrina; Pellicanò, Mariavaleria; De Stefano, Laura; Franzese, Stefania; Palummo, Angela; Abbadessa, Vincenzo; Lucia, Eugenio; Gentile, Massimo; Vigna, Ernesto; Caracciolo, Clementina; Agostino, Antolino; Galimberti, Sara; Levato, Luciano; Stagno, Fabio; Molica, Stefano; Martino, Bruno; Vigneri, Paolo; Di Raimondo, Francesco; Morabito, Fortunato

    2015-01-01

    Chronic Myeloid Leukemia (CML) is characterized by a balanced translocation juxtaposing the Abelson (ABL) and breakpoint cluster region (BCR) genes. The resulting BCR-ABL1 oncogene leads to increased proliferation and survival of leukemic cells. Successful treatment of CML has been accompanied by steady improvements in our capacity to accurately and sensitively monitor therapy response. Currently, measurement of BCR-ABL1 mRNA transcript levels by real-time quantitative PCR (RQ-PCR) defines critical response endpoints. An antibody-based technique for BCR-ABL1 protein recognition could be an attractive alternative to RQ-PCR. To date, there have been no studies evaluating whether flow-cytometry based assays could be of clinical utility in evaluating residual disease in CML patients. Here we describe a flow-cytometry assay that detects the presence of BCR-ABL1 fusion proteins in CML lysates to determine the applicability, reliability, and specificity of this method for both diagnosis and monitoring of CML patients for initial response to therapy. We show that: i) CML can be properly diagnosed at onset, (ii) follow-up assessments show detectable fusion protein (i.e. relative mean fluorescent intensity, rMFI%>1) when BCR-ABL1IS transcripts are between 1–10%, and (iii) rMFI% levels predict CCyR as defined by FISH analysis. Overall, the FCBA assay is a rapid technique, fully translatable to the routine management of CML patients. PMID:26111048

  15. Flow Cytometric Immunobead Assay for Detection of BCR-ABL1 Fusion Proteins in Chronic Myleoid Leukemia: Comparison with FISH and PCR Techniques.

    Directory of Open Access Journals (Sweden)

    Anna Grazia Recchia

    Full Text Available Chronic Myeloid Leukemia (CML is characterized by a balanced translocation juxtaposing the Abelson (ABL and breakpoint cluster region (BCR genes. The resulting BCR-ABL1 oncogene leads to increased proliferation and survival of leukemic cells. Successful treatment of CML has been accompanied by steady improvements in our capacity to accurately and sensitively monitor therapy response. Currently, measurement of BCR-ABL1 mRNA transcript levels by real-time quantitative PCR (RQ-PCR defines critical response endpoints. An antibody-based technique for BCR-ABL1 protein recognition could be an attractive alternative to RQ-PCR. To date, there have been no studies evaluating whether flow-cytometry based assays could be of clinical utility in evaluating residual disease in CML patients. Here we describe a flow-cytometry assay that detects the presence of BCR-ABL1 fusion proteins in CML lysates to determine the applicability, reliability, and specificity of this method for both diagnosis and monitoring of CML patients for initial response to therapy. We show that: i CML can be properly diagnosed at onset, (ii follow-up assessments show detectable fusion protein (i.e. relative mean fluorescent intensity, rMFI%>1 when BCR-ABL1IS transcripts are between 1-10%, and (iii rMFI% levels predict CCyR as defined by FISH analysis. Overall, the FCBA assay is a rapid technique, fully translatable to the routine management of CML patients.

  16. Identification of microbes from the surfaces of food-processing lines based on the flow cytometric evaluation of cellular metabolic activity combined with cell sorting.

    Science.gov (United States)

    Juzwa, W; Duber, A; Myszka, K; Białas, W; Czaczyk, K

    2016-09-01

    In this study the design of a flow cytometry-based procedure to facilitate the detection of adherent bacteria from food-processing surfaces was evaluated. The measurement of the cellular redox potential (CRP) of microbial cells was combined with cell sorting for the identification of microorganisms. The procedure enhanced live/dead cell discrimination owing to the measurement of the cell physiology. The microbial contamination of the surface of a stainless steel conveyor used to process button mushrooms was evaluated in three independent experiments. The flow cytometry procedure provided a step towards monitoring of contamination and enabled the assessment of microbial food safety hazards by the discrimination of active, mid-active and non-active bacterial sub-populations based on determination of their cellular vitality and subsequently single cell sorting to isolate microbial strains from discriminated sub-populations. There was a significant correlation (r = 0.97; p vitality and the identification of species from defined sub-populations, although the identified microbes were limited to culturable cells.

  17. Flow cytometric detection of growth factor receptors in autografts and analysis of growth factor concentrations in autologous stem cell transplantation: possible significance for platelet recovery

    DEFF Research Database (Denmark)

    Schiødt, I; Jensen, Charlotte Harken; Kjaersgaard, E

    2000-01-01

    In order to improve prediction of hematopoietic recovery, we conducted a pilot study, analyzing the significance of growth factor receptor expression in autografts as well as endogenous growth factor levels in blood before, during and after stem cell transplantation. Three early acting (stem cell......-CSF receptor positive, CD34+ progenitor cells were measured by flow cytometry in the leukapheresis product used for transplantation in a subgroup of 15 patients (NHL, n = 8, MM, n = 7). Three factors were identified as having a significant impact on platelet recovery. First, the level of Tpo in blood...... at the time of the nadir (day +7). Second, the percentage of re-infused thrombopoietin receptor positive progenitors and finally, the percentage of Flt3 receptor positive progenitors. On the other hand, none of the analyzed factors significantly predicted myeloid or erythroid recovery. These findings need...

  18. Flow cytometric minimal residual disease assessment of peripheral blood in acute lymphoblastic leukaemia patients has potential for early detection of relapsed extramedullary disease.

    Science.gov (United States)

    Keegan, Alissa; Charest, Karry; Schmidt, Ryan; Briggs, Debra; Deangelo, Daniel J; Li, Betty; Morgan, Elizabeth A; Pozdnyakova, Olga

    2018-03-27

    To evaluate peripheral blood (PB) for minimal residual disease (MRD) assessment in adults with acute lymphoblastic leukaemia (ALL). We analysed 76 matched bone marrow (BM) aspirate and PB specimens independently for the presence of ALL MRD by six-colour flow cytometry (FC). The overall rate of BM MRD-positivity was 24% (18/76) and PB was also MRD-positive in 22% (4/18) of BM-positive cases. We identified two cases with evidence of leukaemic cells in PB at the time of the extramedullary relapse that were interpreted as MRD-negative in BM. The use of PB MRD as a non-invasive method for monitoring of systemic relapse may have added clinical and diagnostic value in patients with high risk of extramedullary disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Flow-cytometric measurement of CD4-8- T cells bearing T-cell receptor αβ chains, 1

    International Nuclear Information System (INIS)

    Kusunoki, Yoichiro; Hirai, Yuko; Kyoizumi, Seishi; Akiyama, Mitoshi.

    1992-09-01

    In this study we detected rare, possibly abnormal, T cells bearing CD3 surface antigen and T-cell receptor (TCR) αβ chains but lacking both CD4 and CD8 antigens (viz., TCRαβ + CD4 - 8 - cells, as determined by flow cytometry). The TCRαβ + CD4 - 8 - T cells were detected at a mean frequency of 0.63 ± 0.35 % (mean ± standard deviation) in peripheral blood TCRαβ + cells of 119 normal persons. Two unusual cases besides the 119 normal persons showed extremely elevated frequencies of TCRαβ + CD4 - 8 - T cells, viz., approximately 5 % to 10 % and 14 % to 19 % in whole TCRαβ + cells. Both individuals were males who were otherwise physiologically quite normal with no history of severe illness, and these high frequencies were also observed in blood samples collected 2 or 8 years prior to the current measurements. The TCRαβ + CD4 - 8 - T cells of the two individuals were found to express mature T-cell markers such as CD2,3, and 5 antigens, as well as natural killer (NK) cell markers, viz., CD11b, 16, 56, and 57 antigens, when peripheral blood lymphocytes were subjected to three-color flow cytometry. Lectin-dependent or redirected antibody-dependent cell-mediated cytotoxicities were observed for both freshly sorted TCRαβ + CD4 - 8 - cells and in vitro established clones. Nevertheless, NK-like activity was not detected. Further, Southern blot analysis of TCRβ and γ genes revealed identical rearrangement patterns for all the TCRαβ + CD4 - 8 - clones established in vitro. These results suggest that the TCRαβ + CD4 - 8 - T cells from these two mean exhibit unique characteristics and proliferate clonally in vivo. (author)

  20. Flow cytometric estimation on cytotoxic activity of leaf extracts from seashore plants in subtropical Japan: isolation, quantification and cytotoxic action of (-)-deoxypodophyllotoxin.

    Science.gov (United States)

    Masuda, Toshiya; Oyama, Yasuo; Yonemori, Shigetomo; Takeda, Yoshio; Yamazaki, Yuko; Mizuguchi, Shinichi; Nakata, Mami; Tanaka, Tomochika; Chikahisa, Lumi; Inaba, Yuzuru; Okada, Yoshihiko

    2002-06-01

    The cytotoxic activity of methanol extracts of leaves collected from 39 seashore plants in Iriomote Island, subtropical Japan was examined on human leukaemia cells (K562 cells) using a flow cytometer with two fluorescent probes, ethidium bromide and annexin V-FITC. Five extracts (10 microg/mL) from Hernandia nymphaeaefolia, Cerbera manghas, Pongamia pinnata, Morus australis var. glabra and Thespesia populnea greatly inhibited the growth of K562 cells. When the concentration was decreased to 1 microg/mL, only one extract from H. nymphaeaefolia still inhibited the cell growth. A cytotoxic compound was isolated from the leaves by bioassay-guided fractionation and was identified as (-)-deoxypodophyllotoxin (DPT). The fresh leaves of H. nymphaeaefolia contained a remarkably high amount of DPT (0.21 +/- 0.07% of fresh leaf weight), being clarified by a quantitative HPLC analysis. DPT at 70-80 pM started to inhibit the growth of K562 cells in an all-or-none fashion and at 100 pM or more it produced complete inhibition in all cases. Therefore, the slope of the dose-response curve was very steep. DPT at 100 pM or more decreased the cell viability to 50%-60% and increased the number of cells undergoing apoptosis (annexin V-positive cells). The results indicate that DPT contributes to the cytotoxic action of the extract from the leaves of H. nymphaeaefolia on K562 cells. Copyright 2002 John Wiley & Sons, Ltd.

  1. Corrected Lymphocyte Percentages Reduce the Differences in Absolute CD4+ T Lymphocyte Counts between Dual-Platform and Single-Platform Flow Cytometric Approaches.

    Science.gov (United States)

    Noulsri, Egarit; Abudaya, Dinar; Lerdwana, Surada; Pattanapanyasat, Kovit

    2018-03-13

    To determine whether a corrected lymphocyte percentage could reduce bias in the absolute cluster of differentiation (CD)4+ T lymphocyte counts obtained via dual-platform (DP) vs standard single-platform (SP) flow cytometry. The correction factor (CF) for the lymphocyte percentages was calculated at 6 laboratories. The absolute CD4+ T lymphocyte counts in 300 blood specimens infected with human immunodeficiency virus (HIV) were determined using the DP and SP methods. Applying the CFs revealed that 4 sites showed a decrease in the mean bias of absolute CD4+ T lymphocyte counts determined via DP vs standard SP (-109 vs -84 cells/μL, -80 vs -58 cells/μL, -52 vs -45 cells/μL, and -32 vs 1 cells/μL). However, 2 participating laboratories revealed an increase in the difference of the mean bias (-42 vs -49 cells/μL and -20 vs -69 cells/μL). Use of the corrected lymphocyte percentage shows potential for decreasing the difference in CD4 counts between DP and the standard SP method.

  2. Flow cytometric characterization of culture expanded multipotent mesenchymal stromal cells (MSCs) from horse adipose tissue: towards the definition of minimal stemness criteria.

    Science.gov (United States)

    Pascucci, L; Curina, G; Mercati, F; Marini, C; Dall'Aglio, C; Paternesi, B; Ceccarelli, P

    2011-12-15

    In the last decades, multipotent mesenchymal progenitor cells have been isolated from many adult tissues of different species. The International Society for Cellular Therapy (ISCT) has recently established that multipotent mesenchymal stromal cells (MSCs) is the currently recommended designation. In this study, we used flow cytometry to evaluate the expression of several molecules related to stemness (CD90, CD44, CD73 and STRO-1) in undifferentiated, early-passaged MSCs isolated from adipose tissue of four donor horses (AdMSCs). The four populations unanimously expressed high levels of CD90 and CD44. On the contrary, they were unexpectedly negative to CD73. A small percentage of the cells, finally, showed the expression of STRO-1. This last result might be due to the existence of a small subpopulation of STRO-1+ cells or to a poor cross-reactivity of the antibody. A remarkable donor-to-donor consistency and reproducibility of these findings was demonstrated. The data presented herein support the idea that equine AdMSCs may be easily isolated and selected by adherence to tissue culture plastic and exhibit a surface profile characterized by some peculiar differences in comparison to those described in other species. Continued characterization of these cells will help to clarify several aspects of their biology and may ultimately enable the isolation of specific, purified subpopulations. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Multi-color CD34⁺ progenitor-focused flow cytometric assay in evaluation of myelodysplastic syndromes in patients with post cancer therapy cytopenia.

    Science.gov (United States)

    Tang, Guilin; Jorgensen, L Jeffrey; Zhou, Yi; Hu, Ying; Kersh, Marian; Garcia-Manero, Guillermo; Medeiros, L Jeffrey; Wang, Sa A

    2012-08-01

    Bone marrow assessment for myelodysplastic syndrome (MDS) in a patient who develops cytopenia(s) following cancer therapy is challenging. With recent advances in multi-color flow cytometry immunophenotypic analysis, a CD34(+) progenitor-focused 7-color assay was developed and tested in this clinical setting. This assay was first performed in 73 MDS patients and 53 non-MDS patients (developmental set). A number of immunophenotypic changes were differentially observed in these two groups. Based on the sensitivity, specificity and reproducibility, a core panel of markers was selected for final assessment that included increased total CD34(+) myeloblasts; decreased stage I hematogones; altered CD45/side scatter; altered expression of CD13, CD33, CD34, CD38, CD117, and CD123; aberrant expression of lymphoid or mature myelomonocytic antigens on CD34(+) myeloblasts; and several marked alterations in maturing myelomonocytic cells. The data were translated into a simplified scoring system which was then used in 120 patients with cytopenia(s) secondary to cancer therapy over a 2-year period (validation set). With a median follow-up of 11 months, this assay demonstrated 89% sensitivity, 94% specificity, and 92% accuracy in establishing or excluding a diagnosis of MDS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Cell kinetics of hypoxic cells in a murine tumour in vivo: flow cytometric determination of the radiation-induced blockage of cell cycle progression

    International Nuclear Information System (INIS)

    Rutgers, D.H.; Niessen, D.P.P.; Linden, P.M. van der

    1987-01-01

    Cells from the small cell population of viable cells in the large necrotic centre of murine M8013 tumours were investigated with respect to their cell kinetics. Flow cytometry (FCM) of this part of subcutaneously transplanted tumours revealed the presence of tumour cells with G1,S and G2 + M phase DNA-contents. These severely hypoxic cells could have stopped cell cycle progression due to the nutritional deprivation, irrespective of their position within the cell cycle. Labelling methods, used to disclose the cell kinetics of this cell population, are hampered by the absence of a transport system in these large necrotic areas. Therefore FCM was used to monitor radiation induced changes in the cell cycle distribution. From this investigation it was concluded that hypoxic cells in the necrotic centre of the M8013 tumour progress through the cell cycle. As well as a cell population with a cell cycle time (Tsub(c)) of approximately 84 hr, a subpopulation with a Tsub(c) of approximately 21 hr occurred. (author)

  5. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu.

    Directory of Open Access Journals (Sweden)

    Hidefumi Uchiyama

    Full Text Available Electron paramagnetic resonance (EPR-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH radicals and hydrogen (H atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO, 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO, and phenyl N-t-butylnitrone (PBN. The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and

  6. Theoretical modelling of nuclear waste flows - 16377

    International Nuclear Information System (INIS)

    Adams, J.F.; Biggs, S.R.; Fairweather, M.; Njobuenwu, D.; Yao, J.

    2009-01-01

    A large amount of nuclear waste is stored in tailings ponds as a solid-liquid slurry, and liquid flows containing suspensions of solid particles are encountered in the treatment and disposal of this waste. In processing this waste, it is important to understand the behaviour of particles within the flow in terms of their settling characteristics, their propensity to form solid beds, and the re-suspension characteristics of particles from a bed. A clearer understanding of such behaviour would allow the refinement of current approaches to waste management, potentially leading to reduced uncertainties in radiological impact assessments, smaller waste volumes and lower costs, accelerated clean-up, reduced worker doses, enhanced public confidence and diminished grounds for objection to waste disposal. Mathematical models are of significant value in nuclear waste processing since the extent of characterisation of wastes is in general low. Additionally, waste processing involves a diverse range of flows, within vessels, ponds and pipes. To investigate experimentally all waste form characteristics and potential flows of interest would be prohibitively expensive, whereas the use of mathematical models can help to focus experimental studies through the more efficient use of existing data, the identification of data requirements, and a reduction in the need for process optimisation in full-scale experimental trials. Validated models can also be used to predict waste transport behaviour to enable cost effective process design and continued operation, to provide input to process selection, and to allow the prediction of operational boundaries that account for the different types and compositions of particulate wastes. In this paper two mathematical modelling techniques, namely Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES), have been used to investigate particle-laden flows in a straight square duct and a duct with a bend. The flow solutions provided by

  7. The nuclear safeguards data flow for the item facilities

    International Nuclear Information System (INIS)

    Wang Hongjun; Chen Desheng

    1994-04-01

    The constitution of nuclear safeguards data flow for the item facilities is introduced and the main contents are the data flow of nuclear safeguards. If the data flow moves positively, i.e. from source data →supporting documents→accounting records→accounting reports, the systems of records and reports will be constituted. If the data flow moves negatively, the way to trace inspection of nuclear material accounting quality will be constituted

  8. Cell and nuclear enlargement of SW480 cells induced by a plant lignan, arctigenin: evaluation of cellular DNA content using fluorescence microscopy and flow cytometry.

    Science.gov (United States)

    Kang, Kyungsu; Lee, Hee Ju; Yoo, Ji-Hye; Jho, Eun Hye; Kim, Chul Young; Kim, Minkyun; Nho, Chu Won

    2011-08-01

    Arctigenin is a natural plant lignan previously shown to induce G(2)/M arrest in SW480 human colon cancer cells as well as AGS human gastric cancer cells, suggesting its use as a possible cancer chemopreventive agent. Changes in cell and nuclear size often correlate with the functionality of cancer-treating agents. Here, we report that arctigenin induces cell and nuclear enlargement of SW480 cells. Arctigenin clearly induced the formation of giant nuclear shapes in SW480, as demonstrated by fluorescence microscopic observation and quantitative determination of nuclear size. Cell and nuclear size were further assessed by flow cytometric analysis of light scattering and fluorescence pulse width after propidium iodide staining. FSC-H and FL2-W values (parameters referring to cell and nuclear size, respectively) significantly increased after arctigenin treatment; the mean values of FSC-H and FL2-W in arctigenin-treated SW480 cells were 572.6 and 275.1, respectively, whereas those of control cells were 482.0 and 220.7, respectively. Our approach may provide insights into the mechanism behind phytochemical-induced cell and nuclear enlargement as well as functional studies on cancer-treating agents.

  9. Global nuclear material flow/control model

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.S.; Fasel, P.K.; Riese, J.M.

    1997-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of an international regime for nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool which treats the nuclear fuel cycle as a complete system. The prototype model developed visually represents the fundamental data, information, and capabilities related to the nuclear fuel cycle in a framework supportive of national or an international perspective. This includes an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, facility specific geographic identification, and the capability to estimate resource requirements for the management and control of nuclear material. The model establishes the foundation for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material and supports the development of other pertinent algorithmic capabilities necessary to undertake further global nuclear material related studies

  10. Automatic coolant flow control device for a nuclear reactor assembly

    Science.gov (United States)

    Hutter, Ernest

    1986-01-01

    A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.

  11. Buoyancy flow in fractures intersecting a nuclear waste repository

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Tsang, C.F.

    1980-07-01

    The thermally induced buoyancy flow in fractured rocks around a nuclear waste repository is of major concern in the evaluation of the regional, long-term impact of nuclear waste disposal in geological formation. In this study, buoyancy flow and the development of convective cells are calculated in vertical fractures passing through or positioned near a repository. Interaction between buoyancy flow and regional hydraulic gradient is studied as a function of time, and the interference of intersecting fractures with each other is also discussed

  12. Heat transfer and fluid flow in nuclear systems

    CERN Document Server

    Fenech, Henri

    1982-01-01

    Heat Transfer and Fluid in Flow Nuclear Systems discusses topics that bridge the gap between the fundamental principles and the designed practices. The book is comprised of six chapters that cover analysis of the predicting thermal-hydraulics performance of large nuclear reactors and associated heat-exchangers or steam generators of various nuclear systems. Chapter 1 tackles the general considerations on thermal design and performance requirements of nuclear reactor cores. The second chapter deals with pressurized subcooled light water systems, and the third chapter covers boiling water reacto

  13. Nuclear-Coupled Flow Instabilities and Their Effects on Dryout

    Energy Technology Data Exchange (ETDEWEB)

    M. Ishii; X. Sunn; S. Kuran

    2004-09-27

    Nuclear-coupled flow/power oscillations in boiling water reactors (BWRs) are investigated experimentally and analytically. A detailed literature survey is performed to identify and classify instabilities in two-phase flow systems. The classification and the identification of the leading physical mechanisms of the two-phase flow instabilities are important to propose appropriate analytical models and scaling criteria for simulation. For the purpose of scaling and the analysis of the nonlinear aspects of the coupled flow/power oscillations, an extensive analytical modeling strategy is developed and used to derive both frequency and time domain analysis tools.

  14. Stability of flow from a nuclear cavity. Final report

    International Nuclear Information System (INIS)

    Morrison, F.A. Jr.

    1977-07-01

    The stability of flow from a nuclear cavity was examined. The flow of interest consists of air and steam at high pressure and temperature moving through a porous medium. The steam condenses at a moving front. The stability of the flow was analyzed using the normal mode method and a program was written to perform the necessary calculations. Results of the computer calculations show that the flow of interest is stable and any instabilities that occur will decay slowly. Stability was influenced by gravity, fluid mobilities, and condensation. It was found that the stabilizing effect of conductivity is only important at negligibly small wavelengths

  15. OPG nuclear - deaerator gravity flow test

    International Nuclear Information System (INIS)

    Davidge, E.; Sanchez, R.; Misra, A.; Vecchiarelli, J.

    2013-01-01

    Following a total loss of all AC power, preexisting SG and SGECS are consumed to maintain fuel cooling. These inventories last ~3.5 hours. Additional time is needed to establish offsite Emergency Mitigating Equipment (EME). EME are portable generators/pumps which pump screened lake water directly to boilers, moderator, HTS, vault, etc., as required. Deaerator storage tank inventory can provide water to SGs by gravity draining (additional ~5.5 hours). Deaerator and deaerator storage tank are the highest points in the feedwater system and are normally used to remove air and impurities from the secondary side and store demineralized water. Calculations were done to determine minimum flow requirements to steam generators in a Beyond Design Basis Accident (BDBA). Additional calculations were performed to determine how long deaerator water can achieve this minimum flow rate. A validation test was required to demonstrate that the required flow rates could be achieved, and interim heat sink could be established. Tests were performed on shut-down units during planned outages. Tests successfully demonstrated capability of the interim deaerator gravity drain heat sink. Tests results were very close to analytical predictions. As expected, actual flow rate was slightly higher than predicted since conservative assumptions were used.

  16. Numerical simulation of interior flow field of nuclear model pump

    International Nuclear Information System (INIS)

    Wang Chunlin; Peng Na; Kang Can; Zhao Baitong; Zhang Hao

    2009-01-01

    Reynolds time-averaged N-S equations and the standard k-ε turbulent model were adopted, and three-dimensional non-structural of tetrahedral mesh division was used for modeling. Multiple reference frame model of rotating fluid mechanical model was used, under the design condition, the three-dimensional incompressible turbulent flow of nuclear model pump was simulated, and the results preferably post the characteristics of the interior flow field. This paper first analyzes the total pressure and velocity distribution in the flow field, and then describes the interior flow field characteristics of each part such as the impeller, diffuser and spherical shell, and also discusses the reasons that cause these characteristics. The study results can be used to estimate the performance of nuclear model pump, and will provide some useful references for its hydraulic optimized design. (authors)

  17. Flow characteristics in nuclear steam turbine blade passage

    International Nuclear Information System (INIS)

    Ahn, H.J.; Yoon, W.H.; Kwon, S.B.

    1995-01-01

    The rapid expansion of condensable gas such as moist air or steam gives rise to nonequilibrium condensation. As a result of irreversibility of condensation process in the nuclear steam turbine blade passage, the entropy of the flow increases, and the efficiency of the turbine decreases. In the present study, in order to investigate the flow characteristics of moist air in two-dimensional turbine blade passage which is made from the configuration of the last stage tip section of the actual nuclear steam turbine moving blade, the static pressures along both pressure and suction sides of blade are measured by static pressure taps and the distribution of Mach number on both sides of the blade are obtained by using the measured static pressure. Also, the flow field is visualized by a Schlieren system. From the experimental results, the effects of the stagnation temperature and specific humidity on the flow properties in the two dimensional steam turbine blade passage are clearly identified

  18. Cash flow forecasting model for nuclear power projects

    International Nuclear Information System (INIS)

    Liu Wei; Guo Jilin

    2002-01-01

    Cash flow forecasting is very important for owners and contractors of nuclear power projects to arrange the capital and to decrease the capital cost. The factors related to contractor cash flow forecasting are analyzed and a cash flow forecasting model is presented which is suitable for both contractors and owners. The model is efficiently solved using a cost-schedule data integration scheme described. A program is developed based on the model and verified with real project data. The result indicates that the model is efficient and effective

  19. Experimental study of water flow in nuclear fuel elements

    International Nuclear Information System (INIS)

    Rodrigues, Lorena Escriche; Rezende, Hugo Cesar; Mattos, Joao Roberto Loureiro de; Barros Filho, Jose Afonso; Santos, Andre Augusto Campagnole dos

    2013-01-01

    This work aims to develop an experimental methodology for investigating the water flow through rod bundles after spacer grids of nuclear fuel elements of PWR type reactors. Speed profiles, with the device LDV (Laser Doppler Velocimetry), and the pressure drop between two sockets located before and after the spacer grid, using pressure transducers were measured

  20. Analysis on flow characteristic of nuclear heating reactor

    International Nuclear Information System (INIS)

    Jiang Shengyao; Wu Xinxin

    1997-06-01

    The experiment was carried out on the test loop HRTL-5, which simulates the geometry and system design of a 5 MW Nuclear heating reactor. The analysis was based on a one-dimensional two-phase flow drift model with conservation equations for mass, steam mass, energy and momentum. Clausius-Clapeyron equation was used for the calculation of flashing front in the riser. A set of ordinary equation, which describes the behavior of two-phase flow in the natural circulation system, was derived through integration of the above conservation equations in subcooled boiling region, bulk boiling region in the heated section and in the riser. The method of time-domain was used for the calculation. Both static and dynamic results are presented. System pressure, inlet subcooling and heat flux are varied as input parameters. The results show that, firstly, subcooled boiling in the heated section and void flashing in the riser have significant influence on the distribution of the void fraction, mass flow rate and stability of the system, especially at lower pressure, secondly, in a wide range of two-phase flow conditions, only subcooled boiling occurs in the heated section. For the designed two-phase regime operation of the 5 MW nuclear heating reactor, the temperature at the core exit has not reaches its saturation value. Thirdly, the mechanism of two-phase flow oscillation, namely, 'zero-pressure-drop', is described. In the wide range of inlet subcooling (0 K<ΔT<28 K) there exists three regions for system flow condition, namely, (1) stable two-phase flow, (2) bulk and subcooled boiling unstable flow, (3) subcooled boiling and single phase stable flow. The response of mass flow rate, after a small disturbance in the heat flux, is showed in the above inlet subcooling range, and based on it the instability map of the system is given through experiment and calculation. (3 refs., 9 figs.)

  1. Pressure fluctuation characteristics of flow field of mixed flow nuclear primary pump

    International Nuclear Information System (INIS)

    Wang Chunlin; Yang Xiaoyong; Li Changjun; Jia Fei; Zhao Binjuan

    2013-01-01

    In order to research the pressure fluctuation characteristics of flow field of mixed flow nuclear primary pump, this study used the technique of ANSYS-Workbench and CFX fluid solid heat coupling to do numerical simulation analysis for model pump. According to the situation of pressure fluctuation of time domain and frequency domain, the main cause of pressure fluctuation was discussed. For different flow, the pressure fluctuations were compared. This study shows it is feasible that large eddy simulation method is used for the research of pressure fluctuation. The pressure fluctuation amplitudes of four sections are increasing from wheel hub to wheel rim. The pressure fluctuation of inlet and outlet of impeller depends on the rotational frequency of impeller. Along with the fluid flowing away from the impeller, the effect of the impeller on the fluid pressure fluctuation weakens gradually. Comparing the different results of three flow conditions, the pressure fluctuation in design condition flow is superior to the others. (authors)

  2. A nuclear data acquisition system flow control model

    International Nuclear Information System (INIS)

    Hack, S.N.

    1988-01-01

    A general Petri Net representation of a nuclear data acquisition system model is presented. This model provides for the unique requirements of a nuclear data acquisition system including the capabilities of concurrently acquiring asynchronous and synchronous data, of providing multiple priority levels of flow control arbitration, and of permitting multiple input sources to reside at the same priority without the problem of channel lockout caused by a high rate data source. Finally, a previously implemented gamma camera/physiological signal data acquisition system is described using the models presented

  3. Initial angular momentum and flow in high energy nuclear collisions

    Science.gov (United States)

    Fries, Rainer J.; Chen, Guangyao; Somanathan, Sidharth

    2018-03-01

    We study the transfer of angular momentum in high energy nuclear collisions from the colliding nuclei to the region around midrapidity, using the classical approximation of the color glass condensate (CGC) picture. We find that the angular momentum shortly after the collision (up to times ˜1 /Qs , where Qs is the saturation scale) is carried by the "β -type" flow of the initial classical gluon field, introduced by some of us earlier. βi˜μ1∇iμ2-μ2∇iμ1 (i =1 ,2 ) describes the rapidity-odd transverse energy flow and emerges from Gauss's law for gluon fields. Here μ1 and μ2 are the averaged color charge fluctuation densities in the two nuclei, respectively. Interestingly, strong coupling calculations using anti-de Sitter/conformal field theory (AdS/CFT) techniques also find an energy flow term featuring this particular combination of nuclear densities. In classical CGC the order of magnitude of the initial angular momentum per rapidity in the reaction plane, at a time 1 /Qs , is |d L2/d η |≈ RAQs-3ɛ¯0/2 at midrapidity, where RA is the nuclear radius, and ɛ¯0 is the average initial energy density. This result emerges as a cancellation between a vortex of energy flow in the reaction plane aligned with the total angular momentum, and energy shear flow opposed to it. We discuss in detail the process of matching classical Yang-Mills results to fluid dynamics. We will argue that dissipative corrections should not be discarded to ensure that macroscopic conservation laws, e.g., for angular momentum, hold. Viscous fluid dynamics tends to dissipate the shear flow contribution that carries angular momentum in boost-invariant fluid systems. This leads to small residual angular momentum around midrapidity at late times for collisions at high energies.

  4. Nuclear collective flow from gaussian fits to triple differential distributions

    International Nuclear Information System (INIS)

    Gosset, J.; Demoulins, M.; Babinet, R.; Cavata, C.; Fanet, H.; L'Hote, D.; Lucas, B.; Poitou, J.; Valette, O.; Alard, J.P.; Augerat, J.; Bastid, N.; Charmensat, P.; Dupieux, P.; Fraysse, L.; Marroncle, J.; Montarou, G.; Parizet, M.J.; Qassoud, D.; Rahmani, A.; Brochard, F.; Gorodetzky, P.; Racca, C.

    1990-01-01

    In order to study the nuclear collective flow, the triple differential momentum distributions of charged baryons are fitted to a simple anisotropic gaussian distribution, within an acceptance which removes most of the spectator contribution. The adjusted flow angle and aspect ratios are corrected for systematic errors in the determination of the reaction plane. This method has been tested with Monte Carlo simulations and applied to experimental results and intranuclear cascade simulations of argon-nucleus collisions at 400 MeV per nucleon. (orig.)

  5. Effects of Gogny type interactions on the nuclear flow

    International Nuclear Information System (INIS)

    Sebille, F.; De La Mota, V.; Jouault, B.; Schuck, P.

    1995-01-01

    A flow analysis on symmetric and asymmetric reactions from 100 to 400 MeV/n is performed in the framework of the semi-classical Landau-Vlasov approach. In this energy range our results present two different trends. At lower energies it is governed by the momentum dependence of the nuclear optical potential, whereas at higher energies its density dependence plays a crucial role leading to a rather pronounced sensitivity of the incompressibility modulus. The non-locality of the nuclear interaction is relevant for asymmetric colliding systems. With an incompressibility modulus in the vicinity of 200 MeV, an excellent quantitative description of the flow behavior with incident energy and impact parameter or the system mass is provided. (authors)., 26 refs., 6 figs., 3 tabs

  6. Dynamics of nuclear fuel assemblies in vertical flow channels

    International Nuclear Information System (INIS)

    Mason, V.A.

    1988-01-01

    DYNMOD is a computer program designed to predict the dynamic behaviour of nuclear fuel assemblies in axial flow. The calculations performed by DYNMOD and the input data required by the program are described in this report. Examples of DYNMOD usage and a brief assessment of the accuracy of the dynamic model are also presented. It is intended that the report will be used as a reference manual by users of DYNMOD

  7. Nuclear collective flow from gaussian fits to triple differential distributions

    International Nuclear Information System (INIS)

    Gosset, J.; Babinet, R.; Cavata, C.; Marco, M. de; Demoulins, M.; Fanet, H.; Fodor, Z.; L'Hote, D.; Lucas, B.

    1990-01-01

    A simple characterization of triple differential cross sections is needed for a systematic study of the nuclear matter collective flow in relativistic nucleus-nucleus collisions. Our analysis is based upon a fitting procedure, so that the triple differential distributions need not be measured in the whole momentum space. If the detector acceptance eliminates most spectator particles or if it is artificially restricted for doing so, this method leads to a flow characterization of the participant nuclear matter. The center-of-mass triple-differential momentum distributions are fitted to a simple analytical shape, namely an anisotropic Gaussian distribution. The adjusted parameters (flow angle and aspect ratios) are corrected for uncertainty in the event-by-event determination of the reaction plane azimuth (finite-number effects). Results are presented for neon-nucleus and argon-nucleus collisions at incident energy between 400 and 800 MeV per nucleon. Flow is already significant for light systems, and depends clearly upon the impact parameter

  8. Effective flow-accelerated corrosion programs in nuclear facilities

    International Nuclear Information System (INIS)

    Esselman, Thomas C.; McBrine, William J.

    2004-01-01

    Piping Flow-Accelerated Corrosion Programs in nuclear power generation facilities are classically comprised of the selection of inspection locations with the assistance of a predictive methodology such as the Electric Power Research Institute computer codes CHECMATE or CHECWORKS, performing inspections, conducting structural evaluations on the inspected components, and implementing the appropriate sample expansion and corrective actions. Performing such a sequence of steps can be effective in identifying thinned components and implementing appropriate short term and long term actions necessary to resolve flow-accelerated corrosion related problems. A maximally effective flow-accelerated corrosion (FAC) program requires an understanding of many programmatic details. These include the procedural control of the program, effective use of historical information, managing the activities performed during a limited duration outage, allocating resources based on risk allocation, having an acute awareness of how the plant is operated, investigating components removed from the plant, and several others. This paper will describe such details and methods that will lead to a flow-accelerated corrosion program that effectively minimizes the risk of failure due to flow-accelerated corrosion and provide full and complete documentation of the program. (author)

  9. Intestinal intraepithelial lymphocyte cytometric pattern is more accurate than subepithelial deposits of anti-tissue transglutaminase IgA for the diagnosis of celiac disease in lymphocytic enteritis.

    Directory of Open Access Journals (Sweden)

    Fernando Fernández-Bañares

    Full Text Available BACKGROUND & AIMS: An increase in CD3+TCRγδ+ and a decrease in CD3- intraepithelial lymphocytes (IEL is a characteristic flow cytometric pattern of celiac disease (CD with atrophy. The aim was to evaluate the usefulness of both CD IEL cytometric pattern and anti-TG2 IgA subepithelial deposit analysis (CD IF pattern for diagnosing lymphocytic enteritis due to CD. METHODS: Two-hundred and five patients (144 females who underwent duodenal biopsy for clinical suspicion of CD and positive celiac genetics were prospectively included. Fifty had villous atrophy, 70 lymphocytic enteritis, and 85 normal histology. Eight patients with non-celiac atrophy and 15 with lymphocytic enteritis secondary to Helicobacter pylori acted as control group. Duodenal biopsies were obtained to assess both CD IEL flow cytometric (complete or incomplete and IF patterns. RESULTS: Sensitivity of IF, and complete and incomplete cytometric patterns for CD diagnosis in patients with positive serology (Marsh 1+3 was 92%, 85 and 97% respectively, but only the complete cytometric pattern had 100% specificity. Twelve seropositive and 8 seronegative Marsh 1 patients had a CD diagnosis at inclusion or after gluten free-diet, respectively. CD cytometric pattern showed a better diagnostic performance than both IF pattern and serology for CD diagnosis in lymphocytic enteritis at baseline (95% vs 60% vs 60%, p = 0.039. CONCLUSIONS: Analysis of the IEL flow cytometric pattern is a fast, accurate method for identifying CD in the initial diagnostic biopsy of patients presenting with lymphocytic enteritis, even in seronegative patients, and seems to be better than anti-TG2 intestinal deposits.

  10. Progress in the Development of Compressible, Multiphase Flow Modeling Capability for Nuclear Reactor Flow Applications

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Berry; R. Saurel; F. Petitpas; E. Daniel; O. Le Metayer; S. Gavrilyuk; N. Dovetta

    2008-10-01

    In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. Within the context of multiphase flows, two bubble-dynamic phenomena – boiling (heterogeneous) and flashing or cavitation (homogeneous boiling), with bubble collapse, are technologically very important to nuclear reactor systems. The main difference between boiling and flashing is that bubble growth (and collapse) in boiling is inhibited by limitations on the heat transfer at the interface, whereas bubble growth (and collapse) in flashing is limited primarily by inertial effects in the surrounding liquid. The flashing process tends to be far more explosive (and implosive), and is more violent and damaging (at least in the near term) than the bubble dynamics of boiling. However, other problematic phenomena, such as crud deposition, appear to be intimately connecting with the boiling process. In reality, these two processes share many details.

  11. Review of coaxial flow gas core nuclear rocket fluid mechanics

    International Nuclear Information System (INIS)

    Weinstein, H.

    1976-01-01

    In a prematurely aborted attempt to demonstrate the feasibility of using a gas core nuclear reactor as a rocket engine, NASA initiated a number of studies on the relevant fluid mechanics problems. These studies were carried out at NASA laboratories, universities and industrial research laboratories. Because of the relatively sudden termination of most of this work, a unified overview was never presented which demonstrated the accomplishments of the program and pointed out the areas where additional work was required for a full understanding of the cavity flow. This review attempts to fulfill a part of this need in two important areas

  12. Flow cytometric analysis of mitotic cycle perturbation by chemical carcinogens in cultured epithelial cells. [Effects of benzo(a)pyrene-diol-epoxide on mitotic cycle of cultural mouse liver epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, Andrew Leonard [Univ. of California, Berkeley, CA (United States)

    1978-08-01

    A system for kinetic analysis of mitotic cycle perturbation by various agents was developed and applied to the study of the mitotic cycle effects and dependency of the chemical carcinogen benzo(a)pyrene-diolepoxide, DE, upon a mouse lever epithelial cell line, NMuLi. The study suggests that the targets of DE action are not confined to DNA alone but may include cytoplasmic structures as well. DE was found to affect cells located in virtually every phase of the mitotic cycle, with cells that were actively synthesizing DNA showing the strongest response. However, the resulting perturbations were not confined to S-phase alone. DE slowed traversal through S-phase by about 40% regardless of the cycle phase of the cells exposed to it, and slowed traversal through G2M by about 50%. When added to G1 cells, DE delayed recruitment of apparently quiescent (G0) cells by 2 hours, and reduced the synchrony of the cohort of cells recruited into active proliferation. The kinetic analysis system consists of four elements: tissue culture methods for propagating and harvesting cell populations; an elutriation centrifugation system for bulk synchronization of cells in various phases of the mitotic cycle; a flow cytometer (FCM), coupled with appropriate staining protocols, to enable rapid analysis of the DNA distribution of any given cell population; and data reduction and analysis methods for extracting information from the DNA histograms produced by the FCM. The elements of the system are discussed. A mathematical analysis of DNA histograms obtained by FCM is presented. The analysis leads to the detailed implementation of a new modeling approach. The new modeling approach is applied to the estimation of cell cycle kinetic parameters from time series of DNA histograms, and methods for the reduction and interpretation of such series are suggested.

  13. Seasonality in molecular and cytometric diversity of marine bacterioplankton: the reshuffling of bacterial taxa by vertical mixing

    KAUST Repository

    García, Francisca C.

    2015-07-17

    The ’cytometric diversity’ of phytoplankton communities has been studied based on single-cell properties, but the applicability of this method to characterize bacterioplankton has been unexplored. Here, we analysed seasonal changes in cytometric diversity of marine bacterioplankton along a decadal time-series at three coastal stations in the Southern Bay of Biscay. Shannon-Weaver diversity estimates and Bray-Curtis similarities obtained by cytometric and molecular (16S rRNA tag sequencing) methods were significantly correlated in samples from a 3.5-year monthly time-series. Both methods showed a consistent cyclical pattern in the diversity of surface bacterial communities with maximal values in winter. The analysis of the highly resolved flow cytometry time-series across the vertical profile showed that water column mixing was a key factor explaining the seasonal changes in bacterial composition and the winter increase in bacterial diversity in coastal surface waters. Due to its low cost and short processing time as compared to genetic methods, the cytometric diversity approach represents a useful complementary tool in the macroecology of aquatic microbes.

  14. Computer simulation of two-phase flow in nuclear reactors

    International Nuclear Information System (INIS)

    Wulff, W.

    1993-01-01

    Two-phase flow models dominate the requirements of economic resources for the development and use of computer codes which serve to analyze thermohydraulic transients in nuclear power plants. An attempt is made to reduce the effort of analyzing reactor transients by combining purpose-oriented modelling with advanced computing techniques. Six principles are presented on mathematical modeling and the selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited than the two-fluid model for the analysis of two-phase flow in nuclear reactors, because of the latter's closure problems. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost. (orig.)

  15. Device for measuring flow rate in a nuclear reactor core

    International Nuclear Information System (INIS)

    Hamano, Jiro.

    1980-01-01

    Purpose: To always calculate core flow rate automatically and accurately in BWR type nuclear power plants. Constitution: Jet pumps are provided to the recycling pump and to the inside of the pressure vessel of a nuclear reactor. The jet pumps comprise a plurality of calibrated jet pumps for forcively convecting the coolants and a plurality of not calibrated jet pumps in order to cool the heat generated in the reactor core. The difference in the pressures between the upper and the lower portions in both of the jet pumps is measured by difference pressure transducers. Further, a thermo-sensitive element is provided to measure the temperature of recycling water at the inlet of the recycling pump. The output signal from the difference pressure transducer is inputted to a process computer, calculated periodically based on predetermined calculation equations, compensated for the temperature by a recycling water temperature signal and outputted as a core flow rate signal to a recoder. The signal is also used for the power distribution calculation in the process computer and the minimum limit power ratio as the thermal limit value for the fuels is outputted. (Furukawa, Y.)

  16. Flow induced vibrational excitation of nuclear reactor structures

    International Nuclear Information System (INIS)

    Gibert, R.J.

    1979-01-01

    The pressure fluctuations generated by disturbed flows, encountered in nuclear reactors induce vibrations in the structures. In order to make forecastings for these vibrational levels, it is necessary to know the characteristics of the random pressure fluctuations induced in the walls by the main flow peculiarities of the circuits. This knowledge is essentially provided by experimentation which shows that most of the energy from these fluctuations is in the low frequency area. It is also necessary to determine the transfer functions of the fluid-structure coupled system. Given the frequency range of the excitations, a calculation of the characteristics of the first eigenmodes is generally sufficient. This calculation is carried out by finite element codes, the modal dampings being assessed separately. In this paper, emphasis is placed mainly on the analysis of the sources of excitation due to flow peculiarities. Some examples will also be given of assessments of vibrations in real structures (pipes, reactor internals, etc.) and of comparisons with the experimental results obtained on models or on a site [fr

  17. Cytometric Approach for Detection of Encephalitozoon intestinalis, an Emergent Agent▿

    Science.gov (United States)

    Barbosa, Joana; Rodrigues, Acácio Gonçalves; Pina-Vaz, Cidália

    2009-01-01

    Encephalitozoon intestinalis is responsible for intestinal disease in patients with AIDS and immunocompetent patients. The infectious form is a small spore that is resistant to water treatment procedures. Its detection is very important, but detection is very cumbersome and time-consuming. Our main objective was to develop and optimize a specific flow cytometric (FC) protocol for the detection of E. intestinalis in hospital tap water and human feces. To determine the optimal specific antibody (Microspor-FA) concentration, a known concentration of E. intestinalis spores (Waterborne, Inc.) was suspended in hospital tap water and stool specimens with different concentrations of Microspor-FA, and the tap water and stool specimens were incubated under different conditions. The sensitivity limit and specificity were also evaluated. To study spore infectivity, double staining with propidium iodide (PI) and Microspor-FA was undertaken. Distinct approaches for filtration and centrifugation of the stool specimens were used. E. intestinalis spores stained with 10 μg/ml of Microspor-FA at 25°C overnight provided the best results. The detection limit was 5 × 104 spores/ml, and good specificity was demonstrated. Simultaneous staining with Microspor-FA and PI ensured that the E. intestinalis spores were dead and therefore noninfectious. With the stool specimens, better spore recovery was observed with a saturated solution of NaCl and centrifugation at 1,500 × g for 15 min. A new approach for the detection of E. intestinalis from tap water or human feces that ensures that the spores are not viable is now available and represents an important step for the prevention of this threat to public health. PMID:19439525

  18. Flow cytometric quantification of radiation responses of murine peritoneal cells

    International Nuclear Information System (INIS)

    Tokita, N.; Raju, M.R.

    1982-01-01

    Methods have been developed to distinguish subpopulations of murine peritoneal cells, and these were applied to the measurement of early changes in peritoneal cells after irradiation. The ratio of the two major subpopulations in the peritoneal fluid, lymphocytes and macrophages, was measured rapidly by means of cell volume distribution analysis as well as by hypotonic propidium iodide (PI) staining. After irradiation, dose and time dependent changes were noted in the cell volume distributions: a rapid loss of peritoneal lymphocytes, and an increase in the mean cell volume of macrophages. The hypotonic PI staining characteristics of the peritoneal cells showed two or three distinctive G 1 peaks. The ratio of the areas of these peaks was also found to be dependent of the radiation dose and the time after irradiation. These results demonstrate that these two parameters may be used to monitor changes induced by irradiation (biological dosimetry), and to sort different peritoneal subpopulations

  19. Flow Cytometric Applicability of Fluorescent Vitality Probes on Phytoplankton

    NARCIS (Netherlands)

    Peperzak, L.; Brussaard, C.P.D.

    2011-01-01

    The applicability of six fluorescent probes (four esterase probes: acetoxymethyl ester of Calcein [Calcein-AM], 5-chloromethylfluorescein diacetate [CMFDA], fluorescein diacetate [FDA], and 2',7'-dichlorofluorescein diacetate [H(2)DCFDA]; and two membrane probes: bis-(1,3-dibutylbarbituric acid)

  20. FLOW CYTOMETRIC APPLICABILITY OF FLUORESCENT VITALITY PROBES ON PHYTOPLANKTON1.

    Science.gov (United States)

    Peperzak, Louis; Brussaard, Corina P D

    2011-06-01

    The applicability of six fluorescent probes (four esterase probes: acetoxymethyl ester of Calcein [Calcein-AM], 5-chloromethylfluorescein diacetate [CMFDA], fluorescein diacetate [FDA], and 2',7'-dichlorofluorescein diacetate [H 2 DCFDA]; and two membrane probes: bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC 4 (3)] and SYTOX-Green) as vitality stains was tested on live and killed cells of 40 phytoplankton strains in exponential and stationary growth phases, belonging to 12 classes and consisting of four cold-water, 26 temperate, and four warm-water species. The combined live/dead ratios of all six probes indicated significant differences between the 12 plankton classes (P live/dead ratios of FDA and CMFDA were not significantly different from each other, and both performed better than Calcein-AM and H 2 DCFDA (P live/dead ratios) among all six probes belonged to nine genera from six classes of phytoplankton. In conclusion, FDA, CMFDA, DIBAC 4 (3), and SYTOX-Green represent a wide choice of vitality probes in the study of phytoplankton ecology, applicable in many species from different algal classes, originating from different regions and at different stages of growth. © 2011 Phycological Society of America.

  1. Flow cytometric detection of viruses in the Zuari estuary, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Mitbavkar, S.; Rajaneesh, K.M.; SathishKumar, P.

    and virus-mediated processes for better understanding of the microbial food web and the biogeochemistry. 1. Suttle, C. A., Nature, 2005, 437, 356– 361. 2. Danovaro, R. et al., Freshwater Biol., 2008, 53, 1186–1213. 3. Suttle, C. A., Nature, 2007, 5... of the microbial food web, with abundance in marine waters ranging from 10 6 ml –1 in the deep sea to 10 8 ml –1 in coastal waters and 10 9 g –1 of dry weight in the marine sediments 1,2 , which is usually 15-fold greater than bacterial and archael...

  2. Flow cytometric analysis of bone marrow leukocytes in neonatal dogs

    Czech Academy of Sciences Publication Activity Database

    Faldyna, M.; Šinkora, Jiří; Knotigová, P.; Řeháková, Zuzana; Morávková, Alena; Toman, M.

    2003-01-01

    Roč. 95, - (2003), s. 165-176 ISSN 0165-2427 R&D Projects: GA ČR GA524/00/0474; GA ČR GP524/02/P010 Institutional research plan: CEZ:AV0Z5020903 Keywords : cd34 * sirp * b cell Subject RIV: EC - Immunology Impact factor: 1.652, year: 2003

  3. PACTOLUS, Nuclear Power Plant Cost and Economics by Discounted Cash Flow Method. CLOTHO, Mass Flow Data Calculation for Program PACTOLUS

    International Nuclear Information System (INIS)

    Haffner, D.R.

    1976-01-01

    1 - Description of problem or function: PACTOLUS is a code for computing nuclear power costs using the discounted cash flow method. The cash flows are generated from input unit costs, time schedules and burnup data. CLOTHO calculates and communicates to PACTOLUS mass flow data to match a specified load factor history. 2 - Method of solution: Plant lifetime power costs are calculated using the discounted cash flow method. 3 - Restrictions on the complexity of the problem - Maxima of: 40 annual time periods into which all costs and mass flows are accumulated, 20 isotopic mass flows charged into and discharged from the reactor model

  4. Multilevel flow modeling of Monju Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Yoshikawa, Hidekazu; Jørgensen, Sten Bay

    2011-01-01

    Multilevel Flow Modeling is a method for modeling complex processes on multiple levels of means-end and part-whole abstraction. The modeling method has been applied on a wide range of processes including power plants, chemical engineering plants and power systems. The modeling method is supported...... with reasoning tools for fault diagnosis and control and is proposed to be used as a central knowledge base giving integrated support in diagnosis and maintenance tasks. Recent developments of MFM include the introduction of concepts for representation of control functions and the relations between plant...... functions and structure. The paper will describe how MFM can be used to represent the goals and functions of the Japanese Monju Nuclear Power Plant. A detailed explanation will be given of the model describing the relations between levels of goal, function and structural. Furthermore, it will be explained...

  5. Modelling the work flow of a nuclear waste management program

    Energy Technology Data Exchange (ETDEWEB)

    Hoeyer Mortensen, K. [Aarhus Univ., Computer Science Dept. (Denmark); Pinci, V. [Meta Software Corporation, Cambridge, MA (United States)

    1997-03-01

    In this paper we describe a modelling project to improve a nuclear waste management program in charge of the creation of a new system for the permanent disposal of nuclear waste. SADT (Structural Analysis and Design Technique) is used in order to provide a work-flow description of the functions to be performed by the waste management program. This description is then translated into a number of Coloured Petri Nets (CPN or CP-nets) corresponding to different program functions where additional behavioural inscriptions provide basis for simulation. Each of these CP-nets is simulated to produce timed event charts that are useful for understanding the behaviour of the program functions under different scenarios. Then all the CPN models are linked together to form a single stand-alone application that is useful for validating the interaction and cooperation between the different program functions. A technique for linking executable CPN models is developed for supporting large modelling projects and parallel development of independent CPN models. (au) 11 refs.

  6. Modelling the work flow of a nuclear waste management program

    International Nuclear Information System (INIS)

    Hoeyer Mortensen, K.; Pinci, V.

    1997-03-01

    In this paper we describe a modelling project to improve a nuclear waste management program in charge of the creation of a new system for the permanent disposal of nuclear waste. SADT (Structural Analysis and Design Technique) is used in order to provide a work-flow description of the functions to be performed by the waste management program. This description is then translated into a number of Coloured Petri Nets (CPN or CP-nets) corresponding to different program functions where additional behavioural inscriptions provide basis for simulation. Each of these CP-nets is simulated to produce timed event charts that are useful for understanding the behaviour of the program functions under different scenarios. Then all the CPN models are linked together to form a single stand-alone application that is useful for validating the interaction and cooperation between the different program functions. A technique for linking executable CPN models is developed for supporting large modelling projects and parallel development of independent CPN models. (au) 11 refs

  7. Neural network modeling of chaotic dynamics in nuclear reactor flows

    International Nuclear Information System (INIS)

    Welstead, S.T.

    1992-01-01

    Neural networks have many scientific applications in areas such as pattern classification and time series prediction. The universal approximation property of these networks, however, can also be exploited to provide researchers with tool for modeling observed nonlinear phenomena. It has been shown that multilayer feed forward networks can capture important global nonlinear properties, such as chaotic dynamics, merely by training the network on a finite set of observed data. The network itself then provides a model of the process that generated the data. Characterizations such as the existence and general shape of a strange attractor and the sign of the largest Lyapunov exponent can then be extracted from the neural network model. In this paper, the author applies this idea to data generated from a nonlinear process that is representative of convective flows that can arise in nuclear reactor applications. Such flows play a role in forced convection heat removal from pressurized water reactors and boiling water reactors, and decay heat removal from liquid-metal-cooled reactors, either by natural convection or by thermosyphons

  8. Two-phase flow heat transfer in nuclear reactor systems

    International Nuclear Information System (INIS)

    Koncar, Bostjan; Krepper, Eckhard; Bestion, Dominique; Song, Chul-Hwa; Hassan, Yassin A.

    2013-01-01

    Complete text of publication follows: Heat transfer and phase change phenomena in two-phase flows are often encountered in nuclear reactor systems and are therefore of paramount importance for their optimal design and safe operation.The complex phenomena observed especially during transient operation of nuclear reactor systems necessitate extensive theoretical and experimental investigations. This special issue brings seven research articles of high quality. Though small in number, they cover a wide range of topics, presenting high complexity and diversity of heat transfer phenomena in two-phase flow. In the last decades a vast amount of research has been devoted to theoretical work and computational simulations, yet the experimental work remains indispensable for understanding of two-phase flow phenomena and for model validation purposes. This is reflected also in this issue, where only one article is purely experimental, while three of them deal with theoretical modelling and the remaining three with numerical simulations. The experimental investigation of the critical heat flux (CHF) phenomena by means of photographic study is presented in the paper of J. Park et al. They have used a high-speed camera system to observe the transient boiling characteristics on a thin horizontal cylinder submerged in a pool of water or highly wetting liquid. Experiments show that the initial boiling process is strongly affected by the properties and wettability of the liquid. The authors have stressed the importance of the local scale observation leading to better understanding of the transient CHF phenomena. In the article of G. Espinosa-Paredes et al. a theoretical work concerning the derivation of transport equations for two-phase flow is presented. The author proposes a novel approach based on derivation of nonlocal volume averaged equations which contain new terms related to nonlocal transport effects. These non-local terms act as coupling elements between the phenomena

  9. Two-phase flow characterisation by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Leblond, J.; Javelot, S.; Lebrun, D.; Lebon, L.

    1998-01-01

    The results presented in this paper demonstrate the performance of the PFGSE-NMR to obtain a complete characterisation of two-phase flows. Different methods are proposed to characterise air-water flows in different regimes: stationary two-phase flows and flows in transient condition. Finally a modified PFGSE is proposed to analyse the turbulence of air-water bubbly flow. (author)

  10. Nuclear Technology Series. Course 4: Heat Transfer and Fluid Flow.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  11. Heat transfer and fluid flow in nuclear systems

    International Nuclear Information System (INIS)

    Fenech, H.

    1981-01-01

    The present publication is an attempt to provide a bridge between fundamental principles and current design practice. It is intended to serve the need of: engineers, scientists and graduate students active in thermal and hydraulics problems and to those interested to keep abreast of the field. The text is addressed to readers with previous knowledge in heat transfer and fluid flow equvalent to a one year university graduate course in that field. Because of the high degree of specialization covered in the six chapters of the book, individual authors of international reputation and active in their respective area of specialization were selected to contribute their knowledge. Each of the six chapters or sub-chapters are self-contained. They are followed by problem sets to enable the reader to check his level of comprehension of the material presented. The nuclear systems covered in separate chapters include: the pressurized and boiling water reactors (PWR, BWR), the helium cooled high temperature reactors (HTGR and HTR), the breeders helium cooled (GCFR) and sodium cooled (LMFBR). In addition the heat-exchangers and steam generators commonly associated with the above systems are covered in Chapter 6

  12. Measurement of two phase flow properties using the nuclear reactor instruments

    International Nuclear Information System (INIS)

    Albrecht, R.W.; Washington Univ., Seattle; Crowe, R.D.; Dailey, D.J.; Kosaly, G.; Damborg, M.J.

    1982-01-01

    A procedure is introduced for characterizing one dimensional, two phase flow in terms of three properties; propagation, structure, and dynamics. It is shown that all of these properties can be measured by analyzing the response of the reactor neutron field to a two phase flow perturbation. Therefore, a nuclear reactor can be regarded as a two phase flow instrument. (author)

  13. Multiparameter cytometric analysis of complex cellular response

    Czech Academy of Sciences Publication Activity Database

    Šimečková, Šárka; Fedr, Radek; Remšík, Jan; Kahounová, Z.; Slabáková, Eva; Souček, Karel

    2018-01-01

    Roč. 93A, č. 2 (2018), s. 239-248 ISSN 1552-4922 R&D Projects: GA MZd(CZ) NV15-28628A; GA MZd(CZ) NV15-33999A; GA MZd(CZ) NV17-28518A Institutional support: RVO:68081707 Keywords : flow-cytometry * permeabilization * apoptosis * fixation Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 3.222, year: 2016

  14. Efficient algorithms for flow simulation related to nuclear reactor safety

    International Nuclear Information System (INIS)

    Gornak, Tatiana

    2013-01-01

    Safety analysis is of ultimate importance for operating Nuclear Power Plants (NPP). The overall modeling and simulation of physical and chemical processes occuring in the course of an accident is an interdisciplinary problem and has origins in fluid dynamics, numerical analysis, reactor technology and computer programming. The aim of the study is therefore to create the foundations of a multi-dimensional non-isothermal fluid model for a NPP containment and software tool based on it. The numerical simulations allow to analyze and predict the behavior of NPP systems under different working and accident conditions, and to develop proper action plans for minimizing the risks of accidents, and/or minimizing the consequences of possible accidents. A very large number of scenarios have to be simulated, and at the same time acceptable accuracy for the critical parameters, such as radioactive pollution, temperature, etc., have to be achieved. The existing software tools are either too slow, or not accurate enough. This thesis deals with developing customized algorithm and software tools for simulation of isothermal and non-isothermal flows in a containment pool of NPP. Requirements to such a software are formulated, and proper algorithms are presented. The goal of the work is to achieve a balance between accuracy and speed of calculation, and to develop customized algorithm for this special case. Different discretization and solution approaches are studied and those which correspond best to the formulated goal are selected, adjusted, and when possible, analysed. Fast directional splitting algorithm for Navier-Stokes equations in complicated geometries, in presence of solid and porous obstacles, is in the core of the algorithm. Developing suitable pre-processor and customized domain decomposition algorithms are essential part of the overall algorithm amd software. Results from numerical simulations in test geometries and in real geometries are presented and discussed.

  15. A review of flow analysis methods for determination of radionuclides in nuclear wastes and nuclear reactor coolants.

    Science.gov (United States)

    Trojanowicz, Marek; Kołacińska, Kamila; Grate, Jay W

    2018-06-01

    The safety and security of nuclear power plant operations depend on the application of the most appropriate techniques and methods of chemical analysis, where modern flow analysis methods prevail. Nevertheless, the current status of the development of these methods is more limited than it might be expected based on their genuine advantages. The main aim of this paper is to review the automated flow analysis procedures developed with various detection methods for the nuclear energy industry. The flow analysis methods for the determination of radionuclides, that have been reported to date, are primarily focused on their environmental applications. The benefits of the application of flow methods in both monitoring of the nuclear wastes and process analysis of the primary circuit coolants of light water nuclear reactors will also be discussed. The application of either continuous flow methods (CFA) or injection methods (FIA, SIA) of the flow analysis with the β-radiometric detection shortens the analysis time and improves the precision of determination due to mechanization of certain time-consuming operations of the sample processing. Compared to the radiometric detection, the mass spectrometry (MS) detection enables one to perform multicomponent analyses as well as the determination of transuranic isotopes with much better limits of detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Effect of the momentum dependence of nuclear symmetry potential on the transverse and elliptic flows

    International Nuclear Information System (INIS)

    Zhang, Lei; Du, Yun; Zuo, Guang-Hua; Gao, Yuan; Yong, Gao-Chan

    2012-01-01

    In the framework of the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model, the effect of the momentum dependence of nuclear symmetry potential on nuclear transverse and elliptic flows in the neutron-rich reaction 132 Sn+ 124 Sn at a beam energy of 400MeV/nucleon is studied. We find that the momentum dependence of nuclear symmetry potential affects the rapidity distribution of the free neutron to proton ratio, the neutron and the proton transverse flows as a function of rapidity. The momentum dependence of nuclear symmetry potential affects the neutron-proton differential transverse flow more evidently than the difference of neutron and proton transverse flows as well as the difference of proton and neutron elliptic flows. It is thus better to probe the symmetry energy by using the difference of neutron and proton flows since the momentum dependence of nuclear symmetry potential is still an open question. And it is better to probe the momentum dependence of nuclear symmetry potential by using the neutron-proton differential transverse flow the rapidity distribution of the free neutron to proton ratio. (orig.)

  17. Multivariate analysis of flow cytometric data using decision trees

    Directory of Open Access Journals (Sweden)

    Svenja eSimon

    2012-04-01

    Full Text Available Characterization of the response of the host immune system is important in understanding the bidirectional interactions between the host and microbial pathogens. For research on the host site, flow cytometry has become one of the major tools in immunology. Advances in technology and reagents allow now the simultaneous assessment of multiple markers on a single cell level generating multidimensional data sets that require multivariate statistical analysis. We explored the explanatory power of the supervised machine learning method called 'induction of decision trees' in flow cytometric data. In order to examine whether the production of a certain cytokine is depended on other cytokines, datasets from intracellular staining for six cytokines with complex patterns of co-expression were analyzed by induction of decision trees. After weighting the data according to their class probabilities, we created a total of 13,392 different decision trees for each given cytokine with different parameter settings. For a more realistic estimation of the decision trees's quality, we used stratified 5-fold cross-validation and chose the 'best' tree according to a combination of different quality criteria. While some of the decision trees reflected previously known co-expression patterns, we found that the expression of some cytokines was not only dependent on the co-expression of others per se, but was also dependent on the intensity of expression. Thus, for the first time we successfully used induction of decision trees for the analysis of high dimensional flow cytometric data and demonstrated the feasibility of this method to reveal structural patterns in such data sets.

  18. Non-intrusive accurate and traceable flow measurements in nuclear power plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, A.; Kanda, V.; Sharp, B.; Lopez, A. [Advanced Measurement and Analysis Group Inc., ON (Canada); Gurevich, Y. [Daystar Technologies Inc., ON (Canada)

    2014-07-01

    Ultrasonic cross correlation flow meters, are a non-intrusive flow measurement technology based on measurement of the transport velocity of turbulent structures, and have many advantages over other ultrasonic flow measurement methods. The cross correlation flow meter CROSSFLOW, produced and operated by the Canadian company Advanced Measurement and Analysis Group Inc., is used in nuclear power plants around the world, for various application. This paper describes the operating principals of the ultrasonic cross correlation flow meter, its advantages over other ultrasonic flow measurement methods, its application around the world. (author)

  19. Lateral Flow Field Behavior Downstream of Mixing Vanes In a Simulated Nuclear Fuel Rod Bundle

    International Nuclear Information System (INIS)

    Conner, Michael E.; Smith, L. David III; Holloway, Mary V.; Beasley, Donald E.

    2004-01-01

    To assess the fuel assembly performance of PWR nuclear fuel assemblies, average subchannel flow values are used in design analyses. However, for this highly complex flow, it is known that local conditions around fuel rods vary dependent upon the location of the fuel rod in the fuel assembly and upon the support grid design that maintains the fuel rod pitch. To investigate the local flow in a simulated nuclear fuel rod bundle, a testing technique has been employed to measure the lateral flow field in a 5 x 5 rod bundle. Particle Image Velocimetry was used to measure the lateral flow field downstream of a support grid with mixing vanes for four unique subchannels in the 5 x 5 bundle. The dominant lateral flow structures for each subchannel are compared in this paper including the decay of these flow structures. (authors)

  20. Global flow of glasma in high energy nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guangyao; Fries, Rainer J., E-mail: rjfries@comp.tamu.edu

    2013-06-25

    We discuss the energy flow of the classical gluon fields created in collisions of heavy nuclei at collider energies. We show how the Yang–Mills analog of Faraday's Law and Gauss' Law predicts the initial gluon flux tubes to expand or bend. The resulting transverse and longitudinal structure of the Poynting vector field has a rich phenomenology. Besides the well-known radial and elliptic flow in transverse direction, classical quantum chromodynamics predicts a rapidity-odd transverse flow that tilts the fireball for non-central collisions, and it implies a characteristic flow pattern for collisions of non-symmetric systems A+B. The rapidity-odd transverse flow translates into a directed particle flow v{sub 1} which has been observed at RHIC and LHC. The global flow fields in heavy ion collisions could be a powerful check for the validity of classical Yang–Mills dynamics in high energy collisions.

  1. Analysis of nuclear material flow for experimental DUPIC fuel fabrication process at DFDF

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Lee, J. W.; Yang, M. S.; Baik, S. Y.; Lee, E. P.

    1999-08-01

    This report describes facilities necessary for manufacturing experiment for DUPIC fuel, manufacturing process and equipment. Nuclear material flows among facilities, in PIEF and IMEF, for irradiation test, for post examination of DUPIC fuel, for quality control, for chemical analysis and for treatment of radioactive waste have been analyzed in details. This may be helpful for DUPIC project participants and facility engineers working in related facilities to understand overall flow for nuclear material and radioactive waste. (Author). 14 refs., 15 tabs., 41 figs

  2. Analysis of nuclear material flow for experimental DUPIC fuel fabrication process at DFDF

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Lee, J. W.; Yang, M. S.; Baik, S. Y.; Lee, E. P

    1999-08-01

    This report describes facilities necessary for manufacturing experiment for DUPIC fuel, manufacturing process and equipment. Nuclear material flows among facilities, in PIEF and IMEF, for irradiation test, for post examination of DUPIC fuel, for quality control, for chemical analysis and for treatment of radioactive waste have been analyzed in details. This may be helpful for DUPIC project participants and facility engineers working in related facilities to understand overall flow for nuclear material and radioactive waste. (Author). 14 refs., 15 tabs., 41 figs.

  3. Study of visualized simulation and analysis of nuclear fuel cycle system based on multilevel flow model

    International Nuclear Information System (INIS)

    Liu Jingquan; Yoshikawa, H.; Zhou Yangping

    2005-01-01

    Complex energy and environment system, especially nuclear fuel cycle system recently raised social concerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only under the condition that those conflicting issues are gotten a consensus between stakeholders with different knowledge background, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has been developed to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle sys- tem based on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theory of human being, Its character is that MFM models define a set of mass, energy and information flow structures on multiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representation and the means-end and part-whole hierarchical flow structure to make the represented process easy to be understood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system were selected to be simulated and some analysis processes such as economics analysis, environmental analysis and energy balance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finally the simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycle and its levelised cost analysis will be represented as feasible examples. (authors)

  4. Study of visualized simulation and analysis of nuclear fuel cycle system based on multilevel flow model

    Institute of Scientific and Technical Information of China (English)

    LIU Jing-Quan; YOSHIKAWA Hidekazu; ZHOU Yang-Ping

    2005-01-01

    Complex energy and environment system, especially nuclear fuel cycle system recently raised social concerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only under the condition that those conflicting issues are gotten a consensus between stakeholders with different knowledge background, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has been developed to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle system based on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theory of human being. Its character is that MFM models define a set of mass, energy and information flow structures on multiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representation and the means-end and part-whole hierarchical flow structure to make the represented process easy to be understood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system were selected to be simulated and some analysis processes such as economics analysis, environmental analysis and energy balance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finally the simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycle and its levelised cost analysis will be represented as feasible examples.

  5. On-line validation of feedwater flow rate in nuclear power plants using neural networks

    International Nuclear Information System (INIS)

    Khadem, M.; Ipakchi, A.; Alexandro, F.J.; Colley, R.W.

    1994-01-01

    On-line calibration of feedwater flow rate measurement in nuclear power plants provides a continuous realistic value of feedwater flow rate. It also reduces the manpower required for periodic calibration needed due to the fouling and defouling of the venturi meter surface condition. This paper presents a method for on-line validation of feedwater flow rate in nuclear power plants. The method is an improvement of the previously developed method which is based on the use of a set of process variables dynamically related to the feedwater flow rate. The online measurements of this set of variables are used as inputs to a neural network to obtain an estimate of the feedwater flow rate reading. The difference between the on-line feedwater flow rate reading, and the neural network estimate establishes whether there is a need to apply a correction factor to the feedwater flow rate measurement for calculation of the actual reactor power. The method was applied to the feedwater flow meters in the two feedwater flow loops of the TMI-1 nuclear power plant. The venturi meters used for flow measurements are susceptible to frequent fouling that degrades their measurement accuracy. The fouling effects can cause an inaccuracy of up to 3% relative error in feedwater flow rate reading. A neural network, whose inputs were the readings of a set of reference instruments, was designed to predict both feedwater flow rates simultaneously. A multi-layer feedforward neural network employing the backpropagation algorithm was used. A number of neural network training tests were performed to obtain an optimum filtering technique of the input/output data of the neural networks. The result of the selection of the filtering technique was confirmed by numerous Fast Fourier Transform (FFT) tests. Training and testing were done on data from TMI-1 nuclear power plant. The results show that the neural network can predict the correct flow rates with an absolute relative error of less than 2%

  6. Research needs for coupling geochemical and flow models for nuclear waste isolation

    International Nuclear Information System (INIS)

    Pearson, F.J. Jr.

    1985-01-01

    An overview of coupling geochemical and flow models for nuclear waste disposal is presented and research needs are discussed. Topics considered include, chemical effects on flow, fluid and rock properties, pressure effects, water-rock equilibria, and reaction kinetics. 25 references

  7. Survey of near-field flow calculations for nuclear waste repositories NMA L21

    International Nuclear Information System (INIS)

    Wilson, R.N.; Holland, D.H.

    1979-11-01

    A survey of methods and codes which describe the flow of groundwater and the migration of radioactive waste in and about nuclear repositories was performed. A number of laboratories engaged in studies of waste migration and groundwater flow were visited in order to discuss the general problem and obtain reports of work being performed. The results of this survey are discussed

  8. A critical review of published groundwater flow models for safety of nuclear waste disposal

    International Nuclear Information System (INIS)

    Laine, E.

    1997-04-01

    Flow models have been simulated for the potential nuclear waste sites in Precambrian bedrock of Finland in the Technical Research Centre of Finland (VTT). The work had been commissioned by Teollisuuden Voima Oy. In the present study, the published flow models are critically reviewed. The work concentrates on qualitative evaluation of the applied equivalent continuum approach applied to crystalline bedrock. Special attention is paid to the use of the geological information in connection with flow modelling. (35 refs., 6 figs.)

  9. Development of a multi-path ultrasonic flow meter for the application to feedwater flow measurement in nuclear power plants

    International Nuclear Information System (INIS)

    Jong, J. C.; Ha, J. H.; Kim, Y. H.; Jang, W. H.; Park, K. S.; Park, M. S.; Park, M. H.

    2002-01-01

    In this work, we propose a method to measure the feedwater flow using multi-path ultrasonic flow meter (UFM). Since the UFM measures a path velocity at which the ultrasonic wave is propagated, the flow profile may be important to convey the path velocity to the velocity averaged over the entire cross section of the flowing medium. The conventional UFM has used the smooth-wall circular pipe model presented by Nikurades. However, this model covers a lower range which is less than 3.2 million while the Reynolds number of the feedwater flow in operating nuclear power plants (NPPs) is about 20 million. Therefore, we feedwater flow in operating nuclear power plants (NPPs) is about 20 million. Therefore, we proposed the non-linear correlation model that combines the ratio between the DP output and proposed the non-linear correlation model that combines the ratio between the DP output and UFM output. Experiments were performed using both computer simulation and newly constructed NPPs' test data. The uncertainty analysis result shows that the proposed method has reasonably lower uncertainty than conventional UFM

  10. Experimental study of water flow in nuclear fuel elements; Estudo experimental do escoamento de agua em elementos combustiveis nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Lorena Escriche, E-mail: ler@cdtn.br [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET), Belo Horizonte, MG (Brazil); Rezende, Hugo Cesar; Mattos, Joao Roberto Loureiro de; Barros Filho, Jose Afonso; Santos, Andre Augusto Campagnole dos, E-mail: hcr@cdtn.br, E-mail: jrmattos@cdtn.br, E-mail: jabf@cdtn.br, E-mail: aacs@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    This work aims to develop an experimental methodology for investigating the water flow through rod bundles after spacer grids of nuclear fuel elements of PWR type reactors. Speed profiles, with the device LDV (Laser Doppler Velocimetry), and the pressure drop between two sockets located before and after the spacer grid, using pressure transducers were measured.

  11. At the heart of the global nuclear news flow

    International Nuclear Information System (INIS)

    Feuz, P.

    1997-01-01

    The dual role of NUCNET is discussed: - exchange of news and other information within the world's nuclear community for use by top managers and executives and public communicators, and - distribution of news of interest to the public to wire agency journalists and other sections of the media

  12. Low-flow operation and testing of pumps in nuclear plants

    International Nuclear Information System (INIS)

    Greenstreet, W.L.

    1989-01-01

    Low-flow operation of centrifugal pumps introduces hydraulic instability and other factors that can cause damage to these machines. The resulting degradation has been studied and recorded for pumps in electric power plants. The objectives of this paper are to (1) describe the damage-producing phenomena, including their sources and consequences; (2) relate these observations to expectations for damage caused by low-flow operation of pumps in nuclear power plants; and (3) assess the utility of low-flow testing. Hydraulic behavior during low-flow operation is reviewed for a typical centrifugal pump stage, and the damage-producing mechanisms are described. Pump monitoring practices, in conjunction with pump performance characteristics, are considered; experience data are reviewed; and the effectiveness of low-flow surveillance monitoring is examined. Degradation caused by low-flow operation is shown to be an important factor, and low-flow surveillance testing is shown to be inadequate. 18 refs., 5 figs., 4 tabs

  13. Gas flow in and out of a nuclear waste container

    International Nuclear Information System (INIS)

    Zwahlen, E.D.; Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.

    1989-05-01

    We analyze the flow of gases out of and into a high-level-waste container in the unsaturated tuff of Yucca Mountain. Containers are expected to fail eventually by localized cracks and penetrations. Even though the penetrations may be small, argon gas initially in the hot container can leak out. As the waste package cools, the pressure inside the container can become less than atmospheric, and air can leak in. 14 C released from the hot fuel-cladding surface can leak out of penetrations, and air inleakage can mobilize additional 14 C and other volatile radioactive species as it oxidizes the fuel cladding and the spent fuel. In an earlier paper we studied the gas flow through container penetrations occurring at the time of emplacement. Here we analyze the flow of gas for various penetration sizes occurring at 300 years. 3 refs., 2 figs

  14. Mass transfer coefficient in disturbed flow due to orifice for flow accelerated corrosion in nuclear power plant

    International Nuclear Information System (INIS)

    Prasad, Mahendra; Gaikwad, Avinash J.; Sridharan, Arunkumar; Parida, Smrutiranjan

    2015-01-01

    The flow of fluid in pipes cause corrosion wherein the inner surface of pipe becomes progressively thinner and susceptible to failure. This form of corrosion dependent on flow dynamics is called Flow Accelerated Corrosion (FAC) and has been observed in Nuclear Power Plants (NPPs). Mass transfer coefficient (MTC) is related to extent of wall thinning and it changes from its value in a straight pipe (with same fluid parameters) for flow in orifices, bends, junctions etc. due to gross disturbance of the velocity profile. This paper presents two-dimensional computational fluid dynamics (CFD) simulations for an orifice configuration in a straight pipe. Turbulent model K- ω with shear stress transport and transition flow was the model used for simulation studies. The mass transfer boundary layer (MTBL) thickness δ mtbl is related to the Schmidt number (Sc) and hydrodynamic boundary layer thickness δ h , as δ mtbl ~ δh/(Sc 1/3 ). MTBL is significantly smaller than δ h and hence boundary layer meshing was carried out deep into δ mtbl . Uniform velocity profile was applied at the inlet. Post orifice fluid shows large recirculating flows on the upper and lower wall. At various locations after orifice, mass transfer coefficient is calculated and compared with the value in straight pipe with fully developed turbulent flow. The MTC due to the orifice increases and it is correlated with enhanced FAC in region after orifice. (author)

  15. Qualifying Elbow Meters for High Pressure Flow Measurements in an Operating Nuclear Power Plant

    International Nuclear Information System (INIS)

    Chan, A.M.; Maynard, K.J.; Ramundi, J.; Wiklung, E.

    2006-01-01

    To support the installation and use of elbow meters to measure the high pressure emergency coolant injection flow in an operating nuclear station, a test program was performed to qualify: (i) the 'hot' tapping procedure for field application and (ii) the use of elbow meters for accurate flow measurements over the full range of station ECI flow conditions. This paper describes the design conditions and major components of a flow loop used for the elbow meter calibrations. Typical test results are presented and discussed. (authors)

  16. 3-D flow analyses for design of nuclear fuel spacer

    Energy Technology Data Exchange (ETDEWEB)

    Karouta, Z. [ABB Combustion Engineering, Windsor, CT (United States); GU, Chun-Yuan [ABB Corporate Research, Vaesteras (Sweden); Schoelin, B. [ABB Atom AB, Vaesteras (Sweden)

    1995-09-01

    The Computational Fluid Dynamics (CFD) code, CFDS-FLOW3D, was used to develop improved fuel designs for PWR cores. It was used primarily to understand the fluid dynamics of grid spacers, the mass transfer between subchannels caused by spacers and in the long term to develop two-phase models which enable prediction of critical heat flux in PWR fuel. A single subchannel of one grid span was modeled. In this model different spacer designs with mixing devices were analyzed. A special treatment of the boundary condition was developed making use of flow symmetry to model the mass transfer between different subchannels and minimize the size of the computational model. This reduced the computational model to a fraction of a subchannel using traditional periodic boundary conditions. The Navier-Stokes equation was solved for the liquid and the flow turbulence was modeled by k-{xi} turbulence model. The spacer and mixing device were treated as infinite thin surfaces in the model and a zero velocity condition and turbulent wall function were applied on each side of the thin surfaces. This approach simulated the swirl from the mixing devices well, but had the drawback of not predicting pressure drop accurately since the wake behind the plates and the acceleration effect of the spacers were ignored. CFDS-FLOW3D models with mixing devices were applied in the single-phase flow regime. Velocity profiles from the CFDS-FLOW3D models were compared to Laser Doppler Velocimeter measurements taken from the flow field downstream of spaces in a full scale, cold water test loop. The predicted axial and lateral velocity profiles were in good agreement with the measurements. The evaluation of the performance of different spacer devices was made by comparing the swirl ratio downstream of the grid spacers. It is planned to evaluate heat transfer coefficient downstream of the spaces, to implement two-phase flow models, and to model the superheated boundary layer on the surface of the fuel rod.

  17. Nuclear dynamics with the (finite range) Gogny force: flow effects

    International Nuclear Information System (INIS)

    Sebille, F.; Royer, G.; Schuck, P.; Gregoire, C.

    1988-01-01

    We introduce for the first time the effective finite range interaction of Gogny in the semi-classical description of heavy ion reactions based on the Landau-Vlasov equation. The characteristics of the flow for heavy ion collisions are studied as functions of the incident energy, the impact parameter and the mass number. The momentum dependence in the mean field together with the non linearities in the collision kernel decrease the flow in contradiction with other calculations; the origins of this discrepancy are studied in details

  18. Influence of flow constraints on the properties of the critical endpoint of symmetric nuclear matter

    Science.gov (United States)

    Ivanytskyi, A. I.; Bugaev, K. A.; Sagun, V. V.; Bravina, L. V.; Zabrodin, E. E.

    2018-06-01

    We propose a novel family of equations of state for symmetric nuclear matter based on the induced surface tension concept for the hard-core repulsion. It is shown that having only four adjustable parameters the suggested equations of state can, simultaneously, reproduce not only the main properties of the nuclear matter ground state, but the proton flow constraint up its maximal particle number densities. Varying the model parameters we carefully examine the range of values of incompressibility constant of normal nuclear matter and its critical temperature, which are consistent with the proton flow constraint. This analysis allows us to show that the physically most justified value of nuclear matter critical temperature is 15.5-18 MeV, the incompressibility constant is 270-315 MeV and the hard-core radius of nucleons is less than 0.4 fm.

  19. Evaluation on the imaging of the bronchial blood flow using nuclear angiocardiography

    International Nuclear Information System (INIS)

    Fujii, Tadashige; Hirayama, Jiro; Kanai, Hisakata; Kobayashi, Toshio; Handa, Kenjiro

    1979-01-01

    Nuclear angiocardiography with sup(99m)TcO 4 - was performed for the purpose of the delineation of the systemic perfusion in various lung diseases, using a scintillation camera with a digital minicomputer system. The images of the bronchial blood flow were obtained in cases with primary lung cancer, pulmonary tuberculosis, lung abscess, bronchiectasis and chronic bronchitis. The fair images of the bronchial blood flow were taken in cases of peripheral type, adenocarcinoma and primary foci of atelectatic type in primary lung cancer. The grade of delineation of the bronchial blood flow and vascularity of bronchial artery in foci of primary lung cancer were correlative to the grade of accumulation of 197 HgCl 2 , respectively. The joint use of nuclear angiocardiography and other imagings such as tumor or perfusion one was useful for evaluation of the pulmonary and systemic circulation, and that made isotope diagnosis of primary lung cancer more reliable too. The image as a isocount map extracted out of the image of 197 HgCl 2 or sup(99m)Tc-MAA, was superimposed to the brightness image of the nuclear angiocardiogram (aortic phase). This image superimposition methods were valuable to improve anatomic orientation of the nuclear angiocardiogram. The delineation of the bronchial blood flow on the subtraction image, which obtained from the two time-different images in aortic phase of the nuclear angiocardiogram, was better than that of the original images. (author)

  20. Triton-3He relative and differential flows and the high density behavior of nuclear symmetry

    International Nuclear Information System (INIS)

    Yong, Gaochan; Li, Baoan; Chen, Liewen

    2010-01-01

    Using a transport model coupled with a phase-space coalescence after-burner we study the triton- 3 He relative and differential transverse flows in semi-central 132 Sn + 124 Sn reactions at a beam energy of 400 MeV/nucleon. We find that the triton- 3 He pairs carry interesting information about the density dependence of the nuclear symmetry energy. The t- 3 He relative flow can be used as a particularly powerful probe of the high-density behavior of the nuclear symmetry energy. (author)

  1. Multilevel Flow Modeling for Nuclear Power Plant Diagnosis

    DEFF Research Database (Denmark)

    Gola, G; Lind, Morten; Thunem, Harald P-J

    2012-01-01

    , especially if extended to the whole plant. Monitoring plant performances by means of data reconciliation techniques has proved successful to detect anomalies during operation, provide early warnings and eventually schedule maintenance. At the same time, the large amount of information provided by large...... detected anomalies. The combination of a data reconciliation system and the Multilevel Flow Modeling approach is illustrated with regard to the secondary loop of the Loviisa-2 Pressurized Water Reactor located in Finland....

  2. Flow imaging by means of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Wedeen, V.J.; Rosen, B.R.

    1986-01-01

    To form an image (velocity profile) of fluid flowing in a vessel, the fluid is stimulated to produce a time-dependent magnetic resonance signal which is subjected to Fourier-transform. The stimulating is done so as to introduce spatially-dependent phase information indicative of the velocity profile of the fluid. Thus, for measuring velocity in the x-direction within a z-slice, after selective oxidation of the slice, a long gradient bsub(x), is applied, followed by a π pulse. A second frequency dispersing bsub(x) gradient bsub(x) is present in a period embracing the echo signal, following a phase encoding gradient bsub(y). Slice section may be omitted for projection imaging, and an image of fluid flow can be obtained by generating two data sets encoded with phase information indicative of two different velocity profiles of the fluid (taken at different times), combining the data sets, and displaying the resulting data set as an image. By analysing the signal over a period not centred at the middle of the echo signal, a frequency offset is introduced giving the image a striped appearance, the strips being curved in the presence of fluid flow. (author)

  3. Thermodynamic coupling of heat and matter flows in near-field regions of nuclear waste repositories

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1983-11-01

    In near-field regions of nuclear waste repositories, thermodynamically coupled flows of heat and matter can occur in addition to the independent flows in the presence of gradients of temperature, hydraulic potential, and composition. The following coupled effects can occur: thermal osmosis, thermal diffusion, chemical osmosis, thermal filtration, diffusion thermal effect, ultrafiltration, and coupled diffusion. Flows of heat and matter associated with these effects can modify the flows predictable from the direct effects, which are expressed by Fourier's law, Darcy's law, and Fick's law. The coupled effects can be treated quantitatively together with the direct effects by the methods of the thermodynamics of irreversible processes. The extent of departure of fully coupled flows from predictions based only on consideration of direct effects depends on the strengths of the gradients driving flows, and may be significant at early times in backfills and in near-field geologic environments of repositories. Approximate calculations using data from the literature and reasonable assumptions of repository conditions indicate that thermal-osmotic and chemical-osmotic flows of water in semipermeable backfills may exceed Darcian flows by two to three orders of magnitude, while flows of solutes may be reduced greatly by ultrafiltration and chemical osmosis, relative to the flows predicted by advection and diffusion alone. In permeable materials, thermal diffusion may contribute to solute flows to a smaller, but still significant, extent

  4. FLATT - a computer programme for calculating flow and temperature transients in nuclear fuels

    International Nuclear Information System (INIS)

    Venkat Raj, V.; Koranne, S.M.

    1976-01-01

    FLATT is a computer code written in Fortran language for BESM-6 computer. The code calculates the flow transients in the coolant circuit of a nuclear reactor, caused by pump failure, and the consequent temperature transients in the fuel, clad, and the coolant. In addition any desired flow transient can be fed into the programme and the resulting temperature transients can be calculated. A case study is also presented. (author)

  5. Personal view of educating two-phase flow and human resource development as a nuclear engineer

    International Nuclear Information System (INIS)

    Hotta, Akitoshi

    2010-01-01

    As an engineer who has devoted himself in the nuclear industry for almost three decades, the author gave a personal view on educating two-phase flow and developing human resources. An expected role of universities in on-going discussions of collaboration among industry-government-academia is introduced. Reformation of two-phase flow education is discussed from two extreme viewpoints, the basic structure of physics and the practical system analysis. (author)

  6. Application of neural networks to validation of feedwater flow rate in a nuclear power plant

    International Nuclear Information System (INIS)

    Khadem, M.; Ipakchi, A.; Alexandro, F.J.; Colley, R.W.

    1993-01-01

    Feedwater flow rate measurement in nuclear power plants requires periodic calibration. This is due to the fact that the venturi surface condition of the feedwater flow rate sensor changes because of a chemical reaction between the surface coating material and the feedwater. Fouling of the venturi surface, due to this chemical reaction and the deposits of foreign materials, has been observed shortly after a clean venturi is put in operation. A fouled venturi causes an incorrect measurement of feedwater flow rate, which in turn results in an inaccurate calculation of the generated power. This paper presents two methods for verifying incipient and continuing fouling of the venturi of the feedwater flow rate sensors. Both methods are based on the use of a set of dissimilar process variables dynamically related to the feedwater flow rate variable. The first method uses a neural network to generate estimates of the feedwater flow rate readings. Agreement, within a given tolerance, of the feedwater flow rate instrument reading, and the corresponding neural network output establishes that the feedwater flow rate instrument is operating properly. The second method is similar to the first method except that the neural network predicts the core power which is calculated from measurements on the primary loop, rather than the feedwater flow rates. This core power is referred to the primary core power in this paper. A comparison of the power calculated from the feedwater flow measurements in the secondary loop, with the calculated and neural network predicted primary core power provides information from which it can be determined whether fouling is beginning to occur. The two methods were tested using data from the feedwater flow meters in the two feedwater flow loops of the TMI-1 nuclear power plant

  7. A numerical investigation of turbulent flow in an 18-plate nuclear fuel assembly

    International Nuclear Information System (INIS)

    Yu, R.; Lightstone, M.F.

    2003-01-01

    A numerical simulation of the fluid flow in the core of the McMaster Nuclear Reactor (MNR) was performed. The standard k - ε turbulence model together with a two-layer wall boundary model was used in the current study. A two-dimensional numerical model for the MNR 18-plate nuclear fuel assembly was developed using the advanced commercial computational fluid dynamics (CFD) code CFX-TASCflow. The numerical predictions were compared with experimental data for the MNR 18-plate assembly at the same flow conditions. In general, the code over predicts the pressure drop for the range of the mass flow rate investigated, however, the difference decreases as the mass flow rate (or Reynolds number) increases. Errors of less than 4% were obtained for mass flows greater than 4.0 kg/s. The comparison shows that the predicted flow distribution and velocities are very close to the measured data for the high Reynolds number flows. It is found that the k - ε model with the two-layer wall boundary model can predict the flow in the vertical parallel plate channels in the low Reynolds number region (Re=3000 to 10,000) very well. (author)

  8. The study of two-phase critical flow characteristics in nuclear reactor coolant system

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Chang, Seok Kyu

    1993-01-01

    This report presents the physical characteristics of two-phase critical flow whcih can be occured in a light water nuclear power plant during LOCA and also reviews the critical flow models and their applications in detail. The existing experimental data base are reviewed and classified. The typical critical flow models which have been applied to the computer code for the accident are also reviewed. Some suggestions are presented for the development of advanced analytical models and the extension of useful experimental database. (Author)

  9. Work flow management systems applied in nuclear power plants management system to a new computer platform

    International Nuclear Information System (INIS)

    Rodriguez Lorite, M.; Martin Lopez-Suevos, C.

    1996-01-01

    Activities performed in most companies are based on the flow of information between their different departments and personnel. Most of this information is on paper (delivery notes, invoices, reports, etc). The percentage of information transmitted electronically (electronic transactions, spread sheets, files from word processors, etc) is usually low. The implementation of systems to control and speed up this work flow is the aim of work flow management systems. This article presents a prototype for applying work flow management systems to a specific area: the basic life cycle of a purchase order in a nuclear power plant, which requires the involvement of various computer applications: purchase order management, warehouse management, accounting, etc. Once implemented, work flow management systems allow optimisation of the execution of different tasks included in the managed life cycles and provide parameters to, if necessary, control work cycles, allowing their temporary or definitive modification. (Author)

  10. Investigation of fluid flow in various geometries related to nuclear reactor using PIV system

    International Nuclear Information System (INIS)

    Kansal, A.K.; Maheshwari, N.K.; Singh, R.K.; Vijayan, P.K.; Saha, D.; Singh, R.K.; Joshi, V.M.

    2011-01-01

    Particle Image Velocimetry (PIV) is a non-intrusive technique for simultaneously measuring the velocities at many points in a fluid flow. The PIV system used is comprised of Nd:YAG laser source, CCD (Charged Coupled Device) camera, timing controller (to control the laser and camera) and software used for analyzing the flow velocities. Several case studies related to nuclear reactor were performed with the PIV system. Some of the cases like flow in circular tube, submerged jet, natural convection in a water pool, flow field of moderator inlet diffuser of 500 MWe Pressurised Heavy Water Reactor (PHWR) and fluidic flow control device (FFCD) used in advanced accumulator of Emergency Core Cooling System (ECCS) have been studied using PIV system. Theoretical studies have been performed and comparisons with PIV results are also given in the present studies. (author)

  11. Phenomenological studies of two-phase flow processes for nuclear waste isolation

    International Nuclear Information System (INIS)

    Pruess, K.; Finsterle, S.; Persoff, P.; Oldenburg, C.

    1994-01-01

    The US civilian radioactive waste management program is unique in its focus on a site in the unsaturated zone, at Yucca Mountain, Nevada. Two-phase flow phenomena can also play an important role in repositories beneath the water table where gas is generated by corrosion, hydrolysis, and biological degradation of the waste packages. An integrated program has been initiated to enhance our understanding of two-phase flow behavior in fractured rock masses. The studies include two-phase (gas-liquid) flow experiments in laboratory specimens of natural rock fractures, analysis and modeling of heterogeneity and instability effects in two-phase flow, and design and interpretation of field experiments by means of numerical simulation. We present results that identify important aspects of two-phase flow behavior on different space and time scales which are relevant to nuclear waste disposal in both unsaturated and saturated formations

  12. Transient flow characteristics of nuclear reactor coolant pump in recessive cavitation transition process

    International Nuclear Information System (INIS)

    Wang Xiuli; Yuan Shouqi; Zhu Rongsheng; Yu Zhijun

    2013-01-01

    The numerical simulation calculation of the transient flow characteristics of nuclear reactor coolant pump in the recessive cavitation transition process in the nuclear reactor coolant pump impeller passage is conducted by CFX, and the transient flow characteristics of nuclear reactor coolant pump in the transition process from reducing the inlet pressure at cavitation-born conditions to NPSHc condition is studied and analyzed. The flow field analysis shows that, in the recessive cavitation transition process, the speed diversification at the inlet is relative to the bubble increasing, and makes the speed near the blade entrance increase when the bubble phase region becomes larger. The bubble generation and collapse will affect the the speed fluctuation near the entrance. The vorticity close to the blade entrance gradually increasing is influenced by the bubble phase, and the collapse of bubble generated by cavitation will reduce the vorticity from the collapse to impeller outlet. Pump asymmetric structure causes the asymmetry of the flow, velocity and outlet pressure distribution within every impeller flow passage, which cause the asymmetry of the transient radial force. From the dimensionless t/T = 0.6, the bubble phase starts to have impact on the impeller transient radial force, and results in the irregular fluctuations. (authors)

  13. Effect of 3-D moderator flow configurations on the reactivity of CANDU nuclear reactors

    International Nuclear Information System (INIS)

    Zadeh, Foad Mehdi; Etienne, Stephane; Chambon, Richard; Marleau, Guy; Teyssedou, Alberto

    2017-01-01

    Highlights: • 3-D CFD simulations of CANDU-6 moderator flows are presented. • A thermal-hydraulic code using thermal physical fluid properties is used. • The numerical approach and convergence is validated against available data. • Flow configurations are correlated using Richardson’s number. • The interaction between moderator temperatures with reactivity is determined. - Abstract: The reactivity of nuclear reactors can be affected by thermal conditions prevailing within the moderator. In CANDU reactors, the moderator and the coolant are mechanically separated but not necessarily thermally isolated. Hence, any variation of moderator flow properties may change the reactivity. Until now, nuclear reactor calculations have been performed by assuming uniform moderator flow temperature distribution. However, CFD simulations have predicted large time dependent flow fluctuations taking place inside the calandria, which can bring about local temperature variations that can exceed 50 °C. This paper presents robust CANDU 3-D CFD moderator simulations coupled to neutronic calculations. The proposed methodology makes it possible to study not only different moderator flow configurations but also their effects on the reactor reactivity coefficient.

  14. Simulation of Valve Operation for Flow Interrupt Test in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kim, Jae Hyung; Shin, Dae Yong; Shin, Dong Woo; Kim, Charn Jung; Lee, Jung Hee

    2012-01-01

    The valve used in nuclear power plant must be qualified for the function according to the KEPIC MF. The test valve must be selected by shape and size, which is given by KEPIC MF. In the functional test, the mathematical model for the valve operation is needed. The mathematical model must be verified by the test, whose method and procedure is defined in KEPIC MF. The lack of analytical technique has lead to the poor mathematical model, with which the functional test for the big valve is impossible with analytical method. Especially, the tank and rupture disk in the flow test is not considered and the result of the analysis is so different to the real one. In these days, the 3D model for the flow interrupt test makes more accurate analysis. And no facility about functional test reduces the research will for the nuclear power plant valve. For this problem, the test facility for the functional test of the valve and pump in nuclear power plant has been made until 2012. With the test facility, the research project related the valve were initiated in KIMM( Korea Institute of Machinery and Materials). And the joint project to SNU(Seoul National University) has been going on the numerical analysis for the valve in nuclear power plant. Using the commercial software and user subroutine, UDF, the co-simulation with multi-body dynamic and fluid flow analysis and the addition of tank and rupture disk to the user subroutine make possible to simulate the flow interrupt test numerically. This is not simple and regular analysis, which was introduced in user subroutine. In order to simulate the real situation, the engineering work, related mathematical model, and the programming in the user subroutine are needed. This study is on the making the mathematical model for the functional test of the valve in nuclear power plan. The functional test is the real test procedure and defined in KEPIC MF

  15. Analysis of nuclear localization of interleukin-1 family cytokines by flow cytometry.

    Science.gov (United States)

    Ross, Ralf; Grimmel, Jan; Goedicke, Sybelle; Möbus, Anna M; Bulau, Ana-Maria; Bufler, Philip; Ali, Shafaqat; Martin, Michael U

    2013-01-31

    The dual function cytokines IL-1α, IL-33 and IL-37 are members of the IL-1 cytokine family. Besides of being able to bind to their cognate receptors on target cells, they can act intracellularly in the producing cell. All three are able to translocate to the nucleus and have been discussed to affect gene expression. In order to compare and quantitate nuclear translocation of these IL-1 family members we established a robust technique which enables to measure nuclear localization on a single cell level by flow cytometry. Vectors encoding fusion proteins of different IL-1 family members with enhanced green fluorescent protein were cloned and cell lines transiently transfected with these. Fluorescent fusion proteins in intact cells or in isolated nuclei were detected subsequently by fluorescence microscopy and flow cytometry, respectively. Depending on the cellular system, cells and nuclei were distinguishable by flow cytometry in forward scatter/sideward scatter. Fluorescent fusion proteins were detectable in isolated nuclei up to three days following preparation. Signal intensity of fusion proteins of IL-33 and IL-37 in isolated nuclei but not of IL-1α, was markedly increased by fixation with paraformaldehyde, directly following cell lysis, indicating that IL-1α binds stronger to nuclear structures than IL-33 and IL-37. Nuclear translocation of fluorescent IL-37 fusion proteins in a stably transfected RAW264.7 mouse macrophage cell line required stimulation with lipopolysaccharide. Applying this method we demonstrated that a prolonged lag phase of more than 15h before LPS-stimulated nuclear translocation was detected. In summary, we present a robust method to analyze and quantitate nuclear localization of IL-1 cytokine family members. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. STAFAN, Fluid Flow, Mechanical Stress in Fractured Rock of Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Huyakorn, P.; Golis, M.J.

    1989-01-01

    1 - Description of program or function: STAFAN (Stress And Flow Analysis) is a two-dimensional, finite-element code designed to model fluid flow and the interaction of fluid pressure and mechanical stresses in a fractured rock surrounding a nuclear waste repository. STAFAN considers flow behavior of a deformable fractured system with fracture-porous matrix interactions, the coupling effects of fluid pressure and mechanical stresses in a medium containing discrete joints, and the inelastic response of the individual joints of the rock mass subject to the combined fluid pressure and mechanical loading. 2 - Restrictions on the complexity of the problem: STAFAN does not presently contain thermal coupling, and it is unable to simulate inelastic deformation of the rock mass and variably saturated or two-phase flow in the fractured porous medium system

  17. Development of the GO-FLOW reliability analysis methodology for nuclear reactor system

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Kobayashi, Michiyuki

    1994-01-01

    Probabilistic Safety Assessment (PSA) is important in the safety analysis of technological systems and processes, such as, nuclear plants, chemical and petroleum facilities, aerospace systems. Event trees and fault trees are the basic analytical tools that have been most frequently used for PSAs. Several system analysis methods can be used in addition to, or in support of, the event- and fault-tree analysis. The need for more advanced methods of system reliability analysis has grown with the increased complexity of engineered systems. The Ship Research Institute has been developing a new reliability analysis methodology, GO-FLOW, which is a success-oriented system analysis technique, and is capable of evaluating a large system with complex operational sequences. The research has been supported by the special research fund for Nuclear Technology, Science and Technology Agency, from 1989 to 1994. This paper describes the concept of the Probabilistic Safety Assessment (PSA), an overview of various system analysis techniques, an overview of the GO-FLOW methodology, the GO-FLOW analysis support system, procedure of treating a phased mission problem, a function of common cause failure analysis, a function of uncertainty analysis, a function of common cause failure analysis with uncertainty, and printing out system of the results of GO-FLOW analysis in the form of figure or table. Above functions are explained by analyzing sample systems, such as PWR AFWS, BWR ECCS. In the appendices, the structure of the GO-FLOW analysis programs and the meaning of the main variables defined in the GO-FLOW programs are described. The GO-FLOW methodology is a valuable and useful tool for system reliability analysis, and has a wide range of applications. With the development of the total system of the GO-FLOW, this methodology has became a powerful tool in a living PSA. (author) 54 refs

  18. Development of a method for detecting nuclear fuel debris and water leaks at a nuclear reactor/containment vessel by flow visualization

    International Nuclear Information System (INIS)

    Umezawa, Shuichi; Tanaka, Katsuhiko

    2013-01-01

    It is the important issue to fill up each nuclear reactor/containment vessel with water and to take out debris of damaged fuel from them for decommissioning of Fukushima Daiichi nuclear power plants. It is necessary to detect the debris and water leaks at a nuclear reactor/containment vessel for the purpose. However, the method is not completely developed in the present stage. Accordingly, we have developed a method for detecting debris and water leaks at a nuclear reactor/containment vessel by flow visualization. Experiments of the flow visualization were conducted using two types of water tanks. An optical fiber and a collimator lens were employed for modifying a straight laser beam into a sheet projection. Some visualized images were obtained through the experiments. Particle Image Velocimetry, i.e. PIV, analysis was applied to the images for quantitative flow rate analysis. Consequently, it is considered that the flow visualization method has a possibility for the practical use. (author)

  19. Visual Inspection of the Flow Distribution Plate Bolts of a Nuclear Steam Generator

    International Nuclear Information System (INIS)

    Jeong, Woo Tae; Kim, Suk Tae; Sohn, Wook; Kang, Duk Won; Kang, Seok Chul

    2007-01-01

    To develop a system for visually inspecting the flow distribution plate (FDP) bolts of a nuclear steam generator, we reviewed several types of similar inspection equipment. The equipment which are currently available are mostly for inspecting lower part of a steam generator such as tube sheets and annulus except ELVS (Eggcrate Visual Inspection System). However, the design concept of ELVS could not be used for developing a device which enables the visual inspection of flow distribution plate bolts. Therefore, based on the current state of the art technology on the similar equipment, we conceptually designed a new inspection system for checking the FDP bolts

  20. The nuclear flow and the mass number dependence of the balance point

    International Nuclear Information System (INIS)

    Sebille, F.; de la Mota, V.; Remaud, B.; Schuck, P.

    1990-01-01

    The nuclear flow is studied theoretically with the Landau Vlasov equation in the E/A = 50 to 150 MeV energy domain using the finite range Gogny force. For comparison also other equations of states based on velocity independent mean fields are used. In this paper the mass number dependence of the balance point is investigated. A sensitivity of the flow on the equation of state as a function of mass and energies around and above the balance point can tentatively be advanced

  1. An application of multilevel flow modelling method for nuclear plant state identification

    International Nuclear Information System (INIS)

    Businaro, T.; Di Lorenzo, A.; Meo, G.B.; Rabbani, M.I.; Rubino, E.

    1986-01-01

    With the advent of advanced digital techniques it has been rendered possible, necessity of which has long since been recognised, to develop a computer based man-machine interface and hance an expert system based on knowledge based decision making for operator support in the control rooms of nuclear plants. The Multilevel Flow Modelling method developed at RISO Laboratories, Denmark, has been applied in the present experiment to model Italian PEC reactor and to verify applicability of this method in plant state identification. In MFM method functional structure of a process plant is described in terms of a set of interrelated mass and energy flow structures on different levels of physical aggregation

  2. Numerical Simulation of Groundwater Flow at Kori Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Sohn, Wook; Sohn, Soon Whan; Chon, Chul Min; Kim, Kue Youn

    2010-01-01

    Recently, the understanding of hydrogeological characteristics of nuclear power sites is getting more importance with increasing public concerns over the environment since such understanding is essential for an environmentally friendly operation of plants. For such understanding, the prediction of groundwater flow pattern onsite plays the most critical role since it is the most dynamic of the factors to be considered. In this study, the groundwater flow at the Kori Plant 1 site has been simulated numerically with aim of providing fundamental information needed for improving the understanding of the hydrogeological characteristics of the site

  3. The GC computer code for flow sheet simulation of pyrochemical processing of spent nuclear fuels

    International Nuclear Information System (INIS)

    Ahluwalia, R.K.; Geyer, H.K.

    1996-01-01

    The GC computer code has been developed for flow sheet simulation of pyrochemical processing of spent nuclear fuel. It utilizes a robust algorithm SLG for analyzing simultaneous chemical reactions between species distributed across many phases. Models have been developed for analysis of the oxide fuel reduction process, salt recovery by electrochemical decomposition of lithium oxide, uranium separation from the reduced fuel by electrorefining, and extraction of fission products into liquid cadmium. The versatility of GC is demonstrated by applying the code to a flow sheet of current interest

  4. Confined dense particle-gas flow, application to nuclear fuel relocation

    International Nuclear Information System (INIS)

    Martin, A.

    2010-02-01

    In this work, we investigate particle-gas two-phase flows in the jamming regime where the flow stops in finite time. In this regime, which occurs quite often in nature and industrial applications, the flow is stochastic and needs therefore to be characterized by the jamming probability as well as the flow rate and its fluctuations that depend on the confining geometry, granular microstructure and gas properties. We developed a numerical approach based on the coupling of the Non Smooth Contact Dynamics for the solid phase and a mesoscopic method for the gas phase. We find that the flow rate as a function of the opening is well fit by a power law in agreement with reported experimental data. The presence of a gas affects only the mean flow rate, the flow statistics being sensibly the same as in the absence of the gas. We apply our quantitative statistical results in order to estimate the relocation rate of fragmented nuclear fuel inside its cladding tube as a result of a local balloon caused by an accident (loss-of-coolant accident). (author)

  5. New developments in two-phase flow heat transfer with emphasis on nuclear safety research

    International Nuclear Information System (INIS)

    Mayinger, F.

    1987-01-01

    The literature on two-phase flow - with and without heat transfer - shows an explosive-like growth of published papers within the last ten years. Many of these papers were published as a result of nuclear safety research. It is impossible to deal with all new developments reported in this extensive literature. So one has to ask: Are there trends of special interest, where this report could be concentrated on? Looking over the situation, there seem to be three very promising fields of research having high actuality, especially for nuclear safety, namely: fluiddynamic and thermodynamic nonequilibrium in steady state, transient conditions, and scaling. The discussion on new developments in two-phase flow heat transfer, therefore, is limited on these subjects

  6. Flow measurement by Laser Doppler Anemometry in a nuclear fuel assembly

    International Nuclear Information System (INIS)

    Kehoe, A.

    1984-12-01

    Development of a Laser Doppler Anemometer measurement system and its operation are examined in this research. The system is designed for flow measurement in laboratory models of nuclear fuel assemblies. Use of the system is demonstrated by measuring turbulent velocity profiles in the laboratory model at full scale reactor flow rates. The reactors at the Savanah River Plant (SRP) are heavy water moderated and operate at low temperatures and pressures. Reactor power is currently limited by the temperature of the water in the nuclear fuel assembly. These temperature limits are conservatively calculated without allowing for any turbulent mixing. This research incorporates the design, fabriction and operation of a plexiglas model fuel assembly for the purpose of making turbulent velocity measurement via a Laser Doppler Anemometer System

  7. CFD Analysis of Square Flow Channel in Thermal Engine Rocket Adventurer for Space Nuclear Application

    International Nuclear Information System (INIS)

    Nam, S. H.; Suh, K. Y.; Kang, S. G.

    2008-01-01

    Solar system exploration relying on chemical rockets suffers from long trip time and high cost. In this regard nuclear propulsion is an attractive option for space exploration. The performance of Nuclear Thermal Rocket (NTR) is more than twice that of the best chemical rocket. Resorting to the pure hydrogen (H 2 ) propellant the NTRs can possibly achieve as high as 1,000 s of specific impulse (I sp ) representing the ratio of the thrust over the fuel consumption rate, as compared to only 425 s of H 2 /O 2 rockets. If we reflect on the mission to Mars, NTRs would reduce the round trip time to less than 300 days, instead of over 600 days with chemical rockets. This work presents CFD analysis of one Fuel Element (FE) of Thermal Engine Rocket Adventurer (TERA). In particular, one Square Flow Channel (SFC) is analyzed in Square Lattice Honeycomb (SLHC) fuel to examine the effects of mass flow rate on rocket performance

  8. Numerical simulation of flow field in shellside of heat exchanger in nuclear power plant

    International Nuclear Information System (INIS)

    Wang Xinliang; Qiu Jinrong; Gong Zili

    2010-01-01

    Heat exchanger is the important equipment of nuclear power plant. Numerical simulation can give the detail information inside the heat exchange, and has been an effective research method. The geometric structure of shell-and-tube heat exchanger is very complex and it is difficult to simulate the whole flow field presently. According to the structure characteristics of the heat exchanger, a periodic whole-section calculation model was presented. The numerical simulation of flow field in shellside of heat exchange of a nuclear power plant was done by using this model. The results of simulation show that heat transfer in the periodic section of the heat exchange is uniform, the heat transfer is enhanced by using baffles in heat exchange, and frictional resistance is primary from the effect of segmental baffles. (authors)

  9. CFD analysis of multiphase coolant flow through fuel rod bundles in advanced pressure tube nuclear reactors

    International Nuclear Information System (INIS)

    Catana, A.; Turcu, I.; Prisecaru, I.; Dupleac, D.; Danila, N.

    2010-01-01

    The key component of a pressure tube nuclear reactor core is pressure tube filled with a stream of fuel bundles. This feature makes them suitable for CFD thermal-hydraulic analysis. A methodology for CFD analysis applied to pressure tube nuclear reactors is presented in this paper, which is focused on advanced pressure tube nuclear reactors. The complex flow conditions inside pressure tube are analysed by using the Eulerian multiphase model implemented in FLUENT CFD computer code. Fuel rods in these channels are superheated but the liquid is under high pressure, so it is sub-cooled in normal operating conditions on most of pressure tube length. In the second half of pressure tube length, the onset of boiling occurs, so the flow consists of a gas liquid mixture, with the volume of gas increasing along the length of the channel in the direction of the flow. Limited computer resources enforced us to use CFD analysis for segments of pressure tube. Significant local geometries (junctions, spacers) were simulated. Main results of this work are: prediction of main thermal-hydraulic parameters along pressure tube including CHF evaluation through fuel assemblies. (authors)

  10. Package Flow Model and its fuzzy implementation for simulating nuclear reactor system dynamics

    International Nuclear Information System (INIS)

    Matsuoka, Hiroshi; Ishiguro, Misako.

    1996-01-01

    A simple intuitive simulation model, which we call 'Package Flow Model', has been developed to evaluate physical processes in nuclear reactor system from a macroscopic point of view. In the previous paper, we showed the physical process of each energy generation and transfer stage in a PWR could be modeled by PFM, and its dynamics could be approximately simulated by fuzzy implementation. In this paper, a PFMs network approach for a total PWR system simulation is proposed and some transients of nuclear ship 'MUTSU' reactor system are evaluated. The simulated results are consistent with those from Nuclear Ship Engineering Simulation System developed by JAERI. Furthermore, a visual representation method is proposed to intuitively capture the profile of fuel safety transient. Using the PFMs network, we can handily calculate the transient phenomena of the system even by a notebook-type personal computer. In addition, we can easily interpret the results of calculation surveying a small number of parameters. (author)

  11. Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report

    Energy Technology Data Exchange (ETDEWEB)

    Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

    1998-07-01

    Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

  12. Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report

    International Nuclear Information System (INIS)

    Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

    1998-07-01

    Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA

  13. Modeling studies for multiphase fluid and heat flow processes in nuclear waste isolation

    International Nuclear Information System (INIS)

    Pruess, K.

    1988-07-01

    Multiphase fluid and heat flow plays an important role in many problems relating to the disposal of nuclear wastes in geologic media. Examples include boiling and condensation processes near heat-generating wastes, flow of water and formation gas in partially saturated formations, evolution of a free gas phase from waste package corrosion in initially water-saturated environments, and redistribution (dissolution, transport, and precipitation) of rock minerals in non-isothermal flow fields. Such processes may strongly impact upon waste package and repository design considerations and performance. This paper summarizes important physical phenomena occurring in multiphase and nonisothermal flows, as well as techniques for their mathematical modeling and numerical simulation. Illustrative applications are given for a number of specific fluid and heat flow problems, including: thermohydrologic conditions near heat-generating waste packages in the unsaturated zone; repository-wide convection effects in the unsaturated zone; effects of quartz dissolution and precipitation for disposal in the saturated zone; and gas pressurization and flow corrosion of low-level waste packages. 34 refs; 7 figs; 2 tabs

  14. Modeling studies of multiphase fluid and heat flow processes in nuclear waste isolation

    International Nuclear Information System (INIS)

    Pruess, K.

    1989-01-01

    Multiphase fluid and heat flow plays an important role in many problems relating to the disposal of nuclear wastes in geologic media. Examples include boiling and condensation processes near heat-generating wastes, flow of water and formation gas in partially saturated formations, evolution of a free gas phase from waste package corrosion in initially water-saturated environments, and redistribution (dissolution, transport and precipitation) of rock minerals in non-isothermal flow fields. Such processes may strongly impact upon waste package and repository design considerations and performance. This paper summarizes important physical phenomena occurring in multiphase and nonisothermal flows, as well as techniques for their mathematical modeling and numerical simulation. Illustrative applications are given for a number of specific fluid and heat flow problems, including: thermohydrologic conditions near heat-generating waste packages in the unsaturated zone; repositorywide convection effects in the unsaturated zone; effects of quartz dissolution and precipitation for disposal in the saturated zone; and gas pressurization and flow effects from corrosion of low-level waste packages

  15. Nuclear assay of coal. Volume 6. Mass flow devices for coal handling

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The mass of coal entering the boiler per unit time is an essential parameter for determinig the total rate of heat input. The mass flow rate of coal on a conveyor belt is generally determined as a product of the instantaneous mass of material on a short section of the belt and the belt velocity. Belt loading could be measured by conventional transducers incorporating mechanical or electromechanical weighers or by gamma-ray attenuation gauge. This report reviews the state of the art in mass flow devices for coal handling. The various methods are compared and commented upon. Special design issues are discussed relative to incorporating a mass flow measuring device in a Continuous On-Line Nuclear Analysis of Coal (CONAC) system

  16. Nuclear assay of coal. Volume 6. Mass flow devices for coal handling. Final report

    International Nuclear Information System (INIS)

    Gozani, T.; Elias, E.; Bevan, R.

    1980-04-01

    The mass of coal entering the boiler per unit time is an essential parameter for determining the total rate of heat input. The mass flow rate of coal on a conveyor belt is generally determined as a product of the instantaneous mass of material on a short section of the belt and the belt velocity. Belt loading could be measured by conventional transducers incorporating mechanical or electromechanical weighers or by gamma-ray attenuation gauge. This report reviews the state of the art in mass flow devices for coal handling. The various methods are compared and commented upon. Special design issues are discussed relative to incorporating a mass flow measuring device in a Continuous On-Line Nuclear Analysis of Coal (CONAC) system

  17. Flow of ideal fluid through a central region of a nuclear reactor wire-spaced fuel subassembly

    International Nuclear Information System (INIS)

    Schmid, J.

    1991-04-01

    The results are given of calculations of the flow of an ideal fluid through the central region of a nuclear reactor wire-spaced fuel subassembly. The computer code used is briefly described. (author). 10 figs., 4 refs

  18. Transport of nuclear waste flows - a modelling and simulation approach - 59136

    International Nuclear Information System (INIS)

    Adams, Jonathan F.W.; Biggs, Simon R.; Fairweather, Michael; Yao, Jun; Young, James

    2012-01-01

    The task of implementing safer and more efficient processing and transport techniques in the handling of nuclear wastes made up of liquid-solid mixtures provides a challenging and interesting area of research. The radioactive nature of nuclear waste means that it is difficult to perform experimental studies of its transport. In contrast, the use of modelling and simulation techniques can help to elucidate the physics that underpin such flows and provide valuable insights into common problems associated with their transport, as well as assisting in the focusing of experimental research. Two phase solid-liquid waste-forms are commonplace within the nuclear reprocessing industry. Currently, there is waste, e.g., in the form of a solid-liquid slurry in cooling ponds and liquid flows containing suspensions of solid particles feature heavily in the treatment and disposal of this waste. With nuclear waste in the form of solid-liquid sludges it is important to understand the nature of the flow, with particular interest in the settling characteristics of the particulate waste material. Knowledge of the propensity of pipe flows to form solid beds is important in avoiding unwanted blockages in pipelines and pumping systems. In cases where the formation of a solid bed is unavoidable, it is similarly important to know how the modified cross-sectional area of the pipe, due to the presence of a bed, will affect particle behaviour through the creation of secondary flows effects that are also common to square duct flows. A greater understanding of particle deposition in square ducts and pipes of circular cross-section is also of significant and broad industrial relevance, with flows containing particulates prevalent throughout the nuclear, pharmaceutical, chemical, mining and agricultural industries. A greater understanding of particle behaviour in square ducts and circular pipes with variable bed height is the focus of this current work. The more computationally expensive but

  19. Modelling turbulent fluid flows in nuclear and fossil-fired power plants

    International Nuclear Information System (INIS)

    Viollet, P.L.

    1995-06-01

    The turbulent flows encountered in nuclear reactor thermal hydraulic studies or fossil-fired plant thermo-aerodynamic analyses feature widely varying characteristics, frequently entailing heat transfers and two-phase flows so that modelling these phenomena tends more and more to involve coupling between several branches of engineering. Multi-scale geometries are often encountered, with complex wall shapes, such as a PWR vessel, a reactor coolant pump impeller or a circulating fluidized bed combustion chamber. When it comes to validating physical models of these flows, the analytical process highlights the main descriptive parameters of local flow conditions: tensor characterizing the turbulence anisotropy, characteristic time scales for turbulent flow particle dynamics. Cooperative procedures implemented between national or international working parties can accelerate validation by sharing and exchanging results obtained by the various organizations involved. With this principle accepted, we still have to validate the products themselves, i.e. the software used for the studies. In this context, the ESTET, ASTRID and N3S codes have been subjected to a battery of test cases covering their respective fields of application. These test cases are re-run for each new version, so that the sets of test cases systematically benefit from the gradually upgraded functionalities of the codes. (author). refs., 3 figs., 6 tabs

  20. Gene flow among wild and domesticated almond species: insights from chloroplast and nuclear markers

    Science.gov (United States)

    Delplancke, Malou; Alvarez, Nadir; Espíndola, Anahí; Joly, Hélène; Benoit, Laure; Brouck, Elise; Arrigo, Nils

    2012-01-01

    Hybridization has played a central role in the evolutionary history of domesticated plants. Notably, several breeding programs relying on gene introgression from the wild compartment have been performed in fruit tree species within the genus Prunus but few studies investigated spontaneous gene flow among wild and domesticated Prunus species. Consequently, a comprehensive understanding of genetic relationships and levels of gene flow between domesticated and wild Prunus species is needed. Combining nuclear and chloroplastic microsatellites, we investigated the gene flow and hybridization among two key almond tree species, the cultivated Prunus dulcis and one of the most widespread wild relative Prunus orientalis in the Fertile Crescent. We detected high genetic diversity levels in both species along with substantial and symmetric gene flow between the domesticated P. dulcis and the wild P. orientalis. These results were discussed in light of the cultivated species diversity, by outlining the frequent spontaneous genetic contributions of wild species to the domesticated compartment. In addition, crop-to-wild gene flow suggests that ad hoc transgene containment strategies would be required if genetically modified cultivars were introduced in the northwestern Mediterranean. PMID:25568053

  1. FPFPspace2: A code for following airborne fission products in generic nuclear plant flow paths

    International Nuclear Information System (INIS)

    Owcarski, P.C.; Burk, K.W.; Ramsdell, J.V.; Yasuda, D.D.

    1991-03-01

    In order to assure that a nuclear power plant control room remains habitable during certain types of postulated accidents, Pacific Northwest Laboratory (PNL) has undertaken a special study for the US Nuclear Regulatory Commission. This purpose of this study is to develop software that can aid in the analyses of control room habitability during accidents in which airborne fission products could challenge internal air pathways to the control room. PNL has completed an initial version (FPFP) and final version (FPFP 2) of a software package that can estimate the unsteady-state invasion of quantities of fission products into the control room or any other destination within the nuclear plant via generic internal flow paths. This report consists of three parts: Section 2.0, Technical Bases, describes the flow path components and mechanisms of natural fission product deposition; Section 3.0, FPFP 2 Code Description, describes code organization and the functions of the subroutines; and Section 4.0, Code Operation, discusses details of input requirements, code output, and a sample case demonstration. The appendices consist of an FPFP 2 Fortran code listing, a listing of a code for building input files, forms for building input files, and the sample case input and output files. 7 refs., 3 figs

  2. Cause Analysis of Flow Accelerated Corrosion and Erosion-Corrosion Cases in Korea Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. S.; Lee, S. H. [Korea Hydro and Nuclear Power Co., Ltd., Gyeongju (Korea, Republic of); Hwang, K. M. [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of)

    2016-08-15

    Significant piping wall thinning caused by Flow-Accelerated Corrosion (FAC) and Erosion-Corrosion (EC) continues to occur, even after the Mihama Power Station unit 3 secondary pipe rupture in 2004, in which workers were seriously injured or died. Nuclear power plants in many countries have experienced FAC and EC-related cases in steam cycle piping systems. Korea has also experienced piping wall thinning cases including thinning in the downstream straight pipe of a check valve in a feedwater pump line, the downstream elbow of a control valve in a feedwater flow control line, and failure of the straight pipe downstream of an orifice in an auxiliary steam return line. Cause analyses were performed by reviewing thickness data using Ultrasonic Techniques (UT) and, Scanning Electron Microscope (SEM) images for the failed pipe, and numerical simulation results for FAC and EC cases in Korea Nuclear Power Plants. It was concluded that the main cause of wall thinning for the downstream pipe of a check valve is FAC caused by water vortex flow due to the internal flow shape of a check valve, the main cause of wall thinning for the downstream elbow of a control valve is FAC caused by a thickness difference with the upstream pipe, and the main cause of wall thinning for the downstream pipe of an orifice is FAC and EC caused by liquid droplets and vortex flow. In order to investigate more cases, additional analyses were performed with the review of a lot of thickness data for inspected pipes. The results showed that pipe wall thinning was also affected by the operating condition of upstream equipment. Management of FAC and EC based on these cases will focus on the downstream piping of abnormal or unusual operated equipment.

  3. Experimental and computational investigation of flow of pebbles in a pebble bed nuclear reactor

    Science.gov (United States)

    Khane, Vaibhav B.

    The Pebble Bed Reactor (PBR) is a 4th generation nuclear reactor which is conceptually similar to moving bed reactors used in the chemical and petrochemical industries. In a PBR core, nuclear fuel in the form of pebbles moves slowly under the influence of gravity. Due to the dynamic nature of the core, a thorough understanding about slow and dense granular flow of pebbles is required from both a reactor safety and performance evaluation point of view. In this dissertation, a new integrated experimental and computational study of granular flow in a PBR has been performed. Continuous pebble re-circulation experimental set-up, mimicking flow of pebbles in a PBR, is designed and developed. Experimental investigation of the flow of pebbles in a mimicked test reactor was carried out for the first time using non-invasive radioactive particle tracking (RPT) and residence time distribution (RTD) techniques to measure the pebble trajectory, velocity, overall/zonal residence times, flow patterns etc. The tracer trajectory length and overall/zonal residence time is found to increase with change in pebble's initial seeding position from the center towards the wall of the test reactor. Overall and zonal average velocities of pebbles are found to decrease from the center towards the wall. Discrete element method (DEM) based simulations of test reactor geometry were also carried out using commercial code EDEM(TM) and simulation results were validated using the obtained benchmark experimental data. In addition, EDEM(TM) based parametric sensitivity study of interaction properties was carried out which suggests that static friction characteristics play an important role from a packed/pebble beds structural characterization point of view. To make the RPT technique viable for practical applications and to enhance its accuracy, a novel and dynamic technique for RPT calibration was designed and developed. Preliminary feasibility results suggest that it can be implemented as a non

  4. Determination of velocity and flow direction of ground water by using nuclear techniques

    International Nuclear Information System (INIS)

    Santos Ferreira, L. dos.

    1976-06-01

    The dynamics of water in an aquifer with the purpose of determining the filtration velocity and the direction of groundwater flow with radioactive tracers was studied. Field equipment for the purposes of the study was built in the Laboratory of Tracers in Hydrology in collaboration with the Institute of Nuclear Engineering (IEN/NUCLEBRAS). The equipment was designed to minimize the possible vertical flows, loss and molecular diffusion of the tracer out of the studied region. The performance of the nuclear detectors and the constructional details of the field equipament were examined. The selection of the radioactive tracers was made taking into account its availibility and radiation facilities, cost of the inactive material and their physical and chemical properties. The tracers used were 82 Br and 198 Au. The results are discussed with the help of auxiliary informations such as plots of water levels in time and space, profiles and grain analysis. In order to obtain a physical explanation of the results, a qualitative model of the flow in the aquifer is also presented. (Author) [pt

  5. Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taehun [City Univ. (CUNY), NY (United States)

    2015-10-20

    The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations, better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.

  6. Evaluating the consequences of loss of flow accident for a typical VVER-1000 nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mirvakili, S.M.; Safaei, S. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). Dept. of Nuclear Engineering, School of Mechanical Engineering; Faghihi, F. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). Safety Research Center

    2010-07-01

    The loss of coolant flow in a nuclear reactor can result from a mechanical or electrical failure of the coolant pump. If the reactor is not tripped promptly, the immediate effect is a rapid increase in coolant temperature, decrease in minimum departure from nucleate boiling ratio (DNBR) and fuel damage. This study evaluated the shaft seizure of a reactor coolant pump in a VVER-1000 nuclear reactor. The locked rotor results in rapid reduction of flow through the affected reactor coolant loop and in turn leads to an increase in the primary coolant temperature and pressure. The analysis was conducted with regard for superimposing loss of power to the power plant at the initial accident moment. The required transient functions of flow, pressure and power were obtained using system transient calculations applied in COBRA-EN computer code in order to calculate the overall core thermal-hydraulic parameters such as temperature, critical heat flux and DNBR. The study showed that the critical period for the locked rotor accident is the first few seconds during which the maximum values of pressure and temperature are reached. 10 refs., 1 tab., 3 figs.

  7. Nuclear power plant life management: flow accelerated corrosion and chemical control. Application to Embalse Nuclear power plant

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Saucedo, Ramona E.; Sainz, Ricardo A.; Ovando, Luis E.

    2006-01-01

    The chemistry of a water-steam cycle is one of the main aspects of the Plant Life Management of a Nuclear Power Plant and it is important for the preservation, efficiency and availability of the whole system. In that sense this aspect has to be prioritized in any study whose aim is the life extension of the plant. In particular, the flow-assisted -corrosion or FAC is a problem that worldwide has been considered important due to the piping wall thinning that in some occasions has led to severe accidents. The FAC phenomena is not easy to be interpreted and addressed although nowadays there are some accepted models to understand and predict sensitive areas of the cycle. The objectives of the present paper have been: a) The construction of an integrated code that involves all the aspects that have influence on FAC, i.e., materials, composition, geometry, temperature and flow rate, quality, chemistry, etc.; b) Establish or adapting current models to the circuit of Embalse PHWR NPP; c) Identify new locations for inspection and wall thickness measurement in order to predict residual life; d) Compare different chemistries and e) handle large sets of inspection data. Among the results, new lines have been incorporated to the inspection schedule of the 2005' programmed outage. Also, the evaluation is part of the PLIM-PLEX programme at Embalse-N.A.S.A. in collaboration with C.N.E.A. is being carried out. (author)

  8. Heat transfer and fluid flow research relevant to India's nuclear power program

    International Nuclear Information System (INIS)

    Mehta, S.K.; Venkatraj, V.

    1988-01-01

    The Indian Nuclear Power Programme envisages three important stages viz., installation of thermal reactors, fast reactors and utilization of Thorium. By the year 2000 AD, it is proposed to have an installed total capacity of nuclear power of about 10,000 MWe. Starting from the present installed capacity of 1330 MWe, the additional contribution will be mainly made by thermal power reactors of the Pressurized Heavy Water type (PHWR). Apart from the reactors presently under construction about 12 numbers of 235 MWe units are planned to be constructed, which will be based on the standardized design of the reactors at Narora Atomic Power Project (NAPP). In addition, 10 units of 500 MWe capacity each, the design for which is currently under progress, will also be installed. The design, construction and operating agency is the Nuclear Power Board (NPB), while the Bhabha Atomic Research Centre (BARC) is responsible for the research and development work required. In addition to the programme on thermal power reactors, a thermal research reactor (DHRUVA) of 100 MWth capacity has been designed, constructed and has been commissioned. Some of the important heat transfer and fluid flow research problems relevant to the Indian nuclear power and research reactors are discussed in this paper

  9. Nuclear DNA content of the hybrid plant pathogen Phytophthora andina determined by flow cytometry.

    Science.gov (United States)

    Wang, Jianan; Presser, Jackson W; Goss, Erica M

    2016-09-01

    Phytophthora andina is a heterothallic plant pathogen of Andean solanaceous hosts and is an interspecific hybrid of P. infestans and an unknown Phytophthora species. The objective of this study was to estimate the nuclear DNA content of isolates in three clonal lineages of P. andina relative to P. infestans Twelve isolates of P. andina and six isolates of P. infestans were measured for nuclear DNA content by propidium iodide-stained flow cytometry. We found that the DNA content of P. andina was similar but slightly smaller, on average, than that of our sample of P. infestans isolates. This is consistent with P. andina being a homoploid hybrid rather than allopolyploid hybrid. Nuclear DNA content was more variable among a smaller sample of P. infestans isolates, including a putative triploid isolate from Mexico, but small differences in nuclear DNA content were also observed among P. andina isolates. Both species appear to be able to tolerate significant variation in genome size. © 2016 by The Mycological Society of America.

  10. Application of the discounted value flows method in production cost calculations for Czechoslovak nuclear power plants

    International Nuclear Information System (INIS)

    Majer, P.

    1990-01-01

    The fundamentals are outlined of the discounted value flows method, which is used in industrial countries for calculating the specific electricity production costs. Actual calculations were performed for the first two units of the Temelin nuclear power plant. All costs associated with the construction, operation and decommissioning of this nuclear power plant were taken into account. With a high degree of certainty, the specific production costs of the Temelin nuclear power plant will lie within the range of 0.32 to 0.36 CSK/kWh. Nearly all results of the sensitivity analysis performed for the possible changes in the input values fall within this range. An increase in the interest rate to above 8% is an exception; this, however, can be regarded as rather improbable on a long-term basis. Sensitivity analysis gave evidence that the results of the electricity production cost calculations for the Temelin nuclear power plant can be considered sufficiently stable. (Z.M.). 7 figs., 2 tabs., 14 refs

  11. Control device for the recycling flow rate in a nuclear power plant

    International Nuclear Information System (INIS)

    Tanigawa, Naoshi; Shida, Toichi.

    1983-01-01

    Purpose: To prevent the cavitation in a recycling pump even under the conditions where a recycling pump run-back is inhibited, thereby secure the safety of equipments. Constitution: An AND circuit is disposed to a recycling flow rate control system in a BWR type nuclear power plant that issues an output on the condition that a run-back signal is present together with a contact signal of a scoop pipe locking relay or a contact signal of a scoop pipe locking relay. Then, if a demand for the run-back operation of a nuclear reactor recycling pump is issued, the reactor recycling pump is forcedly tripped. Since the pump can always be tripped upon requirement of run-back even if there are some or other inhibitive factors, generation of the cavitation in recycling system equipments can be prevented thereby prevent the damages in the equipments. (Moriyama, K.)

  12. Angular pattern of minijet transverse energy flow in hadron and nuclear collisions

    International Nuclear Information System (INIS)

    Leonidov, A.V.; Ostrovsky, D.M.

    2002-01-01

    The azimuthal asymmetry of a minijet system produced at the early stage of nucleon-nucleon and nuclear collisions in a central rapidity window is studied. We show that, in pp collisions, the minijet-transverse-energy production in a central rapidity window is essentially unbalanced in azimuth because of asymmetric contributions in which only one minijet hits the acceptance window. We further study the angular pattern of the transverse-energy flow generated by semihard degrees of freedom at the early stage of high-energy nuclear collisions and its dependence on the number of semihard collisions in the models either including or neglecting soft contributions to the inelastic cross section at RHIC and LHC energies, as well as on the choice of infrared cutoff

  13. Angular pattern of minijet transverse energy flow in hadron and nuclear collisions

    International Nuclear Information System (INIS)

    Leonidov, A.V.; Ostrovsky, D.M.

    2000-01-01

    The azimuthal asymmetry of a minijet system produced at the early stage of nucleon-nucleon and nuclear collisions in a central rapidity window is studied. We show that in pp collisions the minijet transverse energy production in a central rapidity window is essentially unbalanced in the azimuth due to asymmetric contributions in which only one minijet hits the acceptance window. We further study the angular pattern of the transverse energy flow generated by the semihard degrees of freedom at the early stage of high energy nuclear collisions and its dependence on the number of semihard collisions in the models both including and neglecting soft contributions to the inelastic cross section at RHIC and LHC energies as well as on the choice of the infrared cutoff. (orig.)

  14. Nuclear DNA content of the pigeon orchid (Dendrobium crumenatum Sw. with the analysis of flow cytometry

    Directory of Open Access Journals (Sweden)

    Upatham Meesawat

    2008-05-01

    Full Text Available Nuclear DNA content for the adult plants grown in a greenhouse and in vitro young plantlets of the pigeon orchid (Dendrobium crumenatum Sw. was analyzed using flow cytometry. The resulting 2C DNA values ranged from 2.30±0.14 pgto 2.43±0.06 pg. However, nuclear DNA ploidy levels of long-term in vitro plantlets were found to be triploid and tetraploid.These ploidy levels were confirmed by chromosome counting. Tetraploid individuals (2n = 4x = 76 had approximately two times DNA content than diploid (2n = 2x = 38 individuals. This variation may be due to prolonged cultivation and thepresence of exogenous plant growth regulators.

  15. Application of flow-controllable accumulator and performance analysis in Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jung, Byung-Ryul; Lee, Un-Chul

    1997-01-01

    The Korean Yonggwang Nuclear Power Plants 3 ampersand 4(YGN 3 ampersand 4) are the two-loop pressurized water reactor (PWR) nuclear steam supply systems, rated at 2,815 MW(thermal). They incorporate the safety injection system (SIS) consisting of the two high pressure (HPSI) pumps, two low pressure safety injection (LPSI) pumps, and four accumulators. The SIS is two headered arrangements, each to four cold legs injection (CLI) type which provides cooling to the core in the highly unlikely event of a loss-of-coolant accident (LOCA). In the current SIS, the LPSI pumps automatically start during a LOCA, and also provide the residual heat removal capability during the shutdown cooling. This paper presents the feasibility of the removal of the LPSI from the existing SIS with minor system changes, including the increase up to four in the HPSI pumps, direct vessel injection(DVI), and the flow-controllable accumulators. A double-ended rupture of one of the four cold legs in the YGN 3 ampersand 4 was simulated using RELAP5/MOD3.1 to determine the feasibility of the application of this new SIS design to the current nuclear power plants. As a result, the calculated reflooding peak cladding surface temperature(PCT) was comparable to that of original base calculation, and the downcomer and the core collapsed liquid level during reflooding were also comparable to those in the current safety system design. This large break, cold-leg LOCA analysis addresses the reflooding capability without credit for a LPSI pump system and the applicability of the new flow-controllable accumulator. Also this analysis confirms that the combination of new flow-controllable accumulators, DVI and the increased HPSI pumps maintain the peak cladding temperature below the prescribed limits. 14 refs., 4 figs., 3 tabs

  16. Improved and Reproducible Flow Cytometry Methodology for Nuclei Isolation from Single Root Meristem

    Directory of Open Access Journals (Sweden)

    Thaís Cristina Ribeiro Silva

    2010-01-01

    Full Text Available Root meristems have increasingly been target of cell cycle studies by flow cytometric DNA content quantification. Moreover, roots can be an alternative source of nuclear suspension when leaves become unfeasible and for chromosome analysis and sorting. In the present paper, a protocol for intact nuclei isolation from a single root meristem was developed. This proceeding was based on excision of the meristematic region using a prototypical slide, followed by short enzymatic digestion and mechanical isolation of nuclei during homogenization with a hand mixer. Such parameters were optimized for reaching better results. Satisfactory nuclei amounts were extracted and analyzed by flow cytometry, producing histograms with reduced background noise and CVs between 3.2 and 4.1%. This improved and reproducible technique was shown to be rapid, inexpensive, and simple for nuclear extraction from a single root tip, and can be adapted for other plants and purposes.

  17. Dynamics of nuclear fuel assemblies in vertical flow channels: computer modelling and associated studies

    International Nuclear Information System (INIS)

    Mason, V.A.; Pettigrew, M.J.; Lelli, G.; Kates, L.; Reimer, E.

    1978-10-01

    A computer model, designed to predict the dynamic behaviour of nuclear fuel assemblies in axial flow, is described in this report. The numerical methods used to construct and solve the matrix equations of motion in the model are discussed together with an outline of the method used to interpret the fuel assembly stability data. The mathematics developed for forced response calculations are described in detail. Certain structural and hydrodynamic modelling parameters must be determined by experiment. These parameters are identified and the methods used for their evaluation are briefly described. Examples of typical applications of the dynamic model are presented towards the end of the report. (author)

  18. The complex approach to the flow accelerated cracking in Czech nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ruscak, M; Splichal, K; Kaplan, J [Nuclear Research Institute, Rez (Czech Republic)

    1994-12-31

    The paper shows the approach of NRI to the problems of flow accelerated cracking of the secondary piping in VVER nuclear power plants. The utilization of the CHECMATE family codes is described in the framework of other activities to support the prediction and evaluation of damage. The code allows the effects of parameters such as temperature, geometry, mass transport conditions, void fraction and material composition to be assessed. The influence of exact measurement of chromium content is discussed. 2 refs., 6 figs., 1 tab.

  19. The complex approach to the flow accelerated cracking in Czech nuclear power plants

    International Nuclear Information System (INIS)

    Ruscak, M.; Splichal, K.; Kaplan, J.

    1994-01-01

    The paper shows the approach of NRI to the problems of flow accelerated cracking of the secondary piping in VVER nuclear power plants. The utilization of the CHECMATE family codes is described in the framework of other activities to support the prediction and evaluation of damage. The code allows the effects of parameters such as temperature, geometry, mass transport conditions, void fraction and material composition to be assessed. The influence of exact measurement of chromium content is discussed. 2 refs., 6 figs., 1 tab

  20. Flow accelerated corrosion and life management of the secondary circuit of the Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Chocron, Mauricio; La Gamma, Ana M.; Fernandez, Narciso; Moyano, Ricardo; Schiersmann, Christian; Ovando, Luis E.; Sainz, Ricardo A.; Keitelman, Alberto

    2003-01-01

    Flow accelerated corrosion is a matter of concern in secondary circuits of nuclear power plants as well as in fossil fired plants. It contributes to the piping wall thinning and to the corrosion products transport to the steam generators. Because it is a generalized corrosion phenomena, could address to extensive failures. In that sense the plants conduct extensive programs of surveillance of piping degradation. Because the problem involves many variables like alloys, water chemistry and hydrodynamics several models have been proposed in the literature. In the present paper the variables have been organized in a spreadsheet which allows the calculation of normalized risk factors. (author)

  1. Multidimensional flow of radioactive gases through the soil surrounding an underground nuclear power plant

    International Nuclear Information System (INIS)

    Dinkelacker, A.

    1980-01-01

    In connection with the underground siting of nuclear power plants the spreading of radioactive gases that are released into the soil coverage after a hypothetical accident is investigated. A physical model is presented that includes the isothermal one- and two-component flow of ideal gases through an inhomogeneous porous medium on the basis of Darcy's law. Based on this model a computer code has been developed that permits the calculation of transient pressure and concentration distributions in inhomogeneous porous media in one to three dimensions, as well as the determination of retention times. (orig.) [de

  2. Initialization effects via the nuclear radius on transverse in-plane flow and its disappearance

    Directory of Open Access Journals (Sweden)

    Bansal Rajni

    2014-04-01

    Full Text Available We study the dependence of collective transverse flow and its disappearance on initialization effects via the nuclear radius within the framework of the Isospin-dependent Quantum Molecular Dynamics (IQMD model. We calculate the balance energy using different parametrizations of the radius available in the literature for the reaction of 12C+12C to explain its measured balance energy. A mass-dependent analysis of the balance energy through out the periodic table is also carried out by changing the default liquid drop IQMD radius.

  3. In-flow technology for the determination of Sr-90 concentrations in nuclear power plants

    International Nuclear Information System (INIS)

    Dissing, E.

    1982-01-01

    Outlines for a future work concerning in-flow surveillance of Sr-90 in nuclear plant process treams have been studied. The many problems involved with the task of on-line Sr-90 determination were approached in two different ways, one applying β-counting of the 64-hour daughter Y-60 with the use of the process stream itself as a Cerenkov scintillator and the other - indirect - using simultaneous measurement of the concentrations of Sr-91 and Sr-92 for the determination of the leakage route for strontium. (Author)

  4. Initialization effects via the nuclear radius on transverse in-plane flow and its disappearance

    International Nuclear Information System (INIS)

    Bansal, Rajni; Gautam, Sakshi

    2014-01-01

    We study the dependence of collective transverse flow and its disappearance on initialization effects via the nuclear radius within the framework of the Isospin-dependent Quantum Molecular Dynamics (IQMD) model. We calculate the balance energy using different parametrizations of the radius available in the literature for the reaction of 12 C + 12 C to explain its measured balance energy. A mass-dependent analysis of the balance energy through out the periodic table is also carried out by changing the default liquid drop IQMD radius. (author)

  5. Nuclear research reactor IEA-R1 heat exchanger inlet nozzle flow - a preliminary study

    International Nuclear Information System (INIS)

    Angelo, Gabriel; Andrade, Delvonei Alves de; Fainer, Gerson; Angelo, Edvaldo

    2009-01-01

    As a computational fluid mechanics training task, a preliminary model was developed. ANSYS-CFX R code was used in order to study the flow at the inlet nozzle of the heat exchanger of the primary circuit of the nuclear research reactor IEA-R1. The geometry of the inlet nozzle is basically compounded by a cylinder and two radial rings which are welded on the shell. When doing so there is an offset between the holes through the shell and the inlet nozzle. Since it is not standardized by TEMA, the inlet nozzle was chosen for a preliminary study of the flow. Results for the proposed model are presented and discussed. (author)

  6. Evidence for radial flow of thermal dileptons in high-energy nuclear collisions

    CERN Document Server

    Arnaldi, R; Castor, J; Chaurand, B; Cicalò, C; Colla, A; Cortese, P; Damjanovic, S; David, A; De Falco, A; Devaux, A; Ducroux, L; Enyo, H; Fargeix, J; Ferretti, A; Floris, M; Förster, A; Force, P; Guettet, N; Guichard, A; Gulkanian, H R; Heuser, J M; Keil, M; Kluberg, L; Lourenço, C; Lozano, J; Manso, F; Martins, P; Masoni, A; Neves, A; Ohnishi, H; Oppedisano, C; Parracho, P; Pillot, P; Poghosyan, T; Puddu, G; Radermacher, E; Ramalhete, P; Rosinsky, P; Scomparin, E; Seixas, J; Serci, S; Shahoyan, R; Sonderegger, P; Specht, H J; Tieulent, R; Usai, G; Veenhof, R; Wöhri, H K

    2008-01-01

    The NA60 experiment at the CERN SPS has studied low-mass dimuon production in 158 AGeV In-In collisions. An excess of pairs above the known meson decays has been reported before. We now present precision results on the associated transverse momentum spectra. The slope parameter Teff extracted from the spectra rises with dimuon mass up to the rho, followed by a sudden decline above. While the initial rise is consistent with the expectations for radial flow of a hadronic decay source, the decline signals a transition to an emission source with much smaller flow. This may well represent the first direct evidence for thermal radiation of partonic origin in nuclear collisions.

  7. Groundwater flow modeling focused on the Fukushima Daiichi Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Onoe, Hironori; Kohashi, Akio; Watanabe, Masahisa

    2015-01-01

    Fukushima Daiichi nuclear power plant of Tokyo Electric Power Company is facing contaminated water issues in the aftermath of the Great East Japan Earthquake on March 11, 2011. The amount of contaminated water is continuously increasing due to groundwater leakage into the underground part of reactor and turbine buildings. Therefore, it is important to understand the groundwater flow conditions at the site and to predict the impact of countermeasures taken for isolating groundwater from the source of the contamination, i.e. the reactor buildings. Installations, such as of land-side and sea-side impermeable walls have been planned as countermeasures. In this study, groundwater flow modeling has been performed to estimate the response of groundwater flow conditions to the countermeasures. From the modeling, groundwater recharge and discharge areas, major groundwater flow direction, inflow rate into underground part of the buildings, and changes in response to implementation of the countermeasures could be reasonably estimated. The results indicate that the countermeasures will decrease the volume of inflow into the underground part of the buildings. This means that the countermeasures will be effective in reducing the discharge volume of contaminated groundwater to ocean. (author)

  8. Electric capacitance tomography and two-phase flow for the nuclear reactor safety analysis

    International Nuclear Information System (INIS)

    Lee, Jae Young

    2008-01-01

    Recently electric capacitance tomography has been developed to be used in the analysis of two-phase flow. Although its electric field is not focused as the hard ray tomography such as the X-ray or gamma ray, its convenience of easy access to the system and easy maintenance due to no requirement of radiation shielding benefits us in its application in the two-phase flow study, one of important area in the nuclear safety analysis. In the present paper, the practical technologies in the electric capacitance tomography are represented in both parts of hardware and software. In the software part, both forward problem and inverse problem are discussed and the method of regularization. In the hardware part, the brief discussion of the electronics circuits is made which provides femto farad resolution with a reasonable speed (150 frame/sec for 16 electrodes). Some representative ideal cases are studied to demonstrate its potential capability for the two-phase flow analysis. Also, some variations of the tomography such as axial tomography, and three dimensional tomography are discussed. It was found that the present ECT is expected to become a useful tool to understand the complicated three dimensional two-phase flow which may be an important feature to be equipped by the safety analysis codes. (author)

  9. Determination of the catalyst circulation rate in a FCC cold flow pilot unit using nuclear techniques

    International Nuclear Information System (INIS)

    Santos, Valdemir A. dos; Lima, Emerson A.O.

    2013-01-01

    Nuclear techniques of gamma transmission and radioactive tracer were used to estimate the catalyst circulation rate in a cold flow pilot plant unit of Fluid Catalytic Cracking (FCC). Catalyst circulation rate in a FCC unit, allow to determine operating conditions of the exchange catalyst and inlet data for fluid dynamic simulation computational program. The pilot unit was fabricated obeying geometrical parameters provided by the Petrobras Research Center (CENPES), based on hot pilot units to existing in that center. The cold flow pilot unit has a transfer line, two separation vessels flash type, a return column, a riser and a regenerator. The vertical sections as riser, return column, regenerator column and transfer line are made of transparent material (glass). The two separation vessels have bases with tapered cylindrical shapes and are made of steel plates. The riser is divided into four sections of different diameters (0.005 m, 0.010 m, 0.018 m and 0.025 m) and rising upwards, to simulate the increasing flow rate caused by the increase of volume with the increase of the number of moles due to molecules breakage. The radioactive tracer used was the catalyst itself (intrinsic tracer) irradiated by neutron activation, yielding the radioisotope 59 Fe. The velocity measurements were also obtained with aid of an electronic clock triggered by certain radiation levels across the two detectors. Besides estimates for the catalyst circulation rate was possible to identify the type of flow relative to the catalyst in return column. (author)

  10. Triton-3He relative and differential flows as probes of the nuclear symmetry energy at supra-saturation densities

    International Nuclear Information System (INIS)

    Yong Gaochan; Li Baoan; Chen Liewen; Zhang Xunchao

    2009-01-01

    Using a transport model coupled with a phase-space coalescence afterburner, we study the triton- 3 He (t- 3 He) ratio with both relative and differential transverse flows in semicentral 132 Sn+ 124 Sn reactions at a beam energy of 400 MeV/nucleon. The neutron-proton ratios with relative and differential flows are also discussed as a reference. We find that similar to the neutron-proton pairs, the t- 3 He pairs also carry interesting information regarding the density dependence of the nuclear symmetry energy. Moreover, the nuclear symmetry energy affects more strongly the t- 3 He relative and differential flows than the π - /π + ratio in the same reaction. The t- 3 He relative flow can be used as a particularly powerful probe of the high-density behavior of the nuclear symmetry energy.

  11. Implications of competitive markets for operation and funds flow at nuclear plants

    International Nuclear Information System (INIS)

    Bright, R.N.; Leigh, R.W.; Mubayi, V.

    1997-01-01

    The authors employ a detailed electric utility production costing and capacity planning model to examine the use of nuclear power plants under the current (utility-owned) arrangements and under situations which may arise in a competitive market for electric service. The modeling is carried out for a synthetic but realistic power pool based on components of actual utilities in the northeast United States. Under the current arrangements, the costs of nuclear power plant operation are subsumed under capital costs and entered into the open-quotes raw base,close quotes the totality of which determines customer charges. A future competitive environment may be characterized by the absence of a open-quotes rate base,close quotes at least for generation. In this environment, all generation units are in effect independently owned. The authors examine this possibility by estimating the revenue which would flow to nuclear plants at competitive market prices and compare that revenue, to anticipated expenses for fuel, O ampersand M and amortization of capital (where appropriate), and for potential additional expenses such as safety requirements and payments to decommissioning funds. They also incorporate financial relief for the portion of these costs which can be considered open-quotes stranded investmentsclose quotes based on FERC and prospective state regulatory policies. In this competitive environment some nuclear plants may not remain economically viable. Their replacement by newly constructed fossil-fueled units will require substantial capital and lead to increased emissions and fuel use, which are calculated. The authors calculations show that while it may be clearly economically advantageous for individual owners to shut down unviable nuclear capacity, such early retirements may result in significant economic losses to the power pool as a whole

  12. Modeling flow stress constitutive behavior of SA508-3 steel for nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Sun Mingyue, E-mail: mysun@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Luhan, Hao; Shijian, Li; Dianzhong, Li; Yiyi, Li [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2011-11-15

    Highlights: > A series of flow stress constitutive equations for SA508-3 steel were successfully established. > The experimental results under different conditions have validated the constitutive equations. > An industrial application of the model was present to simulate a large conical shell forging process. - Abstract: Based on the measured stress-strain curves under different temperatures and strain rates, a series of flow stress constitutive equations for SA508-3 steel were firstly established through the classical theories on work hardening and softening. The comparison between the experimental and modeling results has confirmed that the established constitutive equations can correctly describe the mechanical responses and microstructural evolutions of the steel under various hot deformation conditions. We further represented a successful industrial application of this model to simulate a forging process for a large conical shell used in a nuclear steam generator, which evidences its practical and promising perspective of our model with an aim of widely promoting the hot plasticity processing for heavy nuclear components of fission reactors.

  13. CFD Analysis of Square Flow Channel in Thermal Engine Rocket Adventurer for Space Nuclear Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, S. H.; Suh, K. Y. [Seoul National University, Seoul (Korea, Republic of); Kang, S. G. [PHILOSOPHIA, Inc., Seoul (Korea, Republic of)

    2008-10-15

    Solar system exploration relying on chemical rockets suffers from long trip time and high cost. In this regard nuclear propulsion is an attractive option for space exploration. The performance of Nuclear Thermal Rocket (NTR) is more than twice that of the best chemical rocket. Resorting to the pure hydrogen (H{sub 2}) propellant the NTRs can possibly achieve as high as 1,000 s of specific impulse (I{sub sp}) representing the ratio of the thrust over the fuel consumption rate, as compared to only 425 s of H{sub 2}/O{sub 2} rockets. If we reflect on the mission to Mars, NTRs would reduce the round trip time to less than 300 days, instead of over 600 days with chemical rockets. This work presents CFD analysis of one Fuel Element (FE) of Thermal Engine Rocket Adventurer (TERA). In particular, one Square Flow Channel (SFC) is analyzed in Square Lattice Honeycomb (SLHC) fuel to examine the effects of mass flow rate on rocket performance.

  14. Modeling flow stress constitutive behavior of SA508-3 steel for nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Sun Mingyue; Hao Luhan; Li Shijian; Li Dianzhong; Li Yiyi

    2011-01-01

    Highlights: → A series of flow stress constitutive equations for SA508-3 steel were successfully established. → The experimental results under different conditions have validated the constitutive equations. → An industrial application of the model was present to simulate a large conical shell forging process. - Abstract: Based on the measured stress-strain curves under different temperatures and strain rates, a series of flow stress constitutive equations for SA508-3 steel were firstly established through the classical theories on work hardening and softening. The comparison between the experimental and modeling results has confirmed that the established constitutive equations can correctly describe the mechanical responses and microstructural evolutions of the steel under various hot deformation conditions. We further represented a successful industrial application of this model to simulate a forging process for a large conical shell used in a nuclear steam generator, which evidences its practical and promising perspective of our model with an aim of widely promoting the hot plasticity processing for heavy nuclear components of fission reactors.

  15. REFCO83, Nuclear Fuel Cycle Cost Economics Using Discounted Cash Flow Analysis

    International Nuclear Information System (INIS)

    Delene, J.G.; Hermann, O.W.

    2001-01-01

    1 - Description of program or function: REFCO83 utilizes a discounted cash flow (DCF) analysis procedure to calculate batch, cycle, and lifetime levelized average nuclear fuel cycle costs. The DCF analysis establishes an energy 'cost' associated with the fuel by requiring that the revenues from the sale of energy be adequate to pay the required return on outstanding capital, to pay all expenses including taxes, and to retire the outstanding investment to zero by the end of the economic life of the set of fuel investments. The program uses reactor mass flow information together with individual fuel cost parameters and utility capital structure and money costs to calculate levelized costs cumulatively through any batch or cycle. 2 - Method of solution: A fuel cycle cost component is considered to be any fuel material purchase, processing cost, or discharge material credit in the complete fuel cycle. The costs for each individual component, i.e. uranium, enrichment, etc., may either be expensed or capitalized for tax purposes or, in the case of waste disposal, the cost may also be made proportional to power production. To properly account for the effect of income taxes, all calculations in REFCO83 are done using 'then' current dollars, including price escalations caused by inflation. The database used for the default values for REFCO83 was taken from the Nuclear Energy Cost Data Base. 3 - Restrictions on the complexity of the problem: The maximum number of fuel batches is 120

  16. Volume fraction prediction in biphasic flow using nuclear technique and artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Cesar M.; Brandao, Luis E.B., E-mail: otero@ien.gov.br, E-mail: brandao@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The volume fraction is one of the most important parameters used to characterize air-liquid two-phase flows. It is a physical value to determine other parameters, such as the phase's densities and to determine the flow rate of each phase. These parameters are important to predict the flow pattern and to determine a mathematical model for the system. To study, for example, heat transfer and pressure drop. This work presents a methodology for volume fractions prediction in water-gas stratified flow regime using the nuclear technique and artificial intelligence. The volume fractions calculate in biphasic flow systems is complex and the analysis by means of analytical equations becomes very difficult. The approach is based on gamma-ray pulse height distributions pattern recognition by means of the artificial neural network. The detection system uses appropriate broad beam geometry, comprised of a ({sup 137}Cs) energy gamma-ray source and a NaI(Tl) scintillation detector in order measure transmitted beam whose the counts rates are influenced by the phases composition. These distributions are directly used by the network without any parameterization of the measured signal. The ideal and static theoretical models for stratified regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the network. The detector also was modeled with this code and the results were compared to experimental photopeak efficiency measurements of radiation sources. The proposed network could obtain with satisfactory prediction of the volume fraction in water-gas system, demonstrating to be a promising approach for this purpose. (author)

  17. Volume fraction prediction in biphasic flow using nuclear technique and artificial neural network

    International Nuclear Information System (INIS)

    Salgado, Cesar M.; Brandao, Luis E.B.

    2015-01-01

    The volume fraction is one of the most important parameters used to characterize air-liquid two-phase flows. It is a physical value to determine other parameters, such as the phase's densities and to determine the flow rate of each phase. These parameters are important to predict the flow pattern and to determine a mathematical model for the system. To study, for example, heat transfer and pressure drop. This work presents a methodology for volume fractions prediction in water-gas stratified flow regime using the nuclear technique and artificial intelligence. The volume fractions calculate in biphasic flow systems is complex and the analysis by means of analytical equations becomes very difficult. The approach is based on gamma-ray pulse height distributions pattern recognition by means of the artificial neural network. The detection system uses appropriate broad beam geometry, comprised of a ( 137 Cs) energy gamma-ray source and a NaI(Tl) scintillation detector in order measure transmitted beam whose the counts rates are influenced by the phases composition. These distributions are directly used by the network without any parameterization of the measured signal. The ideal and static theoretical models for stratified regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the network. The detector also was modeled with this code and the results were compared to experimental photopeak efficiency measurements of radiation sources. The proposed network could obtain with satisfactory prediction of the volume fraction in water-gas system, demonstrating to be a promising approach for this purpose. (author)

  18. Nuclear matter flow in the Kr+Au collisions at 43 MeV/u

    International Nuclear Information System (INIS)

    Bougault, R.; Delaunay, F.; Genoux-Lubain, A.; Lebrun, C.; Lecolley, J.F.; Lefebvres, F.; Louvel, M.; Steckmeyer, J.C.; Aloff, J.C.; Bilwes, B.; Bilwes, R.; Glaser, M.; Rudolf, G.; Scheibling, F.; Stuttge, L.

    1989-01-01

    When heavy nuclei collide at energy far above the Coulomb barrier we may study the property of nuclear matter in temperature and also density regions far away from the equilibrium. We then hope to study dynamical effects related to the compressibility and the two body collision term. At relativistic energies, some collective effects (flow, bounce off) have been established from a shape analysis done with a large number of light particles with Z ≤ 10. For incident energies lower than 100 MeV/u we may expect that the number of nuclear species formed will be smaller and that a large part of the nuclear matter involved in the collision will be shared in a limited number of heavy fragments (Z ≥ 10). If dynamical effects are still present at GANIL energies they ought to manifest themselves through the properties of the produced fragments (masses, emission angles, velocities and correlated variables). We will present an analysis of heavy nuclei collisions at 43 MeV/u based on as exclusive as possible detection of large fragments

  19. Numerical Simulation of Three-Dimensional Flow Through Full Passage and Performance Prediction of Nuclear Reactor Coolant Pump

    International Nuclear Information System (INIS)

    Li Ying; Zhou Wenxia; Zhang Jige; Wang Dezhong

    2009-01-01

    In order to achieve the level of self-design and domestic manufacture of the reactor coolant pump (nuclear main pump), the software FLUENT was used to simulate the three-dimensional flow through full passage of one nuclear main pump basing on RNG κ-ε turbulence model and SIMPLE algorithm. The distribution of pressure and velocity of the flow in the impeller's surface was analyzed in different working conditions. Moreover, the performance of the pump was predicted based on the simulation results. The results show that the distributions of pressure and velocity are reasonable in both the working and back face of the blade in the steady working condition. The pressure of the flow is increased from the inlet to the outlet of the pump, and shows the maximal value in the impeller region. Comparatively satisfactory efficiency and head value were obtained in the condition of the pump design. The shaft power of the nuclear main pump is gradually increased with the increase of the flow flux. These results are helpful in understanding the change of the internal flow field in the nuclear main pump, which is of some importance for the pre-exploration and theoretical research on the domestic manufacture of the nuclear main pump. (authors)

  20. Flow cytometry detection of planktonic cells with polycyclic aromatic hydrocarbons sorbed to cell surfaces

    KAUST Repository

    Cerezo, Maria I.; Linden, Matthew; Agusti, Susana

    2017-01-01

    Polycyclic aromatic hydrocarbons are very important components of oil pollution. These pollutants tend to sorb to cell surfaces, exerting toxic effects on organisms. Our study developed a flow cytometric method for the detection of PAHs sorbed

  1. Flow sheet development for the remediation of tank SY-102 at the Hanford Nuclear Reservation

    International Nuclear Information System (INIS)

    Yarbro, S.L.; Punjak, W.A.; Schreiber, S.B.; Ortiz, E.M.; Jarvinen, G.D.

    1994-01-01

    The U.S. Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of radioactive waste stored in underground tanks at the Hanford Nuclear Reservation. A major task of TWRS is to separate tank wastes into high-level and low-level fractions. This separation is important because of the enormous costs associated with handling high-level waste and the limited repository space that is available. Due to their high activity, segregating the actinides and fission products from the bulk of the waste is required to achieve this goal. As a part of this program, personnel at the Los Alamos National Laboratory have developed and demonstrated a flow sheet to remediate tank SY-102 at the Hanford Site. This presentation documents the results of the flow sheet demonstrations performed with simulated, but radioactive, wastes using an existing glovebox line at the Los Alamos Plutonium Facility. Removal of the actinides from a high-salt, low-acid feed by ion exchange is the key unit operation. The flow sheet produces relatively low waste volumes, can be accomplished with conventional chemical processing equipment, and takes advantage of the components of the waste to increase the efficiency of the TRU elements recovery

  2. Enhanced CHF with Bubble Cutter and Artificial Flow in Nuclear Plants

    International Nuclear Information System (INIS)

    Jung, Chan Hee; Suh, Kune Y.

    2013-01-01

    The main goal of this paper is to body out the notions of forced convection system for enhanced local streams and air bubbles cutting (and/or pushing, breaking) system to explain how CHF can be improved and how those bubble cutter systems are applicable to NPPs. In this paper, the bubble cutter system and an artificial flow system which can cut (and/or push and break) air bubbles is bodied out to drag bubbles. It also make the surface wet condition of heated surfaces and improve heat transfer and prevent on creation of bubbles on the heated surfaces or heat exchangers or reactor cores. Namely, concepts and application methods to increase CHF are presented for NPPs. Enhanced critical heat flux (CHF) is one of our prospective aims for nuclear power plants (NPPs). Previous work has studied the flow boiling CHF enhancement with surfactant solutions under atmospheric pressure because surfactant solutions or surface conditions have an effect on the behavior of occurrence air bubbles on a heated surface. Another possible improvement is to improve efficiency of heat transfer or to body out some types of bubble breaking (and/or pushing, breaking) systems or an artificial flow of fluid that can tear off air bubbles or push hot liquid and bubbles on a surface of heater. During this study, it will be observed that those possible structures can elicit increased CHF by means of maintenance of contact with a coolant such as water

  3. Some developments and applications of LES of single phase turbulent flows for nuclear industry

    International Nuclear Information System (INIS)

    Frederic Ducros; Valerie Barthel; Ulrich Bieder; Alexandre Chatelain; Younes Benarafa; Olivier Cioni; Gauthier Fauchet; Philippe Emonot; Patrick Quemere; Bernard Menant; Nicolas Tauveron; Simone Vandroux; Christophe Calvin

    2005-01-01

    Full text of publication follows: The turbulence modelling is an important issue concerning the predictive capability of the CFD codes applied to nuclear reactor safety (NRS), in particular for single-phase flows. Common features of these unsteady high Reynolds number turbulent flows are various regimes (laminar, transitional, fully turbulent) developing in arbitrary complex geometries involving a large extend of standard flow configurations (attached and detached boundary layers, mixing layers, jets in cavity, in cross flows, jet impingement) eventually submitted to buoyancy forces, to dilatation effects and leading to mixing of constituents and temperatures. NRS issues are most of the time related to the eventual knowledge of parietal quantities such as temperature (mean and fluctuating), leading to consider the wall region as a crucial one and to deal with coupled problems. All these features can lead to consider different approaches for turbulence modelling: more or less standard 'Reynolds Average Navier-Stokes equations' closures, Large Eddy Simulations, both of them considered with or without wall functions, with or without large implicit time stepping etc. The development and industrialization of LES as a target of providing 'reference simulations' for NRS are parts of the Trio-U project, developed at CEA for several years [1]. First, the paper presents the current status of LES implementation and some insights on the R and D effort concerning the turbulence modelling. The R and D strategy will be introduced as a result of both the extra-nuclear community know-how on LES and several years of applications of LES for nuclear issues at CEA. It will be shown that LES can be considered as a good candidate to deal with the previous mentioned issues. A large emphasis will be devoted to the R and D on approximate wall conditions, including first the checking of the consistency of standard and advanced wall conditions with LES approach, second specific works dealing

  4. Cytometric analysis of shape and DNA content in mammalian sperm

    International Nuclear Information System (INIS)

    Gledhill, B.L.

    1983-01-01

    Male germ cells respond dramatically to a variety of insults and are important reproductive dosimeters. Semen analyses are very useful in studies on the effects of drugs, chemicals, and environmental hazards on testicular function, male fertility and heritable germinal mutations. Sperm were analyzed by flow cytometry and slit-scan flow analysis for injury following the exposure of testes to mutagens. The utility of flow cytometry in genotoxin screening and monitoring of occupational exposure was evaluated. The technique proved valuable in separation of X- and Y-chromosome bearing sperm and the potential applicability of this technique in artificial insemination and a solution, of accurately assessing the DNA content of sperm were evaluated-with reference to determination of X- and Y-chromosome bearing sperm

  5. Cytometric analysis of shape and DNA content in mammalian sperm

    Energy Technology Data Exchange (ETDEWEB)

    Gledhill, B.L.

    1983-10-10

    Male germ cells respond dramatically to a variety of insults and are important reproductive dosimeters. Semen analyses are very useful in studies on the effects of drugs, chemicals, and environmental hazards on testicular function, male fertility and heritable germinal mutations. Sperm were analyzed by flow cytometry and slit-scan flow analysis for injury following the exposure of testes to mutagens. The utility of flow cytometry in genotoxin screening and monitoring of occupational exposure was evaluated. The technique proved valuable in separation of X- and Y-chromosome bearing sperm and the potential applicability of this technique in artificial insemination and a solution, of accurately assessing the DNA content of sperm were evaluated-with reference to determination of X- and Y-chromosome bearing sperm.

  6. Gravity-driven flow and heat transfer in a spent nuclear fuel storage pool

    International Nuclear Information System (INIS)

    Gay, R.R.

    1983-01-01

    The GFLOW code analyzes a three-dimensional rectangular porous medium by dividing the porous medium into a number of nodes or cells specified by the user. The finite difference form of the fluid conservation equations is solved for each node by application of a modified ''marker and cell'' numerical technique. The existence of spent nuclear fuel in any node is modeled by using a porosity value less than unity in that node and by including a surface heat transfer term in the fluid energy equation. In addition, local pressure losses due to grid spaces or other planar flow obstructions can be modeled by local loss coefficients. Heat conduction in the fuel is simulated by a fast running implicit finite difference model of the fuel, gap, and clad regions of the fuel rod

  7. Operational measurements of stack flow rates in a nuclear power plant with ultrasonic anemometer

    International Nuclear Information System (INIS)

    Voelz, E.; Kirtzel, H.-J.; Ebenhoech, E.

    2003-01-01

    The calculation of the impact of radio nuclides within the surroundings of nuclear power stations requires quantitative measurements of the stack emission. As a standard method, propeller anemometers have been installed inside the stack, but due to the wear and tear of the moving parts in such conventional sensors the servicing and maintenance are costly and may cause restrictions in the operation of the stack. As an alternative to propeller anemometers ultrasonic sensors have been applied which employ no moving parts and are almost free of maintenance. Furthermore, any shifts in internal calibration parameters can be identified by the sensor electronics with on-line plausibility checks. The tests have proven that ultrasonic systems are able to measure adequately and reliably the flow inside the stack. (orig.)

  8. Numerical simulation of water flow through the bottom en piece of a nuclear fuel assembly

    International Nuclear Information System (INIS)

    Navarro, Moyses A.; Santos, Andre A. Campagnole dos

    2007-01-01

    The water flow through the bottom nozzle of a nuclear fuel assembly was simulated using a commercial CFD code, CFX 10.0. Previously, simulations with a perforated plate similar to the bottom nozzle plate were performed to define the appropriate mesh refinement and turbulence model (κ-ε or SST). Subsequently, the numerical simulation was performed with the optimized mesh using the turbulence model (κ-ε in a standard bottom nozzle with some geometric simplifications. The numerical results were compared with experimental results to determine the pressure drop through the bottom nozzle in the Reynolds range from ∼10500 to ∼95000. The agreement between the numerical simulations and experimental results may be considered satisfactory. The study indicated that the CFD codes can play an important role in the development of pieces with complex geometries, optimizing the planning of the experiments and aiding in the experimental analysis. (author)

  9. Development and comparision of techniques for estimating design basis flood flows for nuclear power plants

    International Nuclear Information System (INIS)

    1980-05-01

    Estimation of the design basis flood for Nuclear Power Plants can be carried out using either deterministic or stochastic techniques. Stochastic techniques, while widely used for the solution of a variety of hydrological and other problems, have not been used to date (1980) in connection with the estimation of design basis flood for NPP siting. This study compares the two techniques against one specific river site (Galt on the Grand River, Ontario). The study concludes that both techniques lead to comparable results , but that stochastic techniques have the advantage of extracting maximum information from available data and presenting the results (flood flow) as a continuous function of probability together with estimation of confidence limits. (author)

  10. CFD analysis of moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor

    International Nuclear Information System (INIS)

    Kansal, Anuj Kumar; Joshi, Jyeshtharaj B.; Maheshwari, Naresh Kumar; Vijayan, Pallippattu Krishnan

    2015-01-01

    Highlights: • 3D CFD of vertical calandria vessel. • Spatial distribution of volumetric heat generation. • Effect of Archimedes number. • Non-dimensional analysis. - Abstract: Three dimensional computational fluid dynamics (CFD) analysis has been performed for the moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor under normal operating condition using OpenFOAM CFD code. OpenFOAM is validated by comparing the predicted results with the experimental data available in literature. CFD model includes the calandria vessel, calandria tubes, inlet header and outlet header. Analysis has been performed for the cases of uniform and spatial distribution of volumetric heat generation. Studies show that the maximum temperature in moderator is lower in the case of spatial distribution of heat generation as compared to that in the uniform heat generation in calandria. In addition, the effect of Archimedes number on maximum and average moderator temperature was investigated

  11. CFD analysis of moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kansal, Anuj Kumar, E-mail: akansal@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Joshi, Jyeshtharaj B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Maheshwari, Naresh Kumar, E-mail: nmahesh@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Vijayan, Pallippattu Krishnan, E-mail: vijayanp@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2015-06-15

    Highlights: • 3D CFD of vertical calandria vessel. • Spatial distribution of volumetric heat generation. • Effect of Archimedes number. • Non-dimensional analysis. - Abstract: Three dimensional computational fluid dynamics (CFD) analysis has been performed for the moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor under normal operating condition using OpenFOAM CFD code. OpenFOAM is validated by comparing the predicted results with the experimental data available in literature. CFD model includes the calandria vessel, calandria tubes, inlet header and outlet header. Analysis has been performed for the cases of uniform and spatial distribution of volumetric heat generation. Studies show that the maximum temperature in moderator is lower in the case of spatial distribution of heat generation as compared to that in the uniform heat generation in calandria. In addition, the effect of Archimedes number on maximum and average moderator temperature was investigated.

  12. Contribution at the turbulence study in tridimensional flow: application at nuclear reactors

    International Nuclear Information System (INIS)

    Rodet, J.C.

    1985-01-01

    Inside hexagonal assemblies of 3 or 19 pins of nuclear reactor type Super Phenix parietal pressure ranges, mean kinematical ranges and turbulent ranges has been measured. For these latest a measurement methodology taking into account the orientation constraints binded at the geometry of assembly is developed for a simple probe having two crossed hot wires. The mean kinematic range obtained is tridimensional; it puts in clearness periodicities, a peripheral flow along the case and render an account of kink values. Local analysis of Reynold tensors permits to return localy and in selected references at tangential bidimensional situations. Evaluations of mixing lenghts are executed in subchannels, then integrated in a numerical code of thermo hydraulic prediction with object to improve it [fr

  13. Performance evaluation of a commercially available heat flow calorimeter and applicability assessment for safeguarding special nuclear materials

    International Nuclear Information System (INIS)

    Bracken, D.S.; Biddle, R.; Rudy, C.

    1998-01-01

    The performance characteristics of a commercially available heat-flow calorimeter will be presented. The heat-flow sensors within the calorimeter are based on thermopile technology with a vendor-quoted sensitivity of 150 microV/mW. The calorimeter is a full-twin design to compensate for ambient temperature fluctuations. The efficacy of temperature fluctuation compensations will also be detailed. Finally, an assessment of design applicability to special nuclear materials control and accountability and safeguarding will be presented

  14. Contribuição da citometria de fluxo para o diagnóstico e prognóstico das síndromes mielodisplásicas The application of flow cytometric analysis of bone marrow cells for the diagnosis and prognosis of myelodysplastic syndromes

    Directory of Open Access Journals (Sweden)

    Irene Lorand-Metze

    2006-09-01

    Full Text Available O diagnóstico das síndromes mielodisplásicas (SMD é baseado nos achados de citopenias no sangue periférico, na morfologia (atipias das células hemopoiéticas na medula óssea e no cariótipo. Em uma proporção considerável de casos, porém, o grau de atipias encontrado é discreto e sujeito a interpretações subjetivas. Além disso, alterações citogenéticas são encontradas apenas em 30%-80% dos casos. A citometria de fluxo multiparamétrica é uma técnica rápida, reproduzível e relativamente barata, capaz de objetivar alterações funcionais do clone SMD na maioria dos casos, o que permite o diagnóstico diferencial com patologias não-clonais que cursam com citopenias periféricas. Várias alterações têm sido descritas na expressão de antígenos ligados a linhagem e maturação celular nas três séries hemopoiéticas. Protocolos de três ou quatro cores analisando-se as séries eritroblástica, mielomonocítica e blastos têm sido propostos e conseguem resolver o diagnóstico diferencial em praticamente todos os casos. A citometria de fluxo também é útil para o acompanhamento dos pacientes, já que a progressão do clone neoplásico é acompanhada por um aumento do número de alterações fenotípicas e de células CD34+ além da diminuição de marcadores pró-apoptóticos.The diagnosis of MDS is based on the presence of peripheral cytopenias together with cell atypias in bone marrow precursors and cytogenetic abnormalities. However, in several cases, the cell atypias are discrete, and/or the karyotype is normal, precluding a clear-cut diagnosis. Multiparametric flow cytometry is a fast, reproducible and relatively inexpensive technique, which is able to disclose changes in the expression of lineage and maturation related antigens. Several of such abnormalities have been described in MDS. Three or four-color protocols have been used to analyze erythroblasts, granulocytes, monocytes and blasts, permitting, in most of the

  15. Isospin effects on the system mass dependence of nuclear stopping around the energy of vanishing flow

    Science.gov (United States)

    Jain, Anupriya; Kumar, Suneel

    2014-10-01

    We study the effect of isospin degree of freedom on nuclear stopping throughout the mass range 50 and 350 for two sets of isotopic systems with N/Z ≈ 1.5 and 1.8, as well as isobaric systems with N/Z = 1.0 and 1.4. Analysis is carried out at incident energies below, at, and above the energy of vanishing flow (EVF) using the isospin-dependent quantum molecular dynamics model. Our findings reveal that nuclear stopping does not show any particular behavior at the EVF. Moreover, system size effects dominate the isospin effects throughout the range of colliding geometry. The Coulomb effects, however, become important at peripheral geometry. The comparative study of the counterbalancing of Coulomb and mean field by removing the nucleon-nucleon collisions and symmetry potential clearly indicates the dominance of nucleon-nucleon cross-section over the Coulomb repulsions. Moreover, the theoretical results presented in this manuscript for the set of reactions can be experimentally verified.

  16. Isospin effects on the system mass dependence of nuclear stopping around the energy of vanishing flow

    International Nuclear Information System (INIS)

    Jain, Anupriya; Kumar, Suneel

    2014-01-01

    We study the effect of isospin degree of freedom on nuclear stopping throughout the mass range 50 and 350 for two sets of isotopic systems with N/Z ≈ 1.5 and 1.8, as well as isobaric systems with N/Z = 1.0 and 1.4. Analysis is carried out at incident energies below, at, and above the energy of vanishing flow (EVF) using the isospin-dependent quantum molecular dynamics model. Our findings reveal that nuclear stopping does not show any particular behavior at the EVF. Moreover, system size effects dominate the isospin effects throughout the range of colliding geometry. The Coulomb effects, however, become important at peripheral geometry. The comparative study of the counterbalancing of Coulomb and mean field by removing the nucleon–nucleon collisions and symmetry potential clearly indicates the dominance of nucleon–nucleon cross-section over the Coulomb repulsions. Moreover, the theoretical results presented in this manuscript for the set of reactions can be experimentally verified. (paper)

  17. Peak expiratory flow rate (PEFR) among Nuclear Fuel Complex (NFC) employees

    International Nuclear Information System (INIS)

    Vijay Rao, J.; Venkaiah, K.; Mohan Rao, N.

    2010-01-01

    At Nuclear Fuel Complex (NFC), employees are exposed to ammonia, hydrofluoric acid, acetone, etc., which are respiratory toxicants and inhalation of these pollutants may produce irritation and obstruction in airways. Due to nature of their occupation, tradesman working in plants are having longer duration of exposure (LDE) and others, such as supervisors, scientific officers, helpers, etc., that occasionally visit plants are having shorter duration of exposure (SDE) to these pollutants. The peak expiratory flow rate (PEFR) is an index to diagnose obstruction in larger airways and this is metered with mini peak flow meter among 835 NFC employees. Using ANOVA test, PEFR value was compared according to age and smoking. The value was compared between LDE and SDE employees according to smoking and duration of employment. The multiple regression equation for prediction of PEFR was developed. Age, smokers and higher duration of LDE employees demonstrated significantly lower PEFR value. In comparison to 10 year duration, 30 and above year duration of employment, LDE employees showed a higher decline in PEFR, that is 95 L (17.6%) and in SDE employees, that is 41L (7.8%). This may be due to longer duration of employment of LD employees smoking prevention and follow up study is suggested. (author)

  18. Comparison of rheological evaluation techniques and turbulent flow prediction of a simulated nuclear waste melter slurry

    International Nuclear Information System (INIS)

    Carleson, T.E.; Hart, R.E.; Drown, D.C.; Peterson, M.E.

    1987-03-01

    An experimental study was performed on a simulated nuclear waste slurry containing the type of waste sludge and glass-forming chemicals that will be converted to a stable glass in a high-temperature furnace. The rheological properties of the slurry must be determined in order to design the transport and mixing systems. The rheological parameters for the slurry were determined by a variety of viscometers including a rotational viscometer, a capillary tube viscometer, and a pipe flow apparatus. Experiments revealed the absence of wall slip and sufficient non-Newtonian behavior to require adjustments of the results. The slurry was characterized as a yield pseudoplastic fluid. Different rheological constants were obtained for all three viscometers. Predictions of the shear stress as a function of shear rate showed good agreement between the constants determined by the rotational viscometer and the pipe loop apparatus. Laminar and turbulent flows in the pipe loop correlated closely with a recent theoretical model. 16 refs., 16 figs., 5 tabs

  19. A deuterium and carbon nuclear magnetic resonance spectroscopic investigation of blood flow and carbohydrate metabolism

    International Nuclear Information System (INIS)

    Bosch, C.S.E.

    1988-01-01

    The purpose of this study is the development and application of nuclear magnetic resonance (NMR) spectroscopic techniques for this study of whole tissue metabolism, tissue perfusion and blood flow. The feasibility of spin imaging deuterium-enriched tissue water is demonstrated in cat brain in vivo and in situ. The potential application of D 2 O administration to deuterium-flow-imaging is considered. NMR investigations of hepatic carbohydrate metabolism were performed in rat liver in vivo and in situ. A coaxial, double-surface-coil, double-resonance probe was developed for carbon detection while decoupling neighboring proton scalar interactions ( 13 C-[ 1 H]) in hepatic tissue within the living animal. Hormonal and substrate regulation of hepatic glucose and glycogen metabolism was investigated by monitoring the metabolic fate of an administered c-dose of [1- 13 C]glucose. Label flux was directed primarily into newly-synthesized 13 C-labeled glycogen. A multiple resonance ( 1 H, 13 C, 31 P) liver perfusion probe was designed for complimentary carbohydrate metabolic studies in rat liver in vitro. A description of the 13 C-[ 1 H]/ 31 P NMR perfusion probe is given. The surgical technique used for liver excision and peripheral life-support apparatus required to maintain hepatic function are also detailed

  20. Groundwater and vadose Zone Integration Project Nuclear Material Mass Flow and Accountability on the Hanford Site

    International Nuclear Information System (INIS)

    GRASHER, A.A.

    2001-01-01

    The purpose of this report is to provide a discussion of the accountable inventory of Hanford Site nuclear material (NM) over the operating period. This report does not provide judgments on impacts to the Hanford Site environs by the reported waste streams or inventory. The focus of this report is on the processes, facilities, and process streams that constituted the flow primarily of plutonium and uranium through the Hanford Site. The material balance reports (MBRS) are the basis of the NM accountable inventory maintained by each of the various contractors used by the U.S. Department of Energy (DOE) and its predecessors to operate the Hanford Site. The inventory was tracked in terms of a starting inventory, receipts, transfers, and ending inventory. The various components of the inventory are discussed as well as the uncertainty in the measurement values used to establish plant inventory and material transfers. The accountable NM inventory does not report all the NM on the Hanford Site and this difference is discussed relative to some representative nuclides. The composition and location of the current accountable inventory are provided, as well as the latest approved set (2000) of flow diagrams of the proposed disposition of the excess accountable NM inventory listed on the Idaho National Engineering and Environmental Laboratory (INEEL) web page

  1. Use of nonimaging nuclear medicine techniques to assess the effect of flunixin meglumine on effective renal plasma flow and effective renal blood flow in healthy horses.

    Science.gov (United States)

    Held, J P; Daniel, G B

    1991-10-01

    The effect of flunixin meglumine on renal function was studied in 6 healthy horses by use of nonimaging nuclear medicine techniques. Effective renal plasma flow (ERPF) and effective renal blood flow (ERBF) were determined by plasma clearance of 131I-orthoiodohippuric acid before and after administration of flunixin meglumine. Mean ERPF and ERBF was 6.03 ml/min/kg and 10.7 ml/min/kg, respectively, before treatment and was 5.7 ml/min/kg and 9.7 ml/min/kg, respectively, after treatment. Although ERPF and ERBF decreased after flunixin meglumine administration, the difference was not statistically significant.

  2. Polyploidy in the Olive Complex (Olea europaea): Evidence from Flow Cytometry and Nuclear Microsatellite Analyses

    Science.gov (United States)

    Besnard, G.; Garcia-Verdugo, C.; Rubio De Casas, R.; Treier, U. A.; Galland, N.; Vargas, P.

    2008-01-01

    Background Phylogenetic and phylogeographic investigations have been previously performed to study the evolution of the olive tree complex (Olea europaea). A particularly high genomic diversity has been found in north-west Africa. However, to date no exhaustive study has been addressed to infer putative polyploidization events and their evolutionary significance in the diversification of the olive tree and its relatives. Methods Representatives of the six olive subspecies were investigated using (a) flow cytometry to estimate genome content, and (b) six highly variable nuclear microsatellites to assess the presence of multiple alleles at co-dominant loci. In addition, nine individuals from a controlled cross between two individuals of O. europaea subsp. maroccana were characterized with microsatellites to check for chromosome inheritance. Key Results Based on flow cytometry and genetic analyses, strong evidence for polyploidy was obtained in subspp. cerasiformis (tetraploid) and maroccana (hexaploid), whereas the other subspecies appeared to be diploids. Agreement between flow cytometry and genetic analyses gives an alternative approach to chromosome counting to determine ploidy level of trees. Lastly, abnormalities in chromosomes inheritance leading to aneuploid formation were revealed using microsatellite analyses in the offspring from the controlled cross in subsp. maroccana. Conclusions This study constitutes the first report for multiple polyploidy in olive tree relatives. Formation of tetraploids and hexaploids may have played a major role in the diversification of the olive complex in north-west Africa. The fact that polyploidy is found in narrow endemic subspecies from Madeira (subsp. cerasiformis) and the Agadir Mountains (subsp. maroccana) suggests that polyploidization has been favoured to overcome inbreeding depression. Lastly, based on previous phylogenetic analyses, we hypothesize that subsp. cerasiformis resulted from hybridization between ancestors

  3. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    International Nuclear Information System (INIS)

    Hunsbedt, A.; Boardman, C.E.

    1993-01-01

    A dual passive cooling system for liquid metal cooled nuclear fission reactors is described, comprising the combination of: a reactor vessel for containing a pool of liquid metal coolant with a core of heat generating fissionable fuel substantially submerged therein, a side wall of the reactor vessel forming an innermost first partition; a containment vessel substantially surrounding the reactor vessel in spaced apart relation having a side wall forming a second partition; a first baffle cylinder substantially encircling the containment vessel in spaced apart relation having an encircling wall forming a third partition; a guard vessel substantially surrounding the containment vessel and first baffle cylinder in spaced apart relation having a side wall forming a forth partition; a sliding seal at the top of the guard vessel edge to isolate the dual cooling system air streams; a second baffle cylinder substantially encircling the guard vessel in spaced part relationship having an encircling wan forming a fifth partition; a concrete silo substantially surrounding the guard vessel and the second baffle cylinder in spaced apart relation providing a sixth partition; a first fluid coolant circulating flow course open to the ambient atmosphere for circulating air coolant comprising at lent one down comer duct having an opening to the atmosphere in an upper area thereof and making fluid communication with the space between the guard vessel and the first baffle cylinder and at least one riser duct having an opening to the atmosphere in the upper area thereof and making fluid communication with the space between the first baffle cylinder and the containment vessel whereby cooling fluid air can flow from the atmosphere down through the down comer duct and space between the forth and third partitions and up through the space between the third and second partition and the riser duct then out into the atmosphere; and a second fluid coolant circulating flow

  4. Information flow among researchers at IPEN - Instituto de Pesquisas Energeticas e Nucleares

    International Nuclear Information System (INIS)

    Sugai, Mioka

    1986-01-01

    The information flow among a group of researchers at the Instituto de Pesquisas Energeticas e Nucleares of the Comissao Nacional de Energia Nuclear/Sao Paulo (IPEN-CNEN/SP) was analysed by means of a study of use and non-use of formal and informal information channels. The study proposed suggesting ideas for the improvement of the information network, as a means of contributing to the future planning of the information transfer structure among the I PEN technical-scientific community. A structural interview was used to collect the data. The researchers were characterized under functional, academic and professional aspects. Their information needs were identified as well as the factors which affect such needs. The researchers behaviour while searching for information was analysed by means of the critical incident technique. The informal communication networks were also identified according to a sociometric technique. The results show that in the Department included in the study, information flows equally through formal and informal channels. It is evident that there is a small correlation between degree of use and degree of importance of information sources. There is no evidence that those who make little use of formal channels supply their information needs by use of informal channels. It was patent that non-accessibility is the key factor which influences the non-use of information. The motivation of the use of formal sources is significantly inhibited by the fact that the library collection is not brought up-to-date. Relatively intense informal communication was verified both inter and intra-divisions. It is also evident that researchers with higher academic degree make more frequent use of formal channels, and stand a greater possibility of being identified as gatekeepers. However, those researchers who are considered more productive, at their present function, are not always those who make more frequent use of formal channels. The conclusions show that in order

  5. Simplified flow cytometric assay to detect minimal residual disease in childhood with acute lymphoblastic leukemia Detecção de doença residual mínima em crianças com leucemia linfoblástica aguda por citometria de fluxo

    Directory of Open Access Journals (Sweden)

    Elizabete Delbuono

    2008-08-01

    Full Text Available The detection of minimal residual disease (MRD is an important prognostic factor in childhood acute lymphoblastic leukemia (ALL providing crucial information on the response to treatment and risk of relapse. However, the high cost of these techniques restricts their use in countries with limited resources. Thus, we prospectively studied the use of flow cytometry (FC with a simplified 3-color assay and a limited antibody panel to detect MRD in the bone marrow (BM and peripheral blood (PB of children with ALL. BM and PB samples from 40 children with ALL were analyzed on days (d 14 and 28 during induction and in weeks 24-30 of maintenance therapy. Detectable MRD was defined as > 0.01% cells expressing the aberrant immunophenotype as characterized at diagnosis among total events in the sample. A total of 87% of the patients had an aberrant immunophenotype at diagnosis. On d14, 56% of the BM and 43% of the PB samples had detectable MRD. On d28, this decreased to 45% and 31%, respectively. The percentage of cells with the aberrant phenotype was similar in both BM and PB in T-ALL but about 10 times higher in the BM of patients with B-cell-precursor ALL. Moreover, MRD was detected in the BM of patients in complete morphological remission (44% on d14 and 39% on d28. MRD was not significantly associated to gender, age, initial white blood cell count or cell lineage. This FC assay is feasible, affordable and readily applicable to detect MRD in centers with limited resources.A detecção de doença residual mínima (DRM é um importante fator prognóstico na leucemia linfóide aguda (LLA infantil e fornece informações sobre a resposta ao tratamento e o risco de recaída. Entretanto, os altos custos das técnicas utilizadas limitam seu uso nos países em desenvolvimento. Desta forma, realizamos um estudo prospectivo para avaliar a citometria de fluxo (CF, utilizando três fluorescências e um painel limitado de anticorpos monoclonais, como método de detec

  6. Flow cytometry and integrated imaging

    Directory of Open Access Journals (Sweden)

    V. Kachel

    2000-06-01

    Full Text Available It is a serious problem to relate the results of a flow cytometric analysis of a marine sample to different species. Images of particles selectively triggered by the flow cytometric analysis and picked out from the flowing stream give a valuable additional information on the analyzed organisms. The technical principles and problems of triggered imaging in flow are discussed, as well as the positioning of the particles in the plane of focus, freezing the motion of the quickly moving objects and what kinds of light sources are suitable for pulsed illumination. The images have to be stored either by film or electronically. The features of camera targets and the memory requirements for storing the image data and the conditions for the triggering device are shown. A brief explanation of the features of three realized flow cytometric imaging (FCI systems is given: the Macro Flow Planktometer built within the EUROMAR MAROPT project, the Imaging Module of the European Plankton Analysis System, supported by the MAST II EurOPA project and the most recently developed FLUVO VI universal flow cytometer including HBO 100- and laser excitation for fluorescence and scatter, Coulter sizing as well as bright field and and phase contrast FCI.

  7. Hadronic energy spectra from nuclear collisions: Effects from collective transverse flow and the phase transition to quark matter

    International Nuclear Information System (INIS)

    Heinz, U.

    1988-11-01

    I give an overview of the processes determining the shape of energy spectra of hadrons emitted in relativistic nuclear collisions, and discuss how one can extract from them information on the presence of collective transverse flow and on the transition to quark-gluon matter in such collisions. 6 refs., 3 figs

  8. Control flow of radiopharmaceuticals in nuclear medicine by means of an E-service; Control flujo de radiofarmacos en medicine nuclear por medio de un E-servicio

    Energy Technology Data Exchange (ETDEWEB)

    Nunez Martin, L.; Gonzalez de Mingo, M. A.; Fragua Redondo, J. A.; Martinez Ortega, J.; Gutierrez Camunas, S.; Redondo Miguel, A. B.

    2013-07-01

    The almost generalized use of single-dose Nuclear Medicine for performing diagnostic tests or treatments, and the consequent complexity that accompanies its management, has resulted in the need to control the flow of material radioisotopic tools. An e-service is designed to manage the flow of radiopharmaceuticals and control its use and spending. This control does not only affect the efficiency in the use and cost of material, but in the radioactive waste associated with the non-use and waste reduction and a more effective organization of the Department. (Author)

  9. Nuclear energy in Europe: uranium flow modeling and fuel cycle scenario trade-offs from a sustainability perspective.

    Science.gov (United States)

    Tendall, Danielle M; Binder, Claudia R

    2011-03-15

    The European nuclear fuel cycle (covering the EU-27, Switzerland and Ukraine) was modeled using material flow analysis (MFA).The analysis was based on publicly available data from nuclear energy agencies and industries, national trade offices, and nongovernmental organizations. Military uranium was not considered due to lack of accessible data. Nuclear fuel cycle scenarios varying spent fuel reprocessing, depleted uranium re-enrichment, enrichment assays, and use of fast neutron reactors, were established. They were then assessed according to environmental, economic and social criteria such as resource depletion, waste production, chemical and radiation emissions, costs, and proliferation risks. The most preferable scenario in the short term is a combination of reduced tails assay and enrichment grade, allowing a 17.9% reduction of uranium demand without significantly increasing environmental, economic, or social risks. In the long term, fast reactors could theoretically achieve a 99.4% decrease in uranium demand and nuclear waste production. However, this involves important costs and proliferation risks. Increasing material efficiency is not systematically correlated with the reduction of other risks. This suggests that an overall optimization of the nuclear fuel cycle is difficult to obtain. Therefore, criteria must be weighted according to stakeholder interests in order to determine the most sustainable solution. This paper models the flows of uranium and associated materials in Europe, and provides a decision support tool for identifying the trade-offs of the alternative nuclear fuel cycles considered.

  10. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    Science.gov (United States)

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-01

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 5 psi, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.5 GPM.

  11. DEA 1 Expression on Dog Erythrocytes Analyzed by Immunochromatographic and Flow Cytometric Techniques

    OpenAIRE

    Acierno, M.M.; Raj, K.; Giger, U.

    2014-01-01

    Background The Dog erythrocyte antigen (DEA) 1 blood group system was thought to contain types DEA 1.1 and 1.2 (and possibly 1.3 [A3]). However, DEA 1.2+ dogs are very rare and newer typing methods reveal varying degrees of DEA 1 positivity. Objectives To assess if variation in DEA 1 positivity is because of quantitative differences in surface antigen expression. To determine expression patterns in dogs over time and effects of blood storage (4?C). To evaluate DEA 1.2+ samples by DEA 1 typing...

  12. Flow cytometric assay detecting cytotoxicity against human endogenous retrovirus antigens expressed on cultured multiple sclerosis cells

    DEFF Research Database (Denmark)

    Møller-Larsen, A; Brudek, T; Petersen, T

    2013-01-01

    on their surface. Polyclonal antibodies against defined peptides in the Env- and Gag-regions of the HERVs were raised in rabbits and used in antibody-dependent cell-mediated cytotoxicity (ADCC) -assays. Rituximab® (Roche), a chimeric monoclonal antibody against CD20 expressed primarily on B cells, was used...

  13. Long-term storage of samples for flow cytometric DNA analysis

    DEFF Research Database (Denmark)

    Vindeløv, L L; Christensen, I J; Keiding, N

    1983-01-01

    estimation by deconvolution, there was significant intraday and interday variation. Hence the most accurate results are obtained if different aliquots of a sample are measured on different days rather than on the same day. Use of the storage method thus has the potential of increasing the accuracy...

  14. Flow cytometric analysis of RNA synthesis by detection of bromouridine incorporation

    DEFF Research Database (Denmark)

    Larsen, J K; Jensen, Peter Østrup; Larsen, J

    2001-01-01

    RNA synthesis has traditionally been investigated by a laborious and time-consuming radiographic method involving incorporation of tritiated uridine. Now a faster non-radioactive alternative has emerged, based on immunocytochemical detection. This method utilizes the brominated RNA precursor...... bromouridine, which is taken into a cell, phosphorylated, and incorporated into nascent RNA. The BrU-substituted RNA is detected by permeabilizing the cells and staining with certain anti-BrdU antibodies. This dynamic approach yields information complementing that provided by cellular RNA content analysis...

  15. Multiplex ready flow cytometric immunoassay for total insulin like growth factor 1 in serum of cattle

    NARCIS (Netherlands)

    Bremer, M.G.E.G.; Smits, N.G.E.; Haasnoot, W.; Nielen, M.W.F.

    2010-01-01

    The European Union has banned the use of recombinant bovine somatotropins (rbST, growth hormones) to increase milk yield in dairy cattle. As direct detection of rbST in serum is problematic, methods based on the detection of changes in multiple rbST-dependent biomarkers have high potential for

  16. Multiplex flow cytometric immunoassay for serum biomarker profiling of recombinant bovine somatotropin

    NARCIS (Netherlands)

    Smits, N.G.E.; Ludwig, S.K.J.; Veer, van der G.; Bremer, M.G.E.G.; Nielen, M.W.F.

    2013-01-01

    Recombinant bovine somatotropin (rbST) is licensed for enhancing milk production in dairy cows in some countries, for instance the United States, but is banned in Europe. Serum biomarker profiling can be an adequate approach to discriminate between treated and untreated groups. In this study a

  17. Flow cytometric analysis of lymphocytes in aplastic anemia among atomic bomb survivors

    International Nuclear Information System (INIS)

    Imamura, Nobutaka; Inada, Tominari; Asaoku, Hideki; Abe, Kazuhiro; Oguma, Nobuo; Kuramoto, Atsushi

    1986-01-01

    In 6 patients with aplastic anemia and 3 patients with pernicious anemia, lymphocyte subpopulations in the peripheral blood were measured, before and after steroid therapy, with a fluorescence-activated cell sorder using various monoclonal antibodies. The ratio of OKT4-positive lymphocytes (T4) to OKT8-positive lymphocytes (T8) in the peripheral blood was reduced in 2 patients (20 %). The T4/T8 ratio returned to normal during remission of anemia. Hematological improvement was seen after a large amount of steroid therapy in 3 patients. The number of Tac-positive cells tended to decrease and the T4/T8 ratio tended to return to normal with hematological improvement, although there was no correlation to hydrocortisone reaction. Some patients were supposed to have abnormal number of suppressor and inducer T cells. (Namekawa, K.)

  18. Joint modeling and registration of cell populations in cohorts of high-dimensional flow cytometric data.

    Directory of Open Access Journals (Sweden)

    Saumyadipta Pyne

    Full Text Available In biomedical applications, an experimenter encounters different potential sources of variation in data such as individual samples, multiple experimental conditions, and multivariate responses of a panel of markers such as from a signaling network. In multiparametric cytometry, which is often used for analyzing patient samples, such issues are critical. While computational methods can identify cell populations in individual samples, without the ability to automatically match them across samples, it is difficult to compare and characterize the populations in typical experiments, such as those responding to various stimulations or distinctive of particular patients or time-points, especially when there are many samples. Joint Clustering and Matching (JCM is a multi-level framework for simultaneous modeling and registration of populations across a cohort. JCM models every population with a robust multivariate probability distribution. Simultaneously, JCM fits a random-effects model to construct an overall batch template--used for registering populations across samples, and classifying new samples. By tackling systems-level variation, JCM supports practical biomedical applications involving large cohorts. Software for fitting the JCM models have been implemented in an R package EMMIX-JCM, available from http://www.maths.uq.edu.au/~gjm/mix_soft/EMMIX-JCM/.

  19. Flow-cytometric identification of vinegars using a multi-parameter analysis optical detection module

    Science.gov (United States)

    Verschooten, T.; Ottevaere, H.; Vervaeke, M.; Van Erps, J.; Callewaert, M.; De Malsche, W.; Thienpont, H.

    2015-09-01

    We show a proof-of-concept demonstration of a multi-parameter analysis low-cost optical detection system for the flowcytometric identification of vinegars. This multi-parameter analysis system can simultaneously measure laser induced fluorescence, absorption and scattering excited by two time-multiplexed lasers of different wavelengths. To our knowledge no other polymer optofluidic chip based system offers more simultaneous measurements. The design of the optofluidic channels is aimed at countering the effects that viscous fingering, air bubbles, and emulsion samples can have on the correct operation of such a detection system. Unpredictable variations in viscosity and refractive index of the channel content can be turned into a source of information. The sample is excited by two laser diodes that are driven by custom made low-cost laser drivers. The optofluidic chip is built to be robust and easy to handle and is reproducible using hot embossing. We show a custom optomechanical holder for the optofluidic chip that ensures correct alignment and automatic connection to the external fluidic system. We show an experiment in which 92 samples of vinegar are measured. We are able to identify 9 different kinds of vinegar with an accuracy of 94%. Thus we show an alternative approach to the classic optical spectroscopy solution at a lowered. Furthermore, we have shown the possibility of predicting the viscosity and turbidity of vinegars with a goodness-of-fit R2 over 0.947.

  20. Flow cytometric viability assessment and transmission electron microscopic morphological study of Bacteria in Glycerol

    NARCIS (Netherlands)

    Saegeman, V.S.M.; Vos, de R.; Tebaldi, N.D.; Wolf, van der J.M.; Bergervoet, J.H.W.; Verhaegen, J.; Lismont, D.; Verduyckt, B.; Ectors, N.L.

    2007-01-01

    Human cadaveric skin allografts are used in the treatment of burns and can be preserved in glycerol at high concentrations. Previously, glycerol has been attributed some antimicrobial effect. In an experimental set-up, we aimed at investigating this effect of prolonged incubation of bacteria in 85%

  1. Flow-cytometric measurements of somatic cell mutations in Thorotrast patients

    International Nuclear Information System (INIS)

    Umeki, Shigeko; Kyoizumi, Seishi; Kusunoki, Yoichiro; Nakamura, Nori; Sasaki, Masao; Mori, Takesaburo; Ishikawa, Yuichi; Cologne, J.B.; Akiyama, Mitoshi.

    1992-10-01

    Exposure to ionizing radiation is a well-recognized risk factor for cancer development. Because ionizing radiation can induce mutations, an accurate way of measuring somatic mutation frequencies could be a useful tool for evaluating cancer risk. In the present study, we have examined in vivo somatic mutation frequencies at the erythrocyte glycophorin A and T-cell receptor loci in 18 Thorotrast patients. These persons have been continuously irradiated with alpha particles emitted from the internal deposition of thorium dioxide and thus have increased risks of certain malignant tumors. When compared with controls, the Thorotrast patients showed a significantly higher frequency of mutants at the lymphocyte T-cell receptor loci but not at the erythrocyte glycophorin A loci. (author)

  2. Quantification of silver nanoparticle toxicity to algae in soil via photosynthetic and flow-cytometric analyses

    OpenAIRE

    Nam, Sun-Hwa; Il Kwak, Jin; An, Youn-Joo

    2018-01-01

    Soil algae, which have received attention for their use in a novel bioassay to evaluate soil toxicity, expand the range of terrestrial test species. However, there is no information regarding the toxicity of nanomaterials to soil algae. Thus, we evaluated the effects of silver nanoparticles (0–50 mg AgNPs/kg dry weight soil) on the soil alga Chlamydomonas reinhardtii after six days, and assessed changes in biomass, photosynthetic activity, cellular morphology, membrane permeability, esterase ...

  3. Effect of water chemistry improvement on flow accelerated corrosion in light-water nuclear reactor

    International Nuclear Information System (INIS)

    Sugino, Wataru; Ohira, Taku; Nagata, Nobuaki; Abe, Ayumi; Takiguchi, Hideki

    2009-01-01

    Flow Accelerated Corrosion (FAC) of Carbon Steel (CS) piping has been one of main issues in Light-Water Nuclear Reactor (LWRs). Wall thinning of CS piping due to FAC increases potential risk of pipe rupture and cost for inspection and replacement of damaged pipes. In particular, corrosion products generated by FAC of CS piping brought steam generator (SG) tube corrosion and degradation of thermal performance, when it intruded and accumulated in secondary side of PWR. To preserve SG integrity by suppressing the corrosion of CS, High-AVT chemistry (Feedwater pH9.8±0.2) has been adopted to Tsuruga-2 (1160 MWe PWR, commercial operation in 1987) in July 2005 instead of conventional Low-AVT chemistry (Feedwater pH 9.3). By the High-AVT adoption, the accumulation rate of iron in SG was reduced to one-quarter of that under conventional Low-AVT. As a result, a tendency to degradation of the SG thermal efficiency was improved. On the other hand, it was clarified that High-AVT is ineffective against Flow Accelerated Corrosion (FAC) at the region where the flow turbulence is much larger. By contrast, wall thinning of CS feed water pipes due to FAC has been successfully controlled by oxygen treatment (OT) for long time in BWRs. Because Magnetite film formed on CS surface under AVT chemistry has higher solubility and porosity in comparison with Hematite film, which is formed under OT. In this paper, behavior of the FAC under various pH and dissolved oxygen concentration are discussed based on the actual wall thinning rate of BWR and PWR plant and experimental results by FAC test-loop. And, it is clarified that the FAC is suppressed even under extremely low DO concentration such as 2ppb under AVT condition in PWR. Based on this result, we propose the oxygenated water chemistry (OWC) for PWR secondary system which can mitigate the FAC of CS piping without any adverse effect for the SG integrity. Furthermore, the applicability and effectiveness of this concept developed for FAC

  4. APPLICATION FEATURES OF SPATIAL CONDUCTOMETRY SENSORS IN MODELLING OF COOLANT FLOW MIXING IN NUCLEAR POWER UNIT EQUIPMENT

    Directory of Open Access Journals (Sweden)

    A. A. Barinov

    2016-01-01

    Full Text Available Coolant flow mixing processes with different temperatures and concentrations of diluted additives widely known in nuclear power units operation. In some cases these processes make essential impact on the resource and behavior of the nuclear unit during transient and emergency situations. The aim of the study was creation of measurement system and test facility to carry out basic tests and to embed spatial conductometry method in investigation practice of turbulent coolant flows. In the course of investigation measurement system with sensors and experimental facility was designed, several first tests were carried out. A special attention was dedicated to calibration and clarification of conductometry sensor application methodologies in studies of turbulent flow characteristics. Investigations involved method of electrically contrast tracer jet with concurrent flow in closed channel of round crosssection. The measurements include both averaged and unsteady realizations of measurement signal. Experimental data processing shows good agreement with other tests acquired from another measurement systems based on different physical principles. Calibration functions were acquired, methodical basis of spatial conductometry measurement system application was created. Gathered experience of spatial sensor application made it possible to formulate the principles of further investigation that involve large-scale models of nuclear unit equipment. Spatial wire-mesh sensors proved to be a perspective type of eddy resolving measurement devices.

  5. Application of flow network models of SINDA/FLUINT{sup TM} to a nuclear power plant system thermal hydraulic code

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ji Bum [Institute for Advanced Engineering, Yongin (Korea, Republic of); Park, Jong Woon [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    In order to enhance the dynamic and interactive simulation capability of a system thermal hydraulic code for nuclear power plant, applicability of flow network models in SINDA/FLUINT{sup TM} has been tested by modeling feedwater system and coupling to DSNP which is one of a system thermal hydraulic simulation code for a pressurized heavy water reactor. The feedwater system is selected since it is one of the most important balance of plant systems with a potential to greatly affect the behavior of nuclear steam supply system. The flow network model of this feedwater system consists of condenser, condensate pumps, low and high pressure heaters, deaerator, feedwater pumps, and control valves. This complicated flow network is modeled and coupled to DSNP and it is tested for several normal and abnormal transient conditions such turbine load maneuvering, turbine trip, and loss of class IV power. The results show reasonable behavior of the coupled code and also gives a good dynamic and interactive simulation capabilities for the several mild transient conditions. It has been found that coupling system thermal hydraulic code with a flow network code is a proper way of upgrading simulation capability of DSNP to mature nuclear plant analyzer (NPA). 5 refs., 10 figs. (Author)

  6. Possibilities and Limitations of CFD Simulation for Flashing Flow Scenarios in Nuclear Applications

    Directory of Open Access Journals (Sweden)

    Yixiang Liao

    2017-01-01

    Full Text Available The flashing phenomenon is relevant to nuclear safety analysis, for example by a loss of coolant accident and safety release scenarios. It has been studied intensively by means of experiments and simulations with system codes, but computational fluid dynamics (CFD simulation is still at the embryonic stage. Rapid increasing computer speed makes it possible to apply the CFD technology in such complex flow situations. Nevertheless, a thorough evaluation on the limitations and restrictions is still missing, which is however indispensable for reliable application, as well as further development. In the present work, the commonly-used two-fluid model with different mono-disperse assumptions is used to simulate various flashing scenarios. With the help of available experimental data, the results are evaluated, and the limitations are discussed. A poly-disperse method is found necessary for a reliable prediction of mean bubble size and phase distribution. The first attempts to trace the evolution of the bubble size distribution by means of poly-disperse simulations are made.

  7. The transition criteria of circulating flow pattern of moderator in the calandria tank of CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Jung, Yun Sik; Lee, Jae Young; Kim, Man Woong

    2004-01-01

    The moderator cooling system to the Calandria tank of CANDU nuclear power plant provides an alternative pass of heat sink during the hypothetical loss of coolant accident. Also, the neutron population in the CANDU plant can be affected by the moderator temperature change which strongly depends on the circulating flow pattern in the Calandria tank. It has been known that there are three distinguished flow patterns: the buoyancy dominated flow, the momentum dominated flow, and the mixed type flow. The Canadian Nuclear Safety Commission (CNSC) recommended that a series of experimental works should be performed to verify the three dimensional codes. Two existing facilities, SPEL (1982) and STERN (1990), have produced experimental data for these purposes. The present work is also motivated to build up a new scaled experimental facility named HGU for the same purposes. CANDU-6 was selected as the target plant to be scaled down. In the design for the scaled facility, the knowledge on the flow regime transitions in the circulating flow was imperative. In the present study, to pave the way for the scaling, the flow pattern maps of circulating flow were constructed based on the Reynolds number and Archimedes number. The CFX code was employed with real meshes to represent all calandria tubes in the tank. The flow pattern maps were constructed for SPEL, STERN, HGU, and CANDU6. As the key transition criterion useful for scaling law, a new Archimedes number considering the jet impingement of the feed water in the Calandria tank was found. The transition of flow patterns was made with the same Archimedes number for CANDU6, STERN and HGU. However, SPEL which has third of the modified Archimedes number showed different maps in the wider region of mixed flow pattern was observed. It was found that the Archimedes number considering the inlet nozzle velocity plays the key role in patterns classification. Also, it can be suggested that the moderator cooling system needs to be designed

  8. On the flow of groundwater in closed tunnels. Generic hydrogeological modelling of nuclear waste repository, SFL 3-5

    International Nuclear Information System (INIS)

    Holmen, J.G.

    1997-06-01

    The purpose is to study the flow of groundwater in closed tunnels by use of mathematical models. The calculations were based on three dimensional models, presuming steady state conditions. The stochastic continuum approach was used for representation of a heterogeneous rock mass. The size of the calculated flow is given as a multiple of an unknown regional groundwater flow. The size of the flow in a tunnel has been studied, as regards: Direction of the regional groundwater flow, Tunnel length, width and conductivity; Heterogeneity of the surrounding rock mass; Flow barriers and encapsulation inside a tunnel. The study includes a model of the planned repository for nuclear waste (SFL 3-5). The flow through the tunnels is estimated for different scenarios. The stochastic continuum approach has been investigated, as regards the representation of a scale dependent heterogeneous conductivity. An analytical method is proposed for the scaling of measured conductivity values, the method is consistent with the stochastic continuum approach. Some general conclusions from the work are: The larger the amount of heterogeneity, the larger the expected flow; The effects of the heterogeneity will decrease with increased tunnel length; If the conductivity of the tunnel is smaller than a threshold value, the tunnel conductivity is the most important parameter; If the tunnel conductivity is large and the tunnel is long, the most important parameter is the direction of the regional flow; Given a heterogeneous rock mass, if the tunnel length is shorter than about 500 m, the heterogeneity will be an important parameter, for lengths shorter than about 250 m, probably the most important; The flow through an encapsulation surrounded by a flow barrier is mainly dependent on the conductivity of the barrier. 70 refs, 110 figs, 10 tabs

  9. On the flow of groundwater in closed tunnels. Generic hydrogeological modelling of nuclear waste repository, SFL 3-5

    Energy Technology Data Exchange (ETDEWEB)

    Holmen, J.G. [Uppsala Univ. (Sweden). Inst. of Earth Sciences]|[Golder Associates AB (Sweden)

    1997-06-01

    The purpose is to study the flow of groundwater in closed tunnels by use of mathematical models. The calculations were based on three dimensional models, presuming steady state conditions. The stochastic continuum approach was used for representation of a heterogeneous rock mass. The size of the calculated flow is given as a multiple of an unknown regional groundwater flow. The size of the flow in a tunnel has been studied, as regards: Direction of the regional groundwater flow, Tunnel length, width and conductivity; Heterogeneity of the surrounding rock mass; Flow barriers and encapsulation inside a tunnel. The study includes a model of the planned repository for nuclear waste (SFL 3-5). The flow through the tunnels is estimated for different scenarios. The stochastic continuum approach has been investigated, as regards the representation of a scale dependent heterogeneous conductivity. An analytical method is proposed for the scaling of measured conductivity values, the method is consistent with the stochastic continuum approach. Some general conclusions from the work are: The larger the amount of heterogeneity, the larger the expected flow; The effects of the heterogeneity will decrease with increased tunnel length; If the conductivity of the tunnel is smaller than a threshold value, the tunnel conductivity is the most important parameter; If the tunnel conductivity is large and the tunnel is long, the most important parameter is the direction of the regional flow; Given a heterogeneous rock mass, if the tunnel length is shorter than about 500 m, the heterogeneity will be an important parameter, for lengths shorter than about 250 m, probably the most important; The flow through an encapsulation surrounded by a flow barrier is mainly dependent on the conductivity of the barrier. 70 refs, 110 figs, 10 tabs.

  10. Calculation of the heat flow peak in case of local defect of the fuel plate of a nuclear reactor

    International Nuclear Information System (INIS)

    Fabrega, Serge

    1965-11-01

    The author reports the calculation of the local thermal flow which exits a fuel plate in a nuclear reactor, where a fabrication defect creates a much localized peak of the power density released in the plate. He first reports the development of the problem equations: hypotheses and data, equation elaboration, simplification and resolution. He presents the results of a numeric application to actual cases, and describes how the conduction in the sheath is taken into account (study of the influence of peak width and shape), and gives a synthetic presentation of the formula for the approximate calculation of the heat flow in case of local defect [fr

  11. Automation in high-content flow cytometry screening.

    Science.gov (United States)

    Naumann, U; Wand, M P

    2009-09-01

    High-content flow cytometric screening (FC-HCS) is a 21st Century technology that combines robotic fluid handling, flow cytometric instrumentation, and bioinformatics software, so that relatively large numbers of flow cytometric samples can be processed and analysed in a short period of time. We revisit a recent application of FC-HCS to the problem of cellular signature definition for acute graft-versus-host-disease. Our focus is on automation of the data processing steps using recent advances in statistical methodology. We demonstrate that effective results, on par with those obtained via manual processing, can be achieved using our automatic techniques. Such automation of FC-HCS has the potential to drastically improve diagnosis and biomarker identification.

  12. Construction of an experimental simplified model for determining of flow parameters in chemical reactors, using nuclear techniques

    International Nuclear Information System (INIS)

    Araujo Paiva, J.A. de.

    1981-03-01

    The development of a simplified experimental model for investigation of nuclear techniques to determine the solid phase parameters in gas-solid flows is presented. A method for the measurement of the solid phase residence time inside a chemical reactor of the type utilised in the cracking process of catalytic fluids is described. An appropriate radioactive labelling technique of the solid phase and the construction of an eletronic timing circuit were the principal stages in the definition of measurement technique. (Author) [pt

  13. Two-phase flow in the upper plenum of a boiling water nuclear reactor

    International Nuclear Information System (INIS)

    Tinoco, Hernan

    2003-01-01

    The end part of the Emergency Core Spray System (ECSS) of the Boiling Water Reactors (BWRs) at Forsmark Nuclear Power Plant (NPP) is situated in the Upper Plenum. It consists of a pipe network equipped with water injection nozzles. In case of Lost-of-Coolant Accidents (LOCAs), the ECSS should maintain the core covered by water and, at the same time, rapidly cool and decompress the reactor by means of cold water injection. In similar reactors, some welds belonging to the ECSS support have, after a period of time, shown crack indications. Inspection, repair or replacement of these welds is time consuming and expensive. For this reason, it has now been decided to permanently remove the end part of the ECSS and to replace it by water injection in the Downcomer. However, this removal should not be accompanied by undesirable effects like an increase in the moisture of the steam used for operating the turbines. To investigate the effect of this removal on the steam moisture, a CFD analysis of the two-phase flow in the Upper Plenum of Unit 3, with and without ECSS, has been carried out by means of a two-phase Euler model in FLUENT 6.0. The inlet conditions are given by an analysis of the core kinetics and thermal hydraulics by mean of the POLCA-code. The outlet conditions, i. e. the steam separator pressure drops, are given by empirical correlations from the experiments carried out at the SNORRE facility. The predicted the mass flow-rates to each separator, together with empirical correlations for the moisture content of the steam leaving the separators and the steam dryer, indicate a slight decrease in the steam moisture when the ECSS is removed. Also, a minor decrease in pressure losses over the Upper Plenum is achieved with this removal. On the other hand, rounding the sharp edges of the inlet openings to the steam separators at the shroud cover may give a large reduction in pressure losses

  14. Evaluation of tests for coastdown of reactor coolant flow and measure of primary circuit flow of Angra-1 nuclear power plant

    International Nuclear Information System (INIS)

    Galetti, M.R.S.; Camargo, C.T.M.; Pontedeiro, A.C.

    1987-05-01

    The Angra 1 Nuclear Power Plant first reload license was issued after several technical discussions among CNEN, FURNAS and KWU. During the license process CNEN has established that the plant could return to anormal operation if the requirements described in the letter CNEN-DExL-C 06/86 were satisfied. The requirements according to the CNEN Transient and Thermohydraulic Group Analysis were to do again the following tests: 'Primary Flow Measurement' to check if the excess flow measured in the first cycle was held; and Pump Coastdown' to check if the Westinghouse and KWU fuel elements are thermo-hydraulicaly compatibles during transients. The mixed core must keep at least the same safety margin presented on Angra 1 FSAR for the original core. The tests and the analysis of results are described. (Author) [pt

  15. A flow test for calibrating 177 core tubes of 1/5-scale reactor flow model for Yonggwang nuclear units 3 and 4

    International Nuclear Information System (INIS)

    Lee, Byung Jin; Jang, Ho Cheol; Cheong, Jong Sik; Kuh, Jung Eui

    1990-01-01

    A flow test was performed to find out the hydraulic characteristics of every one of 177 core tubes, representing a fuel assembly respectively, as a preparatory step of 1/5 scale reactor flow model test for Yonggwang Nuclear Units (hereafter YGN) 3 and 4. The axial hydraulic resistance of the fuel assembly was simulated in the square core tube with six orifice plates positioned along the tube length; core support structure below each fuel assembly was done in the core upstream geometry section of the test loop. For each core tube the pressure differentials across the inlet, exit orifice plate and overall tube length were measured, along with the flow rates and temperatures of the test fluid. The measured pressure drops were converted to pressure loss or flow metering coefficients. The metering coefficient of the inlet orifice plate was sensitive to the configuration and location of the upstream geometry. The hydraulic resistance of the core tubes were reasonably coincided with a target value and consistent. The polynomial curve fits of the calibrated coefficients for the 177 core tubes were obtained with reasonable data scatters

  16. Study of the distributions of flow rate and enthalpy in the sub-channels of a bundle geometry of nuclear reactors in one and two-phase flow

    International Nuclear Information System (INIS)

    Bayoumi, M.A.A.

    1976-10-01

    A bibliographic study shows that the experimental studies examined, have been developed to understand the phenomenon acting on the mixing between the sub-channels of which geometries are such these of rod bundles used in some nuclear reactors. Experimental devices and tests have been developed to study the influence of the following parameters, operating conditions, pressure, flow rate, power brought to the bundle and inlet temperature on the distribution of flow rates and vapor content among the different sub-channels. By means of non isokinetic sampling, one has determined the enthalpy of the fluid participating to the mixing between the communicating sub-channels and it has been shown that the value of this enthalpy depends strongly on the type of fluid flow and that this enthalpy cannot be either the enthalpy of one of the two sub-channels, nor (always) an average of these two enthalpies. The experimental results have been compared with calculations developed with the code FLICA, concerning the mass velocity distribution, the exchange term of linear momentum, and the variation of the transversal enthalpy with regard to the type of fluid flow. A study of local void ratio measurement, by means of optical probes, has been proposed. The present study has been carried out with a smooth geometry [fr

  17. Identification of two-phase flow patterns in a nuclear reactor by the high-frequency contribution fraction

    International Nuclear Information System (INIS)

    Wang, Y.W.; Pei, B.S.; King, C.H.; Lee, S.C.

    1989-01-01

    Recently, King et al. and Wang et al. analyzed the fluctuating characteristics of differential pressure and void fraction by the optimum modeling method and by spectral analysis, respectively. These two investigations presented some new concepts and deterministic criteria, which are based on purely empirical formulas, to identify two-phase flow patterns. These deterministic criteria on two-phase flow patterns' identification seem to show reasonable performance. In King's and Wang's studies, there are at least three problems that need further investigations for the applications to the nuclear reactor engineering field. These three problems are the following: 1. Is the response to a certain two-phase flow pattern, i.e., the fluctuating characteristics, of neutrons the same as that of differential pressure or void fraction? 2. Could those criteria developed from air/water flow be allowed to identify steam/water two-phase flow patterns? 3. Could those criteria be applied to identify two-phase flow patterns in rod bundles? In this paper, parts of the investigated results answer the first problem, and detailed comparisons with the previous work of the authors are given on a variety of items

  18. A hydrothermal flow-through apparatus to simulate leaching of nuclear waste forms under quasi-dynamic conditions

    International Nuclear Information System (INIS)

    Heimann, R.B.

    1985-03-01

    A hydrothermal flow-through apparatus has been designed that will allow the testing of individual waste package components, as well as combinations of these, under a wide range of environmental conditions. The maximum permissible temperature is 700 degrees C, while the maximum pressure is 300 MPa. Flow rates can be adjusted by sequential operation of a pneumatically operated valve with preset pause and working cycles. The main applications of the apparatus to nuclear fuel waste management research are: (i) the study of migration of ionic species through a rock column at specified hydraulic head, and (ii) the study of the rate of leaching of radionuclides from waste forms under disposal vault conditions in the presence of groundwater with variable flow rates

  19. Flow accelerated corrosion and its control measures for the secondary circuit pipelines in Indian nuclear power plants

    International Nuclear Information System (INIS)

    Kain, Vivekanand; Roychowdhury, S.; Mathew, Thomas; Bhandakkar, Atul

    2008-01-01

    A plain carbon steel feeder pipeline in the secondary circuit failed downstream of a flow measurement device (orifice meter) during operation at nuclear power plant. A detailed failure analysis done on the failed pipeline is described in this paper. The results established the fine surface pattern of 'Horseshoe pits' at the affected regions. X-ray diffraction analysis on the samples far from the failed regions showed presence of magnetite but on the sample from the failed region showed peaks due to base metal only, indicating dissolution of the oxide. Thickness profiling of the pipeline indicated reduction of thickness from the design 7.62 mm to a minimum of 0.4-1.4 mm at the location of the failure. These observations are characteristic of single phase flow accelerated corrosion. This paper details the extent of flow accelerated corrosion in various Indian power plants and the remedial measures for replacement and possible design and water chemistry changes to combat it

  20. TYBO/BENHAM: Model Analysis of Groundwater Flow and Radionuclide Migration from Underground Nuclear Tests in Southwestern Pahute Mesa, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Wolfsberg; Lee Glascoe; Guoping Lu; Alyssa Olson; Peter Lichtner; Maureen McGraw; Terry Cherry; Guy Roemer

    2002-09-01

    Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurements have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.

  1. Study of the heat transport primary system flow of Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Coutsiers, Eduardo E.; Moreno, Carlos A.; Pomerantz, Marcelo E.

    1999-01-01

    In this work, the HTPS coolant channels flow and associate aleatory errors are estimated. The objective of this estimation is to verify the validity of the flow calculated using the Canadian thermalhydraulic design code 'NUCIRC'. From measurements it can also be observed the evolution of the calculated flow with power of the reactor and to correct the maximum flow with power. The percentage of standard deviation discrepancies of flow estimated by measurements and those calculated using NUCIRC code is 5,7%. As the average aleatory error in flow estimation is 8,0%, it is concluded that the flow distribution calculated using NUCIRC is representative of the current state of the reactor channels. (author)

  2. Ductal carcinoma of breast: nuclear grade as a predictor of S-phase fraction.

    Science.gov (United States)

    Dabbs, D J

    1993-06-01

    Nuclear grade (NG) and S-phase fraction (SPF) are established independent prognostic variables for ductal breast carcinomas. Nuclear grade can be assigned by a pathologist in a simple fashion during histopathologic evaluation of the tumor, while SPF requires flow cytometric evaluation of tumor samples. This prospective study was undertaken to determine whether elevated SPF could be predicted from NG alone and how NG and SPF correlate with c-erbB-2 expression. Eighty-two breast carcinomas of ductal type were assigned an NG of low (grade 1 or grade 2) or high (grade 3). S-phase fraction was recorded initially from fresh-frozen tissue samples and was designated as either low SPF (below the value designated as the cutoff for elevated SPF) or high SPF (a value at or greater than the cutoff value). On fresh tissue the NG predicted the range of SPF (low or high) in 89% of cases. Four percent of the cases that did not correlate could definitely be attributed to sample error. The remaining 7% that did not correlate could have been due to sample error, specimen quality, or tumor heterogeneity, as demonstrated by reversal of SPF range as performed on paraffin blocks of tumor. Eighty-eight percent of the tumors positive for c-erbB-2 were NG 3 and 12% were NG 2. All c-erbB-2 tumors were aneuploid. This study demonstrates the importance of carefully assigning NGs on tissue and indicates the importance of reviewing flow cytometric data side by side with histopathologic parameters to detect discrepancies between these two modalities. Careful nuclear grading assignment can accurately predict the range of SPF.

  3. Analysis of the Budding Yeast Cell Cycle by Flow Cytometry.

    Science.gov (United States)

    Rosebrock, Adam P

    2017-01-03

    DNA synthesis is one of the landmark events in the cell cycle: G 1 cells have one copy of the genome, S phase cells are actively engaged in DNA synthesis, and G 2 cells have twice as much nuclear DNA as G 1 cells. Cellular DNA content can be measured by staining with a fluorescent dye followed by a flow-cytometric readout. This method provides a quantitative measurement of cell cycle position on a cell-by-cell basis at high speed. Using flow cytometry, tens of thousands of single-cell measurements can be generated in a few seconds. This protocol details staining of cells of the budding yeast Saccharomyces cerevisiae for flow cytometry using Sytox Green dye in a method that can be scaled widely-from one sample to many thousands and operating on inputs ranging from 1 million to more than 100 million cells. Flow cytometry is preferred over light microscopy or Coulter analyses for the analysis of the cell cycle as DNA content and cell cycle position are being directly measured. © 2017 Cold Spring Harbor Laboratory Press.

  4. Investigation of relation between operator's mental workload and information flow in accident diagnosis tasks of nuclear power plant

    International Nuclear Information System (INIS)

    Ha, Chang Hoon; Kim, Jong Hyun; Seong, Poong Hyun

    2004-01-01

    In the main control room (MCR) of a nuclear power plant (NPP), there are lots of dynamic information sources for MCR operator's situation awareness. As the human-machine interface in MCR is advanced, operator's information acquisition, information gathering and decision-making is becoming an important part to maintain the effective and safe operation of NPPs. Diagnostic task in complex and huge systems like NPP is the most difficult and mental effort-demanding for operators. This research investigates the relation between operator's mental workload and information flow in accident diagnosis tasks. The amount of information flow is quantified, using information flow model and Conant's model, a kind of information theory. For the mental workload measure, eye blink rate, blink duration, fixation time, number of fixation, and gaze direction are measured during accident diagnosis tasks. Subjective methods such as NASA-Task Load Index (NASA-TLX) and Modified Cooper-Harper (MCH) method are also used in the experiment. It is shown that the operator's mental workload has significant relation to information flow of diagnosis task. It makes possible to predict the mental workload through the quantity of the information flow of a system

  5. Numerical studies of fluid and heat flow near high-level nuclear waste packages emplaced in partially saturated fractured tuff

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1984-11-01

    We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous rock. Formation parameters were chosen as representative of the potential repository horizon in the Topopah Spring Unit of the Yucca Mountain tuffs. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator ''TOUGH'' used for our flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions for handling the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, we develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account the fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 35 refs., 14 figs., 4 tabs

  6. Measurement of liquid film flow on nuclear rod bundle in micro-scale by using very high speed camera system

    Science.gov (United States)

    Pham, Son; Kawara, Zensaku; Yokomine, Takehiko; Kunugi, Tomoaki

    2012-11-01

    Playing important roles in the mass and heat transfer as well as the safety of boiling water reactor, the liquid film flow on nuclear fuel rods has been studied by different measurement techniques such as ultrasonic transmission, conductivity probe, etc. Obtained experimental data of this annular two-phase flow, however, are still not enough to construct the physical model for critical heat flux analysis especially at the micro-scale. Remain problems are mainly caused by complicated geometry of fuel rod bundles, high velocity and very unstable interface behavior of liquid and gas flow. To get over these difficulties, a new approach using a very high speed digital camera system has been introduced in this work. The test section simulating a 3×3 rectangular rod bundle was made of acrylic to allow a full optical observation of the camera. Image data were taken through Cassegrain optical system to maintain the spatiotemporal resolution up to 7 μm and 20 μs. The results included not only the real-time visual information of flow patterns, but also the quantitative data such as liquid film thickness, the droplets' size and speed distributions, and the tilt angle of wavy surfaces. These databases could contribute to the development of a new model for the annular two-phase flow. Partly supported by the Global Center of Excellence (G-COE) program (J-051) of MEXT, Japan.

  7. Evaluation method of corrosive conditions in cooling systems of nuclear power plants by combined analyses of flow dynamics and corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Shunsuke [Nuclear Power Engineering Corporation (NUPEC), Tokyo (Japan); Atomic Energy Society of Japan (AESJ) (Japan). Research Committee on Water Chemistry Standard; Naitoh, Masanori [Nuclear Power Engineering Corporation (NUPEC), Tokyo (Japan); Atomic Energy Society of Japan (AESJ) (Japan). Computational Science and Engineering Div.; Uehara, Yasushi; Okada, Hidetoshi [Nuclear Power Engineering Corporation (NUPEC), Tokyo (Japan); Hotta, Koji [ITOCHU Techno-Solutions Corporation (Japan); Ichikawa, Ryoko [Mizuho Information and Research Inst., Inc. (Japan); Koshizuka, Seiichi [Tokyo Univ. (Japan)

    2007-03-15

    Problems in major components and structural materials in nuclear power plants have often been caused by flow induced vibration, corrosion and their overlapping effects. In order to establish safe and reliable plant operation, it is necessary to predict future problems for structural materials based on combined analyses of flow dynamics and corrosion and to mitigate them before they become serious issues for plant operation. The analysis models are divided into two types. 1. Prediction models for future problems with structural materials: Distributions of oxidant concentrations along flow paths are obtained by solving water radiolysis reactions in the boiling water reactor (BWR) primary cooling water and hydrazine-oxygen reactions in the pressurized water reactor (PWR) secondary cooling water. Then, the electrochemical corrosion potential (ECP) at the point of interest is also obtained by the mixed potential model using oxidant concentration. Higher ECP enhances the possibility of intergranular stress corrosion cracking (IGSCC) in the BWR primary system, while lower ECP enhances flow accelerated corrosion (FAC) in the PWR secondary system. 2. Evaluation models of wall thinning caused by flow accelerated corrosion: The degree of wall thinning is evaluated at a location with a higher possibility of FAC occurrence, and lifetime is estimated for preventive maintenance. General features of models are reviewed in this paper and the prediction models for oxidant concentrations are briefly introduced. (orig.)

  8. Evaluation method of corrosive conditions in cooling systems of nuclear power plants by combined analyses of flow dynamics and corrosion

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Hotta, Koji; Ichikawa, Ryoko; Koshizuka, Seiichi

    2007-01-01

    Problems in major components and structural materials in nuclear power plants have often been caused by flow induced vibration, corrosion and their overlapping effects. In order to establish safe and reliable plant operation, it is necessary to predict future problems for structural materials based on combined analyses of flow dynamics and corrosion and to mitigate them before they become serious issues for plant operation. The analysis models are divided into two types. 1. Prediction models for future problems with structural materials: Distributions of oxidant concentrations along flow paths are obtained by solving water radiolysis reactions in the boiling water reactor (BWR) primary cooling water and hydrazine-oxygen reactions in the pressurized water reactor (PWR) secondary cooling water. Then, the electrochemical corrosion potential (ECP) at the point of interest is also obtained by the mixed potential model using oxidant concentration. Higher ECP enhances the possibility of intergranular stress corrosion cracking (IGSCC) in the BWR primary system, while lower ECP enhances flow accelerated corrosion (FAC) in the PWR secondary system. 2. Evaluation models of wall thinning caused by flow accelerated corrosion: The degree of wall thinning is evaluated at a location with a higher possibility of FAC occurrence, and lifetime is estimated for preventive maintenance. General features of models are reviewed in this paper and the prediction models for oxidant concentrations are briefly introduced. (orig.)

  9. A two-phase flow regime map for a MAPLE-type nuclear research reactor fuel channel: Effect of hexagonal finned bundle

    International Nuclear Information System (INIS)

    Harvel, G.D.; Chang, J.S.

    1997-01-01

    A two-phase flow regime map is developed experimentally and theoretically for a vertical hexagonal flow channel with and without a 36-finned rod hexagonal bundle. This type of flow channel is of interest to MAPLE-type nuclear research reactors. The flow regime maps are determined by visual observations and observation of waveforms shown by a capacitance-type void fraction meter. The experimental results show that the inclusion of the finned hexagonal bundle shifts the flow regime transition boundaries toward higher water flow rates. Existing flow regime maps based on pipe flow require slight modifications when applied to the hexagonal flow channel with and without a MAPLE-type finned hexagonal bundle. The proposed theoretical model agrees well with experimental results

  10. Fluid-Structure Interaction for Coolant Flow in Research-type Nuclear Reactors

    International Nuclear Information System (INIS)

    Curtis, Franklin G.; Ekici, Kivanc; Freels, James D.

    2011-01-01

    The High Flux Isotope Reactor (HFIR), located at the Oak Ridge National Laboratory (ORNL), is scheduled to undergo a conversion of the fuel used and this proposed change requires an extensive analysis of the flow through the reactor core. The core consists of 540 very thin and long fuel plates through which the coolant (water) flows at a very high rate. Therefore, the design and the flow conditions make the plates prone to dynamic and static deflections, which may result in flow blockage and structural failure which in turn may cause core damage. To investigate the coolant flow between fuel plates and associated structural deflections, the Fluid-Structure Interaction (FSI) module in COMSOL will be used. Flow induced flutter and static deflections will be examined. To verify the FSI module, a test case of a cylinder in crossflow, with vortex induced vibrations was performed and validated.

  11. Analytical applications of a recycled flow nuclear magnetic resonance system: quantitative analysis of slowly relaxing nuclei

    International Nuclear Information System (INIS)

    Laude, D.A. Jr.; Lee, R.W.K.; Wilkins, C.L.

    1985-01-01

    The utility of a recycled flow system for the efficient quantitative analysis of NMR spectra is demonstrated. Requisite conditions are first established for the quantitative flow experiment and then applied to a variety of compounds. An application of the technique to determination of the average polymer chain length for a silicone polymer by quantitative flow 29 Si NMR is also presented. 10 references, 4 figures, 3 tables

  12. Image Cytometric Analysis of Algal Spores for Evaluation of Antifouling Activities of Biocidal Agents.

    Science.gov (United States)

    Il Koo, Bon; Lee, Yun-Soo; Seo, Mintae; Seok Choi, Hyung; Leng Seah, Geok; Nam, Taegu; Nam, Yoon Sung

    2017-07-31

    Chemical biocides have been widely used as marine antifouling agents, but their environmental toxicity impose regulatory restriction on their use. Although various surrogate antifouling biocides have been introduced, their comparative effectiveness has not been well investigated partly due to the difficulty of quantitative evaluation of their antifouling activity. Here we report an image cytometric method to quantitatively analyze the antifouling activities of seven commercial biocides using Ulva prolifera as a target organism, which is known to be a dominant marine species causing soft fouling. The number of spores settled on a substrate is determined through image analysis using the intrinsic fluorescence of chlorophylls in the spores. Pre-determined sets of size and shape of spores allow for the precise determination of the number of settled spores. The effects of biocide concentration and combination of different biocides on the spore settlement are examined. No significant morphological changes of Ulva spores are observed, but the amount of adhesive pad materials is appreciably decreased in the presence of biocides. It is revealed that the growth rate of Ulva is not directly correlated with the antifouling activities against the settlement of Ulva spores. This work suggests that image cytometric analysis is a very convenient, fast-processable method to directly analyze the antifouling effects of biocides and coating materials.

  13. Development of an on-line ultrasonic system to monitor flow-accelerated corrosion of piping in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, N.Y.; Bahn, C.B.; Lee, S.G.; Kim, J.H.; Hwang, I.S.; Lee, J.H.; Kim, J.T.; Luk, V.

    2004-01-01

    Designs of contemporary nuclear power plants (NPPs) are concentrated on improving plant life as well as safety. As the nuclear industry prepares for continued operation beyond the design lifetime of existing NPP, aging management through advanced monitoring is called for. Therefore, we suggested two approaches to develop the on-line piping monitoring system. Piping located in some position is reported to go through flow accelerated corrosion (FAC). One is to monitor electrochemical parameters, ECP and pH, which can show occurrence of corrosion. The other is to monitor mechanical parameters, displacement and acceleration. These parameters are shown to change with thickness. Both measured parameters will be combined to quantify the amount of FAC of a target piping. In this paper, we report the progress of a multidisciplinary effort on monitoring of flow-induced vibration, which changes with reducing thickness. Vibration characteristics are measured using accelerometers, capacitive sensor and fiber optic sensors. To theoretically support the measurement, we analyzed the vibration mode change in a given thickness with the aid of finite element analysis assuming FAC phenomenon is represented only as thickness change. A high temperature flow loop has been developed to simulate the NPP secondary condition to show the applicability of new sensors. Ultrasonic transducer is introduced as validation purpose by directly measuring thickness. By this process, we identify performance and applicability of chosen sensors and also obtain base data for analyzing measured value in unknown conditions. (orig.)

  14. Development of a model and test equipment for cold flow tests at 500 atm of small nuclear light bulb configurations

    Science.gov (United States)

    Jaminet, J. F.

    1972-01-01

    A model and test equipment were developed and cold-flow-tested at greater than 500 atm in preparation for future high-pressure rf plasma experiments and in-reactor tests with small nuclear light bulb configurations. With minor exceptions, the model chamber is similar in design and dimensions to a proposed in-reactor geometry for tests with fissioning uranium plasmas in the nuclear furnace. The model and the equipment were designed for use with the UARL 1.2-MW rf induction heater in tests with rf plasmas at pressures up to 500 atm. A series of cold-flow tests of the model was then conducted at pressures up to about 510 atm. At 504 atm, the flow rates of argon and cooling water were 3.35 liter/sec (STP) and 26 gal/min, respectively. It was demonstrated that the model is capable of being operated for extended periods at the 500-atm pressure level and is, therefore, ready for use in initial high-pressure rf plasma experiments.

  15. The use of a flow test and a flow model in evaluating the durability of various nuclear waste-form materials

    International Nuclear Information System (INIS)

    Barkatt, A.; Barkatt, A.; Boroomand, M.A.

    1983-01-01

    The comprehensive predictive model described in this paper has been briefly outlined for a single particular set of repository parameters in an earlier paper. A general detailed derivation and a detailed illustration of the use of this method in comparative evaluation of a variety of waste-form materials are given. The model focuses on the long-term leach rate of materials under all possible water flow rates through a repository site, given any exposure configuration (i.e., ratio between the exposed area of the waste form and the volume of water with which it is in effective contact) which is considered most representative of the actual repository conditions. The model permits direct calculation of the annual fractional release rate of the major matrix elements as well as of any other components of a waste form. This makes it possible to evaluate how well various waste forms meet long-term durability criteria such as those proposed by the U.S. Nuclear Regulatory Commission, makes it possible to obtain such release rates, corresponding to the entire range of flow conditions expected in a repository down to very slow flow rates by conducting dynamic laboratory tests at practical rates of leachant exchange at relatively high surfaceto-volume ratios, following the leachate composition until the leach rates approach constant values, and normalizing the data to the surface-to-volume ratio expected under repository conditions. The purpose of this paper is to outline the general derivation of the model and to describe the results of applying the model in dynamic leach tests carried out on five different waste-form materials over the entire range of effective flow rates expected under repository conditions

  16. Heat and mass transfer and hydrodynamics in two-phase flows in nuclear power plants

    International Nuclear Information System (INIS)

    Styrikovich, M.A.; Polonskii, V.S.; Tsiklauri, G.V.

    1986-01-01

    This book examines nuclear power plant equipment from the point of view of heat and mass transfer and the behavior of impurities contained in water and in steam, with reference to real water regimes of nuclear power plants. The transfer processes of equipment are considered. Heat and mass transfer are analyzed in the pre-crisis regions of steam-generating passages with non-permeable surfaces, and in capillary-porous structures. Attention is given to forced convection boiling crises and top post-DNB heat transfer. Data on two-phase hydrodynamics in straight and curved channels are correlated and safety aspects of nuclear power plants are discussed

  17. The use of CFD code for numerical simulation study on the air/water countercurrent flow limitation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morghi, Youssef; Mesquita, Amir Zacarias; Santos, Andre Augusto Campagnole dos; Vasconcelos, Victor, E-mail: ymo@cdtn.br, E-mail: amir@cdtn.br, E-mail: aacs@cdtn.br, E-mail: vitors@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    For the experimental study on the air/water countercurrent flow limitation in Nuclear Reactors, were built at CDTN an acrylic test sections with the same geometric shape of 'hot leg' of a Pressurized Water Reactor (PWR). The hydraulic circuit is designed to be used with air and water at pressures near to atmospheric and ambient temperature. Due to the complexity of the CCFL experimental, the numerical simulation has been used. The aim of the numerical simulations is the validation of experimental data. It is a global trend, the use of computational fluid dynamics (CFD) modeling and prediction of physical phenomena related to heat transfer in nuclear reactors. The most used CFD codes are: FLUENT®, STAR- CD®, Open Foam® and CFX®. In CFD, closure models are required that must be validated, especially if they are to be applied to nuclear reactor safety. The Thermal- Hydraulics Laboratory of CDTN offers computing infrastructure and license to use commercial code CFX®. This article describes a review about CCFL and the use of CFD for numerical simulation of this phenomenal for Nuclear Rector. (author)

  18. The use of CFD code for numerical simulation study on the air/water countercurrent flow limitation in nuclear reactors

    International Nuclear Information System (INIS)

    Morghi, Youssef; Mesquita, Amir Zacarias; Santos, Andre Augusto Campagnole dos; Vasconcelos, Victor

    2015-01-01

    For the experimental study on the air/water countercurrent flow limitation in Nuclear Reactors, were built at CDTN an acrylic test sections with the same geometric shape of 'hot leg' of a Pressurized Water Reactor (PWR). The hydraulic circuit is designed to be used with air and water at pressures near to atmospheric and ambient temperature. Due to the complexity of the CCFL experimental, the numerical simulation has been used. The aim of the numerical simulations is the validation of experimental data. It is a global trend, the use of computational fluid dynamics (CFD) modeling and prediction of physical phenomena related to heat transfer in nuclear reactors. The most used CFD codes are: FLUENT®, STAR- CD®, Open Foam® and CFX®. In CFD, closure models are required that must be validated, especially if they are to be applied to nuclear reactor safety. The Thermal- Hydraulics Laboratory of CDTN offers computing infrastructure and license to use commercial code CFX®. This article describes a review about CCFL and the use of CFD for numerical simulation of this phenomenal for Nuclear Rector. (author)

  19. An experimental technique for the modelling of air flow movements in nuclear plant

    International Nuclear Information System (INIS)

    Ainsworth, R.W.; Hallas, N.J.

    1986-01-01

    This paper describes an experimental technique developed at Harwell to model ventilation flows in plant at 1/5th scale. The technique achieves dynamic similarity not only for forced convection imposed by the plant ventilation system, but also for the interaction between natural convection (from heated objects) and forced convection. The use of a scale model to study flow of fluids is a well established technique, relying upon various criteria, expressed in terms of dimensionless numbers, to achieve dynamic similarity. For forced convective flows, simulation of Reynolds number is sufficient, but to model natural convection and its interaction with forced convection, the Rayleigh, Grashof and Prandtl numbers must be simulated at the same time. This paper describes such a technique, used in experiments on a hypothetical glove box cell to study the interaction between forced and natural convection. The model contained features typically present in a cell, such as a man, motor, stairs, glove box, etc. The aim of the experiment was to study the overall flow patterns, especially around the model man 'working' at the glove box. The cell ventilation was theoretically designed to produce a downward flow over the face of the man working at the glove box. However, the results have shown that the flow velocities produced an upwards flow over the face of the man. The work has indicated the viability of modelling simultaneously the forced and natural convection processes in a cell. It has also demonstrated that simplistic assumptions cannot be made about ventilation flow patterns. (author)

  20. An integrated model for reliability estimation of digital nuclear protection system based on fault tree and software control flow methodologies

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Seong, Poong Hyun

    2000-01-01

    In the nuclear industry, the difficulty of proving the reliabilities of digital systems prohibits the widespread use of digital systems in various nuclear application such as plant protection system. Even though there exist a few models which are used to estimate the reliabilities of digital systems, we develop a new integrated model which is more realistic than the existing models. We divide the process of estimating the reliability of a digital system into two phases, a high-level phase and a low-level phase, and the boundary of two phases is the reliabilities of subsystems. We apply software control flow method to the low-level phase and fault tree analysis to the high-level phase. The application of the model to Dynamic Safety System(DDS) shows that the estimated reliability of the system is quite reasonable and realistic

  1. An integrated model for reliability estimation of digital nuclear protection system based on fault tree and software control flow methodologies

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Seong, Poong Hyun

    2000-01-01

    In nuclear industry, the difficulty of proving the reliabilities of digital systems prohibits the widespread use of digital systems in various nuclear application such as plant protection system. Even though there exist a few models which are used to estimate the reliabilities of digital systems, we develop a new integrated model which is more realistic than the existing models. We divide the process of estimating the reliability of a digital system into two phases, a high-level phase and a low-level phase, and the boundary of two phases is the reliabilities of subsystems. We apply software control flow method to the low-level phase and fault tree analysis to the high-level phase. The application of the model of dynamic safety system (DSS) shows that the estimated reliability of the system is quite reasonable and realistic. (author)

  2. Multiphase flow in the geosphere around a repository for spent nuclear fuels. Inventory of the present knowledge

    International Nuclear Information System (INIS)

    Aalen, Bengt

    2004-10-01

    Important quantities of gas can form in an underground repository for nuclear wastes. Gas can be formed through: corroding metals; water and certain organic substances that undergo radiolysis; organic material degrading through microbial activity. The last point is of concern mainly for intermediate-level wastes, which can hold large amounts of organic materials. The first point is the main process for high-level wastes. The gas could transport radioactive substances through the buffer and the geosphere into the biosphere, or affect the performance of the repository in a negative way. The present report gives a review of the knowledge about two-phase flow in connection with deep geologic repositories for spent nuclear fuel

  3. Experiments and models of general corrosion and flow-assisted corrosion of materials in nuclear reactor environments

    Science.gov (United States)

    Cook, William Gordon

    Corrosion and material degradation issues are of concern to all industries. However, the nuclear power industry must conform to more stringent construction, fabrication and operational guidelines due to the perceived additional risk of operating with radioactive components. Thus corrosion and material integrity are of considerable concern for the operators of nuclear power plants and the bodies that govern their operations. In order to keep corrosion low and maintain adequate material integrity, knowledge of the processes that govern the material's breakdown and failure in a given environment are essential. The work presented here details the current understanding of the general corrosion of stainless steel and carbon steel in nuclear reactor primary heat transport systems (PHTS) and examines the mechanisms and possible mitigation techniques for flow-assisted corrosion (FAC) in CANDU outlet feeder pipes. Mechanistic models have been developed based on first principles and a 'solution-pores' mechanism of metal corrosion. The models predict corrosion rates and material transport in the PHTS of a pressurized water reactor (PWR) and the influence of electrochemistry on the corrosion and flow-assisted corrosion of carbon steel in the CANDU outlet feeders. In-situ probes, based on an electrical resistance technique, were developed to measure the real-time corrosion rate of reactor materials in high-temperature water. The probes were used to evaluate the effects of coolant pH and flow on FAC of carbon steel as well as demonstrate of the use of titanium dioxide as a coolant additive to mitigated FAC in CANDU outlet feeder pipes.

  4. Influence of the nuclear symmetry energy on the collective flows of charged pions

    Science.gov (United States)

    Gao, Yuan; Yong, Gao-Chan; Zhang, Lei; Zuo, Wei

    2018-01-01

    Based on the isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU) transport model, we studied charged pion transverse and elliptic flows in semicentral 197Au+197Au collisions at 600 MeV/nucleon. It is found that π+-π- differential transverse flow and the difference of π+ and π- transverse flows almost show no effects of the symmetry energy. Their corresponding elliptic flows are largely affected by the symmetry energy, especially at high transverse momenta. The isospin-dependent pion elliptic flow at high transverse momenta thus provides a promising way to probe the high-density behavior of the symmetry energy in heavy-ion collisions at the Facility for Antiproton and Ion Research (FAIR) at GSI, Darmstadt or at the Cooling Storage Ring (CSR) at HIRFL, Lanzhou.

  5. Computations of steam flow and heat transfer in nuclear power plant condensers

    International Nuclear Information System (INIS)

    Yuan, A.

    1997-01-01

    To improve performance of its PWR nuclear power plants, Electricite de France has developed a performance monitoring system that checks simultaneously the operation of the components of the secondary system. The performance monitoring system is based on a computational software CITER for steady state runs. A one-dimensional condenser model has been developed. Application of this code to a nuclear power plant condenser shows that predicted values in good agreement with the design values

  6. Calculation of three-dimensional mass flow and temperature distributions of nuclear reactors using the hardy cross iterative global solution

    International Nuclear Information System (INIS)

    Silva Neto, A.J. da; Alvim, A.C.M.

    1989-01-01

    This work describes the thermalhydraulics code CROSS, designed for micro-computer calculation of heat and mass flow distributions in LWR nuclear reactor cores using the Hardy Cross method. Equations to calculate the pressure variations in the coolant channels are presented, along with derivation of a linear system of equations to calculate the energy balance. This system is solved through the Benachievicz method. A case study is presented, showing that the methodology developed in this work can be used in place of the forward marching multi-channel codes. (author) [pt

  7. Development and computational simulation of thermoelectric electromagnetic pumps for controlling the fluid flow in liquid metal cooled space nuclear reactors

    International Nuclear Information System (INIS)

    Borges, E.M.

    1991-01-01

    Thermoelectric Electromagnetic (TEEM) Pumps can be used for controlling the fluid flow in the primary and secondary circuits of liquid metal cooled space nuclear reactor. In order to simulate and to evaluate the pumps performance, in steady-state, the computer program BEMTE has been developed to study the main operational parameters and to determine the system actuation point, for a given reactor operating power. The results for each stage of the program were satisfactory, compared to experimental data. The program shows to be adequate for the design and simulating of direct current electromagnetic pumps. (author)

  8. A special device used for measuring waste gas flow rate in the vent channel of Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zhang Yingjun; Zong Guifang; Shi Huaming; Yang Huimin; Jiang Yuana.

    1988-01-01

    A special Venturi-Pitot complex device is discribed which is used for measuring waste gas flow rate in the vent channel of Qinshan nuclear power plant. The device is located at the center of the channel. It can produce enlarged differential pressure signal under the condition of low gas velocity. And the flow resistance of this device is negligible. Experiments to determine the ratio of the velocity at the center of the channel to the average velocity were performed on a 1:12 test model. The special device was calibrated in a closed wind tunnel and its discharge coefficient was obtained. The uncertainty is ±3.5% and the nonlinearity is ±1.3%. The enlargement ratio and the discharge coefficient of the device are also deduced analytically on the basis of hydrodynamics theory

  9. Calculation of mass flow and steam quality distribution on fuel elements of light-water cooled boiling water nuclear reactors

    International Nuclear Information System (INIS)

    Hermanns, H.J.

    1977-04-01

    By the example of light-water cooled nuclear reactors, the state of the calculation methods at disposal for calculating mass flow and steam quality distribution (sub-channel analysis) is indicated. Particular regard was paid to the transport phenomena occurring in reactor fuel elements in the range of two phase flow. Experimentally determined values were compared with recalculations of these experiments with the sub-channel code COBRA; from the results of these comparing calculations, conclusions could be drawn on the suitability of this code for defined applications. Limits of reliability could be determined to some extent. Based on the experience gained and the study of individual physical model concepts, recognized as being important, a sub-channel model was drawn up and the corresponding numerical computer code (SIEWAS) worked out. Experiments made at GE could be reproduced with the code SIEWAS with sufficient accuracy. (orig.) [de

  10. Numerical simulation on flow field of nuclear safety grade 2 single-seat pneumatic diaphragm control valve

    International Nuclear Information System (INIS)

    Zhong Yun; Zhang Jige; Wang Dezhong; Shi Jianzhong

    2010-01-01

    The Computational Fluid Dynamics (CFD) method is employed to simulate numerically the steady flow and transient flow under variable openings of the nuclear safety grade 2 single-seat pneumatic diaphragm control valve, which is a sleeve valve. The steady simulations under rated condition tells that there is a large amount of vortex in the valve seat necking and around the valve cone, which leads to a much greater flow impact on the head of the valve cone and uneven pressure distribution on spool face. More consideration should be taken on the characteristics of the valve cone accordingly, when designing a valve of this kind. Then the transient flow under 100% and 40% openings is simulated numerically on the basis of steady simulations. The pulsation of the pressure magnitude at the points with large vorticity, in the valve seat necking and around the valve cone, is monitored. The main pulsation frequencies differ from the low natural frequencies of the model, which means that it is safe from leading to structural resonance. (authors)

  11. Effects of the Air Flow Rate on The Oxidation of NBG-18 and 25 Nuclear Graphite Grades

    International Nuclear Information System (INIS)

    Chi, Se-Hwan; Kim, Gen-Chan; Jang, Joon-Hee

    2007-01-01

    For a VHTR, graphite oxidation is regarded as a critical phenomenon for degrading the integrity of graphite components under normal or abnormal conditions. The oxidation of a graphite core component can occur by air which may permeate into the primary coolant operation and/or by impurities contained in the He coolant, or by air ingress during a severe accident. It is well known that the oxidation properties of a graphite are highly dependent on the source of raw materials, impurities, microstructures (crystallites, pore structure), and on the processing and environmental parameters, such as the forming methods, the coolant type, moisture and impurity content, temperature, flow rate and the oxygen potential of the coolants. A lot of work has been performed on the oxidation of graphite since the 1960s, and, for example, in the case of the temperature, a widely accepted oxidation model on the effects of a temperature has already been developed. However, in the case of the flow rate, even for its expected effects in a VHTR, for example, as to the expected changes in the bypass flow (10-20 %) during an operation, no systematic works have been performed. In this respect, as a preliminary study, the effects of an air flow rate on the oxidation of NBG-18 and 25 nuclear graphite were investigated

  12. Introgression in the Drosophila subobscura--D. Madeirensis sister species: evidence of gene flow in nuclear genes despite mitochondrial differentiation.

    Science.gov (United States)

    Herrig, Danielle K; Modrick, Alec J; Brud, Evgeny; Llopart, Ana

    2014-03-01

    Species hybridization, and thus the potential for gene flow, was once viewed as reproductive mistake. However, recent analysis based on large datasets and newly developed models suggest that gene exchange is not as rare as originally suspected. To investigate the history and speciation of the closely related species Drosophila subobscura, D. madeirensis, and D. guanche, we obtained polymorphism and divergence data for 26 regions throughout the genome, including the Y chromosome and mitochondrial DNA. We found that the D. subobscura X/autosome ratio of silent nucleotide diversity is significantly smaller than the 0.75 expected under neutrality. This pattern, if held genomewide, may reflect a faster accumulation of beneficial mutations on the X chromosome than on autosomes. We also detected evidence of gene flow in autosomal regions, while sex chromosomes remain distinct. This is consistent with the large X effect on hybrid male sterility seen in this system and the presence of two X chromosome inversions fixed between species. Overall, our data conform to chromosomal speciation models in which rearrangements are proposed to serve as gene flow barriers. Contrary to other observations in Drosophila, the mitochondrial genome appears resilient to gene flow in the presence of nuclear exchange. © 2013 The Authors. Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  13. Longitudinal decorrelation measures of flow magnitude and event-plane angles in ultrarelativistic nuclear collisions

    Science.gov (United States)

    BoŻek, Piotr; Broniowski, Wojciech

    2018-03-01

    We discuss the forward-backward correlations of harmonic flow in Pb +Pb collisions at the CERN Large Hadron Collider, applying standard multibin measures as well as new measures proposed here. We illustrate the methods with hydrodynamic model simulations based on event-by-event initial conditions from the wounded quark model with asymmetric rapidity emission profiles. Within the model, we examine independently the event-plane angle and the flow magnitude decorrelations. We find a specific hierarchy between various flow decorrelation measures and confirm certain factorization relations. We find qualitative agreement of the model and the data from the ATLAS and CMS Collaborations.

  14. The study of flow resistances in nuclear reactor Maria under coolant boiling conditions

    International Nuclear Information System (INIS)

    Czerski, P.

    1998-01-01

    The report presents hydrodynamic phenomena recorded in experimental work done on WIW-300 installation. In experiments in which critical heat flux was obtained, were observed such phenomena as : flow pattern in two-phase flow, Ledinegg instability and pressure oscillations. The installation WIW-300 and the course of experiments were presented in detail. The observations were the basis for formulation the steam pillow hypothesis. The pressure drop oscillations were presented on graphs in new way. They were interpolated with polynominals. (author)

  15. On the use of nuclear magnetic resonance to characterize vertical two-phase bubbly flows

    International Nuclear Information System (INIS)

    Lemonnier, H.; Jullien, P.

    2011-01-01

    Research highlights: → We provide a complete theory of the PGSE measurement in single and two-phase flow. → Friction velocity can be directly determinated from measured velocity distributions. → Fast determination of moments shorten PGSE process with small loss of accuracy. → Turbulent diffusion measurements agree well with known trends and existing models. → We think NMR can be a tool to benchmark thermal anemometry in two-phase flow. - Abstract: Since the pioneering work of who showed that NMR can be used to measure accurately the mean liquid velocity and void fraction in two-phase pipe flow, it has been shown that NMR signal can also characterize the turbulent eddy diffusivity and velocity fluctuations. In this paper we provide an in depth validation of these statements together with a clarification of the nature of the mean velocity that is actually measured by NMR PFGSE sequence. The analysis shows that the velocity gradient at the wall is finely space-resolved and allows the determination of the friction velocity in single-phase flows. Next turbulent diffusion measurements in two-phase flows are presented, analyzed and compared to existing data and models. It is believed that NMR velocity measurement is sufficiently understood that it can be utilized to benchmark thermal anemometry in two-phase flows. Theoretical results presented in this paper also show how this can be undertaken.

  16. Information flow a data bank preparation in nuclear power plant reliability information system

    International Nuclear Information System (INIS)

    Kolesa, K.; Vejvodova, I.

    1983-01-01

    In the year 1981 the reliability information system for nuclear power plants (ISS-JE) was established. The objective of the system is to make a statistical evaluation of the operation of nuclear power plants and to obtain information on the reliability of the equipment of nuclear power plants and the transmission of this information to manufacturers with the aim of inducing them to take corrective measures. The HP 1000 computer with the data base system IMAGE 100 is used which allows to process single queries and periodical outputs. The content of periodical outputs designed for various groups of subcontractors is briefly described and trends of the further development of the system indicated. (Ha)

  17. Optimization of material flow in the nuclear fuel cycle using a cyclic multi-stage production-to-inventory model

    International Nuclear Information System (INIS)

    DePorter, E.L.

    1977-01-01

    The nuclear fuel cycle is modelled as a cyclic, multi-stage production-to-inventory system. The objective is to meet a known deterministic demand for energy while minimizing acquisition, production, and inventory holding costs for all stages of the fuel cycle. The model allows for cyclic flow (feedback) of materials, material flow conversion factors at each stage, production lag times at each stage, and for escalating costs of uranium ore. It does not allow shortages to occur in inventories. The model is optimized by the application of the calculus of variations and specifically through recently developed theorems on the solution of functionals constrained by inequalities. The solution is a set of optimal cumulative production trajectories which define the stagewise production rates. Analysis of these production rates reveals the optimal nuclear fuel cycle costs and that inventories (stockpiles) occur in uranium fields, enriched uranium hexafluoride, and fabricated fuel assemblies. An analysis of the sensitivity of the model to variation in three important parameters is performed

  18. Nuclear clusters as a probe for expansion flow in heavy ion reactions at (10 endash 15)A GeV

    International Nuclear Information System (INIS)

    Mattiello, R.; Mattiello, R.; Sorge, H.; Stoecker, H.; Greiner, W.

    1997-01-01

    A phase space coalescence description based on the Wigner-function method for cluster formation in relativistic nucleus-nucleus collisions is presented. The momentum distributions of nuclear clusters d, t, and He are predicted for central Au(11.6A GeV)Au and Si(14.6A GeV)Si reactions in the framework of the relativistic quantum molecular dynamics transport approach. Transverse expansion leads to a strong shoulder-arm shape and different inverse slope parameters in the transverse spectra of nuclear clusters deviating markedly from thermal distributions. A clear open-quotes bounce-off close-quote close-quote event shape is seen: The averaged transverse flow velocities in the reaction plane are for clusters larger than for protons. The cluster yields, particularly at low p t at midrapidities, and the in-plane (anti)flow of clusters and pions change if suitably strong baryon potential interactions are included. This allows one to study the transient pressure at high density via the event shape analysis of nucleons, nucleon clusters, and other hadrons. copyright 1997 The American Physical Society

  19. Determination of Ploidy Level and Nuclear DNA Content in the Droseraceae by Flow Cytometry

    Czech Academy of Sciences Publication Activity Database

    Hoshi, Y.; Azumatani, M.; Suyama, T.; Adamec, Lubomír

    2017-01-01

    Roč. 82, č. 3 (2017), s. 321-327 ISSN 0011-4545 Institutional support: RVO:67985939 Keywords : nuclear DNA content * genome size * Droseraceae Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 0.913, year: 2016

  20. Macrophytes control on a stretch of the Ebro River flowing through the Asco Nuclear Power Plant

    International Nuclear Information System (INIS)

    Munte Clua, L.; Fernandez Alentorn, E.; Beltran Grau, A.

    2010-01-01

    The objective of this paper is to evaluate the time evolution of the different macrophytes populations in the stretch of the Ebro River between the town of Flix and the Asco Nuclear Power Plant, and the effects observed by the programmed flood for their control.

  1. Simulation of Groundwater Flow and Migration of the Radioactive Cobalt-60 from LAMA Nuclear Facility-Iraq

    Directory of Open Access Journals (Sweden)

    Thair Sharif Khayyun

    2018-02-01

    Full Text Available This study provides a simulation of groundwater flow and advective-dispersive migration of radioactive Co-60 through an aquifer with three layers, which release or leak to groundwater from the Active Metallurgy Testing Laboratory (LAMA Nuclear Facility-Iraq due to the nuclear accident scenario. Processing Modflow for windows (PMWIN and Modular Three-Dimensional Multispecies Transport (MT3DMS Models were used for this purpose. The study area and the contaminated area were 12.7 km2 and 0.005625 km2, respectively. Water levels of the groundwater have been measured in six monitoring wells. The simulation time was assumed to have started in 2016. The PMWIN model simulated the flow for two scenarios of water level in Tigris River (average and minimum water levels. The MT3DMS model simulated 10 years of plume travel, beginning in 2016. The simulated Co-60 concentrations after five years of travel were 32.34 and 34.44 μg/m3 for the two scenarios. The maximum predicted Co-60 concentrations at the end of Year 10 were 34.86 and 37.31 μg/m3, respectively. The sensitivity analysis showed that the simulated hydraulic heads in the observation wells and the simulated plume of Co-60 were highly sensitive to changes in the effective porosity but less sensitive to changes in other parameters of the dispersion and chemical reaction processes. The time necessary to reach steady state condition was predicted to be approximately 16 years. The contaminated area was isolated by using remedial process which is represented by three fully penetrating pumping wells with a suitable flow rate (0.045 m3/s for controlling the movement of Co-60 pollutant.

  2. Numerical Analysis of the Pressure Drop on a Flow Channel Filled with Catalysts for Nuclear Hydrogen Production System

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Deok; Kim, C. S.; Kim, M. H.; Kim, Y. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Seo, D. U.; Park, G. C. [Seoul National Univ., Seoul (Korea, Republic of)

    2013-10-15

    Designing a process heat exchanger (PHE) is one of the main technical challenges in the development of a nuclear hydrogen production system. The PHE provides an interface between the helium gas and the sulfuric acid gas. The SO3 gas is heated and decomposed into SO2 and O2 in the PHE. For this reason, PHE is also called a sulfur trioxide decomposer. The Korea Atomic Energy Research Institute (KAERI) has developed a hybrid-design decomposer to withstand severe operating conditions. Figure 1 shows the layout of the PHE which has a hybrid form of its flow channel geometry; there is a printed-circuit form on the primary helium side and a plate-fin form on the secondary SO3 side. There are many widespread correlations for the porous media such as the Carman, Ergun, Zhavoronkov et al., Susskind and Becker and Reichelt correlation. In the nuclear field, the KTA correlation was developed for a reactor core design for a high-temperature gas-cooled reactor. In this paper, we discussed a numerical analysis and validation of a pressure drop on a SO3 flow channel filled with various sized catalysts. We discussed a numerical analysis and validation of a pressure drop on a flow channel filled with catalysts in the channel. The results of the pressure drop simulation are compared with the results obtained using well-known empirical correlations. From the comparison results, the validity of the two-dimensional numerical analysis is not shown. The main reason may be due to a discord of the channel geometry and the extreme irregularity in the size of the catalyst. It should be accomplished by comparing its results with the experimental data, yet there are no experimental data available up to now.

  3. Nuclear

    International Nuclear Information System (INIS)

    2014-01-01

    This document proposes a presentation and discussion of the main notions, issues, principles, or characteristics related to nuclear energy: radioactivity (presence in the environment, explanation, measurement, periods and activities, low doses, applications), fuel cycle (front end, mining and ore concentration, refining and conversion, fuel fabrication, in the reactor, back end with reprocessing and recycling, transport), the future of the thorium-based fuel cycle (motivations, benefits and drawbacks), nuclear reactors (principles of fission reactors, reactor types, PWR reactors, BWR, heavy-water reactor, high temperature reactor of HTR, future reactors), nuclear wastes (classification, packaging and storage, legal aspects, vitrification, choice of a deep storage option, quantities and costs, foreign practices), radioactive releases of nuclear installations (main released radio-elements, radioactive releases by nuclear reactors and by La Hague plant, gaseous and liquid effluents, impact of releases, regulation), the OSPAR Convention, management and safety of nuclear activities (from control to quality insurance, to quality management and to sustainable development), national safety bodies (mission, means, organisation and activities of ASN, IRSN, HCTISN), international bodies, nuclear and medicine (applications of radioactivity, medical imagery, radiotherapy, doses in nuclear medicine, implementation, the accident in Epinal), nuclear and R and D (past R and D programmes and expenses, main actors in France and present funding, main R and D axis, international cooperation)

  4. Investigation on two-phase flow instability in steam generator of integrated nuclear reactor

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    In the pressure range of 3-18MPa,high pressure steam-water two-phase flow density wave instability in vertical upward parallel pipes with inner diameter of 12mm is studied experimentally.The oscillation curves of two-phase flow instability and the effects of several parameters on the oscillation threshold of the system are obtained.Based on the small pertubation linearization method and the stability principles of automatic control system,a mathematical model is developed to predict the characteristics of density wave instability threshold.The predictions of the model are in good agreement with the experimental results.

  5. Wind tunnel experimental study on effect of inland nuclear power plant cooling tower on air flow and dispersion of pollutant

    International Nuclear Information System (INIS)

    Qiao Qingdang; Yao Rentai; Guo Zhanjie; Wang Ruiying; Fan Dan; Guo Dongping; Hou Xiaofei; Wen Yunchao

    2011-01-01

    A wind tunnel experiment for the effect of the cooling tower at Taohuajiang nuclear power plant on air flow and dispersion of pollutant was introduced in paper. Measurements of air mean flow and turbulence structure in different directions of cooling tower and other buildings were made by using an X-array hot wire probe. The effects of the cooling tower and its drift on dispersion of pollutant from the stack were investigated through tracer experiments. The results show that the effect of cooling tower on flow and dispersion obviously depends on the relative position of stack to cooling towers, especially significant for the cooling tower parallel to stack along wind direction. The variation law of normalized maximum velocity deficit and perturbations in longitudinal turbulent intensity in cooling tower wake was highly in accordance with the result of isolated mountain measured by Arya and Gadiyaram. Dispersion of pollutant in near field is significantly enhanced and plume trajectory is changed due to the cooling towers and its drift. Meanwhile, the effect of cooling tower on dispersion of pollutant depends on the height of release. (authors)

  6. Measurement and modeling of flow through unsaturated heterogeneous rock in the context of geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Sagar, B.; Bagtzoglou, A.C.; Green, R.T.; Stothoff, S.A.

    1995-01-01

    Deep geologic disposal of high-level and transuranic waste is currently being pursued vigorously. Assessing long-term performance of such repositories involves laboratory and field measurements, and numerical modeling. There exist two primary characteristics, associated with assessing repository performance, that define problems of modeling and measurement of non-isothermal flow through geologic media exposed to variable boundary conditions (e.g., climatic changes). These are: (1) the large time scale (tens of thousands of years) and highly variable space scale (from one meter to 10 5 meters); and (2) the hierarchy of heterogeneities and discontinuities characterizing the medium. This paper provides an overview of recent work, conducted at the Center for Nuclear Waste Regulatory Analyses (CNWRA), related to laboratory experiments, consideration of similitude, and numerical modeling of flow through heterogeneous media under non-homogeneous boundary conditions. As discussed, there exist neither good methods of measuring flows at these scales nor are there adequate similitude analyses that would allow reasonable scaling up of laboratory-scale experiments. Reliable assessment of long-term geologic repositories will require sophisticated geostatistical models capable of addressing variables scales of heterogeneities conditioned with observed results from adequately sized field-scale experiments conducted for sufficiently long durations

  7. Development of a risk monitoring system for nuclear power plants based on GO-FLOW methodology

    International Nuclear Information System (INIS)

    Yang, Jun; Yang, Ming; Yoshikawa, Hidekazu; Yang, Fangqing

    2014-01-01

    Highlights: • A method for developing Living PSA is proposed. • Living PSA is easy to update with online modification to system model file. • A risk monitoring system is designed and developed using the GO-FLOW. • The risk monitoring system is useful for plant daily operation risk management. - Abstract: The paper presents a risk monitoring system developed based on GO-FLOW methodology which is a success-oriented system reliability modeling technique for phased mission as well as time-dependent problems analysis. The risk monitoring system is designed to receive information on plant configuration changes either from equipment failures, operator interventions, or maintenance activities, then update the Living PSA model with online modification to the system GO-FLOW model file which contains all the functional modes of equipment represented by a proposed generalized GO-FLOW modeling structure, and display risk values graphically. The risk monitoring system can be used to assist safety engineers and plant operators in their maintenance management and daily operation risk management at NPPs

  8. Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB) Process Flow Diagram Mass Balance Calculations

    International Nuclear Information System (INIS)

    KLEM, M.J.

    2000-01-01

    The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869

  9. Spent Nuclear Fuel (SNF) Project Multi Canister Overpack (MCO) Process Flow Diagram Mass Balance Calculations

    International Nuclear Information System (INIS)

    KLEM, M.J.

    2000-01-01

    The purpose of this calculation document is to develop the bases for the material balances of the Multi-Canister Overpack (MCO) Level 1 Process Flow Diagram (PFD). The attached mass balances support revision two of the PFD for the MCO and provide future reference

  10. Development of a risk monitoring system for nuclear power plants based on GO-FLOW methodology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun, E-mail: youngjun51@hotmail.com [College of Nuclear Science and Technology, Harbin Engineering University, No. 145 Nantong Street, Nangang District, Harbin 150001 (China); Yang, Ming, E-mail: yangming@hrbeu.edu.cn [College of Nuclear Science and Technology, Harbin Engineering University, No. 145 Nantong Street, Nangang District, Harbin 150001 (China); Yoshikawa, Hidekazu, E-mail: yosikawa@kib.biglobe.ne.jp [Symbio Community Forum, Kyoto (Japan); Yang, Fangqing, E-mail: yfq613@163.com [China Nuclear Power Technology Research Institute, 518000 (China)

    2014-10-15

    Highlights: • A method for developing Living PSA is proposed. • Living PSA is easy to update with online modification to system model file. • A risk monitoring system is designed and developed using the GO-FLOW. • The risk monitoring system is useful for plant daily operation risk management. - Abstract: The paper presents a risk monitoring system developed based on GO-FLOW methodology which is a success-oriented system reliability modeling technique for phased mission as well as time-dependent problems analysis. The risk monitoring system is designed to receive information on plant configuration changes either from equipment failures, operator interventions, or maintenance activities, then update the Living PSA model with online modification to the system GO-FLOW model file which contains all the functional modes of equipment represented by a proposed generalized GO-FLOW modeling structure, and display risk values graphically. The risk monitoring system can be used to assist safety engineers and plant operators in their maintenance management and daily operation risk management at NPPs.

  11. Flow instability tests for a particle bed reactor nuclear thermal rocket fuel element

    Science.gov (United States)

    Lawrence, Timothy J.

    1993-05-01

    Recent analyses have focused on the flow stability characteristics of a particle bed reactor (PBR). These laminar flow instabilities may exist in reactors with parallel paths and are caused by the heating of the gas at low Reynolds numbers. This phenomena can be described as follows: several parallel channels are connected at the plenum regions and are stabilized by some inlet temperature and pressure; a perturbation in one channel causes the temperature to rise and increases the gas viscosity and reduces the gas density; the pressure drop is fixed by the plenum regions, therefore, the mass flow rate in the channel would decrease; the decrease in flow reduces the ability to remove the energy added and the temperature increases; and finally, this process could continue until the fuel element fails. Several analyses based on different methods have derived similar curves to show that these instabilities may exist at low Reynolds numbers and high phi's ((Tfinal Tinitial)/Tinitial). These analyses need to be experimentally verified.

  12. Equations of motion for two-phase flow in a pin bundle of a nuclear reactor

    International Nuclear Information System (INIS)

    Chawla, T.C.; Ishii, M.

    1978-01-01

    By performing Eulerian area averaging over a channel area of the local continuity, momentum, and energy equations for single phase turbulent flow and assuming each phase in two-phase flows to be continuum but coupled by the appropriate 'jump' conditions at the interface, the corresponding axial macroscopic balances for two-fluid model in a pin bundle are obtained. To determine the crossflow, a momentum equation in transverse (to the gap between the pins) direction is obtained for each phase by carrying out Eulerian segment averaging of the local momentum equation, where the segment is taken parallel to the gap. By considering the mixture as a whole, a diffusion model based on drift-flux velocity is formulated. In the axial direction it is expressed in terms of three mixture conservation equations of mass, momentum, and energy with one additional continuity equation for the vapor phase. For the determination of crossflow, transverse momentum equation for a mixture is obtained. It is considered that the previous formulation of the two-phase flow based on the 'slip' flow model and the integral subchannel balances using finite control volumes is inadequate in that the model is heuristic and, a priori, assumes the order of magnitude of the terms, also the model is incomplete and incorrect when applied to two-phase mixtures in thermal non-equilibrium such as during accidental depressurization of a water cooled reactor. The governing equations presented are shown to be a very formal and sound physical basis and are indispensable for physically correct methods of analyzing two-phase flows in a pin bundle. (author)

  13. Microscopic calculations of nuclear matter collective flow in Nb(400 MeV/N) + Nb

    International Nuclear Information System (INIS)

    Hoffer, J.B.; Kruse, H.; Molitoris, J.J.; Stoecker, H.

    1984-01-01

    The recent experimental observation of sidewards peaks in the emission pattern of fragments emitted in collisions of heavy nuclear systems has stimulated a dispute among theorists about how to interpret these data. It has been shown that the observations are in agreement with the results of macroscopic nuclear fluid dynamical calculations, but several microscopic calculations done to simulate the sidewards emission (via the intranuclear cascade (INC) approach) failed - the angular distributions obtained where always forward peaked. A many body equations of motion (EOM) approach to study heavy ion collision has been developed. The approach is analogous to the early work of Bodmer et al., and Wilets et al. Hamilton's equations of motion are solved for an ensemble of nucleons with simultaneous mutual two-body interactions between all particles. The model predicts the sidewards emission peaks for the Nb + Nb reaction

  14. The destabilizing influence of heat flow on the geological environment during underground nuclear explosions

    International Nuclear Information System (INIS)

    Politikov, M.I.; Kamberov, I.M.; Krivchenko, V.F.; Lukashenko, S.N.; Solodukhin, V.P.

    2001-01-01

    The study has determined the fact that the processes of gas-radioactive ectoplasm intrusion from nuclear cavities in the geological environment bring the significant contribution in bosom destabilizing besides the mechanical rock destruction as affected by underground nuclear explosions. Not only heat field forming that reduces the rock resistance and increases its porosity is related to it, but also the forming, on the way, of man-caused contamination aureoles of the geological environment, including the underground water bearing horizon. Unfortunately, this problem is hardly studied, mainly for the lack of reliable apparatus and methods. Judging by the results of information search, the best way to solve the problem is not yet known. (author)

  15. Two-phase flow and thermal response from nuclear excursions in tuff

    International Nuclear Information System (INIS)

    Rath, J.S.; Sanchez, L.C.; Taylor, L.L.

    1998-05-01

    Thermal hydrology calculations were performed to predict the geologic thermal and saturation response of a far-field nuclear criticality. The thermal hydrology (THX) calculations used an experimental version of a transient multi-phase fluid and energy simulator, BRAGFLO T. A total of 45 THX calculations were completed using various combinations of initial saturation S 0 , input heat generation zone (HGZ) radii r 0 , input energies E 0 , and input space power density functions (SPDFs). The thermal hydrology calculations were performed as a part the nuclear dynamics consequence analysis (NDCA) study for potential criticality consequences associated with disposal of high-level waste (HLW) and spent nuclear fuel (SNF) in an underground geologic repository. In the NDCA study it was identified that total fission energy E 0 , integrated from the power-time history, has an expected range of 10 17 --10 20 total fissions per excursion. This range of values is comparable to those reported for aqueous criticality accidents that had occurred in processing plants. The THX results show (using the conservative temperature recycle times) that a criticality frequency between 3 and 30 criticalities/yr is possible. Probability frequencies (generated by probabilistic risk analysis and the THX model) for these consequences indicate that any additional fissions are minor contributions to the biological hazards caused by the disposed fissile materials

  16. System and method for determining coolant level and flow velocity in a nuclear reactor

    Science.gov (United States)

    Brisson, Bruce William; Morris, William Guy; Zheng, Danian; Monk, David James; Fang, Biao; Surman, Cheryl Margaret; Anderson, David Deloyd

    2013-09-10

    A boiling water reactor includes a reactor pressure vessel having a feedwater inlet for the introduction of recycled steam condensate and/or makeup coolant into the vessel, and a steam outlet for the discharge of produced steam for appropriate work. A fuel core is located within a lower area of the pressure vessel. The fuel core is surrounded by a core shroud spaced inward from the wall of the pressure vessel to provide an annular downcomer forming a coolant flow path between the vessel wall and the core shroud. A probe system that includes a combination of conductivity/resistivity probes and/or one or more time-domain reflectometer (TDR) probes is at least partially located within the downcomer. The probe system measures the coolant level and flow velocity within the downcomer.

  17. The study of flow resistance in nuclear reactor Maria under coolant boiling condition

    International Nuclear Information System (INIS)

    Czerski, P.

    1999-01-01

    This study describes an analysis of experiments carried out in the WIW-300 installation located in the Institute of Atomic Energy (Swierk, Poland). The flow, simulated in the annular gap of test section, was similar to the flow in Maria reactor fuel channel. Experimental character of the work lead to the conclusions related to the physical nature of the hydrodynamic phenomena investigated as well as to the practical aspects of future research. A hypothesis defining a cause of pressure changes was formulated and specific problems related to the mathematical model were defined. The analysis shows that hydrodynamic phenomena studies are of basic significance for the prediction of burnout effects and that heat exchange is very often determined by local phenomena. All described observations are the base for further research on thermodynamic aspects of investigated phenomena. (author)

  18. PANTHERE, simulation software of dose flow rates for complex nuclear installations

    International Nuclear Information System (INIS)

    Longeot, M.; Dupont, B.; Coatanea, C.; Schumm, S.; Zweers, M.; Malvagi, F.; Trama, J.C.

    2010-01-01

    The authors present the PANTHERE simulation software developed by EDF-SEPTEN to determine gamma dose flow rate in any point of complex industrial installations. They present the current industrial version (PANTHEREV1) and its different applications, and more particularly an investigation in the field of qualification of hardware under irradiation in case of severe accident. They present the currently under development version (PANTHEREV2) which will be exploited in 2011

  19. Loss of flow accident and its mitigation measures for nuclear systems with SCWR-M

    International Nuclear Information System (INIS)

    Xu Zhihong; Hou Dong; Fu Shengwei; Yang Yanhua; Cheng Xu

    2011-01-01

    Highlights: → A model of mixed spectrum SCWR system is established by a revised version of RELAP5. → Some important parameters are chosen to analysis the SCWR-M during LOFA. → Three important mitigation measures for LOFA of SCWR-M are derived from the results. - Abstract: Based on a revised version of RELAP5, which can be used for super-critical pressure calculation, a model of mixed spectrum SCWR (SCWR-M) system is established. To analyze the transient behavior of SCWR-M and develop mitigation measures during loss of flow accident (LOFA), some important parameters, e.g. reactor coolant pump (RCP) coast-down time, Reactor Pressure Vessel (RPV) upper water volume and safety injection flow, etc., are chosen for the parametric analysis. The results achieved so far indicate that the SCWR-M system design is feasible and promising. Three important mitigation measures for LOFA of SCWR-M are derived from the results: RCP coast-down time of more than 15 s, RPV upper water volume of more than 27 m 3 , and safety injection of more than 5% of the system design flow.

  20. The Experience at Russian Nuclear Sites of Modeling Groundwater Flow on Different Scales

    Science.gov (United States)

    Zinin, A.; Zinina, G.; Samsanova, L.; Vasilkova, N.; Alexandrova, L.; Drozhko, E.

    2001-12-01

    The experience of developing models of different scales to predict contaminant plume migration in ground waters is analyzed. The method of developing a three-dimensional transient model is demonstrated to estimate high-density solutions migrating from the surface storage of liquid radioactive waste, using a two-dimensional regional model for setting boundary conditions (Lake Karachay, PA "Mayak", Russia). The model is used to calculate three-dimensional transient distribution of pressure, density and concentrations of the dissolved admixtures in the non-confined aquifers. Interpolation is also specified to calculate boundary conditions parameters of the inserted models. The method of constructing a local filtration model is described to predict the contaminant plume spreading from the operating ground of deep burial of liquid radioactive wastes (The Siberian Chemical Plant, Seversk). The local model uses smaller grid gaps over time and space and a more detailed stratiographic division of the section as compared to the regional model intended to be used for estimating groundwater resourses. The flow distribution within the local model boundaries is described as the products of an average annual flow and periodical time function (function of monthly fluctuations) and the function of spatial variables. The parameters of the distribution function, represented on the local model grid by the values, were determined by solving the inverse problem. The sensivity analysis of the target function of the inverse problem to the small variations of the average annual flows is described.

  1. Assessment of Equine Autoimmune Thrombocytopenia (EAT by flow cytometry

    Directory of Open Access Journals (Sweden)

    Schwarzwald Colin

    2001-04-01

    Full Text Available Abstract Rationale Thrombocytopenia is a platelet associated process that occurs in human and animals as result of i decreased production; ii increased utilization; iii increased destruction coupled to the presence of antibodies, within a process know as immune-mediated thrombocytopenia (IMT; or iv platelet sequestration. Thus, the differentiation of the origin of IMT and the development of reliable diagnostic approaches and methodologies are important in the clarification of IMT pathogenesis. Therefore, there is a growing need in the field for easy to perform assays for assessing platelet morphological characteristics paired with detection of platelet-bound IgG. Objectives This study is aimed to develop and characterize a single color flow cytometric assay for detection of platelet-bound IgG in horses, in combination with flow cytometric assessment of platelet morphological characteristics. Findings The FSC and SSC evaluation of the platelets obtained from the thrombocytopenic animals shows several distinctive features in comparison to the flow cytometric profile of platelets from healthy animals. The thrombocytopenic animals displayed i increased number of platelets with high FSC and high SSC, ii a significant number of those gigantic platelets had strong fluorescent signal (IgG bound, iii very small platelets or platelet derived microparticles were found significantly enhanced in one of the thrombocytopenic horses, iv significant numbers of these microplatelet/microparticles/platelet-fragments still carry very high fluorescence. Conclusions This study describes the development and characterization of an easy to perform, inexpensive, and noninvasive single color flow cytometric assay for detection of platelet-bound IgG, in combination with flow cytometric assessment of platelet morphological characteristics in horses.

  2. Subcadmic and epicadmic flow in the dry tube of the TRIGA Mark III reactor of the Nuclear Center of Mexico

    International Nuclear Information System (INIS)

    Delfin L, A.; Mazon R, R.; Nava R, B.

    1991-04-01

    The mensuration of the thermal and fast flows of the irradiation facilities of the core of the reactor is important, since allow us to determine the optimum time of irradiation of the samples in the reactor. The Dry Tube especially, is an irradiation installation that it was designed in the I.N.I.N. to supply the pneumatic irradiation system of capsules with durations bigger than 15 minutes and it can be used for exposures until a maximum of three hours. The main users are the Nuclear Chemistry Department and the Neutron activation analysis. In this report the neutron flux sub cadmic and epi cadmic obtained in an experimental way in the Dry Tube for the reactor operating in stationary state to powers of 100 Kw, 300 Kw and 1000 Kw are reported and with these values it is interpolated for other powers. (Author)

  3. Fluid flows due to leakproofness defects of nuclear fuel cans: application to sipping in PWR

    International Nuclear Information System (INIS)

    Parrat, D.

    1983-10-01

    This thesis establishes the theoritical laws describing fluid and gas transfers through channels representative of nuclear fuel can defects. These laws, applied to craks on fuel cans (samples) and on new or spent experimental rods, allow to know their size. A computerized modelling has been developed to analyse more particularly the examination by ''quantitative permeation testing'', giving the equivalent size of a channel from the observed signal. The utilization of this process to non-tight fuel assemblies of pressurized water reactors leads to the establishment of a classification of defects according to their importance [fr

  4. Citizen perceptions of information flow around a nuclear facility: A study in risk communication

    International Nuclear Information System (INIS)

    Price, M.O.

    1997-01-01

    Responses of focus group members from the region around a Nuclear Facility provide the data for this qualitative study concerning citizen perceptions of available site information. Analyses of three of the focus group discussion questions and the answers they elicited showed a dominant perception among participants of insufficient easily available information about the site. These respondents also indicated that most of them obtain site information through mass media and hearsay, that many lack trust in the information they have and would trust only an independent entity to provide accurate information. A new area in communication studies, variously called environmental risk communication, risk communication and health risk communication, continues to evolve among those working in various allied disciplines, some far removed from communication. As science attempts to solve environmental problems caused by technological advances, this field acquires numerous practitioners. Some of these risk communication experts may however, be overlooking basic and necessary components of effective communication, because their expertise is in another discipline. One result of this can be communication breakdown in which those involved, assume that meaning is shared, when in fact the opposite is true. This paper seeks to clarify a necessary ingredient of effective interpersonal risk communication, using data obtained from citizens living around one of the nation's nuclear facilities as an example

  5. Numerical simulation study on the air/water countercurrent flow limitation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morghi, Youssef; Mesquita, Amir Z., E-mail: ssfmorghi@gmail.com, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Puente, Jesus, E-mail: jpuente720@gmail.com [Centro Federal de Educaçao Tecnologica Celso Suckowda Fonseca (CEFET), Angra dos Reis, RJ (Brazil); Baliza, Ana R., E-mail: baliza@eletronuclear.gov.br [Eletrobras Eletronuclear Angra dos Reis, RJ (Brazil)

    2017-07-01

    After a loss-of-coolant accident (LOCA) in a Pressurized Water Reactor (PWR), the temperature of the fuel elements cladding increases dramatically due to the heat produced by the fission products decay, which is not adequately removed by the vapor contained in the core. In order to avoid this sharp rise in temperature and consequent melting of the core, the Emergency Core Cooling System is activated. This system initially injects borated water from accumulator tanks of the reactor through the inlet pipe (cold leg) and the outlet pipe (hot leg), or through the cold leg only, depending on the plant manufacturer. Some manufacturers add to this, direct injection into the upper plenum of the reactor. The penetration of water into the reactor core is a complex thermo fluid dynamic process because it involves the mixing of water with the vapor contained in the reactor, added to that generated in the contact of the water with the still hot surfaces in various geometries. In some critical locations, the vapor flowing in the opposite direction of the water can control the penetration of this into the core. This phenomenon is known as Countercurrent Flow Limitation (CCFL) or Flooding, and it is characterized by the control that a gas exerts in the liquid flow in the opposite direction. This work presents a proposal to use a CFD to simulate the CCFL phenomenon. Numerical computing can provide important information and data that is difficult or expensive to measure or test experimentally. Given the importance of computational science today, it can be considered a third and independent branch of science on an equal footing with the theoretical and experimental sciences. (author)

  6. Flow-accelerated corrosion in nuclear power plants: application of CHECWORKS at Darlington

    International Nuclear Information System (INIS)

    Schefski, C.; Pietralik, J.; Dyke, T.; Lewis, M.

    1995-01-01

    CHECWORKS, a comprehensive software package for managing Flow-Accelerated Corrosion (FAC) concerns in the secondary side, was applied to supplement and improve the existing FAC program at Darlington NGS. The database created for the station contains the Heat Balance Diagram, susceptible-to FAC secondary side systems, ultrasonic inspection data, drawings and pictures. The distribution of hot pH and oxygen within the secondary side was calculated and components were ranked by wear rate. The predicted wear rates are relatively small, mainly because of the favourable water chemistry. It was demonstrated that the package is a very useful tool complementing the existing In-Service Inspection program. (author)

  7. CFD simulation on critical heat flux of flow boiling in IVR-ERVC of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang, E-mail: zhangxiang3@snptc.com.cn [State Nuclear Power Technology Research & Development Center, South Area, Future Science and Technology Park, Chang Ping District, Beijing 102209 (China); Hu, Teng [State Nuclear Power Technology Research & Development Center, South Area, Future Science and Technology Park, Chang Ping District, Beijing 102209 (China); Chen, Deqi, E-mail: chendeqi@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, 400044 (China); Zhong, Yunke; Gao, Hong [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, 400044 (China)

    2016-08-01

    Highlights: • CFD simulation on CHF of boiling two-phase flow in ERVC is proposed. • CFD simulation result of CHF agrees well with that of experimental result. • The characteristics of boiling two-phase flow and boiling crisis are analyzed. - Abstract: The effectiveness of in-vessel retention (IVR) by external reactor vessel cooling (ERVC) strongly depends on the critical heat flux (CHF). As long as the local CHF does not exceed the local heat flux, the lower head of the pressure vessel can be cooled sufficiently to prevent from failure. In this paper, a CFD simulation is carried out to investigate the CHF of ERVC. This simulation is performed by a CFD code fluent couple with a boiling model by UDF (User-Defined Function). The experimental CHF of ERVC obtained by State Nuclear Power Technology Research and Development Center (SNPTRD) is used to validate this CFD simulation, and it is found that the simulation result agrees well with the experimental result. Based on the CFD simulation, detailed analysis focusing on the pressure distribution, velocity distribution, void fraction distribution, heating wall temperature distribution are proposed in this paper.

  8. On the use of (U)RANS and LES approaches for turbulent incompressible single phase flows in nuclear engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Benhamadouche, Sofiane, E-mail: sofiane.benhamadouche@edf.fr

    2017-02-15

    Highlights: • The paper deals with the use of (U)RANS and LES in nuclear engineering applications. • It gives some ideas and guidelines to run high quality computations. • Some perspectives are drawn concerning the development of (U)RANS and LES approaches in the future. - Abstract: The present paper gives some ideas and guidelines in order to run high quality (U)RANS or LES computations. The paper starts with (U)RANS approaches, advocating the use of Reynolds Stress Models for complex flows and recommending further work on modeling of turbulent heat fluxes, which remains today too basic in industry. The superiority of wall-resolved models vs. wall-modeled in RANS is recalled and the use of adaptive wall treatment is suggested. The concept of Unsteady RANS is finally questioned. Then, important issues around LES are raised. The mesh refinement criteria are recalled for wall-resolved LES and the use of wall models addressed. The production of DNS and wall-resolved LES calculations for flow understanding and RANS validation is encouraged.

  9. Simulation mechanisms of low energy nuclear reaction using super flow energy external fields

    International Nuclear Information System (INIS)

    Gareev, F.A.; Zhidkova, I.E.; ); Ratis, Yu.I.

    2005-01-01

    Full text: The review of possible stimulation mechanisms of the LENR (low energy nuclear reactions) is represented. We have concluded that transamination of nuclei at low energies and excess heat are possible in the framework of the modern physical theory - the universal resonance synchronization principle and based on its different enhancement mechanisms of reaction rates are responsible for these processes. The excitation nd ionization of atom may play role as trigger for LERN. Investigation of this phenomenon requires knowledge of different branches if science: nuclear and atomic physics, chemistry and electrochemistry, condensed matter and solid state physics. The results of this research field can provide a new source of energy, substances and technologies. The puzzle of poor re-productivity of experimental data in due ti the fact LENR occurs in open systems and it is extremely sensitive to parameters of external fields and systems. Classical re-productivity principle should be reconsidered for LENR experiments. Poor re-productivity and unexpected results do not means that the experiment is wrong. Our main conclusion: LENR may be understand in terms of the modern theory without any violation of the basic physics. 2) Weak and electromagnetic interactions may show the strong influence of the surrounding conditions on the nuclear processes. 3) Universal resonance synchronization principle is a key issue to make a bridge between various scales of interactions and it is responsible for self-organization of hierarchical systems independent of substances, fields and interactions. We bring some arguments in favor of the mechanism - order based on order - declared by Schroedinger in fundamental problem of contemporary science. 4) The universal resonance synchronization principle became a fruitful interdisciplinary science of general laws of self-organized processes in different branches of physics because it is consequence of the energy conservation law and resonance

  10. Simulations and measurements of adiabatic annular flows in triangular, tight lattice nuclear fuel bundle model

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Abhishek, E-mail: asaxena@lke.mavt.ethz.ch [ETH Zurich, Laboratory for Nuclear Energy Systems, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zürich (Switzerland); Zboray, Robert [Laboratory for Thermal-hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Prasser, Horst-Michael [ETH Zurich, Laboratory for Nuclear Energy Systems, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zürich (Switzerland); Laboratory for Thermal-hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2016-04-01

    High conversion light water reactors (HCLWR) having triangular, tight-lattice fuels bundles could enable improved fuel utilization compared to present day LWRs. However, the efficient cooling of a tight lattice bundle has to be still proven. Major concern is the avoidance of high-quality boiling crisis (film dry-out) by the use of efficient functional spacers. For this reason, we have carried out experiments on adiabatic, air-water annular two-phase flows in a tight-lattice, triangular fuel bundle model using generic spacers. A high-spatial-resolution, non-intrusive measurement technology, cold neutron tomography, has been utilized to resolve the distribution of the liquid film thickness on the virtual fuel pin surfaces. Unsteady CFD simulations have also been performed to replicate and compare with the experiments using the commercial code STAR-CCM+. Large eddies have been resolved on the grid level to capture the dominant unsteady flow features expected to drive the liquid film thickness distribution downstream of a spacer while the subgrid scales have been modeled using the Wall Adapting Local Eddy (WALE) subgrid model. A Volume of Fluid (VOF) method, which directly tracks the interface and does away with closure relationship models for interfacial exchange terms, has also been employed. The present paper shows first comparison of the measurement with the simulation results.

  11. Investigations of the cerebral blood flow by means of nuclear medicine in polycythemia vera rubra

    International Nuclear Information System (INIS)

    Franke, W.G.; Unger, L.; Mueller, J.

    1993-01-01

    P.v. represents a ''clinical model'' of diagnostic radionuclide application to evaluate the total and regional perfusion of brain. 107 polycythemians treated by or provided for radiophosphorus were studied by neurologic methods as EEG e.g. and with XCT if necessary. These studies were accomplished repeatedly in 62% of the surveyed patients. We found disturbed perfusion in brain: 32, diminuation of blood flow in vertebral-basilar region: 8, polyneuropathies: 27, psychic abnormalities: 60. Therapeutic effects became ascertained in 34% of hemipareses. The majority of polycythemic patients let recognize a regression of subjective complaints. The diagnostic informations obtained by radionuclide methods were compared to clinical and neurologic results as mentioned above. A good correlation could observed from radionuclide angiography, 133 Xe-studies of total and regional cerebral perfusion and HMPAO-SPECT to neurologic and radiological findings. 66% of studied patients showed abnormal radioactivity distribution at static scintigrams. Disturbances of cerebral perfusion were seen in 20 from 26 patients if radionuclide angiography was used. Especially the inflow to cerebral vessels was found retarded by this method. Even in 3 neurologically inconspicuous persons the cerebral perfusion was restricted. Only 5 patients without signs of decreased flow could be seen. In 9 of 10 cases studied using 133 Xenon referred to diminuation of cerebral perfusion. Both dynamic methods showed changes in perfusion depending from time course. Numerous localized defects of vascularization were detected by SPECT in some corresponding with neurologic symptoms in other patients differing from these ones. (orig./MG) [de

  12. A practical system for the measurement of flows in a nuclear reactor

    International Nuclear Information System (INIS)

    Carrion V, F.J.

    1980-01-01

    With the purpose of making practical the neutron flux map in a nuclear reactor, the traditional foils are replaced by calibrated wires, and the activity rates through the wire are maked with a directional detector coupled to a collimator and to a servomechanism that moves the wire, to make the measurements through it. The servomechanism can be automatically controlled, and the information can be stored in a multichannel or directly pass to a plotter according to the continued or step by step measurements through the wire. For the system design it was necessary to fix the collimator dimensions according to the detector and the wire characteristics. In conclusion, this method is practical and exact, and their automation allows time economy. (author)

  13. Experimental investigation on single-phase pressure losses in nuclear debris beds: Identification of flow regimes and effective diameter

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, R., E-mail: remi.clavier@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) – PSN-RES/SEREX/LE2M, Cadarache bât. 327, 13115 St Paul-lez-Durance (France); Chikhi, N., E-mail: nourdine.chikhi@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) – PSN-RES/SEREX/LE2M, Cadarache bât. 327, 13115 St Paul-lez-Durance (France); Fichot, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN) – PSN-RES/SAG/LEPC, Cadarache bât. 700, 13115 St Paul-lez-Durance (France); Quintard, M. [Université de Toulouse – INPT – UPS – Institut de Mécanique des Fluides de Toulouse (IMFT), Allée Camille Soula, F-31400 Toulouse (France); CNRS – IMFT, F-31400 Toulouse (France)

    2015-10-15

    Highlights: • Single-phase pressure drops versus flow rates in particle beds are measured. • Conditions are representative of the reflooding of a nuclear fuel debris bed. • Darcy, weak inertial, strong inertial and weak turbulent regimes are observed. • A Darcy–Forchheimer law is found to be a good approximation in this domain. • A predictive correlation is derived from new experimental data. - Abstract: During a severe nuclear power plant accident, the degradation of the reactor core can lead to the formation of debris beds. The main accident management procedure consists in injecting water inside the reactor vessel. Nevertheless, large uncertainties remain regarding the coolability of such debris beds. Motivated by the reduction of these uncertainties, experiments have been conducted on the CALIDE facility in order to investigate single-phase pressure losses in representative debris beds. In this paper, these results are presented and analyzed in order to identify a simple single-phase flow pressure loss correlation for debris-bed-like particle beds in reflooding conditions, which cover Darcean to Weakly Turbulent flow regimes. The first part of this work is dedicated to study macro-scale pressure losses generated by debris-bed-like particle beds, i.e., high sphericity (>80%) particle beds with relatively small size dispersion (from 1 mm to 10 mm). A Darcy–Forchheimer law, involving the sum of a linear term and a quadratic deviation, with respect to filtration velocity, has been found to be relevant to describe this behavior in Darcy, Strong Inertial and Weak Turbulent regimes. It has also been observed that, in a restricted domain (Re = 15 to Re = 30) between Darcy and Weak Inertial regimes, deviation is better described by a cubic term, which corresponds to the so-called Weak Inertial regime. The second part of this work aims at identifying expressions for coefficients of linear and quadratic terms in Darcy–Forchheimer law, in order to obtain a

  14. Measurement of Soluble Biomarkers by Flow Cytometry

    OpenAIRE

    Antal-Szalm?s, P?ter; Nagy, B?la; Debreceni, Ildik? Beke; Kappelmayer, J?nos

    2013-01-01

    Microparticle based flow cytometric assays for determination of the level of soluble biomarkers are widely used in several research applications and in some diagnostic setups. The major advantages of these multiplex systems are that they can measure a large number of analytes (up to 500) at the same time reducing assay time, costs and sample volume. Most of these assays are based on antigen-antibody interactions and work as traditional immunoassays, but nucleic acid alterations ? by using spe...

  15. Direct coupling of a liquid chromatograph to a continuous flow hydrogen nuclear magnetic resonance detector for analysis of petroleum and synthetic fuels

    International Nuclear Information System (INIS)

    Haw, J.F.; Glass, T.E.; Hausler, D.W.; Motell, E.; Dorn, H.C.

    1980-01-01

    Initial results obtained for a flow 1 H nuclear magnetic resonance (NMR) detector directly coupled to a liquid chromatography unit are described. Results achieved for a model mixture and several jet fuel samples are discussed. Chromatographic separation of alkanes, alkylbenzenes, and substituted naphthalenes present in the jet fuel samples are easily identified with the 1 H NMR detector. Results with our present flow 1 H NMR insert indicate that 5-Hz linewidths are readily obtainable for typical chromatographic flow rates. The limitations and advantages of this liquid chromatography detector are compared with more commonly employed detectors (e.g., refractive index detectors). 11 figures

  16. Modelling of thermally driven groundwater flow in a facility for disposal of spent nuclear fuel in deep boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Marsic, Nico; Grundfelt, Bertil [Kemakta Konsult AB, Stockholm (Sweden)

    2013-09-15

    In this report calculations are presented of buoyancy driven groundwater flow caused by the emission of residual heat from spent nuclear fuel deposited in deep boreholes from the ground surface in combination with the natural geothermal gradient. This work has been conducted within SKB's programme for evaluation of alternative methods for final disposal of spent nuclear fuel. The basic safety feature of disposal of spent nuclear fuel in deep boreholes is that the groundwater at great depth has a higher salinity, and hence a higher density, than more superficial groundwater. The result of this is that the deep groundwater becomes virtually stagnant. The study comprises analyses of the effects of different inter-borehole distances as well as the effect of different permeabilities in the backfill and sealing materials in the borehole and of different shapes of the interface between fresh and saline groundwater. The study is an update of a previous study published in 2006. In the present study, the facility design proposed by Sandia National Laboratories has been studied. In this design, steel canisters containing two BWR elements or one PWR element are stacked on top of each other between 3 and 5 kilometres depth. In order to host all spent fuel from the current Swedish nuclear programme, about 80 such holes are needed. The model used in this study comprises nine boreholes spaced 100 metres alternatively 50 metres apart in a 3{Chi}3 matrix. In one set of calculations the salinity in the groundwater was assumed to increase from zero above 700 metres depth to 10% by weight at 1500 metres depth and below. In another set, a sharper salinity gradient was applied in which the salinity increased from 0 to 10% between 1400 and 1500 metres depth. A geothermal gradient of 16 deg C/km was applied. The heat output from the spent fuel was assumed to decrease by time in manner consistent with the radioactive decay in the fuel. When the inter-borehole distance decreased from

  17. Two new nuclear isolation buffers for plant DNA flow cytometry: A test with 37 species

    Czech Academy of Sciences Publication Activity Database

    Loureiro, J.; Rodriguez, E.; Doležel, Jaroslav; Santos, C.

    2007-01-01

    Roč. 100, č. 4 (2007), s. 875-888 ISSN 0305-7364 R&D Projects: GA ČR GA521/06/1723; GA ČR(CZ) GA521/05/0257; GA MŠk(CZ) LC06004 Grant - others:Mendelova zemědělská a lesnická univerzita v Brně / Agronomická fakulta(CZ) ME 844 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje Keywords : flow cytometry * general purpose buffer * genome size Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.939, year: 2007

  18. 3D Numerical study of the external flow effect on the heat transfer in a radiometric calorimeter dedicated to nuclear heating measurements

    International Nuclear Information System (INIS)

    Muraglia, M.; Reynard-Carette, C.; Brun, J.; Carette, M.; Lyoussi, A.

    2013-06-01

    Improvement of measurements in reactor is still a challenge. Thus, this work focuses on numerical studies of one sensor dedicated to nuclear heating measurements: a radiometric complex calorimeter. More precisely, using a simplified conduction heat model, this work presents the first full 3D simulations of a simplified calorimeter reduced to the complex calorimeter head showing that the key parameter for the sensitivity control is the convective heat transfers between the calorimeter and its external surrounding. The effect of external flow velocity on the calorimeter head response is determined for different flow regimes (natural convection, forced convection) and numerical results are found to be in agreement with experimental results under non-irradiated conditions obtained for the complex calorimeter. Moreover, in order to understand and describe fully the mechanisms leading at the different calorimeter heat transfer, the flow velocity dynamics should be added in the model. In a first approach, due to low influence of the flow velocity for tested power range, a static cooling fluid around the calorimeter head is added in the model. Then, in order to get the full flow dynamics, using Boussinesq approximation, a new 2D fluid model, including both temperature field and flow velocity dynamics, is derived taking into account the nuclear heating effect on the flow. (authors)

  19. A study on nuclear heat load tolerable for NET/TF coils cooled by internal flow of helium II

    International Nuclear Information System (INIS)

    Hofmann, A.

    1988-02-01

    NbTi cables cooled by internal flow of superfluid helium are considered an option for the design of NET/TF coils with about 11 T peak fields. Starting from an available winding cross section of 0.61x0.61 m 2 for a 8 MA turns coil made of a 16 kA conductor it is shown that sufficient hydraulic cross section can be provided within such cables to remove the expected thermal load resulting from nuclear heating with exponential decay from inboard to outboard side of the winding. The concept is a pancake type coil with 1.8 K helium fed-in the high field region of each pancake. The temperature distribution within such coils is calculated, and the local safety margin is determined from temperature and field. The calculation takes account of nuclear and a.c. heating, and of thermal conductance between the individual layers and the coil casing. It is shown that operation with 1.8 K inlet and about 3 K outlet temperature is possible. The electrical insulation with about 0.5 mm thickness proves to provide sufficient thermal insulation. No additional thermal shield is required between the coil casing and the winding package. Two different types of conductors are being considered: a) POLO type cable with quadratic cross section and a central circular coolant duct, and b) an LCT type cable with two conductors wound in hand. Both concepts with about 500 m length of the cooland channels are shown to meet the requirements resulting from a peak nuclear heat load of 0.3 mW/cm 3 in the inboard turns. The hydraulic diameters are sufficient to operate each coils with self-sustained fountain effect pumps. Even appreciably higher heat loads with up to 3 mW/cm 3 of nuclear heating can be tolerated for the POLO type cable when the hydraulic diameter is enlarged to its maximum of 17 mm. (orig.) [de

  20. Ratiometric fluorescence polarization as a cytometric functional parameter: theory and practice

    International Nuclear Information System (INIS)

    Yishai, Yitzhak; Fixler, Dror; Cohen-Kashi, Meir; Zurgil, Naomi; Deutsch, Mordechai

    2003-01-01

    The use of ratiometric fluorescence polarization (RFP) as a functional parameter in monitoring cellular activation is suggested, based on the physical phenomenon of fluorescence polarization dependency on emission wavelengths in multiple (at least binary) solutions. The theoretical basis of this dependency is thoroughly discussed and examined via simulation. For simulation, aimed to imitate a fluorophore-stained cell, real values of the fluorescence spectrum and polarization of different single fluorophore solutions were used. The simulation as well as the experimentally obtained values of RFP indicated the high sensitivity of this measure. Finally, the RFP parameter was utilized as a cytometric measure in three exemplary cellular bioassays. In the first, the apoptotic effect of oxLDL in a human Jurkat FDA-stained T cell line was monitored by RFP. In the second, the interaction between cell surface membrane receptors of human T lymphocyte cells was monitored by RFP measurements as a complementary means to the fluorescence resonance energy transfer (FRET) technique. In the third bioassay, cellular thiol level of FDA- and CMFDA-labelled Jurkat T cells was monitored via RFP