WorldWideScience

Sample records for flow cytometer assay

  1. Retinal flow cytometer.

    Science.gov (United States)

    Alt, C; Veilleux, I; Lee, H; Pitsillides, C M; Côté, D; Lin, C P

    2007-12-01

    The in vivo flow cytometer is an instrument capable of continuous, real-time monitoring of fluorescently labeled cells in the circulation without the need to draw blood samples. However, the original system probes a single vessel in the mouse ear; the small sample volume limits the sensitivity of the technique. We describe an in vivo retinal flow cytometer that simultaneously probes five artery-vein pairs in the mouse eye by circularly scanning a small laser spot rapidly around the optic nerve head. We demonstrate that the retinal flow cytometer detects about five times more cells per minute than the original in vivo flow cytometer does in the ear.

  2. A hard microflow cytometer using groove-generated sheath flow for multiplexed bead and cell assays.

    Science.gov (United States)

    Thangawng, Abel L; Kim, Jason S; Golden, Joel P; Anderson, George P; Robertson, Kelly L; Low, Vyechi; Ligler, Frances S

    2010-11-01

    With a view toward developing a rugged microflow cytometer, a sheath flow system was micromachined in hard plastic (polymethylmethacrylate) for analysis of particles and cells using optical detection. Six optical fibers were incorporated into the interrogation region of the chip, in which hydrodynamic focusing narrowed the core stream to ~35 μm × 40 μm. The use of a relatively large channel at the inlet as well as in the interrogation region (375 μm × 125 μm) successfully minimized the risk of clogging. The device could withstand pressures greater than 100 psi without leaking. Assays using both coded microparticles and cells were demonstrated using the microflow cytometer. Multiplexed immunoassays detected nine different bacteria and toxins using a single mixture of coded microspheres. A549 cancer cells processed with locked nucleic acid probes were evaluated using fluorescence in situ hybridization.

  3. Retinal flow cytometer

    OpenAIRE

    Alt, C.; Veilleux, I.; H. Lee; Pitsillides, C. M.; Côté, D.; Lin, C.P.

    2007-01-01

    The in vivo flow cytometer is an instrument capable of continuous, real-time monitoring of fluorescently labeled cells in the circulation without the need to draw blood samples. However, the original system probes a single vessel in the mouse ear; the small sample volume limits the sensitivity of the technique. We describe an in vivo retinal flow cytometer that simultaneously probes five artery–vein pairs in the mouse eye by circularly scanning a small laser spot rapidly around the optic nerv...

  4. Microfluidic Multichannel Flow Cytometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a "Microfluidic Multichannel Flow Cytometer." Several novel concepts are integrated to produce the final design, which is compatible with...

  5. The use of immunomagnetic separation of erythrocytes in the in vivo flow cytometer-based micronucleus assay.

    Science.gov (United States)

    Abramsson-Zetterberg, Lilianne; Carlsson, Rickard; Sand, Salomon

    2013-04-15

    The use of sensitive test systems makes it possible to detect weakly genotoxic chemicals and to better define the shape of dose-response relationships, which make it easier to interpret the mechanism behind possible effects. In this study we have refined the flow cytometer-based micronucleus assay by use of a cytometer equipped with two lasers. Since micronucleated young polychromatic erythrocytes, MNPCE, are very few in number among the cells in peripheral blood, about one or two out of 100,000 erythrocytes, there is always a risk that other cells, doublets or crystals, by mistake will be classified as a MNPCE. With immunomagnetic separation of the very youngest erythrocytes - which are transferrin-positive (Trf+Ret) - prior to analysis, we have obtained an almost pure (>98%) Trf+Ret-population. To clarify whether this separation of cells prior to analysis increases the sensitivity of the already sensitive and further refined flow cytometer-based micronucleus assay, we studied the dose-response towards benzo(a)pyrene, B[a]P in the low-dose region, 0-30mg/kgbw. Thirty FVB mice were intraperitoneally injected with B[a]P. From the same blood samples collected from these mice, cells were prepared in the two different ways and analyzed in the flow-cytometer equipped with two lasers. The lowest dose of B[a]P that can be reliably determined without being overwhelmed by the estimated error was about the same for the two methods, about 7mg/kgbw, i.e. the immunomagnetic separation did not increase the sensitivity. A second study with BalbC mice strengthens the result obtained with the FVB mice. Prior to the low-dose study the optimal sampling time for the two methods was determined. In this case, the water-solouble chemical acrylamide was used. The time courses obtained show almost the same shape of the curves, with a maximum of fMNPCE and fMNTrf+Ret at about 40-50h after exposure.

  6. Quantification of microglial phagocytosis by a flow cytometer-based assay.

    Science.gov (United States)

    Pul, Refik; Chittappen, Kandiyil Prajeeth; Stangel, Martin

    2013-01-01

    Microglia represent the largest population of phagocytes in the CNS and have a principal role in immune defense and inflammatory responses in the CNS. Their phagocytic activity can be studied by a variety of techniques, including a flow cytometry-based approach utilizing polystyrene latex beads. The flow cytometry-based microglial phagocytosis assay, which is presented here, offers the advantage of rapid and reliable analysis of thousands of cells in a quantitative fashion.

  7. Validation of a quantitative flow cytometer assay for monitoring HER-2/neu expression level in cell-based cancer immunotherapy products.

    Science.gov (United States)

    Randlev, Britta; Huang, Li-chun; Watatsu, Mitsuko; Marcus, Matthew; Lin, Andy; Shih, Shian-Jiun

    2010-03-01

    GVAX immunotherapy for prostate cancer is comprised of two genetically modified prostate cancer cell lines, CG1940 and CG8711, engineered to secrete granulocyte macrophage-colony-stimulating factor. As part of the matrix of potency assays, CG1940 and CG8711 are tested for the expression level of cell surface HER-2/neu using a quantitative flow cytometer assay. This assay reports the antibody binding capacity value of the cells as a measure of HER-2/neu expression using cells immediately after thawing from cryogenic storage. With optimized cell handling and staining procedure and appropriate system suitability controls, the assay was validated as a quantitative assay. The validation results showed that assay accuracy, specificity, precision, linearity, and range were suitable for the intended use of ensuring lot-to-lot consistency of HER-2/neu expression. Assay robustness was demonstrated using design of experiments that evaluated critical assay parameters. Finally, the assay was successfully transferred to a current good manufacturing practice Quality Control laboratory in a separate facility. Since the overall precision of this assay is better than that of ELISA methods and it can be performed with ease and high throughput, quantitative flow cytometer-based assays may be an appropriate immunological assay platform for Quality Control laboratories for characterization and release of cell-based therapies.

  8. Adaptation of ubiquitin-PNA based sperm quality assay for semen evaluation by a conventional flow cytometer and a dedicated platform for flow cytometric semen analysis.

    Science.gov (United States)

    Odhiambo, J F; Sutovsky, M; DeJarnette, J M; Marshall, C; Sutovsky, P

    2011-10-01

    The purpose of semen quality evaluation is to predict the fertility potential of the sample in an objective, rapid and inexpensive manner. However, utilization of sperm quality biomarkers such as ubiquitin and lectin Arachis hypogaea agglutinin (PNA) for flow cytometric semen evaluation might eliminate the need for visual assessment by microscopy. Herein, we demonstrate a robust ubiquitin and PNA-based semen evaluation conducted on a simple, easy to operate, dedicated sperm flow cytometer, EasyCyte Plus (IMV Technologies, L'Aigle, France). Semen samples were collected periodically from two dairy bulls, which were subjected to temporary scrotal insults to induce variable semen quality. Samples were labeled with fluorescently-conjugated anti-ubiquitin antibodies (bind exclusively to the surface of defective sperm) and lectin PNA (binds to acrosomal surface in prematurely capacitated and acrosome-damaged sperm). Fluorescent properties of the samples were measured with a conventional flow cytometer (Becton Dickinson FACScan; Becton Dickinson Corp., Franklin Lakes, NJ, USA) and by the EasyCyte (IMV Technologies) instrument. Data from the two flow cytometers were positively correlated for the percentage of PNA-positive sperm with a damaged acrosome (r = 0.47; P flow cytometric semen evaluation.

  9. Mobile flow cytometer for mHealth.

    Science.gov (United States)

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2015-01-01

    Flow cytometry is used for cell counting and analysis in numerous clinical and environmental applications. However flow cytometry is not used in mHealth mainly because current flow cytometers are large, expensive, power-intensive devices designed to operate in a laboratory. Their design results in a lack of portability and makes them unsuitable for mHealth applications. Another limitation of current technology is the low volumetric throughput rates that are not suitable for rapid detection of rare cells.To address these limitations, we describe here a novel, low-cost, mobile flow cytometer based on wide-field imaging with a webcam for large volume and high throughput fluorescence detection of rare cells as a simulation for circulating tumor cells (CTCs) detection. The mobile flow cytometer uses a commercially available webcam capable of 187 frames per second video capture at a resolution of 320 × 240 pixels. For fluorescence detection, a 1 W 450 nm blue laser is used for excitation of Syto-9 fluorescently stained cells detected at 535 nm. A wide-field flow cell was developed for large volume analysis that allows for the linear velocity of target cells to be lower than in conventional hydrodynamic focusing flow cells typically used in cytometry. The mobile flow cytometer was found to be capable of detecting low concentrations at flow rates of 500 μL/min, suitable for rare cell detection in large volumes. The simplicity and low cost of this device suggests that it may have a potential clinical use for mHealth flow cytometry for resource-poor settings associated with global health.

  10. Imaging flow cytometer using computation and spatially coded filter

    Science.gov (United States)

    Han, Yuanyuan; Lo, Yu-Hwa

    2016-03-01

    Flow cytometry analyzes multiple physical characteristics of a large population of single cells as cells flow in a fluid stream through an excitation light beam. Flow cytometers measure fluorescence and light scattering from which information about the biological and physical properties of individual cells are obtained. Although flow cytometers have massive statistical power due to their single cell resolution and high throughput, they produce no information about cell morphology or spatial resolution offered by microscopy, which is a much wanted feature missing in almost all flow cytometers. In this paper, we invent a method of spatial-temporal transformation to provide flow cytometers with cell imaging capabilities. The method uses mathematical algorithms and a specially designed spatial filter as the only hardware needed to give flow cytometers imaging capabilities. Instead of CCDs or any megapixel cameras found in any imaging systems, we obtain high quality image of fast moving cells in a flow cytometer using photomultiplier tube (PMT) detectors, thus obtaining high throughput in manners fully compatible with existing cytometers. In fact our approach can be applied to retrofit traditional flow cytometers to become imaging flow cytometers at a minimum cost. To prove the concept, we demonstrate cell imaging for cells travelling at a velocity of 0.2 m/s in a microfluidic channel, corresponding to a throughput of approximately 1,000 cells per second.

  11. The modified FACS calcein AM retention assay: A high throughput flow cytometer based method to measure cytotoxicity.

    Science.gov (United States)

    Gillissen, M A; Yasuda, E; de Jong, G; Levie, S E; Go, D; Spits, H; van Helden, P M; Hazenberg, M D

    2016-07-01

    Current methods to determine cellular cytotoxicity in vitro are hampered by background signals that are caused by auto-fluorescent target and effector cells and by non-specific cell death. We combined and adjusted existing cell viability assays to develop a method that allows for highly reproducible, accurate, single cell analysis by high throughput FACS, in which non-specific cell death is corrected for. In this assay the number of living, calcein AM labeled cells that are green fluorescent are quantified by adding a fixed number of unlabeled calibration beads to the analysis. Using this modified FACS calcein AM retention method, we found EC50 values to be highly reproducible and considerably lower compared to EC50 values obtained by conventional assays, displaying the high sensitivity of this assay.

  12. Flow cytometer acquisition and detection system

    Energy Technology Data Exchange (ETDEWEB)

    Casstevens, Martin K.; Burzynski, Ryszard; Weibel, John; Kachynski, Alexander

    2010-05-04

    A flow cytometer has a flow cell through which a sample flows and at least one laser emitting an excitation beam for illuminating a corresponding interrogation region in the flow cell. Scattered and fluorescence light from each interrogation region is collected by one or more input fibers for that region, and the input fiber(s) are fed to a dispersion module for that interrogation region that disperses the incoming light into different spectral regions. The dispersed light is conveyed, such as by a plurality of output fibers, to one or more photosensitive detectors. Thus, time multiplexed light signals may be delivered to a detector whereby several unique light signals can be measured by a single detector.

  13. A parallel microfluidic flow cytometer for high-content screening.

    Science.gov (United States)

    McKenna, Brian K; Evans, James G; Cheung, Man Ching; Ehrlich, Daniel J

    2011-05-01

    A parallel microfluidic cytometer (PMC) uses a high-speed scanning photomultiplier-based detector to combine low-pixel-count, one-dimensional imaging with flow cytometry. The 384 parallel flow channels of the PMC decouple count rate from signal-to-noise ratio. Using six-pixel one-dimensional images, we investigated protein localization in a yeast model for human protein misfolding diseases and demonstrated the feasibility of a nuclear-translocation assay in Chinese hamster ovary (CHO) cells expressing an NFκB-EGFP reporter.

  14. Microfluidic MEMS hand-held flow cytometer

    Science.gov (United States)

    Grafton, Meggie M. G.; Maleki, Teimour; Zordan, Michael D.; Reece, Lisa M.; Byrnes, Ron; Jones, Alan; Todd, Paul; Leary, James F.

    2011-02-01

    Due to a number of recent technological advances, a hand-held flow cytometer can be achieved by use of semiconductor illuminators, optical sensors (all battery powered) and sensitive cell markers such as immuno-quantum dot (Qdot) labels. The specific application described is of a handheld blood analyzer that can quickly process a drop of whole, unfractionated human peripheral blood by real-time, on-chip magnetic separation of white blood cells (WBCs) and red blood cells (RBCs) and further fluorescence analysis of Qdot labeled WBC subsets. Various microfluidic patterns were fabricated in PDMS and used to characterize flow of single cells and magnetic deflection of magnetically labeled cells. An LED excitation, avalanche photodiode detection system (SensL Technologies, Ltd., Cork, Ireland) was used for immuno-Qdot detection of WBC subsets. A static optical setup was used to determine the sensitivity of the detection system. In this work we demonstrate: valve-less, on-chip magnetic sorting of immunomagnetically labeled white blood cells, bright Qdot labeling of lymphocytes, and counting of labeled white blood cells. Comparisons of these results with conventional flow cytometric analyses are reported. Sample preparation efficiency was determined by labeling of isolated white blood cells. Appropriate flow rates were determined for optical detection and confirmed with flowing particles. Several enabling technologies required for a truly portable, battery powered, hand-held flow cytometer for use in future point-of-care diagnostic devices have been demonstrated. The combining of these technologies into an integrated handheld instrument is in progress and results on whole blood cell analysis are to be reported in another paper.

  15. Imaging Cells in Flow Cytometer Using Spatial-Temporal Transformation.

    Science.gov (United States)

    Han, Yuanyuan; Lo, Yu-Hwa

    2015-08-18

    Flow cytometers measure fluorescence and light scattering and analyze multiple physical characteristics of a large population of single cells as cells flow in a fluid stream through an excitation light beam. Although flow cytometers have massive statistical power due to their single cell resolution and high throughput, they produce no information about cell morphology or spatial resolution offered by microscopy, which is a much wanted feature missing in almost all flow cytometers. In this paper, we invent a method of spatial-temporal transformation to provide flow cytometers with cell imaging capabilities. The method uses mathematical algorithms and a spatial filter as the only hardware needed to give flow cytometers imaging capabilities. Instead of CCDs or any megapixel cameras found in any imaging systems, we obtain high quality image of fast moving cells in a flow cytometer using PMT detectors, thus obtaining high throughput in manners fully compatible with existing cytometers. To prove the concept, we demonstrate cell imaging for cells travelling at a velocity of 0.2 m/s in a microfluidic channel, corresponding to a throughput of approximately 1,000 cells per second.

  16. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay using bench top flow cytometer for evaluation of sperm DNA fragmentation in fertility laboratories: protocol, reference values, and quality control.

    Science.gov (United States)

    Sharma, Rakesh; Ahmad, Gulfam; Esteves, Sandro C; Agarwal, Ashok

    2016-02-01

    The purpose of this study is to provide a detailed protocol and quality control steps for measuring sperm DNA fragmentation (SDF) by terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) assay using a new bench top flow cytometer, determine the reference value of SDF, and assess sensitivity, specificity, and distribution of SDF in infertile men and controls with proven and unproven fertility. Semen specimens from 95 controls and 261 infertile men referred to a male infertility testing laboratory were tested for SDF by TUNEL assay using Apo-Direct kit and a bench top flow cytometer. Percentage of cells positive for TUNEL was calculated. Inter- and intraobserver variability was examined. TUNEL cutoff value, sensitivity, specificity, and distribution of different cutoff values in controls and infertile patients were calculated. The reference value of SDF by TUNEL assay was 16.8 % with a specificity of 91.6 % and sensitivity of 32.6 %. The positive and negative predictive values were 91.4 and 33.1 %, respectively. The upper limit of DNA damage in infertile men was significantly higher (68.9 %) than that in the controls (19.6 %). TUNEL assay using flow cytometry is a reproducible and easy method to determine SDF. At a cutoff point of 16.8 %, the test showed high specificity and positive predictive value. The results of this test could identify infertile men whose sperm DNA fragmentation does not contribute to their infertility and confirm that a man who tests positive is likely to be infertile due to elevated sperm DNA fragmentation.

  17. Analytical performance of an ultrasonic particle focusing flow cytometer.

    Science.gov (United States)

    Goddard, Gregory R; Sanders, Claire K; Martin, John C; Kaduchak, Gregory; Graves, Steven W

    2007-11-15

    Creation of inexpensive small-flow cytometers is important for applications ranging from disease diagnosis in resource-poor areas to use in distributed sensor networks. In conventional-flow cytometers, hydrodynamics focus particles to the center of a flow stream for analysis, which requires sheath fluid that increases consumable use and waste while dramatically reducing instrument portability. Here we have evaluated, using quantitative measurements of fluorescent microspheres and cells, the performance of a flow cytometer that uses acoustic energy to focus particles to the center of a flow stream. This evaluation demonstrated measurement precision for fluorescence and side scatter CVs for alignment microspheres of 2.54% and 7.7%, respectively. Particles bearing 7 x 10(3) fluorophores were well resolved in a background of 50 nM free fluorophore. The lower limit of detection was determined to be about 650 fluorescein molecules. Analysis of Chinese hamster cells on the system demonstrated that acoustic focusing had no effect on cellular viability. These results indicate that the ultrasonic flow cytometer has the necessary performance for most flow cytometry applications. Furthermore, through robust engineering approaches and the combination of acoustic focusing with low-cost light sources, detectors, and data acquisition systems, it will be possible to achieve a low-cost, truly portable flow cytometer.

  18. Bead-based immunoassays using a micro-chip flow cytometer.

    Science.gov (United States)

    Holmes, David; She, Joseph K; Roach, Peter L; Morgan, Hywel

    2007-08-01

    A microfabricated flow cytometer has been developed for the analysis of micron-sized polymer beads onto which fluorescently labelled proteins have been immobilised. Fluorescence measurements were made on the beads as they flowed through the chip. Binding of antibodies to surface-immobilised antigens was quantitatively assayed using the device. Particles were focused through a detection zone in the centre of the flow channel using negative dielectrophoresis. Impedance measurements of the particles (at 703 kHz) were used to determine particle size and to trigger capture of the fluorescence signal. Antibody binding was measured by fluorescence at single and dual excitation wavelengths (532 nm and 633 nm). Fluorescence compensation techniques were implemented to correct for spectral overspill between optical detection channels. The data from the microfabricated flow cytometer was shown to be comparable to that of a commercial flow cytometer (BD-FACSAria).

  19. White blood cell differentiation using a solid state flow cytometer

    OpenAIRE

    Doornbos, R.M.P.; Hennink, E J; Putman, C.A.J.; Grooth, de, Bart G.; Greve, Jan

    1993-01-01

    A flow cytometer using a solid state light source and detector was designed and built. For illumination of the sample stream two types of diode lasers (670 nm and 780 nm) were tested in a set-up designed to differentiate human leukocytes by means of light scattering. The detector is an avalanche photodiode, which was used to detect the weak scattered light in the orthogonal direction. The new flow cytometer set-up is very small, relatively cheap and yields similar results as a standard flow c...

  20. Review Article: Recent advancements in optofluidic flow cytometer.

    Science.gov (United States)

    Cho, Sung Hwan; Godin, Jessica M; Chen, Chun-Hao; Qiao, Wen; Lee, Hosuk; Lo, Yu-Hwa

    2010-12-30

    There is an increasing need to develop optofluidic flow cytometers. Optofluidics, where optics and microfluidics work together to create novel functionalities on a small chip, holds great promise for lab-on-a-chip flow cytometry. The development of a low-cost, compact, handheld flow cytometer and microfluorescence-activated cell sorter system could have a significant impact on the field of point-of-care diagnostics, improving health care in, for example, underserved areas of Africa and Asia, that struggle with epidemics such as HIV∕AIDS. In this paper, we review recent advancements in microfluidics, on-chip optics, novel detection architectures, and integrated sorting mechanisms.

  1. Two-color, double-slit in vivo flow cytometer.

    Science.gov (United States)

    Novak, J; Puoris'haag, M

    2007-10-15

    The in vivo flow cytometer enables the real-time detection and quantification of fluorescent cells circulating within a live animal without the need for incisions or extraction of blood. It has been used in demonstrating flow velocity disparities in biological flows, and in the investigation of the circulation kinetics of various types of cells. However, a shortcoming of this in vivo flow cytometer is that it provides only one excitation slit at one wavelength, resulting in several performance limitations. Therefore, a second in vivo flow cytometer that provides two different laser wavelengths, 473 and 633 nm, and one or two excitation slits has been designed and built. Thus far, the two-color system has been used to acquire circulation kinetics data of two different cell populations each labeled with a different marker, one cell population labeled with two different markers, and one cell population expressing the green-fluorescent protein gene. In addition, accurate arterial red blood cell velocities within a mouse have been determined using the cytometer.

  2. Quantitative interferometric microscopy cytometer based on regularized optical flow algorithm

    Science.gov (United States)

    Xue, Liang; Vargas, Javier; Wang, Shouyu; Li, Zhenhua; Liu, Fei

    2015-09-01

    Cell detections and analysis are important in various fields, such as medical observations and disease diagnoses. In order to analyze the cell parameters as well as observe the samples directly, in this paper, we present an improved quantitative interferometric microscopy cytometer, which can monitor the quantitative phase distributions of bio-samples and realize cellular parameter statistics. The proposed system is able to recover the phase imaging of biological samples in the expanded field of view via a regularized optical flow demodulation algorithm. This algorithm reconstructs the phase distribution with high accuracy with only two interferograms acquired at different time points simplifying the scanning system. Additionally, the method is totally automatic, and therefore it is convenient for establishing a quantitative phase cytometer. Moreover, the phase retrieval approach is robust against noise and background. Excitingly, red blood cells are readily investigated with the quantitative interferometric microscopy cytometer system.

  3. White blood cell differentiation using a solid state flow cytometer

    NARCIS (Netherlands)

    Doornbos, R.M.P.; Hennink, E.J.; Putman, C.A.J.; Grooth, de Bart G.; Greve, Jan

    1993-01-01

    A flow cytometer using a solid state light source and detector was designed and built. For illumination of the sample stream two types of diode lasers (670 nm and 780 nm) were tested in a set-up designed to differentiate human leukocytes by means of light scattering. The detector is an avalanche pho

  4. Two-photon flow cytometer with laser scanning Bessel beams

    Science.gov (United States)

    Wang, Yongdong; Ding, Yu; Ray, Supriyo; Paez, Aurelio; Xiao, Chuan; Li, Chunqiang

    2016-03-01

    Flow cytometry is an important technique in biomedical discovery for cell counting, cell sorting and biomarker detection. In vivo flow cytometers, based on one-photon or two-photon excited fluorescence, have been developed for more than a decade. One drawback of laser beam scanning two-photon flow cytometer is that the two-photon excitation volume is fairly small due to the short Rayleigh range of a focused Gaussian beam. Hence, the sampling volume is much smaller than one-photon flow cytometry, which makes it challenging to count or detect rare circulating cells in vivo. Bessel beams have narrow intensity profiles with an effective spot size (FWHM) as small as several wavelengths, making them comparable to Gaussian beams. More significantly, the theoretical depth of field (propagation distance without diffraction) can be infinite, making it an ideal solution as a light source for scanning beam flow cytometry. The trade-off of using Bessel beams rather than a Gaussian beam is the fact that Bessel beams have small concentric side rings that contribute to background noise. Two-photon excitation can reduce this noise, as the excitation efficiency is proportional to intensity squared. Therefore, we developed a two-photon flow cytometer using scanned Bessel beams to form a light sheet that intersects the micro fluidic channel.

  5. Medical and Scientific Evaluations aboard the KC-135. Microgravity-Compatible Flow Cytometer

    Science.gov (United States)

    Crucian, Brian; Nelman-Gonzalez, Mayra; Sams, Clarence

    2005-01-01

    . This instrument also possesses a number of design advances that make it conditionally microgravity compatible: it is highly miniaturized and lightweight, uses a low energy diode laser, has a small number of moving parts, does not use sheath fluid and does not generate significant liquid waste. Although possessing certain limitations, the commercial cytometer functions operationally like a standard bench top laboratory flow cytometer, aspirating liquid particle samples and generating histogram or dot-plot data in standard FCS file format. In its current configuration however, the cytometer is limited to three parameter/two-color capability (two color PMTs + forward scatter), does not allow compensation between colors, does not allow linear analysis and is operated by rather inflexible software with limited capabilities. This is due to the fact that the cytometer has been designed and marketed as an instrument specific to a few particular assays, not as a multipurpose cytometer.

  6. A flow cytometer for the measurement of Raman spectra.

    Science.gov (United States)

    Watson, Dakota A; Brown, Leif O; Gaskill, Daniel F; Naivar, Mark; Graves, Steven W; Doorn, Stephen K; Nolan, John P

    2008-02-01

    Multiparameter measurements in flow cytometry are limited by the broad emission spectra of fluorescent labels. By contrast, Raman spectra are notable for their narrow spectral features. To increase the multiparameter analysis capabilities of flow cytometry, we investigated the possibility of measuring Raman signals in a flow cytometry-based system. We constructed a Raman Spectral Flow Cytometer, substituting a spectrograph and CCD detector for the traditional mirrors, optical filters, and photomultiplier tubes. Excitation at 633 nm was provided by a HeNe laser, and forward-angle light scatter is used to trigger acquisition of complete spectra from individual particles. Microspheres were labeled with nanoparticle surface enhanced Raman scattering (SERS) tags and measured using the RSFC. Fluorescence and Raman spectra from labeled microspheres were acquired using the Raman Spectral Flow Cytometer. SERS spectral intensities were dependent on integration time, laser power, and detector pixel binning. Spectra from particles labeled with one each of four different SERS tags could be distinguished by either a virtual bandpass approach using commercial flow cytometry data analysis software or by principal component analysis. Raman flow cytometry opens up new possibilities for highly multiparameter and multiplexed measurements of cells and other particles using a simple optical design and a single detector and light source.

  7. Flow cytometer based on triggered supercontinuum laser illumination.

    Science.gov (United States)

    Rongeat, Nelly; Leproux, Philippe; Couderc, Vincent; Brunel, Patrick; Ledroit, Sylvain; Cremien, Didier; Hilaire, Stéphane; Huss, Guillaume; Nérin, Philippe

    2012-07-01

    Multiple wavelength operation in a flow cytometer is an exciting way for cell analysis based on both fluorescence and optical scattering processing. For example, this multiparametric technique is currently used to differentiate blood cells subpopulations. The choice of excitation wavelengths matching fluorochrome spectra (it is currently the opposite) and the use of a broader range of fluorochromes can be made by taking advantage of a filtered supercontinuum white light source. In this study, we first wished to validate the use of a specific triggered supercontinuum laser in a flow cytometer based on white light scattering and electric sizing on human blood cells. Subsequently, to show the various advantages of this attractive system, using scattering effect, electrical detections, and fluorescence analysis, we realized cells sorting based on DNA/RNA stained by thiazole orange. Discrimination of white blood cells is efficiently demonstrated by using a triggered supercontinuum-based flow cytometer operating in a "one cell-one shot" configuration. The discriminated leukocyte populations are monocytes, lymphocytes, granulocytes, immature granulocytes, and cells having a high RNA content (monoblasts, lymphoblasts, and plasma cells). To the best of our knowledge, these results constitute the first practical demonstration of flow cytometry based on triggered supercontinuum illumination. This study is the starting point of a series of new experiments fully exploiting the spectral features of such a laser source. For example, the large flexibility in the choice of the excitation wavelength allows to use a larger number of fluorochromes and to excite them more efficiently. Moreover, this work opens up new research directions in the biophotonics field, such as the combination of coherent Raman spectroscopy and flow cytometry techniques.

  8. Optimization of the Mini-Flo flow cytometer

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesh, M.

    1996-06-01

    A new method of collecting light scattering from a liquid flow cytometer has been proposed; this apparatus is named the Mini-Flo flow cytometer. The Mini-Flo uses a high numerical aperture collection immersed in the flow stream. The collector consists of a conically tipped fiber optic pipe and terminating optical detector. This study was performed to improve the signal/noise ration and optimize the Mini-Flo`s performance for HIV blood detection applications. Experiments were performed to gauge the effects of Raman scattering, lens/filter fluorescence, and fiber optic fluorescence on the Mini-Flo`s performance and signal/noise ratio. Results indicated that the fiber optic was a major source of fluorescence noise and reducing its length from 33 cm to 10 cm increased the signal noise ratio from 8 to 75. Therefore, one of the key issues in optimizing the Mini-Flo`s performance is a redesign of the holding structure such that the fiber optic length is minimized. Further improvements of the Mini-Flo`s performance can be achieved by studying the polish of the fiber optic, the flow over the fiber optics`s conical tip, and the optimal particle rates.

  9. Microfluidic flow cytometer for quantifying photobleaching of fluorescent proteins in cells.

    Science.gov (United States)

    Lubbeck, Jennifer L; Dean, Kevin M; Ma, Hairong; Palmer, Amy E; Jimenez, Ralph

    2012-05-01

    Traditional flow cytometers are capable of rapid cellular assays on the basis of fluorescence intensity and light scatter. Microfluidic flow cytometers have largely followed the same path of technological development as their traditional counterparts; however, the significantly smaller transport distance and resulting lower cell speeds in microchannels provides for the opportunity to detect novel spectroscopic signatures based on multiple, nontemporally coincident excitation beams. Here, we characterize the design and operation of a cytometer with a three-beam, probe/bleach/probe geometry, employing HeLa suspension cells expressing fluorescent proteins. The data collection rate exceeds 20 cells/s under a range of beam intensities (5 kW to 179 kW/cm(2)). The measured percent photobleaching (ratio of fluorescence intensities excited by the first and third beams: S(beam3)/S(beam1)) partially resolves a mixture of four red fluorescent proteins in mixed samples. Photokinetic simulations are presented and demonstrate that the percent photobleaching reflects a combination of the reversible and irreversible photobleaching kinetics. By introducing a photobleaching optical signature, which complements traditional fluorescence intensity-based detection, this method adds another dimension to multichannel fluorescence cytometry and provides a means for flow-cytometry-based screening of directed libraries of fluorescent protein photobleaching.

  10. Single-cell tracking with a reversing flow cytometer.

    Science.gov (United States)

    Sitton, Greg; Srienc, Friedrich

    2011-01-01

    We have developed an instrument based on a flow cytometer platform that is capable of tracking individual, suspended cells over extended time periods. The instrument repeatedly moves in a capillary the same volume segment of fluid containing tens to hundreds of suspended cells through the focal point of a laser. Individual cells are then tracked based on the timing of when they cross the laser, and cell properties are measured as in a conventional flow cytometer. Because cells are repeatedly measured the single-cell rates of change can be determined. The developed instrumentation was applied to measure the variability of ABC transporter activity in a population of human cancer cells and the temperature dependence of constitutively expressed Gfp in yeast. A wide range of transport rates can be observed in the cancer cell population while the single-cell Gfp fluorescence in yeast shows pronounced oscillations in response to temperature shifts. These observations are not detectable at the population level. Therefore, such measurements are useful for investigating cell function as they reveal how variable properties of single cells change over time.

  11. A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence.

    Science.gov (United States)

    Joo, Segyeong; Kim, Kee Hyun; Kim, Hee Chan; Chung, Taek Dong

    2010-02-15

    A portable microfluidic flow cytometer with dual detection ability of impedance and fluorescence was developed for cell analysis and particle-based assays. In the proposed system, fluorescence from microparticles and cells is measured through excitation by a light emitting diode (LED) and detection by a solid-stated photomultiplier (SSPM). Simultaneous impedometric detection provides information on the existence and size of microparticles and cells through polyelectrolyte gel electrodes (PGEs) operated by custom designed circuits for signal detection, amplification, and conversion. Fluorescence and impedance signals were sampled at 1 kHz with 12 bit resolution. The resulting microfluidic cytometer is 15x10x10 cm(3) in width, depth, and height, with a weight of about 800 g. Such a miniaturized and battery powered system yielded a portable microfluidic cytometer with high performance. Various microbeads and human embryonic kidney 293 (HEK-293) cells were employed to evaluate the system. Impedance and fluorescence signals from each bead or cell made classification of micro particles or cells easy and fast.

  12. Multi-wavelength microflow cytometer using groove-generated sheath flow.

    Science.gov (United States)

    Golden, Joel P; Kim, Jason S; Erickson, Jeffrey S; Hilliard, Lisa R; Howell, Peter B; Anderson, George P; Nasir, Mansoor; Ligler, Frances S

    2009-07-07

    A microflow cytometer was developed that ensheathed the sample (core) fluid on all sides and interrogated each particle in the sample stream at four different wavelengths. Sheathing was achieved by first sandwiching the core fluid with the sheath fluid laterally via fluid focusing. Chevron-shaped groove features fabricated in the top and bottom of the channel directed sheath fluid from the sides to the top and bottom of the channel, completely surrounding the sample stream. Optical fibers inserted into guide channels provided excitation light from diode lasers at 532 and 635 nm and collected the emission wavelengths. Two emission collection fibers were connected to PMTs through a multimode fiber splitter and optical filters for detection at 635 nm (scatter), 665 nm and 700 nm (microsphere identification) and 565 nm (phycoerythrin tracer). The cytometer was capable of discriminating microspheres with different amounts of the fluorophores used for coding and detecting the presence of a phycoerythrin antibody complex on the surface of the microspheres. Assays for Escherichia coli were compared with a commercial Luminex flow cytometer.

  13. Studying tumor metastasis by in vivo imaging and flow cytometer

    Science.gov (United States)

    Wei, Xunbin; Guo, Jin; Liu, Guangda; Li, Yan; Chen, Yun; Zhang, Li; Tan, Yuan; Chen, Tong; Gu, Zhenqin; Wang, Chen

    2009-02-01

    Liver cancer is one of the most common malignancies in the world, with approximately 1,000,000 cases reported every year. This ranges from 15,000 cases in the United States to more than a 250,000 in China. About 80% of people with primary liver cancer are male. Although two-thirds of people have advanced liver disease when they seek medical help, one third of the patients have cancer that has not progressed beyond the liver. Primary liver cancer (hepatocellular carcinoma, or HCC) is associated with liver cirrhosis 60-80% of the time. HCC may metastasize to the lung, bones, kidney, and many other organs. Surgical resection, liver transplantation, chemotherapy and radiation therapy are the foundation of current HCC therapies. However the outcomes are poor-the survival rate is almost zero for metastatic HCC patients. Molecular mechanisms of HCC metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of HCC cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern liver tumor cell spread through the microenvironment in vivo in real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess liver tumor cell spreading and the circulation kinetics of liver tumor cells. A real-time quantitative monitoring of circulating liver tumor cells by the in vivo flow cytometer will be useful to assess the effectiveness of the potential therapeutic interventions.

  14. Micro flow cytometer with 3D hydrodynamic focusing

    Science.gov (United States)

    Testa, Genni; Bernini, Romeo

    2012-01-01

    This paper reports a micro flow cytometer fabricated in Polymethylmethacrylate (PMMA) in which a 3d hydrodynamic flow focusing is employed in order to align the particles in a single line along the focused stream. The device has been fabricated by direct micro milling of two parts of PMMA that were finally bonded together. With a suitable choice of the fluidic channel geometry, a circular sample stream located in the center of the channel is obtained. Numerical simulations have been performed in order to investigate the flow characteristic of the structure and find the desiderated geometry. Three dimensional hydrofocusing of the sample fluid was analysed and demonstrated by cross sectional fluorescence imaging in good agreement with numerical simulations. Flow cytometry measurements have been performed by using 10μm particles. From the analysis of the fluorescence signals collected at each transit event we can confirm that the device was capable of creating a single-file particle stream. The results show that the device was capable of discriminating single microparticles with a good signal-to-noise ratio and a high throughput.

  15. Automation of semen analysis using flow cytometer in comparison with manual methods.

    Science.gov (United States)

    Saleh, Mohamed; Fathy, Amal; El-Akras, Atef I; Eyada, Mostafa M; Younes, Soha; El-Gohary, Ahmed M

    2005-01-01

    In order to standardize techniques and limit the effect of human factors on the results of analyses of biological fluids, automation seems to be mandatory. In an attempt to automate semen analysis, computer assisted sperm analysis (CASA) system has been developed, however its use is still limited and its practical applications have many criticisms. In a trial to automate semen analysis, this study aimed to evaluate the usefulness of flow cytometer in the detection of some seminal parameters in comparison with the traditional manual methods. Isolated spermatogenic cells and isolated sperms from semen and EDTA blood of volunteers were analyzed by flow cytometer in order to define their respective regions. Ejaculates of 28 male patients were subjected to routine semen analyses, leucocytes detection by peroxidase test and monoclonal antibody CD53 using flow cytometer after preparation of the patients' semen samples for flow cytometeric analysis. A highly significant correlation (r=0.96, p= 0.001) of absolute neutrophils (pus cells) detected by peroxidase versus flow cytometer using CD53 monoclonal antibody. A poor correlation (r=0.39, p=0.035) of sperm counts assessed by manual technique and flow cytometer and a spurious sperm counts of 1.08 million/ml detected by flow cytometery in azoospermic patients. Flow cytometer could be used for the assessment of pus cells in semen but seems to be non reliable for the assessment of sperm count if gating depend on sperm size and granularity alone.

  16. Time encoded multicolor fluorescence detection in a microfluidic flow cytometer.

    Science.gov (United States)

    Martini, Joerg; Recht, Michael I; Huck, Malte; Bern, Marshall W; Johnson, Noble M; Kiesel, Peter

    2012-12-07

    We describe an optical detection technique that delivers high signal-to-noise discrimination to enable a multi-parameter flow cytometer that combines high performance, robustness, compactness and low cost. The enabling technique is termed "spatially modulated detection" and generates a time-dependent signal as a continuously fluorescing (bio-) particle traverses an optical transmission pattern along the fluidic channel. Correlating the detected signal with the expected transmission pattern achieves high discrimination of the particle signal from background noise. Additionally, the particle speed and its fluorescence emission characteristics are deduced from the correlation analysis. Our method uses a large excitation/emission volume along the fluidic channel in order to increase the total flux of fluorescence light that originates from a particle while requiring minimal optical alignment. Despite the large excitation/detection volume, the mask pattern enables a high spatial resolution in the micron range. This allows for detection and characterization of particles with a separation (in flow direction) comparable to the dimension of individual particles. In addition, the concept is intrinsically tolerant of non-encoded background fluorescence originating from fluorescent components in solution, fluorescing components of the chamber and contaminants on its surface. The optical detection technique is illustrated with experimental results of multicolor detection with a single large area detector by filtering fluorescence emission of different particles through a patterned color mask. Thereby the particles' fluorescence emission spectrum is encoded in a time dependent intensity signal and color information can be extracted from the correlation analysis. The multicolor detection technique is demonstrated by differentiation of micro-beads loaded with PE (Phycoerythrin) and PE-Cy5 that are excited at 532 nm.

  17. Soluble Protein Analysis using a Compact Bench-top Flow Cytometer

    Science.gov (United States)

    Pappas, Dimitri; Kao, Shib-Hsin; Cyr, Johnathan

    2004-01-01

    Future space exploration missions will require analytical technology capable of providing both autonomous medical care to the crew and investigative capabilities to researchers. While several promising candidate technologies exist for further development, flow cytometry is an attractive technology as it offers both crew health (blood cell count, leukocyte differential, etc.) and a wide array of biochemistry and immunology assays. research settings, the application of this technique to soluble protein analysis is also possible. Proteomic beads using fluorescent dyes for optical encoding were used to monitor six cytokines simultaneously in cell medium of cell cultures in stationary and rotating cell culture systems. The results of this work demonstrate that a compact flow cytometer, such as a system proposed for space flight, can detect a variety of soluble proteins for crew health and biotechnology experiments during long-term missions.

  18. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer

    Directory of Open Access Journals (Sweden)

    Vendula Pospichalova

    2015-03-01

    Full Text Available Flow cytometry is a powerful method, which is widely used for high-throughput quantitative and qualitative analysis of cells. However, its straightforward applicability for extracellular vesicles (EVs and mainly exosomes is hampered by several challenges, reflecting mostly the small size of these vesicles (exosomes: ~80–200 nm, microvesicles: ~200–1,000 nm, their polydispersity, and low refractive index. The current best and most widely used protocol for beads-free flow cytometry of exosomes uses ultracentrifugation (UC coupled with floatation in sucrose gradient for their isolation, labeling with lipophilic dye PKH67 and antibodies, and an optimized version of commercial high-end cytometer for analysis. However, this approach requires an experienced flow cytometer operator capable of manual hardware adjustments and calibration of the cytometer. Here, we provide a novel and fast approach for quantification and characterization of both exosomes and microvesicles isolated from cell culture media as well as from more complex human samples (ascites of ovarian cancer patients suitable for multiuser labs by using a flow cytometer especially designed for small particles, which can be used without adjustments prior to data acquisition. EVs can be fluorescently labeled with protein-(Carboxyfluoresceinsuccinimidyl ester, CFSE and/or lipid- (FM specific dyes, without the necessity of removing the unbound fluorescent dye by UC, which further facilitates and speeds up the characterization of microvesicles and exosomes using flow cytometry. In addition, double labeling with protein- and lipid-specific dyes enables separation of EVs from common contaminants of EV preparations, such as protein aggregates or micelles formed by unbound lipophilic styryl dyes, thus not leading to overestimation of EV numbers. Moreover, our protocol is compatible with antibody labeling using fluorescently conjugated primary antibodies. The presented methodology opens the

  19. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer.

    Science.gov (United States)

    Pospichalova, Vendula; Svoboda, Jan; Dave, Zankruti; Kotrbova, Anna; Kaiser, Karol; Klemova, Dobromila; Ilkovics, Ladislav; Hampl, Ales; Crha, Igor; Jandakova, Eva; Minar, Lubos; Weinberger, Vit; Bryja, Vitezslav

    2015-01-01

    Flow cytometry is a powerful method, which is widely used for high-throughput quantitative and qualitative analysis of cells. However, its straightforward applicability for extracellular vesicles (EVs) and mainly exosomes is hampered by several challenges, reflecting mostly the small size of these vesicles (exosomes: ~80-200 nm, microvesicles: ~200-1,000 nm), their polydispersity, and low refractive index. The current best and most widely used protocol for beads-free flow cytometry of exosomes uses ultracentrifugation (UC) coupled with floatation in sucrose gradient for their isolation, labeling with lipophilic dye PKH67 and antibodies, and an optimized version of commercial high-end cytometer for analysis. However, this approach requires an experienced flow cytometer operator capable of manual hardware adjustments and calibration of the cytometer. Here, we provide a novel and fast approach for quantification and characterization of both exosomes and microvesicles isolated from cell culture media as well as from more complex human samples (ascites of ovarian cancer patients) suitable for multiuser labs by using a flow cytometer especially designed for small particles, which can be used without adjustments prior to data acquisition. EVs can be fluorescently labeled with protein-(Carboxyfluoresceinsuccinimidyl ester, CFSE) and/or lipid- (FM) specific dyes, without the necessity of removing the unbound fluorescent dye by UC, which further facilitates and speeds up the characterization of microvesicles and exosomes using flow cytometry. In addition, double labeling with protein- and lipid-specific dyes enables separation of EVs from common contaminants of EV preparations, such as protein aggregates or micelles formed by unbound lipophilic styryl dyes, thus not leading to overestimation of EV numbers. Moreover, our protocol is compatible with antibody labeling using fluorescently conjugated primary antibodies. The presented methodology opens the possibility for routine

  20. A Multiwavelength Microflow Cytometer

    Science.gov (United States)

    2009-01-01

    cytometers are required to perform medical diagnostics, such as white blood cell counts and immunoassays to detect infection, or for environ- mental...microfluidic sheath flow system that is robust, simple to fabricate, and very compact. This sheath flow device forms the basis of a microflow...Our initial 6- plex assay demonstrated limits of detection highly comparable to those obtained using a commercial laboratory system with the same

  1. Microchip Flow Cytometer with Integrated Polymer Optical Elements for Measurement of Scattered Light

    DEFF Research Database (Denmark)

    Wang, Zhenyu; El-Ali, Jamil; Perch-Nielsen, Ivan Ryberg

    2004-01-01

    channels to form a complete microchip flow cytometer. All the optical elements, the microfluidic system, and the fiber-to-waveguide couplers were defined in one layer of polymer (SU-8, negative photoresist) by standard photolithography. With only one single mask procedure, all the fabrication and packaging...... processes can be finished in one day. Polystyrene beads were measured in the microchip flow cytometer, and three signals (forward scattering, large angle scattering and extinction) were measured simultaneously for each bead. The average intensities of the forward Scattered light and the incident light...

  2. Simplified Monolithic Flow Cytometer Chip With Three-Dimensional Hydrodyanmic Focusing And Integrated Fiber-Free Optics

    DEFF Research Database (Denmark)

    Motosuke, Masahiro; Jensen, Thomas Glasdam; Zhuang, Guisheng

    2011-01-01

    A miniaturized flow cytometry incorporating both fluidic and optical systems has a great possibility for portable biochemical sensing or point-of-care diagnostics. This paper presents a simple microfluidic flow cytometer combining reliable 3D hydrodynamic focusing and optical detection without op...... to be applied as a portable platform of cytometer chip....

  3. Reconfigurable acquisition system with integrated optics for a portable flow cytometer

    Science.gov (United States)

    Kirleis, Matthew A.; Mathews, Scott A.; Verbarg, Jasenka; Erickson, Jeffrey S.; Piqué, Alberto

    2013-11-01

    Portable and inexpensive scientific instruments that are capable of performing point of care diagnostics are needed for applications such as disease detection and diagnosis in resource-poor settings, for water quality and food supply monitoring, and for biosurveillance activities in autonomous vehicles. In this paper, we describe the development of a compact flow cytometer built from three separate, customizable, and interchangeable modules. The instrument as configured in this work is being developed specifically for the detection of selected Centers for Disease Control (CDC) category B biothreat agents through a bead-based assay: E. coli O157:H7, Salmonella, Listeria, and Shigella. It has two-color excitation, three-color fluorescence and light scattering detection, embedded electronics, and capillary based flow. However, these attributes can be easily modified for other applications such as cluster of differentiation 4 (CD4) counting. Proof of concept is demonstrated through a 6-plex bead assay with the results compared to a commercially available benchtop-sized instrument.

  4. Reconfigurable acquisition system with integrated optics for a portable flow cytometer

    Energy Technology Data Exchange (ETDEWEB)

    Kirleis, Matthew A., E-mail: matthew.kirleis@nrl.navy.mil; Mathews, Scott A.; Verbarg, Jasenka; Erickson, Jeffrey S.; Piqué, Alberto [Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375 (United States)

    2013-11-15

    Portable and inexpensive scientific instruments that are capable of performing point of care diagnostics are needed for applications such as disease detection and diagnosis in resource-poor settings, for water quality and food supply monitoring, and for biosurveillance activities in autonomous vehicles. In this paper, we describe the development of a compact flow cytometer built from three separate, customizable, and interchangeable modules. The instrument as configured in this work is being developed specifically for the detection of selected Centers for Disease Control (CDC) category B biothreat agents through a bead-based assay: E. coli O157:H7, Salmonella, Listeria, and Shigella. It has two-color excitation, three-color fluorescence and light scattering detection, embedded electronics, and capillary based flow. However, these attributes can be easily modified for other applications such as cluster of differentiation 4 (CD4) counting. Proof of concept is demonstrated through a 6-plex bead assay with the results compared to a commercially available benchtop-sized instrument.

  5. Evaluation and purchase of an analytical flow cytometer: some of the numerous factors to consider.

    Science.gov (United States)

    Zucker, Robert M; Fisher, Nancy C

    2013-01-01

    When purchasing a flow cytometer, the decision of which brand, model, specifications, and accessories may be challenging. The decisions should initially be guided by the specific applications intended for the instrument. However, many other factors need to be considered, which include hardware, software, quality assurance, support, service, and price and recommendations from colleagues. These issues are discussed to help guide the purchasing process.

  6. A flow cytometer-based whole cell screening toolbox for directed hydrolase evolution through fluorescent hydrogels.

    Science.gov (United States)

    Lülsdorf, Nina; Pitzler, Christian; Biggel, Michael; Martinez, Ronny; Vojcic, Ljubica; Schwaneberg, Ulrich

    2015-05-21

    A high throughput whole cell flow cytometer screening toolbox was developed and validated by identifying improved variants (1.3-7-fold) for three hydrolases (esterase, lipase, cellulase). The screening principle is based on coupled enzymatic reaction using glucose derivatives which yield upon hydrolysis a fluorescent-hydrogel-layer on the surface of E. coli cells.

  7. Using binary optical elements (BOEs) to generate rectangular spots for illumination in micro flow cytometer

    Science.gov (United States)

    Zhao, Jingjing; You, Zheng

    2016-01-01

    This work introduces three rectangular quasi-flat-top spots, which are provided by binary optical elements (BOEs) and utilized for the illumination in a microflow cytometer. The three spots contain, respectively, one, two, and three rectangles (R1, R2, and R3). To test the performance of this mechanism, a microflow cytometer is established by integrating the BOEs and a three-dimensional hydrodynamic focusing chip. Through the experiments of detecting fluorescence microbeads, the three spots present good fluorescence coefficients of variation in comparison with those derived from commercial instruments. Benefiting from a high spatial resolution, when using R1 spot, the micro flow cytometer can perform a throughput as high as 20 000 events per second (eps). Illuminated by R2 or R3 spot, one bead emits fluorescence twice or thrice, thus the velocity can be measured in real time. Besides, the R3 spot provides a long-time exposure, which is conducive to improving fluorescence intensity and the measurement stability. In brief, using the spots shaped and homogenized by BOEs for illumination can increase the performance and the functionality of a micro flow cytometer. PMID:27733892

  8. Parallel imaging microfluidic cytometer.

    Science.gov (United States)

    Ehrlich, Daniel J; McKenna, Brian K; Evans, James G; Belkina, Anna C; Denis, Gerald V; Sherr, David H; Cheung, Man Ching

    2011-01-01

    By adding an additional degree of freedom from multichannel flow, the parallel microfluidic cytometer (PMC) combines some of the best features of fluorescence-activated flow cytometry (FCM) and microscope-based high-content screening (HCS). The PMC (i) lends itself to fast processing of large numbers of samples, (ii) adds a 1D imaging capability for intracellular localization assays (HCS), (iii) has a high rare-cell sensitivity, and (iv) has an unusual capability for time-synchronized sampling. An inability to practically handle large sample numbers has restricted applications of conventional flow cytometers and microscopes in combinatorial cell assays, network biology, and drug discovery. The PMC promises to relieve a bottleneck in these previously constrained applications. The PMC may also be a powerful tool for finding rare primary cells in the clinic. The multichannel architecture of current PMC prototypes allows 384 unique samples for a cell-based screen to be read out in ∼6-10 min, about 30 times the speed of most current FCM systems. In 1D intracellular imaging, the PMC can obtain protein localization using HCS marker strategies at many times for the sample throughput of charge-coupled device (CCD)-based microscopes or CCD-based single-channel flow cytometers. The PMC also permits the signal integration time to be varied over a larger range than is practical in conventional flow cytometers. The signal-to-noise advantages are useful, for example, in counting rare positive cells in the most difficult early stages of genome-wide screening. We review the status of parallel microfluidic cytometry and discuss some of the directions the new technology may take.

  9. Indigenous development of an imaging flow cytometer for clinical and biological applications

    Science.gov (United States)

    J, Veerendra Kalyan; Srinivasan, Rajesh; Gorthi, Sai Siva

    2014-10-01

    Flow cytometry is a benchmark technique used for basic research and clinical diagnosis of various diseases. Despite being a high-throughput technique, it fails in capturing the morphology of cells being analyzed. Imaging flow cytometry is a combination of flow-cytometry and digital microscopy, which offers advantages of both the techniques. In this paper, we report on the development of an indigenous Imaging Flow Cytometer, realized with the combination of Optics, Microfluidics, and High-speed imaging. A custom-made bright-field transmission microscope is used to capture images of cells flowing across the microfluidic device. High-throughput morphological analysis on suspension of yeast cells is presented.

  10. Simultaneous counting of two subsets of leukocytes using fluorescent silica nanoparticles in a sheathless microchip flow cytometer.

    Science.gov (United States)

    Yun, Hoyoung; Bang, Hyunwoo; Min, Junggi; Chung, Chanil; Chang, Jun Keun; Han, Dong-Chul

    2010-12-07

    A portable flow cytometer has been recognized as an important tool for many clinical applications such as HIV/AIDS screening in developing countries and regions with limited medical facilities and resources. Conventional flow cytometers typically require multiple detectors for simultaneous identification of multiple subsets of immune cell. To minimize the number of detectors toward portable flow cytometry or to analyze multi-parametric cellular information with minimum number of detectors in conventional flow cytometers, we propose a versatile multiplexed cell-counting method using functional silica nanoparticles (SiNPs). FITC-doped SiNPs, which are 100 times brighter than the FITC molecules itself, were used as new intensity-based fluorescent dye complexes to simultaneously measure two subsets of leukocytes using a single detector. CD45(+)CD4(+) cells tagged with these FITC-doped SiNPs were 50 times brighter than CD45(+)CD4(-) cells tagged only with FITC. To make the overall system compact, a disposable microchip flow cytometer that does not require sheath flow was developed. Combining these dye-doped SiNPs based detection schemes and the sheathless microchip flow cytometer scheme, we successfully identified and counted two subsets of leukocytes simultaneously (R(2) = 0.876). These approaches can be the building blocks for a truly portable and disposable flow cytometer for various clinical cytometry applications.

  11. Graphical analysis of flow cytometer data for characterizing controlled fluorescent protein display on λ phage.

    Science.gov (United States)

    Sokolenko, Stanislav; Nicastro, Jessica; Slavcev, Roderick; Aucoin, Marc G

    2012-12-01

    As native virus particles typically cannot be resolved using a flow cytometer, the general practice is to use fluorescent dyes to label the particles. In this work, an attempt was made to use a common commercial flow cytometer to characterize a phage display strategy that allows for controlled levels of protein display, in this case, eGFP. To achieve this characterization, a number of data processing steps were needed to ensure that the observed phenomena were indeed capturing differences in the phages produced. Phage display of eGFP resulted in altered side scatter and fluorescence profile, and sub-populations could be identified within what would otherwise be considered uniform populations. Surprisingly, this study has found that side scatter may be used in the future to characterize the display of nonfluorescent proteins.

  12. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.

    Science.gov (United States)

    Lin, Shiang-Chi; Yen, Pei-Wen; Peng, Chien-Chung; Tung, Yi-Chung

    2012-09-07

    Flow cytometry is a technique capable of optically characterizing biological particles in a high-throughput manner. In flow cytometry, three dimensional (3D) hydrodynamic focusing is critical for accurate and consistent measurements. Due to the advantages of microfluidic techniques, a number of microfluidic flow cytometers with 3D hydrodynamic focusing have been developed in recent decades. However, the existing devices consist of multiple layers of microfluidic channels and tedious fluidic interconnections. As a result, these devices often require complicated fabrication and professional operation. Consequently, the development of a robust and reliable microfluidic flow cytometer for practical biological applications is desired. This paper develops a microfluidic device with a single channel layer and single sheath-flow inlet capable of achieving 3D hydrodynamic focusing for flow cytometry. The sheath-flow stream is introduced perpendicular to the microfluidic channel to encircle the sample flow. In this paper, the flow fields are simulated using a computational fluidic dynamic (CFD) software, and the results show that the 3D hydrodynamic focusing can be successfully formed in the designed microfluidic device under proper flow conditions. The developed device is further characterized experimentally. First, confocal microscopy is exploited to investigate the flow fields. The resultant Z-stack confocal images show the cross-sectional view of 3D hydrodynamic with flow conditions that agree with the simulated ones. Furthermore, the flow cytometric detections of fluorescence beads are performed using the developed device with various flow rate combinations. The measurement results demonstrate that the device can achieve great detection performances, which are comparable to the conventional flow cytometer. In addition, the enumeration of fluorescence-labelled cells is also performed to show its practicality for biological applications. Consequently, the microfluidic

  13. Rapid, Precise, and Accurate Counts of Symbiodinium Cells Using the Guava Flow Cytometer, and a Comparison to Other Methods.

    Science.gov (United States)

    Krediet, Cory J; DeNofrio, Jan C; Caruso, Carlo; Burriesci, Matthew S; Cella, Kristen; Pringle, John R

    2015-01-01

    In studies of both the establishment and breakdown of cnidarian-dinoflagellate symbiosis, it is often necessary to determine the number of Symbiodinium cells relative to the quantity of host tissue. Ideally, the methods used should be rapid, precise, and accurate. In this study, we systematically evaluated methods for sample preparation and storage and the counting of algal cells using the hemocytometer, a custom image-analysis program for automated counting of the fluorescent algal cells, the Coulter Counter, or the Millipore Guava flow-cytometer. We found that although other methods may have value in particular applications, for most purposes, the Guava flow cytometer provided by far the best combination of precision, accuracy, and efficient use of investigator time (due to the instrument's automated sample handling), while also allowing counts of algal numbers over a wide range and in small volumes of tissue homogenate. We also found that either of two assays of total homogenate protein provided a precise and seemingly accurate basis for normalization of algal counts to the total amount of holobiont tissue.

  14. Rapid, Precise, and Accurate Counts of Symbiodinium Cells Using the Guava Flow Cytometer, and a Comparison to Other Methods.

    Directory of Open Access Journals (Sweden)

    Cory J Krediet

    Full Text Available In studies of both the establishment and breakdown of cnidarian-dinoflagellate symbiosis, it is often necessary to determine the number of Symbiodinium cells relative to the quantity of host tissue. Ideally, the methods used should be rapid, precise, and accurate. In this study, we systematically evaluated methods for sample preparation and storage and the counting of algal cells using the hemocytometer, a custom image-analysis program for automated counting of the fluorescent algal cells, the Coulter Counter, or the Millipore Guava flow-cytometer. We found that although other methods may have value in particular applications, for most purposes, the Guava flow cytometer provided by far the best combination of precision, accuracy, and efficient use of investigator time (due to the instrument's automated sample handling, while also allowing counts of algal numbers over a wide range and in small volumes of tissue homogenate. We also found that either of two assays of total homogenate protein provided a precise and seemingly accurate basis for normalization of algal counts to the total amount of holobiont tissue.

  15. Dielectrophoresis microsystem with integrated flow cytometers for on-line monitoring of sorting efficiency

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Hansen, Ole; Petersen, Peter Kalsen

    2006-01-01

    Dielectrophoresis (DEP) and flow cytometry are powerful technologies and widely applied in microfluidic systems for handling and measuring cells and particles. Here, we present a novel microchip with a DEP selective filter integrated with two microchip flow cytometers (FCs) for on-line monitoring...... of cell sorting processes. On the microchip, the DEP filter is integrated in a microfluidic channel network to sort yeast cells by positive DER The two FCs detection windows are set upstream and downstream of the DEP filter. When a cell passes through the detection windows, the light scattered by the cell...

  16. Study of cell classification with a diffraction imaging flow cytometer method

    Science.gov (United States)

    Dong, Ke; Jacobs, Kenneth M.; Sa, Yu; Feng, Yuanming; Lu, Jun Q.; Hu, Xin-Hua

    2011-02-01

    With a diffraction imaging flow cytometer, we have acquired and analyzed the diffraction imaging data from 5 types of cultured cells. A gray level co-occurrence matrix (GLCM) algorithm was applied to extract the interference fringe related textures from the diffraction image data. Six GLCM parameters were chosen and imported into a support vector machine algorithm for automated classification of about 20 cells for each of the 5 cell types. We found that the GLCM based algorithm has the capacity for rapid processing of diffraction images and yield feature parameters for subsequent cell classification except the T- and B-lymphocytes.

  17. Comparison and evaluation of seven different bench-top flow cytometers with a modified six-plexed mycotoxin kit.

    Science.gov (United States)

    Czeh, Arpad; Schwartz, Abe; Mandy, Frank; Szoke, Zsuzsanna; Koszegi, Balazs; Feher-Toth, Szilvia; Nagyeri, Gyorgy; Jakso, Pal; Katona, Robert L; Kemeny, Agnes; Woth, Gabor; Lustyik, Gyorgy

    2013-12-01

    Many bench-top flow cytometers (b-FCs) are compatible with microsphere-based multiplexed assays. Disciplines implementing b-FCs-based assays are expanding; they include monitoring and validating food quality. A multiplexed platform protocol was evaluated for poly-mycotoxin assays, which is compatible with a variety of b-FC models. The seven instruments included: BD FACSCalibur(™) , BD FACSArray(™) Bioanalyzer, Accuri C6, Partec CyFlow(®) Space, Beckman Coulter FC 500, Guava EasyCyte Mini, and Luminex 100 (™) . Current reports related to the food industry describe fungal co-infections leading to poly-mycotoxin contamination in grain (Sulyok M, Berthiller F, Krska R, Schuhmacher R, Rapid Commun Mass Spectrom 2006;20:2649-2659). It is imperative to determine whether b-FC-based assays can replace traditional single-mycotoxin enzyme-linked immunosorbent assay (ELISA). A six-plexed poly-mycotoxin kit was tested on seven different b-FCs. The modified kit was initially developed for the BD FACSArray(™) Bioanalyzer (BD Biosciences) (Czeh A, Mandy F, Feher-Toth S, Torok L, Mike Z, Koszegi B, Lustyik G, J Immunol Methods 2012;384:71-80). With the multiplexed platform, it is possible to identify up to six mycotoxin contaminants simultaneously at regional grain collection/transfer/inspection facilities. In the future, elimination of contaminated food threat may be better achieved with the inclusion of b-FCs in the food protection arsenal. A universal protocol, matched with postacquisition software, offers an effective alternative platform compared to using a series of ELISA kits. To support side-by-side evaluation of seven flow cytometers, an instrument-independent fluorescence emission calibration was added to the protocol. All instrument performances were evaluated for strength of agreement based on paired sets of evaluation to predicate method. The results suggest that all b-FCs were acceptable of performing with the multiplexed kit for five of six mycotoxins. For

  18. Studying depletion kinetics of circulating prostate cancer cells by in vivo flow cytometer

    Science.gov (United States)

    Liu, Guangda; Gu, Zhengqin; Guo, Jin; Li, Yan; Chen, Yun; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2011-03-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. During this time, the tumor produces little or no symptoms or outward signs. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. A real- time quantitative monitoring of circulating prostate cancer cells by the in vivo flow cytometer will be useful to assess the effectiveness of the potential therapeutic interventions.

  19. Studying liver cancer metastasis by in vivo imaging and flow cytometer

    Science.gov (United States)

    Wang, Chen; Gu, Zhengqin; Guo, Jin; Li, Yan; Liu, Guangda; Wei, Xunbin

    2009-11-01

    Primary liver cancer (hepatocellular carcinoma, or HCC) is associated with liver cirrhosis 60-80% of the time. Liver cancer is one of the most common malignancies in the world, with approximately 1,000,000 cases reported every year. About 80% of people with primary liver cancer are male. Although two-thirds of people have advanced liver disease when they seek medical help, one third of the patients have cancer that has not progressed beyond the liver. HCC may metastasize to the lung, bones, kidney, and many other organs. Surgical resection, liver transplantation, chemotherapy and radiation therapy are the foundation of current HCC therapies. However the outcomes are poor: the survival rate is almost zero for metastatic HCC patients. Molecular mechanisms of HCC metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of HCC cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern liver tumor cell spread through the microenvironment in vivo with real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess liver tumor cell spreading and the circulation kinetics of liver tumor cells. A real- time quantitative monitoring of circulating liver tumor cells by the in vivo flow cytometer will be useful to assess the effectiveness of the potential therapeutic interventions.

  20. Label-free single cell analysis with a chip-based impedance flow cytometer

    Science.gov (United States)

    Pierzchalski, Arkadiusz; Hebeisen, Monika; Mittag, Anja; Di Berardino, Marco; Tarnok, Attila

    2010-02-01

    For description of cellular phenotypes and physiological states new developments are needed. Axetris' impedance flow cytometer (IFC) (Leister) is a new promising label-free alternative to fluorescence-based flow cytometry (FCM). IFC measures single cells at various frequencies simultaneously. The frequencies used for signal acquisition range from 0.1 to 20 MHz. The impedance signal provides information about cell volume (4 MHz) and membrane capacitance (1-4 MHz). Our data indicate that IFC can be a valuable alternative to conventional FCM for various applications in the field of cell death and physiology. The work will be extended to address further potential applications of IFC in biotechnology and biomedical cell analysis, as well as in cell sorting.

  1. Platelet counting with the BD Accuri(TM) C6 flow cytometer.

    Science.gov (United States)

    Masters, Andrew; Harrison, Paul

    2014-01-01

    The Accuri™ C6 is a compact flow cytometer that uses a peristaltic pump with a laminar flow fluidic system and can measure absolute cell counts. In this study we have evaluated this method with the International Reference Method (IRM) simultaneously measured on both the Accuri™ C6 and a reference flow cytometer. After optimisation of sample labelling conditions, final dilutions and flow cytometer settings, a comparison of the absolute fluorescent platelet count with the RBC/platelet ratio on the C6 and the IRM was then performed in 144 patient samples with a full range of platelet counts (range 2-650 × 10(9)/l). The platelet/RBC ratio method determined on the Accuri™ agreed well with the IRM (R(2)=0.99, bias=2.3 (Bland Altman) and R(2)=0.96, bias=1.02 at counts <50 × 10(9)/l). The absolute platelet count also agreed well with the IRM (R(2)=0.97, bias=-0.16 and R(2)=0.91, bias=3.7 at <50 × 10(9)/l). The C6 absolute platelet count and RBC/platelet ratio methods also agreed well (R(2)=0.99, bias=-2.5 and R(2)=0.95, bias=2.71 at counts <50 × 10(9)/l). Reproducibility studies on the C6 gave CVs of <5% for the RB/platelet ratio and <12% for the absolute cell counts. The C6 also demonstrated excellent linearity on diluted samples with both volume and ratio methods (R(2)=0.99). As one might expect, the absolute platelet count is therefore slightly more inaccurate than the RBC/platelet ratio particularly at platelet counts <50 × 10(9)/l as it is likely to be more sensitive to pipetting error. The Accuri™ C6 provides a simple, rapid and reliable method for measuring platelet counts by either the RBC/platelet or direct volume methods. The direct volume method can also be used to determine platelet counts within purified platelet preparations or concentrates in the absence of RBC.

  2. Kinetics of the initial stage of immunoagglutionation studied with the scanning flow cytometer

    CERN Document Server

    Surovtsev, Ivan V; Shvalov, Alexander N; Nekrasov, Vyacheslav M; Sivolobova, Galina F; Grazhdantseva, Antonina A; Maltsev, Valeri P; Chernyshev, Andrey V

    2008-01-01

    The use of a scanning flow cytometer (SFC) to study the evolution of monomers, dimers and higher multimers of latex particles at the initial stage of the immunoagglutination is described. The SFC can measure the light-scattering pattern (indicatrix) of an individual particle over an angular range of 10-60 deg. A comparison of the experimentally measured and theoretically calculated indicatrices allows one to discriminate different types of latex particles (i.e. monomers, dimers, etc.) and, therefore, to study the evolution of immunoagglutination process. Validity of the approach was verified by simultaneous measurements of light-scattering patterns and fluorescence from individual polymer particles. Immunoagglutination was initiated by mixing bovine serum albumin (BSA)-covered latex particles (of 1.8 um in diameter) with anti-BSA IgG. The analysis of experimental data was performed on the basis of a mathematical model of diffusion-limited immunoagglutination aggregation with a steric factor. The steric factor...

  3. Component validation of direct diode 488nm lasers in BD Accuri C6 flow cytometers

    Science.gov (United States)

    Chen, Wei P.; Luo, Ningyi D.

    2016-03-01

    The 488nm laser is the most important excitation light source of flow cytometry. The indirect diode (frequency-doubled diode) 488nm lasers are used in the excitation of Becton Dickinson (BD) AccuriTM C6. For using cost effective lasers, we have validated direct diode 488nm lasers as the replacement component of frequency-doubled diode laser. BD Bioscience issued the protocols to cover wavelength, power, noise, and polarization at the operation temperature range of cytometer. Pavilion Integration Corporation (PIC) tested 6 samples as the component validation of direct diode 488nm lasers based on the protocols from BD Biosciences. BD Bioscience also tested one of laser samples to further validate the test results of power, noise, and polarization from PIC.

  4. Flow cytometer system for single-shot biosensing based on whispering gallery modes of fluorescent microspheres

    Science.gov (United States)

    Lessard, Reno; Rousseau-Cyr, Olivier; Charlebois, Maxime; Riviere, Christophe; Mermut, Ozzy; Allen, Claudine Nı.

    2013-02-01

    We report an innovative label-free biosensor based on statistical analysis of several whispering gallery modes spectral shifts in polystyrene fluorescent microspheres using a custom microflow cytometer. Whispering gallery modes analysis enables detection of nanometer-sized analytes showing promising possibilities for virus, bacteria and molecular detection. To demonstrate this, fluorophore-doped microspheres of the appropriate size parameter are mixed in an aqueous solution. Then, a syringe pump pushes the solution through a fiber optic flow cell where a laser beam illuminates the analysis area to excite the microspheres and their fluorescence is collected. This device provides a low-cost and user friendly solution that could enhance spectrum acquisition rates up to 5 spectra per second thanks to the considerable amount of microspheres flowing through the excitation area per unit time. Finally, the fluorescence spectra are statistically investigated using an instantaneous measurement of apparent refractive index algorithm to determine a reliable value for the refractive index of the environment since the exact radius of the microsphere scanned is unknown. This refractive index becomes an effective value for the local perturbation caused by inhomogeneities on the microsphere surface and hence, determines whether or not inhomogeneities, such as bacteria, are adsorbed by comparing to a control sample. Combining a flow cell with our detection algorithm, we reduce the period of a 50 microspheres experiment from 161 minutes to 14 minutes when the flow rate is 2000 µl/h and the microsphere concentration is 5 µsphere/µl.

  5. Micro flow cytometer with self-aligned 3D hydrodynamic focusing.

    Science.gov (United States)

    Testa, Genni; Persichetti, Gianluca; Bernini, Romeo

    2015-01-01

    A micro flow cytometer with a single step 3D hydrodynamic flow focusing has been developed. The proposed design is capable to create a single-file particle stream that is self-aligned with an integrated optical fiber-based detection system, regardless of the flow rate ratio between the focusing and core liquids. The design approach provides the ability to adjust the stream size while keeping the position of the focused stream centered with respect to the focusing channel. The device has been fabricated by direct micro milling of PMMA sheets. Experimental validation of the hydrodynamic sheath focusing effect has been presented and sample stream with tuneable size from about 18 to 50 μm was measured. Flow cytometry measurements have been performed by using 10-23 μm fluorescent particles. From the analysis of the signals collected at each transit event we can confirm that the device was capable to align and measure microparticles with a good coefficient of variance.

  6. Measurement of Microsphere Concentration Using a Flow Cytometer with Volumetric Sample Delivery.

    Science.gov (United States)

    Wang, Lili; Zhang, Yu-Zhong; Choquette, Steven; Gaigalas, A K

    2014-01-01

    Microsphere concentrations are needed to assign equivalent reference fluorophores (ERF) units to microspheres used in quantitative flow cytometry. A flow cytometer with a syringe based sample delivery system was evaluated for the measurement of the concentration of microspheres contained in a vial of lyophilized microspheres certified by BD Biosciences to contain 50,600 microspheres. The concentration was measured by counting the number of microspheres contained in the volume delivered by the flow cytometer and dividing the number by the volume. The syringe volume was calibrated both in the delivery and draw modes, and the results of the volume calibration were summarized by two calibration lines. The delivered volume was obtained by dividing the number of recorded events by the concentration of microsphere count standard in the sample tube. The draw volume was obtained by weighting the sample tube before and after the draw. The slope of the draw volume calibration line was equal to 1.00 with an offset of -13 µL. The slope of the delivered volume calibration was 0.93 suggesting a systematic volume-dependent bias, which can be rationalized as an effect of suspension flow in capillaries. When the sample volume was set to values between 150 µL and 300 µL, both calibration curves gave similar results suggesting that a good estimate of the true delivered volume can be obtained by subtracting 13 µL from the delivered volume indicated by the syringe settings. The number of microspheres in the volume was obtained by passing the suspension contained in the volume through a laser beam and counting the number of events in which the signals from the scattering and fluorescence detectors exceeded threshold values. Measurements were performed with the lyophilized microspheres made by BD Biosciences and fluorescein microspheres (expired reference material RM 8640) in three buffers: a phosphate buffer saline (PBS), a buffer containing PBS and 0.05 % BSA (bovine serum albumin

  7. Functional analysis and classification of phytoplankton based on data from an automated flow cytometer.

    Science.gov (United States)

    Malkassian, Anthony; Nerini, David; van Dijk, Mark A; Thyssen, Melilotus; Mante, Claude; Gregori, Gerald

    2011-04-01

    Analytical flow cytometry (FCM) is well suited for the analysis of phytoplankton communities in fresh and sea waters. The measurement of light scatter and autofluorescence properties of particles by FCM provides optical fingerprints, which enables different phytoplankton groups to be separated. A submersible version of the CytoSense flow cytometer (the CytoSub) has been designed for in situ autonomous sampling and analysis, making it possible to monitor phytoplankton at a short temporal scale and obtain accurate information about its dynamics. For data analysis, a manual clustering is usually performed a posteriori: data are displayed on histograms and scatterplots, and group discrimination is made by drawing and combining regions (gating). The purpose of this study is to provide greater objectivity in the data analysis by applying a nonmanual and consistent method to automatically discriminate clusters of particles. In other words, we seek for partitioning methods based on the optical fingerprints of each particle. As the CytoSense is able to record the full pulse shape for each variable, it quickly generates a large and complex dataset to analyze. The shape, length, and area of each curve were chosen as descriptors for the analysis. To test the developed method, numerical experiments were performed on simulated curves. Then, the method was applied and validated on phytoplankton cultures data. Promising results have been obtained with a mixture of various species whose optical fingerprints overlapped considerably and could not be accurately separated using manual gating.

  8. Coded illumination for motion-blur free imaging of cells on cell-phone based imaging flow cytometer

    Science.gov (United States)

    Saxena, Manish; Gorthi, Sai Siva

    2014-10-01

    Cell-phone based imaging flow cytometry can be realized by flowing cells through the microfluidic devices, and capturing their images with an optically enhanced camera of the cell-phone. Throughput in flow cytometers is usually enhanced by increasing the flow rate of cells. However, maximum frame rate of camera system limits the achievable flow rate. Beyond this, the images become highly blurred due to motion-smear. We propose to address this issue with coded illumination, which enables recovery of high-fidelity images of cells far beyond their motion-blur limit. This paper presents simulation results of deblurring the synthetically generated cell/bead images under such coded illumination.

  9. Phytoplankton cell counts from a moored submersible flow cytometer at Martha's Vineyard Coastal Observatory, Massachusetts, May - September 2004 (NODC Accession 0002722)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Phytoplankton cell counts were collected from using a moored submersible flow cytometer from the Martha's Vineyard Coastal Observatory in the Northwest Atlantic...

  10. Phytoplankton cell counts from a moored submersible flow cytometer at Martha's Vineyard (Massachusetts) Coastal Observatory, May - December 2006 (NODC Accession 0036656)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Phytoplankton cell counts were collected from using a moored submersible flow cytometer from the Martha's Vineyard Coastal Observatory in the Northwest Atlantic...

  11. Phytoplankton cell counts from a moored submersible flow cytometer at Martha's Vineyard (Massachusetts) Coastal Observatory, May 10 - December 15, 2003 (NODC Accession 0002299)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Phytoplankton cell counts data were collected using a moored submersible flow cytometer from a Coastal Observatory at the Martha's Vineyard in Masschutsetts from 10...

  12. Studying circulating prostate cancer cells by in-vivo flow cytometer

    Science.gov (United States)

    Guo, Jin; Gu, Zhengqin; Chen, Tong; Wang, Cheng; Wei, Xunbin

    2012-03-01

    Prostate cancer is the most common malignancy in American men and the second leading cause of deaths from cancer, after lung cancer. The tumor usually grows slowly and remains confined to the gland for many years. As the cancer advances, however, it can metastasize throughout other areas of the body, such as the bones, lungs, and liver. Surgical resection, hormonal therapy, chemotherapy and radiation therapy are the foundation of current prostate cancer therapies. Treatments for prostate cause both short- and long-term side effects that may be difficult to accept. Molecular mechanisms of prostate cancer metastasis need to be understood better and new therapies must be developed to selectively target to unique characteristics of cancer cell growth and metastasis. We have developed the "in vivo microscopy" to study the mechanisms that govern prostate cancer cell spread through the microenvironment in vivo in real-time confocal near-infrared fluorescence imaging. A recently developed "in vivo flow cytometer" and optical imaging are used to assess prostate cancer cell spreading and the circulation kinetics of prostate cancer cells. We have measured the depletion kinetics of cancer cells with different metastatic potential. Interestingly, more invasive PC-3 prostate cancer cells are depleted faster from the circulation than LNCaP cells.

  13. Development of a single-cell X-ray fluorescence flow cytometer.

    Science.gov (United States)

    Crawford, Andrew M; Kurecka, Patrick; Yim, Tsz Kwan; Kozemchak, Claire; Deb, Aniruddha; Dostál, Lubomír; Sun, Cheng Jun; Brewe, Dale L; Barrea, Raul; Penner-Hahn, James E

    2016-07-01

    An X-ray fluorescence flow cytometer that can determine the total metal content of single cells has been developed. Capillary action or pressure was used to load cells into hydrophilic or hydrophobic capillaries, respectively. Once loaded, the cells were transported at a fixed vertical velocity past a focused X-ray beam. X-ray fluorescence was then used to determine the mass of metal in each cell. By making single-cell measurements, the population heterogeneity for metals in the µM to mM concentration range on fL sample volumes can be directly measured, a measurement that is difficult using most analytical methods. This approach has been used to determine the metal composition of 936 individual bovine red blood cells (bRBC), 31 individual 3T3 mouse fibroblasts (NIH3T3) and 18 Saccharomyces cerevisiae (yeast) cells with an average measurement frequency of ∼4 cells min(-1). These data show evidence for surprisingly broad metal distributions. Details of the device design, data analysis and opportunities for further sensitivity improvement are described.

  14. A microfluidic impedance flow cytometer for identification of differentiation state of stem cells.

    Science.gov (United States)

    Song, Hongjun; Wang, Yi; Rosano, Jenna M; Prabhakarpandian, Balabhaskar; Garson, Charles; Pant, Kapil; Lai, Eva

    2013-06-21

    This paper presents a microfluidic electrical impedance flow cytometer (FC) for identifying the differentiation state of single stem cells. This device is comprised of a novel dual micropore design, which not only enhances the processing throughput, but also allows the associated electrodes to be used as a reference for one another. A signal processing algorithm, based on the support vector machine (SVM) theory, and a data classification method were developed to automate the identification of sample types and cell differentiation state based on measured impedance values. The device itself was fabricated using a combination of standard and soft lithography techniques to generate a PDMS-gold electrode construct. Experimental testing with non-biological particles and mouse embryonic carcinoma cells (P19, undifferentiated and differentiated) was carried out using a range of excitation frequencies. The effects of the frequency and the interrogation parameters on sample identification performance were investigated. It was found that the real and imaginary part of the detected impedance signal were adequate for distinguishing the undifferentiated P19 cells from non-biological polystyrene beads at all tested frequencies. A higher frequency and an opacity index were required to resolve the undifferentiated and differentiated P19 cells by capturing capacitive changes in electrophysiological properties arising from differentiation. The experimental results demonstrated salient accuracy of the device and algorithm, and established its feasibility for non-invasive, label-free identification of the differentiation state of the stem cells.

  15. Classification of biological cells using a sound wave based flow cytometer

    Science.gov (United States)

    Strohm, Eric M.; Gnyawali, Vaskar; Van De Vondervoort, Mia; Daghighi, Yasaman; Tsai, Scott S. H.; Kolios, Michael C.

    2016-03-01

    A flow cytometer that uses sound waves to determine the size of biological cells is presented. In this system, a microfluidic device made of polydimethylsiloxane (PDMS) was developed to hydrodynamically flow focus cells in a single file through a target area. Integrated into the microfluidic device was an ultrasound transducer with a 375 MHz center frequency, aligned opposite the transducer was a pulsed 532 nm laser focused into the device by a 10x objective. Each passing cell was insonfied with a high frequency ultrasound pulse, and irradiated with the laser. The resulting ultrasound and photoacoustic waves from each cell were analyzed using signal processing methods, where features in the power spectra were compared to theoretical models to calculate the cell size. Two cell lines with different size distributions were used to test the system: acute myeloid leukemia cells (AML) and melanoma cells. Over 200 cells were measured using this system. The average calculated diameter of the AML cells was 10.4 +/- 2.5 μm using ultrasound, and 11.4 +/- 2.3 μm using photoacoustics. The average diameter of the melanoma cells was 16.2 +/- 2.9 μm using ultrasound, and 18.9 +/- 3.5 μm using photoacoustics. The cell sizes calculated using ultrasound and photoacoustic methods agreed with measurements using a Coulter Counter, where the AML cells were 9.8 +/- 1.8 μm and the melanoma cells were 16.0 +/- 2.5 μm. These results demonstrate a high speed method of assessing cell size using sound waves, which is an alternative method to traditional flow cytometry techniques.

  16. Impact of the new Beckman Coulter Cytomics FC 500 5-color flow cytometer on a regional flow cytometry clinical laboratory service.

    Science.gov (United States)

    Luider, J; Cyfra, M; Johnson, P; Auer, I

    2004-01-01

    Calgary Laboratory Services (CLS) in Alberta, Canada, is the regional reference laboratory providing flow cytometry services for southern Alberta and southeastern British Columbia. As a busy reference flow laboratory we provide flow cytometry immunophenotyping for investigation and diagnosis of acute and chronic leukemias, lymphomas, immunodeficiencies, neuroblastoma, platelet disorders, and interstitial lung disease (ILD). Because of increasing workload and the continual effort to improve the service to our health care providers, CLS invested in the new Beckman Coulter Cytomics FC 500 5-color flow cytometer. In addition to time and labor savings due to reduced maintenance and operating system design, this new flow cytometer automates many of the previous manual steps involved in quality control and flow cytometric analysis. It also incorporates 2 lasers and is capable of measuring 5-color antibody combinations in a single tube, enabling us to reduce the number of tubes and overall costs, giving us better gating options for minimal residual disease analysis. We present the first published evaluation, an assessment of the overall productivity and cost impact of the new state-of-the-art Cytomics FC 500 flow cytometer. Implementation of the Cytomics FC 500 has resulted in a 20% reduction in reagent costs and shorter turnaround time for analysis and diagnosis. This instrument has allowed us to reduce our acute leukemia panel from 17 to 13 tubes, our lymphoma panel from 13 to 7 tubes, and our ILD panel from 4 to 2 tubes. The availability of 2 lasers provides more flexibility in choosing antibodies and conjugates to customize immunophenotyping panels. It also allows us to use the DRAQ5 dye and simultaneously analyze the immunophenotype and DNA content of cells with very little compensation. Many of the arduous, time-consuming flow operator tasks often associated with previous generation flow cytometry instruments, such as color compensation, list mode analysis, sample

  17. A Raman Flow Cytometer: An Innovative Microfluidic Approach for Continuous Label-Free Analysis of Cells via Raman Spectroscopy

    KAUST Repository

    De Grazia, Antonio

    2015-05-05

    In this work a Raman flow cytometer is presented. It is a whole new microfluidic device that takes advantage of basic principles of Raman spectroscopy and fluorescent flow cytometry mixed together in a system of particularly shaped channels. These are indeed composed by specific shape and sizes – thanks to which cells can flow one-by-one – and a trap by means of which cells are trapped in order to perform Raman analysis on single ones in a constant and passive way. In this sense the microfluidic device promotes a fast method to look for single cells in a whole multicellular sample. It is a label-free analysis and this means that, on the contrary of what happens with fluorescent flow cytometry, the sample does not need to undergo any particular time-consuming pretreatment before being analyzed. Moreover it gives a complete information about the biochemical content of the sample thanks to the involvement of Raman spectroscopy as method of analysis. Many thought about a device like this, but eventually it is the first one being designed, fabricated and tested. The materials involved in the production of the Raman flow cytometer are chosen wisely. In particular the chip – the most important component of the device – is multilayered, being composed by a slide of calcium fluoride (which gives a negligible signal in Raman analyses), a photosensitive resist containing a pattern with channels and another slide of calcium fluoride in order for the channels to be sealed on both sides. The chip is, in turn, connected to gaskets and external frames. Several fabrication processes are followed to ultimately get the complete Raman flow cytometer and experiments on red blood cells demonstrate its validity in this field.

  18. Experimental and numerical investigation into micro-flow cytometer with 3-D hydrodynamic focusing effect and micro-weir structure.

    Science.gov (United States)

    Hou, Hui-Hsiung; Tsai, Chien-Hsiung; Fu, Lung-Ming; Yang, Ruey-Jen

    2009-07-01

    This study presents a novel 3-D hydrodynamic focusing technique for micro-flow cytometers. In the proposed approach, the sample stream is compressed initially in the horizontal direction by a set of sheath flows such that it is constrained to the central region of the microchannel and is then focused in the vertical direction by a second pair of sheath flows. Thereafter, the focused sample stream passes over a micro-weir structure positioned directly beneath an optical detection system to capture polystyrene beads fluorescent signal. The microchannel configuration and operational parameters are optimized by performing a series of numerical simulations. An experimental investigation is then performed using a micro-flow cytometer fabricated using conventional micro-electro-mechanical systems techniques and an isotropic wet etching method. The results indicate that the two sets of sheath flows successfully constrain the sample stream within a narrow, well-defined region of the microchannel. Furthermore, the micro-weir structure prompts the separation of a mixed sample of 5 and 10 microm polystyrene beads in the vertical direction and ensures that the beads flow through the detection region of the microchannel in a sequential fashion and can therefore be reliably detected and counted.

  19. Micro Flow Cytometer Chip Integrated with Micro-Pumps/Micro-Valves for Multi-Wavelength Cell Counting and Sorting

    Science.gov (United States)

    Chang, Chen-Min; Hsiung, Suz-Kai; Lee, Gwo-Bin

    2007-05-01

    Flow cytometry is a popular technique for counting and sorting of individual cells. This study presents a new chip-based flow cytometer capable of cell injection, counting and switching in an automatic format. The new microfluidic system is also capable of multi-wavelength detection of fluorescence-labeled cells by integrating multiple buried optical fibers within the chip. Instead of using large-scale syringe pumps, this study integrates micro-pumps and micro-valves to automate the entire cell injection and sorting process. By using pneumatic serpentine-shape (S-shape) micro-pumps to drive sample and sheath flows, the developed chip can generate hydrodynamic focusing to allow cells to pass detection regions in sequence. Two pairs of optical fibers are buried and aligned with the microchannels, which can transmit laser light sources with different wavelengths and can collect induced fluorescence signals. The cells labeled with different fluorescent dyes can be excited by the corresponding light source at different wavelengths. The fluorescence signals are then collected by avalanche photodiode (APD) sensors. Finally, a flow switching device composed of three pneumatic micro-valves is used for cell sorting function. Experimental data show that the developed flow cytometer can distinguish specific cells with different dye-labeling from mixed cell samples in one single process. The target cell samples can be also switched into appropriate outlet channels utilizing the proposed microvalve device. The developed microfluidic system is promising for miniature cell-based biomedical applications.

  20. Multiplexed detection of bacteria and toxins using a microflow cytometer.

    Science.gov (United States)

    Kim, Jason S; Anderson, George P; Erickson, Jeffrey S; Golden, Joel P; Nasir, Mansoor; Ligler, Frances S

    2009-07-01

    A microfabricated flow cytometer was used to demonstrate multiplexed detection of bacteria and toxins using fluorescent coded microspheres. Antibody-coated microspheres bound biothreat targets in a sandwich immunoassay format. The microfluidic cytometer focused the microspheres in three dimensions within the laser interrogation region using passive groove structures to surround the sample stream with sheath fluid. Optical analysis at four different wavelengths identified the coded microspheres and quantified target bound by the presence of phycoerythrin tracer. The multiplexed assays in the microflow cytometer had performance approaching that of a commercial benchtop flow cytometer. The respective limits of detection for bacteria (Escherichia coli, Listeria, and Salmonella) were found to be 10(3), 10(5), and 10(4) cfu/mL for the microflow cytometer and 10(3), 10(6), and 10(5) cfu/mL for the commercial system. Limits of detection for the toxins (cholera toxin, staphylococcal enterotoxin B, and ricin) were 1.6, 0.064, and 1.6 ng/mL for the microflow cytometer and 1.6, 0.064, and 8.0 ng/mL for the commercial system.

  1. COPASutils: an R package for reading, processing, and visualizing data from COPAS large-particle flow cytometers.

    Science.gov (United States)

    Shimko, Tyler C; Andersen, Erik C

    2014-01-01

    The R package COPASutils provides a logical workflow for the reading, processing, and visualization of data obtained from the Union Biometrica Complex Object Parametric Analyzer and Sorter (COPAS) or the BioSorter large-particle flow cytometers. Data obtained from these powerful experimental platforms can be unwieldy, leading to difficulties in the ability to process and visualize the data using existing tools. Researchers studying small organisms, such as Caenorhabditis elegans, Anopheles gambiae, and Danio rerio, and using these devices will benefit from this streamlined and extensible R package. COPASutils offers a powerful suite of functions for the rapid processing and analysis of large high-throughput screening data sets.

  2. COPASutils: an R package for reading, processing, and visualizing data from COPAS large-particle flow cytometers.

    Directory of Open Access Journals (Sweden)

    Tyler C Shimko

    Full Text Available The R package COPASutils provides a logical workflow for the reading, processing, and visualization of data obtained from the Union Biometrica Complex Object Parametric Analyzer and Sorter (COPAS or the BioSorter large-particle flow cytometers. Data obtained from these powerful experimental platforms can be unwieldy, leading to difficulties in the ability to process and visualize the data using existing tools. Researchers studying small organisms, such as Caenorhabditis elegans, Anopheles gambiae, and Danio rerio, and using these devices will benefit from this streamlined and extensible R package. COPASutils offers a powerful suite of functions for the rapid processing and analysis of large high-throughput screening data sets.

  3. Determination of blood leukocyte concentration with constant volume acquisition on a flow cytometer is comparable to individualized single platform testing with beads as internal reference standard

    DEFF Research Database (Denmark)

    Hansen, Susan; Dahl, Ronald; Hoffmann, Hans Jürgen

    2008-01-01

    Flow cytometers have a constant flow rate. This enables flow cytometers to measure leukocyte concentrations in a determined volume by acquiring data at a fixed rate over a fixed time and is called constant volume acquisition (CVA). The volume aspirated by a FACS Calibur flow cytometer in 4 min...... at a high rate has a median of 163 microl (IQR 156-170) with TruCount tubes. Leukocyte concentrations of 26 healthy volunteers were measured twice on up to four occasions with a Bürker-Türk chamber, by single platform technology (SPT) with TruCount tubes and on the same data set using CVA. Total leukocyte...... concentrations determined by CVA correlated better with measurements in a Bürker-Türk (BT) chamber than with SPT. Concentrations determined with CVA were 1.86% higher than with BT whereas SPT data were 5.35% higher than BT (pCVA (p

  4. Webcam-based flow cytometer using wide-field imaging for low cell number detection at high throughput.

    Science.gov (United States)

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2014-09-07

    Here we describe a novel low-cost flow cytometer based on a webcam capable of low cell number detection in a large volume which may overcome the limitations of current flow cytometry. Several key elements have been combined to yield both high throughput and high sensitivity. The first element is a commercially available webcam capable of 187 frames per second video capture at a resolution of 320 × 240 pixels. The second element in this design is a 1 W 450 nm laser module for area-excitation, which combined with the webcam allows for rapid interrogation of a flow field. The final element is a 2D flow-cell which overcomes the flow limitation of hydrodynamic focusing and allows for higher sample throughput in a wider flow field. This cell allows for the linear velocity of target cells to be lower than in a conventional "1D" hydrodynamic focusing flow-cells typically used in cytometry at similar volumetric flow rates. It also allows cells to be imaged at the full frame rate of the webcam. Using this webcam-based flow cytometer with wide-field imaging, it was confirmed that the detection of fluorescently tagged 5 μm polystyrene beads in "1D" hydrodynamic focusing flow-cells was not practical for low cell number detection due to streaking from the motion of the beads, which did not occur with the 2D flow-cell design. The sensitivity and throughput of this webcam-based flow cytometer was then investigated using THP-1 human monocytes stained with SYTO-9 florescent dye in the 2D flow-cell. The flow cytometer was found to be capable of detecting fluorescently tagged cells at concentrations as low as 1 cell per mL at flow rates of 500 μL min(-1) in buffer and in blood. The effectiveness of detection was concentration dependent: at 100 cells per mL 84% of the cells were detected compared to microscopy, 10 cells per mL 79% detected and 1 cell per mL 59% of the cells were detected. With the blood samples spiked to 100 cells per mL, the average concentration for all samples

  5. Cytometer on a Chip

    Science.gov (United States)

    Fernandez, Salvador M.

    2011-01-01

    A cytometer now under development exploits spatial sorting of sampled cells on a microarray chip followed by use of grating-coupled surface-plasmon-resonance imaging (GCSPRI) to detect the sorted cells. This cytometer on a chip is a prototype of contemplated future miniature cytometers that would be suitable for rapidly identifying pathogens and other cells of interest in both field and laboratory applications and that would be attractive as alternatives to conventional flow cytometers. The basic principle of operation of a conventional flow cytometer requires fluorescent labeling of sampled cells, stringent optical alignment of a laser beam with a narrow orifice, and flow of the cells through the orifice, which is subject to clogging. In contrast, the principle of operation of the present cytometer on a chip does not require fluorescent labeling of cells, stringent optical alignment, or flow through a narrow orifice. The basic principle of operation of the cytometer on a chip also reduces the complexity, mass, and power of the associated laser and detection systems, relative to those needed in conventional flow cytometry. Instead of making cells flow in single file through a narrow flow orifice for sequential interrogation as in conventional flow cytometry, a liquid containing suspended sampled cells is made to flow over the front surface of a microarray chip on which there are many capture spots. Each capture spot is coated with a thin (approximately 50-nm) layer of gold that is, in turn, coated with antibodies that bind to cell-surface molecules characteristic of one the cell species of interest. The multiplicity of capture spots makes it possible to perform rapid, massively parallel analysis of a large cell population. The binding of cells to each capture spot gives rise to a minute change in the index of refraction at the surface of the chip. This change in the index of refraction is what is sensed in GCSPRI, as described briefly below. The identities of the

  6. The development and application of non-imaging-based flow cytometer%非成像式流式细胞仪的发展与应用

    Institute of Scientific and Technical Information of China (English)

    张宇; 冯远明; 赵学玒; 汪曣; 杨春梅

    2011-01-01

    Flow Cytometer has been used for quantitatively analyzing and sorting cells. It has the advantages of high speed and sensitivity, and been realized as the important tool in the clinical medicine and biological research field. This article reviewed the main structure and working principles of the flow cytometer, with its latest developments and some of the most practical applications.%流式细胞仪(Flow Cytometer)是一种对细胞进行定量分析和分选的新型高科技仪器,它具有分析速度快、灵敏度高等优点,是临床医学和生物学研究的重要工具.本文概述流式细胞仪的主要结构、工作原理、最新进展以及一些重要的实际应用.

  7. Evaluation of Sysmex UF-100 urine flow cytometer vs chamber counting of supravitally stained specimens and conventional bacterial cultures.

    Science.gov (United States)

    Kouri, T T; Kähkönen, U; Malminiemi, K; Vuento, R; Rowan, R M

    1999-07-01

    We evaluated the Sysmex UF-100 urine flow cytometer (TOA Medical Electronics, Kobe, Japan) with 269 uncentrifuged urine specimens by comparing it with Sternheimer staining and particle counting in 1-microL disposable chambers with both brightfield and phase-contrast microscopy (the reference method). Results of routine test strip analysis, sediment microscopy (182 specimens), and bacterial culture (204 specimens) were also available. Detection of urinary WBCs and RBCs was highly reliable with the UF-100 compared with manual chamber counting (r = .98 and .88, respectively). Identification of bacteria was equal to that with visual microscopy of uncentrifuged specimens; sensitivity was 55%, and specificity 90%, compared with bacterial cultures at a cutoff of > 10(3) colony-forming units per milliliter. Renal damage was difficult to evaluate even with manual methods because of the low counts of renal tubular cells and casts; with standard manual Sternheimer-stained sediment analysis, sensitivity was 65% to 69% and specificity 66% to 91%, compared with the uncentrifuged chamber method at a cutoff of 3 and 10 particles per microliter, respectively. Renal damage was demonstrated with the UF-100 with a sensitivity of 26% to 69% and specificity 92% to 94%, compared with chamber counts. Automated urinalysis with the UF-100 urine flow cytometer offers considerable savings in time and labor. When high sensitivity is needed, visual microscopic review should be performed to detect renal disease.

  8. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols.

    Science.gov (United States)

    Kalina, T; Flores-Montero, J; van der Velden, V H J; Martin-Ayuso, M; Böttcher, S; Ritgen, M; Almeida, J; Lhermitte, L; Asnafi, V; Mendonça, A; de Tute, R; Cullen, M; Sedek, L; Vidriales, M B; Pérez, J J; te Marvelde, J G; Mejstrikova, E; Hrusak, O; Szczepański, T; van Dongen, J J M; Orfao, A

    2012-09-01

    The EU-supported EuroFlow Consortium aimed at innovation and standardization of immunophenotyping for diagnosis and classification of hematological malignancies by introducing 8-color flow cytometry with fully standardized laboratory procedures and antibody panels in order to achieve maximally comparable results among different laboratories. This required the selection of optimal combinations of compatible fluorochromes and the design and evaluation of adequate standard operating procedures (SOPs) for instrument setup, fluorescence compensation and sample preparation. Additionally, we developed software tools for the evaluation of individual antibody reagents and antibody panels. Each section describes what has been evaluated experimentally versus adopted based on existing data and experience. Multicentric evaluation demonstrated high levels of reproducibility based on strict implementation of the EuroFlow SOPs and antibody panels. Overall, the 6 years of extensive collaborative experiments and the analysis of hundreds of cell samples of patients and healthy controls in the EuroFlow centers have provided for the first time laboratory protocols and software tools for fully standardized 8-color flow cytometric immunophenotyping of normal and malignant leukocytes in bone marrow and blood; this has yielded highly comparable data sets, which can be integrated in a single database.

  9. A sheath-less combined optical and impedance micro-cytometer.

    Science.gov (United States)

    Spencer, Daniel; Elliott, Gregor; Morgan, Hywel

    2014-08-21

    We describe a sheath-less micro-cytometer that measures four different parameters, namely fluorescence, large angle side scatter and dual frequency electrical impedance (electrical volume and opacity). The cytometer was benchmarked using both size and fluorescent bead standards and demonstrates excellent size accuracy (CVs ≤ 2.1%), sensitivity and dynamic range (3.5 orders of magnitude) at sample flow rates of 80 μL per minute. The cytometer was evaluated by analysing human blood, and a four part differential leukocyte assay for accurate CD4+ T-cell enumeration was demonstrated. The integration of impedance, fluorescence and side scatter into a single miniature cytometer platform provides the core information content of a classical cytometer in a highly compact, simple, portable and low cost format.

  10. Flow cytometer and the clinical application%流式细胞仪及其临床应用

    Institute of Scientific and Technical Information of China (English)

    丛玉隆

    2006-01-01

    @@ 流式细胞仪(Flow Cytometer)是采用流式细胞技术对细胞或颗粒悬液进行快速分析的自动化分析仪器.流式细胞术(Flow Cytometry,简称FCM)是上世纪70年代发展起来的一项新技术,它通过对流动液体中排成单列的细胞或颗粒进行逐个分析、测定细胞或颗粒的光散射和荧光情况,以获得其大小、内部结构、DNA、RNA、蛋白质、抗原等物理及化学特征.

  11. Quantitative interferometric microscopic flow cytometer with expanded principal component analysis method

    Science.gov (United States)

    Wang, Shouyu; Jin, Ying; Yan, Keding; Xue, Liang; Liu, Fei; Li, Zhenhua

    2014-11-01

    Quantitative interferometric microscopy is used in biological and medical fields and a wealth of applications are proposed in order to detect different kinds of biological samples. Here, we develop a phase detecting cytometer based on quantitative interferometric microscopy with expanded principal component analysis phase retrieval method to obtain phase distributions of red blood cells with a spatial resolution ~1.5 μm. Since expanded principal component analysis method is a time-domain phase retrieval algorithm, it could avoid disadvantages of traditional frequency-domain algorithms. Additionally, the phase retrieval method realizes high-speed phase imaging from multiple microscopic interferograms captured by CCD camera when the biological cells are scanned in the field of view. We believe this method can be a powerful tool to quantitatively measure the phase distributions of different biological samples in biological and medical fields.

  12. Investigation on the difference between biofilm morphologies of the vermifilter and conventional biofilter with the flow cytometer.

    Science.gov (United States)

    Di, Wanyin; Xing, Meiyan; Yang, Jian

    2016-09-01

    With the demand of new sludge reduction processes, a vermifilter (VF) was studied based on a conventional biofilter (BF). The biofilm morphology was investigated using a new technique, the flow cytometer (FCM), to find a way to optimize VF structure. VF was inoculated with Eisenia fetida, packed with ceramsites, and operated stably at the organic load of 1.2kg-VSSm(-3)d(-1) with BF as the control. Compared with BF, VF had about 13% more removal efficiency of excess sludge and 45% shorter biofilm update period. FCM profile showed the morphology of microbial cells in VF biofilms was significantly different from that in BF in upper layers, with decreases of average refractive index (about 72%) and size (about 22%), and suggested it was better to keep earthworms there to remove rod-shaped microorganisms with other filter media in lower layers to remove spherical ones combining the findings in SEM images and extracellular polymeric substances.

  13. System and method for measuring particles in a sample stream of a flow cytometer using a low power laser source

    Energy Technology Data Exchange (ETDEWEB)

    Graves, Steven W; Habbersett, Robert C

    2013-10-22

    A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.

  14. System and method for measuring particles in a sample stream of a flow cytometer or the like

    Energy Technology Data Exchange (ETDEWEB)

    Graves, Steven W. (San Juan Pueblo, NM); Habberset, Robert C. (Santa Fe, NM)

    2010-11-16

    A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.

  15. System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source

    Energy Technology Data Exchange (ETDEWEB)

    Graves, Steven W.; Habbersett, Robert C.

    2014-07-01

    A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.

  16. Detection and quantification of bacterial autofluorescence at the single-cell level by a laboratory-built high-sensitivity flow cytometer.

    Science.gov (United States)

    Yang, Lingling; Zhou, Yingxing; Zhu, Shaobin; Huang, Tianxun; Wu, Lina; Yan, Xiaomei

    2012-02-07

    Cellular autofluorescence can affect the sensitivity of fluorescence microscopic or flow cytometric assays by interfering with or even precluding the detection of low-level specific fluorescence. Here we developed a method to detect and quantify bacterial autofluorescence in the green region of the spectrum at the single-cell level using a laboratory-built high-sensitivity flow cytometer (HSFCM). The detection of the very weak bacterial autofluorescence was confirmed by analyzing polystyrene beads of comparable and larger size than bacteria in parallel. Dithionite reduction and air re-exposure experiments verified that the green autofluorescence mainly originates from endogenous flavins. Bacterial autofluorescence was quantified by calibrating the fluorescence intensity of nanospheres with known FITC equivalents, and autofluorescence distribution was generated by analyzing thousands of bacterial cells in 1 min. Among the eight bacterial strains tested, it was found that bacterial autofluorescence can vary from 80 to 1400 FITC equivalents per cell, depending on the bacterial species, and a relatively large cell-to-cell variation in autofluorescence intensity was observed. Quantitative measurements of bacterial autofluorescence provide a reference for the background signals that can be expected with bacteria, which is important in guiding studies of low-level gene expression and for the detection of low-abundance biological molecules in individual bacterial cells. This paper presents the first quantification of bacterial autofluorescence in FITC equivalents.

  17. A flow cytometer-based method to simultaneously assess activity and selectivity of compounds against the intracellular forms of Trypanosoma cruzi.

    Science.gov (United States)

    Miranda, Cristian Gabriel; Solana, Maria Elisa; Curto, Maria de Los Angeles; Lammel, Estela Maria; Schijman, Alejandro Gabriel; Alba Soto, Catalina Dirney

    2015-12-01

    Chagas disease is a major unsolved health issue in Latin America and an emerging threat worldwide. New drugs are urgently needed for chemotherapy as those available (benznidazole and nifurtimox) have variable efficacy and elevated toxicity. Efforts are actually oriented to improve tools and technologies (e.g. transgenic parasites, flow cytometry or image-based systems) for the screening of large numbers of candidate compounds for their activity against Trypanosoma cruzi (T. cruzi). Methods that test drug efficacy and selectivity in the same assay are suitable to accelerate the process of drug discovery. Here, we developed a GFP expressing T. cruzi from a moderate virulence stock and confirmed that the transgenic parasite retained the biological characteristics of the parental strain. With this tool, we established a flow cytometer-based method to simultaneously test drug activity against intracellular amastigotes and toxicity to the host cell. This one-step procedure allows determining the selectivity index of the tested compound in a sensitive and accurate manner even with low infection rates. This method can provide additional information on the interactions between drug, parasites and host cell and could be adapted to other trypanosomatids and protozoa with intracellular multiplication.

  18. Development of an Efficient Quasi-3D Microfluidic Flow Model and Fabrication and Characterization of an All-PDMS Opto-Microfluidic Flow Cytometer

    Science.gov (United States)

    Islam, Md Zahurul

    In this thesis, development of a novel microfluidic flow model, and, fabrication and testing of microfluidic cytometer for potential cell detection and sorting applications are described. The model is formulated by decomposing the flow profile along the height of microfluidic device into a Fourier series that converts the 3D flow equations into a series of coupled 2D equations and is applicable to planar microfluidic devices only. It is validated against the analytical solution for flow in a straight rectangular channel and the full 3D solution of a commercial Navier-Stokes solver for flow in a T-channel. Comparable accuracy to the full 3D numerical solution is achieved by using only three Fourier terms with significant decrease in computation time. The model is also extended to the problems with time-varying boundary conditions. We fabricated two first generation miniaturized cytometer prototypes and used them for preliminary proof-of-concepts experiments. They were built by cutting fluidic channels into two different polymer materials and bonding them between two standard glass slides with epoxy and fusion bonding. We fabricated a second generation of flow cytometer chip consisting of an integrated 2D hydrodynamic focusing system, solid-core optical waveguides and a hydrodynamic side-flow switching system on an all-PDMS platform. Optical propagation losses of the integrated waveguides and signal-to-noise ratio (SNR) of its detection system were characterized. The propagation losses were found to be 1.6 and 1.5 dB/cm for the green and red light, respectively. Detection of fluorescent signal through the waveguide yielded improved SNR than the conventional method of under-chip detection. Fluid flow speeds were estimated from volumetric flow measurements and fluorescent particle tracking experiments and the width of the hydrodynamically focused stream was extracted from microscope flow images. The results were compared to the simulation values obtained from the Q3D

  19. A flow cytometer based protocol for quantitative analysis of bloom-forming cyanobacteria (Microcystis) in lake sediments

    Institute of Scientific and Technical Information of China (English)

    Quan Zhou; Wei Chen; Huiyong Zhang; Liang Peng; Liming Liu; Zhiguo Han; Neng Wan; Lin Li; Lirong Song

    2012-01-01

    A quantitative protocol for the rapid analysis of Microcystis cells and colonies in lake sediment was developed using a modified flow cytometer,the CytoSense.For cell enumeration,diluted sediment samples containing Microcystis were processed with sonication to disintegrate colonies into single ceils.An optimized procedure suggested that 5 mg dw (dry weight)/mL dilution combined with 200 W × 2 min sonication yielded the highest counting efficiency.Under the optimized determination conditions,the quantification limit of this protocol was 3.3×104 cells/g dw.For colony analysis,Microcystis were isolated from the sediment by filtration.Colony lengths measured by flow cytometry were similar to those measured by microscopy for the size range of one single cell to almost 400 μm in length.Moreover,the relationship between colony size and cell number was determined for three Microcystis species,including Microcystisflos-aquae,M.aeruginosa and M.wessenbergii.Regression formulas were used to calculate the cell numbers in differentsized colonies.The developed protocol was applied to field sediment samples from Lake Taihu.The results indicated the potential and applicability of flow cytometry as a tool for the rapid analysis of benthic Microcystis.This study provided a new capability for the high frequency monitoring of benthic overwintering and population dynamics of this bloom-forming cyanobacterium.

  20. A flow cytometer based protocol for quantitative analysis of bloom-forming cyanobacteria (Microcystis) in lake sediments.

    Science.gov (United States)

    Zhou, Quan; Chen, Wei; Zhang, Huiyong; Peng, Liang; Liu, Liming; Han, Zhiguo; Wan, Neng; Li, Lin; Song, Lirong

    2012-01-01

    A quantitative protocol for the rapid analysis of Microcystis cells and colonies in lake sediment was developed using a modified flow cytometer, the CytoSense. For cell enumeration, diluted sediment samples containing Microcystis were processed with sonication to disintegrate colonies into single cells. An optimized procedure suggested that 5 mg dw (dry weight)/mL dilution combined with 200 W x 2 min sonication yielded the highest counting efficiency. Under the optimized determination conditions, the quantification limit of this protocol was 3.3 x 10(4) cells/g dw. For colony analysis, Microcystis were isolated from the sediment by filtration. Colony lengths measured by flow cytometry were similar to those measured by microscopy for the size range of one single cell to almost 400 microm in length. Moreover, the relationship between colony size and cell number was determined for three Microcystis species, including Microcystis flos-aquae, M. aeruginosa and M. wessenbergii. Regression formulas were used to calculate the cell numbers in different-sized colonies. The developed protocol was applied to field sediment samples from Lake Taihu. The results indicated the potential and applicability of flow cytometry as a tool for the rapid analysis of benthic Microcystis. This study provided a new capability for the high frequency monitoring of benthic overwintering and population dynamics of this bloom-forming cyanobacterium.

  1. High-throughput single-cell analysis of low copy number β-galactosidase by a laboratory-built high-sensitivity flow cytometer.

    Science.gov (United States)

    Yang, Lingling; Huang, Tianxun; Zhu, Shaobin; Zhou, Yingxing; Jiang, Yunbin; Wang, Shuo; Chen, Yuqing; Wu, Lina; Yan, Xiaomei

    2013-10-15

    Single-cell analysis is vital in providing insights into the heterogeneity in molecular content and phenotypic characteristics of complex or clonal cell populations. As many essential proteins and most transcription factors are produced at a low copy number, analytical tools with superior sensitivity to enable the analysis of low abundance proteins in single cells are in high demand. β-galactosidase (β-gal) has been the standard cellular reporter for gene expression in both prokaryotic and eukaryotic cells. Here we report the development of a high-throughput method for the single-cell analysis of low copy number β-gal proteins using a laboratory-built high-sensitivity flow cytometer (HSFCM). Upon fluorescence staining with a fluorogenic substrate, quantitative measurements of the basal and near-basal expression of β-gal in single Escherichia coli BL21(DE3) cells were demonstrated. Statistical distribution can be determined quickly by analyzing thousands of individual cells in 1-2min, which reveals the heterogeneous expression pattern that is otherwise masked by the ensemble analysis. Combined with the quantitative fluorometric assay and the rapid bacterial enumeration by HSFCM, the β-gal expression distribution profile could be converted from arbitrary fluorescence units to protein copy numbers per cell. The sensitivity and speed of the HSFCM offers great capability in quantitative analysis of low abundance proteins in single cells, which would help gaining a deeper insight into the heterogeneity and fundamental biological processes in microbial populations.

  2. Development and laboratory-scale testing of a fully automated online flow cytometer for drinking water analysis.

    Science.gov (United States)

    Hammes, Frederik; Broger, Tobias; Weilenmann, Hans-Ulrich; Vital, Marius; Helbing, Jakob; Bosshart, Ulrich; Huber, Pascal; Odermatt, Res Peter; Sonnleitner, Bernhard

    2012-06-01

    Accurate and sensitive online detection tools would benefit both fundamental research and practical applications in aquatic microbiology. Here, we describe the development and testing of an online flow cytometer (FCM), with a specific use foreseen in the field of drinking water microbiology. The system incorporated fully automated sampling and fluorescent labeling of bacterial nucleic acids with analysis at 5-min intervals for periods in excess of 24 h. The laboratory scale testing showed sensitive detection (< 5% error) of bacteria over a broad concentration range (1 × 10(3) -1 × 10(6) cells mL(-1) ) and particularly the ability to track both gradual changes and dramatic events in water samples. The system was tested with bacterial pure cultures as well as indigenous microbial communities from natural water samples. Moreover, we demonstrated the possibility of using either a single fluorescent dye (e.g., SYBR Green I) or a combination of two dyes (SYBR Green I and Propidium Iodide), thus broadening the application possibilities of the system. The online FCM approach described herein has considerable potential for routine and continuous monitoring of drinking water, optimization of specific drinking water processes such as biofiltration or disinfection, as well as aquatic microbiology research in general.

  3. Sub meso scale phytoplankton distribution in the north east Atlantic surface waters determined with an automated flow cytometer

    Directory of Open Access Journals (Sweden)

    M. Thyssen

    2008-06-01

    Full Text Available Phytoplankton cells in the size range ~1–50 μm were analysed in surface waters using an automated flow cytometer, the Cytosub (http://www.cytobuoy.com, from the Azores to the French Brittany during spring 2007. The Cytosub records the pulse shape of the optical signals generated by phytoplankton cells when intercepted by the laser beam. A total of 6 distinct optical groups were resolved during the whole transect, and the high frequency sampling (15 min provided evidence for the cellular cycle (based on cyclic changes in cell size and fluorescence and distribution changes linked to the different water characteristics crossed in the north east Atlantic provinces. Nutrient concentrations and mixed layer depth varied from west to east, with a decrease in the mixed layer depth and high nutrient concentrations in the middle of the transect as well as near the French coast. Data provided a link between the sub meso scale processes and phytoplankton patchiness, some abundance variations due to the cellular cycle can be pointed out. The high frequency spatial sampling encompasses temporal variations of the phytoplankton abundance, offering a better insight into phytoplankton distribution.

  4. An easy-to-use practical method to measure coincidence in the flow cytometer--the case of platelet-granulocyte complex determination.

    Science.gov (United States)

    Bihari, Péter; Fent, János; Hamar, János; Furész, József; Lakatos, Susan

    2008-04-24

    Cell complexes composed of two different cells labeled with different fluorophores can be detected as double positive events in the flow cytometer. Double positivity can originate not only from real complexes but from non-interacting coinciding cells as well. Coincidence has a high impact on the determination of the amount of platelet-granulocyte complexes since platelet concentration is in the orders of magnitude higher than that of the granulocytes. Mixtures of non-interacting fluorescent beads as well as EDTA anticoagulated or citrated blood samples were analyzed in the flow cytometer in the presence and absence of fluorescent beads at various dilutions. Experimental data were evaluated by mathematical means. The bead or platelet concentration dependence of double positivity was converted into linear functions using Poisson distribution. This linearised form contains information on the detection volume as well as on the presence/absence of dilution independent complexes. The presence of appropriate fluorescent beads in the blood sample makes possible to estimate the fraction of double positivity originating from coincidence if data collection is triggered by the granulocytes or by the fluorescent beads, alternatively. Mixing fluorescent beads into a blood sample is a simple experimental method to distinguish double positivity originating from real cell-cell complexes from the coincidence of cells in a flow cytometer, thus providing a tool for the determination of the real amount of cell-cell complexes.

  5. Seston Data from Flow Cytometers and Microscope Environmental Data from Sondes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seston data with phytoplankton and size fractioned non-living particles counted by flow cytomter from Penebscot River, Maine in April, May, and June of 2015. High...

  6. Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes

    NARCIS (Netherlands)

    Rosenauer, M.; Buchegger, W.; Finoulst, I.; Verhaert, P.D.E.M.; Vellekoop, M.

    2010-01-01

    In this study, the design, realization and measurement results of a novel optofluidic system capable of performing absorbance-based flow cytometric analysis is presented. This miniaturized laboratory platform, fabricated using SU-8 on a silicon substrate, comprises integrated polymer-based waveguide

  7. Functional analysis and classification of phytoplankton based on data from an automated flow cytometer

    NARCIS (Netherlands)

    Malkassian, A.; Nerini, D.; Van Dijk, M.A.; Thyssen, M.; Mante, C.; Gregori, G.

    2011-01-01

    Analytical flow cytometry (FCM) is well suited for the analysis of phytoplankton communities in fresh and sea waters. The measurement of light scatter and autofluorescence properties of particles by FCM provides optical fingerprints, which enables different phytoplankton groups to be separated. A su

  8. Label-free hybridoma cell culture quality control by a chip-based impedance flow cytometer.

    Science.gov (United States)

    Pierzchalski, Arkadiusz; Hebeisen, Monika; Mittag, Anja; Bocsi, Jozsef; Di Berardino, Marco; Tarnok, Attila

    2012-11-07

    Impedance flow cytometry (IFC) was evaluated as a possible alternative to fluorescence-based methods for on-line quality monitoring of hybridoma cells. Hybridoma cells were cultured at different cell densities and viability was estimated by means of IFC and fluorescence-based flow cytometry (FCM). Cell death was determined by measuring the impedance phase value at high frequency in low conductivity buffer. IFC data correlate well with reference FCM measurements using AnnexinV and 7-AAD staining. Hybridoma cells growing at different densities in cell culture revealed a density-dependent subpopulation pattern. Living cells of high density cultures show reduced impedance amplitudes, indicating particular cellular changes. Dead cell subpopulations become evident in cultures with increasing cell densities. In addition, a novel intermediate subpopulation, which most probably represents apoptotic cells, was identified. These results emphasize the extraordinary sensitivity of high frequency impedance measurements and their suitability for hybridoma cell culture quality control.

  9. 流式细胞仪的临床应用%Clinical Application of Flow Cytometer

    Institute of Scientific and Technical Information of China (English)

    丛玉隆

    2006-01-01

    流式细胞仪(Flow Cytometer)是采用流式细胞技术对细胞或颗粒悬液进行快速分析的自动化分析仪器。流式细胞术(Flow Cytometry,FCM)是上世纪70年代发展起来的一项新技术,它通过对流动液体中排成单列的细胞或颗粒进行逐个分析、测定细胞或颗粒的光散射和荧光情况,以获得其大小、内部结构、DNA、RNA、蛋白质、抗原等物理及化学特征。

  10. Analysis of Utilization Efifciency of Flow Cytometer in Universities%高校流式细胞仪使用效益分析

    Institute of Scientific and Technical Information of China (English)

    阎冰; 李增艳; 王益民; 刘彦强

    2016-01-01

    流式细胞仪是目前高校使用的价值最高的仪器设备之一。本文通过对本地区高等院校在用流式细胞仪的使用情况进行调研,分别对其年使用机时、承担科研项目和发表论文三方面进行使用效益统计分析并提出加强高等院校流式细胞仪使用效益的建议与意见。%Flow cytometer is one of the most valuable instrument and equipment used in colleges and universities. Through the investigation and research on the usage status of lfow cytometer in colleges and universities in Tianjin, the paper made statistical analysis of the utilization efficiency from three aspects respectively, including the annual usage time, research projects and published papers. It also put forward suggestions and opinions to strengthen the utilization efifciency of lfow cytometer in colleges and universities.

  11. Reduced-gravity Environment Hardware Demonstrations of a Prototype Miniaturized Flow Cytometer and Companion Microfluidic Mixing Technology

    Science.gov (United States)

    Bae, Candice; Sharpe, Julia Z.; Bishara, Andrew M.; Nelson, Emily S.; Weaver, Aaron S.; Brown, Daniel; McKay, Terri L.; Griffin, DeVon; Chan, Eugene Y.

    2014-01-01

    Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described. PMID:25490614

  12. Reduced-gravity environment hardware demonstrations of a prototype miniaturized flow cytometer and companion microfluidic mixing technology.

    Science.gov (United States)

    Phipps, William S; Yin, Zhizhong; Bae, Candice; Sharpe, Julia Z; Bishara, Andrew M; Nelson, Emily S; Weaver, Aaron S; Brown, Daniel; McKay, Terri L; Griffin, DeVon; Chan, Eugene Y

    2014-11-13

    Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described.

  13. Fluorescent dye-based simple staining for in vivo micronucleus test with flow cytometer.

    Science.gov (United States)

    Harada, Asako; Matsuzaki, Kaori; Takeiri, Akira; Tanaka, Kenji; Mishima, Masayuki

    2013-03-18

    Flow cytometry (FCM) has become known as a useful tool for examining numerous cells in a micronucleus test in a short time. To successfully count micronuclei, immature erythrocytes and micronuclei need to be specifically stained and CD71-based FCM, with anti-CD71 antibody for immature erythrocytes and propidium iodide (PI) for micronuclei is a widely accepted tool. Because staining with fluorescent dyes may be much simpler compared to immunostaining, attempts are being made to develop a fluorescent dye-based FCM (FD-FCM). The aim of this study was to provide a practical FD-FCM method. Peripheral blood (PB) erythrocytes and bone marrow (BM) erythrocytes were obtained from rats treated with cyclophosphamide at a dose of 20mg/kg for two days. Nucleic cells of BM samples were eliminated using a cellulose column. Then erythrocytes were fixed, stained with Hoechst 33258 and PI and examined with FCM. Mean FD-FCM values of micronucleated immature erythrocytes in PB and BM were respectively 110% and 77% of the values obtained by microscopy. Percentages of mean immature erythrocyte values by FCM to those by microscopy were 74% and 94%. These data suggest that the simple method, composed of column purification of erythrocytes, methanol fixation, fluorescent dye staining and FCM, was useful for automated scoring in micronucleus testing of rat BM and PB.

  14. Polarization imaging and classification of Jurkat T and Ramos B cells using a flow cytometer.

    Science.gov (United States)

    Feng, Yuanming; Zhang, Ning; Jacobs, Kenneth M; Jiang, Wenhuan; Yang, Li V; Li, Zhigang; Zhang, Jun; Lu, Jun Q; Hu, Xin-Hua

    2014-09-01

    Label-free and rapid classification of cells can have awide range of applications in biology. We report a robust method of polarization diffraction imaging flow cytometry (p-DIFC) for achieving this goal. Coherently scattered light signals are acquired from single cells excited by a polarized laser beam in the form of two cross-polarized diffraction images. Image texture and intensity parameters are extracted with a gray level co-occurrence matrix (GLCM) algorithm to obtain an optimized set of feature parameters as the morphological "fingerprints" for automated cell classification. We selected the Jurkat T cells and Ramos B cells to test the p-DIFC method's capacity for cell classification. After detailed statistical analysis, we found that the optimized feature vectors yield accuracies of classification between the Jurkat and Ramos ranging from 97.8% to 100% among different cell data sets. Confocal imaging and three-dimensional reconstruction were applied to gain insights on the ability of p-DIFC method for classifying the two cell lines of highly similar morphology. Based on these results we conclude that the p-DIFC method has the capacity to discriminate cells of high similarity in their morphology with "fingerprints" features extracted from the diffraction images, which may be attributed to subtle but statistically significant differences in the nucleus-to-cell volume ratio in the case of Jurkat and Ramos cells.

  15. Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer.

    Science.gov (United States)

    Vercruysse, Dries; Dusa, Alexandra; Stahl, Richard; Vanmeerbeeck, Geert; de Wijs, Koen; Liu, Chengxun; Prodanov, Dimiter; Peumans, Peter; Lagae, Liesbet

    2015-02-21

    A compelling clinical need exists for inexpensive, portable haematology analyzers that can be utilized at the point-of-care in emergency settings or in resource-limited settings. Development of a label-free, microfluidic blood analysis platform is the first step towards such a miniaturized, cost-effective system. Here we assemble a compact lens-free in-line holographic microscope and employ it to image blood cells flowing in a microfluidic chip, using a high-speed camera and stroboscopic illumination. Numerical reconstruction of the captured holograms allows classification of unlabeled leukocytes into three main subtypes: lymphocytes, monocytes and granulocytes. A scale-space recognition analysis to evaluate cellular size and internal complexity is also developed and used to build a 3-part leukocyte differential. The lens-free image-based classification is compared to the 3-part white blood cell differential generated by using a conventional analyzer on the same blood sample and is found to be in good agreement with it.

  16. 流式细胞仪液流聚焦系统仿真分析与设计%Simulated analysis and design of flow cytometer focusing system

    Institute of Scientific and Technical Information of China (English)

    马玉婷; 严心涛; 陈忠祥; 王策; 武晓东

    2014-01-01

    使用FL U EN T对流式细胞仪液流系统中的核心部件流动室进行了流体仿真分析。探讨了样品流速、鞘液流速、进样针位置对聚焦效果的影响,分析了鞘液不对称进样的实施可能性,以及对鞘液脉动性的补偿措施。搭建了流式平台进行荧光微球的CV值测定,其变化趋势与仿真结果较为吻合。仿真结果为流式细胞仪液流系统的设计提供了参考依据。%Simulated analysis on flow cell ,which is core components of fluid system in flow cytometer , was conducted by use of FLUENT. The influence of sample flow rate ,sheath flow rate ,sample outlet po-sition on the focusing capability were discussed. The asymmetrical sheath inlet was also investigated ,as well as the compensation of sheath pulsation. The experimental platform was built to test the CV of fluo-rescent microspheres. The changing of CV coincided with the simulated results. The simulated results provide a reference to the design of fluid system in flow cytometer.

  17. Influence of 4- and 6-color flow cytometers and acquisition/analysis softwares on the determination of lymphocyte subsets in HIV infection.

    Science.gov (United States)

    Ashman, M; Sachdeva, N; Davila, L; Scott, G; Mitchell, C; Cintron, L; Rathore, M; Asthana, D

    2007-09-01

    Lymphocyte immunophenotyping provides valuable information for the diagnosis and monitoring of patients with cellular immunodeficiencies, such as HIV/AIDS. In this study, we have assessed the influence of 4-color and 6-color flow cytometers, and respective analytical softwares on the enumeration of lymphocytes in HIV infected individuals. The expression of various cell surface markers on lymphocytes was measured from the EDTA blood of 66 HIV infected patients on the FACSCalibur (4-color) and FACSCanto (6-color) flow cytometers. Percentage of lymphocytes expressing a particular cell surface marker was analyzed on FACSCalibur using the Cell Quest Pro software (v 5.2), while the analysis on FACSCanto was done using FACSCanto (v 1.0.3) and FACSDiva (v 4.1) softwares respectively. The data shows significantly higher mean CD3 T-cell counts on FACSCalibur, Cell Quest Pro (1,864 +/- 1,044 cells/microl) as compared to FACSCanto (1,840 +/- 1,040 cells/microl) (P Quest Pro (885 +/- 770 cells/microl), and FACSDiva (892 +/- 773 cells/microl) versus FACSCanto (867 +/- 767 cells/microl) (P Quest Pro, and FACSDiva showed similar values except for CD8 T-lymphocytes where FACSDiva had significantly lower values (P Quest Pro (240 +/- 165 cells/microl), and FACSDiva (238 +/- 163 cells/microl) versus FACSCanto with higher NK cell counts (260 +/- 176 cells/microl). The enumeration of lymphocyte subsets was comparable between FACSCalibur, Cell Quest Pro, and FACSDiva, based analysis and it was significantly different than FACSCanto software based analysis. Our observations suggest that FACSDiva software should be preferred over the FACSCanto software for immunophenotyping on FACSCanto flow cytometer and the laboratories should report the instrument and software used for the specimen analysis while reporting immunophenotyping results. Copyright 2007 Clinical Cytometry Society.

  18. Development of a two-parameter slit-scan flow cytometer for screening of normal and aberrant chromosomes: application to a karyotype of Sus scrofa domestica (pig)

    Science.gov (United States)

    Hausmann, Michael; Doelle, Juergen; Arnold, Armin; Stepanow, Boris; Wickert, Burkhard; Boscher, Jeannine; Popescu, Paul C.; Cremer, Christoph

    1992-07-01

    Laser fluorescence activated slit-scan flow cytometry offers an approach to a fast, quantitative characterization of chromosomes due to morphological features. It can be applied for screening of chromosomal abnormalities. We give a preliminary report on the development of the Heidelberg slit-scan flow cytometer. Time-resolved measurement of the fluorescence intensity along the chromosome axis can be registered simultaneously for two parameters when the chromosome axis can be registered simultaneously for two parameters when the chromosome passes perpendicularly through a narrowly focused laser beam combined by a detection slit in the image plane. So far automated data analysis has been performed off-line on a PC. In its final performance, the Heidelberg slit-scan flow cytometer will achieve on-line data analysis that allows an electro-acoustical sorting of chromosomes of interest. Interest is high in the agriculture field to study chromosome aberrations that influence the size of litters in pig (Sus scrofa domestica) breeding. Slit-scan measurements have been performed to characterize chromosomes of pigs; we present results for chromosome 1 and a translocation chromosome 6/15.

  19. Assessment of GFP expression and viability using the tali image-based cytometer.

    Science.gov (United States)

    Remple, Krissy; Stone, Laurel

    2011-11-17

    Single-cell and population information are commonly obtained either by flow cytometry or fluorescence microscopy. However, these two methods provide different information. Flow cytometry gives quantitative multi-parametric information about physical characteristics and staining or expression, but doesn't allow for visualization. Stand-alone fluorescence microscopy provides visual data, but doesn't allow for straightforward quantitative measurements(1). Image-based cytometry bridges the gap between these two methods, enabling the quick visualization and simultaneous quantitative analysis of thousands of cells in heterogeneous populations(2). Here, we present a method for performing cell viability and green fluorescent protein (GFP) expression assays using the Tali Image-Based Cytometer(3). The Tali instrument is a 3-channel (bright field, green fluorescence, red fluorescence) benchtop assay platform that offers several advantages over flow cytometry and fluorescence microscopy. The Tali cytometer is less expensive, takes up less bench space, requires less maintenance, and the work flow has been simplified so that the operation and analysis is much simpler and quicker. The Tali cytometer is capable of performing a range of suspension cell-based assays, including GFP and red fluorescent protein (RFP) expression, apoptosis(4-6) and cell viability analysis with propidium iodide (PI)(7-11). Here, we demonstrate the use of the Tali instrument in performing a cell viability assay in cells expressing GFP. GFP-transduced cells are stained using the Tali Viability Kit - Dead Cell Red. The cells are then pipetted into a Tali Cellular Analysis Slide and loaded into the cytometer. Bright field, red fluorescence and green fluorescence images are captured and analyzed using assay specific algorithms. Histograms are then generated to display cell size, PI fluorescence intensity, and GFP fluorescence intensity. These parameters can then be thresholded to home in on a specific cell

  20. Establishment of evaluation methods for the performance of flow cytometer%流式细胞仪性能评价方法的建立

    Institute of Scientific and Technical Information of China (English)

    王小林; 李昂; 杨硕

    2015-01-01

    Objective To Establish evaluation methods for the performance of flow cytometer .Methods Referring to the indus‐try standard YY/T0588‐2005 Flow Cytometry ,evaluating methods for the performance of BriCyte E6 flow cytometry was estab‐lished ,such as fluorescence sensitivity ,fluorescence linearity ,forward scatter sensitivity ,instrument resolution ,forward scatter/side scattering resolution ,DNA content linearity ,carry‐over rate ,accuracy of the cell surface marker ,reproducibility of the cell surface marker and instrument stability .Results The performance of BriCyte E6 met the requirements of industry standard .Conclusion The evaluation methods for the performance parameters could be reliable and could be used for the performance evaluation of flow cytometer .%目的:建立流式细胞仪性能评价方法。方法基于《YY/T0588‐2005流式细胞仪》行业标准,利用BriCyte E6流式细胞仪,建立适用于流式细胞仪性能评价的测试方案,包括荧光灵敏度、荧光线性、前向角散射光检测灵敏度、仪器分辨率、前向角散射光和侧向角散射光分辨率、倍体分析线性、携带污染率、表面标志物检测准确性、表面标志物检测重复性、仪器稳定性等。结果该流式细胞仪各项性能指标均满足行业标准规定的技术要求。结论上述性能指标测试方法可靠,能够对流式细胞仪性能进行全面评价。该方法对于流式细胞仪性能验证有一定的指导意义。

  1. Disscution of autophagy detection by imaging flow cytometer%成像流式细胞仪检测细胞自噬水平研究

    Institute of Scientific and Technical Information of China (English)

    时景仁; 郭向华; 王珊珊; 刘凯; 乔录新; 张玉林; 陈德喜

    2016-01-01

    Objective To detect autophagy levels in the cells by a novel imaging flow cytometer ,and to improve the detection methods of autophagy .Methods GFP‐LC3 plasmid was transfected into Huh7 or H1299 cells ,respectively ,followed by starvation for 24 hours in order to induce autophagy .Autophagy levels in the cells were detected by three ways :fluorescence microscopy ,west‐ern blotting and imaging flow cytometry .Quantified analysis of cellular autophagy data from the imaging flow cytometer was per‐formed by IDEAS software .Results Fluorescence microscopy showed that the numbers of autophagy spot in Huh7 cells were less than that in H1299 cells .The results of western blotting also indicated that compared with H1299 cells ,the ratio of LC3‐ Ⅱ and LC3‐ Ⅰ in Huh7 cells were lower distinctly .Whereas both of two methods couldn′t obtain quantitative data .The imaging flow cy‐tometer not only displayed the autophagic cellular images ,but also demonstrated that only 9 .0% of Huh7 cells exhibited over 6 LC3 spots(high autophagic levels) ,markedly less than the same population of H1299 cells(26 .2% ) .While GFP‐LC3 plasmid transfec‐tion rates of the two kind of cells were similar(25 .2% and 27 .6% ) .Conclusion The novel imaging flow cytometer has the advan‐tages of combination of quantitative data analysis and fluorescent imaging as well as could compensate the shortcomings of fluores‐cence microscopy and western blotting .It is more excellent to detect autophagy by imaging flow cytometer .%目的:采用新型成像流式细胞仪量化检测细胞自噬水平,完善自噬检测手段。方法用绿色荧光蛋白(GFP)‐微管相关蛋白轻链3(LC3)表达质粒转染 Huh7细胞和 H1299细胞,并进行24 h 饥饿处理,诱导自噬发生,分别用荧光显微镜拍照、蛋白免疫印迹法和成像流式细胞术3种方法检测细胞自噬水平。用 IDEAS 软件对成像流式细胞术的细胞自噬结果进行量化分析

  2. Application of Flow Cytometer in CHO Cell Counting and Cell Survival Rate Calculation%应用流式细胞仪进行CHO细胞计数及存活率计算

    Institute of Scientific and Technical Information of China (English)

    高茜; 管莹; 米其利; 李雪梅; 缪明明; 夭建华

    2012-01-01

    Using CHO bioengineering cell as target, application of flow cytometer in cell counting and cell survival rate calculation was explored in this paper. The results showed that cell counting and survival rate calculation could be accurate by the flow cytometer through the set of three parameters SS,EV, and FL3. Compared with blood cell counting plate method, flow cytometer method was more efficient and stable with faster operation and lower SD value. Therefore, to improve the production efficiency and toxicological evaluation reliability, flow cytometer method was recommend to be applied in large scale experiments for cell counting and survival rate calculation.%以CHO生物工程细胞为对象,探索了流式细胞仪在细胞计数和细胞存活率计算方面的应用.通过设定侧向角散射SS、电子体积EV及荧光强度FL3等3个参数,编制CHO细胞计数程序,再应用流式细胞仪进行细胞计数和存活率计算,其结果与血球计数板法基本一致,但操作更迅速、SD值更低,说明流式细胞仪法较血球计数板法更高效稳定.流式细胞仪法提高了生物工程的生产效率和毒理学评价的准确性,可应用于大规模细胞实验中.

  3. Evaluation of the SediMax automated microscopy sediment analyzer and the Sysmex UF-1000i flow cytometer as screening tools to rule out negative urinary tract infections.

    Science.gov (United States)

    Íñigo, Melania; Coello, Andreu; Fernández-Rivas, Gema; Carrasco, María; Marcó, Clara; Fernández, Anabel; Casamajor, Teresa; Ausina, Vicente

    2016-05-01

    Urinary tract infections (UTI) are highly prevalent in nosocomial and community settings, and their diagnosis is costly and time-consuming. Screening methods represent an important advance towards the final UTI diagnosis, diminishing inappropriate treatment or clinical complications. Automated analyzers have been developed and commercialized to screen and rule out negative urine samples. The aim of this study was to evaluate two of these automated analyzers (SediMax, an automatic sediment analyzer and UF-1000i a flow cytometer) to predict negative urine cultures. A total of 1934 urine samples were analyzed. A very strong correlation for white blood cells (WBC) (rs: 0.928) and a strong correlation for bacteria (BAC) (rs: 0.693) were obtained. We also calculated optimal cut-off points for both autoanalyzers: 18 WBC/μL and 97 BAC/μL for SediMax (sensitivity=96.25%, specificity=63.04%, negative predictive value=97.97%), and 40 WBC/μL and 460 BAC/μL for UF-1000i (sensitivity=98.13%, specificity=79.16%, negative predictive value=99.18%). The use of SediMax and UF-1000i resulted in a 46.33% and 57.19% reduction of all samples cultured, respectively. In conclusion, both analyzers are good UTI screening tools in our setting.

  4. Portable dual field gradient force multichannel flow cytometer device with a dual wavelength low noise detection scheme

    Energy Technology Data Exchange (ETDEWEB)

    James, Conrad D; Galambos, Paul C; Derzon, Mark S; Graf, Darin C; Pohl, Kenneth R; Bourdon, Chris J

    2012-10-23

    Systems and methods for combining dielectrophoresis, magnetic forces, and hydrodynamic forces to manipulate particles in channels formed on top of an electrode substrate are discussed. A magnet placed in contact under the electrode substrate while particles are flowing within the channel above the electrode substrate allows these three forces to be balanced when the system is in operation. An optical detection scheme using near-confocal microscopy for simultaneously detecting two wavelengths of light emitted from the flowing particles is also discussed.

  5. A novel flow cytometric hemozoin detection assay for real-time sensitivity testing of Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Maria Rebelo

    Full Text Available Resistance of Plasmodium falciparum to almost all antimalarial drugs, including the first-line treatment with artemisinins, has been described, representing an obvious threat to malaria control. In vitro antimalarial sensitivity testing is crucial to detect and monitor drug resistance. Current assays have been successfully used to detect drug effects on parasites. However, they have some limitations, such as the use of radioactive or expensive reagents or long incubation times. Here we describe a novel assay to detect antimalarial drug effects, based on flow cytometric detection of hemozoin (Hz, which is rapid and does not require any additional reagents. Hz is an optimal parasite maturation indicator since its amount increases as the parasite matures. Due to its physical property of birefringence, Hz depolarizes light, hence it can be detected using optical methods such as flow cytometry. A common flow cytometer was adapted to detect light depolarization caused by Hz. Synchronized in vitro cultures of P. falciparum were incubated for 48 hours with several antimalarial drugs. Analysis of depolarizing events, corresponding to parasitized red blood cells containing Hz, allowed the detection of parasite maturation. Moreover, chloroquine resistance and the inhibitory effect of all antimalarial drugs tested, except for pyrimethamine, could be determined as early as 18 to 24 hours of incubation. At 24 hours incubation, 50% inhibitory concentrations (IC50 were comparable to previously reported values. These results indicate that the reagent-free, real-time Hz detection assay could become a novel assay for the detection of drug effects on Plasmodium falciparum.

  6. Signal and depth enhancement for in vivo flow cytometer measurement of ear skin by optical clearing agents.

    Science.gov (United States)

    Ding, Yimin; Wang, Jing; Fan, Zhichao; Wei, Dan; Shi, Rui; Luo, Qingming; Zhu, Dan; Wei, Xunbin

    2013-01-01

    The in vivo flow cytometry (IVFC) has shown a great potential for detecting circulating tumor cells quantitatively in the bloodstream. However, the detection depth suffers from the strong light scattering of tissue. In this study, an innovative ear skin optical clearing agent (ESOCA) is employed to improve the signal quality of the IVFC. Our results show that compared with commonly used glycerol, topical application of ESOCA can enhance the transmittance of rat ear significantly in vivo. The labeled red blood cells can be detected by the IVFC with higher signal quality and greater detection depth. This study is very helpful for potential tumor metastasis studies by the IVFC in deep tissues.

  7. Optofluidic biosensors: miniaturized multi-color flow cytometer and fluorescence-activated cell sorter (microFACS)

    Science.gov (United States)

    Cho, Sung Hwan; Chen, Chun-Hao; Lo, Yu-Hwa

    2011-10-01

    We report a portable, low-cost, and high-performance microfluidics based fluorescence-activated cell sorter (microFACS) system to isolate E.coli. cells in combination with a modified specific fluorescence labeling method called tyramide signal amplification-fluorescence in situ hybridization (TSA-FISH). One of the primary challenges in studying bacterial communities that elude cell culturing is to isolate of low abundance bacteria cell from heterogeneous microbial samples. The proposed TSA-FISH protocol is flow cytometry compatible and yields about 10-fold enhancement in fluorescence labeling intensity over widely used standard FISH staining methods. Teflon AF coated optofluidic waveguide and space-time coding with a matched filter algorithm enhance its detection sensitivity. The microFACS is also able to enrich TSA-FISH labeled E.coli. cells by a factor of 223 with an integrated piezoelectric actuator and realtime control electronics system. The microFACS in conjunction with the modified TSA-FISH technologies demonstrates a highly effective and low cost solution potentially for the genomic complexity of complex bacterial communities.

  8. UF-100尿液分析仪在尿路感染筛检中的应用%Application of flow cytometer UF-100 in screening urinary tract infection

    Institute of Scientific and Technical Information of China (English)

    魏宏莲; 范世英; 王喜栋; 吴亚

    2011-01-01

    目的 比较OF-100尿液分析仪与尿培养在尿路感染中应用的临床价值.方法 对131份中段尿做细菌培养菌落计数,并同时利用OF-100流式尿液分析进行分析,比较两者结果.结果 38例细菌培养阳性,占29.O%,UF-100测定细菌计数与细菌培养比较,其诊断尿路感染的阳性预测值(CPPV)为73.8%,阴性预测值(NPV)为92.1%,结论用 OF-100快速筛检尿路感染,具有方便、经济、短时间出结果的特点,可作为诊断尿路感染的重要辅助指标.%Objective To compare flow eytometer UF-100 with urine bacterial culture in screening urinary tract infection.Methods 131 fresh midstream urine were collected, which were examined by cultures and counts of bacterial colonies and flow cytometer UF-100 analysis.The results were compared.Results There were 38 patients (29.0%, 38/ 131) cultured bacteria.The flow cytometer UF-100 positive predict value was 73.8 % and the negative predict value was 92.1% in screening for urinary tract infection.Conclusions Flow cytometer UF-100 is useful convenient and economical in screening for urinary tract infection.

  9. Validation of a single-platform, volumetric, CD45-assisted PanLeucogating Auto40 flow cytometer to determine the absolute number and percentages of CD4 T cells in resource-constrained settings using Cameroonian patients' samples.

    Science.gov (United States)

    Mbopi-Kéou, François-Xavier; Mion, Stefano; Sagnia, Bertrand; Bélec, Laurent

    2012-04-01

    The study evaluated the single-platform, volumetric, CD45-assisted PanLeucogating Auto40 flow cytometer (Apogee Flow Systems Ltd., Hemel Hempstead, United Kingdom) for CD4 T cell numeration, compared to the reference FACSCalibur flow cytometer. Results of absolute counts and percentages of CD4 T cells by Auto40 and FACSCalibur of 234 tripotassium EDTA (K3-EDTA)-blood samples from 146 adults and 88 children (aged from 18 months to 5 years), living in Yaoundé, Cameroon, were highly correlated (r(2) = 0.97 and r(2) = 0.98, respectively). The mean absolute bias and relative bias between Apogee Auto40 and FACSCalibur absolute CD4 T cell counts were +9.6 cells/μl, with limits of agreement from -251 to 270 cells/μl, and +4.1%, with limits of agreement from -16.1 to 24.4%, respectively. The mean absolute bias and relative bias between Apogee Auto40 and FACSCalibur CD4 T cell results expressed as percentages were +0.05% CD4 (95% confidence interval [CI], -0.03 to 0.41), with limits of agreement from -6.0 to 5.9% CD4, and +1.0%, with limits of agreement from -32.3 to 34.4%, respectively. The Auto40 counting allowed identification of the majority of adults with CD4 T cell counts below 200 cells/μl (sensitivity, 87%; specificity, 98%) or below 350 cells/μl (sensitivity, 92%; specificity, 98%) and of children with CD4 T cell counts below 750 cells/μl (sensitivity, 82%; specificity, 98%) or below 25% CD4(+) (sensitivity, 96%; specificity, 99%). The Auto40 analyzer is a reliable alternative flow cytometer for CD4 T lymphocyte enumeration to be used in routine immunological monitoring according to the WHO recommendations for HIV-infected adults as well as children living in resource-constrained settings.

  10. Study on Flow Cytometer Automatic Detection of Micronucleated Erythrocytes%基于单激光流式细胞仪的微核自动化检测方法研究

    Institute of Scientific and Technical Information of China (English)

    张园园; 张吉; 刘仕杰; 佟丽

    2012-01-01

    Objective To establish a quick and autom atic analyzing method that is based on a single-laser flow cytometer for the detection of the frequency of micronucleated erythrocytes from bone marrow. Methods Male Wistar rats were exposed to colchicines, and the frequency of micronucleated polychromatic erythrocytes (fMNPCE) and the frequency of micronucleated normochromatic erythrocytes (fMNNCE) were detected by manual scoring under fluorescence microscope and with single-laser flow cytometer based on acridine orange (AO) staining. Results With the increase of colchicines, fMNPCE and fMNNCE were increased, showing good dose-response relationship. The results of manual scoring under fluorescence microscope and detection with single-laser flow cytometer showed good correlation (r=0.958, P < 0.01). Conclusion The single-laser flow cytometer can be used to detect micronucleated erythrocytes from rat marrow quickly and automatically.%目的 应用单激光流式细胞仪检测法,建立快速、自动分析骨髓红细胞微核率的检测方法.方法 以秋水仙碱诱导雄性Wistar大鼠微核形成,采用吖叮橙(AO)荧光染色,分别用荧光显微镜及单激光流式细胞仪检测大鼠骨髓嗜多染红细胞微核率和正染红细胞微核率.结果 随着秋水仙碱浓度的增加,大鼠骨髓嗜多染红细胞微核率和正染红细胞微核率也随之增高,有良好的量效相关性;人工显微镜计数结果与流式细胞仪检测结果比较分析表明,两种方法的实验结果具有良好的相关性(r=0.958,P<0.01).结论 单激光流式细胞仪可替代人工方法检测骨髓红细胞微核率,方法快速、稳定.

  11. Preliminary Study on Freshwater Algae Monitoring by Flow Cytometer: A Case Study in Taihu Lake%应用流式细胞仪监测太湖藻类初探

    Institute of Scientific and Technical Information of China (English)

    徐兆安; 高怡; 吴东浩; 张会勇

    2012-01-01

    Flow cytometer was widely used in marine microbial plankton research, but seldomly used in freshwater algae quantitative study biological monitoring and early warning of algae blooms. In this paper, we discussed the possibility of algae monitoring by CytoSense flow cytometer. The results indicated that field operation is the best way to get good results. The lower detection limit was 1 million cells/L and above which the results of flow cytometer agrees well with manual microscopy results. Besides, flow cytometer acquired reliable reaulta in waters where suspended sediment concentration less than 108 mg/L. Cyt^Sense is portable, easy to operate, and with fast analysis ability and non-pollution to environments. It shows extensive application prospects in Taihu Lake algae monitoring.%流式细胞仪在海水微型浮游生物监测领域应用较为广泛,但在淡水藻类定量研究以及生物监测中应用仍较少.探讨了应用便携式浮游植物流式细胞仪CytoSense监测太湖藻类的可行性和时效性.结果表明,为了提高检测结果的准确性,流式细胞仪的应用过程中最好是现场采样、现场分析.流式细胞仪对藻细胞密度的检测下限为100万个/L,大于100万个/L时检测结果与人工镜检结果相吻合;在悬浮物含量小于108 mg/L的水体中,流式细胞仪检测结果具备较高的准确性.另外,流式细胞仪操作简单、分析速度快、便携性好、无污染,在太湖藻类监测中具有一定应用前景.

  12. Microfluidic Multichannel Flow Cytometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Techshot, Inc. proposes continued research and development of an on-orbit cell counter culminating in a deliverable hand-held blood cell counter in the form of a...

  13. Assessment of Cumulative Trauma Disorder (CTD) Risk for 3 Different Tasks Constructing and Repairing Multi-Layer Insulation (MLI) Blankets, Preparing the Dough for a Pizza, and Operating the Becton-Dickinson FACSAria Flow Cytometer

    Science.gov (United States)

    Gentzler, Marc; Kline, Martin; Palmer, Andrew; Terrone, Mark

    2007-01-01

    The Cumulative Trauma Disorder (CTD) risks for three different tasks using McCauley-Bell and Badiru's (1993) formula based on task, personal, and organizational factors were examined. For the Multi-Layer Insulation (MLI) blanket task, the results showed that the task, personal, and organizational risks were at about the same level. The personal risk factors for this task were evaluated using a hypothetical female employee age 52. For the pizza dough task, it was shown that the organizational risk was particularly high, with task related factors also at quite dangerous levels. On the other hand, there was a very low level of personal risk factors, based on a female age 17. The flow cytometer task was assessed with three different participants, a11 of whom had quite disparate levels of personal risk, which slightly affected the overall CTD risk. This reveals how individual difference variables certainly need to be considered. The task and organizational risks for this task were rated at about the same moderate level. The overall CTD risk averaged across the three participants was .335, indicating some risk. Compruing across the tasks revealed that the pizza dough task created the greatest overall CTD risk by far (.568), with the MLI (.325) and flow cytometer task (.335) having some risk associated with them. Future research should look into different tasks for more of a comparison

  14. Rapid Multiplexed Flow Cytometric Assay for Botulinum Neurotoxin Detection Using an Automated Fluidic Microbead-Trapping Flow Cell for Enhanced Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Ozanich, Richard M.; Bruckner-Lea, Cindy J.; Warner, Marvin G.; Miller, Keith D.; Antolick, Kathryn C.; Marks, James D.; Lou, Jianlong; Grate, Jay W.

    2009-07-15

    A bead-based sandwich immunoassay for botulinum neurotoxin serotype A (BoNT/A) has been developed and demonstrated using a recombinant 50 kDa fragment (BoNT/A-HC-fragment) of the BoNT/A heavy chain (BoNT/A-HC) as a structurally valid simulant. Three different anti-BoNT/A antibodies were attached to three different fluorescent dye encoded flow cytometry beads for multiplexing. The assay was conducted in two formats: a manual microcentrifuge tube format and an automated fluidic system format. Flow cytometry detection was used for both formats. The fluidic system used a novel microbead-trapping flow cell to capture antibody-coupled beads with subsequent sequential perfusion of sample, wash, dye-labeled reporter antibody, and final wash solutions. After the reaction period, the beads were collected for analysis by flow cytometry. Sandwich assays performed on the fluidic system gave median fluorescence intensity signals on the flow cytometer that were 2-4 times higher than assays performed manually in the same amount of time. Limits of detection were estimated at 1 pM (~50 pg/mL for BoNT/A-HC-fragment) for the 15 minute fluidic assay.

  15. 不同流式细胞分析仪检测淋巴细胞亚群的比较研究%Comparison of three different flow cytometers in the clinical assessment of lymphocyte subsets

    Institute of Scientific and Technical Information of China (English)

    王维维; 奚迪; 袁向亮; 沈立松

    2016-01-01

    Objective To evaluate the consistency and accuracy among 3 brands of flow cytometers (BriCyte E6,BD FACSCanto Ⅱ and Beckman Coulter FC 500) in the detection of lymphocyte subsets.Methods According to the methodology,the BriCyte E6 was compared with 2 flow cytometers commonly used in clinical detection.Seventy-three cases (40 male and 33 female) of anticoagulation peripheral blood specimens were collected in the clinical laborartory department of Xinhua Hospital in July 2015 and the percentage (%) and absolute number (#) of the lymphocyte subsets were detected by 3 different flow cytometers within samples collected 4 h.Results There were good consistency among the 3 flow cytometers (R2 >0.95,R2 from 0.969 5 to 0.992 4) in the detection of lymphocyte subsets percentage,so did in the detection of absolute number (R2 > 0.95,R2 from 0.969 1 to 0.993 3).As to the precision evaluation,in the detectionof CD8%,T#,CD4+ T# and CD8+ T#,BriCyte E6 achieved a low CV% compared with FACSCanto Ⅱ and FC 500 (Friedman statistics are 16.720,11.840,15.760 and 15.430,P =0.000 2,0.027,0.000 4,0.000 4,respectively).In the detection of T%,CD4%,NK%,B%,NK#,B#,there was no significant difference among the 3 flow cytometers (Friedman statistics are 4.242,3.916,0.852,2.595,1.835 and 0.578,P =0.119 9,0.141 2,0.653 2,0.273 3,0.399 6,0.749 0,respectively).Conclusions The 3 flow cytometers have a good consistency in the detection of lymphocyte subsets.BriCyte E6 may be an alternative or complement of existing flow cytometers.%目的 通过对淋巴细胞亚群百分比及绝对计数的检测,对比3种流式细胞仪(BriCyteE6、BD FACSCanto Ⅱ、Beckman Coulter FC 500)在淋巴细胞亚群检测中的一致性和精密度.方法 按照方法学对比的要求,将BriCyte E6与2种临床常用的流式细胞仪进行比对.2015年7月连续5d随机收集上海交通大学医学院附属新华医院检验科抽取的新鲜肝素抗凝外周全血标本73

  16. Multiplex immunoassay for persistent organic pollutants in tilapia: Comparison of imaging- and flow cytometry-based platforms using spectrally encoded paramagnetic microspheres

    Science.gov (United States)

    Recent developments in spectrally encoded microspheres (SEMs)-based technologies provide high multiplexing possibilities. Most SEMs-based assays required a flow cytometer with sophisticated fluidics and optics. The new imaging superparamagnetic SEMs-based platform transports SEMs with considerably ...

  17. BD FACSAriaIII流式细胞仪在血液学中的使用分析研究%Application of BD FACSAriaIII flow cytometer in the research

    Institute of Scientific and Technical Information of China (English)

    梁昊岳; 程雪莲; 杨晚竹; 王金宏

    2014-01-01

    目的:对BD FACSAriaIII流式细胞仪在应用中出现的故障原因进行分析、研究,为在科研工作中正确使用该仪器提供依据。方法:通过对2012-2013年实验血液学国家重点实验室技术平台BD FACSAriaIII流式细胞仪的使用情况进行统计,对使用过程中出现的常见故障和需要由厂商工程师现场解决的故障进行统计,总结出高发故障的原因及解决方法。结果:通过对BD FACSAriaIII流式细胞仪的故障进行分析,为高通量流式细胞分选仪的正确使用提供指导,提高仪器运行的稳定性。结论:正确的使用和良好的维护有助于保证BD FACSAriaIII流式细胞仪的正常运行,从而确保科研工作的顺利进行。%Objective:To provide a basis for proper use of BD FACSAriaIII flow cytometer by analyzing the related causes of its malfunction.Methods: Through study of using BD FACSAriaIII flow cytometer in core facilities of State Key Laboratory of Experimental Hematology in 2012-2013, frequently occurred malfunction, solved malfunction by manufacturer’s engineers and their causes and solutions are summarized.Results: To provide guidance of using high throughput cell sorters and improve the stability of running the instrument.Conclusion: Proper use and good repair helps to guarantee the normal operation of BD FACSAriaIII flow cytometer.

  18. A microflow cytometer for optical analysis of phytoplankton

    Science.gov (United States)

    Golden, Joel P.; Hashemi, Nastaran; Erickson, Jeffrey S.; Ligler, Frances S.

    2012-01-01

    Analysis of the intrinsic scatter and fluorescence profiles of marine algae can be used for general classification of organisms based on cell size and fluorescence properties. We describe the design and fabrication of a Microflow Cytometer on a chip for characterization of phytoplankton. The Microflow Cytometer measured distinct side-scatter and fluorescence properties of Synechococcus sp., Nitzschia d., and Thalassiosira p. Measurements were confirmed using the benchtop Accuri C6 flow cytometer. The Microflow Cytometer proved sensitive enough to detect and characterize picoplankton with diameter approximately 1 mm and larger phytoplankton of up to 80 mm in length. The wide range in size discrimination coupled with detection of intrinsic fluorescent pigments suggests that this Microflow Cytometer will be able to distinguish different populations of phytoplankton on unmanned underwater vehicles. Reversing the orientation of the grooves in the channel walls returns the sample stream to its original unsheathed position allowing separation of the sample stream from the sheath streams and the recycling of the sheath fluid.

  19. Reliable and accurate CD4+ T cell count and percent by the portable flow cytometer CyFlow MiniPOC and "CD4 Easy Count Kit-Dry", as revealed by the comparison with the gold standard dual platform technology.

    Directory of Open Access Journals (Sweden)

    Milena Nasi

    Full Text Available An accurate and affordable CD4+ T cells count is an essential tool in the fight against HIV/AIDS. Flow cytometry (FCM is the "gold standard" for counting such cells, but this technique is expensive and requires sophisticated equipment, temperature-sensitive monoclonal antibodies (mAbs and trained personnel. The lack of access to technical support and quality assurance programs thus limits the use of FCM in resource-constrained countries. We have tested the accuracy, the precision and the carry-over contamination of Partec CyFlow MiniPOC, a portable and economically affordable flow cytometer designed for CD4+ count and percentage, used along with the "CD4% Count Kit-Dry".Venous blood from 59 adult HIV+ patients (age: 25-58 years; 43 males and 16 females was collected and stained with the "MiniPOC CD4% Count Kit-Dry". CD4+ count and percentage were then determined in triplicate by the CyFlow MiniPOC. In parallel, CD4 count was performed using mAbs and a CyFlow Counter, or by a dual platform system (from Beckman Coulter based upon Cytomic FC500 ("Cytostat tetrachrome kit" for mAbs and Coulter HmX Hematology Analyzer (for absolute cell count.The accuracy of CyFlow MiniPOC against Cytomic FC500 showed a correlation coefficient (CC of 0.98 and 0.97 for CD4+ count and percentage, respectively. The accuracy of CyFlow MiniPOC against CyFlow Counter showed a CC of 0.99 and 0.99 for CD4 T cell count and percentage, respectively. CyFlow MiniPOC showed an excellent repeatability: CD4+ cell count and percentage were analyzed on two instruments, with an intra-assay precision below ± 5% deviation. Finally, there was no carry-over contamination for samples at all CD4 values, regardless of their position in the sequence of analysis.The cost-effective CyFlow MiniPOC produces rapid, reliable and accurate results that are fully comparable with those from highly expensive dual platform systems.

  20. Standardization of cytokine flow cytometry assays

    Directory of Open Access Journals (Sweden)

    Cox Josephine

    2005-06-01

    Full Text Available Abstract Background Cytokine flow cytometry (CFC or intracellular cytokine staining (ICS can quantitate antigen-specific T cell responses in settings such as experimental vaccination. Standardization of ICS among laboratories performing vaccine studies would provide a common platform by which to compare the immunogenicity of different vaccine candidates across multiple international organizations conducting clinical trials. As such, a study was carried out among several laboratories involved in HIV clinical trials, to define the inter-lab precision of ICS using various sample types, and using a common protocol for each experiment (see additional files online. Results Three sample types (activated, fixed, and frozen whole blood; fresh whole blood; and cryopreserved PBMC were shipped to various sites, where ICS assays using cytomegalovirus (CMV pp65 peptide mix or control antigens were performed in parallel in 96-well plates. For one experiment, antigens and antibody cocktails were lyophilised into 96-well plates to simplify and standardize the assay setup. Results (CD4+cytokine+ cells and CD8+cytokine+ cells were determined by each site. Raw data were also sent to a central site for batch analysis with a dynamic gating template. Mean inter-laboratory coefficient of variation (C.V. ranged from 17–44% depending upon the sample type and analysis method. Cryopreserved peripheral blood mononuclear cells (PBMC yielded lower inter-lab C.V.'s than whole blood. Centralized analysis (using a dynamic gating template reduced the inter-lab C.V. by 5–20%, depending upon the experiment. The inter-lab C.V. was lowest (18–24% for samples with a mean of >0.5% IFNγ + T cells, and highest (57–82% for samples with a mean of Conclusion ICS assays can be performed by multiple laboratories using a common protocol with good inter-laboratory precision, which improves as the frequency of responding cells increases. Cryopreserved PBMC may yield slightly more

  1. Applications of Flow Cytometer in Ecological Studies of Nano- and Pico - phytoplankton%流式细胞仪在微型浮游植物生态学中的应用

    Institute of Scientific and Technical Information of China (English)

    孙书存; 陆健健; 张利华

    2000-01-01

    Flow cytometer (FCM) can be used to obtain the muti - parameters of the light scattering and fluorescence of individual cell rapidly and conveniently. It has been more and more applied in oceanographic and limnological studies. The work principles of FCM and its applications in the ecological studies of nano- and pico- phytoplankton were introduced and reviewed based on some recent publications abroad and at home in this paper. By means of FCM, sub- populations of phytoplankton can easily be classified, counted and sorted, and then further studies of the adaptive ability and ecological responses of the sub - populations can be implemented. It was concluded that FCM would have a prosperous prospect in the studies of the primary production and the microbial food web in marine ecosystem.

  2. Standing surface acoustic wave (SSAW)-based microfluidic cytometer.

    Science.gov (United States)

    Chen, Yuchao; Nawaz, Ahmad Ahsan; Zhao, Yanhui; Huang, Po-Hsun; McCoy, J Phillip; Levine, Stewart J; Wang, Lin; Huang, Tony Jun

    2014-03-07

    The development of microfluidic chip-based cytometers has become an important area due to their advantages of compact size and low cost. Herein, we demonstrate a sheathless microfluidic cytometer which integrates a standing surface acoustic wave (SSAW)-based microdevice capable of 3D particle/cell focusing with a laser-induced fluorescence (LIF) detection system. Using SSAW, our microfluidic cytometer was able to continuously focus microparticles/cells at the pressure node inside a microchannel. Flow cytometry was successfully demonstrated using this system with a coefficient of variation (CV) of less than 10% at a throughput of ~1000 events s(-1) when calibration beads were used. We also demonstrated that fluorescently labeled human promyelocytic leukemia cells (HL-60) could be effectively focused and detected with our SSAW-based system. This SSAW-based microfluidic cytometer did not require any sheath flows or complex structures, and it allowed for simple operation over a wide range of sample flow rates. Moreover, with the gentle, bio-compatible nature of low-power surface acoustic waves, this technique is expected to be able to preserve the integrity of cells and other bioparticles.

  3. Small Submersible Robust Microflow Cytometer for Quantitative Detection of Phytoplankton Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Translume will develop an extremely robust, inexpensive micro flow cytometer (mFCM) for quantitative detection of phytoplankton. This device will be designed to be...

  4. 流式细胞仪的发展历史及其原理和应用进展%The development history, mechanism and application of Flow cytometer

    Institute of Scientific and Technical Information of China (English)

    魏熙胤; 牛瑞芳

    2006-01-01

    流式细胞分析(flow cytometry FCM),即流式细胞术,是用流式细胞仪(flow cytometer FCM)测量液相中悬浮细胞或微粒的一种现代分析技术.它是众多不同学术背景、不同科技领域相结合的结晶.它是物理学、生物学、医学等综合运用的产物.本文就流式细胞术的发展历史、流式细胞仪的原理及在各领域的应用进行综述,阐明现代流式细胞术由于结合单克隆抗体技术、定量荧光细胞化学技术,使其在生物学、临床医学、药物学、材料学等众多研究领域中的应用有更加突飞猛进的发展.

  5. Microflow Cytometers with Integrated Hydrodynamic Focusing

    Directory of Open Access Journals (Sweden)

    Martin Schmidt

    2013-04-01

    Full Text Available This study demonstrates the suitability of microfluidic structures for high throughput blood cell analysis. The microfluidic chips exploit fully integrated hydrodynamic focusing based on two different concepts: Two-stage cascade focusing and spin focusing (vortex principle. The sample—A suspension of micro particles or blood cells—is injected into a sheath fluid streaming at a substantially higher flow rate, which assures positioning of the particles in the center of the flow channel. Particle velocities of a few m/s are achieved as required for high throughput blood cell analysis. The stability of hydrodynamic particle positioning was evaluated by measuring the pulse heights distributions of fluorescence signals from calibration beads. Quantitative assessment based on coefficient of variation for the fluorescence intensity distributions resulted in a value of about 3% determined for the micro-device exploiting cascade hydrodynamic focusing. For the spin focusing approach similar values were achieved for sample flow rates being 1.5 times lower. Our results indicate that the performances of both variants of hydrodynamic focusing suit for blood cell differentiation and counting. The potential of the micro flow cytometer is demonstrated by detecting immunologically labeled CD3 positive and CD4 positive T-lymphocytes in blood.

  6. AIDS患者和HIV感染者T淋巴细胞亚群的变化及其临床意义%Alteration of T cell subsets in HIV/AIDS Patients by Flow Cytometer

    Institute of Scientific and Technical Information of China (English)

    刘志祥; 姚忠红; 周芳

    2005-01-01

    目的: 应用流式细胞仪(Flow cytometer, FCM)检测AIDS患者和HIV感染者外周血T淋巴细胞亚群的表达和绝对计数情况. 方法:应用流式细胞仪三色荧光标记和绝对计数法检测50例正常健康成人,12例AIDS患者,18例HIV感染者的外周血CD3+、CD4+、CD8+的表达及绝对数量. 结果:AIDS患者和HIV感染者的CD4+淋巴细胞明显比正常人低,特别是AIDS患者CD4+淋巴细胞数低于200个/mm3,CD8+淋巴细胞显著增高,CD4+/CD8+比值倒置. 结论:用FCM检测AIDS患者和HIV 感染者的免疫状况,可作为评价AIDS病程进展的重要指标.

  7. Evaluation of a Low-Cost Strategy for Enumerating CD4 Lymphocyte Absolute Count and Percentage Using the FACSCalibur Flow Cytometer in HIV-Infected Patients from a Resource-Limited Setting.

    Science.gov (United States)

    Alvarez-Uria, Gerardo; Reddy, Raghuprakash; Reddy, Srinivasulu; Naik, Praveen K; Midde, Manoranjan

    2012-01-01

    Enumeration of CD4 lymphocytes is essential for the clinical management of HIV-infected patients, but it can be difficult to afford in developing countries. In this study we evaluated a reagent reduction strategy for reducing the cost of enumerating CD4 cell absolute count and percentage using the FACSCalibur flow cytometer (Becton Dickinson). We compared the protocol recommended by the manufacturer with a protocol that used half of the usual amount of CD3/CD4/CD45 monoclonal antibody reagent in 100 samples from HIV-infected patients in a rural hospital in India. The concordance correlation coefficient between the two protocols was 0.976 for CD4 cell count and 0.984 for CD4 cell percentage. We did not find significant bias when performing Deming regression or Bland-Altman analysis. Sensitivity and specificity were 97% and 98.5% for identifying patients with less than 200 CD4 cells/ μ L, 98.1% and 93.8% for identifying patients with less than 350 CD4 cells/ μ L, and 100% and 94.7% for identifying patients with less than 25% CD4 cells, respectively. This reagent reduction strategy can be used for reducing the cost of enumerating CD4 lymphocytes in high-volume laboratories from resource-limited settings.

  8. Assessment of a five-color flow cytometric assay for verifying automated white blood cell differentials

    Institute of Scientific and Technical Information of China (English)

    HUANG Chun-mei; YU Lian-hui; PU Cheng-wei; WANG Xin; WANG Geng; SHEN Li-song; WANG Jian-zhong

    2013-01-01

    Background White blood cell (WBC) counts and differentials performed using an automated cell counter typically require manual microscopic review.However,this last step is time consuming and requires experienced personnel.We evaluated the clinical efficiency of using flow cytometry (FCM) employing a six-antibody/five-color reagent for verifying automated WBC differentials.Methods A total of 56 apparently healthy samples were assessed using a five-color flow cytometer to verify the normal reference ranges of WBC differentials.WBC differentials of 622 samples were also determined using both a cell counter and FCM.These results were then confirmed using manual microscopic methods.Results The probabilities for all of the parameters of WBC differentials exceeded the corresponding normal reference ranges by no more than 7.5%.The resulting WBC differentials were well correlated between FCM and the cell counter (r >0.88,P <0.001),except in the case of basophils.Neutrophils,lymphocytes,and eosinophils were well correlated between FCM and standard microscopic cytology assessment (r >0.80,P <0.001).The sensitivities of FCM for identification of immature granulocytes and blast cells (72.03% and 22.22%,respectively) were higher than those of the cell counter method (44.92% and 11.11%,respectively).The specificities of FCM were all above 85%,substantially better than those of the cell counter method.Conclusion These five-color FCM assays could be applied to accurately verify abnormal results of automated assessment of WBC differentials.

  9. 流式细胞仪工作原理与临床应用%The Principle of Flow Cytometer and Clinical Application

    Institute of Scientific and Technical Information of China (English)

    李华; 常莹

    2011-01-01

    流式细胞术( flow cytometry,FCM)为当代最先进的细胞定量分析技术,目前普遍应用于临床医学检测和基础医学研究领域.本文阐述了流式细胞仪的结构和原理,总结了其在临床医学领域中诸多方面的应用.

  10. Use of laminar flow patterning for miniaturised biochemical assays

    DEFF Research Database (Denmark)

    Regenberg, Birgitte; Krühne, Ulrich; Beyer, M.

    2004-01-01

    Laminar flow in microfluidic chambers was used to construct low (one dimensional) density arrays suitable for miniaturized biochemical assays. By varying the ratio of flows of two guiding streams flanking a sample stream, precise focusing and positioning of the latter was achieved, and reactive...... species carried in the sample stream were deposited on functionalized chip surfaces as discrete 50 mm wide lanes. Using different model systems we have confirmed the method's suitability for qualitative screening and quantification tasks in receptor-ligand assays, recording biotin......-streptavidin interactions, DNA-hybridization and DNA-triplex formation. The system is simple, fast, reproducible, flexible, and has small sample requirements....

  11. Label-free whole blood cell differentiation based on multiple frequency AC impedance and light scattering analysis in a micro flow cytometer.

    Science.gov (United States)

    Simon, Peter; Frankowski, Marcin; Bock, Nicole; Neukammer, Jörg

    2016-06-21

    We developed a microfluidic sensor for label-free flow cytometric cell differentiation by combined multiple AC electrical impedance and light scattering analysis. The measured signals are correlated to cell volume, membrane capacity and optical properties of single cells. For an improved signal to noise ratio, the microfluidic sensor incorporates two electrode pairs for differential impedance detection. One-dimensional sheath flow focusing was implemented, which allows single particle analysis at kHz count rates. Various monodisperse particles and differentiation of leukocytes in haemolysed samples served to benchmark the microdevice applying combined AC impedance and side scatter analyses. In what follows, we demonstrate that AC impedance measurements at selected frequencies allow label-free discrimination of platelets, erythrocytes, monocytes, granulocytes and lymphocytes in whole blood samples involving dilution only. Immunofluorescence staining was applied to validate the results of the label-free cell analysis. Reliable differentiation and enumeration of cells in whole blood by AC impedance detection have the potential to support medical diagnosis for patients with haemolysis resistant erythrocytes or abnormally sensitive leucocytes, i.e. for patients suffering from anaemia or leukaemia.

  12. Feasibility of using a particle counter or flow-cytometer for bacterial enumeration in the assimilable organic carbon (AOC) analysis method.

    Science.gov (United States)

    Aggarwal, Srijan; Jeon, Youchul; Hozalski, Raymond M

    2015-09-01

    Assimilable organic carbon (AOC) is one of the major determinants of microbial growth and stability in drinking water distribution systems. Nevertheless, AOC measurements are rarely conducted in practice owing, in part, to the tedious and time-consuming nature of the bioassay. Herein, we compared three alternative cell count approaches [flow cytometry with staining (FC-S), flow cytometry without staining (FC-NS), and particle counting (Coulter counter; CC)] for bacterial enumeration as a means to expedite the AOC bioassay. Our results suggest that of the three methods only FC-S provides a suitable alternative to plate counting for rapid and accurate enumeration of both P17 and NOX in the AOC bioassay. While the cell counts obtained by FC-NS were linearly correlated with those obtained using the traditional heterotrophic plate count (HPC) method (FC-NS: R(2) = 0.89-0.96), the AOC values obtained by FC-NS were overestimated by 18-57 %. The CC approach was unsuccessful in enumerating Spirillum strain NOX cells because of the relatively small size of that organism. The CC counts were linearly correlated with HPC for Pseudomonas fluorescens strain P-17 (P17) cells (R(2) = 0.83) but like FC-NS, the CC approach also overestimated the AOC values (for P-17). The advantage of the FC-S method over the other two is improved sensitivity and the ability to specifically enumerate whole cells (and likely viable) as opposed to non-viable cells, cell debris, and other contaminating particles introduced by the test water itself or sample handling.

  13. Evaluation of genetic homogeneity in tissue culture regenerates of Jatropha curcas L. using flow cytometer and DNA-based molecular markers.

    Science.gov (United States)

    Rathore, Mangal S; Yadav, P; Mastan, Shaik G; Prakash, Ch R; Singh, A; Agarwal, Pradeep K

    2014-01-01

    The present investigation aimed to evaluate the reliability of in vitro propagation methods for elite genotypes of Jatropha curcas L., that maintain genetic integrity of tissue culture (TC) regenerates among two regeneration systems developed through direct shoot bud regeneration using nodal/apical shoot segments (protocol-A) and in vitro-derived leaves (protocol-B) as explants. Random amplified polymorphic DNA (RAPD), intersimple sequence repeat (ISSR), simple sequence repeat (SSR) molecular markers, and flow cytometery (FCM) were employed to evaluate genetic homogeneity in TC-regenerates at different passages of subcultures. RAPD markers showed genetic homogeneity in fifth-generation TC-regenerates of both protocols. ISSR markers showed genetic stability of leaf regenerates (protocol-B) at 10th generation. FCM analysis of TC-regenerates at 10th generation in protocol-B and at 20th generation in both protocols, showed stability of ploidy level. SSR assessment of TC-regenerates at 20th generation in both protocols confirmed genetic homogeneity. The results confirmed the genetic stability of the TC-regenerates and demonstrated the reliability of the regeneration systems developed so far using explants of two different origins, for large-scale multiplication of elite genotypes of Jatropha.

  14. Detection of Human Homologous Blood Transfusion by Flow Cytometer%流式细胞技术检测人异体血液回输方法研究

    Institute of Scientific and Technical Information of China (English)

    河春姬; 杨声; 董颖; 张力思; 景晶; 徐友宣; 吴侔天

    2015-01-01

    Objective :Blood transfusion could increase red blood cells (RBCs ) rapidly and may enhance endurance performance significantly .A validation was carried out to prove the reliabili‐ty and operability of the detection of homologous blood transfusion with flow cytometry tech‐nology .Method :Homologous blood transfusion was detected using flow cytometry technique to observe the presence of different RBCs phenotypes of eight different antigens in a blood sam‐ple .The analysis of 46 blood samples containing different percentages (0 ~ 5% ) of homolo‐gous RBCs was carried out by three independent analysts .Results :The method afforded satis‐factory results in terms of robustness ,sensitivity ,specificity ,precision and stability .No false positive results were observed .All samples contained 3% homologous RBCs were unambigu‐ously detected .These samples were stable over 4 weeks after using cell stable buffer at 4 ~8℃ .Conclusion :This method fulfils the ISO‐17025 accreditation and has been accredited by China National Accreditation Service for Conformity Assessment (CNAS ) .The method has been successfully utilized to the detection of homologous blood transfusion in major events and routine doping‐control samples .%目的:血液回输能够迅速增加机体红细胞数,增强有氧运动能力,提高运动成绩。采用流式细胞技术对异体血液回输的检测方法进行适用性验证研究,以证明该技术检测异体血液回输的可靠性和可操作性。研究方法:应用流式细胞技术,通过检测血液中荧光标记的红细胞血型抗原表达形式的方法,追踪是否存在微量的异体红细胞群,并判断是否接受异体血液回输。3名检测员使用流式细胞仪对46例不同比例(0~5%)体外混合的全血进行8种红细胞血型抗原的检测。结果:本研究对该方法的特异性、灵敏度、精密度、稳定性等进行评估。此方法检测无假阳

  15. High frequency lateral flow affinity assay using superparamagnetic nanoparticles

    Science.gov (United States)

    Lago-Cachón, D.; Rivas, M.; Martínez-García, J. C.; Oliveira-Rodríguez, M.; Blanco-López, M. C.; García, J. A.

    2017-02-01

    Lateral flow assay is one of the simplest and most extended techniques in medical diagnosis for point-of-care testing. Although it has been traditionally a positive/negative test, some work has been lately done to add quantitative abilities to lateral flow assay. One of the most successful strategies involves magnetic beads and magnetic sensors. Recently, a new technique of superparamagnetic nanoparticle detection has been reported, based on the increase of the impedance induced by the nanoparticles on a RF-current carrying copper conductor. This method requires no external magnetic field, which reduces the system complexity. In this work, nitrocellulose membranes have been installed on the sensor, and impedance measurements have been carried out during the sample diffusion by capillarity along the membrane. The impedance of the sensor changes because of the presence of magnetic nanoparticles. The results prove the potentiality of the method for point-of-care testing of biochemical substances and nanoparticle capillarity flow studies.

  16. Shellfish Hemocyte Data from Flow Cytometers

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Various immune function tests using shellfish hemolymph have been developed to determine shellfish health. These tests including viability, phagocytosis, adhesion,...

  17. A rapid and robust tri-color flow cytometry assay for monitoring malaria parasite development.

    Science.gov (United States)

    Malleret, Benoît; Claser, Carla; Ong, Alice Soh Meoy; Suwanarusk, Rossarin; Sriprawat, Kanlaya; Howland, Shanshan Wu; Russell, Bruce; Nosten, Francois; Rénia, Laurent

    2011-01-01

    Microscopic examination of Giemsa-stained thin blood smears remains the gold standard method used to quantify and stage malaria parasites. However, this technique is tedious, and requires trained microscopists. We have developed a fast and simple flow cytometry method to quantify and stage, various malaria parasites in red blood cells in whole blood or in vitro cultured Plasmodium falciparum. The parasites were stained with dihydroethidium and Hoechst 33342 or SYBR Green I and leukocytes were identified with an antibody against CD45. Depending on the DNA stains used, samples were analyzed using different models of flow cytometers. This protocol, which does not require any washing steps, allows infected red blood cells to be distinguished from leukocytes, as well as allowing non-infected reticulocytes and normocytes to be identified. It also allows assessing the proportion of parasites at different developmental stages. Lastly, we demonstrate how this technique can be applied to antimalarial drug testing.

  18. Analytical Tools to Improve Optimization Procedures for Lateral Flow Assays

    Directory of Open Access Journals (Sweden)

    Helen V. Hsieh

    2017-05-01

    Full Text Available Immunochromatographic or lateral flow assays (LFAs are inexpensive, easy to use, point-of-care medical diagnostic tests that are found in arenas ranging from a doctor’s office in Manhattan to a rural medical clinic in low resource settings. The simplicity in the LFA itself belies the complex task of optimization required to make the test sensitive, rapid and easy to use. Currently, the manufacturers develop LFAs by empirical optimization of material components (e.g., analytical membranes, conjugate pads and sample pads, biological reagents (e.g., antibodies, blocking reagents and buffers and the design of delivery geometry. In this paper, we will review conventional optimization and then focus on the latter and outline analytical tools, such as dynamic light scattering and optical biosensors, as well as methods, such as microfluidic flow design and mechanistic models. We are applying these tools to find non-obvious optima of lateral flow assays for improved sensitivity, specificity and manufacturing robustness.

  19. Establishment of normal reference value for CD64 in healthy adolescents aged 14 - 1 6 years by Canto Ⅱ flow ;cytometer%应用 CantoⅡ流式细胞仪建立14~16岁人群 CD64正常参考值的探讨∗

    Institute of Scientific and Technical Information of China (English)

    吕颖; 闫丹丹; 张巍; 刘玉珍; 卢建华; 段媛媛; 戴二黑; 闫会敏

    2016-01-01

    Objective To investigate the normal reference value establishment of CD64 in the healthy adoles-cents aged 14-1 6 years by the CantoⅡ flow cytometer.Methods The peripheral blood samples collected from 52 healthy adolescents aged 14-1 6 years were detected the CD64 expression by using the BD CantoⅡ flow cytometer, and the results were statistically analyzed.Results The expression of CD64 was highest in monocytes,but almost no expression was found in lymphocytes.The CD64 mean fluorescence intensity (MFI)in neutrophils was 782.78,its 95% normal reference range was 21 1.78 - 1 353.78,the 95% normal reference range of CD64 index was less than 1.53.Conclusion The method for detecting the normal reference value of CD64 in the healthy adolescents by the CantoⅡ flow cytometer is preliminarily established,providing a reference for the basic researches and clinical diano-sis.%目的:探讨应用 CantoⅡ流式细胞仪建立14~16岁青少年人群的 CD64正常参考值。方法选取14~16岁健康体检者52例,静脉抽取外周血,运用 CantoⅡ流式细胞仪检测 CD64的表达,并进行统计学分析。结果CD64在单核细胞中表达最高,在淋巴细胞中几乎不表达,在中性粒细胞中平均荧光强度为782.78,95%正常参考值范围为211.78~1353.78,CD64指数的单侧95%正常参考值范围为<1.53。结论初步建立了应用 CantoⅡ流式细胞仪检测 CD64正常参考值的方法,为基础研究及临床诊断提供参考。

  20. A contact-imaging based microfluidic cytometer with machine-learning for single-frame super-resolution processing.

    Science.gov (United States)

    Huang, Xiwei; Guo, Jinhong; Wang, Xiaolong; Yan, Mei; Kang, Yuejun; Yu, Hao

    2014-01-01

    Lensless microfluidic imaging with super-resolution processing has become a promising solution to miniaturize the conventional flow cytometer for point-of-care applications. The previous multi-frame super-resolution processing system can improve resolution but has limited cell flow rate and hence low throughput when capturing multiple subpixel-shifted cell images. This paper introduces a single-frame super-resolution processing with on-line machine-learning for contact images of cells. A corresponding contact-imaging based microfluidic cytometer prototype is demonstrated for cell recognition and counting. Compared with commercial flow cytometer, less than 8% error is observed for absolute number of microbeads; and 0.10 coefficient of variation is observed for cell-ratio of mixed RBC and HepG2 cells in solution.

  1. Detection of Shiga Toxins by Lateral Flow Assay

    Directory of Open Access Journals (Sweden)

    Kathryn H. Ching

    2015-04-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC produce shiga toxins (Stxs that can cause human disease and death. The contamination of food products with STEC represents a food safety problem that necessitates rapid and effective detection strategies to mitigate risk. In this manuscript, we report the development of a colorimetric lateral flow assay (LFA for the rapid detection of Stxs in <10 min using a pair of monoclonal antibodies that bind epitopes common to Stx1 and six Stx2 variants. This LFA provides a rapid and sensitive test for the detection of Stxs directly from STEC culture supernatants or at risk food samples with a 0.1 ng/mL limit of detection (LOD for Stx2a. This Stx LFA is applicable for use in the rapid evaluation of Stx production from cultured E. coli strains or as a tool to augment current methods as part of food safety testing.

  2. Optofluidic Device Based Microflow Cytometers for Particle/Cell Detection: A Review

    Directory of Open Access Journals (Sweden)

    Yushan Zhang

    2016-04-01

    Full Text Available Optofluidic devices combining micro-optical and microfluidic components bring a host of new advantages to conventional microfluidic devices. Aspects, such as optical beam shaping, can be integrated on-chip and provide high-sensitivity and built-in optical alignment. Optofluidic microflow cytometers have been demonstrated in applications, such as point-of-care diagnostics, cellular immunophenotyping, rare cell analysis, genomics and analytical chemistry. Flow control, light guiding and collecting, data collection and data analysis are the four main techniques attributed to the performance of the optofluidic microflow cytometer. Each of the four areas is discussed in detail to show the basic principles and recent developments. 3D microfabrication techniques are discussed in their use to make these novel microfluidic devices, and the integration of the whole system takes advantage of the miniaturization of each sub-system. The combination of these different techniques is a spur to the development of microflow cytometers, and results show the performance of many types of microflow cytometers developed recently.

  3. Detection of Platelet-Monocyte Aggregates by the ADAM® Image Cytometer

    OpenAIRE

    Jung, Bo Kyeung; Cho, Chi Hyun; Moon, Kyung Chul; sung Hur, Dae; YOON, Jeong-Ah; Yoon, Soo-Young

    2014-01-01

    Background: Inappropriate platelet activation is known to be associated with various thrombotic disorders. Platelet-monocyte aggregates (PMAs), whose formation is mediated by platelet surface P-selectin (CD62P), can be used as a reliable marker to detect platelet activation. Previous studies have generally detected PMAs through flow cytometry-based approaches. Recently, the ADAM® image cytometer (Nanoentek Inc., Seoul, Korea) was developed for image-based cellular analysis. In this study, we ...

  4. The correlation studies on the quantities of the fetal RBCs in the pregnancies with type O be quantified by flow cytometer (FCM) and the incidence of hemolytic disease of newborn( HDN)%流式细胞术检测O型孕妇血液中胎儿微量A(B)红细胞与新生儿溶血病发病率的相关性研究

    Institute of Scientific and Technical Information of China (English)

    周英; 吕文彬; 李健; 陈雪; 王乃红; 迭敏; 方军

    2012-01-01

    目的 运用流式细胞术产前非侵入性检测ABO血型不合导致新生儿溶血病,探讨该方法在临床的实用性.方法 运用已建立的间接标记法[一抗为IgG抗-A(B),二抗为FITC-抗人IgG(γ),F(ab’)2]染色,采用流式细胞术检测O型孕妇血液中胎儿微量A(B)红细胞.结果 流式细胞术与血清学方法检测ABO血型不合导致新生儿溶血病两种方法结果差异有统计学意义.追踪检测O型孕妇体内胎儿微量A(B)红细胞所占比例数据显示,较早进行产前诊断能在一定程度上帮助预防、诊断HDN. 结论 建立了流式细胞术产前非侵入性检测ABO血型不合导致新生儿溶血病的方法,孕妇在产前常规作流式细胞术检测,为ABO血型不合导致新生儿溶血病提供了一种可靠的诊断依据.%Objective To use the noninvasive method of flow cytometer( FCM) detecting the hemolytic disease of new-bom (HDN) due to the mismatching of ABO blood group system, exploring the practical of this method. Methods Using the indirect method(IgG anti-A(B) as the first antibody,FITC- anti- IgG F(ab')2 as the second antibody) to dyeing the cells,and the trace quantities of the fetal RBCs in the pregnancies with type 0 was quantified by flow cytometer ( FCM). Results Difference between the two methods of flow cytometer( FCM) and serological test was significant . The detected data in the investigation shows that it could be used to prevent hemolytic disease of newborn(HDN) ,if the ante-natal detecting be carried out much earlier.Conclusion Establishing the noninvasive method of flow cytometer( FCM) to detect the hemolytic disease of newborn (HDN). It may be used for diagnosis of hemolytic disease of newbom(HDN)due to the mismatching of ABO blood group system in ante-natal detecting.

  5. Multiplex immunoassay for persistent organic pollutants in tilapia: comparison of imaging- and flow cytometry-based platforms using spectrally encoded paramagnetic microspheres

    NARCIS (Netherlands)

    Meimaridou, A.; Haasnoot, W.; Shelver, W.L.; Franek, M.; Nielen, M.W.F.

    2013-01-01

    Recent developments in spectrally encoded microspheres (SEMs)-based technologies provide high multiplexing possibilities. Most SEMs-based assays require a flow cytometer with sophisticated fluidics and optics. A new imaging super-paramagnetic SEMs-based alternative platform transports SEMs with cons

  6. Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, R P; Langlois, R G; Nasarabadi, S; Benett, W J; Colston, B W; Johnson, D C; Brown, S B; Stratton, P L; Milanovich, F P

    2002-04-17

    This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flow cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.

  7. Validation of a Flow Cytometry Based Binding Assay for Evaluation of Monoclonal Antibody Recognizing EGF Receptor

    Science.gov (United States)

    Cedeño-Arias, Mercedes; Sánchez-Ramírez, Javier; Blanco-Santana, Rancés; Rengifo-Calzado, Enrique

    2011-01-01

    An ideal test used to characterize a product must be appropriate for the measurement of product quality, manufacturing consistency, product stability, and comparability studies. Flow cytometry has been successfully applied to the examination of antibodies and receptors on membrane surfaces; however, to date, the analytical validation of cytometry based assays is limited. Here we report on the validation of a flow cytometry-based assay used in the evaluation of nimotuzumab binding to cells over-expressing EGFR on cell surface. The assay was validated by examining, assay robustness, specificity, repeatability and intermediate precision. The assay was highly specific, robust for all studied factors except for cell fixation with 1% paraformaldehyde and met criteria for precision with RSD < 2%. In addition the assay has stability-indicating properties evidenced by the ability to detect changes in mAb degraded samples. Most importantly, the assay demonstrated to be useful for its intended use. PMID:21886904

  8. A continuous-flow ATP amplification system for increasing the sensitivity of quantitative bioluminescence assay

    OpenAIRE

    Satoh, Tetsuya; Shinoda, Yasuharu; Alexandrov, Maxym; Kuroda, Akio; Murakami, Yuji

    2008-01-01

    We constructed a novel ATP amplification reactor using a continuous-flow system, and this allowed us to increase the sensitivity of quantitative bioluminescence assay by controlling the number of ATP amplification cycles. We previously developed a bioluminescence assay coupled with ATP amplification using a batch system. However, it was difficult to control the number of amplification cycles. In this study, ATP amplification was performed using a continuous-flow system, and significant linear...

  9. Nanoparticle-based assays in automated flow systems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Passos, Marieta L.C. [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Pinto, Paula C.A.G., E-mail: ppinto@ff.up.pt [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Santos, João L.M., E-mail: joaolms@ff.up.pt [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Saraiva, M. Lúcia M.F.S., E-mail: lsaraiva@ff.up.pt [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Araujo, André R.T.S. [LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto (Portugal); Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Av. Dr. Francisco de Sá Carneiro, n° 50, 6300-559 Guarda (Portugal)

    2015-08-19

    Nanoparticles (NPs) exhibit a number of distinctive and entrancing properties that explain their ever increasing application in analytical chemistry, mainly as chemosensors, signaling tags, catalysts, analytical signal enhancers, reactive species generators, analyte recognition and scavenging/separation entities. The prospect of associating NPs with automated flow-based analytical is undoubtedly a challenging perspective as it would permit confined, cost-effective and reliable analysis, within a shorter timeframe, while exploiting the features of NPs. This article aims at examining state-of-the-art on continuous flow analysis and microfluidic approaches involving NPs such as noble metals (gold and silver), magnetic materials, carbon, silica or quantum dots. Emphasis is devoted to NP format, main practical achievements and fields of application. In this context, the functionalization of NPs with distinct chemical species and ligands is debated in what concerns the motivations and strengths of developed approaches. The utilization of NPs to improve detector's performance in electrochemical application is out of the scope of this review. The works discussed in this review were published in the period of time comprised between the years 2000 and 2013. - Highlights: • The state of the art of flowing stream systems comprising NPs was reviewed. • The use of different types of nanoparticles in each flow technique is discussed. • The most expressive and profitable applications are summarized. • The main conclusions and future perspectives were compiled in the final section.

  10. An automated flow cytometric micronucleus assay for human lymphocytes.

    Science.gov (United States)

    Schreiber, G A; Beisker, W; Braselmann, H; Bauchinger, M; Bögl, K W; Nüsse, M

    1992-12-01

    A new flow cytometric method is presented for scoring micronuclei (MN) in human lymphocytes after in vitro gamma-irradiation. Fifty to fifty-five hours after PHA-stimulation, the frequency of micronuclei per nucleus and the fraction of cells in the second cell cycle were measured using flow cytometry. All data were automatically analysed using our DAS-software package. Eight individual linear-quadratic dose response curves derived from five donors revealed inter- and intra-individual variabilities of all curve parameters. Since also an age dependence was found for spontaneous MN-frequencies and for the linear curve parameter, a combined linear-quadratic age-dose-effect model was used to fit the data. The 90% prediction intervals show that a reliable individual dose estimation for donors aged between 23 and 54 years cannot be achieved for exposures below 1 Gy.

  11. A Microflow Cytometer with a Rectangular Quasi-Flat-Top Laser Spot.

    Science.gov (United States)

    Zhao, Jingjing; You, Zheng

    2016-09-11

    This work develops a microflow cytometer, based on a microfluidic chip for three-dimensional (3D) hydrodynamic focusing and a binary optical element (BOE) for shaping and homogenizing a laser beam. The microfluidic chip utilizes sheath flows to confine the sample flow along the channel centerline with a narrow cross section. In addition to hydrodynamic focusing, secondary flows are generated to strengthen the focusing in the vertical direction. In experiments, the chip was able to focus the sample flow with cross sections of 15 μm high and 8-30 μm wide at 5 m/s, under the condition of the sample flow rates between 10 and 120 μL/min. Instead of using the conventional elliptical Gaussian spot for optical detection, we used a specially designed BOE and obtained a 50 μm × 10 μm rectangular quasi-flat-top spot. The microflow cytometer combining the chip and the BOE was tested to count 3, 5, and 7 μm fluorescence microbeads, and the experimental results were comparable to or better than those derived from two commercial instruments.

  12. Image based quantitative reader for Lateral flow immunofluorescence assay.

    Science.gov (United States)

    Chowdhury, Kaushik Basak; Joseph, Jayaraj; Sivaprakasam, Mohanasankar

    2015-08-01

    Fluorescence Lateral flow immunoassays (LFIA) have wide range of applications in point-of-care testing (POCT). An integrated, motion-free, accurate, reliable reader that performs automated quantitative analysis of LFIA is essential for POCT diagnosis. We demonstrate an image based quantitative method to read the lateral flow immunofluorescence test strips. The developed reader uses line laser diode module to illuminate the LFIA test strip having fluorescent dye. Fluorescence light coming from the region of interest (ROI) of the LFIA test strip was filtered using an emission filter and imaged using a camera following which images were processed in computer. A dedicated control program was developed that automated the entire process including illumination of the test strip using laser diode, capturing the ROI of the test strip, processing and analyzing the images and displaying of results. Reproducibility of the reader has been evaluated using few reference cartridges and HbA1c (Glycated haemoglobin) test cartridges. The proposed system can be upgraded to a compact reader for widespread testing of LFIA test strips.

  13. Continuous-flow ATP amplification system for increasing the sensitivity of quantitative bioluminescence assay.

    Science.gov (United States)

    Satoh, Tetsuya; Shinoda, Yasuharu; Alexandrov, Maxym; Kuroda, Akio; Murakami, Yuji

    2008-08-01

    We constructed a novel ATP amplification reactor using a continuous-flow system, and this allowed us to increase the sensitivity of a quantitative bioluminescence assay by controlling the number of ATP amplification cycles. We previously developed a bioluminescence assay coupled with ATP amplification using a batch system. However, it was difficult to control the number of amplification cycles. In this study, ATP amplification was performed using a continuous-flow system, and significant linear correlations between amplified luminescence and initial ATP concentration were observed. When performing four cycles of continuous-flow ATP amplification, the gradient of amplification was 1.87(N). Whereas the lower quantifiable level was 500 pM without amplification, values as low as 50 pM ATP could be measured after amplification. The sensitivity thus increased 10-fold, with further improvements expected with additional amplification cycles. The continuous-flow system thus effectively increased the sensitivity of the quantitative bioluminescence assay.

  14. SELECTIVE ELECTROFUSION OF CONJUGATED CELLS IN FLOW

    NARCIS (Netherlands)

    SCHUT, TCB; KRAAN, YM; BARLAG, W; DELEIJ, L; DEGROOTH, BG; GREVE, J

    1993-01-01

    Using a modified flow cytometer we have induced electrofusion of K562 and L1210 cells in flow. The two cell types are stained with two different fluorescent membrane probes, DiO and Dil, to facilitate optical recognition, and then coupled through an avidin-biotin bridge. In the flow cytometer, the h

  15. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey.

    Science.gov (United States)

    Posthuma-Trumpie, Geertruida A; Korf, Jakob; van Amerongen, Aart

    2009-01-01

    Lateral flow (immuno)assays are currently used for qualitative, semiquantitative and to some extent quantitative monitoring in resource-poor or non-laboratory environments. Applications include tests on pathogens, drugs, hormones and metabolites in biomedical, phytosanitary, veterinary, feed/food and environmental settings. We describe principles of current formats, applications, limitations and perspectives for quantitative monitoring. We illustrate the potentials and limitations of analysis with lateral flow (immuno)assays using a literature survey and a SWOT analysis (acronym for "strengths, weaknesses, opportunities, threats"). Articles referred to in this survey were searched for on MEDLINE, Scopus and in references of reviewed papers. Search terms included "immunochromatography", "sol particle immunoassay", "lateral flow immunoassay" and "dipstick assay".

  16. Single cell kinase signaling assay using pinched flow coupled droplet microfluidics

    OpenAIRE

    Ramji, Ramesh; WANG, MING; Bhagat, Ali Asgar S.; Tan Shao Weng, Daniel; Thakor, Nitish V.; Teck Lim, Chwee; Chen, Chia-Hung

    2014-01-01

    Droplet-based microfluidics has shown potential in high throughput single cell assays by encapsulating individual cells in water-in-oil emulsions. Ordering cells in a micro-channel is necessary to encapsulate individual cells into droplets further enhancing the assay efficiency. This is typically limited due to the difficulty of preparing high-density cell solutions and maintaining them without cell aggregation in long channels (>5 cm). In this study, we developed a short pinched flow channel...

  17. Immune Monitoring in Cancer Vaccine Clinical Trials: Critical Issues of Functional Flow Cytometry-Based Assays

    OpenAIRE

    Iole Macchia; Francesca Urbani; Enrico Proietti

    2013-01-01

    The development of immune monitoring assays is essential to determine the immune responses against tumor-specific antigens (TSAs) and tumor-associated antigens (TAAs) and their possible correlation with clinical outcome in cancer patients receiving immunotherapies. Despite the wide range of techniques used, to date these assays have not shown consistent results among clinical trials and failed to define surrogate markers of clinical efficacy to antitumor vaccines. Multiparameter flow cytometr...

  18. A new hand-held microfluidic cytometer for evaluating irradiation damage by analysis of the damaged cells distribution

    Science.gov (United States)

    Wang, Junsheng; Fan, Zhiqiang; Zhao, Yile; Song, Younan; Chu, Hui; Song, Wendong; Song, Yongxin; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2016-03-01

    Space radiation brings uneven damages to cells. The detection of the distribution of cell damage plays a very important role in radiation medicine and the related research. In this paper, a new hand-held microfluidic flow cytometer was developed to evaluate the degree of radiation damage of cells. The device we propose overcomes the shortcomings (e.g., large volume and high cost) of commercial flow cytometers and can evaluate the radiation damage of cells accurately and quickly with potential for onsite applications. The distribution of radiation-damaged cells is analyzed by a simultaneous detection of immunofluorescence intensity of γ-H2AX and resistance pulse sensor (RPS) signal. The γ-H2AX fluorescence intensity provides information of the degree of radiation damage in cells. The ratio of the number of cells with γ-H2AX fluorescence signals to the total numbers of cells detected by RPS indicates the percentage of the cells that are damaged by radiation. The comparison experiment between the developed hand-held microfluidic flow cytometer and a commercial confocal microscope indicates a consistent and comparable detection performance.

  19. Papel da imunofenotipagem por citometria de fluxo no diagnóstico diferencial das pancitopenias e das linfocitoses The role of flow cytometer-based immunophenotyping in the differential diagnosis of pancytopenia and of lymphocytosis

    Directory of Open Access Journals (Sweden)

    Eduardo M. Rego

    2009-01-01

    Full Text Available A imunofenotipagem por citometria de fluxo (CMF é atualmente uma ferramenta indispensável para o diagnóstico hematopatológico. Nos últimos anos muitos progressos foram alcançados em instrumentação, novos anticorpos e fluorocromos e programas de análise. Consequentemente, houve um grande avanço no conhecimento da patogênese das neoplasias hematológicas e novos marcadores diagnósticos e prognósticos foram descritos. Revisamos aqui a contribuição destas novas técnicas no diagnóstico diferencial de pacientes com bi- ou pancitopenia e linfocitose. São apresentados os achados mais frequentes e as dificuldades na interpretação dos resultados. Além disto, a importância do uso concomitante de um conjunto de outras técnicas diagnósticas é demonstrada.The use of flow cytometry for immunophenotyping is currently an essential tool in the diagnosis of hematological abnormalities. In recent years, new equipment, antibodies, fluorochromes and computer programs have become available. As a result, a better understanding of the pathogeneses of hematological malignancies has emerged and new markers with diagnostic and prognostic relevance have been described. Here we review how this new technology may contribute to the differential diagnosis of patients with bi- or pancytopenia and of lymphocytosis. The common findings as well as the difficulties in interpreting the results obtained by flow cytometry will be discussed. The importance of the concomitant analyses by different methods is also demonstrated.

  20. Particle analysis in an acoustic cytometer

    Energy Technology Data Exchange (ETDEWEB)

    Kaduchak, Gregory; Ward, Michael D

    2012-09-18

    The present invention is a method and apparatus for acoustically manipulating one or more particles. Acoustically manipulated particles may be separated by size. The particles may be flowed in a flow stream and acoustic radiation pressure, which may be radial, may be applied to the flow stream. This application of acoustic radiation pressure may separate the particles. In one embodiment, the particles may be separated by size, and as a further example, the larger particles may be transported to a central axis.

  1. The Application and Development of Flow Cytometer in Infectious Disease Stu-Dy.%流式细胞仪在传染病研究中的应用与发展

    Institute of Scientific and Technical Information of China (English)

    孙虹

    2004-01-01

    [目的] 提高传染病的控制水平.[方法] 对流式细胞术(Flow CytoMeter,FCM)这一细胞信息检测技术在微生物病原体的检测、病毒感染细胞的识别等细胞分析水平研究进行了综述和探讨.[结果] FCM是一种在医学基础、临床及科学研究中有着广泛应用前景的细胞分析技术,近年来随着FCM及计算机应用技术水平的提高,已应用于一些传染病的早期诊断、细胞功能改变等方面的研究. [结论] FCM对于一些传染病的预测、发生、发展、预后起到了重要的作用,今后随着检测方法与技术的发展,高新技术的不断尝试与应用,FCM在对传染病的研究中更具有潜力和广阔的发展前景.

  2. Role of receptor occupancy assays by flow cytometry in drug development.

    Science.gov (United States)

    Stewart, Jennifer J; Green, Cherie L; Jones, Nicholas; Liang, Meina; Xu, Yuanxin; Wilkins, Danice E C; Moulard, Maxime; Czechowska, Kamila; Lanham, David; McCloskey, Thomas W; Ferbas, John; van der Strate, Barry W A; Högerkorp, Carl-Magnus; Wyant, Timothy; Lackey, Alan; Litwin, Virginia

    2016-03-01

    The measurement of the binding of a biotherapeutic to its cellular target, receptor occupancy (RO), is increasingly important in development of biologically-based therapeutic agents. Receptor occupancy (RO) assays by flow cytometry describe the qualitative and/or quantitative assessment of the binding of a therapeutic agent to its cell surface target. Such RO assays can be as simple as measuring the number of cell surface receptors bound by an antireceptor therapeutic agent or can be designed to address more complicated scenarios such as internalization or shedding events once a receptor engages the administered therapeutic agent. Data generated from RO assays can also be used to model whether given doses of an experimental therapeutic agent and their administration schedules lead to predicted levels of receptor occupancy and whether the receptor is modulated (up or down) on cells engaged by the therapeutic agent. There are a variety of approaches that can be used when undertaking RO assays and with the ability to measure distinct subsets in heterogeneous populations, flow cytometry is ideally suited to RO measurements. This article highlights the importance of RO assays on the flow cytometric platform in the development of biotherapeutic agents.

  3. Correlation between ELISA and ML Flow assays applied to 60 Brazilian patients affected by leprosy

    NARCIS (Netherlands)

    R.C. Da Silva; S. Lyon; A.C. Lyon; M.A.F. Grossi; S.H. Lyon; S. Buhrer-Sekula; C.M.F. Antunes

    2010-01-01

    Serological tests can be helpful in classifying leprosy patients as having either the paucibacillary or the multibacillary form. The aim of this study was to evaluate the concordance between two serological assays, i.e. ML Flow and ELISA, in a population of leprosy patients in Brazil. The investigat

  4. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey

    NARCIS (Netherlands)

    Posthuma-Trumpie, G.A.; Korf, J.; Amerongen, van A.

    2009-01-01

    Lateral flow (immuno)assays are currently used for qualitative, semiquantitative and to some extent quantitative monitoring in resource-poor or non-laboratory environments. Applications include tests on pathogens, drugs, hormones and metabolites in biomedical, phytosanitary, veterinary, feed/food an

  5. Lateral flow (immuno) assay : its strengths, weaknesses, opportunities and threats. A literature survey

    NARCIS (Netherlands)

    Posthuma-Trumpie, Geertruida A.; Korf, Jakob; van Amerongen, Aart

    Lateral flow (immuno) assays are currently used for qualitative, semiquantitative and to some extent quantitative monitoring in resource-poor or non-laboratory environments. Applications include tests on pathogens, drugs, hormones and metabolites in biomedical, phytosanitary, veterinary, feed/food

  6. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey

    NARCIS (Netherlands)

    Posthuma-Trumpie, G.A.; Korf, J.; Amerongen, van A.

    2009-01-01

    Lateral flow (immuno)assays are currently used for qualitative, semiquantitative and to some extent quantitative monitoring in resource-poor or non-laboratory environments. Applications include tests on pathogens, drugs, hormones and metabolites in biomedical, phytosanitary, veterinary, feed/food

  7. Lateral flow (immuno) assay : its strengths, weaknesses, opportunities and threats. A literature survey

    NARCIS (Netherlands)

    Posthuma-Trumpie, Geertruida A.; Korf, Jakob; van Amerongen, Aart

    2009-01-01

    Lateral flow (immuno) assays are currently used for qualitative, semiquantitative and to some extent quantitative monitoring in resource-poor or non-laboratory environments. Applications include tests on pathogens, drugs, hormones and metabolites in biomedical, phytosanitary, veterinary, feed/food a

  8. Inter- and intra-laboratory standardization of TUNEL assay for assessment of sperm DNA fragmentation.

    Science.gov (United States)

    Ribeiro, S; Sharma, R; Gupta, S; Cakar, Z; De Geyter, C; Agarwal, A

    2017-05-01

    One of the challenges with the sperm DNA fragmentation results is the inconsistency and the large variability in the results obtained by different techniques. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay quantifies the incorporation of fluoresceinated dUTP into single- and double-strand DNA breaks by labeling the 3'-OH terminal with TdT. The goal of this study was optimize the TUNEL protocol for assessment of sperm DNA fragmentation by standardization of the method and comparison of the data across two reference laboratories (i) at Basel, Switzerland and (ii) Cleveland Clinic, Ohio, USA. Semen samples from 31 subjects grouped into three cohorts. Sperm DNA fragmentation was data measured by two experienced operators at two different laboratories using identical semen samples, assay kit, protocol and acquisition settings using identical flow cytometers (BD Accuri C6). No significant differences were observed between the duplicates in any of the experiments performed. By including an additional washing step after fixation in paraformaldehyde, a high correlation was seen between the two laboratories (r = 0.94). A strong positive correlation was observed between the average sperm DNA fragmentation rates (r = 0.719). The mean sperm DNA fragmentation measured in each laboratory was similar. Both flow cytometers were identical in their settings and performance. This inter- and intra-laboratory study establishes that TUNEL is a reproducible assay when utilizing a standardized staining protocol and flow cytometer acquisition settings. Standardization and consensual guidelines for TUNEL validate the assay and establishes TUNEL as a robust test for measuring sperm DNA fragmentation especially in a multicenter setting. © 2017 American Society of Andrology and European Academy of Andrology.

  9. A novel flow cytometric assay for measurement of In Vivo pulmonary neutrophil phagocytosis

    Directory of Open Access Journals (Sweden)

    Gentry-Nielsen Martha J

    2006-07-01

    Full Text Available Abstract Background Phagocytosis assays are traditionally performed in vitro using polymorphonuclear leukocytes (PMNs isolated from peripheral blood or the peritoneum and heat-killed, pre-opsonized organisms. These assays may not adequately mimic the environment within the infected lung. Our laboratory therefore has developed a flow cytometric in vivo phagocytosis assay that enables quantification of PMN phagocytosis of viable bacteria within the lungs of rats. In these studies, rats are injected transtracheally with lipopolysaccharide (LPS to recruit PMNs to their lungs. They are then infected with live 5(-and 6 carboxyfluorescein diacetate succinimidyl ester (CFDA/SE labeled type 3 Streptococcus pneumoniae. Bronchoalveolar lavage is performed and resident alveolar macrophages and recruited PMNs are labeled with monoclonal antibodies specific for surface epitopes on each cell type. Three color flow cytometry is utilized to identify the cell types, quantify recruitment, and determine uptake of the labeled bacteria. Results The viability of the alveolar macrophages and PMNs isolated from the lavage fluid was >95%. The values of the percentage of PMNs in the lavage fluid as well as the percentage of PMNs associated with CFSE-labeled S. pneumoniae as measured through flow cytometry showed a high degree of correlation with the results from manual counting of cytospin slides. Conclusion This assay is suitable for measuring bacterial uptake within the infected lung. It can be adapted for use with other organisms and/or animal model systems.

  10. Microflow1, a sheathless fiber-optic flow cytometry biomedical platform: demonstration onboard the international space station.

    Science.gov (United States)

    Dubeau-Laramée, Geneviève; Rivière, Christophe; Jean, Isabelle; Mermut, Ozzy; Cohen, Luchino Y

    2014-04-01

    A fiber-optic based flow cytometry platform was designed to build a portable and robust instrument for space applications. At the core of the Microflow1 is a unique fiber-optic flow cell fitted to a fluidic system and fiber coupled to the source and detection channels. A Microflow1 engineering unit was first tested and benchmarked against a commercial flow cytometer as a reference in a standard laboratory environment. Testing in parabolic flight campaigns was performed to establish Microflow1's performance in weightlessness, before operating the new platform on the International Space Station. Microflow1 had comparable performances to commercial systems, and operated remarkably and robustly in weightlessness (microgravity). Microflow1 supported immunophenotyping as well as microbead-based multiplexed cytokine assays in the space environment and independently of gravity levels. Results presented here provide evidence that this fiber-optic cytometer technology is inherently compatible with the space environment with negligible compromise to analytical performance.

  11. Flow cytometric assay detecting cytotoxicity against human endogenous retrovirus antigens expressed on cultured multiple sclerosis cells

    DEFF Research Database (Denmark)

    Møller-Larsen, A; Brudek, T; Petersen, T

    2013-01-01

    as control antibody. Without antibodies this system is suitable for analyses of natural killer cell activity. In optimization of the assay we have used effector lymphocytes from healthy donors. The most effective effector cells are CD56(+) cells. CD8(+) T cells also express CD107a in ADCC. Using the adapted......Damage of target cells by cytotoxicity, either mediated by specific lymphocytes or via antibody-dependent reactions, may play a decisive role in causing the central nervous system (CNS) lesions seen in multiple sclerosis (MS). Relevant epitopes, antibodies towards these epitopes and a reliable...... assay are all mandatory parts in detection and evaluation of the pertinence of such cytotoxicity reactions. We have adapted a flow cytometry assay detecting CD107a expression on the surface of cytotoxic effector cells to be applicable for analyses of the effect on target cells from MS patients...

  12. Measurement of separase proteolytic activity in single living cells by a fluorogenic flow cytometry assay.

    Directory of Open Access Journals (Sweden)

    Wiltrud Haaß

    Full Text Available ESPL1/Separase, an endopeptidase, is required for centrosome duplication and separation of sister-chromatides in anaphase of mitosis. Overexpression and deregulated proteolytic activity of Separase as frequently observed in human cancers is associated with the occurrence of supernumerary centrosomes, chromosomal missegregation and aneuploidy. Recently, we have hypothesized that increased Separase proteolytic activity in a small subpopulation of tumor cells may serve as driver of tumor heterogeneity and clonal evolution in chronic myeloid leukemia (CML. Currently, there is no quantitative assay to measure Separase activity levels in single cells. Therefore, we have designed a flow cytometry-based assay that utilizes a Cy5- and rhodamine 110 (Rh110-biconjugated Rad21 cleavage site peptide ([Cy5-D-R-E-I-M-R]2-Rh110 as smart probe and intracellular substrate for detection of Separase enzyme activity in living cells. As measured by Cy5 fluorescence the cellular uptake of the fluorogenic peptide was fast and reached saturation after 210 min of incubation in human histiocytic lymphoma U937 cells. Separase activity was recorded as the intensity of Rh110 fluorescence released after intracellular peptide cleavage providing a linear signal gain within a 90-180 min time slot. Compared to conventional cell extract-based methods the flow cytometric assay delivers equivalent results but is more reliable, bypasses the problem of vague loading controls and unspecific proteolysis associated with whole cell extracts. Especially suited for the investigaton of blood- and bone marrow-derived hematopoietic cells the flow cytometric Separase assay allows generation of Separase activity profiles that tell about the number of Separase positive cells within a sample i.e. cells that currently progress through mitosis and about the range of intercellular variation in Separase activity levels within a cell population. The assay was used to quantify Separase proteolytic

  13. Rapid parallel flow cytometry assays of active GTPases using effector beads.

    Science.gov (United States)

    Buranda, Tione; BasuRay, Soumik; Swanson, Scarlett; Agola, Jacob; Bondu, Virginie; Wandinger-Ness, Angela

    2013-11-15

    We describe a rapid assay for measuring the cellular activity of small guanine triphosphatases (GTPases) in response to a specific stimulus. Effector-functionalized beads are used to quantify in parallel multiple GTP-bound GTPases in the same cell lysate by flow cytometry. In a biologically relevant example, five different Ras family GTPases are shown for the first time to be involved in a concerted signaling cascade downstream of receptor ligation by Sin Nombre hantavirus.

  14. Point-of-care vertical flow allergen microarray assay: proof of concept.

    Science.gov (United States)

    Chinnasamy, Thiruppathiraja; Segerink, Loes I; Nystrand, Mats; Gantelius, Jesper; Andersson Svahn, Helene

    2014-09-01

    Sophisticated equipment, lengthy protocols, and skilled operators are required to perform protein microarray-based affinity assays. Consequently, novel tools are needed to bring biomarkers and biomarker panels into clinical use in different settings. Here, we describe a novel paper-based vertical flow microarray (VFM) system with a multiplexing capacity of at least 1480 microspot binding sites, colorimetric readout, high sensitivity, and assay time of Affinity binders were deposited on nitrocellulose membranes by conventional microarray printing. Buffers and reagents were applied vertically by use of a flow controlled syringe pump. As a clinical model system, we analyzed 31 precharacterized human serum samples using the array system with 10 allergen components to detect specific IgE reactivities. We detected bound analytes using gold nanoparticle conjugates with assay time of ≤10 min. Microarray images were captured by a consumer-grade flatbed scanner. A sensitivity of 1 ng/mL was demonstrated with the VFM assay with colorimetric readout. The reproducibility (CV) of the system was affinity point-of-care testing. © 2014 American Association for Clinical Chemistry.

  15. A lateral flow assay for quantitative detection of amplified HIV-1 RNA.

    Directory of Open Access Journals (Sweden)

    Brittany A Rohrman

    Full Text Available Although the accessibility of HIV treatment in developing nations has increased dramatically over the past decade, viral load testing to monitor the response of patients receiving therapy is often unavailable. Existing viral load technologies are often too expensive or resource-intensive for poor settings, and there is no appropriate HIV viral load test currently available at the point-of-care in low resource settings. Here, we present a lateral flow assay that employs gold nanoparticle probes and gold enhancement solution to detect amplified HIV RNA quantitatively. Preliminary results show that, when coupled with nucleic acid sequence based amplification (NASBA, this assay can detect concentrations of HIV RNA that match the clinically relevant range of viral loads found in HIV patients. The lateral flow test is inexpensive, simple and rapid to perform, and requires few resources. Our results suggest that the lateral flow assay may be integrated with amplification and sample preparation technologies to serve as an HIV viral load test for low-resource settings.

  16. Performance of cryptococcal antigen lateral flow assay using saliva in Ugandans with CD4 <100.

    Directory of Open Access Journals (Sweden)

    Richard Kwizera

    Full Text Available Cryptococcal meningitis can best be diagnosed by cerebrospinal fluid India ink microscopy, cryptococcal antigen detection, or culture. These require invasive lumbar punctures. The utility of cryptococcal antigen detection in saliva is unknown. We evaluated the diagnostic performance of the point-of-care cryptococcal antigen lateral flow assay (CrAg LFA in saliva.We screened HIV-infected, antiretroviral therapy naïve persons with symptomatic meningitis (n = 130 and asymptomatic persons with CD4+<100 cells/µL entering into HIV care (n = 399 in Kampala, Uganda. The diagnostic performance of testing saliva was compared to serum/plasma cryptococcal antigen as the reference standard.The saliva lateral flow assay performance was overall more sensitive in symptomatic patients (88% than in asymptomatic patients (27%. The specificity of saliva lateral flow assay was excellent at 97.8% in the symptomatic patients and 100% in asymptomatic patients. The degree of accuracy of saliva in diagnosing cryptococcosis and the level of agreement between the two sample types was better in symptomatic patients (C-statistic 92.9, κ-0.82 than in asymptomatic patients (C-statistic 63.5, κ-0.41. Persons with false negative salvia CrAg tests had lower levels of peripheral blood CrAg titers (P<0.001.There was poor diagnostic performance in testing saliva for cryptococcal antigen, particularly among asymptomatic persons screened for preemptive treatment of cryptococcosis.

  17. Flow cytometric kinetic assay of calcium mobilization in whole blood platelets using Fluo-3 and CD41.

    Science.gov (United States)

    do Céu Monteiro, M; Sansonetty, F; Gonçalves, M J; O'Connor, J E

    1999-04-01

    Platelet activation plays a major role in the physiology and pathology of hemostasis. Flow cytometry is a promising approach for the structural and functional analysis of platelets. However, the choice of adequate biological parameters and most technical issues are still under discussion. A rise in cytosolic free Ca2+ is a key early event that follows platelet stimulation and precedes several activation responses, including shape change, aggregation, secretion, and expression of procoagulant activity. Our objective was to set up a fast and sensitive flow cytometric method to determine the kinetics of intracellular Ca2+ mobilization in platelets, which could be performed with the least artifactual perturbation of platelet function. Anticoagulated blood was diluted in Tyrode's buffer and incubated with Fluo-3-acetoxymethyl ester prior to staining with phycoerytrin-conjugated antiplatelet GPIIb/IIIa complex monoclonal antibody. Platelets were identified by a gate including only CD41+ events. After the determination of baseline Fluo-3 green fluorescence on a flow cytometer (EPICS XL-MCL, Coulter Electronics, Hialeah, FL), adequate agonists were added and time-dependent changes in Fluo-3 fluorescence were recorded on-line for up to 3 min. In these conditions, a very fast and transient increase of cytosolic-free Ca2+ was observed following the addition of thrombin, a strong platelet agonist. Stimulation with adenosine diphosphate (ADP), a weak agonist, also resulted in evident increase of Ca2+ levels. Our results show that this flow cytometric kinetic method provides a simple and sensitive tool to assess in vitro the time course and intensity of signal transduction responses to different platelet agonists under near physiological conditions. In this way, it may be useful to evaluate the degree of platelet reactivity and thus to monitor antiplatelet therapy.

  18. Quantitative data analysis methods for bead-based DNA hybridization assays using generic flow cytometry platforms.

    Science.gov (United States)

    Corrie, S R; Lawrie, G A; Battersby, B J; Ford, K; Rühmann, A; Koehler, K; Sabath, D E; Trau, M

    2008-05-01

    Bead-based assays are in demand for rapid genomic and proteomic assays for both research and clinical purposes. Standard quantitative procedures addressing raw data quality and analysis are required to ensure the data are consistent and reproducible across laboratories independent of flow platform. Quantitative procedures have been introduced spanning raw histogram analysis through to absolute target quantitation. These included models developed to estimate the absolute number of sample molecules bound per bead (Langmuir isotherm), relative quantitative comparisons (two-sided t-tests), and statistical analyses investigating the quality of raw fluorescence data. The absolute target quantitation method revealed a concentration range (below probe saturation) of Cy5-labeled synthetic cytokeratin 19 (K19) RNA of c.a. 1 x 10(4) to 500 x 10(4) molecules/bead, with a binding constant of c.a. 1.6 nM. Raw hybridization frequency histograms were observed to be highly reproducible across 10 triplex assay replicates and only three assay replicates were required to distinguish overlapping peaks representing small sequence mismatches. This study provides a quantitative scheme for determining the absolute target concentration in nucleic acid hybridization reactions and the equilibrium binding constants for individual probe/target pairs. It is envisaged that such studies will form the basis of standard analytical procedures for bead-based cytometry assays to ensure reproducibility in inter- and intra-platform comparisons of data between laboratories. (c) 2008 International Society for Advancement of Cytometry.

  19. Lipopolysaccharide Specific Immunochromatography Based Lateral Flow Assay for Serogroup Specific Diagnosis of Leptospirosis in India.

    Directory of Open Access Journals (Sweden)

    Shanmugam Vanithamani

    Full Text Available Leptospirosis is a re-emerging infectious disease that is under-recognized due to low-sensitivity and cumbersome serological tests. MAT is the gold standard test and it is the only serogroup specific test used till date. Rapid reliable alternative serogroup specific tests are needed for surveillance studies to identify locally circulating serogroups in the study area.In the present investigation the serological specificity of leptospiral lipopolysaccharides (LPS was evaluated by enzyme linked immunosorbent assay (ELISA, dot blot assay and rapid immunochromatography based lateral flow assay (ICG-LFA. Sera samples from 120 MAT positive cases, 174 cases with febrile illness other than leptospirosis, and 121 seronegative healthy controls were evaluated for the diagnostic sensitivity and specificity of the developed assays. LPS was extracted from five locally predominant circulating serogroups including: Australis (27.5%, Autumnalis (11.7%, Ballum (25.8%, Grippotyphosa (12.5%, Pomona (10% and were used as antigens in the diagnostics to detect IgM antibodies in patients' sera. The sensitivity observed by IgM ELISA and dot blot assay using various leptospiral LPS was >90% for homologous sera. Except for Ballum LPS, no other LPS showed cross-reactivity to heterologous sera. An attempt was made to develop LPS based ICG-LFA for rapid and sensitive serogroup specific diagnostics of leptospirosis. The developed ICG-LFA showed sensitivity in the range between 93 and 100% for homologous sera. The Wilcoxon analysis showed LPS based ICG-LFA did not differ significantly from the gold standard MAT (P>0.05.The application of single array of LPS for serogroup specific diagnosis is first of its kind. The developed assay could potentially be evaluated and employed for as MAT alternative.

  20. A Flow Cytometric Clonogenic Assay Reveals the Single-Cell Potency of Doxorubicin

    Science.gov (United States)

    Maass, Katie F.; Kulkarni, Chethana; Quadir, Mohiuddin A.; Hammond, Paula T.; Betts, Alison M.; Wittrup, K. Dane

    2015-01-01

    Standard cell proliferation assays use bulk media drug concentration to ascertain the potency of chemotherapeutic drugs; however, the relevant quantity is clearly the amount of drug actually taken up by the cell. To address this discrepancy, we have developed a flow cytometric clonogenic assay to correlate the amount of drug in a single cell with the cell’s ability to proliferate using a cell tracing dye and doxorubicin, a naturally fluorescent chemotherapeutic drug. By varying doxorubicin concentration in the media, length of treatment time, and treatment with verapamil, an efflux pump inhibitor, we introduced 105 – 1010 doxorubicin molecules per cell; then used a dye-dilution assay to simultaneously assess the number of cell divisions. We find that a cell’s ability to proliferate is a surprisingly conserved function of the number of intracellular doxorubicin molecules, resulting in single-cell IC50 values of 4 – 12 million intracellular doxorubicin molecules. The developed assay is a straightforward method for understanding a drug’s single-cell potency and can be used for any fluorescent or fluorescently-labeled drug, including nanoparticles or antibody-drug conjugates. PMID:26344409

  1. Immune Monitoring in Cancer Vaccine Clinical Trials: Critical Issues of Functional Flow Cytometry-Based Assays

    Directory of Open Access Journals (Sweden)

    Iole Macchia

    2013-01-01

    Full Text Available The development of immune monitoring assays is essential to determine the immune responses against tumor-specific antigens (TSAs and tumor-associated antigens (TAAs and their possible correlation with clinical outcome in cancer patients receiving immunotherapies. Despite the wide range of techniques used, to date these assays have not shown consistent results among clinical trials and failed to define surrogate markers of clinical efficacy to antitumor vaccines. Multiparameter flow cytometry- (FCM- based assays combining different phenotypic and functional markers have been developed in the past decade for informative and longitudinal analysis of polyfunctional T-cells. These technologies were designed to address the complexity and functional heterogeneity of cancer biology and cellular immunity and to define biomarkers predicting clinical response to anticancer treatment. So far, there is still a lack of standardization of some of these immunological tests. The aim of this review is to overview the latest technologies for immune monitoring and to highlight critical steps involved in some of the FCM-based cellular immune assays. In particular, our laboratory is focused on melanoma vaccine research and thus our main goal was the validation of a functional multiparameter test (FMT combining different functional and lineage markers to be applied in clinical trials involving patients with melanoma.

  2. The cryptococcal antigen lateral flow assay: A point-of-care diagnostic at an opportune time.

    Science.gov (United States)

    Tang, Michele W; Clemons, Karl V; Katzenstein, David A; Stevens, David A

    2016-08-01

    Cryptococcal meningitis is a devastating HIV-related opportunistic infection, affecting nearly 1 million individuals and causing over 500 000 deaths each year. The burden of disease is greatest in sub-Saharan Africa and Southeast Asia, where cryptococcal disease is the most common cause of meningitis. Rapid, accurate and affordable diagnosis of cryptococcal disease has been lacking in many of the most heavily affected areas. Here, we review a point-of-care assay for cryptococcal disease, the dipstick-formatted cryptococcal antigen lateral flow assay (LFA) (IMMY, Norman, OK). In comparison to culture, the assay is 99.5% sensitive and 98% specific. In comparison to other commercially available tests for cryptococcal antigen, the LFA has equal or superior sensitivity and specificity in CSF, plasma and serum samples. We discuss potential applications for the use of the assay in resource-limited settings, including what is likely to be an important role of the LFA in screening for early cryptococcal infection before clinical disease and in evaluating pre-emptive treatment.

  3. A flow cytometric in vivo chalone assay using retransplanted old murine JB-1 ascites tumour cells.

    Science.gov (United States)

    Barfod, N M

    1981-07-01

    A flow cytometric in vivo chalone assay is described. Transplantation of old JB-1 ascites tumour cells to new hosts induced an influx of tumour cells, with G1 DNA content, to the S phase. This induction could be reversibly and specifically blocked by injections of an ultrafiltrate of old JB-1 ascites fluid. The method described is superior to a previously published in vivo chalone assay using regenerating ascites tumours. Owing to a reduced variability in time of onset of DNA synthesis, a smaller scatter of observations is achieved and thus the number of mice per group may be reduced using the new method. In contrast to the older technique, the present one does not necessitate killing of mice during the observation period.

  4. Point-of-care diagnosis and prognostication of cryptococcal meningitis with the cryptococcal antigen lateral flow assay on cerebrospinal fluid.

    Science.gov (United States)

    Kabanda, Taseera; Siedner, Mark J; Klausner, Jeffrey D; Muzoora, Conrad; Boulware, David R

    2014-01-01

    The cryptococcal antigen (CRAG) lateral flow assay (LFA) had 100% sensitivity and specificity on cerebrospinal fluid samples. Pretreatment LFA titers correlated with quantitative cultures (R(2) = 0.7) and predicted 2- and 10-week mortality. The CRAG LFA is an accurate diagnostic assay for CSF and should be considered for point-of-care diagnosis of cryptococcal meningitis.

  5. A simple and sensitive flow cytometric assay for determination of the cytotoxic activity of human natural killer cells

    NARCIS (Netherlands)

    Radosevic, Katarina; Radosevic, K.; Garritsen, Henk S.P.; Garritsen, H.S.P.; van Graft, M.; van Graft, Marja; de Grooth, B.G.; Greve, Jan

    1990-01-01

    A new, simple and sensitive flow cytometric assay for the determination of the cytotoxic activity of human natural killer cells is described. The assay is based on the use of two fluorochromes. The target cell population is stained with one fluorochrome (octadecylamine-fluorescein isothiocyanate,

  6. Two-orders of magnitude improvement detection limit of lateral flow assays using isotachophoresis

    CERN Document Server

    Moghadam, Babak Y; Posner, Jonathan D

    2014-01-01

    Lateral flow (LF) immunoassays are one of the most prevalent point-of-care (POC) diagnostics due to their simplicity, low cost, and robust operation. A common criticism of LF tests is that they have poor detection limits compared to analytical techniques, like ELISA, which confines their application as a diagnostic tool. The low detection limit of LF assays and associated long equilibration times is due to kinetically limited surface reactions that result from low target concentrations. Here we use isotachophoresis (ITP), a powerful electrokinetic preconcentration and separation technique, to focus target analytes into a thin band and transport them to the LF capture line resulting is a dramatic increase in the surface reaction rate and equilibrium binding. We show that ITP is able to improve limit of detection (LOD) of LF assays by 400-fold for 90 second assay time and by 160-fold for a longer 5 minutes time scale. ITP-enhanced LF (ITP-LF) also shows up to 30% target extraction from 100 uL of the sample, whi...

  7. Single cell kinase signaling assay using pinched flow coupled droplet microfluidics.

    Science.gov (United States)

    Ramji, Ramesh; Wang, Ming; Bhagat, Ali Asgar S; Tan Shao Weng, Daniel; Thakor, Nitish V; Teck Lim, Chwee; Chen, Chia-Hung

    2014-05-01

    Droplet-based microfluidics has shown potential in high throughput single cell assays by encapsulating individual cells in water-in-oil emulsions. Ordering cells in a micro-channel is necessary to encapsulate individual cells into droplets further enhancing the assay efficiency. This is typically limited due to the difficulty of preparing high-density cell solutions and maintaining them without cell aggregation in long channels (>5 cm). In this study, we developed a short pinched flow channel (5 mm) to separate cell aggregates and to form a uniform cell distribution in a droplet-generating platform that encapsulated single cells with >55% encapsulation efficiency beating Poisson encapsulation statistics. Using this platform and commercially available Sox substrates (8-hydroxy-5-(N,N-dimethylsulfonamido)-2-methylquinoline), we have demonstrated a high throughput dynamic single cell signaling assay to measure the activity of receptor tyrosine kinases (RTKs) in lung cancer cells triggered by cell surface ligand binding. The phosphorylation of the substrates resulted in fluorescent emission, showing a sigmoidal increase over a 12 h period. The result exhibited a heterogeneous signaling rate in individual cells and showed various levels of drug resistance when treated with the tyrosine kinase inhibitor, gefitinib.

  8. Antiphospholipid antibody syndrome: the flow cytometric annexin A5 competition assay as a diagnostic tool.

    Science.gov (United States)

    Tomer, A; Bar-Lev, S; Fleisher, S; Shenkman, B; Friger, M; Abu-Shakra, M

    2007-10-01

    The mechanism underlying hypercoagulability in antiphospholipid antibody syndrome (APS) is uncertain. Here, we present a flow-cytometric assay (FCA) based on the hypothesis that anti-platelet-anionic-phospholipid autoantibodies (aPL) interfere with the activity of the natural anticoagulant protein annexin A5, thereby accelerating platelet procoagulant activity. This study assessed the clinical utility of the feasible FCA, which demonstrates the competition of the patient's aPL with the binding of annexin A5 to the platelet-anionic-phospholipids, in the diagnosis of APS. Sixty-two (94%) of 66 APS patients, 20 (51%) of 39 patients with systemic lupus erythematosus and two (4%) of 49 healthy individuals were positive by FCA. Compared with the anticardiolipin (aCL) assay, the relative sensitivity was 82% and the specificity 73.3%. However, 19 (25%) aCL-negative patients were positive by FCA; 12 were positive for lupus-anticoagulant (LA). Compared with LA assay, the relative sensitivity was 85% and the specificity 72.2%. However, 21 (26%) LA-negative patients were FCA-positive, 12 were positive for aCL. The FCA was particularly sensitive for APS patients with arterial (97.0%) and gestational vascular complications (100%) with overall sensitivity of 95% and specificity of 97%. Our findings suggest that the FCA is practical, sensitive and specific for the detection of clinically relevant aPL in the diagnosis of APS.

  9. Confocal Microscopy and Flow Cytometry System Performance: Assessment of QA Parameters that affect data Quanitification

    Science.gov (United States)

    Flow and image cytometers can provide useful quantitative fluorescence data. We have devised QA tests to be used on both a flow cytometer and a confocal microscope to assure that the data is accurate, reproducible and precise. Flow Cytometry: We have provided two simple perform...

  10. Confocal Microscopy and Flow Cytometry System Performance: Assessment of QA Parameters that affect data Quanitification

    Science.gov (United States)

    Flow and image cytometers can provide useful quantitative fluorescence data. We have devised QA tests to be used on both a flow cytometer and a confocal microscope to assure that the data is accurate, reproducible and precise. Flow Cytometry: We have provided two simple perform...

  11. Precision and linearity targets for validation of an IFNγ ELISPOT, cytokine flow cytometry, and tetramer assay using CMV peptides

    Directory of Open Access Journals (Sweden)

    Lyerly Herbert K

    2008-03-01

    Full Text Available Abstract Background Single-cell assays of immune function are increasingly used to monitor T cell responses in immunotherapy clinical trials. Standardization and validation of such assays are therefore important to interpretation of the clinical trial data. Here we assess the levels of intra-assay, inter-assay, and inter-operator precision, as well as linearity, of CD8+ T cell IFNγ-based ELISPOT and cytokine flow cytometry (CFC, as well as tetramer assays. Results Precision was measured in cryopreserved PBMC with a low, medium, or high response level to a CMV pp65 peptide or peptide mixture. Intra-assay precision was assessed using 6 replicates per assay; inter-assay precision was assessed by performing 8 assays on different days; and inter-operator precision was assessed using 3 different operators working on the same day. Percent CV values ranged from 4% to 133% depending upon the assay and response level. Linearity was measured by diluting PBMC from a high responder into PBMC from a non-responder, and yielded R2 values from 0.85 to 0.99 depending upon the assay and antigen. Conclusion These data provide target values for precision and linearity of single-cell assays for those wishing to validate these assays in their own laboratories. They also allow for comparison of the precision and linearity of ELISPOT, CFC, and tetramer across a range of response levels. There was a trend toward tetramer assays showing the highest precision, followed closely by CFC, and then ELISPOT; while all three assays had similar linearity. These findings are contingent upon the use of optimized protocols for each assay.

  12. Redox-magnetohydrodynamics, flat flow profile-guided enzyme assay detection: toward multiple, parallel analyses.

    Science.gov (United States)

    Sahore, Vishal; Fritsch, Ingrid

    2014-10-07

    A proof-of-concept superparamagnetic microbead-enzyme complex was integrated with microfluidics pumped by redox-magneto-hydrodynamics (MHD) to take advantage of the magnet (0.56 T) beneath the chip and the uniform flat flow profile, as a first step toward developing multiple, parallel chemical analyses on a chip without the need for independent channels. The superparamagnetic beads were derivatized with alkaline phosphatase (a common enzyme label for biochemical assays) and magnetically immobilized at three different locations on the chip with one directly on the path to the detector and the other two locations adjacent to, but off the path, by a distance >5 times the detector diameter. Electroactive p-aminophenol, enzymatically generated at the bead-enzyme complex from its electroinactive precursor p-aminophenyl phosphate in a solution containing a redox species [Ru(NH3)6](3+/2+) for pumping and Tris buffer, was transported by redox-MHD and detected with square wave voltammetry at a 312 μm diameter gold microdisk stationed 2 mm downstream from the bead-complex on the flow path. Oppositely biased pumping electrodes, consisting of 2.5 cm long gold bands and separated by 5.6 mm, flanked the active flow region containing the bead-enzyme complex and detection site. The signal from adjacent paths was only 20% of that for the direct path and ≤8% when pumping electrodes were inactive.

  13. Development and validation of a lateral flow assay for the detection of crustacean protein in processed foods.

    Science.gov (United States)

    Koizumi, Daisuke; Shirota, Kazuya; Akita, Ryoko; Oda, Hiroshi; Akiyama, Hiroshi

    2014-05-01

    We developed and validated a novel lateral flow assay for the detection of crustacean protein in processed foods. This assay had high sensitivity; the visual detection limit for shrimp protein extract was 25μg/L, equivalent to 1μg/g protein in a food sample, and results could be obtained within 20min without sophisticated procedures or expensive equipment. Concordance between our assay and another validated quantitative enzyme-linked immunosorbent assay was 97% for commercially processed foods. This assay is rapid, simple, reliable, and highly correlated with validated enzyme-linked immunosorbent assays and is thus suitable for monitoring of food products, especially in food-processing facilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Cyto•IQ: an adaptive cytometer for extracting the noisy dynamics of molecular interactions in live cells

    Science.gov (United States)

    Ball, David A.; Moody, Stephen E.; Peccoud, Jean

    2010-02-01

    We have developed a fundamentally new type of cytometer to track the statistics of dynamic molecular interactions in hundreds of individual live cells within a single experiment. This entirely new high-throughput experimental system, which we have named Cyto•IQ, reports statistical, rather than image-based data for a large cellular population. Like a flow cytometer, Cyto•IQ rapidly measures several fluorescent probes in a large population of cells to yield a reduced statistical model that is matched to the experimental goals set by the user. However, Cyto•IQ moves beyond flow cytometry by tracking multiple probes in individual cells over time. Using adaptive learning algorithms, we process data in real time to maximize the convergence of the statistical model parameter estimators. Software controlling Cyto•IQ integrates existing open source applications to interface hardware components, process images, and adapt the data acquisition strategy based on previously acquired data. These innovations allow the study of larger populations of cells, and molecular interactions with more complex dynamics, than is possible with traditional microscope-based approaches. Cyto•IQ supports research to characterize the noisy dynamics of molecular interactions controlling biological processes.

  15. Promising Nucleic Acid Lateral Flow Assay Plus PCR for Shiga Toxin-Producing Escherichia coli.

    Science.gov (United States)

    Terao, Yoshitaka; Takeshita, Kana; Nishiyama, Yasutaka; Morishita, Naoki; Matsumoto, Takashi; Morimatsu, Fumiki

    2015-08-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) is a frequent cause of foodborne infections, and methods for rapid and reliable detection of STEC are needed. A nucleic acid lateral flow assay (NALFA) plus PCR was evaluated for detecting STEC after enrichment. When cell suspensions of 45 STEC strains, 14 non-STEC strains, and 13 non-E. coli strains were tested with the NALFA plus PCR, all of the STEC strains yielded positive results, and all of the non-STEC and non-E. coli strains yielded negative results. The lower detection limit for the STEC strains ranged from 0.1 to 1 pg of genomic DNA (about 20 to 200 CFU) per test, and the NALFA plus PCR was able to detect Stx1- and Stx2-producing E. coli strains with similar sensitivities. The ability of the NALFA plus PCR to detect STEC in enrichment cultures of radish sprouts, tomato, raw ground beef, and beef liver inoculated with 10-fold serially diluted STEC cultures was comparable to that of a real-time PCR assay (at a level of 100 to 100,000 CFU/ml in enrichment culture). The bacterial inoculation test in raw ground beef revealed that the lower detection limit of the NALFA plus PCR was also comparable to that obtained with a real-time PCR assay that followed the U.S. Department of Agriculture guidelines. Although further evaluation is required, these results suggest that the NALFA plus PCR is a specific and sensitive method for detecting STEC in a food manufacturing plant.

  16. Establishment of multiplexed, microsphere-based flow cytometric assay for multiple human tumor markers

    Institute of Scientific and Technical Information of China (English)

    Kai SUN; Qian WANG; Xiao-hui HUANG; Mao-chuan ZHEN; Wen LI; Long-juan ZHANG

    2007-01-01

    Aim: The multiplexed, microsphere-based flow cytometric assay (MFCA) for mul- tiple human tumor markers was established for the early screening and detection of suspected cancer patients. Methods: Covalent coupling of capture antibodies directed against their respective tumor markers to fluorescent microspheres was performed by following the protocols recommended by a commercial corporation with some modifications. The coupling efficiency and cross-reactivity were iden- tified by the Luminex 100 system and associated software. The standard curve was constructed by using serial dilution of recombinant tumor marker standards and was validated by comparison with ELISA for quantifying the tumor markers in serum samples. Results: The identifications revealed that the coupling proce- dures were successful without non-specific cross-reactivity and the standard curve was highly efficient. However, it was necessary to ensure the quality con- trol of the coupling process since slight variations in the coupling procedures could profoundly affect the density of capture reagents coupled to the microspheres and consequently adversely affect the assay precision. In addition to its multi-analyte capability, the MFCA system had definite advantages, such as higher reproducibility, greater dynamic range of measurement, and considerably less preparation time and labor over the conventional "gold standard", which was the ELISA. Conclusion: The successful establishment of the MFCA system for the simultaneous detection of multiple tumor markers will provide the foundation for the further study of clinical applications.

  17. Recommendations for the development and validation of flow cytometry-based receptor occupancy assays.

    Science.gov (United States)

    Green, Cherie L; Stewart, Jennifer J; Högerkorp, Carl-Magnus; Lackey, Alan; Jones, Nicholas; Liang, Meina; Xu, Yuanxin; Ferbas, John; Moulard, Maxime; Czechowska, Kamila; Mc Closkey, Thomas W; van der Strate, Barry W A; Wilkins, Danice E C; Lanham, David; Wyant, Timothy; Litwin, Virginia

    2016-03-01

    Receptor occupancy measurements demonstrate the binding of a biotherapeutic agent to its extra-cellular target and represent an integral component of the pharmacodynamic (PD) portfolio utilized to advance the development and commercialization of a therapeutic agent. Coupled with traditional pharmacokinetic (PK) assessments derived from serum drug concentration, receptor occupancy data can be used to model PK/PD relationships and validate dose selection decisions throughout the drug development lifecycle. Receptor occupancy assays can be even more challenging to develop than other flow cytometric methods (e.g. surface immunophenotyping). In addition to typical considerations regarding stability of the cell type of interest, stability of the target-bound therapeutic agent and stability of the target receptor must be taken into account. Reagent selection is also challenging as reagents need to be evaluated for the potential to compete with the therapeutic agent and bind with comparable affinity. This article provides technical guidance for the development and validation of cytometry-based receptor occupancy assays.

  18. A novel quantitative kinase assay using bacterial surface display and flow cytometry.

    Directory of Open Access Journals (Sweden)

    Sónia Troeira Henriques

    Full Text Available The inhibition of tyrosine kinases is a successful approach for the treatment of cancers and the discovery of kinase inhibitor drugs is the focus of numerous academic and pharmaceutical laboratories. With this goal in mind, several strategies have been developed to measure kinase activity and to screen novel tyrosine kinase inhibitors. Nevertheless, a general non-radioactive and inexpensive approach, easy to implement and adapt to a range of applications, is still missing. Herein, using Bcr-Abl tyrosine kinase, an oncogenic target and a model protein for cancer studies, we describe a novel cost-effective high-throughput screening kinase assay. In this approach, named the BacKin assay, substrates displayed on a Bacterial cell surface are incubated with Kinase and their phosphorylation is examined and quantified by flow cytometry. This approach has several advantages over existing approaches, as using bacteria (i.e. Escherichia coli to display peptide substrates provides a self renewing solid support that does not require laborious chemical strategies. Here we show that the BacKin approach can be used for kinetic and mechanistic studies, as well as a platform to characterize and identify small-molecule or peptide-based kinase inhibitors with potential applications in drug development.

  19. Evaluation of a multi-endpoint assay in rats, combining the bone-marrow micronucleus test, the Comet assay and the flow-cytometric peripheral blood micronucleus test.

    Science.gov (United States)

    Bowen, Damian E; Whitwell, James H; Lillford, Lucinda; Henderson, Debbie; Kidd, Darren; Mc Garry, Sarah; Pearce, Gareth; Beevers, Carol; Kirkland, David J

    2011-05-18

    With the publication of revised draft ICH guidelines (Draft ICH S2), there is scope and potential to establish a combined multi-end point in vivo assay to alleviate the need for multiple in vivo assays, thereby reducing time, cost and use of animals. Presented here are the results of an evaluation trial in which the bone-marrow and peripheral blood (via MicroFlow(®) flow cytometry) micronucleus tests (looking at potential chromosome breakage and whole chromosome loss) in developing erythrocytes or young reticulocytes were combined with the Comet assay (measuring DNA strand-breakage), in stomach, liver and blood lymphocytes. This allowed a variety of potential target tissues (site of contact, site of metabolism and peripheral distribution) to be assessed for DNA damage. This combination approach was performed with minimal changes to the standard and regulatory recommended sampling times for the stand-alone assays. A series of eight in vivo genotoxins (2-acetylaminofluorene, benzo[a]pyrene, carbendazim, cyclophosphamide, dimethylnitrosamine, ethyl methanesulfonate, ethyl nitrosourea and mitomycin C), which are known to act via different modes of action (direct- and indirect-acting clastogens, alkylating agents, gene mutagens, cross-linking and aneugenic compounds) were tested. Male rats were dosed at 0, 24 and 45 h, and bone marrow and peripheral blood (micronucleus endpoint), liver, whole blood and stomach (Comet endpoint) were sampled at three hours after the last dose. Comet and micronucleus responses were as expected based on available data for conventional (acute) stand-alone assays. All compounds were detected as genotoxic in at least one of the endpoints. The importance of evaluating both endpoints was highlighted by the uniquely positive responses for certain chemicals (benzo[a]pyrene and 2-acetylaminofluorene) with the Comet endpoint and certain other chemicals (carbendazim and mitomycin C) with the micronucleus endpoint. The data generated from these

  20. Comparison of the ELISPOT and cytokine flow cytometry assays for the enumeration of antigen-specific T cells.

    Science.gov (United States)

    Karlsson, Annika C; Martin, Jeffrey N; Younger, Sophie R; Bredt, Barry M; Epling, Lorrie; Ronquillo, Rollie; Varma, Arjun; Deeks, Steven G; McCune, Joseph M; Nixon, Douglas F; Sinclair, Elizabeth

    2003-12-01

    The enumeration of antigen-specific T cell responses has been greatly facilitated in recent years by the development of methods based on the detection of cytokines. In particular, the enzyme-linked immunospot (ELISPOT) and cytokine flow cytometry (CFC) assays have become popular. Since both assays are likely to continue to be in widespread use, it is important to evaluate whether their results are comparable. In the current study, we compared the results obtained in the ELISPOT and CFC assays using peptide pools corresponding to CMV and HIV-1 proteins in chronically HIV-1-infected individuals. Analysis of T cell responses to peptide pools indicated that the CMV pp65 and HIV-1 Gag CFC and ELISPOT-derived results were statistically correlated. However, the results obtained with each assay differed in important ways: the magnitude of the response was consistently higher in the CFC assay while the CFC assay was less likely than the ELISPOT assay to detect low-level responses. Furthermore, there was a lack of numeric agreement between ELISPOT and CFC results. For studies that require the detection of low-level responses, or definition of responses as positive or negative, the ELISPOT assay may be preferable. In contrast, the CFC has a greater dynamic range and allows for phenotypic discrimination of responding cells, making it the assay of choice for most other applications.

  1. Go with the flow: an updated tool for detecting molecules.

    OpenAIRE

    Frazer, L

    2000-01-01

    In the early 1970, researchers at Los Alamos National Laboratories developed the flow cytometer, a device that allows for the identification of unknown cells. In a flow cytometer, a single-cell suspension is passed in a continuous flow through a laser beam, with each cell scattering the light in a characteristic manner. A few years ago, researchers at Los Alamos began another project, refining the capabilities of the flow cytometer so that it could analyze not a single cell but a single molec...

  2. Sources of variability in platelet accumulation on type 1 fibrillar collagen in microfluidic flow assays.

    Directory of Open Access Journals (Sweden)

    Keith B Neeves

    Full Text Available Microfluidic flow assays (MFA that measure shear dependent platelet function have potential clinical applications in the diagnosis and treatment of bleeding and thrombotic disorders. As a step towards clinical application, the objective of this study was to measure how phenotypic and genetic factors, as well as experimental conditions, affect the variability of platelet accumulation on type 1 collagen within a MFA. Whole blood was perfused over type 1 fibrillar collagen at wall shear rates of 150, 300, 750 and 1500 s⁻¹ through four independent channels with a height of 50 µm and a width of 500 µm. The accumulation of platelets was characterized by the lag time to 1% platelet surface coverage (Lag(T, the rate of platelet accumulation (V(PLT, and platelet surface coverage (SC. A cohort of normal donors was tested and the results were correlated to plasma von Willebrand factor (VWF levels, platelet count, hematocrit, sex, and collagen receptors genotypes. VWF levels were the strongest determinant of platelet accumulation. VWF levels were positively correlated to V(PLT and SC at all wall shear rates. A longer Lag(T for platelet accumulation at arterial shear rates compared to venous shear rates was attributed to the time required for plasma proteins to adsorb to collagen. There was no association between platelet accumulation and hematocrit or platelet count. Individuals with the AG genotype of the GP6 gene had lower platelet accumulation than individuals with the AA genotype at 150 s⁻¹ and 300 s⁻¹. Recalcified blood collected into sodium citrate and corn trypsin inhibitor (CTI resulted in diminished platelet accumulation compared to CTI alone, suggesting that citrate irreversibly diminishes platelet function. This study the largest association study of MFA in healthy donors (n = 104 and will likely set up the basis for the determination of the normal range of platelet responses in this type of assay.

  3. Clinical utility of the cryptococcal antigen lateral flow assay in a diagnostic mycology laboratory.

    Directory of Open Access Journals (Sweden)

    Brendan J McMullan

    Full Text Available BACKGROUND: Cryptococcus neoformans causes life-threatening meningitis. A recently introduced lateral flow immunoassay (LFA to detect cryptococcal antigen (CRAG is reportedly more rapid and convenient than standard latex agglutination (LA, but has not yet been evaluated in a diagnostic laboratory setting. METHODS: One hundred and six serum, 42 cerebrospinal fluid (CSF, and 20 urine samples from 92 patients with known or suspected cryptococcosis were tested by LA and LFA, and titres were compared. Results were correlated with laboratory-confirmed cryptococcosis. Serial samples were tested in nine treated patients. RESULTS: Twenty-five of 92 patients had confirmed cryptococcosis; all sera (n = 56 from these patients were positive by LFA (sensitivity 100%, 95% confidence interval (CI 93.6-100% compared with 51/56 positive by LA (sensitivity 91.1%, 95% CI 80.7-96.1%. Fifty sera from 67 patients without cryptococcosis tested negative in both assays. While LA yielded more false negative results (5/56 this did not reach statistical significance (p = 0.063. Nine CSF samples from patients with cryptococcal meningitis yielded positive results using both assays while 17/18 urine samples from patients with cryptococcosis were positive by the LFA. The LFA detected CRAG in C. gattii infection (n = 4 patients. Agreement between titres obtained by both methods (n = 38 samples was imperfect; correlation between log-transformed titres (r was 0.84. Turn-around-time was 20 minutes for the LFA and 2 h for LA. The cost per qualitative sample was 18USD and 91 USD, respectively and per quantitative sample was 38USD and 144USD, respectively. CONCLUSIONS: Qualitative agreement between the LFA and LA assays performed on serum and CSF was good but agreement between titres was imperfect. Ease of performance of the LFA and the capacity for testing urine suggest it has a role in the routine laboratory as a rapid diagnostic test or point-of-care test.

  4. A portable battery powered microfluidic impedance cytometer with smartphone readout: towards personal health monitoring.

    Science.gov (United States)

    Talukder, Niloy; Furniturewalla, Abbas; Le, Tuan; Chan, Matthew; Hirday, Shreyas; Cao, Xinnan; Xie, Pengfei; Lin, Zhongtian; Gholizadeh, Azam; Orbine, Steve; Javanmard, Mehdi

    2017-06-01

    We present a portable system for personalized blood cell counting consisting of a microfluidic impedance cytometer and portable analog readout electronics, feeding into an analog-to-digital converter (ADC), and being transmitted via Bluetooth to a user-accessible mobile application. We fabricated a microfluidic impedance cytometer with a novel portable analog readout. The novel design of the analog readout, which consists of a lock-in-amplifier followed by a high-pass filter stage for subtraction of drift and DC offset, and a post-subtraction high gain stage, enables detection of particles and cells as small as 1 μm in diameter, despite using a low-end 8-bit ADC. The lock-in-amplifier and the ADC were set up to receive and transmit data from a Bluetooth module. In order to initiate the system, as well as to transmit all of the data, a user friendly mobile application was developed, and a proof-of-concept trial was run on a blood sample. Applications such as personalized health monitoring require robust device operation and resilience to clogging. It is desirable to avoid using channels comparable in size to the particles being detected thus requiring high levels of sensitivity. Despite using low-end off-the-shelf hardware, our sensing platform was capable of detecting changes in impedance as small as 0.032%, allowing detection of 3 μm diameter particles in a 300 μm wide channel. The sensitivity of our system is comparable to that of a high-end bench-top impedance spectrometer when tested using the same sensors. The novel analog design allowed for an instrument with a footprint of less than 80 cm(2). The aim of this work is to demonstrate the potential of using microfluidic impedance spectroscopy for low cost health monitoring. We demonstrated the utility of the platform technology towards cell counting, however, our platform is broadly applicable to assaying wide panels of biomarkers including proteins, nucleic acids, and various cell types.

  5. Lateral flow immunoassay for diagnosis of Trypanosoma cruzi infection with high correlation to the radioimmunoprecipitation assay.

    Science.gov (United States)

    Houghton, Raymond L; Stevens, Yvonne Y; Hjerrild, Kathryn; Guderian, Jeff; Okamoto, Masahiko; Kabir, Mazbahul; Reed, Steven G; Leiby, David A; Morrow, W John W; Lorca, Myriam; Raychaudhuri, Syamal

    2009-04-01

    The incidence of blood donors seropositive for Trypanosoma cruzi in North America has increased with population migration and more rigorous surveillance. The United States, considered nonendemic for T. cruzi, could therefore be at risk to exposure to parasite transmission through blood or organ donations. Current tests show variable reactivity, especially with Central American sera. Here we describe the development of a lateral flow immunoassay for the rapid detection of T. cruzi infection that has a strong correlation to the radioimmunoprecipitation assay (RIPA) "gold standard" in the United States. Such a test could have utility in small blood banks for prescreening donors, as well as in cardiac transplantation evaluation. T. cruzi consensus and/or RIPA-positive sera from Central and South America were evaluated in enzyme immunoassays (EIAs). These included commercial panels from Boston Biomedica, Inc. (BBI) (n = 14), and HemaBio (n = 21). Other sources included RIPA-positive sera from the American Red Cross (ARC) (n = 42), as well as from Chile. Sera were tested with the multiepitope recombinant TcF. All but one of the BBI samples were positive and 7 of 21 HemaBio samples and 6 of 42 ARC samples were low positive or negative. This observation indicated the need for additional antigens. To complement TcF reactivity, we tested the sera with peptides 30, 36, SAPA, and 1.1, 1.2, and 1.3 His fragments of 85-kDa trans-sialidase. We identified a promising combination of the tested antigens and constructed a single recombinant protein, ITC6, that enhanced the relative sensitivity in U.S. blood donor sera compared to that of TcF. The data on its evaluation using RIPA-confirmed positive sera in EIA and lateral flow immunoassay studies are presented, along with an additional recombinant protein, ITC8.2, with two additional sequences for peptide 1 and Kmp-11. The latter, when evaluated in a dipstick assay with consensus positive sera, had a sensitivity of 99.2% and a

  6. Quantitative lateral flow strip assays as User-Friendly Tools To Detect Biomarker Profiles For Leprosy

    Science.gov (United States)

    van Hooij, Anouk; Tjon Kon Fat, Elisa M.; Richardus, Renate; van den Eeden, Susan J. F.; Wilson, Louis; de Dood, Claudia J.; Faber, Roel; Alam, Korshed; Richardus, Jan Hendrik; Corstjens, Paul L. A. M.; Geluk, Annemieke

    2016-01-01

    Leprosy is a debilitating, infectious disease caused by Mycobacterium leprae. Despite the availability of multidrug therapy, transmission is unremitting. Thus, early identification of M. leprae infection is essential to reduce transmission. The immune response to M. leprae is determined by host genetics, resulting in paucibacillary (PB) and multibacillary (MB) leprosy associated with dominant cellular or humoral immunity, respectively. This spectral pathology of leprosy compels detection of immunity to M. leprae to be based on multiple, diverse biomarkers. In this study we have applied quantitative user friendly lateral flow assays (LFAs) for four immune markers (anti-PGL-I antibodies, IL-10, CCL4 and IP-10) for whole blood samples from a longitudinal BCG vaccination field-trial in Bangladesh. Different biomarker profiles, in contrast to single markers, distinguished M. leprae infected from non-infected test groups, patients from household contacts (HHC) and endemic controls (EC), or MB from PB patients. The test protocol presented in this study merging detection of innate, adaptive cellular as well as humoral immunity, thus provides a convenient tool to measure specific biomarker profiles for M. leprae infection and leprosy utilizing a field-friendly technology. PMID:27682181

  7. Sensitive biomolecule detection in lateral flow assay with a portable temperature-humidity control device.

    Science.gov (United States)

    Choi, Jane Ru; Hu, Jie; Feng, Shangsheng; Wan Abas, Wan Abu Bakar; Pingguan-Murphy, Belinda; Xu, Feng

    2016-05-15

    Lateral flow assays (LFAs) have currently attracted broad interest for point-of-care (POC) diagnostics, but their application has been restricted by poor quantification and limited sensitivity. While the former has been currently solved to some extent by the development of handheld or smartphone-based readers, the latter has not been addressed fully, particularly the potential influences of environmental conditions (e.g., temperature and relative humidity (RH)), which have not yet received serious attention. The present study reports the use of a portable temperature-humidity control device to provide an optimum environmental requirement for sensitivity improvement in LFAs, followed by quantification by using a smartphone. We found that a RH beyond 60% with temperatures of 55-60°C and 37-40°C produced optimum nucleic acid hybridization and antigen-antibody interaction in LFAs, respectively representing a 10-fold and 3-fold signal enhancement over ambient conditions (25°C, 60% RH). We envision that in the future the portable device could be coupled with a fully integrated paper-based sample-to-answer biosensor for sensitive detection of various target analytes in POC settings.

  8. A novel flow-based procedure for automation of respirometric assays in soils.

    Science.gov (United States)

    Silva, Claudineia R; Oliveira, Eliezer; Zagatto, Elias A G; Henriquez, Camelia

    2016-09-01

    A flow-based strategy involving a gas-diffusion sampling probe was proposed for evaluating the respiration rate in soils. The amount of CO2 collected after a pre-defined time interval was proportional to the free CO2 released by the soil ecosystem. The 500-mL incubation flasks typically used for soil respirometric assays were adapted and a special cover was designed for connecting a tubular gas diffusion membrane, a fan, and a septum for adding the CO2(g) standards required for calibration. The method relied on the pH-dependent absorbance variations resulting from the CO2 collection. A 1.3mmolL(-1) bromothymol blue solution (pH 7.0) acted as both acceptor and carrier streams. In order to widen the dynamical working range to 0.003-0.2mmol CO2, two analytical curves were obtained, each related to a different time interval for the CO2 collection. Kinetic curves related to CO2 release by the soil samples were straightforwardly attained. Repeatability and detection limit were estimated as 2.0% and 0.001mmol CO2 (n=10), and accuracy was assessed in relation to a recommended titrimetric procedure.

  9. Using ImageJ for the quantitative analysis of flow-based adhesion assays in real-time under physiologic flow conditions.

    Science.gov (United States)

    Meyer dos Santos, Sascha; Klinkhardt, Ute; Schneppenheim, Reinhard; Harder, Sebastian

    2010-01-01

    This article intends to close the gap between the abundance of regular articles focusing on adhesive mechanisms of cells in a flow field and purely technical reports confined to the description of newly developed algorithms, not yet ready to be used by users without programming skills. A simple and robust method is presented for analysing raw videomicroscopic data of flow-based adhesion assays using the freely available public domain software ImageJ. We describe in detail the image processing routines used to rapidly and reliably evaluate the number of adherent and translocating platelets in videomicroscopic recordings. The depicted procedures were exemplified by analysing platelet interaction with immobilized von Willebrand factor and fibrinogen in flowing blood under physiological wall shear rates. Neutralizing GPIbalpha function reduced shear-dependent platelet translocation on von Willebrand factor and abolished firm platelet adhesion. Abciximab, Tirofiban and Eptifibatide completely inhibited GPIIb/IIIa-dependent stable platelet deposition on fibrinogen. The presented method to analyse videomicroscopic recordings from flow-based adhesion assays offers the advantage of providing a simple and reliable way to quantify flow-based adhesion assays, which is completely based on ImageJ and can easily be applied to study adhesion mechanisms of cells in non-fluorescent modes without the need to deviate from the presented protocol.

  10. Electrical cell counting process characterization in a microfluidic impedance cytometer.

    Science.gov (United States)

    Hassan, Umer; Bashir, Rashid

    2014-10-01

    Particle counting in microfluidic devices with coulter principle finds many applications in health and medicine. Cell enumeration using microfluidic particle counters is fast and requires small volumes of sample, and is being used for disease diagnostics in humans and animals. A complete characterization of the cell counting process is critical for accurate cell counting especially in complex systems with samples of heterogeneous population interacting with different reagents in a microfluidic device. In this paper, we have characterized the electrical cell counting process using a microfluidic impedance cytometer. Erythrocytes were lysed on-chip from whole blood and the lysing was quenched to preserve leukocytes which subsequently pass through a 15 μm × 15 μm measurement channel used to electrically count the cells. We show that cell counting over time is a non-homogeneous Poisson process and that the electrical cell counts over time show the log-normal distribution, whose skewness can be attributed to diffusion of cells in the buffer that is used to meter the blood. We further found that the heterogeneous cell population (i.e. different cell types) shows different diffusion characteristics based on the cell size. Lymphocytes spatially diffuse more as compared to granulocytes and monocytes. The time difference between the cell occurrences follows an exponential distribution and when plotted over time verifies the cell diffusion characteristics. We also characterized the probability of occurrence of more than one cell at the counter within specified time intervals using Poisson counting statistics. For high cell concentration samples, we also derived the required sample dilution based on our particle counting characterization. Buffer characterization by considering the size based particle diffusion and estimating the required dilution are critical parameters for accurate counting results.

  11. Uncovering Aberrant Mutant PKA Function with Flow Cytometric FRET

    Directory of Open Access Journals (Sweden)

    Shin-Rong Lee

    2016-03-01

    Full Text Available Biology has been revolutionized by tools that allow the detection and characterization of protein-protein interactions (PPIs. Förster resonance energy transfer (FRET-based methods have become particularly attractive as they allow quantitative studies of PPIs within the convenient and relevant context of living cells. We describe here an approach that allows the rapid construction of live-cell FRET-based binding curves using a commercially available flow cytometer. We illustrate a simple method for absolutely calibrating the cytometer, validating our binding assay against the gold standard isothermal calorimetry (ITC, and using flow cytometric FRET to uncover the structural and functional effects of the Cushing-syndrome-causing mutation (L206R on PKA’s catalytic subunit. We discover that this mutation not only differentially affects PKAcat’s binding to its multiple partners but also impacts its rate of catalysis. These findings improve our mechanistic understanding of this disease-causing mutation, while illustrating the simplicity, general applicability, and power of flow cytometric FRET.

  12. Time-domain microfluidic fluorescence lifetime flow cytometry for high-throughput Förster resonance energy transfer screening.

    Science.gov (United States)

    Nedbal, Jakub; Visitkul, Viput; Ortiz-Zapater, Elena; Weitsman, Gregory; Chana, Prabhjoat; Matthews, Daniel R; Ng, Tony; Ameer-Beg, Simon M

    2015-02-01

    Sensing ion or ligand concentrations, physico-chemical conditions, and molecular dimerization or conformation change is possible by assays involving fluorescent lifetime imaging. The inherent low throughput of imaging impedes rigorous statistical data analysis on large cell numbers. We address this limitation by developing a fluorescence lifetime-measuring flow cytometer for fast fluorescence lifetime quantification in living or fixed cell populations. The instrument combines a time-correlated single photon counting epifluorescent microscope with microfluidics cell-handling system. The associated computer software performs burst integrated fluorescence lifetime analysis to assign fluorescence lifetime, intensity, and burst duration to each passing cell. The maximum safe throughput of the instrument reaches 3,000 particles per minute. Living cells expressing spectroscopic rulers of varying peptide lengths were distinguishable by Förster resonant energy transfer measured by donor fluorescence lifetime. An epidermal growth factor (EGF)-stimulation assay demonstrated the technique's capacity to selectively quantify EGF receptor phosphorylation in cells, which was impossible by measuring sensitized emission on a standard flow cytometer. Dual-color fluorescence lifetime detection and cell-specific chemical environment sensing were exemplified using di-4-ANEPPDHQ, a lipophilic environmentally sensitive dye that exhibits changes in its fluorescence lifetime as a function of membrane lipid order. To our knowledge, this instrument opens new applications in flow cytometry which were unavailable due to technological limitations of previously reported fluorescent lifetime flow cytometers. The presented technique is sensitive to lifetimes of most popular fluorophores in the 0.5-5 ns range including fluorescent proteins and is capable of detecting multi-exponential fluorescence lifetime decays. This instrument vastly enhances the throughput of experiments involving fluorescence

  13. Method of detaching adherent cells for flow cytometry

    KAUST Repository

    Kaur, Mandeep

    2015-12-24

    In one aspect, a method for detaching adherent cells can include adding a cell lifting solution to the media including a sample of adherent cells and incubating the sample of adherent cells with the cell lifting solution. No scraping or pipetting is needed to facilitate cell detachment. The method do not require inactivation of cell lifting solution and no washing of detaching cells is required to remove cell lifting solution. Detached cells can be stained with dye in the presence of cell lifting solution and are further analyzed using flow cytometer. The method has been tested using 6 different cell lines, 4 different assays, two different plate formats (96 and 384 well plates) and two different flow cytometry instruments. The method is simple to perform, less time consuming, with no cell loss and makes high throughput flow cytometry on adherent cells a reality.

  14. A novel multi-walled carbon nanotube-based antibody conjugate for quantitative and semi-quantitative lateral flow assays.

    Science.gov (United States)

    Sun, Wenjuan; Hu, Xiaolong; Liu, Jia; Zhang, Yurong; Lu, Jianzhong; Zeng, Libo

    2017-10-01

    In this study, the multi-walled carbon nanotubes (MWCNTs) were applied in lateral flow strips (LFS) for semi-quantitative and quantitative assays. Firstly, the solubility of MWCNTs was improved using various surfactants to enhance their biocompatibility for practical application. The dispersed MWCNTs were conjugated with the methamphetamine (MET) antibody in a non-covalent manner and then manufactured into the LFS for the quantitative detection of MET. The MWCNTs-based lateral flow assay (MWCNTs-LFA) exhibited an excellent linear relationship between the values of test line and MET when its concentration ranges from 62.5 to 1500 ng/mL. The sensitivity of the LFS was evaluated by conjugating MWCNTs with HCG antibody and the MWCNTs conjugated method is 10 times more sensitive than the one conjugated with classical colloidal gold nanoparticles. Taken together, our data demonstrate that MWCNTs-LFA is a more sensitive and reliable assay for semi-quantitative and quantitative detection which can be used in forensic analysis.

  15. Point-of-care vertical flow allergen microarray assay: proof of concept

    NARCIS (Netherlands)

    Chinnasamy, Thiruppathiraja; Segerink, Loes I.; Nystrand, Mats; Gantelius, Jesper; Andersson Svahn, Helene

    2014-01-01

    BACKGROUND: Sophisticated equipment, lengthy protocols, and skilled operators are required to perform protein microarray-based affinity assays. Consequently, novel tools are needed to bring biomarkers and biomarker panels into clinical use in different settings. Here, we describe a novel paper-based

  16. Groundwater flow system in the valley of Toluca, Mexico: an assay of natural radionuclide specific activities.

    Science.gov (United States)

    Segovia, N; Tamez, E; Peña, P; Carrillo, J; Acosta, E; Armienta, M A; Iturbe, J L

    1999-03-01

    Natural radionuclides and physicochemical parameters have been evaluated in groundwater samples from boreholes belonging to the drinking water supply system of the Toluca City, Mexico. The results obtained for radon and radium, together with the physicochemical parameters of the studied samples, indicate a fast and efficient recharge pattern. The presence of a local and a regional groundwater flows was also observed. The local flow belongs to shallower water, recognized by its low radon content and dissolved ions, as compared with the regional, deeper groundwater flow with a longer residence time.

  17. Clinical evaluation of a simple image cytometer for CD4 enumeration on HIV-infected patients

    NARCIS (Netherlands)

    Li, Xiao; Breukers, Christian; Ymeti, Aurel; Pattanapanyasat, Kovit; Sukapirom, Kasama; Terstappen, Leon W.M.M.; Greve, Jan

    2010-01-01

    Background: Affordable, easy-to-use, and reliable CD4+ T lymphocyte enumeration systems are needed in resource-constrained settings to monitor HIV. - Methods: A simple image cytometer was used to count fluorescently labeled CD4+ T and CD8+ T lymphocytes from CD3 immunomagnetically selected cells on

  18. A numerical analysis of forces exerted by laminar flow on spreading cells in a parallel plate flow chamber assay.

    Science.gov (United States)

    Olivier, L A; Truskey, G A

    1993-10-01

    Exposure of spreading anchorage-dependent cells to laminar flow is a common technique to measure the strength of cell adhesion. Since cells protrude into the flow stream, the force exerted by the fluid on the cells is a function of cell shape. To assess the relationship between cell shape and the hydrodynamic force on adherent cells, we obtained numerical solutions of the velocity and stress fields around bovine aortic endothelial cells during various stages of spreading and calculated the force required to detach the cells. Morphometric parameters were obtained from light and scanning electron microscopy measurements. Cells were assumed to have a constant volume, but the surface area increased during spreading until the membrane was stretched taut. Two-dimensional models of steady flow were generated using the software packages ANSYS (mesh generation) and FIDAP (problem solution). The validity of the numerical results was tested by comparison with published results for a semicircle in contact with the surface. The drag force and torque were greatest for round cells making initial contact with the surface. During spreading, the drag force and torque declined by factors of 2 and 20, respectively. The calculated forces and moments were used in adhesion models to predict the wall shear stress at which the cells detached. Based upon published values for the bond force and receptor number, round cells should detach at shear stresses between 2.5 and 6 dyn/cm(2), whereas substantially higher stresses are needed to detach spreading and fully spread cells. Results from the simulations indicate that (1) the drag force varies little with cell shape whereas the torque is very sensitive to cell shape, and (2) the increase in the strength of adhesion during spreading is due to increased contact area and receptor densities within the contact area.

  19. Flow-through synthesis on Teflon-patterned paper to produce peptide arrays for cell-based assays.

    Science.gov (United States)

    Deiss, Frédérique; Matochko, Wadim L; Govindasamy, Natasha; Lin, Edith Y; Derda, Ratmir

    2014-06-16

    A simple method is described for the patterned deposition of Teflon on paper to create an integrated platform for parallel organic synthesis and cell-based assays. Solvent-repelling barriers made of Teflon-impregnated paper confine organic solvents to specific zones of the patterned array and allow for 96 parallel flow-through syntheses on paper. The confinement and flow-through mixing significantly improves the peptide yield and simplifies the automation of this synthesis. The synthesis of 100 peptides ranging from 7 to 14 amino acids in length gave over 60% purity for the majority of the peptides (>95% yield per coupling/deprotection cycle). The resulting peptide arrays were used in cell-based screening to identify 14 potent bioactive peptides that support the adhesion or proliferation of breast cancer cells in a 3D environment. In the future, this technology could be used for the screening of more complex phenotypic responses, such as cell migration or differentiation.

  20. A flow cytometry-optimized assay using an SOS-green fluorescent protein (SOS-GFP) whole-cell biosensor for the detection of genotoxins in complex environments

    DEFF Research Database (Denmark)

    Norman, Anders; Hansen, Lars H.; Sørensen, Søren Johannes

    2006-01-01

    Whole-cell biosensors have become popular tools for detection of ecotoxic compounds in environmental samples. We have developed an assay optimized for flow cytometry with detection of genotoxic compounds in mind. The assay features extended pre-incubation and a cell density of only 106-107 cells/......-contaminated soil particles when using flow cytometry, and induction of the biosensor by mitomycin C was detectable at concentrations as low as 2.5 ng/g of soil....

  1. Photoacoustic-fluorescence in vitro flow cytometry for quantification of absorption, scattering and fluorescence properties of the cells

    Science.gov (United States)

    Nedosekin, D. A.; Sarimollaoglu, M.; Foster, S.; Galanzha, E. I.; Zharov, V. P.

    2013-03-01

    Fluorescence flow cytometry is a well-established analytical tool that provides quantification of multiple biological parameters of cells at molecular levels, including their functional states, morphology, composition, proliferation, and protein expression. However, only the fluorescence and scattering parameters of the cells or labels are available for detection. Cell pigmentation, presence of non-fluorescent dyes or nanoparticles cannot be reliably quantified. Herewith, we present a novel photoacoustic (PA) flow cytometry design for simple integration of absorbance measurements into schematics of conventional in vitro flow cytometers. The integrated system allow simultaneous measurements of light absorbance, scattering and of multicolor fluorescence from single cells in the flow at rates up to 2 m/s. We compared various combinations of excitation laser sources for multicolor detection, including simultaneous excitation of PA and fluorescence using a single 500 kHz pulsed nanosecond laser. Multichannel detection scheme allows simultaneous detection of up to 8 labels, including 4 fluorescent tags and 4 PA colors. In vitro PA-fluorescence flow cytometer was used for studies of nanoparticles uptake and for the analysis of cell line pigmentation, including genetically encoded melanin expression in breast cancer cell line. We demonstrate that this system can be used for direct nanotoxicity studies with simultaneous quantification of nanoparticles content and assessment of cell viability using a conventional fluorescent apoptosis assays.

  2. Description and validation of a rapid (1 h) flow cytometry test for enumerating thermophilic bacteria in milk powders.

    Science.gov (United States)

    Flint, S; Walker, K; Waters, B; Crawford, R

    2007-04-01

    The aim of this study was to develop a rapid assay for enumerating thermophilic bacteria in milk powder. The BactiFlow flow cytometer was used to count bacteria based on esterase activity in viable bacterial cells. A protocol for total viable bacteria was modified by heat-treating the sample to selectively label thermophilic bacteria. Samples of milk powder dissolved in 0.1% peptone were treated with 0.8% ethylenediaminetetraacetic acid to reduce background interference because of denatured milk proteins. Either thermophilic bacteria were added to the dissolved milk powder or milk powder solutions were incubated at 55 degrees C for 2-3 h to enrich the natural thermophile population for testing. Results from the BactiFlow were compared with traditional plate count results. Thermophilic bacteria in milk powder can be enumerated within 1 h using the BactiFlow flow cytometer. Microbiological test results obtained within 1 h can potentially be used to monitor manufacturing processes, effectively trace problems and provide confidence in the manufacture of product.

  3. Evaluation of agglutination strength by a flow-induced cell movement assay based surface plasmon resonance (SPR) technique.

    Science.gov (United States)

    Sudprasert, Krisda; Peungthum, Patjaree; Vongsakulyanon, Apirom; Amarit, Ratthasart; Somboonkaew, Armote; Sutapun, Boonsong; Kitpoka, Pimpun; Kunakorn, Mongkol; Srikhirin, Toemsak

    2015-02-07

    A flow-induced cell movement assay combined with a surface plasmon resonance (SPR) technique was developed to quantify the agglutination strength, derived from the standard tube-agglutination test. Red blood cells (RBCs), based on the ABO blood group system, were specifically captured by anti-A and/or anti-B antibodies immobilized on a sensor surface. The agglutination strength corresponds to the amount of antigen-antibody interactions or the strength of RBC adhesion. Under a shear flow, the adherent RBCs were forced to move out of the region of interest with different average cell velocities (vc) depending upon the adhesion strength and wall shear stress (WSS). That is, a higher adhesion strength (higher agglutination strength) or lower WSS represents a lower vc or vice versa. In this work, the agglutination strength was derived from the vc that was calculated from the time derivative of the relative SPR signal by using a simple model of cell movement response, whose validity was verified. The vc values of different samples were correlated with their agglutination strengths at a given WSS and antibody surface density. The vc decreased as the agglutination strength increased, which can be considered as a linear regression. The coefficient of variation of the calculated vc decreased to 0.1 as vc increased to 30 μm min(-1). The sensitivity of this assay can be controlled by optimizing the antibody surface density or the WSS. This assay has the capability to resolve the antigen density of A1 and B RBCs from that of A1B RBCs.

  4. A Low-Cost, High-Performance System for Fluorescence Lateral Flow Assays

    Directory of Open Access Journals (Sweden)

    Linda G. Lee

    2013-10-01

    Full Text Available We demonstrate a fluorescence lateral flow system that has excellent sensitivity and wide dynamic range. The illumination system utilizes an LED, plastic lenses and plastic and colored glass filters for the excitation and emission light. Images are collected on an iPhone 4. Several fluorescent dyes with long Stokes shifts were evaluated for their signal and nonspecific binding in lateral flow. A wide range of values for the ratio of signal to nonspecific binding was found, from 50 for R-phycoerythrin (R-PE to 0.15 for Brilliant Violet 605. The long Stokes shift of R-PE allowed the use of inexpensive plastic filters rather than costly interference filters to block the LED light. Fluorescence detection with R-PE and absorbance detection with colloidal gold were directly compared in lateral flow using biotinylated bovine serum albumen (BSA as the analyte. Fluorescence provided linear data over a range of 0.4–4,000 ng/mL with a 1,000-fold signal change while colloidal gold provided non-linear data over a range of 16–4,000 ng/mL with a 10-fold signal change. A comparison using human chorionic gonadotropin (hCG as the analyte showed a similar advantage in the fluorescent system. We believe our inexpensive yet high-performance platform will be useful for providing quantitative and sensitive detection in a point-of-care setting.

  5. Performance of the flow cytometric E-screen assay in screening estrogenicity of pure compounds and environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Vanparys, Caroline, E-mail: caroline.vanparys@ua.ac.be [Laboratory of Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Antwerp (Belgium); Depiereux, Sophie; Nadzialek, Stephanie [Research Unit in Organismal Biology (URBO), University of Namur (FUNDP), Namur (Belgium); Robbens, Johan; Blust, Ronny [Laboratory of Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Antwerp (Belgium); Kestemont, Patrick [Research Unit in Organismal Biology (URBO), University of Namur (FUNDP), Namur (Belgium); De Coen, Wim [Laboratory of Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Antwerp (Belgium); European Chemicals Agency (ECHA), Helsinki (Finland)

    2010-09-15

    In vitro estrogenicity screens are believed to provide a first prioritization step in hazard characterization of endocrine disrupting chemicals. When applied to complex environmental matrices or mixture samples, they have been indicated valuable in estimating the overall estrogen-mimicking load. In this study, the performance of an adapted format of the classical E-screen or MCF-7 cell proliferation assay was profoundly evaluated to rank pure compounds as well as influents and effluents of sewage treatment plants (STPs) according to estrogenic activity. In this adapted format, flow cytometric cell cycle analysis was used to allow evaluation of the MCF-7 cell proliferative effects after only 24 h of exposure. With an average EC{sub 50} value of 2 pM and CV of 22%, this assay appears as a sensitive and reproducible system for evaluation of estrogenic activity. Moreover, estrogenic responses of 17 pure compounds corresponded well, qualitatively and quantitatively, with other in vitro and in vivo estrogenicity screens, such as the classical E-screen (R{sup 2} = 0.98), the estrogen receptor (ER) binding (R{sup 2} = 0.84) and the ER transcription activation assay (R{sup 2} = 0.87). To evaluate the applicability of this assay for complex samples, influents and effluents of 10 STPs covering different treatment processes, were compared and ranked according to estrogenic removal efficiencies. Activated sludge treatment with phosphorus and nitrogen removal appeared most effective in eliminating estrogenic activity, followed by activated sludge, lagoon and filter bed. This is well in agreement with previous findings based on chemical analysis or biological activity screens. Moreover, ER blocking experiments indicated that cell proliferative responses were mainly ER mediated, illustrating that the complexity of the end point, cell proliferation, compared to other ER screens, does not hamper the interpretation of the results. Therefore, this study, among other E-screen studies

  6. Rapid detection of abrin in foods with an up-converting phosphor technology-based lateral flow assay

    Science.gov (United States)

    Liu, Xiao; Zhao, Yong; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Zhang, Pingping; Qiu, Jingfu; Yang, Ruifu; Zhou, Lei

    2016-01-01

    Abrin is a natural plant toxin found in the seeds of Abrus precatorius. It may be used for food poisoning or bioterrorism, seriously endangering public health. In this study, a reliable method for the rapid detection of abrin in foods was developed, based on an up-converting phosphor technology-based lateral flow assay (abrin-UPT-LFA). Nine high-affinity monoclonal antibodies (mAbs) against abrin were prepared, and the optimum mAbs (mAb-6F4 and mAb-10E11) were selected for use in the assay in double-antibody-sandwich mode. The assay was confirmed to be specific for abrin, with a detection sensitivity of 0.1 ng mL−1 for standard abrin solutions. Good linearity was observed for abrin quantitation from 0.1 to 1000 ng mL−1 (r = 0.9983). During the analysis of various abrin-spiked food samples, the assay showed strong sample tolerance and a satisfactory limit of detection for abrin (0.5–10 ng g−1 for solid and powdered samples; 0.30–0.43 ng mL−1 for liquid samples). The analysis of suspected food samples, from sample treatment to result feed-back, could be completed by non-professionals within 20 min. Therefore, the abrin-UPT-LFA is a rapid, sensitive, and reliable method for the on-site detection of abrin in foods. PMID:27703269

  7. Comparison of a Multiplex Flow Cytometric Assay with Enzyme-Linked Immunosorbent Assay for Quantitation of Antibodies to Tetanus, Diphtheria, and Haemophilus influenzae Type b

    OpenAIRE

    Pickering, Jerry W.; Martins, Thomas B.; Schroder, M. Carl; Hill, Harry R.

    2002-01-01

    We developed a multiplexed indirect immunofluorescence assay for antibodies to Haemophilus influenza type b (Hib) polysaccharide and the toxoids of Clostridium tetani (Tet) and Corynebacterium diphtheriae (Dip) based on the Luminex multiple-analyte profiling system. A pooled serum standard was calibrated against World Health Organization standards for Dip and Tet and an international standard for Hib. The multiplexed Luminex assay was compared to individual enzyme-linked immunosorbent assays ...

  8. Technical discussions II - Flow cytometric analysis

    NARCIS (Netherlands)

    Cunningham, A; Cid, A; Buma, AGJ

    1996-01-01

    In this paper the potencial of flow cytometry as applied to the aquatic life sciences is discussed. The use of flow cytometry for studying the ecotoxicology of phytoplankton was introduced. On the other hand, the new flow cytometer EUROPA was presented. This is a multilaser machine which has been sp

  9. Technical discussions II - Flow cytometric analysis

    NARCIS (Netherlands)

    Cunningham, A; Cid, A; Buma, AGJ

    1996-01-01

    In this paper the potencial of flow cytometry as applied to the aquatic life sciences is discussed. The use of flow cytometry for studying the ecotoxicology of phytoplankton was introduced. On the other hand, the new flow cytometer EUROPA was presented. This is a multilaser machine which has been sp

  10. Near infrared lasers in flow cytometry.

    Science.gov (United States)

    Telford, William G

    2015-07-01

    Technology development in flow cytometry has closely tracked laser technology, the light source that flow cytometers almost exclusively use to excite fluorescent probes. The original flow cytometers from the 1970s and 1980s used large water-cooled lasers to produce only one or two laser lines at a time. Modern cytometers can take advantage of the revolution in solid state laser technology to use almost any laser wavelength ranging from the ultraviolet to the near infrared. Commercial cytometers can now be equipped with many small solid state lasers, providing almost any wavelength needed for cellular analysis. Flow cytometers are now equipped to analyze 20 or more fluorescent probes simultaneously, requiring multiple laser wavelengths. Instrument developers are now trying to increase this number by designing fluorescent probes that can be excited by laser wavelength at the "edges" of the visible light range, in the near ultraviolet and near-infrared region. A variety of fluorescent probes have been developed that excite with violet and long wavelength ultraviolet light; however, the near-infrared range (660-800 nm) has yet seen only exploitation in flow cytometry. Fortunately, near-infrared laser diodes and other solid state laser technologies appropriate for flow cytometry have been in existence for some time, and can be readily incorporated into flow cytometers to accelerate fluorescent probe development. The near infrared region represents one of the last "frontiers" to maximize the number of fluorescent probes that can be analyzed by flow cytometry. In addition, near infrared fluorescent probes used in biomedical tracking and imaging could also be employed for flow cytometry with the correct laser wavelengths. This review describes the available technology, including lasers, fluorescent probes and detector technology optimal for near infrared signal detection. Published by Elsevier Inc.

  11. Standardizing flow cytometric assays in long-term population-based studies

    Science.gov (United States)

    Melzer, Susanne; Bocsi, Jozsef; Tárnok, Attila

    2015-03-01

    Quantification of leukocyte subpopulations and characterization of antigen-expression pattern on the cellular surface can play an important role in diagnostics. The state of cellular immunology on the single-cell level was analyzed by polychromatic flow cytometry in a recent comparative study within the average Leipzig population (LIFE - Leipzig Research Centre for Civilization Diseases). Data of 1699 subjects were recorded over a long-time period of three years (in a total of 1126 days). To ensure compatibility of such huge data sets, quality-controls on many levels (stability of instrumentation, low intra-laboratory variance and reader independent data analysis) are essential. The LIFE study aims to analyze various cytometric pattern to reveal the relationship between the life-style, the environmental effects and the individual health. We therefore present here a multi-step quality control procedure for long-term comparative studies.

  12. Staphylococcal enterotoxin B-specific electrochemiluminescence and lateral flow device assays cross-react with staphylococcal enterotoxin D.

    Science.gov (United States)

    Tallent, Sandra M; Hait, Jennifer; Bennett, Reginald W

    2014-01-01

    Guam school children and faculty members experienced symptoms of vomiting, nausea, abdominal cramps, and diarrhea shortly after eating breakfast prepared by contracted caterers. The first illness was reported within an hour after breakfast, affecting 295 students and two faculty members. Local hospitals treated 130 people, and 61 were admitted for further treatment. Reported symptoms were consistent with staphylococcal food poisoning. Initial food testing using a lateral flow device and electrochemiluminescence method incorrectly implicated staphylococcal enterotoxin B as the causative agent, prompting partial activation of Guam's Emergency Response Center. Traditional ELISAs proved that the food poisoning agent was staphylococcal enterotoxin D. More specific and sensitive assays would have alleviated the issues and confusion that surrounded the reporting and investigation of this outbreak.

  13. Rapid and selective detection of experimental snake envenomation - Use of gold nanoparticle based lateral flow assay.

    Science.gov (United States)

    Pawade, Balasaheb S; Salvi, Nitin C; Shaikh, Innus K; Waghmare, Arun B; Jadhav, Nitin D; Wagh, Vishal B; Pawade, Abhilasha S; Waykar, Indrasen G; Potnis-Lele, Mugdha

    2016-09-01

    In this study, we have developed a gold nanoparticle based simple, rapid lateral flow assay (LFA) for detection of Indian Cobra venom (CV) and Russell's viper venom (RV). Presently, there is no rapid, reliable, and field diagnostic test available in India, where snake bite cases are rampant. Therefore, this test has an immense potential from the public health point of view. The test is based on the principle of the paper immunochromatography assay for detection of two snake venom species using polyvalent antisnake venom antibodies (ASVA) raised in equines and species-specific antibodies (SSAbs) against venoms raised in rabbits for conjugation and impregnation respectively. The developed, snake envenomation detection immunoassay (SEDIA) was rapid, selective, and sensitive to detect venom concentrations up to 0.1 ng/ml. The functionality of SEDIA strips was confirmed by experimental envenomation in mice and the results obtained were specific for the corresponding venom. The SEDIA has a potential to be a field diagnostic test to detect snake envenomation and assist in saving lives of snakebite victims.

  14. Thermal Contrast Amplification Reader Yielding 8-Fold Analytical Improvement for Disease Detection with Lateral Flow Assays.

    Science.gov (United States)

    Wang, Yiru; Qin, Zhenpeng; Boulware, David R; Pritt, Bobbi S; Sloan, Lynne M; González, Iveth J; Bell, David; Rees-Channer, Roxanne R; Chiodini, Peter; Chan, Warren C W; Bischof, John C

    2016-12-06

    There is an increasing need for highly sensitive and quantitative diagnostics at the point-of-care. The lateral flow immunoassay (LFA) is one of the most widely used point-of-care diagnostic tests; however, LFAs generally suffer from low sensitivity and lack of quantification. To overcome these limitations, thermal contrast amplification (TCA) is a new method that is based on the laser excitation of gold nanoparticles (GNPs), the most commonly used visual signature, to evoke a thermal signature. To facilitate the clinical translation of the TCA technology, we present the development of a TCA reader, a platform technology that significantly improves the limit of detection and provides quantification of disease antigens in LFAs. This TCA reader provides enhanced sensitivity over visual detection by the human eye or by a colorimetric reader (e.g., BD Veritor System Reader). More specifically, the TCA reader demonstrated up to an 8-fold enhanced analytical sensitivity and quantification among LFAs for influenza, malaria, and Clostridium difficile. Systematic characterization of the laser, infrared camera, and other components of the reader and their integration into a working reader instrument are described. The development of the TCA reader enables simple, highly sensitive quantification of LFAs at the point-of-care.

  15. Evaluation of chromatin condensation in human spermatozoa: a flow cytometric assay using acridine orange staining.

    Science.gov (United States)

    Golan, R; Shochat, L; Weissenberg, R; Soffer, Y; Marcus, Z; Oschry, Y; Lewin, L M

    1997-01-01

    The quality of sperm chromatin is an important factor in fertilization and is especially critical where one spermatozoon is artificially selected for fertilizing an egg (as in intracytoplasmic sperm injection). In this study, flow cytometry after staining of human spermatozoa with Acridine Orange was used to study chromatin structure. A method is described for estimating the percentage of cells in a human sperm sample that have completed epididymal maturation in regard to chromatin condensation. Of the 121 samples of the semen that were examined, nine contained a higher percentage of hypocondensed spermatozoa and six samples contained elevated amounts of hypercondensed spermatozoa. In addition to aberrancies in chromatin condensation other defects showed up as satellite populations of spermatozoa with higher than normal ratios of red/green fluorescence after Acridine Orange staining. Such defects were found in 15 semen samples. The use of swim-up and Percoll gradient centrifugation methods was shown to improve the percentage of spermatozoa with normal chromatin structure in some samples with poor initial quality.

  16. An integrated flow cytometry-based system for real-time, high sensitivity bacterial detection and identification.

    Directory of Open Access Journals (Sweden)

    Dan A Buzatu

    Full Text Available Foodborne illnesses occur in both industrialized and developing countries, and may be increasing due to rapidly evolving food production practices. Yet some primary tools used to assess food safety are decades, if not centuries, old. To improve the time to result for food safety assessment a sensitive flow cytometer based system to detect microbial contamination was developed. By eliminating background fluorescence and improving signal to noise the assays accurately measure bacterial load or specifically identify pathogens. These assays provide results in minutes or, if sensitivity to one cell in a complex matrix is required, after several hours enrichment. Conventional assessments of food safety require 48 to 56 hours. The assays described within are linear over 5 orders of magnitude with results identical to culture plates, and report live and dead microorganisms. This system offers a powerful approach to real-time assessment of food safety, useful for industry self-monitoring and regulatory inspection.

  17. Microfluidic cytometers with integrated on-chip optical components for blood cell analysis

    Science.gov (United States)

    Zhao, Yingying; Li, Qin; Hu, Xiao-Ming

    2016-10-01

    In the last two decades, microfluidic technologies have shown the great potential in developing portable and point-of care testing blood cell analysis devices. It is challenging to integrate all free-space detecting components in a single microfluidic platform. In this paper, a microfluidic cytometer with integrated on-chip optical components was demonstrated. To facilitate on-chip detection, the device integrated optical fibers and on-chip microlens with microfluidic channels on one polydimethylsiloxane layer by standard soft photolithography. This compact design increased the sensitivity of the device and also eliminated time-consuming free-space optical alignments. Polystyrene particles, together with red blood cells and platelets, were measured in the microfluidic cytometer by small angle forward scatter. Experimental results indicated that the performance of the microfluidic device was comparable to a conventional cytometer. And it was also demonstrated its ability to detect on-chip optical signals in a highly compact, simple, truly portable and low cost format which was perfect suitable for point-of-care testing clinical hematology diagnostics.

  18. Four-dimensional characterization of thrombosis in a live-cell, shear-flow assay: development and application to xenotransplantation.

    Directory of Open Access Journals (Sweden)

    Donald G Harris

    Full Text Available Porcine xenografts are a promising source of scarce transplantable organs, but stimulate intense thrombosis of human blood despite targeted genetic and pharmacologic interventions. Current experimental models do not enable study of the blood/endothelial interface to investigate adhesive interactions and thrombosis at the cellular level under physiologic conditions. The purpose of this study was to develop and validate a live-cell, shear-flow based thrombosis assay relevant to general thrombosis research, and demonstrate its potential in xenotransplantation applications.Confluent wild-type (WT, n = 48 and Gal transferase knock-out (GalTKO, which resist hyperacute rejection; n = 11 porcine endothelia were cultured in microfluidic channels. To mimic microcirculatory flow, channels were perfused at 5 dynes/cm2 and 37°C with human blood stained to fluorescently label platelets. Serial fluorescent imaging visualized percent surface area coverage (SA, for adhesion of labeled cells and total fluorescence (a metric of clot volume. Aggregation was calculated by the fluorescence/SA ratio (FR. WT endothelia stimulated diffuse platelet adhesion (SA 65 ± 2% and aggregation (FR 120 ± 1 a.u., indicating high-grade thrombosis consistent with the rapid platelet activation and consumption seen in whole-organ lung xenotransplantation models. Experiments with antibody blockade of platelet aggregation, and perfusion of syngeneic and allo-incompatible endothelium was used to verify the biologic specificity and validity of the assay. Finally, with GalTKO endothelia thrombus volume decreased by 60%, due primarily to a 58% reduction in adhesion (P < 0.0001 each; importantly, aggregation was only marginally affected (11% reduction, P < 0.0001.This novel, high-throughput assay enabled dynamic modeling of whole-blood thrombosis on intact endothelium under physiologic conditions, and allowed mechanistic characterization of endothelial and platelet interactions. Applied to

  19. Event-triggered logical flow control for comprehensive process integration of multi-step assays on centrifugal microfluidic platforms.

    Science.gov (United States)

    Kinahan, David J; Kearney, Sinéad M; Dimov, Nikolay; Glynn, Macdara T; Ducrée, Jens

    2014-07-01

    The centrifugal "lab-on-a-disc" concept has proven to have great potential for process integration of bioanalytical assays, in particular where ease-of-use, ruggedness, portability, fast turn-around time and cost efficiency are of paramount importance. Yet, as all liquids residing on the disc are exposed to the same centrifugal field, an inherent challenge of these systems remains the automation of multi-step, multi-liquid sample processing and subsequent detection. In order to orchestrate the underlying bioanalytical protocols, an ample palette of rotationally and externally actuated valving schemes has been developed. While excelling with the level of flow control, externally actuated valves require interaction with peripheral instrumentation, thus compromising the conceptual simplicity of the centrifugal platform. In turn, for rotationally controlled schemes, such as common capillary burst valves, typical manufacturing tolerances tend to limit the number of consecutive laboratory unit operations (LUOs) that can be automated on a single disc. In this paper, a major advancement on recently established dissolvable film (DF) valving is presented; for the very first time, a liquid handling sequence can be controlled in response to completion of preceding liquid transfer event, i.e. completely independent of external stimulus or changes in speed of disc rotation. The basic, event-triggered valve configuration is further adapted to leverage conditional, large-scale process integration. First, we demonstrate a fluidic network on a disc encompassing 10 discrete valving steps including logical relationships such as an AND-conditional as well as serial and parallel flow control. Then we present a disc which is capable of implementing common laboratory unit operations such as metering and selective routing of flows. Finally, as a pilot study, these functions are integrated on a single disc to automate a common, multi-step lab protocol for the extraction of total RNA from

  20. Simple flow cytometric detection of haemozoin containing leukocytes and erythrocytes for research on diagnosis, immunology and drug sensitivity testing

    Directory of Open Access Journals (Sweden)

    Grobusch Martin P

    2011-03-01

    . Conclusions A simple modification of a flow cytometer allows for rapid and reliable detection and quantification of Hz-containing leukocytes and the analysis of differential surface marker expression in the same sample of Hz-containing versus non-Hz-containing leukocytes. Importantly, it distinguishes different maturation stages of parasitized RBC and may be the basis of a rapid no-added-reagent drug sensitivity assay.

  1. Comparison of a multiplex flow cytometric assay with enzyme-linked immunosorbent assay for auantitation of antibodies to tetanus, diphtheria, and Haemophilus influenzae Type b.

    Science.gov (United States)

    Pickering, Jerry W; Martins, Thomas B; Schroder, M Carl; Hill, Harry R

    2002-07-01

    We developed a multiplexed indirect immunofluorescence assay for antibodies to Haemophilus influenza type b (Hib) polysaccharide and the toxoids of Clostridium tetani (Tet) and Corynebacterium diphtheriae (Dip) based on the Luminex multiple-analyte profiling system. A pooled serum standard was calibrated against World Health Organization standards for Dip and Tet and an international standard for Hib. The multiplexed Luminex assay was compared to individual enzyme-linked immunosorbent assays (ELISAs) for the same analytes. By both methods, 75 (92.6%) of 81 of random serum samples had protective levels of antibody to Tet (> or = 0.1 IU/ml). For Dip, 81.5% of the samples had protective antibody levels (> or = 0.1 IU/ml) by ELISA and 80.2% had protective antibody levels by Luminex. Protective levels (> or = 1.0 microg/ml) of antibody to Hib were found in 45.0% of the samples tested by ELISA and in 39.0% of the samples tested by Luminex. The correlations (R(2)) between ELISA and Luminex of the 81 samples were 0.96, 0.96, and 0.91 for Tet, Dip, and Hib, respectively. There was also similar agreement between Luminex and ELISA for sera collected before and 1 month after Tet, Dip, and Hib vaccine administration. Both methods detected strong postvaccination responses. The Luminex method is an attractive alternative to ELISA since it reduces labor and reagent costs, as well as assay time.

  2. In vitro micronucleus assay for the analysis of total particulate matter in cigarette smoke: comparison of flow cytometry and laser scanning cytometry with microscopy.

    Science.gov (United States)

    Yao, Jianhua; Gao, Qian; Mi, Qili; Li, Xuemei; Miao, Mingming; Cheng, Peng; Luo, Ying

    2013-08-15

    The possible genotoxicity of the total particulate matter (TPM) in cigarette smoke has typically been evaluated using the in vitro micronucleus assay. In recent years, automated scoring techniques have been developed to replace the manual counting process in this assay. However, these automated scoring techniques have not been applied in routine genotoxicity assays for the analysis of TPM to improve the assay efficiency. Chinese hamster ovary (CHO) cells were treated with TPM produced from 14 types of cigarettes at five concentrations (25-200μg/ml) without exogenous metabolic activation. The three following methods were used to score the micronucleus (MN) frequency: (a) flow cytometry with SYTOX and EMA dyes, which differentially stain micronuclei and apoptotic/necrotic chromatin to enhance assay reliability; (b) laser scanning cytometry with FITC and PI dyes, which is a system that combines the analytical capabilities of flow and image cytometry; and (c) visual microcopy with Giemsa dye. The test results obtained using the three methods were compared using correlation analysis. The key findings for this set of compounds include the following: (a) both flow cytometry- and laser scanning cytometry-based methods were effective for MN identification, (b) the three scoring methods could detect dose-dependent micronucleus formation for the 14 types of TPM, and (c) the MN frequencies that were measured in the same samples by flow cytometry, laser scanning cytometry, and visual microscopy were highly correlated, and there were no significant differences (p>0.05). In conclusion, both flow cytometry and laser scanning cytometry can be used to evaluate the MN frequency induced by TPM without exogenous metabolic activation. The simpler and faster processing and the high correlation of the results make these two automatic methods appropriate tools for use in in vitro micronucleus assays for the analysis of TPM using CHO cells.

  3. Clinical relevance of anti-HLA antibodies detected by flow-cytometry bead-based assays--single-center experience.

    Science.gov (United States)

    Mihaylova, Anastassia; Baltadjieva, Daniela; Boneva, Petia; Ivanova, Milena; Penkova, Kalina; Marinova, Daniela; Mihailova, Snejina; Paskalev, Emil; Simeonov, Petar; Naumova, Elissaveta

    2006-10-01

    The purpose of this study was to define the incidence, dynamics, and profiles of anti-human leukocyte antigen antibodies (HLA-Abs) produced after kidney transplantation and their impact on graft outcome. A total of 72 first cadaver donor kidney recipients were prospectively monitored for the development of HLA-Abs using bead-based flow-cytometry assays (One Lambda FlowPRA tests). Sixteen recipients (22.2%) developed HLA-Abs after transplantation (class I, n = 7; class I+II, n = 6; class II, n = 3), in most cases (81.25%) within the first 2 weeks posttransplantation. A strong association between alloantibody presence and delayed graft function (Chi-square = 7.659, p < 0.01), acute rejection (Chi-square = 14.504, p < 0.001), chronic rejection (Chi-square = 12.84, p < 0.001), and graft loss (Chi-square = 20.283, p < 0.001) was found. Patients with higher alloantibody titers experienced acute rejections and even early graft loss, compared with those with lower titers for whom chronic rejections were more common. Immunologic complications occurred in recipients with both donor-specific and cross-reacting groups or non-donor-specific antibodies alone. A positive correlation (Pearson correlation, 0.245; p < 0.05) between HLA class I amino acid triplet incompatibility and alloantibody production was observed, mainly resulting from immunogenic triplotypes. Given the results obtained in this study, an alloantibody testing algorithm has been designed and implemented for routine monitoring and to define optimally the alloantibody reactivity in kidney transplant recipients.

  4. Early diagnosis of influenza virus a using surface-enhanced Raman scattering-based lateral flow assay

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Ji; Choo, Jae Bum [Dept. of Bionano Technology, Hanyang University, Ansan (Korea, Republic of); Yang, Sung Chul [School of Architectural Engineering, Hongik University, Sejong (Korea, Republic of)

    2016-12-15

    We report a surface-enhanced Raman scattering (SERS)-based lateral flow assay (LFA) kit for the rapid diagnosis of influenza virus A. Influenza virus A is highly infectious and causes acute respiratory diseases. Therefore, it is important to diagnose the virus early to prevent a pandemic and to provide appropriate treatment to the patient and vaccination of high-risk individuals. Conventional diagnostic tests, including virus cell culture and real-time polymerase chain reaction, take longer than 1 day to confirm the disease. In contrast, a commercially available rapid influenza diagnostic test can detect the infection within 30 min, but it is hard to confirm viral infection using only this test because of its low sensitivity. Therefore, the development of a rapid and simple test for the early diagnosis of influenza infection is urgently needed. To resolve these problems, we developed a SERS-based LFA kit in which the gold nanoparticles in the commercial rapid kit were replaced with SERS-active nano tags. It is possible to quantitatively detect the influenza virus A with high sensitivity by measuring the enhanced Raman signal of these SERS nano tags on the LFA strip. The limit of detection (LOD) using our proposed SERS-based LFA kit was estimated to be 1.9 × 10{sup 4} PFU/mL, which is approximately one order of magnitude more sensitive than the LOD determined from the colorimetric LFA kit.

  5. Comparison of Brucella immunoglobulin M and G flow assays with serum agglutination and 2-mercaptoethanol tests in the diagnosis of brucellosis

    NARCIS (Netherlands)

    A. Zeytinoglu; A. Turhan; I. Altuglu; A. Bilgic; T.H. Abdoel; H.L. Smits

    2006-01-01

    The diagnostic value of Brucella IgM/IgG flow assays was evaluated in comparison with serum agglutination and 2-mercaptoethanol tests by testing a selection of serum samples submitted to the laboratory because of clinical suspicion of brucellosis. All 39 admission and 11 follow-up samples that agglu

  6. Analysis of chromosome damage for biodosimetry using imaging flow cytometry.

    Science.gov (United States)

    Beaton, L A; Ferrarotto, C; Kutzner, B C; McNamee, J P; Bellier, P V; Wilkins, R C

    2013-08-30

    The dicentric chromosome assay (DCA), which involves counting the frequency of dicentric chromosomes in mitotic lymphocytes and converting it to a dose-estimation for ionizing radiation exposure, is considered to be the gold standard for radiation biodosimetry. Furthermore, for emergency response, the DCA has been adapted for triage by simplifying the scoring method [1]. With the development of new technologies such as the imaging flow cytometer, it may now be possible to adapt this microscope-based method to an automated cytometry method. This technology allows the sensitivity of microscopy to be maintained while adding the increased throughput of flow cytometry. A new protocol is being developed to adapt the DCA to the imaging cytometer in order to further increase the rapid determination of a biological dose. Peripheral blood mononuclear cells (PBMC) were isolated from ex vivo irradiated whole blood samples using a density gradient separation method and cultured with PHA and Colcemid. After 48h incubation, the chromosomes were isolated, stained for DNA content with propidium iodide (PI) and labelled with a centromere marker. Stained chromosomes were then analyzed on the ImageStream(×) (EMD-Millipore, Billerica, MA). Preliminary results indicate that individual chromosomes can be identified and mono- and dicentric chromosomes can be differentiated by imaging cytometry. A dose response curve was generated using this technology. The details of the method and the dose response curve are presented and compared to traditional microscope scoring. Imaging cytometry is a new technology which enables the rapid, automated analysis of fluorescently labelled chromosomes. Adapting the dicentric assay to this technology has the potential for high throughput analysis for mass casualty events.

  7. Multiplexed lateral flow microarray assay for detection of citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis pv citri

    Energy Technology Data Exchange (ETDEWEB)

    Cary; R. Bruce (Santa Fe, NM); Stubben, Christopher J. (Los Alamos, NM)

    2011-03-22

    The invention provides highly sensitive and specific assays for the major citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis, including a field deployable multiplexed assay capable of rapidly assaying for both pathogens simultaneously. The assays are directed at particular gene targets derived from pathogenic strains that specifically cause the major citrus diseases of citrus variegated chlorosis (Xylella fastidiosa 9a5c) and citrus canker (Xanthomonas axonopodis pv citri). The citrus pathogen assays of the invention offer femtomole sensitivity, excellent linear dynamic range, and rapid and specific detection.

  8. Best practices for application of attachment cells to in vitro micronucleus assessment by flow cytometry.

    Science.gov (United States)

    Bemis, Jeffrey C; Bryce, Steven M; Nern, Marlies; Raschke, Marian; Sutter, Andreas

    2016-01-01

    This work seeks to provide users with guidance on cell culture, treatment, processing and analytical conditions for achieving optimal performance of the in vitro micronucleus assay using the In Vitro MicroFlow(®) method. Experimental data are provided to support the advice described. The information provided covers specific topics or issues that are identified as critical to the methodology and thus is meant to work with instruction manuals, published papers and other references, and not as a replacement for these documents. The content is divided into several sections. Cell culture and treatment describes conditions for routine maintenance of cells as well as treatment with test articles. Preparation and processing of samples details steps found to be critical in execution of the procedure. Instrument parameters and analysis covers set-up of the flow cytometer and evaluation of the samples. General assay considerations and interpretation of results describes examination of data in terms of assay validity, viability and genotoxicity assessment. The goal is to educate users and enable them to design, conduct and interpret flow cytometric in vitro micronucleus (MN) studies. Readers should obtain an understanding of specific cell culture practices, options for assay formatting and execution and the information required to successfully integrate and validate the in vitro MN assay into their existing safety program.

  9. Design of analog front-end circuitry with drift removal and gain enhancement for a highly sensitive handheld impedance cytometer

    Science.gov (United States)

    Talukder, Niloy

    We present a portable system for personalized blood cell counting consisting of a microfluidic impedance cytometer with portable analog readout feeding into an analog-to-digital converter (ADC). The novel design of the analog readout, which consists of a lock-in-amplifier followed by a high-pass filter stage for subtraction of drift and DC offset, and a post-subtraction high gain stage, enables detection of particles and cells as small as 1 mum in diameter, despite using a low-end 8 bit ADC. Applications such as personalized health monitoring require robust device operation and resilience to clogging, thus it is desirable to avoid using channels comparable in size to the particles being detected, thus requiring high levels of sensitivity. Despite using low-end off-the-shelf hardware, our sensing platform was capable of detecting changes in impedance as small as 0.032%, allowing detection of 3 mum diameter particles in 300 mum wide channel. The consecutive upward and downward signature of recorded peaks further helps to differentiate the signal from the noise floor. The performance of our system is comparable to that of a high-end bench-top impedance spectrometer under experimental condition. The novel analog design allowed for an instrument with a footprint of less than 80 cm2. The aim of this work was to demonstrate the potential of using microfluidic impedance spectroscopy for low-cost health monitoring. We demonstrated the utility of the platform technology towards cell counting, however our platform is broadly applicable to assaying wide panels of biomarkers including proteins, nucleic acids, and various cell types.

  10. HoloMonitor M4: holographic imaging cytometer for real-time kinetic label-free live-cell analysis of adherent cells

    Science.gov (United States)

    Sebesta, Mikael; Egelberg, Peter J.; Langberg, Anders; Lindskov, Jens-Henrik; Alm, Kersti; Janicke, Birgit

    2016-03-01

    Live-cell imaging enables studying dynamic cellular processes that cannot be visualized in fixed-cell assays. An increasing number of scientists in academia and the pharmaceutical industry are choosing live-cell analysis over or in addition to traditional fixed-cell assays. We have developed a time-lapse label-free imaging cytometer HoloMonitorM4. HoloMonitor M4 assists researchers to overcome inherent disadvantages of fluorescent analysis, specifically effects of chemical labels or genetic modifications which can alter cellular behavior. Additionally, label-free analysis is simple and eliminates the costs associated with staining procedures. The underlying technology principle is based on digital off-axis holography. While multiple alternatives exist for this type of analysis, we prioritized our developments to achieve the following: a) All-inclusive system - hardware and sophisticated cytometric analysis software; b) Ease of use enabling utilization of instrumentation by expert- and entrylevel researchers alike; c) Validated quantitative assay end-points tracked over time such as optical path length shift, optical volume and multiple derived imaging parameters; d) Reliable digital autofocus; e) Robust long-term operation in the incubator environment; f) High throughput and walk-away capability; and finally g) Data management suitable for single- and multi-user networks. We provide examples of HoloMonitor applications of label-free cell viability measurements and monitoring of cell cycle phase distribution.

  11. Flow cytometer analysis of cell apoptosis of endometrial carcinoma with Wnt10b.

    Science.gov (United States)

    Zhou, Y; Zhao, X L; Guo, R X; Qiao, Y H; Zhang, X Y; Chen, Z H

    2016-01-01

    The aim of this study is to analyze the cell apoptosis of endometrial carcinoma (EC) with Wnt10b by Fluorescence Activated Cell Sorting (FACS) technology. AN3CA cell lines and Ishikawa-H-12 cell lines were taken as the in-vitro cell models to observe the influence of Wnt10b on key factors of Wnt signal pathway. Methyl thiazolyl tetrazolium (MTT) was applied for the detection of cell proliferation while FACS was used for the detection of cell apoptosis. Data were analyzed using statistical software SPSS14.0. After the overexpression of Wntl0b in AN3CA cells, the apoptosis rate dropped significantly compared with the two control groups (p < 0.05); while the apoptosis rate increased significantly compared with the control groups (p < 0.01) after Wntl0b knock-off in Ishikawa3-H-12 cells. In normal endometrium, Wnt10b gene expression was negative, while that in EC cells was positive. It can be concluded that Wnt10b gene can promote EC cell proliferation and inhibit its apoptosis.

  12. A CRITICAL EVALUATION OF A FLOW CYTOMETER USED FOR DETECTING ENTEROCOCCI IN RECREATIONAL WATERS

    Science.gov (United States)

    The current U. S. Environmental Protection Agency-approved method for enterococci (Method 1600) in recreational water is a membrane filter (MF) method that takes 24 hours to obtain results. If the recreational water is not in compliance with the standard, the risk of exposure to...

  13. A new principle of cell sorting by using selective electroporation in a modified flow cytometer

    NARCIS (Netherlands)

    Bakker Schut, Tom C.; Grooth, de Bart G.; Greve, Jan

    1990-01-01

    When a strong electric field pulse of a few microseconds is applied to biological cells, small pores are formed in the cell membranes; this process is called electroporation. At high field strengths and/or long pulse durations the membranes will be damaged permanently. This eventually leads to cell

  14. Detection and quantification of waterborne microorganisms using an image cytometer based on angular spatial frequency processing

    CERN Document Server

    Pérez, Juan Miguel; Martínez, Pedro; Pruneri, Valerio

    2015-01-01

    We introduce a new image cytometer design for detection of very small particulate and demonstrate its capability in water analysis. The device is a compact microscope composed of off--the--shelf components, such as a light emitting diode (LED) source, a complementary metal--oxide--semiconductor (CMOS) image sensor, and a specific combination of optical lenses that allow, through an appropriate software, Fourier transform processing of the sample volume. Waterborne microorganisms, such as Escherichia coli (E. coli), Legionella pneumophila (L. pneumophila) and Phytoplankton, are detected by interrogating the volume sample either in a fluorescent or label-free mode, i.e. with or without fluorescein isothiocyanate (FITC) molecules attached to the micro-organisms, respectively. We achieve a sensitivity of 50 CFU/ml, which can be further increased to 0.2 CFU/ml by pre-concentrating an initial sample volume of 500 ml with an ad hoc fluidic system. We also prove the capability of the proposed image cytometer of diffe...

  15. [Rapid detection of Macrobrachium rosenbergii nodavirus isolated in China by a reverse-transcription loop-mediated isothermal amplification assay combined with a lateral flow dipstick method].

    Science.gov (United States)

    Lin, Feng; Liu, Li; Hao, Gui-Jie; Cao, Zheng; Sheng, Peng-Cheng; Wu, Ying-Lei; Shen, Jin-Yu

    2014-09-01

    White coloration of the muscle of the giant river prawn (Macrobrachium rosenbergii) is a serious problem in China. The Macrobrachium rosenbergii Nodavirus (MrNV) has been confirmed to be the pathogen that causes this disorder. To develop a rapid, sensitive and specific technology for the detection of Macrobrachium rosenbergii Nodavirus isolated from China (MrNV-China), a reverse-transcription loop- mediated isothermal amplification assay combined with a lateral flow dipstick (RT-LAMP-LFD) assay method is described. A set of four primers and a labeled probe were designed specifically to recognize six distinct regions of the MrNV RNA2 gene. Results showed the sensitivity of the RT-LAMP-LFD assay was ten-times higher than the reverse-transcription loop-mediated isothermal amplification assay (RT-LAMP) with agarose gel electrophoresis. The assay was conducted with one-step amplification at 61°C in a single tube within 45 min. No product was generated from shrimps infected with other viruses, including DNA viruses (infectious hypodermal and hematopoietic necrosis virus (IHHNV); white spot syndrome virus (WSSV)) and RNA viruses (Taura syndrome virus (TSV); infectious myonecrosis virus (IMNV); yellow head virus (YHV)). Results were visualized by the LFD method. Therefore, the described rapid and sensitive assay is potentially useful for MrNV detection.

  16. Evaluation of the C.Diff Quik Chek Complete Assay, a new glutamate dehydrogenase and A/B toxin combination lateral flow assay for use in rapid, simple diagnosis of clostridium difficile disease.

    Science.gov (United States)

    Sharp, Susan E; Ruden, Lila O; Pohl, Julie C; Hatcher, Patricia A; Jayne, Linda M; Ivie, W Michael

    2010-06-01

    The diagnosis of Clostridium difficile infection continues to be a challenge for many clinical microbiology laboratories. A new lateral flow assay, the C.Diff Quik Chek Complete assay, which tests for the presence of both glutamate dehydrogenase (GDH) and C. difficile toxins A and B, was evaluated for its ability to diagnose C. difficile disease. The results of this assay were compared to those of both PCR and toxigenic culture. The results showed that this assay allows 88% of specimens to be accurately screened as either positive (both tests positive) or negative (both tests negative) for the presence of toxigenic C. difficile in less than 30 min and with minimal hands-on time. Use of a random-access PCR for the analysis of specimens with discrepant results (one test positive and the other negative) allows the easy, rapid, and highly sensitive (100%; 95% confidence interval [CI], 89.6 to 100%) and specific (99.6%; 95% CI, 97.3 to 99.9%) diagnosis of C. difficile disease. The use of this algorithm would save institutional costs, curtail unnecessary isolation days, reduce the nosocomial transmission of disease, and increase the quality of care for patients.

  17. Single-colour flow cytometric assay to determine NK cell-mediated cytotoxicity and viability against non-adherent human tumor cells.

    Science.gov (United States)

    Thakur, Ajit; Zaman, Abeyat; Hummel, Jeff; Jones, Kim; Hortelano, Gonzalo

    2012-03-01

    A flow cytometry-based cytotoxicity (FCC) assay was developed using a single fluorophore, calcein-acetoxymethyl diacetylester (calcein-AM), to measure NK cell-mediated cytotoxicity. Non-adherent human K562 and U937 target cells were individually labelled with calcein-AM and co-incubated with effector NK cells to measure calcein loss, and therefore calculate target cell cytotoxicity. This FCC assay also provided a measure of sample viability. Notably, cell viability measured by traditional calcein/7-amino-actinomycin D (7-AAD) double labelling and Trypan Blue methods were comparable to the viability calculated using calcein-loss FCC. This FCC assay may also be used with various effector and target cell types and as a multi-parameter tool to measure viability and immunophenotype cells for tissue engineering purposes.

  18. Detection of P-glycoprotein with a rapid flow cytometric functional assay using Fluo-3: evaluation of sensitivity, specificity and feasibility in multiparametric analysis.

    Science.gov (United States)

    Van Acker, K L; De Greef, C; Eggermont, J; Zhang, P; Vandenberghe, P; Boogaerts, M A

    1995-08-01

    The specificity and sensitivity of a flow cytometric assay simultaneously measuring expression and transport function of the multidrug resistance associated P-glycoprotein (Pgp) was evaluated. The monoclonal antibody (mAb), MRK16 was used to detect phenotypic Pgp expression while Fluo-3-AM was used as a fluorescent substrate in a Pgp functional transport assay. The specificity of the functional assay was examined in two vinblastine selected human leukemic cell lines (K562/VLB2.5 and CCRF-CEM/VLB50) with acquired Pgp overexpression. Downmodulation of Pgp function in these cell lines could be demonstrated with different substances (verapamil, vinblastine, trifluoperazine, cyclosporin A, progesterone and quinidine) and was proven to be consistently higher in the vinblastine selected cells than in their non-selected drug sensitive counterparts. Unexpectedly, modulator activity was also observed in drug sensitive K562 and CCRF-CEM cell lines despite the inability to detect Pgp in those cells by MRK16 flow cytometrically. Low level expression of the MDR1 gene encoding Pgp in sensitive K562 cells was however demonstrated with a sensitive RT-PCR procedure. The small effect of Pgp modulators in non-drug selected cells could therefore be attributed to low level basal expression of Pgp and illustrates the sensitivity of the functional assay. Also, the effect of various Pgp modulators on Pgp function was more pronounced in a subpopulation of Pgp expressing lymphocytes than in lymphocytes which did not express Pgp. Finally, a correlation was found between discrete variations in Pgp expression and Pgp function of CD4+ lymphocytes, underscoring the feasibility of the functional assay in a triple parametric procedure. The triple parametric assay holds promise to detect Pgp expression and function in clinical samples containing mixtures of malignant and non-malignant cells.

  19. Evaluation of a multiple-cycle, recombinant virus, growth competition assay that uses flow cytometry to measure replication efficiency of human immunodeficiency virus type 1 in cell culture.

    Science.gov (United States)

    Dykes, Carrie; Wang, Jiong; Jin, Xia; Planelles, Vicente; An, Dong Sung; Tallo, Amanda; Huang, Yangxin; Wu, Hulin; Demeter, Lisa M

    2006-06-01

    Human immunodeficiency virus type 1 (HIV-1) replication efficiency or fitness, as measured in cell culture, has been postulated to correlate with clinical outcome of HIV infection, although this is still controversial. One limitation is the lack of high-throughput assays that can measure replication efficiency over multiple rounds of replication. We have developed a multiple-cycle growth competition assay to measure HIV-1 replication efficiency that uses flow cytometry to determine the relative proportions of test and reference viruses, each of which expresses a different reporter gene in place of nef. The reporter genes are expressed on the surface of infected cells and are detected by commercially available fluorescence-labeled antibodies. This method is less labor-intensive than those that require isolation and amplification of nucleic acids. The two reporter gene products are detected with similar specificity and sensitivity, and the proportion of infected cells in culture correlates with the amount of viral p24 antigen produced in the culture supernatant. HIV replication efficiencies of six different drug-resistant site-directed mutants were reproducibly quantified and were similar to those obtained with a growth competition assay in which the relative proportion of each variant was measured by sequence analysis, indicating that recombination between the pol and reporter genes was negligible. This assay also reproducibly quantified the relative fitness conferred by protease and reverse transcriptase sequences containing multiple drug resistance mutations, amplified from patient plasma. This flow cytometry-based growth competition assay offers advantages over current assays for HIV replication efficiency and should prove useful for the evaluation of patient samples in clinical trials.

  20. Laboratory Evaluation of a Point-of-Care Downward-Flow Assay for Simultaneous Detection of Antibodies to Treponema pallidum and Human Immunodeficiency Virus

    OpenAIRE

    Herbst de Cortina, S.; Bristow, C. C.; Vargas, S. K.; Perez, D. G.; Konda, K. A.; Caceres, C. F.; Klausner, J. D.

    2016-01-01

    Combining the detection of syphilis and HIV antibodies into one point-of-care test integrates syphilis screening into already existing HIV screening programs, which may be particularly beneficial in settings such as antenatal care. Using the INSTI Multiplex downward-flow immunoassay, we tested 200 stored serum samples from high-risk patients enrolled in a longitudinal study on HIV infection and syphilis in Peruvian men who have sex with men and transgender women. This rapid assay detected HIV...

  1. Development and Evaluation of Up-Converting Phosphor Technology-Based Lateral Flow Assay for Quantitative Detection of NT-proBNP in Blood

    Science.gov (United States)

    Hao, Qingfang; Zou, Deyong; Zhang, Xiaoli; Zhang, Liping; Li, Hongmei; Qiao, Yong; Zhao, Huansheng; Zhou, Lei

    2017-01-01

    A newly assay, up-converting phosphor technology-based lateral flow (UPT-LF) assay, was developed for rapid and quantitative detection of N-terminal fragment of B-type natriuretic peptide precursor (NT-proBNP), one of the most important serum molecular maker of heat failure, in plasma samples as a point of care testing (POCT) method for diagnosis of acute heart failure. Human plasma from 197 patients with acute heart failure and 200 healthy controls was assessed using the UPT-LF assay, in a comparison with a Roche Elecsys assay. The limit of detection of the UPT-LF assay, with a coefficient of variation (CV) of less than 15%, was 116 ng/L, which is lower than the clinical diagnosis cutoff (150 ng/mL). The linear range was 50–35,000 ng/L. The CVs were less than 10% for both UPT-LF and Roche Elecsys assays for plasma samples under different storages, demonstrating the good stability and reproducibility. There are certain linear correlations between the results of UPT-LF and Roche Elecsys assay for EDTA-K2 and heparin-anticoagulated plasma, as well as for serum samples. For UPT-LF assay, there is a significant correlation between the values derived from analysis of EDTA-K2 and heparin-anticoagulated plasma samples (R = 0.995). No statistically significant difference was found between serum and plasma samples for UPT-LF assay. Our results demonstrate that NT-proBNP levels in healthy adults are elevated with age and had a relationship with sex, and with the age increase the NT-proBNP levels of females are significantly higher than those of males (p<0.01). The UPT-LF assay has a high reproducibility, stability, sensitivity, specificity, and is consistent with Roche Elecsys assay, and therefore it could be used as a POCT method for the quantitative detection of NT-proBNP in blood for clinical diagnosis and research of acute heart failure. PMID:28151978

  2. Teaching Phagocytosis Using Flow Cytometry

    Directory of Open Access Journals (Sweden)

    John Boothby

    2009-12-01

    Full Text Available Investigative microbiology on protists in a basic teaching laboratory environment is limited by student skill level, ease of microbial culture and manipulation, instrumentation, and time. The flow cytometer is gaining use as a mainstream instrument in research and clinical laboratories, but has had minimal application in teaching laboratories. Although the cost of a flow cytometer is currently prohibitive for many microbiology teaching environments and the number of trained instructors and teaching materials is limited, in many ways the flow cytometer is an ideal instrument for teaching basic microbiology. We report here on a laboratory module to study phagocytosis in Tetrahymena sp. using flow cytometry in a basic microbiology teaching laboratory. Students and instructors found the flow cytometry data analysis program, Paint-A-GatePRO-TM, to be very intuitive and easy to learn within a short period of time. Assessment of student learning about Tetrahymena sp., phagocytosis, flow cytometry, and investigative microbiology using an inquiry-based format demonstrated an overall positive response from students.

  3. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay.

    Science.gov (United States)

    Zhao, Yong; Wang, Haoran; Zhang, Pingping; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Yang, Ruifu; Wang, Chengbin; Zhou, Lei

    2016-02-17

    The rapid high-throughput detection of foodborne pathogens is essential in controlling food safety. In this study, a 10-channel up-converting phosphor technology-based lateral flow (TC-UPT-LF) assay was established for the rapid and simultaneous detection of 10 epidemic foodborne pathogens. Ten different single-target UPT-LF strips were developed and integrated into one TC-UPT-LF disc with optimization. Without enrichment the TC-UPT-LF assay had a detection sensitivity of 10(4) CFU mL(-1) or 10(5) CFU mL(-1) for each pathogen, and after sample enrichment it was 10 CFU/0.6 mg. The assay also showed good linearity, allowing quantitative detection, with a linear fitting coefficient of determination (R(2)) of 0.916-0.998. The 10 detection channels did not cross-react, so multiple targets could be specifically detected. When 279 real food samples were tested, the assay was highly consistent (100%) with culture-based methods. The results for 110 food samples artificially contaminated with single or multiple targets showed a high detection rate (≥ 80%) for most target bacteria. Overall, the TC-UPT-LF assay allows the rapid, quantitative, and simultaneous detection of 10 kinds of foodborne pathogens within 20 min, and is especially suitable for the rapid detection and surveillance of foodborne pathogens in food and water.

  4. Genotoxicity of doxorubicin in F344 rats by combining the comet assay, flow-cytometric peripheral blood micronucleus test, and pathway-focused gene expression profiling.

    Science.gov (United States)

    Manjanatha, Mugimane G; Bishop, Michelle E; Pearce, Mason G; Kulkarni, Rohan; Lyn-Cook, Lascelles E; Ding, Wei

    2014-01-01

    Doxorubicin (DOX) is an antineoplastic drug effective against many human malignancies. DOX's clinical efficacy is greatly limited because of severe cardiotoxicity. To evaluate if DOX is genotoxic in the heart, ~7-week-old, male F344 rats were administered intravenously 1, 2, and 3 mg/kg bw DOX at 0, 24, 48, and 69 hr and the Comet assays in heart, liver, kidney, and testis and micronucleus (MN) assay in the peripheral blood (PB) erythrocytes using flow cytometry were conducted. Rats were euthanized at 72 hr and PB was removed for the MN assay and single cells were isolated from multiple tissues for the Comet assays. None of the doses of DOX induced a significant DNA damage in any of the tissues examined by the alkaline Comet assay. Contrastingly, the glycosylase enzymes-modified Comet assay showed a significant dose dependent increase in the oxidative DNA damage in the cardiac tissue (P ≤ 0.05). In the liver, only the top dose induced significant increase in the oxidative DNA damage (P ≤ 0.05). The histopathology showed no severe cardiotoxicity but non-neoplastic lesions were present in both untreated and treated samples. A severe toxicity likely occurred in the bone marrow because no viable reticulocytes could be screened for the MN assay. Gene expression profiling of the heart tissues showed a significant alteration in the expression of 11 DNA damage and repair genes. These results suggest that DOX is genotoxic in the heart and the DNA damage may be induced primarily via the production of reactive oxygen species.

  5. Flow cytometric 96-well microplate-based in vitro micronucleus assay with human TK6 cells: protocol optimization and transferability assessment.

    Science.gov (United States)

    Bryce, Steven M; Avlasevich, Svetlana L; Bemis, Jeffrey C; Tate, Matthew; Walmsley, Richard M; Saad, Frédéric; Van Dijck, Kris; De Boeck, Marlies; Van Goethem, Freddy; Lukamowicz-Rajska, Magdalena; Elhajouji, Azeddine; Dertinger, Stephen D

    2013-04-01

    An automated approach for scoring in vitro micronuclei (MN) has been described in which flow cytometric analysis is combined with compound exposure, processing, and sampling in a single 96-well plate (Bryce SM et al. [2010]: Mutat Res 703:191-199). The current report describes protocol optimization and an interlaboratory assessment of the assay's transferability and reproducibility. In a training phase, the methodology was refined and collaborating laboratories were qualified by repeatedly testing three compounds. Second, a set of 32 chemicals comprised of reference genotoxicants and presumed non-genotoxicants was tested at each of four sites. TK6 cells were exposed to 10 closely spaced compound concentrations for 1.5- to 2-cell population doublings, and were then stained and lysed for flow cytometric analysis. MN frequencies were determined by evaluating ≥ 5,000 cells per replicate well, and several indices of cytotoxicity were acquired. The prevalence of positive results varied according to the MN-fold increase used to signify a genotoxic result, as well as the endpoint used to define a cytotoxicity limit. By varying these parameters, assay sensitivity and specificity values ranged from 82 to 98%, and 86 to 97%, respectively. In a third phase, one laboratory tested a further six genotoxicants and five non-genotoxic apoptosis inducers. In these experiments assay specificity was markedly improved when top concentration selection was based on two cytotoxicity endpoints-relative survival and quantification of ethidium monoazide-positive events. Collectively, the results indicate that the miniaturized assay is transferable across laboratories. The 96-well format consumes considerably less compound than conventional in vitro MN test methods, and the high information content provided by flow cytometry helps guard against irrelevant positive results arising from overt toxicity.

  6. Impedance Flow Cytometry as a Tool to Analyze Microspore and Pollen Quality.

    Science.gov (United States)

    Heidmann, Iris; Di Berardino, Marco

    2017-01-01

    Analyzing pollen quality in an efficient and reliable manner is of great importance to the industries involved in seed and fruit production, plant breeding, and plant research. Pollen quality parameters, viability and germination capacity, are analyzed by various staining methods or by in vitro germination assays, respectively. These methods are time-consuming, species-dependent, and require a lab environment. Furthermore, the obtained viability data are often poorly related to in vivo pollen germination and seed set. Here, we describe a quick, label-free method to analyze pollen using microfluidic chips inserted into an impedance flow cytometer (IFC). Using this approach, pollen quality parameters are determined by a single measurement in a species-independent manner. The advantage of this protocol is that pollen viability and germination can be analyzed quickly by a reliable and standardized method.

  7. Flow Cytometric Immunobead Assay for Detection of BCR-ABL1 Fusion Proteins in Chronic Myleoid Leukemia: Comparison with FISH and PCR Techniques.

    Directory of Open Access Journals (Sweden)

    Anna Grazia Recchia

    Full Text Available Chronic Myeloid Leukemia (CML is characterized by a balanced translocation juxtaposing the Abelson (ABL and breakpoint cluster region (BCR genes. The resulting BCR-ABL1 oncogene leads to increased proliferation and survival of leukemic cells. Successful treatment of CML has been accompanied by steady improvements in our capacity to accurately and sensitively monitor therapy response. Currently, measurement of BCR-ABL1 mRNA transcript levels by real-time quantitative PCR (RQ-PCR defines critical response endpoints. An antibody-based technique for BCR-ABL1 protein recognition could be an attractive alternative to RQ-PCR. To date, there have been no studies evaluating whether flow-cytometry based assays could be of clinical utility in evaluating residual disease in CML patients. Here we describe a flow-cytometry assay that detects the presence of BCR-ABL1 fusion proteins in CML lysates to determine the applicability, reliability, and specificity of this method for both diagnosis and monitoring of CML patients for initial response to therapy. We show that: i CML can be properly diagnosed at onset, (ii follow-up assessments show detectable fusion protein (i.e. relative mean fluorescent intensity, rMFI%>1 when BCR-ABL1IS transcripts are between 1-10%, and (iii rMFI% levels predict CCyR as defined by FISH analysis. Overall, the FCBA assay is a rapid technique, fully translatable to the routine management of CML patients.

  8. Flow Cytometric Immunobead Assay for Detection of BCR-ABL1 Fusion Proteins in Chronic Myleoid Leukemia: Comparison with FISH and PCR Techniques.

    Science.gov (United States)

    Recchia, Anna Grazia; Caruso, Nadia; Bossio, Sabrina; Pellicanò, Mariavaleria; De Stefano, Laura; Franzese, Stefania; Palummo, Angela; Abbadessa, Vincenzo; Lucia, Eugenio; Gentile, Massimo; Vigna, Ernesto; Caracciolo, Clementina; Agostino, Antolino; Galimberti, Sara; Levato, Luciano; Stagno, Fabio; Molica, Stefano; Martino, Bruno; Vigneri, Paolo; Di Raimondo, Francesco; Morabito, Fortunato

    2015-01-01

    Chronic Myeloid Leukemia (CML) is characterized by a balanced translocation juxtaposing the Abelson (ABL) and breakpoint cluster region (BCR) genes. The resulting BCR-ABL1 oncogene leads to increased proliferation and survival of leukemic cells. Successful treatment of CML has been accompanied by steady improvements in our capacity to accurately and sensitively monitor therapy response. Currently, measurement of BCR-ABL1 mRNA transcript levels by real-time quantitative PCR (RQ-PCR) defines critical response endpoints. An antibody-based technique for BCR-ABL1 protein recognition could be an attractive alternative to RQ-PCR. To date, there have been no studies evaluating whether flow-cytometry based assays could be of clinical utility in evaluating residual disease in CML patients. Here we describe a flow-cytometry assay that detects the presence of BCR-ABL1 fusion proteins in CML lysates to determine the applicability, reliability, and specificity of this method for both diagnosis and monitoring of CML patients for initial response to therapy. We show that: i) CML can be properly diagnosed at onset, (ii) follow-up assessments show detectable fusion protein (i.e. relative mean fluorescent intensity, rMFI%>1) when BCR-ABL1IS transcripts are between 1-10%, and (iii) rMFI% levels predict CCyR as defined by FISH analysis. Overall, the FCBA assay is a rapid technique, fully translatable to the routine management of CML patients.

  9. Platelet antibody screening by flow cytometry is more sensitive than solid phase red cell adherence assay and lymphocytotoxicity technique: a comparative study in Thai patients.

    Science.gov (United States)

    Buakaew, Jarin; Promwong, Charuporn

    2010-01-01

    The objective of this study was to compare the sensitivity and specificity of lymphocytotoxicity test (LCT), solid phase red cell adherence assay (SPRCA) and flow cytometry in detecting platelet reactive antibodies against human leukocyte antigens (HLA) class I and human platelet antigens (HPA). Sera from 38 thrombocytopenic patients and 5 mothers of thrombocytopenic newborns were screened for platelet reactive antibodies by these three methods using screening platelets and/or lymphocytes panels derived from six subjects. The sensitivity and specificity of each method and levels of agreement were analysed. HLA antibodies were found in 18, 17 and 19 out of 43 patients' sera tested by LCT, SPRCA and flow cytometry, respectively. Four out of 43 patients' sera were reactive against HPA by flow cytometry, but were reactive to only 2 sera by SPRCA. Using flow cytometry as the reference method, the sensitivities/specificities of SPRCA and LCT in HLA antibody detection were 84.21/95.83% and 94.73/100%, respectively, with a good strength of agreement. SPRCA had 50% sensitivity and 100% specificity in HPA antibody detection compare to flow cytometry. Flow cytometry appeared to be the most sensitive technique compared with SPRCA and LCT for both HPA and HLA antibody screening. SPRCA sensitivity was too low for HPA antibody detection, but this might be because of the small number of samples. There was one serum from the mother of a baby suffering neonatal alloimmune thrombocytopenia (NAIT), in whom SPRCA could not detect HPA antibodies, while flow cytometry came out positive. Therefore, SPRCA should not be used in NAIT investigation and flow cytometry should be employed instead.

  10. Flow cytometric immunobead assay for fast and easy detection of PML-RARA fusion proteins for the diagnosis of acute promyelocytic leukemia.

    Science.gov (United States)

    Dekking, E H A; van der Velden, V H J; Varro, R; Wai, H; Böttcher, S; Kneba, M; Sonneveld, E; Koning, A; Boeckx, N; Van Poecke, N; Lucio, P; Mendonça, A; Sedek, L; Szczepański, T; Kalina, T; Kanderová, V; Hoogeveen, P; Flores-Montero, J; Chillón, M C; Orfao, A; Almeida, J; Evans, P; Cullen, M; Noordijk, A L; Vermeulen, P M; de Man, M T; Dixon, E P; Comans-Bitter, W M; van Dongen, J J M

    2012-09-01

    The PML-RARA fusion protein is found in approximately 97% of patients with acute promyelocytic leukemia (APL). APL can be associated with life-threatening bleeding complications when undiagnosed and not treated expeditiously. The PML-RARA fusion protein arrests maturation of myeloid cells at the promyelocytic stage, leading to the accumulation of neoplastic promyelocytes. Complete remission can be obtained by treatment with all-trans-retinoic acid (ATRA) in combination with chemotherapy. Diagnosis of APL is based on the detection of t(15;17) by karyotyping, fluorescence in situ hybridization or PCR. These techniques are laborious and demand specialized laboratories. We developed a fast (performed within 4-5 h) and sensitive (detection of at least 10% malignant cells in normal background) flow cytometric immunobead assay for the detection of PML-RARA fusion proteins in cell lysates using a bead-bound anti-RARA capture antibody and a phycoerythrin-conjugated anti-PML detection antibody. Testing of 163 newly diagnosed patients (including 46 APL cases) with the PML-RARA immunobead assay showed full concordance with the PML-RARA PCR results. As the applied antibodies recognize outer domains of the fusion protein, the assay appeared to work independently of the PML gene break point region. Importantly, the assay can be used in parallel with routine immunophenotyping for fast and easy diagnosis of APL.

  11. Development and evaluation of an up-converting phosphor technology-based lateral flow assay for rapid and quantitative detection of aflatoxin B1 in crops.

    Science.gov (United States)

    Zhao, Yong; Liu, Xiao; Wang, Xiaochen; Sun, Chongyun; Wang, Xinrui; Zhang, Pingping; Qiu, Jingfu; Yang, Ruifu; Zhou, Lei

    2016-12-01

    Contamination of grains and other crops by aflatoxin B1 (AFB1), a highly toxic aflatoxin produced by Aspergillus flavus and Aspergillus parasiticus, poses a serious threat to human health and is an important food safety issue. In this study, a competitive up-converting phosphor technology-based lateral flow (AFB1-UPT-LF) assay was developed for rapid detection of AFB1. Detection sensitivity of the proposed assay can reach 0.03ngmL(-1) for standard AFB1 solutions, with the coefficients of variation (CV) less than 10% (from 1.0 to 9.4%). A good linearity (r=0.9889) was observed for quantification of AFB1 from 0.03 to 1000ngmL(-1). Except for aflatoxin M1, no cross-reactivity was found with the abrin, ricin, ochratoxin A, botulinum toxin, shiga toxin 1, shiga toxin 2, and staphylococcal enterotoxin B, even at high concentrations of 100 or 1000ngmL(-)(1). After optimizing the extraction of AFB1, the assay showed good tolerance to various crop samples, with the detection limit (from 0.1 to 5ngg(-)(1)) lower than the corresponding maximum residue level (MRL) set in China. The AFB1-UPT-LF assay provides a promising tool for rapid on-site detection of AFB1 because of its high sensitivity, specificity, and sample tolerance. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Clinical performance of human papillomavirus E6, E7 mRNA flow cytometric assay compared to human papillomavirus DNA typing.

    Science.gov (United States)

    Kottaridi, Christine; Tsiodras, Sotirios; Spathis, Aris; Chranioti, Aikaterini; Pappas, Asimakis; Kassanos, Dimitrios; Panayiotides, Ioannis; Karakitsos, Petros

    2011-12-01

    To use flow cytometry to screen cervical samples for the overexpression of human papillomavirus (HPV) E6 and E7 mRNA and compare the performance of this assay with an HPV DNA array for the detection of high-grade cervical lesions. Cervical samples were analyzed for HPV DNA by clinical arrays, and the overexpression of E6 and E7 viral oncogenes was monitored using an HPV mRNA detection kit that quantifies the intracellular HPV E6 and E7 mRNA on a cell-by-cell basis. HPV positivity increased with severity of histologic lesions. On the basis of histology-confirmed CIN 2+ cases the specificity of HPV assay was 73.9% (95% CI 66.07, 80.88), whereas it was 39.3% (95% CI 31.85, 47.1) for the DNA assay. The HPV assay provides an early predictor of persistent HPV infection and may improve cervical cancer screening by increasing the specificity of detecting high-grade lesions.

  13. The level of heparin-induced antibodies in correlation with the result of the flow cytometric functional assay in the patients with suspected HIT.

    Science.gov (United States)

    Maličev, Elvira; Maček Kvanka, Marjeta; Klemenc, Polona; Rožman, Primož

    2017-09-13

    Heparin can induce the formation of antibodies against a heparin complex with a platelet factor 4 (PF4), leading to platelet activation and the development of heparin-induced thrombocytopaenia (HIT). Because screening ELISA does not discriminate between platelet activating and non-activating anti-heparin/PF4 antibodies, each positive result is confirmed by an additional functional assay. We analysed 1004 sera of patients with suspected HIT. Optical density (OD) values of ELISA-positive results were correlated with the risk for a positive result with our functional flow cytometric assay. Only 10.7% were ELISA positive and 59.8% of those were positive with the functional assay. The positive functional assay was found in 23.4% of patients with OD2.0. Although our results showed that higher ELISA OD values increasethe possibility of the presence of platelet-activating anti-heparin/PF4 antibodies - , there is no need for improving ELISA cut-off value for positive result. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Quantitation of minimal disease levels in chronic lymphocytic leukemia using a sensitive flow cytometric assay improves the prediction of outcome and can be used to optimize therapy.

    Science.gov (United States)

    Rawstron, A C; Kennedy, B; Evans, P A; Davies, F E; Richards, S J; Haynes, A P; Russell, N H; Hale, G; Morgan, G J; Jack, A S; Hillmen, P

    2001-07-01

    Previous studies have suggested that the level of residual disease at the end of therapy predicts outcome in chronic lymphocytic leukemia (CLL). However, available methods for detecting CLL cells are either insensitive or not routinely applicable. A flow cytometric assay was developed that can differentiate CLL cells from normal B cells on the basis of their CD19/CD5/CD20/CD79b expression. The assay is rapid and can detect one CLL cell in 10(4) to 10(5) leukocytes in all patients. We have compared this assay to conventional assessment in 104 patients treated with CAMPATH-1H and/or autologous transplant. During CAMPATH-1H therapy, circulating CLL cells were rapidly depleted in responding patients, but remained detectable in nonresponders. Patients with more than 0.01 x 10(9)/L circulating CLL cells always had significant (> 5%) marrow disease, and blood monitoring could be used to time marrow assessments. In 25 out of 104 patients achieving complete remission by National Cancer Institute (NCI) criteria, the detection of residual bone marrow disease at more than 0.05% of leukocytes in 6 out of 25 patients predicted significantly poorer event-free (P =.0001) and overall survival (P =.007). CLL cells are detectable at a median of 15.8 months (range, 5.5-41.8) posttreatment in 9 out of 18 evaluable patients with less than 0.05% CLL cells at end of treatment. All patients with detectable disease have progressively increasing disease levels on follow-up. The use of sensitive techniques, such as the flow assay described here, allow accurate quantitation of disease levels and provide an accurate method for guiding therapy and predicting outcome. These results suggest that the eradication of detectable disease may lead to improved survival and should be tested in future studies.

  15. A flow cytometric method for characterization of circulating cell-derived microparticles in plasma

    DEFF Research Database (Denmark)

    Nielsen, Morten Hjuler; Beck-Nielsen, Henning; Andersen, Morten Nørgaard;

    2014-01-01

    BACKGROUND AND AIM: Previous studies on circulating microparticles (MPs) indicate that the majority of MPs are of a size below the detection limit of most standard flow cytometers. The objective of the present study was to establish a method to analyze MP subpopulations above the threshold...... of detection of a new generation BD FACSAria™ III digital flow cytometer. METHODS: We analyzed MP subpopulations in plasma from 24 healthy individuals (9 males and 15 females). MPs were identified according to their size (.... The sensitivity of the flow cytometer was tested against that of a previous-generation instrument FC500. Reproducibility of the FACSAria and our set-up was investigated, and the percentage of phosphatidylserine (PS) exposing MPs binding Lactadherin was determined. RESULTS: By using a flow cytometric approach we...

  16. Visual Detection of Canine Parvovirus Based on Loop-Mediated Isothermal Amplification Combined with Enzyme-Linked Immunosorbent Assay and with Lateral Flow Dipstick

    OpenAIRE

    Sun, Yu-Ling; Yen, Chon-Ho; Tu, Ching-Fu

    2013-01-01

    ABSTRACT Loop-mediated isothermal amplification (LAMP) combined with enzyme-linked immunosorbent assay (LAMP–ELISA) and with lateral flow dipstick (LAMP–LFD) are rapid, sensitive and specific methods for the visual detection of clinical pathogens. In this study, LAMP–ELISA and LAMP–LFD were developed for the visual detection of canine parvovirus (CPV). For LAMP, a set of four primers (biotin-labeled forward inner primers) was designed to specifically amplify a region of the VP2 gene of CPV. T...

  17. Cellular Assays for Ferredoxins: A Strategy for Understanding Electron Flow through Protein Carriers That Link Metabolic Pathways.

    Science.gov (United States)

    Atkinson, Joshua T; Campbell, Ian; Bennett, George N; Silberg, Jonathan J

    2016-12-27

    The ferredoxin (Fd) protein family is a structurally diverse group of iron-sulfur proteins that function as electron carriers, linking biochemical pathways important for energy transduction, nutrient assimilation, and primary metabolism. While considerable biochemical information about individual Fd protein electron carriers and their reactions has been acquired, we cannot yet anticipate the proportion of electrons shuttled between different Fd-partner proteins within cells using biochemical parameters that govern electron flow, such as holo-Fd concentration, midpoint potential (driving force), molecular interactions (affinity and kinetics), conformational changes (allostery), and off-pathway electron leakage (chemical oxidation). Herein, we describe functional and structural gaps in our Fd knowledge within the context of a sequence similarity network and phylogenetic tree, and we propose a strategy for improving our understanding of Fd sequence-function relationships. We suggest comparing the functions of divergent Fds within cells whose growth, or other measurable output, requires electron transfer between defined electron donor and acceptor proteins. By comparing Fd-mediated electron transfer with biochemical parameters that govern electron flow, we posit that models that anticipate energy flow across Fd interactomes can be built. This approach is expected to transform our ability to anticipate Fd control over electron flow in cellular settings, an obstacle to the construction of synthetic electron transfer pathways and rational optimization of existing energy-conserving pathways.

  18. Comprehensive Laboratory Evaluation of a Highly Specific Lateral Flow Assay for the Presumptive Identification of Bacillus anthracis Spores in Suspicious White Powders and Environmental Samples

    Science.gov (United States)

    Ramage, Jason G.; Prentice, Kristin W.; DePalma, Lindsay; Venkateswaran, Kodumudi S.; Chivukula, Sruti; Chapman, Carol; Bell, Melissa; Datta, Shomik; Singh, Ajay; Hoffmaster, Alex; Sarwar, Jawad; Parameswaran, Nishanth; Joshi, Mrinmayi; Thirunavkkarasu, Nagarajan; Krishnan, Viswanathan; Morse, Stephen; Avila, Julie R.; Sharma, Shashi; Estacio, Peter L.; Stanker, Larry; Hodge, David R.

    2016-01-01

    We conducted a comprehensive, multiphase laboratory evaluation of the Anthrax BioThreat Alert® test strip, a lateral flow immunoassay (LFA) for the rapid detection of Bacillus anthracis spores. The study, conducted at 2 sites, evaluated this assay for the detection of spores from the Ames and Sterne strains of B. anthracis, as well as those from an additional 22 strains. Phylogenetic near neighbors, environmental background organisms, white powders, and environmental samples were also tested. The Anthrax LFA demonstrated a limit of detection of about 106 spores/mL (ca. 1.5 × 105 spores/assay). In this study, overall sensitivity of the LFA was 99.3%, and the specificity was 98.6%. The results indicated that the specificity, sensitivity, limit of detection, dynamic range, and repeatability of the assay support its use in the field for the purpose of qualitatively evaluating suspicious white powders and environmental samples for the presumptive presence of B. anthracis spores. PMID:27661796

  19. Development of a Novel Cocktail Enzyme-Linked Immunosorbent Assay and a Field-Applicable Lateral-Flow Rapid Test for Diagnosis of Contagious Bovine Pleuropneumonia.

    Science.gov (United States)

    Heller, Martin; Gicheru, Nimmo; Tjipura-Zaire, Georgina; Muriuki, Cecilia; Yu, Mingyan; Botelho, Ana; Naessens, Jan; Jores, Joerg; Liljander, Anne

    2016-06-01

    Contagious bovine pleuropneumonia (CBPP) is a severe respiratory disease that is widespread in sub-Saharan Africa. It is caused by Mycoplasma mycoides subsp. mycoides, a bacterium belonging to the Mycoplasma mycoides cluster. In the absence of an efficient CBPP vaccine, improved and easy-to-use diagnostic assays for recurrent testing combined with isolation and treatment of positive animals represent an option for CBPP control in Africa. Here we describe the comprehensive screening of 17 immunogenic Mycoplasma mycoides subsp. mycoides proteins using well-characterized bovine sera for the development of a novel cocktail enzyme-linked immunosorbent assay (ELISA) for laboratory use. Two recombinant Mycoplasma immunogens, MSC_0136 and MSC_0636, were used to set up a standardized cocktail ELISA protocol. According to the results from more than 100 serum samples tested, the sensitivity and specificity of the novel cocktail ELISA were 85.6% and 96.4%, respectively, with an overall diagnostic accuracy comparable to that of the Office International des Epizooties (OIE)-prescribed serological assays. In addition, we provide a proof of principle for a field-applicable, easy-to-use commercially produced prototype lateral-flow test for rapid (<30-min) diagnosis of CBPP.

  20. Comparison of Fluorescent Microspheres and Colloidal Gold as Labels in Lateral Flow Immunochromatographic Assays for the Detection of T-2 Toxin

    Directory of Open Access Journals (Sweden)

    Xiya Zhang

    2015-12-01

    Full Text Available A new highly specific and sensitive monoclonal antibody (MAb to T-2 toxin (T-2 was produced, providing an IC50 value of 1.02 ng/mL and negligible cross-reactivity (CR to other related mycotoxins. Based on the new MAb, a lateral-flow immunochromatographic assay (LFIA using colloidal gold (CG and fluorescent microspheres (FMs as labels was proposed for T-2. Under the optimized conditions, in rapid qualitative assay, the cut-off values of the CG-LFIA were 400 μg/kg in rice and 50 μg/L in fresh milk, and the cut-off values of the FMs-LFIA were 100 μg/kg in both rice and chicken feed. For the quantitative assay with the FMs-LFIA, the limit of detection (LOD were 0.23 μg/kg and 0.41 μg/kg in rice and chicken feed, respectively, and the average recoveries ranged from 80.2% to 100.8% with the coefficient of variation (CV below 10.8%. In addition, we found that the CG-LFIA could tolerate the matrix effect of fresh milk better than the FMs-LFIA, while the FMs-LFIA could tolerate the matrix effect of chicken feed better than CG-LFIA under the same experimental conditions. These results provide a certain reference for the selection of appropriate labels to establish a rapid LFIA in various biological samples.

  1. A simple and rapid flow cytometry-based assay to identify a competent embryo prior to embryo transfer

    OpenAIRE

    Pallinger, Eva; Bognar, Zoltan; Bodis, Jozsef; Csabai, Timea; Farkas, Nelli; Godony, Krisztina; Varnagy, Akos; Buzas, Edit; Szekeres-Bartho, Julia

    2017-01-01

    Multiple pregnancy is a risk for prematurity and preterm birth. The goal of assisted reproduction is to achieve a single pregnancy, by transferring a single embryo. This requires improved methods to identify the competent embryo. Here, we describe such a test, based on flow cytometric determination of the nucleic acid (PI+) containing extracellular vesicle (EV) count in day 5 embryo culture media. 88 women undergoing IVF were included in the study. More than 1 embryos were transferred to most...

  2. Multiplex immunoassay for persistent organic pollutants in tilapia: comparison of imaging- and flow cytometry-based platforms using spectrally encoded paramagnetic microspheres.

    Science.gov (United States)

    Meimaridou, Anastasia; Haasnoot, Willem; Shelver, Weilin L; Franek, Milan; Nielen, Michel W F

    2013-01-01

    Recent developments in spectrally encoded microspheres (SEMs)-based technologies provide high multiplexing possibilities. Most SEMs-based assays require a flow cytometer with sophisticated fluidics and optics. A new imaging super-paramagnetic SEMs-based alternative platform transports SEMs with considerably less fluid volume into a measuring chamber. Once there SEMs are held in a monolayer by a magnet. Light-emitting diodes (LEDs) are focused on the chamber to illuminate the SEMs - instead of lasers and they are imaged by a charge-coupled device (CCD) detector, offering a more compact sized, transportable and affordable system. The feasibility of utilising this system to develop a 3-plex SEMs-based imaging immunoassay (IMIA) for the screening of persistent organic pollutants (POPs) was studied. Moreover the performance characteristics of 3-plex IMIA were critically compared with the conventional 3-plex flow cytometric immunoassay (FCIA). Both SEM technologies have potential for the multiplex analysis of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and polycyclic aromatic hydrocarbons (PAHs) in buffer and fish extract with insignificant differences in assay sensitivities. Furthermore, we developed a faster and simpler, modified QuEChERS-like generic POPs extraction from tilapia fillet using sodium hydrogen carbonate as one of the salt additives and dispersive solid-phase extraction (dSPE) as a clean-up. Finally, a preliminary in-house validation using 40 different blank and spiked tilapia fillet samples was performed in both systems and the results obtained were critically compared. The lower-cost imaging SEMs-based system performed similarly to the original flow cytometer and, in combination with the new quicker QuEChERS-like extraction, it has high potential for future rapid screening of POPs in several other sample matrices such as other fish species, vegetable refined oils and environmental samples.

  3. A Novel Statistical Analysis and Interpretation of Flow Cytometry Data

    Science.gov (United States)

    2013-07-05

    death processes at the population level to the observed flu - orescence intensity profiles as measured by a flow cytometer (Figures 1 and 2). Because... Spanish Ministry of Science and Innovation. The authors are grateful to several referees for a number of helpful comments. References [1] J.E. Aubin

  4. Flow cytofluorometric assay of human whole blood leukocyte DNA degradation in response to Yersinia pestis and Staphylococcus aureus

    Science.gov (United States)

    Kravtsov, Alexander L.; Grebenyukova, Tatyana P.; Bobyleva, Elena V.; Golovko, Elena M.; Malyukova, Tatyana A.; Lyapin, Mikhail N.; Kostyukova, Tatyana A.; Yezhov, Igor N.; Kuznetsov, Oleg S.

    2001-05-01

    Human leukocytes containing less than 2C DNA per cell (damaged or dead cells) were detected and quantified by flow cytometry and DNA-specific staining with ethidium bromide and mithramycin in whole blood infected with Staphylococcus aureus or Yersinia pestis. Addition of live S. aureus to the blood (100 microbe cells per one leukocyte) resulted in rapid degradation of leukocyte DNA within 3 to 6 hours of incubation at 37 degree(s)C. However, only about 50 percent cells were damaged and the leukocytes with the intact genetic apparatus could be found in the blood for a period up to 24 hours. The leukocyte injury was preceded by an increase of DNA per cell content (as compared to the normal one) that was likely to be connected with the active phagocytosis of S. aureus by granulocytes (2C DNA of diploid phagocytes plus the all bacterial DNA absorbed). In response to the same dose of actively growing (at 37 degree(s)C) virulent Y. pestis cells, no increase in DNA content per cell could be observed in the human blood leukocytes. The process of the leukocyte DNA degradation started after a 6-hour incubation, and between 18 to 24 hours of incubation about 90 percent leukocytes (phagocytes and lymphocytes) lost their specific DNA fluorescence. These results demonstrated a high potential of flow cytometry in comparative analysis in vitro of the leukocyte DNA degradation process in human blood in response to bacteria with various pathogenic properties. They agree with the modern idea of an apoptotic mechanism of immunosuppression in plague.

  5. The Application of Imaging Flow Cytometry to High-Throughput Biodosimetry

    Science.gov (United States)

    Wilkins, Ruth C.; Rodrigues, Matthew A.; Beaton-Green, Lindsay A.

    2017-01-01

    Biodosimetry methods, including the dicentric chromosome assay, the cytokinesis-block micronucleus assay and the γH2AX marker of DNA damage are used to determine the dose of ionizing radiation. These techniques are particularly useful when physical dosimetry is absent or questioned. While these assays can be very sensitive and specific, the standard methods need to be adapted to increase sample throughput in the case of a large-scale radiological/nuclear event. Recent modifications to the microscope-based assays have resulted in some increased throughput, and a number of biodosimetry networks have been, and continue to be, established and strengthened. As the imaging flow cytometer (IFC) is a technology that can automatically image and analyze processed blood samples for markers of radiation damage, the microscope-based biodosimetry techniques can be modified for the IFC for high-throughput biological dosimetry. Furthermore, the analysis templates can be easily shared between networked biodosimetry laboratories for increased capacity and improved standardization. This review describes recent advances in IFC methodology and their application to biodosimetry. PMID:28250914

  6. Flow cytometric assay to assess short-term effects of personal care products on the marine microalga Tetraselmis suecica.

    Science.gov (United States)

    Seoane, Marta; Esperanza, Marta; Rioboo, Carmen; Herrero, Concepción; Cid, Ángeles

    2017-03-01

    Large quantities of personal care products (PCPs) are used daily and many of their chemical ingredients are subsequently released into marine environments. Cultures of the marine microalga Tetraselmis suecica were exposed for 24 h to three emerging compounds included in the main classes of PCPs: the UV filter benzophenone-3 (BP-3), the disinfectant triclosan (TCS) and the fragrance tonalide (AHTN). Concentrations tested, expressed as cellular quota (pg cell(-1)), ranged from 5 to 40 for BP-3, from 2 to 16 for TCS and from 1.2 to 2.4 for AHTN. A small cytometric panel was carried out to evaluate key cytotoxicity biomarkers including inherent cell properties, growth and metabolic activity and cytoplasmic membrane properties. BP-3 caused a significant increase in growth rate, metabolic activity and chlorophyll a fluorescence from 10 pg cell(-1). However, growth and esterase activity decreased in cells exposed to all TCS and AHTN concentrations, except the lowest ones. Also these two compounds provoked a significant swelling of cells, more pronounced in the case of TCS-exposed cells. Although all treated cells remained viable, changes in membrane potential were observed. BP-3 and AHTN caused a significant depolarization of cells from 10 to 1.6 pg cell(-1), respectively; however all TCS concentrations assayed caused a noticeable hyperpolarization of cells. Metabolic activity and cytoplasmic membrane potential were the most sensitive parameters. It can be concluded that the toxicological model used and the toxicological parameters evaluated are suitable to assess the toxicity of these emerging contaminants.

  7. Miniaturization of environmental chemical assays in flowing systems: The lab-on-a-valve approach vis-à-vis lab-on-a-chip microfluidic devices

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald

    2007-01-01

    The analytical capabilities of the microminiaturised lab-on-a-valve (LOV) module integrated into a microsequential injection (muSI) fluidic system in terms of analytical chemical performance, microfluidic handling and on-line sample processing are compared to those of the micro total analysis...... systems (muTAS), also termed lab-on-a-chip (LOC). This paper illustrates, via selected representative examples, the potentials of the LOV scheme vis-à-vis LOC microdevices for environmental assays. By means of user-friendly programmable flow and exploitation of the interplay between the thermodynamics...... and the kinetics of the chemical reactions at will, LOV allows accommodation of reactions which, at least at the present stage, are not feasible by application of microfluidic LOC systems. Thus, in LOV one may take advantage of kinetic discriminations schemes, where even subtle differences in reactions...

  8. A micro flow cytometry system for study of marine phytoplankton from costal waters of Hong Kong

    KAUST Repository

    Yunyang Ling,

    2010-01-01

    Although conventional flow cytometers (CFCs) have been widely used for study of marine biology, most CFCs are too bulky to be used for field study in ocean and have corrosion problem due to salty samples. A new computer-controlled micro flow cytometer (MFC) system has been successfully developed using MEMS technology. We demonstrate that this new MFC can analyze mixture of two species of marine phytoplankton: Chlorella autotrophica and Rhodomonas. The results from our MFC are consistent with those from digital fluorescence microscopy. ©2010 IEEE.

  9. A simple and rapid flow cytometry-based assay to identify a competent embryo prior to embryo transfer

    Science.gov (United States)

    Pallinger, Eva; Bognar, Zoltan; Bodis, Jozsef; Csabai, Timea; Farkas, Nelli; Godony, Krisztina; Varnagy, Akos; Buzas, Edit; Szekeres-Bartho, Julia

    2017-01-01

    Multiple pregnancy is a risk for prematurity and preterm birth. The goal of assisted reproduction is to achieve a single pregnancy, by transferring a single embryo. This requires improved methods to identify the competent embryo. Here, we describe such a test, based on flow cytometric determination of the nucleic acid (PI+) containing extracellular vesicle (EV) count in day 5 embryo culture media. 88 women undergoing IVF were included in the study. More than 1 embryos were transferred to most patients. In 58 women, the transfer resulted in clinical pregnancy, whereas in 30 women in implantation failure. In 112 culture media of embryos from the “clinical pregnancy” group, the number of PI+ EVs was significantly lower than in those of 49 embryos, from the “implantation failure” group. In 14 women, transfer of a single embryo resulted in a singleton pregnancy, or, transfer of two embryos in twin pregnancy. The culture media of 19 out of the 20 “confirmed competent” embryos contained a lower level of PI+ EVs than the cut off level, suggesting that the competent embryo can indeed be identified by low PI+ EV counts. We developed a noninvasive, simple, inexpensive, quick test, which identifies the embryos that are most likely to implant. PMID:28057937

  10. Flow cytometry assay of myeloid dendritic cells (mDCs) in peripheral blood during acute hepatitis C: Possible pathogenetic mechanisms

    Institute of Scientific and Technical Information of China (English)

    Alessandro Perrella; Oreste Perrella; Luigi Atripaldi; Pasquale Bellopede; Tommaso Patarino; Costanza Sbreglia; Giovanni Tarantino; Paolo Sorrentino; Paolo Conca; Luca Ruggiero

    2006-01-01

    AIM: To asses the expression of myeloid dendritic cells (CD11c+) subset during acute HCV hepatitis and its possible involvement in natural history of the infection.METHODS: We enrolled 11 patients with acute hepatitis C (AHC) (Group A), 10 patients with acute hepatitis A (AHA) (as infective control-Group B) and 10 healthy donors (group C) in this study. All patients underwent selective flow cytometry gating strategies to assess the peripheral number of the myeloid dendritic cells (mDCs)to understand the possible role and differences during acute hepatitis.RESULTS: Eight of 11 patients with acute HCV hepatitis did not show any increase of mDCs compared to healthy individuals, while a significant decrease of mDCs was found in absolute cell count (z=-2.37; P<0.05) and percentage (z=-2.30; P<0.05) as compared with AHA.On the contrary, The remaining three patients of the group A had a higher mDCs number and percentage as occur in group B. Interestingly, after six months, those patients did not show any increase of mDCs subset were chronically infected. while the three subjects with an increase of peripheral mDCs, as in HAV acute infection,resolved the illness.CONCLUSION: The lack of increase of mDCs during acute hepatitis C might be an important factor involved in chronicization of the infection.

  11. Comparison of a flow assay for brucellosis antibodies with the reference cELISA test in West African Bos indicus.

    Directory of Open Access Journals (Sweden)

    Barend M deC Bronsvoort

    Full Text Available Brucellosis is considered by the Food and Agricultural Organisation and the World Health Organisation as one of the most widespread zoonoses in the world. It is a major veterinary public health challenge as animals are almost exclusively the source of infection for people. It is often undiagnosed in both human patients and the animal sources and it is widely acknowledged that the epidemiology of brucellosis in humans and animals is poorly understood, particularly in sub-Saharan Africa. It is therefore important to develop better diagnostic tools in order to improve our understanding of the epidemiology and also for use in the field for disease control and eradication. As with any new diagnostic test, it is essential that it is validated in as many populations as possible in order to characterise its performance and improve the interpretation of its results. This paper describes a comparison between a new lateral flow assasy (LFA for bovine brucellosis and the widely used cELISA in a no gold standard analysis to estimate test performance in this West African cattle population. A Bayesian formulation of the Hui-Walter latent class model incorporated previous studies' data on sensitivity and specificity of the cELISA. The results indicate that the new LFA is very sensitive (approximately 87% and highly specific (approximately 97%. The analysis also suggests that the current cut-off of the cELSIA may not be optimal for this cattle population but alternative cut-offs did not significantly change the estimates of the LFA. This study demonstrates the potential usefulness of this simple to use test in field based surveillance and control which could be easily adopted for use in developing countries with only basic laboratory facilities.

  12. Droplet-based microfluidic flow injection system with large-scale concentration gradient by a single nanoliter-scale injection for enzyme inhibition assay.

    Science.gov (United States)

    Cai, Long-Fei; Zhu, Ying; Du, Guan-Sheng; Fang, Qun

    2012-01-03

    We described a microfluidic chip-based system capable of generating droplet array with a large scale concentration gradient by coupling flow injection gradient technique with droplet-based microfluidics. Multiple modules including sample injection, sample dispersion, gradient generation, droplet formation, mixing of sample and reagents, and online reaction within the droplets were integrated into the microchip. In the system, nanoliter-scale sample solution was automatically injected into the chip under valveless flow injection analysis mode. The sample zone was first dispersed in the microchannel to form a concentration gradient along the axial direction of the microchannel and then segmented into a linear array of droplets by immiscible oil phase. With the segmentation and protection of the oil phase, the concentration gradient profile of the sample was preserved in the droplet array with high fidelity. With a single injection of 16 nL of sample solution, an array of droplets with concentration gradient spanning 3-4 orders of magnitude could be generated. The present system was applied in the enzyme inhibition assay of β-galactosidase to preliminarily demonstrate its potential in high throughput drug screening. With a single injection of 16 nL of inhibitor solution, more than 240 in-droplet enzyme inhibition reactions with different inhibitor concentrations could be performed with an analysis time of 2.5 min. Compared with multiwell plate-based screening systems, the inhibitor consumption was reduced 1000-fold.

  13. Fiber free plug and play on-chip scattering cytometer module – for implementation in microfluidic point of care devices

    DEFF Research Database (Denmark)

    Jensen, Thomas Glasdam; Kutter, Jörg Peter

    2010-01-01

    In this paper, we report on recent progress toward the development of a plug and play on-chip cytometer based on light scattering. By developing a device that does not depend on the critical alignment and cumbersome handling of fragile optical fibers, we approach a device that is suitable for non......-expert users and Point-Of-Care (POC) applications. It has been demonstrated that this device is capable of detecting and counting particles down to 1 μm at 100 particles per second. This device only depends on a single microfluidic channel. Hence, the device is easy to implement, or to use on its own....

  14. Establishment of flow cytometric in micronucleus assay in vitro%流式细胞术检测体外微核方法的建立

    Institute of Scientific and Technical Information of China (English)

    欧红梅; 周长慧; 涂宏刚; 黄鹏程; 常艳

    2015-01-01

    OBJECTIVE:Establish the flow cytometric 96-well microplate-basedin vitro micronucleus assay in CHO-K1 cells,and explore the possibility of this method for early genetic toxicity screening during drug discovery. MEHTODS:The test included treatment with and without metabolic activation. For the treatment with metabolic activation,CHO-K1 cells were treated with three different concentrations of cyclophosphamide in the S9 mixmedium for 4 h,then incubated with S9-free fresh medium for 20 h. For the treatment without metabolic activation,cells were incubated with three different concentrations of mitomycin C continuously for 24 h. In all cases,after a total of 24 h since initiation of the treatment,cells were processed for microscopic scoring or flow cytometric MN analysis. A flow cytometric method for scoring MN used EMA and SYTOX Green to label the cells in 96-well microplate,and then compared with cytokinesis-block micronucleus assay in cell culture disks based on microscopy.RESULTS:Mitomycin C and cyclophosphamide at different concerntrations caused statistically significant and dose-dependent increasess in micronucleus assay . Non-parametric Spearman's coefficients (rs) is 1.000.CONCLUSION:Similar to literature published,mitomycin C and cyclophosphamide induced positive results in flow cytometric based in vitro micronucleus assay. So the method of flow cytometric 96-well microplate-based in vitro micronucleus assay in CHO-K1 cells was established. The concordance between microscopic scoring and flow cytometricwas good,therefore this method is promising for screening and evaluating genetic toxicity of chemicals.%目的:建立96孔板流式细胞术体外微核自动化检测的方法,并探讨其用于药物早期遗传毒性筛选和遗传毒性评价的可能性。方法:试验分为+S9短时处理组(4 h)和-S9持续处理组(24 h),分别选择3个不同浓度的环磷酰胺和丝裂霉素C处理CHO-K1细胞,24 h后收获细胞。采用EMA和SYTOX Green

  15. LATERAL FLOW ASSAY FOR CRYPTOCOCCAL ANTIGEN: AN IMPORTANT ADVANCE TO IMPROVE THE CONTINUUM OF HIV CARE AND REDUCE CRYPTOCOCCAL MENINGITIS-RELATED MORTALITY

    Directory of Open Access Journals (Sweden)

    Jose E. VIDAL

    2015-09-01

    Full Text Available SUMMARYAIDS-related cryptococcal meningitis continues to cause a substantial burden of death in low and middle income countries. The diagnostic use for detection of cryptococcal capsular polysaccharide antigen (CrAg in serum and cerebrospinal fluid by latex agglutination test (CrAg-latex or enzyme-linked immunoassay (EIA has been available for over decades. Better diagnostics in asymptomatic and symptomatic phases of cryptococcosis are key components to reduce mortality. Recently, the cryptococcal antigen lateral flow assay (CrAg LFA was included in the armamentarium for diagnosis. Unlike the other tests, the CrAg LFA is a dipstick immunochromatographic assay, in a format similar to the home pregnancy test, and requires little or no lab infrastructure. This test meets all of the World Health Organization ASSURED criteria (Affordable, Sensitive, Specific, User friendly, Rapid/robust, Equipment-free, and Delivered. CrAg LFA in serum, plasma, whole blood, or cerebrospinal fluid is useful for the diagnosis of disease caused by Cryptococcusspecies. The CrAg LFA has better analytical sensitivity for C. gattii than CrAg-latex or EIA. Prevention of cryptococcal disease is new application of CrAg LFA via screening of blood for subclinical infection in asymptomatic HIV-infected persons with CD4 counts < 100 cells/mL who are not receiving effective antiretroviral therapy. CrAg screening of leftover plasma specimens after CD4 testing can identify persons with asymptomatic infection who urgently require pre-emptive fluconazole, who will otherwise progress to symptomatic infection and/or die.

  16. Development and evaluation of a new lateral flow assay for simultaneous detection of antibodies against African Horse Sickness and Equine Infectious Anemia viruses.

    Science.gov (United States)

    Costa, Sofia; Sastre, Patricia; Pérez, Teresa; Tapia, Istar; Barrandeguy, María; Sánchez-Vizcaíno, José M; Sánchez-Matamoros, Almudena; Wigdorovitz, Andrés; Sanz, Antonio; Rueda, Paloma

    2016-11-01

    African horse sickness (AHS) and equine infectious anemia (EIA) are both notifiable equid specific diseases that may present similar clinical signs. Considering the increased global movement of horses and equine products over the past decades, together with the socio-economic impact of previous AHS and EIA outbreaks, there is a clear demand for an early discrimination and a strict control of their transmission between enzootic and AHS/EIA-free regions. Currently, the individual control and prevention of AHS or EIA relies on a series of measures, including the restriction of animal movements, vector control, and the use of several laboratory techniques for viral identification, amongst others. Despite being widely employed in surveillance programmes and in the control of animal movements, the available serological assays can only detect AHS- or EIA-specific antibodies individually. In this work, a duplex lateral flow assay (LFA) for simultaneous detection and differentiation of specific antibodies against AHS virus (AHSV) and EIA virus (EIAV) was developed and evaluated with experimental and field serum samples. The duplex LFA was based on the AHSV-VP7 outer core protein and the EIAV-P26 major core protein. The results indicated that the duplex LFA presented a good analytical performance, detecting simultaneously and specifically antibodies against AHSV and EIAV. The initial diagnostic evaluation revealed a good agreement with results from the AHS and EIA tests prescribed by the OIE, and it highlighted the usefulness of the new AHSV/EIAV duplex LFA for an on-field and point-of-care first diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Multiplex diagnosis of viral infectious diseases (AIDS, hepatitis C, and hepatitis A) based on point of care lateral flow assay using engineered proteinticles.

    Science.gov (United States)

    Lee, Jong-Hwan; Seo, Hyuk Seong; Kwon, Jung-Hyuk; Kim, Hee-Tae; Kwon, Koo Chul; Sim, Sang Jun; Cha, Young Joo; Lee, Jeewon

    2015-07-15

    Lateral flow assay (LFA) is an attractive method for rapid, simple, and cost-effective point of care diagnosis. For LFA-based multiplex diagnosis of three viral intractable diseases (acquired immune deficiency syndrome and hepatitis C and A), here we developed proteinticle-based 7 different 3D probes that display different viral antigens on their surface, which were synthesized in Escherichia coli by self-assembly of human ferritin heavy chain that was already engineered by genetically linking viral antigens to its C-terminus. Each of the three test lines on LFA strip contains the proteinticle probes to detect disease-specific anti-viral antibodies. Compared to peptide probes, the proteinticle probes were evidently more sensitive, and the proteinticle probe-based LFA successfully diagnosed all the 20 patient sera per each disease without a false negative signal, whereas the diagnostic sensitivities in the peptide probe-based LFAs were 65-90%. Duplex and triplex assays performed with randomly mixed patient sera gave only true positive signals for all the 20 serum mixtures without any false positive signals, indicating 100% sensitivity and 100% specificity. It seems that on the proteinticle surface the antigenic peptides have homogeneous orientation and conformation without inter-peptide clustering and hence lead to the enhanced diagnostic performance with solving the problems of traditional diagnostic probes. Although the multiplex diagnosis of three viral diseases above was demonstrated as proof-of-concept here, the proposed LFA system can be applied to multiplex point of care diagnosis of other intractable diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. LATERAL FLOW ASSAY FOR CRYPTOCOCCAL ANTIGEN: AN IMPORTANT ADVANCE TO IMPROVE THE CONTINUUM OF HIV CARE AND REDUCE CRYPTOCOCCAL MENINGITIS-RELATED MORTALITY.

    Science.gov (United States)

    Vidal, Jose E; Boulware, David R

    2015-09-01

    AIDS-related cryptococcal meningitis continues to cause a substantial burden of death in low and middle income countries. The diagnostic use for detection of cryptococcal capsular polysaccharide antigen (CrAg) in serum and cerebrospinal fluid by latex agglutination test (CrAg-latex) or enzyme-linked immunoassay (EIA) has been available for over decades. Better diagnostics in asymptomatic and symptomatic phases of cryptococcosis are key components to reduce mortality. Recently, the cryptococcal antigen lateral flow assay (CrAg LFA) was included in the armamentarium for diagnosis. Unlike the other tests, the CrAg LFA is a dipstick immunochromatographic assay, in a format similar to the home pregnancy test, and requires little or no lab infrastructure. This test meets all of the World Health Organization ASSURED criteria (Affordable, Sensitive, Specific, User friendly, Rapid/robust, Equipment-free, and Delivered). CrAg LFA in serum, plasma, whole blood, or cerebrospinal fluid is useful for the diagnosis of disease caused by Cryptococcus species. The CrAg LFA has better analytical sensitivity for C. gattii than CrAg-latex or EIA. Prevention of cryptococcal disease is new application of CrAg LFA via screening of blood for subclinical infection in asymptomatic HIV-infected persons with CD4 counts < 100 cells/mL who are not receiving effective antiretroviral therapy. CrAg screening of leftover plasma specimens after CD4 testing can identify persons with asymptomatic infection who urgently require pre-emptive fluconazole, who will otherwise progress to symptomatic infection and/or die.

  19. Rapid identification of ascomycetous yeasts from clinical specimens by a molecular method based on flow cytometry and comparison with identifications from phenotypic assays.

    Science.gov (United States)

    Page, Brent T; Shields, Christine E; Merz, William G; Kurtzman, Cletus P

    2006-09-01

    This study was designed to compare the identification of ascomycetous yeasts recovered from clinical specimens by using phenotypic assays (PA) and a molecular flow cytometric (FC) method. Large-subunit rRNA domains 1 and 2 (D1/D2) gene sequence analysis was also performed and served as the reference for correct strain identification. A panel of 88 clinical isolates was tested that included representatives of nine commonly encountered species and six infrequently encountered species. The PA included germ tube production, fermentation of seven carbohydrates, morphology on corn meal agar, urease and phenoloxidase activities, and carbohydrate assimilation tests when needed. The FC method (Luminex) employed species-specific oligonucleotides attached to polystyrene beads, which were hybridized with D1/D2 amplicons from the unidentified isolates. The PA identified 81 of 88 strains correctly but misidentified 4 of Candida dubliniensis, 1 of C. bovina, 1 of C. palmioleophila, and 1 of C. bracarensis. The FC method correctly identified 79 of 88 strains and did not misidentify any isolate but did not identify nine isolates because oligonucleotide probes were not available in the current library. The FC assay takes approximately 5 h, whereas the PA takes from 2 h to 5 days for identification. In conclusion, PA did well with the commonly encountered species, was not accurate for uncommon species, and takes significantly longer than the FC method. These data strongly support the potential of FC technology for rapid and accurate identification of medically important yeasts. With the introduction of new antifungals, rapid, accurate identification of pathogenic yeasts is more important than ever for guiding antifungal chemotherapy.

  20. LATERAL FLOW ASSAY FOR CRYPTOCOCCAL ANTIGEN: AN IMPORTANT ADVANCE TO IMPROVE THE CONTINUUM OF HIV CARE AND REDUCE CRYPTOCOCCAL MENINGITIS-RELATED MORTALITY

    Science.gov (United States)

    VIDAL, Jose E.; BOULWARE, David R.

    2015-01-01

    SUMMARY AIDS-related cryptococcal meningitis continues to cause a substantial burden of death in low and middle income countries. The diagnostic use for detection of cryptococcal capsular polysaccharide antigen (CrAg) in serum and cerebrospinal fluid by latex agglutination test (CrAg-latex) or enzyme-linked immunoassay (EIA) has been available for over decades. Better diagnostics in asymptomatic and symptomatic phases of cryptococcosis are key components to reduce mortality. Recently, the cryptococcal antigen lateral flow assay (CrAg LFA) was included in the armamentarium for diagnosis. Unlike the other tests, the CrAg LFA is a dipstick immunochromatographic assay, in a format similar to the home pregnancy test, and requires little or no lab infrastructure. This test meets all of the World Health Organization ASSURED criteria (Affordable, Sensitive, Specific, User friendly, Rapid/robust, Equipment-free, and Delivered). CrAg LFA in serum, plasma, whole blood, or cerebrospinal fluid is useful for the diagnosis of disease caused by Cryptococcus species. The CrAg LFA has better analytical sensitivity for C. gattii than CrAg-latex or EIA. Prevention of cryptococcal disease is new application of CrAg LFA via screening of blood for subclinical infection in asymptomatic HIV-infected persons with CD4 counts < 100 cells/mL who are not receiving effective antiretroviral therapy. CrAg screening of leftover plasma specimens after CD4 testing can identify persons with asymptomatic infection who urgently require pre-emptive fluconazole, who will otherwise progress to symptomatic infection and/or die. PMID:26465368

  1. Features of free software packages in flow cytometry: a comparison between four non-commercial software sources.

    Science.gov (United States)

    Sahraneshin Samani, Fazel; Moore, Jodene K; Khosravani, Pardis; Ebrahimi, Marzieh

    2014-08-01

    Flow cytometers designed to analyze large particles are enabling new applications in biology. Data analysis is a critical component of the process FCM. In this article we compare features of four free software packages including WinMDI, Cyflogic, Flowing software, and Cytobank.

  2. Comparison of venous and capillary differential leukocyte counts using a standard hematology analyzer and a novel microfluidic impedance cytometer.

    Science.gov (United States)

    Hollis, Veronica S; Holloway, Judith A; Harris, Scott; Spencer, Daniel; van Berkel, Cees; Morgan, Hywel

    2012-01-01

    Capillary blood sampling has been identified as a potentially suitable technique for use in diagnostic testing of the full blood count (FBC) at the point-of-care (POC), for which a recent need has been highlighted. In this study we assess the accuracy of capillary blood counts and evaluate the potential of a miniaturized cytometer developed for POC testing. Differential leukocyte counts in the normal clinical range from fingerprick (capillary) and venous blood samples were measured and compared using a standard hematology analyzer. The accuracy of our novel microfluidic impedance cytometer (MIC) was then tested by comparing same-site measurements to those obtained with the standard analyzer. The concordance between measurements of fingerprick and venous blood samples using the standard hematology analyzer was high, with no clinically relevant differences observed between the mean differential leukocyte counts. Concordance data between the MIC and the standard analyzer on same-site measurements presented significantly lower leukocyte counts determined by the MIC. This systematic undercount was consistent across the measured (normal) concentration range, suggesting that an internal correction factor could be applied. Differential leukocyte counts obtained from fingerprick samples accurately reflect those from venous blood, which confirms the potential of capillary blood sampling for POC testing of the FBC. Furthermore, the MIC device demonstrated here presents a realistic technology for the future development of FBC and related tests for use at the site of patient care.

  3. A novel lateral flow assay based on GoldMag nanoparticles and its clinical applications for genotyping of MTHFR C677T polymorphisms

    Science.gov (United States)

    Hui, Wenli; Zhang, Sinong; Zhang, Chao; Wan, Yinsheng; Zhu, Juanli; Zhao, Gang; Wu, Songdi; Xi, Dujuan; Zhang, Qinlu; Li, Ningning; Cui, Yali

    2016-02-01

    Current techniques for single nucleotide polymorphism (SNP) detection require tedious experimental procedures and expensive and sophisticated instruments. In this study, a visual genotyping method has been successfully established via combining ARMS-PCR with gold magnetic nanoparticle (GoldMag)-based lateral flow assay (LFA) and applied to the genotyping of methylenetetrahydrofolate reductase (MTHFR) C677T. C677T substitution of the gene MTHFR leads to an increased risk of diseases. The genotyping result is easily achievable by visual observation within 5 minutes after loading of the PCR products onto the LFA device. The system is able to accurately assess a broad detection range of initial starting genomic DNA amounts from 5 ng to 1200 ng per test sample. The limit of detection reaches 5 ng. Furthermore, our PCR-LFA system was applied to clinical trials for screening 1721 individuals for the C677T genotypes. The concordance rate of the genotyping results detected by PCR-LFA was up to 99.6% when compared with the sequencing results. Collectively, our PCR-LFA has been proven to be rapid, accurate, sensitive, and inexpensive. This new method is highly applicable for C677T SNP screening in laboratories and clinical practices. More promisingly, it could also be extended to the detection of SNPs of other genes.

  4. Microfluidic Imaging Flow Cytometry by Asymmetric-detection Time-stretch Optical Microscopy (ATOM).

    Science.gov (United States)

    Tang, Anson H L; Lai, Queenie T K; Chung, Bob M F; Lee, Kelvin C M; Mok, Aaron T Y; Yip, G K; Shum, Anderson H C; Wong, Kenneth K Y; Tsia, Kevin K

    2017-06-28

    Scaling the number of measurable parameters, which allows for multidimensional data analysis and thus higher-confidence statistical results, has been the main trend in the advanced development of flow cytometry. Notably, adding high-resolution imaging capabilities allows for the complex morphological analysis of cellular/sub-cellular structures. This is not possible with standard flow cytometers. However, it is valuable for advancing our knowledge of cellular functions and can benefit life science research, clinical diagnostics, and environmental monitoring. Incorporating imaging capabilities into flow cytometry compromises the assay throughput, primarily due to the limitations on speed and sensitivity in the camera technologies. To overcome this speed or throughput challenge facing imaging flow cytometry while preserving the image quality, asymmetric-detection time-stretch optical microscopy (ATOM) has been demonstrated to enable high-contrast, single-cell imaging with sub-cellular resolution, at an imaging throughput as high as 100,000 cells/s. Based on the imaging concept of conventional time-stretch imaging, which relies on all-optical image encoding and retrieval through the use of ultrafast broadband laser pulses, ATOM further advances imaging performance by enhancing the image contrast of unlabeled/unstained cells. This is achieved by accessing the phase-gradient information of the cells, which is spectrally encoded into single-shot broadband pulses. Hence, ATOM is particularly advantageous in high-throughput measurements of single-cell morphology and texture - information indicative of cell types, states, and even functions. Ultimately, this could become a powerful imaging flow cytometry platform for the biophysical phenotyping of cells, complementing the current state-of-the-art biochemical-marker-based cellular assay. This work describes a protocol to establish the key modules of an ATOM system (from optical frontend to data processing and visualization

  5. CD4+ T lymphocytes enumeration by an easy-to-use single platform image cytometer for HIV monitoring in resource-constrained settings

    NARCIS (Netherlands)

    Li, Xiao; Ymeti, Aurel; Lunter, Björn; Breukers, Christian; Tibbe, Arjan G.J.; Terstappen, Leon W.M.M.; Greve, Jan

    2007-01-01

    Backround: HIV monitoring in resource-constrained settings demands affordable and reliable CD4+ T lymphocytes enumeration methods. We developed a simple single platform image cytometer (SP ICM), which is a dedicated volumetric CD4+ T lymphocytes enumeration system that uses immunomagnetic and immuno

  6. Flow cytometry and cell sorting.

    Science.gov (United States)

    Ibrahim, Sherrif F; van den Engh, Ger

    2007-01-01

    Flow cytometry and cell sorting are well-established technologies in clinical diagnostics and biomedical research. Heterogeneous mixtures of cells are placed in suspension and passed single file across one or more laser interrogation points. Light signals emitted from the particles are collected and correlated to entities such as cell morphology, surface and intracellular protein expression, gene expression, and cellular physiology. Based on user-defined parameters, individual cells can then be diverted from the fluid stream and collected into viable, homogeneous fractions at exceptionally high speeds and a purity that approaches 100%. As such, the cell sorter becomes the launching point for numerous downstream studies. Flow cytometry is a cornerstone in clinical diagnostics, and cheaper, more versatile machines are finding their way into widespread and varied uses. In addition, advances in computing and optics have led to a new generation of flow cytometers capable of processing cells at orders of magnitudes faster than their predecessors, and with staggering degrees of complexity, making the cytometer a powerful discovery tool in biotechnology. This chapter will begin with a discussion of basic principles of flow cytometry and cell sorting, including a technical description of factors that contribute to the performance of these instruments. The remaining sections will then be divided into clinical- and research-based applications of flow cytometry and cell sorting, highlighting salient studies that illustrate the versatility of this indispensable technology.

  7. Two and three-color fluorescence flow cytometric analysis of immunoidentified viable bacteria.

    Science.gov (United States)

    Barbesti, S; Citterio, S; Labra, M; Baroni, M D; Neri, M G; Sgorbati, S

    2000-07-01

    Traditional culture methods well established in the past and still in use are not able to detect the environmental microorganisms that exist in a viable but not culturable state. A number of different fluorescence-based assays have been developed over the past decade to detect and identify viable bacteria in the environment. We have developed a simple and rapid method for measuring the number and viability of immunolabeled bacteria by means of a two/three color fluorescence flow cytometric analysis. After washing, cultured bacteria in suspension were labeled with a rabbit polyclonal antibody recognizing the wall lipopolysaccharide complex. A secondary biotinylated anti-rabbit polyclonal antibody was added allowing the cells to be labeled with the streptavidin R-phycoerythrin-Cyanine 5 (RPE-Cy5) fluorochrome. Before flow cytometric analysis, bacterial suspensions were stained with SYBR Green I and propidium iodide which stain all of the cells and the non viable ones, respectively. With the appropriate filter sets of both Bryte-HS (Bio-Rad, Hercules, CA) and FACScan (Becton Dickinson, San Jose, CA) flow cytometers, the measurement of separated green (SYBR Green I), orange-red (propidium iodide), and far red (RPE-Cy5) fluorescence was possible, allowing the enumeration of viable immunodetected bacteria. The entire protocol is completed in less than 3 h, offering numerous possibilities for rapid and precise analyses in sanitary, industrial, and environmental microbiology. Copyright 2000 Wiley-Liss, Inc.

  8. Novel quantitative autophagy analysis by organelle flow cytometry after cell sonication.

    Directory of Open Access Journals (Sweden)

    Michael Degtyarev

    Full Text Available Autophagy is a dynamic process of bulk degradation of cellular proteins and organelles in lysosomes. Current methods of autophagy measurement include microscopy-based counting of autophagic vacuoles (AVs in cells. We have developed a novel method to quantitatively analyze individual AVs using flow cytometry. This method, OFACS (organelle flow after cell sonication, takes advantage of efficient cell disruption with a brief sonication, generating cell homogenates with fluorescently labeled AVs that retain their integrity as confirmed with light and electron microscopy analysis. These AVs could be detected directly in the sonicated cell homogenates on a flow cytometer as a distinct population of expected organelle size on a cytometry plot. Treatment of cells with inhibitors of autophagic flux, such as chloroquine or lysosomal protease inhibitors, increased the number of particles in this population under autophagy inducing conditions, while inhibition of autophagy induction with 3-methyladenine or knockdown of ATG proteins prevented this accumulation. This assay can be easily performed in a high-throughput format and opens up previously unexplored avenues for autophagy analysis.

  9. A CRITICAL EVALUATION OF A FLOW CYTOMETER USED FOR DETECTING ENTEROCOCCUS FAECIUM AND ENTEROCOCCUS FAECALIS IN RECREATIONAL WATERS

    Science.gov (United States)

    The current U. S. Environmental Protection Agency-approved method for Enterococci (Method 1600) in recreational water is a membrane filter (MF) method that takes 24 hours to obtain results. If the recreational water is not in compliance with the standard, the risk of exposure to...

  10. Detection of Cryptosporidium oocysts and Giardia cysts in water samples with a Becton Dickinson FACSort flow cytometer

    NARCIS (Netherlands)

    Schets FM; Medema GJ; Boschman GD; LWL; Becton Dickinson Europe, Aalst, Belgie

    1995-01-01

    Current detection techniques for Cryptosporidium oocysts and Giardia cysts in water samples combine filtration of large volumes of water, concentration by centrifugation and flotation and immunofluorescense microscopy. The techniques are extremely labour-intensive and inefficient. The various steps

  11. Early morning urine collection to improve urinary lateral flow LAM assay sensitivity in hospitalised patients with HIV-TB co-infection.

    Science.gov (United States)

    Gina, Phindile; Randall, Philippa J; Muchinga, Tapuwa E; Pooran, Anil; Meldau, Richard; Peter, Jonny G; Dheda, Keertan

    2017-05-12

    Urine LAM testing has been approved by the WHO for use in hospitalised patients with advanced immunosuppression. However, sensitivity remains suboptimal. We therefore examined the incremental diagnostic sensitivity of early morning urine (EMU) versus random urine sampling using the Determine® lateral flow lipoarabinomannan assay (LF-LAM) in HIV-TB co-infected patients. Consenting HIV-infected inpatients, screened as part of a larger prospective randomized controlled trial, that were treated for TB, and could donate matched random and EMU samples were included. Thus paired sample were collected from the same patient, LF-LAM was graded using the pre-January 2014, with grade 1 and 2 manufacturer-designated cut-points (the latter designated grade 1 after January 2014). Single sputum Xpert-MTB/RIF and/or TB culture positivity served as the reference standard (definite TB). Those treated for TB but not meeting this standard were designated probable TB. 123 HIV-infected patients commenced anti-TB treatment and provided matched random and EMU samples. 33% (41/123) and 67% (82/123) had definite and probable TB, respectively. Amongst those with definite TB LF-LAM sensitivity (95%CI), using the grade 2 cut-point, increased from 12% (5-24; 5/43) to 39% (26-54; 16/41) with random versus EMU, respectively (p = 0.005). Similarly, amongst probable TB, LF-LAM sensitivity increased from 10% (5-17; 8/83) to 24% (16-34; 20/82) (p = 0.001). LF-LAM specificity was not determined. This proof of concept study indicates that EMU could improve the sensitivity of LF-LAM in hospitalised TB-HIV co-infected patients. These data have implications for clinical practice.

  12. Asymptomatic cryptococcal antigen prevalence detected by lateral flow assay in hospitalised HIV-infected patients in São Paulo, Brazil.

    Science.gov (United States)

    Vidal, José E; Toniolo, Carolina; Paulino, Adriana; Colombo, Arnaldo; Dos Anjos Martins, Marilena; da Silva Meira, Cristina; Pereira-Chioccola, Vera Lucia; Figueiredo-Mello, Claudia; Barros, Tiago; Duarte, Jequelie; Fonseca, Fernanda; Alves Cunha, Mirella; Mendes, Clara; Ribero, Taiana; Dos Santos Lazera, Marcia; Rajasingham, Radha; Boulware, David R

    2016-12-01

    To determine the prevalence of asymptomatic cryptococcal antigen (CRAG) using lateral flow assay (LFA) in hospitalised HIV-infected patients with CD4 counts Infectologia Emilio Ribas, a tertiary referral hospital to HIV-infected patients serving the São Paulo State, Brazil. All patients were >18 years old without prior cryptococcal meningitis, without clinical suspicion of cryptococcal meningitis, regardless of antiretroviral (ART) status, and with CD4 counts <200 cells/μl. Serum CRAG was tested by LFA in all patients, and whole blood CRAG was tested by LFA in positive cases. We enrolled 163 participants of whom 61% were men. The duration of HIV diagnosis was a median of 8 (range, 1-29) years. 26% were antiretroviral (ART)-naïve, and 74% were ART-experienced. The median CD4 cell count was 25 (range, 1-192) cells/μl. Five patients (3.1%; 95%CI, 1.0-7.0%) were asymptomatic CRAG-positive. Positive results cases were cross-verified by performing LFA in whole blood. 3.1% of HIV-infected inpatients with CD4 <200 cells/μl without symptomatic meningitis had cryptococcal antigenemia in São Paulo, suggesting that routine CRAG screening may be beneficial in similar settings in South America. Our study reveals another targeted population for CRAG screening: hospitalised HIV-infected patients with CD4 <200 cells/μl, regardless of ART status. Whole blood CRAG LFA screening seems to be a simple strategy to prevention of symptomatic meningitis. © 2016 John Wiley & Sons Ltd.

  13. Quantification of chemotaxis during pediatric cardiac surgery by flow and laser scanning cytometry

    Science.gov (United States)

    Tarnok, Attila; Schmid, Joerg W.; Osmancik, Pavel; Lenz, Dominik; Pipek, Michal; Hambsch, Joerg; Gerstner, Andreas O.; Schneider, Peter

    2002-05-01

    Cardiac surgery with cardiopulmonary bypass (CPB) alters the leukocyte composition of the peripheral blood (PB). This response contributes to the sometimes adverse outcome with capillary leakage. Migration of activated cells to sites of inflammation, driven by chemokines is part of this response. In order to determine the chemotactic activity of patients serum during and after surgery we established an assay for PB leukocytes (PBL). PBL from healthy donors were isolated and 250,000 cells were placed into a migration chamber separated by a filter from a second lower chamber filled with patient serum. After incubation cells from top and bottom chamber were removed and stained with a cocktail of monoclonal antibodies for leukocyte subsets and analyzed on a flow cytometer (FCM). Cells at the bottom of the filter belong to the migrating compartment and were quantified by LSC after staining of nucleated cells. Increased chemotactic activity started at onset of anaesthesia followed by a phase of low activity immediately after surgery and a second phase of a high post-operative activity. The in vitro results correlated with results obtained by immunopenotyping of circulating PBL. Manipulation of the chemokine pattern might prove beneficial to prevent extravasation of cells leading to tissue damage. In chemotaxis assays with low amount of available serum the combined use of FCM and Laser Scanning LSC proved as an appropriate analytical tool.

  14. [Development and comparative evaluation of up-converting phosphor technology based lateral flow assay for rapid detection of Yersinia pestis, Bacillus anthracis spore and Brucella spp].

    Science.gov (United States)

    Li, Chunfeng; Zhang, Pingping; Wang, Xiaoying; Liu, Xiao; Zhao, Yong; Sun, Chongyun; Wang, Chengbin; Yang, Ruifu; Zhou, Lei

    2015-01-01

    To develop an up-converting phosphor technology based lateral flow (UPT-LF) assay for rapid and quantitative detection of Yersinia pestis, Bacillus anthracis spore and Brucella spp.and make the comparison with BioThreat Alert (BTA) test strips (Tetracore Inc., USA). Using up-converting phosphor nano-particles (UCP-NPs) as the bio-marker, three double-antibody-sandwich model based UPT-LF strips including Plague-UPT-LF, Anthrax-UPT-LF, Brucella-UPT-LF were prepared and its sensitivity, accuracy, linearity and specificity were determined by detecting 10(10), 10(9), 10(8), 10(7), 10(6), 10(5) and 0 CFU/ml series of concentrations of Y.pestis, B.anthracis, Brucella standards and other 27 kinds of 10(9) CFU/ml series of contrations of bacteria strains.Furthermore, the speed, sensitivity and accuracy of bacteria standards and simulated sample detection were compared between UPT-LF and BTA system. The detection limit of Plague-UPT-LF, Anthrax-UPT-LF and Brucella-LF was 10(5) CFU/ml. The CV of series of bacteria concentrations was ≤ 15%, and the r between lg (T/C-cut-off) and lg (concentration) was 0.996,0.998 and 0.999 (F values were 1 647.57, 743.51 and 1 822.17. All the P values were Brucella-LF were excellent, while that of Anthrax-UPT-LF was a little bit regretful because of non-specific reaction with two isolates of B. subtilis and one B.cereus. On-site evaluation showed the detection time of UPT-LF for all Y.pestis, B.anthracis spore and Brucella spp.was 33, 36 and 37 min, while BTA was 115, 115 and 111 min, which revealed the higher detection speed and sensitivity of UPT-LF comparing with BTA. The negative rate of two methods for blank standard was both 5/5, the sensitivity of UPT-LF for Y.pestis,B.anthracis spore and Brucella spp. was all 10(5) CFU/ml, then BTA was 10(6), 10(6) and 10(5) CFU/ml, respectively. The detection rate of UPT-LF for all three bacteria analog positive samples was 16/16, while BTA for B.anthracis was 7/16 only. The good performance

  15. Novel Confocal Microscopic and Flow Cytometric Based Assays to Visualize and Detect the (Beta)2-Adrenergic Receptor in Human Lymphocyte and Mononuclear Cell Populations

    Science.gov (United States)

    Salicru, A. N.; Crucian, B. E.; Nelman, M. A.; Sams, C. F.; Actor, J. K.; Marshall, G. D.

    2006-01-01

    The data show that immunophenotyping of leukocyte populations with (beta)2AR is possible with the commercially available Ab, although the FC assay is limited to the IST as a result of the Ab binding site to the intracellular C-terminus of the 2AR. The FC assay has applications for measuring alterations in total (beta)2AR in human leukocyte populations as changes in fluorescence. In addition, CM confirms that both surface and intracellular compartments stain positively for the (beta)2AR and can be used for qualitative assays that screen for changes in receptor compartmentalization and localization.

  16. Enzyme assays.

    Science.gov (United States)

    Reymond, Jean-Louis; Fluxà, Viviana S; Maillard, Noélie

    2009-01-07

    Enzyme assays are analytical tools to visualize enzyme activities. In recent years a large variety of enzyme assays have been developed to assist the discovery and optimization of industrial enzymes, in particular for "white biotechnology" where selective enzymes are used with great success for economically viable, mild and environmentally benign production processes. The present article highlights the aspects of fluorogenic and chromogenic substrates, sensors, and enzyme fingerprinting, which are our particular areas of interest.

  17. Detection of Silver Nanoparticles in Cells by Flow Cytometry Using Light Scattering and Far-red Fluorescence

    Science.gov (United States)

    The cellular uptake of different sized silver nanoparticles (l0 nm, 50 nm, and 75nm) coated with polyvinylpyrrolidone (PVP) or citrate in ARPE-19 cells following 24 hour incubation was detected by side scatter through the use of a flow cytometer. A large far red fluorescence sign...

  18. Detection of Silver Nanoparticles in Cells by Flow Cytometry Using Light Scattering and Far-red Fluorescence

    Science.gov (United States)

    The cellular uptake of different sized silver nanoparticles (l0 nm, 50 nm, and 75nm) coated with polyvinylpyrrolidone (PVP) or citrate in ARPE-19 cells following 24 hour incubation was detected by side scatter through the use of a flow cytometer. A large far red fluorescence sign...

  19. Development of a multiplex flow cytometric microsphere immunoassay for mycotoxins and evaluation of its application in feed

    NARCIS (Netherlands)

    Peters, J.; Ploum, M.E.; Rijk, de T.C.; Haasnoot, W.

    2011-01-01

    A multi-mycotoxin immunoassay—using the MultiAnalyte Profiling (xMAP) technology—is developed and evaluated. This technology combines a unique color-coded microsphere suspension array, with a dedicated flow cytometer. We aimed for the combined detection of aflatoxins, ochratoxin A, deoxynivalenol,

  20. High-speed counting and sizing of cells in an impedance flow microcytometer with compact electronic instrumentation

    DEFF Research Database (Denmark)

    Castillo-Fernandez, Oscar; Rodriguez-Trujíllo, Romén; Gomila, Gabriel

    2014-01-01

    Here we describe a high-throughput impedance flow cytometer on a chip. This device was built using compact and inexpensive electronic instrumentation. The system was used to count and size a mixed cell sample containing red blood cells and white blood cells. It demonstrated a counting capacity of...

  1. A low-cost, multiplexable, automated flow cytometry procedure for the characterization of microbial stress dynamics in bioreactors

    DEFF Research Database (Denmark)

    Brognaux, Alison; Han, Shanshan; Sørensen, Søren Johannes;

    2013-01-01

    in order to study the dynamics of segregation directly in bioreactors. In this context, specific interfaces have been developed in order to connect a flow cytometer directly to a bioreactor for automated analyses. In this work, we propose a simplified version of such an interface and demonstrate its...

  2. Multiplexed labeling of viable cells for high-throughput analysis of glycine receptor function using flow cytometry.

    Science.gov (United States)

    Gilbert, Daniel F; Wilson, John C; Nink, Virginia; Lynch, Joseph W; Osborne, Geoffrey W

    2009-05-01

    Flow cytometry is an important drug discovery tool because it permits high-content multiparameter analysis of individual cells. A new method dramatically enhanced screening throughput by multiplexing many discrete fixed cell populations; however, this method is not suited to assays requiring functional cellular responses. HEK293 cells were transfected with unique mutant glycine receptors. Mutant receptor expression was confirmed by coexpression of yellow fluorescent protein (YFP). Commercially available cell-permeant dyes were used to label each glycine receptor expressing mutant with a unique optical code. All encoded cell lines were combined in a single tube and analyzed on a flow cytometer simultaneously before and after the addition of glycine receptor agonist. We decoded multiplexed cells that expressed functionally distinct glycine receptor chloride channels and analyzed responses to glycine in terms of chloride-sensitive YFP expression. Here, data provided by flow cytometry can be used to discriminate between functional and nonfunctional mutations in the glycine receptor, a process accelerated by the use of multiplexing. Further, this data correlates to data generated using a microscopy-based technique. The present study demonstrates multiplexed labeling of live cells, to enable cell populations to be subject to further cell culture and experimentation, and compares the results with those obtained using live cell microscopy. (c) 2009 International Society for Advancement of Cytometry.

  3. Multiplex bio-assay with inductively coupled plasma mass spectrometry: Towards a massively multivariate single-cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Scott D. [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Room 407, 164 College Street, Toronto, Ontario, M5S 3G9 (Canada)], E-mail: sd.tanner@utoronto.ca; Ornatsky, Olga; Bandura, Dmitry R.; Baranov, Vladimir I. [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Room 407, 164 College Street, Toronto, Ontario, M5S 3G9 (Canada)

    2007-03-15

    Recent progress in the development of massively multiplexed bioanalytical assays using element tags with inductively coupled plasma mass spectrometry detection is reviewed. Feasibility results using commercially available secondary immunolabeling reagents for leukemic cell lines are presented. Multiplex analysis of higher order is shown with first generation tag reagents based on functionalized carriers that bind lanthanide ions. DNA quantification using metallointercalation allows for cell enumeration or mitotic state differentiation. In situ hybridization permits the determination of cellular RNA. The results provide a feasibility basis for the development of a multivariate assay tool for individual cell analysis based on inductively coupled plasma mass spectrometry in a cytometer configuration.

  4. Amphiphilic mediated sample preparation for micro-flow cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Clague, David S. (Livermore, CA); Wheeler, Elizabeth K. (Livermore, CA); Lee, Abraham P. (Irvine, CA)

    2009-03-17

    A flow cytometer includes a flow cell for detecting the sample, an oil phase in the flow cell, a water phase in the flow cell, an oil-water interface between the oil phase and the water phase, a detector for detecting the sample at the oil-water interface, and a hydrophobic unit operatively connected to the sample. The hydrophobic unit is attached to the sample. The sample and the hydrophobic unit are placed in an oil and water combination. The sample is detected at the interface between the oil phase and the water phase.

  5. Three-dimensional image cytometer based on widefield structured light microscopy and high-speed remote depth scanning.

    Science.gov (United States)

    Choi, Heejin; Wadduwage, Dushan N; Tu, Ting Yuan; Matsudaira, Paul; So, Peter T C

    2015-01-01

    A high throughput 3D image cytometer have been developed that improves imaging speed by an order of magnitude over current technologies. This imaging speed improvement was realized by combining several key components. First, a depth-resolved image can be rapidly generated using a structured light reconstruction algorithm that requires only two wide field images, one with uniform illumination and the other with structured illumination. Second, depth scanning is implemented using the high speed remote depth scanning. Finally, the large field of view, high NA objective lens and the high pixelation, high frame rate sCMOS camera enable high resolution, high sensitivity imaging of a large cell population. This system can image at 800 cell/sec in 3D at submicron resolution corresponding to imaging 1 million cells in 20 min. The statistical accuracy of this instrument is verified by quantitatively measuring rare cell populations with ratio ranging from 1:1 to 1:10(5) . © 2014 International Society for Advancement of Cytometry.

  6. A long-term flow cytometry assay to analyze the role of specific genes of Drosophila melanogaster S2 cells in surviving genotoxic stress

    NARCIS (Netherlands)

    Yi, Xia; Lemstra, Willy; Vos, Michel J.; Shang, Yongfeng; Kampinga, Harm H.; Su, Tin Tin; Sibon, Ody C. M.

    2008-01-01

    Drosophila S2 cells are easy to manipulate and culture and are a versatile model system for high-throughput screens such as genome-wide siRNA screens to find genes involved in stress or therapy resistance or for screening through large compound libraries to identify cytotoxins. Clonogenic assays are

  7. Detection of E. coli O157:H7 in complex matrices under varying flow parameters with a robotic fluorometric assay system

    Science.gov (United States)

    Leskinen, Stephaney D.; Schlemmer, Sarah M.; Kearns, Elizabeth A.; Lim, Daniel V.

    2009-02-01

    The development of rapid assays for detection of microbial pathogens in complex matrices is needed to protect public health due to continued outbreaks of disease from contaminated foods and water. An Escherichia coli O157:H7 detection assay was designed using a robotic, fluorometric assay system. The system integrates optics, fluidics, robotics and software for the detection of foodborne pathogens or toxins in as many as four samples simultaneously. It utilizes disposable fiber optic waveguides coated with biotinylated antibodies for capture of target analytes from complex sample matrices. Computer-controlled rotation of sample cups allows complete contact between the sample and the waveguide. Detection occurs via binding of a fluorophore-labeled antibody to the captured target, which leads to an increase in the fluorescence signal. Assays are completed within twenty-five minutes. Sample matrices included buffer, retentate (material recovered from the filter of the Automated Concentration System (ACS) following hollow fiber ultrafiltration), spinach wash and ground beef. The matrices were spiked with E. coli O157:H7 (103-105 cells/ml) and the limits of detection were determined. The effect of sample rotation on assay sensitivity was also examined. Rotation parameters for each sample matrix included 10 ml with rotation, 5 ml with rotation and 0.1 ml without rotation. Detection occurred at 104 cells/ml in buffer and spinach wash and at 105 cells/ml in retentate and ground beef. Detection was greater for rotated samples in each matrix except ground beef. Enhanced detection of E. coli from large, rotated volumes of complex matrices was confirmed.

  8. Ultraviolet 320 nm laser excitation for flow cytometry.

    Science.gov (United States)

    Telford, William; Stickland, Lynn; Koschorreck, Marco

    2017-04-01

    Although multiple lasers and high-dimensional analysis capability are now standard on advanced flow cytometers, ultraviolet (UV) lasers (usually 325-365 nm) remain an uncommon excitation source for cytometry. This is primarily due to their cost, and the small number of applications that require this wavelength. The development of the Brilliant Ultraviolet (BUV fluorochromes, however, has increased the importance of this formerly niche excitation wavelength. Historically, UV excitation was usually provided by water-cooled argon- and krypton-ion lasers. Modern flow cytometers primary rely on diode pumped solid state lasers emitting at 355 nm. While useful for all UV-excited applications, DPSS UV lasers are still large by modern solid state laser standards, and remain very expensive. Smaller and cheaper near UV laser diodes (NUVLDs) emitting at 375 nm make adequate substitutes for 355 nm sources in many situations, but do not work as well with very short wavelength probes like the fluorescent calcium chelator indo-1. In this study, we evaluate a newly available UV 320 nm laser for flow cytometry. While shorter in wavelength that conventional UV lasers, 320 is close to the 325 nm helium-cadmium wavelength used in the past on early benchtop cytometers. A UV 320 nm laser was found to excite almost all Brilliant Ultraviolet dyes to nearly the same level as 355 nm sources. Both 320 nm and 355 nm sources worked equally well for Hoechst and DyeCycle Violet side population analysis of stem cells in mouse hematopoetic tissue. The shorter wavelength UV source also showed excellent excitation of indo-1, a probe that is not compatible with NUVLD 375 nm sources. In summary, a 320 nm laser module made a suitable substitute for conventional 355 nm sources. This laser technology is available in a smaller form factor than current 355 nm units, making it useful for small cytometers with space constraints. © 2017 International Society for Advancement of Cytometry. © 2017 International

  9. Colour-encoded paramagnetic microbead-based direct inhibition triplex flow cytometric immunoassay for ochratoxin A, fumonisins and zearalenone in cereals and cereal-based feed

    NARCIS (Netherlands)

    Peters, J.; Thomas, D.; Boers, E.A.M.; Rijk, de T.C.; Berthiller, F.; Haasnoot, W.; Nielen, M.W.F.

    2013-01-01

    A combined (triplex) immunoassay for the simultaneous detection of three mycotoxins in grains was developed with superparamagnetic colour-encoded microbeads, in combination with two bead-dedicated flow cytometers. Monoclonal antibodies were coupled to the beads, and the amounts of bound mycotoxins

  10. Colour-encoded paramagnetic microbead-based direct inhibition triplex flow cytometric immunoassay for ochratoxin A, fumonisins and zearalenone in cereals and cereal-based feed

    NARCIS (Netherlands)

    Peters, J.; Thomas, D.; Boers, E.A.M.; Rijk, de T.C.; Berthiller, F.; Haasnoot, W.; Nielen, M.W.F.

    2013-01-01

    A combined (triplex) immunoassay for the simultaneous detection of three mycotoxins in grains was developed with superparamagnetic colour-encoded microbeads, in combination with two bead-dedicated flow cytometers. Monoclonal antibodies were coupled to the beads, and the amounts of bound mycotoxins w

  11. An assessment of software for flow cytometry analysis in banana plants

    Directory of Open Access Journals (Sweden)

    Renata Alves Lara Silva

    2014-02-01

    Full Text Available Flow cytometry is a technique that yields rapid results in analyses of cell properties such as volume, morphological complexity and quantitative DNA content, and it is considered more convenient than other techniques. However, the analysis usually generates histograms marked by variations that can be produced by many factors, including differences between the software packages that capture the data generated by the flow cytometer. The objective of the present work was to evaluate the performance of four software products commonly used in flow cytometry based on quantifications of DNA content and analyses of the coefficients of variation associated with the software outputs. Readings were obtained from 25 ‘NBA’ (AA banana leaf samples using the FACSCalibur (BD flow cytometer, and 25 histograms from each software product (CellQuest™, WinMDI™, FlowJo™ and FCS Express™ were analyzed to obtain the estimated DNA content and the coefficient of variation (CV of the estimates. The values of DNA content obtained from the software did not differ significantly. However, the CV analysis showed that the precision of the WinMDI™ software was low and that the CV values were underestimated, whereas the remaining software showed CV values that were in relatively close agreement with those found in the literature. The CellQuest™ software is recommended because it was developed by the same company that produces the flow cytometer used in the present study.

  12. Development of a five-plex flow cytometric immunoassay for the simultaneous detection of six coccidiostats in feed and eggs.

    Science.gov (United States)

    Bienenmann-Ploum, Monique E; Huet, Anne-Catherine; Campbell, Katrina; Fodey, Terence L; Vincent, Ursula; Haasnoot, Willem; Delahaut, Philippe; Elliott, Christopher T; Nielen, Michel W F

    2012-09-01

    Coccidiostats are the only veterinary drugs still permitted to be used as feed additives to treat poultry for coccidiosis. To protect consumers, maximum levels for their presence in food and feed have been set by the European Union (EU). To monitor these coccidiostats, a rapid and inexpensive screening method would be a useful tool. The development of such a screening method, using a flow cytometry-based immunoassay, is described. The assay uses five sets of colour-coded paramagnetic microspheres for the detection of six selected priority coccidiostats. Different coccidiostats, with and without carrier proteins, were covalently coupled onto different bead sets and tested in combination with polyclonal antisera and with a fluorescent-labelled secondary antibody. The five optimal combinations were selected for this multiplex and a simple-to-use sample extraction method was applied for screening blank and spiked eggs and feed samples. A very good correlation (r ranging from 0.995 to 0.999) was obtained with the responses obtained in two different flow cytometers (Luminex 100 and FLEXMAP 3D). The sensitivities obtained were in accordance with the levels set by the EU as the measured limits of detection for narasin/salinomycin, lasalocid, diclazuril, nicarbazin (4,4'-dinitrocarbanilide) and monensin in eggs were 0.01, 0.1, 0.5, 53 and 0.1 μg/kg and in feed 0.1, 0.2, 0.3, 9 and 1.5 μg/kg, respectively.

  13. Angiogenesis Assays.

    Science.gov (United States)

    Nambiar, Dhanya K; Kujur, Praveen K; Singh, Rana P

    2016-01-01

    Neoangiogenesis constitutes one of the first steps of tumor progression beyond a critical size of tumor growth, which supplies a dormant mass of cancerous cells with the required nutrient supply and gaseous exchange through blood vessels essentially needed for their sustained and aggressive growth. In order to understand any biological process, it becomes imperative that we use models, which could mimic the actual biological system as closely as possible. Hence, finding the most appropriate model is always a vital part of any experimental design. Angiogenesis research has also been much affected due to lack of simple, reliable, and relevant models which could be easily quantitated. The angiogenesis models have been used extensively for studying the action of various molecules for agonist or antagonistic behaviour and associated mechanisms. Here, we have described two protocols or models which have been popularly utilized for studying angiogenic parameters. Rat aortic ring assay tends to bridge the gap between in vitro and in vivo models. The chorioallantoic membrane (CAM) assay is one of the most utilized in vivo model system for angiogenesis-related studies. The CAM is highly vascularized tissue of the avian embryo and serves as a good model to study the effects of various test compounds on neoangiogenesis.

  14. Multicentre comparison of a diagnostic assay

    DEFF Research Database (Denmark)

    Waters, Patrick; Reindl, Markus; Saiz, Albert;

    2016-01-01

    ) assays in neuromyelitis optica spectrum disorders (NMOSD). METHODS: Coded samples from patients with neuromyelitis optica (NMO) or NMOSD (101) and controls (92) were tested at 15 European diagnostic centres using 21 assays including live (n=3) or fixed cell-based assays (n=10), flow cytometry (n=4...

  15. Chemosensitivity assay in mice prostate tumor: Preliminary report of flow cytometry, DNA fragmentation, ion ratiometric methods of anti-neoplastic drug monitoring

    Directory of Open Access Journals (Sweden)

    Kline Richard

    2004-03-01

    Full Text Available Abstract Flow cytometry, DNA fragmentation, ion ratiomateric analysis and NMR peaks characterized drug chemosensitivity of antineoplastic drugs. Hypotheses were: 1. The chemosensitive effect of different cancer cell lines is characteristic; 2. DNA fragmentation, ion ratiometric analysis suggest apoptosis status of tumor cells. Methods PC-3 cell lines were compared with DU-145, LNCaP cell lines in culture for the [Na]i and [Ca]i ion sensing dyes, cell death, NMR peaks and apoptosis staining for chemotherapeutic action of different drugs. Results DNA fragmentation, ratiometric ions and fluorescence endlabelling plots were characteristic for cell lines and drug response. 31P-23Na NMR spectra showed characteristic high phospho-choline and sodium peaks. Conclusion Flow cytometry, DNA fragmentation, ion ratiometric methods and NMR peaks indicated apoptosis and offered in vivo drug monitoring method.

  16. Chemosensitivity assay in mice prostate tumor: Preliminary report of flow cytometry, DNA fragmentation, ion ratiometric methods of anti-neoplastic drug monitoring

    OpenAIRE

    2004-01-01

    Abstract Flow cytometry, DNA fragmentation, ion ratiomateric analysis and NMR peaks characterized drug chemosensitivity of antineoplastic drugs. Hypotheses were: 1. The chemosensitive effect of different cancer cell lines is characteristic; 2. DNA fragmentation, ion ratiometric analysis suggest apoptosis status of tumor cells. Methods PC-3 cell lines were compared with DU-145, LNCaP cell lines in culture for the [Na]i and [Ca]i ion sensing dyes, cell death, NMR peaks and apoptosis staining fo...

  17. Standardization, Calibration, and Control in Flow Cytometry.

    Science.gov (United States)

    Wang, Lili; Hoffman, Robert A

    2017-01-05

    Because flow cytometers are designed to measure particle characteristics, particles are the most common materials used to calibrate, control, and standardize the instruments. Definitions and cautions are provided for common terms to alert the reader to critical distinctions in meaning. This unit presents extensive background on particle types and cautions and describes practical aspects of methods to standardize and calibrate instruments. Procedures are provided to characterize performance in terms of optical alignment, fluorescence and light scatter resolution, and sensitivity. Finally, suggestions follow for analyzing particles used for calibration. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  18. Capture of circulating tumor cells using photoacoustic flowmetry and two phase flow.

    Science.gov (United States)

    O'Brien, Christine M; Rood, Kyle D; Bhattacharyya, Kiran; DeSouza, Thiago; Sengupta, Shramik; Gupta, Sagar K; Mosley, Jeffrey D; Goldschmidt, Benjamin S; Sharma, Nikhilesh; Viator, John A

    2012-06-01

    Melanoma is the deadliest form of skin cancer, yet current diagnostic methods are unable to detect early onset of metastatic disease. Patients must wait until macroscopic secondary tumors form before malignancy can be diagnosed and treatment prescribed. Detection of cells that have broken off the original tumor and travel through the blood or lymph system can provide data for diagnosing and monitoring metastatic disease. By irradiating enriched blood samples spiked with cultured melanoma cells with nanosecond duration laser light, we induced photoacoustic responses in the pigmented cells. Thus, we can detect and enumerate melanoma cells in blood samples to demonstrate a paradigm for a photoacoustic flow cytometer. Furthermore, we capture the melanoma cells using microfluidic two phase flow, a technique that separates a continuous flow into alternating microslugs of air and blood cell suspension. Each slug of blood cells is tested for the presence of melanoma. Slugs that are positive for melanoma, indicated by photoacoustic waves, are separated from the cytometer for further purification and isolation of the melanoma cell. In this paper, we evaluate the two phase photoacoustic flow cytometer for its ability to detect and capture metastatic melanoma cells in blood.

  19. A Novel Multiparametric Drug-Scoring Method for High-Throughput Screening of 3D Multicellular Tumor Spheroids Using the Celigo Image Cytometer.

    Science.gov (United States)

    Cribbes, Scott; Kessel, Sarah; McMenemy, Scott; Qiu, Jean; Chan, Leo Li-Ying

    2017-01-01

    Three-dimensional (3D) tumor models have been increasingly used to investigate and characterize cancer drug compounds. The ability to perform high-throughput screening of 3D multicellular tumor spheroids (MCTS) can highly improve the efficiency and cost-effectiveness of discovering potential cancer drug candidates. Previously, the Celigo Image Cytometer has demonstrated a novel method for high-throughput screening of 3D multicellular tumor spheroids. In this work, we employed the Celigo Image Cytometer to examine the effects of 14 cancer drug compounds on 3D MCTS of the glioblastoma cell line U87MG in 384-well plates. Using parameters such as MCTS diameter and invasion area, growth and invasion were monitored for 9 and 3 d, respectively. Furthermore, fluorescent staining with calcein AM, propidium iodide, Hoechst 33342, and caspase 3/7 was performed at day 9 posttreatment to measure viability and apoptosis. Using the kinetic and endpoint data generated, we created a novel multiparametric drug-scoring system for 3D MCTS that can be used to identify and classify potential drug candidates earlier in the drug discovery process. Furthermore, the combination of quantitative and qualitative image data can be used to delineate differences between drugs that induce cytotoxic and cytostatic effects. The 3D MCTS-based multiparametric scoring method described here can provide an alternative screening method to better qualify tested drug compounds.

  20. Flow Cytometry Assay for Titrating Spring Viraemia of Carp Virus%流式细胞仪在快速测定鲤春病毒 血症病毒度中的应用

    Institute of Scientific and Technical Information of China (English)

    王津津; 刘荭; 贾鹏; 史秀杰; 于力; 阮周曦; 郑晓聪; 何俊强; 兰文升; 宋思静

    2015-01-01

    本研究建立了流式细胞仪快速检测鲤春病毒血症病毒(spring viraemia of carp virus,SVCV)滴度的方法.运用荧光激活细胞分选(fluorescence-activated cell sorting, FACS)技术检测SVCV A1株对草鱼性腺细胞系(GCO)的感染情况.用SVCV病毒单克隆抗体为一抗,FITC标记的羊抗鼠抗体为二抗,运用FACS来检测感染后不同时间点,以及不同病毒接种量的阳性细胞率.感染第3天时为最佳的病毒滴度测定时间点,测得SVCV的病毒滴度为8.31×105FIU/mL,最低检测病毒滴度为(1000 FIU/mL),与传统空斑试验(plaque assay,PA)相比,两种方法测得的结果基本一致.实验结果表明,FACS是一种简捷、高效、直接的检测SVCV滴度的方法,是一种新型的病毒滴度测定方法.%A flow cytometry assay was established for rapid titrating spring viraemia of carp virus(SVCV). Fluores-cence-activated cell sorting(FACS) was used to detect SVCV A1 strain-infected GCO cells. The infected cells reacted with anti-SVC monoclonal antibody before being covered with labeled fluorescein-anti-mouse immunoglobulin. FACS was used to analyze the percentage of infected cells at different time points and different virus infections. The results demonstrate that day 3 was the best time to titer SVCV. The titers of SVCV A1 strain was 8.31×105 FIU/mL. The low-est limit of detection by FACS was 1000 infectious units per milliliter of inoculum. Comparing the titers of SVCV A1 strain with FACS and plaque assay,similar titers were obtained with the two assays. The novel FACS is recommended as a simple, efficient and direct assay for titrating SVCV and other virus.

  1. Imaging flow cytometry for phytoplankton analysis.

    Science.gov (United States)

    Dashkova, Veronika; Malashenkov, Dmitry; Poulton, Nicole; Vorobjev, Ivan; Barteneva, Natasha S

    2017-01-01

    This review highlights the concepts and instrumentation of imaging flow cytometry technology and in particular its use for phytoplankton analysis. Imaging flow cytometry, a hybrid technology combining speed and statistical capabilities of flow cytometry with imaging features of microscopy, is rapidly advancing as a cell imaging platform that overcomes many of the limitations of current techniques and contributed significantly to the advancement of phytoplankton analysis in recent years. This review presents the various instrumentation relevant to the field and currently used for assessment of complex phytoplankton communities' composition and abundance, size structure determination, biovolume estimation, detection of harmful algal bloom species, evaluation of viability and metabolic activity and other applications. Also we present our data on viability and metabolic assessment of Aphanizomenon sp. cyanobacteria using Imagestream X Mark II imaging cytometer. Herein, we highlight the immense potential of imaging flow cytometry for microalgal research, but also discuss limitations and future developments.

  2. Optical analysis of nanomaterial-cell interactions: flow cytometry and digital holographic microscopy

    Science.gov (United States)

    Mues, Sarah; Antunovic, Jan; Ossig, Rainer; Kemper, Björn; Schnekenburger, Jürgen

    2015-05-01

    The in vitro cytotoxicity assessment of engineered nanoparticles commonly involves the measurement of different endpoints like the formation of reactive oxygen species, cell viability or cell death. Usually these parameters are determined by optical readouts of enzymatically converted substrates that often interfere with the tested nanomaterials. Using cell viability (WST-8) and cell death (LDH) as parameter we have initially investigated the toxic effects of spherical (NM 300) and rod shaped (NM 302) silver nanomaterials with a matrix of four cell lines representing different functions: lung and kidney epithelial cells, macrophages and fibroblasts. In addition, we have used a label-free flow cytometer configuration to investigate interactions of particles and macrophages by side scatter signal analysis. Finally, we explored digital holographic microscopy (DHM) for multimodal label-free analysis of nanomaterial toxicity. Quantitative DHM phase images were analyzed for cell thickness, volume, density, dry mass and refractive index. We could demonstrate that silver spheres lead to more cytotoxic effects than rods in all four examined cell lines and both assay. Exemplarily a dose dependent interaction increase of cells with NM 300 and NM 302 analyzed by flow cytometry is shown. Furthermore, we found that the refractive index of cells is influenced by incubation with NM 300 in a decreasing manner. A 24 hours time-lapse measurement revealed a dose dependent decrease of dry mass and surface area development indicating reduced cell viability and cell death. Our results demonstrate digital holographic microscopy and flow cytometry as valuable label-free tools for nanomaterial toxicity and cell interaction studies.

  3. Label-free high-throughput imaging flow cytometry

    Science.gov (United States)

    Mahjoubfar, A.; Chen, C.; Niazi, K. R.; Rabizadeh, S.; Jalali, B.

    2014-03-01

    Flow cytometry is an optical method for studying cells based on their individual physical and chemical characteristics. It is widely used in clinical diagnosis, medical research, and biotechnology for analysis of blood cells and other cells in suspension. Conventional flow cytometers aim a laser beam at a stream of cells and measure the elastic scattering of light at forward and side angles. They also perform single-point measurements of fluorescent emissions from labeled cells. However, many reagents used in cell labeling reduce cellular viability or change the behavior of the target cells through the activation of undesired cellular processes or inhibition of normal cellular activity. Therefore, labeled cells are not completely representative of their unaltered form nor are they fully reliable for downstream studies. To remove the requirement of cell labeling in flow cytometry, while still meeting the classification sensitivity and specificity goals, measurement of additional biophysical parameters is essential. Here, we introduce an interferometric imaging flow cytometer based on the world's fastest continuous-time camera. Our system simultaneously measures cellular size, scattering, and protein concentration as supplementary biophysical parameters for label-free cell classification. It exploits the wide bandwidth of ultrafast laser pulses to perform blur-free quantitative phase and intensity imaging at flow speeds as high as 10 meters per second and achieves nanometer-scale optical path length resolution for precise measurements of cellular protein concentration.

  4. NASA/American Cancer Society High-Resolution Flow Cytometry Project-I

    Science.gov (United States)

    Thomas, R. A.; Krishan, A.; Robinson, D. M.; Sams, C.; Costa, F.

    2001-01-01

    BACKGROUND: The NASA/American Cancer Society (ACS) flow cytometer can simultaneously analyze the electronic nuclear volume (ENV) and DNA content of cells. This study describes the schematics, resolution, reproducibility, and sensitivity of biological standards analyzed on this unit. METHODS: Calibrated beads and biological standards (lymphocytes, trout erythrocytes [TRBC], calf thymocytes, and tumor cells) were analyzed for ENV versus DNA content. Parallel data (forward scatter versus DNA) from a conventional flow cytometer were obtained. RESULTS: ENV linearity studies yielded an R value of 0.999. TRBC had a coefficient of variation (CV) of 1.18 +/- 0.13. DNA indexes as low as 1.02 were detectable. DNA content of lymphocytes from 42 females was 1.9% greater than that for 60 males, with a noninstrumental variability in total DNA content of 0.5%. The ENV/DNA ratio was constant in 15 normal human tissue samples, but differed in the four animal species tested. The ENV/DNA ratio for a hypodiploid breast carcinoma was 2.3 times greater than that for normal breast tissue. CONCLUSIONS: The high-resolution ENV versus DNA analyses are highly reliable, sensitive, and can be used for the detection of near-diploid tumor cells that are difficult to identify with conventional cytometers. ENV/DNA ratio may be a useful parameter for detection of aneuploid populations.

  5. Micro Flow Cytometry Miniaturisation - Towards in-situ Optical Phytoplankton Analysis

    Science.gov (United States)

    Zmijan, R.; Abi Kaed Bey, S.; Mowlem, M. C.; Morgan, H.

    2012-04-01

    The use of flow cytometry for studies of temporal and spatial variability of phytoplankton populations is a valuable tool contributing to research relating carbon biogeochemistry and climate change. Early designs and marine deployments of such devices started over two decades ago [1-3]. Miniaturisation and cost reduction without sacrificing performance remains a major challenge but would enable mass production and deployment. Large numbers of measurement nodes (e.g. as part of a global ocean observation system) would be possible which would increase data available over both spatial and temporal scales. This research presents two different design approaches for miniaturisation and integration of optics into a microfluidic cytometer chip. The proposed solutions are suitable for micro cytometers with external components coupled with optical fibres and were simulated and optimised using ray tracing software (Zemax). The two designs address light delivery for excitation of particles within the measurement region of the cytometer. One uses an integrated micro lens (fabricated in the chip) and the other a ball shaped micro lens manufactured separately and then inserted into the chip. Both approaches collimate the excitation light beam (from an off chip diode laser coupled with an optical fibre) into the fluidic channel. The predicted (by ray tracing) excitation beam widths are 70 and 80 µm for the integrated and the ball lens respectively, and are in agreement with experimental data presented. The proposed cytometer chip design is compatible with low cost materials (acrylic glass, cyclo-olefines) and manufacturing methods (micro milling, hot embossing, injection moulding). 1. Dubelaar, G.B.J. and P.L. Gerritzen, CytoBuoy: a step forward towards using flow cytometry in operational oceanography. Scientia Marina, 2000. 64(2): p. 255-265. 2. Peeters, J.C.H., et al., Optical Plankton Analyzer - a Flow Cytometer for Plankton Analysis .1. Design Considerations. Cytometry, 1989

  6. Flow cytometry bioinformatics.

    Directory of Open Access Journals (Sweden)

    Kieran O'Neill

    , and software are also key parts of flow cytometry bioinformatics. Data standards include the widely adopted Flow Cytometry Standard (FCS defining how data from cytometers should be stored, but also several new standards under development by the International Society for Advancement of Cytometry (ISAC to aid in storing more detailed information about experimental design and analytical steps. Open data is slowly growing with the opening of the CytoBank database in 2010 and FlowRepository in 2012, both of which allow users to freely distribute their data, and the latter of which has been recommended as the preferred repository for MIFlowCyt-compliant data by ISAC. Open software is most widely available in the form of a suite of Bioconductor packages, but is also available for web execution on the GenePattern platform.

  7. Activity assay of membrane transport proteins

    Institute of Scientific and Technical Information of China (English)

    Hao Xie

    2008-01-01

    Membrane transport proteins are integral membrane proteins and considered as potential drug targets. Activity assay of transport proteins is essential for developing drugs to target these proteins. Major issues related to activity assessment of transport proteins include availability of transporters,transport activity of transporters, and interactions between ligands and transporters. Researchers need to consider the physiological status of proteins (bound in lipid membranes or purified), availability and specificity of substrates, and the purpose of the activity assay (screening, identifying, or comparing substrates and inhibitors) before choosing appropriate assay strategies and techniques. Transport proteins bound in vesicular membranes can be assayed for transporting substrate across membranes by means of uptake assay or entrance counterflow assay. Alternatively, transport proteins can be assayed for interactions with ligands by using techniques such as isothermal titration calorimetry, nuclear magnetic resonance spectroscopy, or surface plasmon resonance. Other methods and techniques such as fluorometry, scintillation proximity assay, electrophysiological assay, or stopped-flow assay could also be used for activity assay of transport proteins. In this paper the major strategies and techniques for activity assessment of membrane transport proteins are reviewed.

  8. CD4 estimating reagents in dry format are compatible with conventional flow cytometer; FACSCalibur for estimation of absolute CD4 count & percentages

    Directory of Open Access Journals (Sweden)

    Madhuri Thakar

    2013-01-01

    Method: Absolute counts and percentages of CD4, CD8 and CD3 + T cells obtained in 100 HIV infected individuals using the test and reference reagents were analyzed for correlation and agreement using Pearson′s correlation and Bland Altman bias analysis . The stability of the reagents and of the stained samples was analyzed at ambient temperature and at 37 °C. Results: The absolute CD4 + T cell count and percentages obtained using test and reference reagents showed correlation coefficients ranging from 833 to 981. A mean bias between dry and reference reagents ranged from 0.8 to 26.4. The ReaPan and Rea T Count reagents were stable up to one month at 37 °C also. The samples stained with ReaPan reagents were stable at ambient temperature till day 7 whereas the samples stained with Rea T Count reagents were stable at ambient temperature and at 37° C for 10 days. Interpretation & conclusions: The ReaPan dry reagents can be used on existing FACSCalibur machines with additional training on Cell Quest Pro software without incurring any additional equipment cost and this can eliminate the requirement of cold chain during transport and on site storage. The stability of the stained samples has great clinical significance preventing redrawing of the blood samples from the patients.

  9. CD4 estimating reagents in dry format are compatible with conventional flow cytometer; FACSCalibur for estimation of absolute CD4 count & percentages.

    Science.gov (United States)

    Thakar, Madhuri; Mahajan, Bharati; Joshi, Trupti; Sane, Suvarna; Paranjape, Ramesh

    2013-02-01

    Reliable CD4 counts are important for successful implementation of antiretroviral treatment (ART). Availability of dry CD4 reagents can eliminate cold chain requirement reducing shipment and storage cost. An attempt was made in this study to validate the ReaPan and Rea T Count dry reagents developed by ReaMetrix against the original BD Biosciences liquid reagents. Absolute counts and percentages of CD4, CD8 and CD3 + T cells obtained in 100 HIV infected individuals using the test and reference reagents were analyzed for correlation and agreement using Pearson's correlation and Bland Altman bias analysis . The stability of the reagents and of the stained samples was analyzed at ambient temperature and at 37 °C. The absolute CD4 + T cell count and percentages obtained using test and reference reagents showed correlation coefficients ranging from 833 to 981. A mean bias between dry and reference reagents ranged from 0.8 to 26.4. The ReaPan and Rea T Count reagents were stable up to one month at 37 °C also. The samples stained with ReaPan reagents were stable at ambient temperature till day 7 whereas the samples stained with Rea T Count reagents were stable at ambient temperature and at 37° C for 10 days. The ReaPan dry reagents can be used on existing FACSCalibur machines with additional training on Cell Quest Pro software without incurring any additional equipment cost and this can eliminate the requirement of cold chain during transport and on site storage. The stability of the stained samples has great clinical significance preventing redrawing of the blood samples from the patients.

  10. Dean flow fractionation of chromosomes

    Science.gov (United States)

    Hockin, Matt; Sant, Himanshu J.; Capecchi, Mario; Gale, Bruce K.

    2016-03-01

    Efforts to transfer intact mammalian chromosomes between cells have been attempted for more than 50 years with the consistent result being transfer of sub unit length pieces regardless of method. Inertial microfluidics is a new field that has shown much promise in addressing the fractionation of particles in the 2-20 μm size range (with unknown limits) and separations are based upon particles being carried by curving confined flows (within a spiral shaped, often rectangular flow chamber) and migrating to stable "equilibrium" positions of varying distance from a chamber wall depending on the balance of dean and lift forces. We fabricated spiral channels for inertial microfluidic separations using a standard soft lithography process. The concentration of chromosomes, small contaminant DNA and large cell debris in each outlets were evaluated using microscope (60X) and a flow cytometer. Using Dean Flow Fractionation, we were able to focus 4.5 times more chromosomes in outlet 2 compared to outlet 4 where most of the large debris is found. We recover 16% of the chromosomes in outlet #1- 50% in 2, 23% in 3 and 11% in 4. It should be noted that these estimates of recovery do not capture one piece of information- it actually may be that the chromosomes at each outlet are physically different and work needs to be done to verify this potential.

  11. C1Q Assay Results in Complement-Dependent Cytotoxicity Crossmatch Negative Renal Transplant Candidates with Donor-Specific Antibodies: High Specificity but Low Sensitivity When Predicting Flow Crossmatch

    Directory of Open Access Journals (Sweden)

    José M. Arreola-Guerra

    2016-01-01

    Full Text Available The aim of the present study was to describe the association of positive flow cross match (FXM and C1q-SAB. Methods. In this observational, cross-sectional, and comparative study, patients included had negative AHG-CDC-XM and donor specific antibodies (DSA and were tested with FXM. All pretransplant sera were tested with C1q-SAB assay. Results. A total of 50 donor/recipient evaluations were conducted; half of them had at least one C1q+ Ab (n=26, 52%. Ten patients (20.0% had DSA C1q+ Ab. Twenty-five (50% FXMs were positive. Factors associated with a positive FXM were the presence of C1q+ Ab (DSA C1q+ Ab: OR 27, 2.80–259.56, P=0.004, and no DSA C1q+ Ab: OR 5, 1.27–19.68, P=0.021 and the DSA LABScreen-SAB MFI (OR 1.26, 95% CI 1.06–1.49, P=0.007. The cutoff point of immunodominant LABScreen SAB DSA-MFI with the greatest sensitivity and specificity to predict FXM was 2,300 (sensitivity: 72% and specificity: 75%. For FXM prediction, DSA C1q+ Ab was the most specific (95.8%, 85–100 and the combination of DSA-MFI > 2,300 and C1q+ Ab was the most sensitive (92.0%, 79.3–100. Conclusions. C1q+ Ab and LABScreen SAB DSA-MFI were significantly associated with FXM. DSA C1q+ Ab was highly specific but with low sensitivity.

  12. Appraisal of within- and between-laboratory reproducibility of non-radioisotopic local lymph node assay using flow cytometry, LLNA:BrdU-FCM: comparison of OECD TG429 performance standard and statistical evaluation.

    Science.gov (United States)

    Yang, Hyeri; Na, Jihye; Jang, Won-Hee; Jung, Mi-Sook; Jeon, Jun-Young; Heo, Yong; Yeo, Kyung-Wook; Jo, Ji-Hoon; Lim, Kyung-Min; Bae, SeungJin

    2015-05-05

    Mouse local lymph node assay (LLNA, OECD TG429) is an alternative test replacing conventional guinea pig tests (OECD TG406) for the skin sensitization test but the use of a radioisotopic agent, (3)H-thymidine, deters its active dissemination. New non-radioisotopic LLNA, LLNA:BrdU-FCM employs a non-radioisotopic analog, 5-bromo-2'-deoxyuridine (BrdU) and flow cytometry. For an analogous method, OECD TG429 performance standard (PS) advises that two reference compounds be tested repeatedly and ECt(threshold) values obtained must fall within acceptable ranges to prove within- and between-laboratory reproducibility. However, this criteria is somewhat arbitrary and sample size of ECt is less than 5, raising concerns about insufficient reliability. Here, we explored various statistical methods to evaluate the reproducibility of LLNA:BrdU-FCM with stimulation index (SI), the raw data for ECt calculation, produced from 3 laboratories. Descriptive statistics along with graphical representation of SI was presented. For inferential statistics, parametric and non-parametric methods were applied to test the reproducibility of SI of a concurrent positive control and the robustness of results were investigated. Descriptive statistics and graphical representation of SI alone could illustrate the within- and between-laboratory reproducibility. Inferential statistics employing parametric and nonparametric methods drew similar conclusion. While all labs passed within- and between-laboratory reproducibility criteria given by OECD TG429 PS based on ECt values, statistical evaluation based on SI values showed that only two labs succeeded in achieving within-laboratory reproducibility. For those two labs that satisfied the within-lab reproducibility, between-laboratory reproducibility could be also attained based on inferential as well as descriptive statistics.

  13. Lateral flow assay for rapid differentiation of Mycobacterium tuberculosis complex and 97 species of mycobacteria other than tuberculosis grown in Löwenstein-Jensen and TK-SLC medium

    Directory of Open Access Journals (Sweden)

    Akyar I

    2010-01-01

    Full Text Available Background: Mycobacterial antigen MPB64 is a secretory protein specific for Mycobacterium tuberculosis complex. A lateral flow immunochromatographic assay (ICA is a method used for the rapid differentiation of M. tuberculosis complex. Aim: We aimed to evaluate the performance of ICA in rapid differentiation of M. tuberculosis complex from 97 Mycobacterium species other than tuberculosis (MOTT, which are grown in Lφwenstein-Jensen and TK-selective (SLC medium. Materials and Methods: The study was performed in our laboratory between January 2009 and January 2010. A total of 394 isolates consisting of reference strains of 34 M. tuberculosis from World Health Organization (WHO collection, 97 different MOTT bacilli, 7 Mycobacterium bovis BCG substrains and total 256 clinical Mycobacterium isolates were tested by ICA, which is based on anti-MPB64 monoclonal antibodies. All the strains were inoculated onto a TK-SLC (selective medium and Lφwenstein-Jensen medium. TK-SLC is a new rapid mycobacterial culture medium that indicates mycobacterial growth by colour change. Results: The growth of mycobacterial strains was observed in 10-12 days on TK-SLC medium. ICA test was performed in 15 minutes. All strains belonging to M. tuberculosis complex group were found positive and all MOTT species were found negative on ICA slides. The results were confirmed with nucleic acid amplification by polymerase chain reaction (PCR using primers specific for M. tuberculosis complex. Conclusion: With the additive effect of growth on TK-SLC medium in 10-12 days, the mycobacterial antigen MPB64 is a very useful and specific tool in rapid differentiation of M. tuberculosis and MOTT grown in culture.

  14. Uniform droplet splitting and detection using Lab-on-Chip flow cytometry on a microfluidic PDMS device

    DEFF Research Database (Denmark)

    Kunstmann-Olsen, Casper; Hanczyc, Martin; Hoyland, James

    2016-01-01

    A PDMS chip is fabricated using soft lithography and applied to investigate the formation and division of nitrobenzene (NB) droplets in a two-phase system stabilized by oleic acid. Using an integrated on-chip flow cytometer setup, effected with optical fibers, droplet size distributions...... are analyzed in situ based on optical signal intensities. By controlling the hydrodynamic flow focusing, uniform droplets of sizes between 100 μm and 300 μm are created with precise size control. Cross-flow shearing allows one to divide these droplets into anything from 2 to 9 individual droplets, depending...

  15. Flow cytometric functional analysis of multidrug resistance by Fluo-3: a comparison with rhodamine-123.

    Science.gov (United States)

    Koizumi, S; Konishi, M; Ichihara, T; Wada, H; Matsukawa, H; Goi, K; Mizutani, S

    1995-09-01

    Using four cell lines including drug-sensitive K562/Parent cells, P-glycoprotein (Pgp)-mediated multidrug resistant (MDR) K562/VCR, K562/ADR and revertant K562/ADR-R cells, two fluorescent agents, Fluo-3 and rhodamine-123 (Rh-123), were compared as indicators in a functional assay of MDR. Cells were incubated with 4 microM Fluo-3 or 1 microM Rh-123 for 45 min and then the intracellular accumulation of the agent was measured using a flow cytometer. Verapamil (20 microM) or cepharanthine (biscoclaurine alkaloid, 10 microM) was added just before the fluorescent agents. Efflux patterns were also studied 60 min after incubation with or without verapamil and cepharanthine. Increased intracellular accumulation and a delayed efflux pattern of Fluo-3 by verapamil and cepharanthine were demonstrated in multidrug resistant K562/VCR and K562/ADR cells, indicating that Fluo-3 is another good indicator of MDR. However, a similar, but lower, increase in uptake and a delayed efflux pattern of Fluo-3 by verapamil and cepharanthine were also demonstrated even in Pgp-non-overexpressed K562/Parent cells. In contrast, accumulation of Rh-123 was not affected by verapamil and cepharanthine. To further study the Pgp dependency of Fluo-3, another cell line, K562/NC16 expressing minimum MDR1 mRNA, was cloned. Increased uptake and a delayed efflux pattern of Fluo-3, but not Rh-123, with verapamil or cepharanthine were again demonstrated in K562/NC16 cells, indicating that intracellular accumulation of Fluo-3 may be non-specifically influenced by verapamil and cepharanthine at very low levels of Pgp-related MDR, while the influx and efflux patterns of Rh-123 may be specifically affected by Pgp overexpression.

  16. Application of a Static Fluorescence-based Cytometer (the CellScan in Basic Cytometric Studies, Clinical Pharmacology, Oncology and Clinical Immunology

    Directory of Open Access Journals (Sweden)

    Michal Harel

    2005-01-01

    Full Text Available The CellScan apparatus is a laser scanning cytometer enabling repetitive fluorescence intensity (FI and polarization (FP measurements in living cells, as a means of monitoring lymphocyte activation. The CellScan may serve as a tool for diagnosis of rheumatoid arthritis (RA and systemic lupus erythematosus (SLE as well as other autoimmune diseases by monitoring FP changes in peripheral blood lymphocytes (PBLs following exposure to autoantigenic stimuli. Changes in FI and FP in atherosclerotic patients' PBLs following exposure to various stimuli have established the role of the immune system in atherosclerotic disease. The CellScan has been evaluated as a diagnostic tool for drug-allergy, based on FP reduction in PBLs following incubation with allergenic drugs. FI and FP changes in cancer cells have been found to be well correlated with the cytotoxic effect of anti-neoplastic drugs. In conclusion, the CellScan has a variety of applications in cell biology, immunology, cancer research and clinical pharmacology.

  17. Inertial microfluidics for sheath-less high-throughput flow cytometry.

    Science.gov (United States)

    Bhagat, Ali Asgar S; Kuntaegowdanahalli, Sathyakumar S; Kaval, Necati; Seliskar, Carl J; Papautsky, Ian

    2010-04-01

    Flow cytometer is a powerful single cell analysis tool that allows multi-parametric study of suspended cells. Most commercial flow cytometers available today are bulky, expensive instruments requiring high maintenance costs and specially trained personnel for operation. Hence, there is a need to develop a low cost, portable alternative that will aid in making this powerful research tool more accessible. In this paper we describe a sheath-less, on-chip flow cytometry system based on the principle of Dean coupled inertial microfluidics. The design takes advantage of the Dean drag and inertial lift forces acting on particles flowing through a spiral microchannel to focus them in 3-D at a single position across the microchannel cross-section. Unlike the previously reported micro-flow cytometers, the developed system relies entirely on the microchannel geometry for particle focusing, eliminating the need for complex microchannel designs and additional microfluidic plumbing associated with sheath-based techniques. In this work, a 10-loop spiral microchannel 100 microm wide and 50 microm high was used to focus 6 microm particles in 3-D. The focused particle stream was detected with a laser induced fluorescence (LIF) setup. The microfluidic system was shown to have a high throughput of 2,100 particles/sec. Finally, the viability of the developed technique for cell counting was demonstrated using SH-SY5Y neuroblastoma cells. The passive focusing principle and the planar nature of the described design will permit easy integration with existing lab-on-a-chip (LOC) systems.

  18. The skin-blanching assay.

    Science.gov (United States)

    Smit, P; Neumann, H A M; Thio, H B

    2012-10-01

    The skin-blanching assay is used for the determination and bioequivalence of dermatologic glucocorticoids (GCs). The exact mechanism of the production of blanching is not fully understood, but it is considered that local vasoconstriction of the skin microvasculature and the consequent blood-flow reduction cause this phenomenon. Several factors influence skin blanching, including drug concentration, duration of application, nature of vehicle, occlusion, posture and location. The intensity of vasoconstriction can be measured in several ways: visual or quantitative methods, such as reflectance spectroscopy, thermography, laser Doppler velocimetry and chromametry. In literature, contradicting results in the correlation of the skin-blanching assay with different tests to determine GC sensitivity have been reported, limiting its clinical usefulness.

  19. Identification of Streptococcus pneumoniae serotype 11E, serovariant 11Av and mixed populations by high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR spectroscopy and flow cytometric serotyping assay (FCSA.

    Directory of Open Access Journals (Sweden)

    Romina Camilli

    Full Text Available BACKGROUND: Recent studies have identified Streptococcus pneumoniae serotype 11E and serovariant 11Av among isolates previously typed as 11A by classical serotyping methods. Serotype 11E and serovariant 11Av differ from serotype 11A by having totally or partially inactive wcjE, a gene in cps locus coding for an O-acetyl transferase. Serotype 11E is rare among carriage isolates but common among invasive isolates suggesting that it survives better during invasion. Aim of this work was to investigate the epidemiology of serotype 11A in a pneumococcal collection using a new serotyping approach based on High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR spectroscopy to distinguish serotypes 11A and 11E. METHODS: A collection of 48 (34 invasive and 14 carriage S. pneumoniae isolates from Italy, previously identified as serotype 11A by the Quellung reaction, were investigated by wcjE sequencing, HR-MAS NMR spectroscopy and the reference flow cytometric serotyping assay (FCSA based on monoclonal antibodies. RESULTS: HR-MAS NMR spectra from serotypes 11A and 11E showed different NMR peaks indicating that HR-MAS NMR could be used to distinguish these serotypes, although HR-MAS NMR could not distinguish serotype 11Av from serotype 11E unambiguously. Thirty-eight isolates were confirmed to be serotype 11A, 8 isolates with a mutated wcjE were serotype 11E, 1 isolate belonged to serovariant 11Av, and 1 isolate was a mixed population 11A/11Av. All 11E isolates were identified among invasive isolates. CONCLUSIONS: We proved that HR-MAS NMR can be of potential use for pneumococcal serotyping. The detection of serotype 11E among invasive isolates in our collection, supports previous epidemiological studies suggesting that mutations in wcjE can represent a mechanism promoting pneumococcal survival during invasion. The discovery of a spectrum of immunochemical diversity within established serotypes should stimulate efforts to develop new

  20. Microbead agglutination based assays

    KAUST Repository

    Kodzius, Rimantas

    2013-01-21

    We report a simple and rapid room temperature assay for point-of-care (POC) testing that is based on specific agglutination. Agglutination tests are based on aggregation of microbeads in the presence of a specific analyte thus enabling the macroscopic observation. Such tests are most often used to explore antibody-antigen reactions. Agglutination has been used for protein assays using a biotin/streptavidin system as well as a hybridization based assay. The agglutination systems are prone to selftermination of the linking analyte, prone to active site saturation and loss of agglomeration at high analyte concentrations. We investigated the molecular target/ligand interaction, explaining the common agglutination problems related to analyte self-termination, linkage of the analyte to the same bead instead of different microbeads. We classified the agglutination process into three kinds of assays: a two- component assay, a three-component assay and a stepped three- component assay. Although we compared these three kinds of assays for recognizing DNA and protein molecules, the assay can be used for virtually any molecule, including ions and metabolites. In total, the optimized assay permits detecting analytes with high sensitivity in a short time, 5 min, at room temperature. Such a system is appropriate for POC testing.

  1. Colorimetric protein assay techniques.

    Science.gov (United States)

    Sapan, C V; Lundblad, R L; Price, N C

    1999-04-01

    There has been an increase in the number of colorimetric assay techniques for the determination of protein concentration over the past 20 years. This has resulted in a perceived increase in sensitivity and accuracy with the advent of new techniques. The present review considers these advances with emphasis on the potential use of such technologies in the assay of biopharmaceuticals. The techniques reviewed include Coomassie Blue G-250 dye binding (the Bradford assay), the Lowry assay, the bicinchoninic acid assay and the biuret assay. It is shown that each assay has advantages and disadvantages relative to sensitivity, ease of performance, acceptance in the literature, accuracy and reproducibility/coefficient of variation/laboratory-to-laboratory variation. A comparison of the use of several assays with the same sample population is presented. It is suggested that the most critical issue in the use of a chromogenic protein assay for the characterization of a biopharmaceutical is the selection of a standard for the calibration of the assay; it is crucial that the standard be representative of the sample. If it is not possible to match the standard with the sample from the perspective of protein composition, then it is preferable to use an assay that is not sensitive to the composition of the protein such as a micro-Kjeldahl technique, quantitative amino acid analysis or the biuret assay. In a complex mixture it might be inappropriate to focus on a general method of protein determination and much more informative to use specific methods relating to the protein(s) of particular interest, using either specific assays or antibody-based methods. The key point is that whatever method is adopted as the 'gold standard' for a given protein, this method needs to be used routinely for calibration.

  2. Absolute nuclear material assay

    Science.gov (United States)

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  3. FlowCal: A User-Friendly, Open Source Software Tool for Automatically Converting Flow Cytometry Data from Arbitrary to Calibrated Units.

    Science.gov (United States)

    Castillo-Hair, Sebastian M; Sexton, John T; Landry, Brian P; Olson, Evan J; Igoshin, Oleg A; Tabor, Jeffrey J

    2016-07-15

    Flow cytometry is widely used to measure gene expression and other molecular biological processes with single cell resolution via fluorescent probes. Flow cytometers output data in arbitrary units (a.u.) that vary with the probe, instrument, and settings. Arbitrary units can be converted to the calibrated unit molecules of equivalent fluorophore (MEF) using commercially available calibration particles. However, there is no convenient, nonproprietary tool available to perform this calibration. Consequently, most researchers report data in a.u., limiting interpretation. Here, we report a software tool named FlowCal to overcome current limitations. FlowCal can be run using an intuitive Microsoft Excel interface, or customizable Python scripts. The software accepts Flow Cytometry Standard (FCS) files as inputs and is compatible with different calibration particles, fluorescent probes, and cell types. Additionally, FlowCal automatically gates data, calculates common statistics, and produces publication quality plots. We validate FlowCal by calibrating a.u. measurements of E. coli expressing superfolder GFP (sfGFP) collected at 10 different detector sensitivity (gain) settings to a single MEF value. Additionally, we reduce day-to-day variability in replicate E. coli sfGFP expression measurements due to instrument drift by 33%, and calibrate S. cerevisiae Venus expression data to MEF units. Finally, we demonstrate a simple method for using FlowCal to calibrate fluorescence units across different cytometers. FlowCal should ease the quantitative analysis of flow cytometry data within and across laboratories and facilitate the adoption of standard fluorescence units in synthetic biology and beyond.

  4. Flow Injection Analysis

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1998-01-01

    Learning objectives:* To provide an introduction to automated assays* To describe the basic principles of FIA * To demonstrate the capabilities of FIA in relation to batch assays and conventional continuous flow systems* To show that FIA allows one to augment existing analytical techniques* To sh...

  5. A flow chamber assay for quantitative evaluation of bacterial surface colonization used to investigate the influence of temperature and surface hydrophilicity on the biofilm forming capacity of uropathogenic Escherichia coli

    DEFF Research Database (Denmark)

    Andersen, Thomas Emil; Kingshott, Peter; Palarasah, Yaseelan

    2010-01-01

    We have established a simple flow chamber-based procedure which provides an accurate and reproducible way to measure the amount of biofilm formed on an implantable biomaterial surface. The method enables the side-by-side evaluation of different materials under hydrodynamic flow conditions similar...

  6. Optimization of flow cytometric detection and cell sorting of transgenic Plasmodium parasites using interchangeable optical filters.

    Science.gov (United States)

    Vorobjev, Ivan A; Buchholz, Kathrin; Prabhat, Prashant; Ketman, Kenneth; Egan, Elizabeth S; Marti, Matthias; Duraisingh, Manoj T; Barteneva, Natasha S

    2012-09-05

    Malaria remains a major cause of morbidity and mortality worldwide. Flow cytometry-based assays that take advantage of fluorescent protein (FP)-expressing malaria parasites have proven to be valuable tools for quantification and sorting of specific subpopulations of parasite-infected red blood cells. However, identification of rare subpopulations of parasites using green fluorescent protein (GFP) labelling is complicated by autofluorescence (AF) of red blood cells and low signal from transgenic parasites. It has been suggested that cell sorting yield could be improved by using filters that precisely match the emission spectrum of GFP. Detection of transgenic Plasmodium falciparum parasites expressing either tdTomato or GFP was performed using a flow cytometer with interchangeable optical filters. Parasitaemia was evaluated using different optical filters and, after optimization of optics, the GFP-expressing parasites were sorted and analysed by microscopy after cytospin preparation and by imaging cytometry. A new approach to evaluate filter performance in flow cytometry using two-dimensional dot blot was developed. By selecting optical filters with narrow bandpass (BP) and maximum position of filter emission close to GFP maximum emission in the FL1 channel (510/20, 512/20 and 517/20; dichroics 502LP and 466LP), AF was markedly decreased and signal-background improve dramatically. Sorting of GFP-expressing parasite populations in infected red blood cells at 90 or 95% purity with these filters resulted in 50-150% increased yield when compared to the standard filter set-up. The purity of the sorted population was confirmed using imaging cytometry and microscopy of cytospin preparations of sorted red blood cells infected with transgenic malaria parasites. Filter optimization is particularly important for applications where the FP signal and percentage of positive events are relatively low, such as analysis of parasite-infected samples with in the intention of gene

  7. Optimization of flow cytometric detection and cell sorting of transgenic Plasmodium parasites using interchangeable optical filters

    Directory of Open Access Journals (Sweden)

    Vorobjev Ivan A

    2012-09-01

    Full Text Available Abstract Background Malaria remains a major cause of morbidity and mortality worldwide. Flow cytometry-based assays that take advantage of fluorescent protein (FP-expressing malaria parasites have proven to be valuable tools for quantification and sorting of specific subpopulations of parasite-infected red blood cells. However, identification of rare subpopulations of parasites using green fluorescent protein (GFP labelling is complicated by autofluorescence (AF of red blood cells and low signal from transgenic parasites. It has been suggested that cell sorting yield could be improved by using filters that precisely match the emission spectrum of GFP. Methods Detection of transgenic Plasmodium falciparum parasites expressing either tdTomato or GFP was performed using a flow cytometer with interchangeable optical filters. Parasitaemia was evaluated using different optical filters and, after optimization of optics, the GFP-expressing parasites were sorted and analysed by microscopy after cytospin preparation and by imaging cytometry. Results A new approach to evaluate filter performance in flow cytometry using two-dimensional dot blot was developed. By selecting optical filters with narrow bandpass (BP and maximum position of filter emission close to GFP maximum emission in the FL1 channel (510/20, 512/20 and 517/20; dichroics 502LP and 466LP, AF was markedly decreased and signal-background improve dramatically. Sorting of GFP-expressing parasite populations in infected red blood cells at 90 or 95% purity with these filters resulted in 50-150% increased yield when compared to the standard filter set-up. The purity of the sorted population was confirmed using imaging cytometry and microscopy of cytospin preparations of sorted red blood cells infected with transgenic malaria parasites. Discussion Filter optimization is particularly important for applications where the FP signal and percentage of positive events are relatively low, such as analysis

  8. Cell viability assays: introduction.

    Science.gov (United States)

    Stoddart, Martin J

    2011-01-01

    The measurement of cell viability plays a fundamental role in all forms of cell culture. Sometimes it is the main purpose of the experiment, such as in toxicity assays. Alternatively, cell viability can be used to -correlate cell behaviour to cell number, providing a more accurate picture of, for example, anabolic -activity. There are wide arrays of cell viability methods which range from the most routine trypan blue dye exclusion assay to highly complex analysis of individual cells, such as using RAMAN microscopy. The cost, speed, and complexity of equipment required will all play a role in determining the assay used. This chapter aims to provide an overview of many of the assays available today.

  9. Tube-Forming Assays.

    Science.gov (United States)

    Brown, Ryan M; Meah, Christopher J; Heath, Victoria L; Styles, Iain B; Bicknell, Roy

    2016-01-01

    Angiogenesis involves the generation of new blood vessels from the existing vasculature and is dependent on many growth factors and signaling events. In vivo angiogenesis is dynamic and complex, meaning assays are commonly utilized to explore specific targets for research into this area. Tube-forming assays offer an excellent overview of the molecular processes in angiogenesis. The Matrigel tube forming assay is a simple-to-implement but powerful tool for identifying biomolecules involved in angiogenesis. A detailed experimental protocol on the implementation of the assay is described in conjunction with an in-depth review of methods that can be applied to the analysis of the tube formation. In addition, an ImageJ plug-in is presented which allows automatic quantification of tube images reducing analysis times while removing user bias and subjectivity.

  10. Transgenic Animal Mutation Assays

    Institute of Scientific and Technical Information of China (English)

    Tao Chen; Ph.D.D.A.B.T.

    2005-01-01

    @@ The novel transgenic mouse and rat mutation assays have provided a tool for analyzing in vivo mutation in any tissue, thus permitting the direct comparison of cancer incidence with mutant frequency.

  11. Assays for thrombopoietin

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.P.

    1977-01-01

    In summary, thrombopoietin levels have been determined indirectly by measuring thrombocytopoiesis in assay animals (platelet counting, measurement of isotope incorporation into newly formed platelets, changes in platelet sizes, or alterations in number and size of megakaryocytes) and by use of an immunoassay. Although much work remains, it seems clear at the present time that isotopic uptake into platelets of specially prepared assay mice (rebound-thrombocytosis) is superior to the other techniques now available for the measurement of thrombopoietin. However, the ideal assay for TSF which is specific, rapid, and inexpensive is yet to be developed. An immunoassay is in the development stage, but will require additional work before it can be utilized for the routine assay of TSF.

  12. New Rapid Spore Assay

    Science.gov (United States)

    Kminek, Gerhard; Conley, Catharine

    2012-07-01

    The presentation will detail approved Planetary Protection specifications for the Rapid Spore Assay for spacecraft components and subsystems. Outlined will be the research and studies on which the specifications were based. The research, funded by ESA and NASA/JPL, was conducted over a period of two years and was followed by limited cleanroom studies to assess the feasibility of this assay during spacecraft assembly.

  13. Evaluation of cytotoxicity of aqueous extract of Graviola leaves on squamous cell carcinoma cell-25 cell lines by 3-(4,5-dimethylthiazol-2-Yl -2,5-diphenyltetrazolium bromide assay and determination of percentage of cell inhibition at G2M phase of cell cycle by flow cytometry: An in vitro study

    Directory of Open Access Journals (Sweden)

    Visveswaraiah Paranjyothi Magadi

    2015-01-01

    Full Text Available Introduction: Malignancies constitute a wide variety of disorders having high mortality and morbidity rates. Current protocols for management include surgical intervention, chemotherapy, and radiation which possess numerous adverse effects. Many phytochemicals are available with anticancer properties similar to anticancer drugs. Major benefit of these compounds is apparent lack of toxicity to normal tissues. Graviola (botanical name: Annona Muricata contain bioactive compound “annonaceous acetogenins” known for anticancer activity on cancer cell lines. Aims: To determine cytotoxicity of Graviola and percentage cell inhibition at G2M phase of cell cycle. Settings and Design: The cytotoxicity of aqueous extract of Graviola leaves on squamous cell carcinoma (SCC-25 cell lines at various concentrations evaluated using 3-(4,5-dimethylthiazol-2-Yl-2,5-diphenyltetrazolium bromide (MTT assay. The percentage of SCC-25 cell inhibition at G2M phase of cell cycle determined using flow cytometry. Methods: Graviola Leaves, American Type Culture Collection SCC-25 cell lines were procured from Skanda Laboratories, Bengaluru. The cytotoxicity of aqueous extract of Graviola on SCC-25 cells at various concentrations evaluated using MTT assay. The percentage of SCC-25 cell inhibition at G2M phase of cell cycle determined using flow cytometry. Statistical Analysis: Statistical analysis was done using one-way ANOVA. Results: MTT assay showed statistically significant (P < 0.001 dose-dependent inhibition of SCC-25 cell lines by Graviola with IC50 value of 12.42 μg/ml. Flow cytometry revealed that Graviola at 25 and 50 g/ml arrested 53.39% and 52.09% cells in G2M phase of cell cycle respectively, which was statistically significant. Conclusion: Graviola showed significant cytotoxic activity and percentage of cell inhibition at G2M phase cell cycle against SCC-25 cell lines.

  14. Evaluation of cytotoxicity of aqueous extract of Graviola leaves on squamous cell carcinoma cell-25 cell lines by 3-(4,5-dimethylthiazol-2-Yl) -2,5-diphenyltetrazolium bromide assay and determination of percentage of cell inhibition at G2M phase of cell cycle by flow cytometry: An in vitro study

    Science.gov (United States)

    Magadi, Visveswaraiah Paranjyothi; Ravi, Venkatadasappa; Arpitha, Anantharaju; Litha; Kumaraswamy, Kikkerilakshminarayana; Manjunath, Krishnappa

    2015-01-01

    Introduction: Malignancies constitute a wide variety of disorders having high mortality and morbidity rates. Current protocols for management include surgical intervention, chemotherapy, and radiation which possess numerous adverse effects. Many phytochemicals are available with anticancer properties similar to anticancer drugs. Major benefit of these compounds is apparent lack of toxicity to normal tissues. Graviola (botanical name: Annona Muricata) contain bioactive compound “annonaceous acetogenins” known for anticancer activity on cancer cell lines. Aims: To determine cytotoxicity of Graviola and percentage cell inhibition at G2M phase of cell cycle. Settings and Design: The cytotoxicity of aqueous extract of Graviola leaves on squamous cell carcinoma (SCC-25) cell lines at various concentrations evaluated using 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The percentage of SCC-25 cell inhibition at G2M phase of cell cycle determined using flow cytometry. Methods: Graviola Leaves, American Type Culture Collection SCC-25 cell lines were procured from Skanda Laboratories, Bengaluru. The cytotoxicity of aqueous extract of Graviola on SCC-25 cells at various concentrations evaluated using MTT assay. The percentage of SCC-25 cell inhibition at G2M phase of cell cycle determined using flow cytometry. Statistical Analysis: Statistical analysis was done using one-way ANOVA. Results: MTT assay showed statistically significant (P < 0.001) dose-dependent inhibition of SCC-25 cell lines by Graviola with IC50 value of 12.42 μg/ml. Flow cytometry revealed that Graviola at 25 and 50 g/ml arrested 53.39% and 52.09% cells in G2M phase of cell cycle respectively, which was statistically significant. Conclusion: Graviola showed significant cytotoxic activity and percentage of cell inhibition at G2M phase cell cycle against SCC-25 cell lines. PMID:26681860

  15. Studying circulation times of liver cancer cells by in vivo flow cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G; Li, Y; Fan, Z; Guo, J; Tan, X; Wei, X, E-mail: xwei@fudan.edu.cn [Institutes of Biomedical Sciences, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032 (China)

    2011-02-01

    Hepatocellular carcinoma (HCC) may metastasize to lung kidney and many other organs. The survival rate is almost zero for metastatic HCC patients. Molecular mechanisms of HCC metastasis need to be understood better and new therapies must be developed. A recently developed 'in vivo flow cytometer' combined with real-time confocal fluorescence imaging are used to assess spreading and the circulation kinetics of liver tumor cells. The in vivo flow cytometer has the capability to detect and quantify continuously the number and flow characteristics of fluorescently labeled cells in vivo in real time without extracting blood sample. We have measured the depletion kinetics of two related human HCC cell lines high-metastatic HCCLM3 cells and low-metastatic HepG2 cells which were from the same origin and obtained by repetitive screenings in mice. >60% HCCLM3 cells are depleted within the first hour. Interestingly the low-metastatic HepG2 cells possess noticeably slower depletion kinetics. In comparison <40% HepG2 cells are depleted within the first hour. The differences in depletion kinetics might provide insights into early metastasis processes.

  16. Flow karyotyping and flow instrumentation development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    GEngh, G.J. van den

    1997-11-01

    The project had three major aims: improvement of technology for high-speed cell and chromosome sorting; the use of such instrumentation in genome analysis; applying the principles developed and the lessons learned to automated processes for the genome program. The work was a continuation of studies that were started at the Lawrence Livermore National Laboratory before the PI moved to the University of Washington. At Livermore, a high-speed sorter for the selection of human chromosomes was built. The instrument incorporated Livermore`s advanced sorter technology. The engineering focused on improving robustness and reliability so that the full potential of high-speed sorting would become available to the biological research laboratory. The new instrument, dubbed MoFlo for modular flow cytometer, proved to be a very practical and efficient tool during the chromosome isolation phase of the gene-library project. Its reliability and ease of operation exceeded that of the commercial instruments. The technology was licensed to two companies.

  17. Against vaccine assay secrecy.

    Science.gov (United States)

    Herder, Matthew; Hatchette, Todd F; Halperin, Scott A; Langley, Joanne M

    2015-01-01

    Increasing the transparency of the evidence base behind health interventions such as pharmaceuticals, biologics, and medical devices, has become a major point of critique, conflict, and policy focus in recent years. Yet the lack of publicly available information regarding the immunogenicity assays upon which many important, widely used vaccines are based has received no attention to date. In this paper we draw attention to this critical public health problem by reporting on our efforts to secure vaccine assay information in respect of 10 vaccines through Canada's access to information law. We argue, under Canadian law, that the public health interest in having access to the methods for these laboratory procedures should override claims by vaccine manufacturers and regulators that this information is proprietary; and, we call upon several actors to take steps to ensure greater transparency with respect to vaccine assays, including regulators, private firms, researchers, research institutions, research funders, and journal editors.

  18. Against vaccine assay secrecy

    Science.gov (United States)

    Herder, Matthew; Hatchette, Todd F; Halperin, Scott A; Langley, Joanne M

    2015-01-01

    Increasing the transparency of the evidence base behind health interventions such as pharmaceuticals, biologics, and medical devices, has become a major point of critique, conflict, and policy focus in recent years. Yet the lack of publicly available information regarding the immunogenicity assays upon which many important, widely used vaccines are based has received no attention to date. In this paper we draw attention to this critical public health problem by reporting on our efforts to secure vaccine assay information in respect of 10 vaccines through Canada's access to information law. We argue, under Canadian law, that the public health interest in having access to the methods for these laboratory procedures should override claims by vaccine manufacturers and regulators that this information is proprietary; and, we call upon several actors to take steps to ensure greater transparency with respect to vaccine assays, including regulators, private firms, researchers, research institutions, research funders, and journal editors. PMID:25826194

  19. Rover waste assay system

    Energy Technology Data Exchange (ETDEWEB)

    Akers, D.W.; Stoots, C.M.; Kraft, N.C.; Marts, D.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-11-01

    The Rover Waste Assay System (RWAS) is a nondestructive assay system designed for the rapid assay of highly-enriched {sup 235}U contaminated piping, tank sections, and debris from the Rover nuclear rocket fuel processing facility at the Idaho Chemical Processing Plant. A scanning system translates a NaI(Tl) detector/collimator system over the structural components where both relative and calibrated measurements for {sup 137}Cs are made. Uranium-235 concentrations are in operation and is sufficiently automated that most functions are performed by the computer system. These functions include system calibration, problem identification, collimator control, data analysis, and reporting. Calibration of the system was done through a combination of measurements on calibration standards and benchmarked modeling. A description of the system is presented along with the methods and uncertainties associated with the calibration and analysis of the system for components from the Rover facility. 4 refs., 2 figs., 4 tabs.

  20. CTL ELISPOT assay.

    Science.gov (United States)

    Ranieri, Elena; Popescu, Iulia; Gigante, Margherita

    2014-01-01

    Enzyme-linked immune absorbent spot (Elispot) is a quantitative method for measuring relevant parameters of T cell activation. The sensitivity of Elispot allows the detection of low-frequency antigen-specific T cells that secrete cytokines and effector molecules, such as granzyme B and perforin. Cytotoxic T cell (CTL) studies have taken advantage with this high-throughput technology by providing insights into quantity and immune kinetics. Accuracy, sensitivity, reproducibility, and robustness of Elispot resulted in a wide range of applications in research as well as in diagnostic field. Actually, CTL monitoring by Elispot is a gold standard for the evaluation of antigen-specific T cell immunity in clinical trials and vaccine candidates where the ability to detect rare antigen-specific T cells is of relevance for immune diagnostic. The most utilized Elispot assay is the interferon-gamma (IFN-γ) test, a marker for CD8(+) CTL activation, but Elispot can also be used to distinguish different subsets of activated T cells by using other cytokines such as T-helper (Th) 1-type cells (characterized by the production of IFN-γ, IL-2, IL-6, IL-12, IL-21, and TNF-α), Th2 (producing cytokines like IL-4, IL-5, IL-10, and IL-13), and Th17 (IL-17) cells. The reliability of Elispot-generated data, by the evaluation of T cell frequency recognizing individual antigen/peptide, is the core of this method currently applied widely to investigate specific immune responses in cancer, infections, allergies, and autoimmune diseases. The Elispot assay is competing with other methods measuring single-cell cytokine production, e.g., intracellular cytokine by FACS or Miltenyi cytokine secretion assay. Other types of lymphocyte frequency and function assays include limiting dilution assay (LDA), cytotoxic T cell assay (CTL), and tetramer staining. Compared with respect to sensitivity the Elispot assay is outranking other methods to define frequency of antigen-specific lymphocytes. The method

  1. Assays for calcitonin receptors

    Energy Technology Data Exchange (ETDEWEB)

    Teitelbaum, A.P.; Nissenson, R.A.; Arnaud, C.D.

    1985-01-01

    The assays for calcitonin receptors described focus on their use in the study of the well-established target organs for calcitonin, bone and kidney. The radioligand used in virtually all calcitonin binding studies is /sup 125/I-labelled salmon calcitonin. The lack of methionine residues in this peptide permits the use of chloramine-T for the iodination reaction. Binding assays are described for intact bone, skeletal plasma membranes, renal plasma membranes, and primary kidney cell cultures of rats. Studies on calcitonin metabolism in laboratory animals and regulation of calcitonin receptors are reviewed.

  2. Flow cytometric fluorescence lifetime analysis of DNA binding fluorochromes

    Energy Technology Data Exchange (ETDEWEB)

    Crissman, Harry A.; Cui, H. H. (H. Helen); Steinkamp, J. A.

    2002-01-01

    Most flow cytometry (FCM) applications monitor fluorescence intensity to quantitate the various cellular parameters; however, the fluorescence emission also contains information relative to the fluorescence lifetime. Recent developments in FCM (Pinsky et al., 1993; Steinkamp & Crissman, 1993; Steinkamp et al., 1993), provide for the measurement of fluorescence lifetime which is also commonly referred to as fluorescence decay, or the time interval in which a fluorochrome remains in the excited state. Many unbound fluorochromes have characteristic lifetime values that are determined by their molecular structure; however, when the probe becomes bound, the lifetime value is influenced by a number of factors that affect the probe interaction with a target molecule. Monitoring the changes in the lifetime of the probe yields information relating to the molecular conformation, the functional state or activity of the molecular target. In addition, the lifetime values can be used as signatures to resolve the emissions of multiple fluorochrome labels with overlapping emission spectra that cannot be resolved by conventional FCM methodology. Such strategies can increase the number of fluorochrome combinations used in a flow cytometer with a single excitation source. Our studies demonstrate various applications of lifetime measurements for the analysis of the binding of different fluorochromes to DNA in single cells. Data presented in this session will show the utility of lifetime measurements for monitoring changes in chromatin structure associated with cell cycle progression, cellular differentiation, or DNA damage, such as induced during apoptosis. Several studies show that dyes with specificity for nucleic acids display different lifetime values when bound to DNA or to dsRNA. The Phase Sensitive Flow Cytometer is a multiparameter instrument, capable of performing lifetime measurements in conjunction with all the conventional FCM measurements. Future modifications of this

  3. New oligosaccharyltransferase assay method.

    Science.gov (United States)

    Kohda, Daisuke; Yamada, Masaki; Igura, Mayumi; Kamishikiryo, Jun; Maenaka, Katsumi

    2007-11-01

    We developed a new in vitro assay for oligosaccharyltransferase (OST), which catalyzes the transfer of preassembled oligosaccharides on lipid carriers onto asparagine residues in polypeptide chains. The asparagine residues reside in the sequon, Asn-X-Thr/Ser, where X can be any amino acid residue except Pro. We demonstrate the potency of our assay using the OST from yeast. In our method, polyacrylamide gel electrophoresis is used to separate the glycopeptide products from the peptide substrates. The substrate peptide is fluorescently labeled and the formation of glycopeptides is analyzed by fluorescence gel imaging. Two in vitro OST assay methods are now widely used, but both the methods depend on previous knowledge of the oligosaccharide moiety: One method uses lectin binding as the separation mechanism and the other method uses biosynthetically or chemoenzymatically synthesized lipid-linked oligosaccharides as donors. N-linked protein glycosylation is found in all three domains of life, but little is known about the N-glycosylation in Archaea. Thus, our new assay, which does not require a priori knowledge of the oligosaccharides, will be useful in such cases. Indeed, we have detected the OST activity in the membrane fraction from a hyperthermophilic archaeon, Pyrococcus furiosus.

  4. Hyaluronic Acid Assays

    DEFF Research Database (Denmark)

    Itenov, Theis S; Kirkby, Nikolai S; Bestle, Morten H

    2015-01-01

    BACKGROUD: Hyaluronic acid (HA) is proposed as a marker of functional liver capacity. The aim of the present study was to compare a new turbidimetric assay for measuring HA with the current standard method. METHODS: HA was measured by a particle-enhanced turbidimetric immunoassay (PETIA) and enzyme...

  5. Instrument for assaying radiation

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Jody Rustyn; Farfan, Eduardo B.

    2016-03-22

    An instrument for assaying radiation includes a flat panel detector having a first side opposed to a second side. A collimated aperture covers at least a portion of the first side of the flat panel detector. At least one of a display screen or a radiation shield may cover at least a portion of the second side of the flat panel detector.

  6. Best practices in performing flow cytometry in a regulated environment: feedback from experience within the European Bioanalysis Forum.

    Science.gov (United States)

    der Strate, Barry van; Longdin, Robin; Geerlings, Marie; Bachmayer, Nora; Cavallin, Maria; Litwin, Virginia; Patel, Minesh; Passe-Coutrin, Wilfried; Schoelch, Corinna; Companjen, Arjen; Fjording, Marianne Scheel

    2017-08-01

    Flow cytometry is a powerful tool that can be used for the support of (pre)clinical studies. Although various white papers are available that describe the set-up and validation of the instrumentation (the flow cytometer) and validation of flow cytometry methods, to date no guidelines exist that address the requirements for performing flow cytometry in a regulated environment. In this manuscript, the European Bioanalysis Forum presents additional practice guidance on the use of flow cytometry in the support of drug development programs and addresses areas that are not covered in the previous publications. The concepts presented here are based on the consensus of discussions in the European Bioanalysis Forum Topic Team 32, in meetings in Barcelona, Limelette and multiple telephone conferences.

  7. Flow cytometric studies of human osteosarcoma.

    Science.gov (United States)

    Mankin, H J; Gebhardt, M C; Springfield, D S; Litwak, G J; Kusazaki, K; Rosenberg, A E

    1991-09-01

    A number of recent studies have emphasized the potential value of flow cytometry as a "marker" to assess the malignity and therefore to help predict the biologic behavior of neoplasms, including bone tumors. Using propidium iodide and a home-built flow cytometer, the authors have studied the DNA distribution in 95 patients with osteosarcoma and determined the percentage of cells in diploidy, S-phase, tetraploidy, and aneuploidy. Using these values and a derived one, mean DNA concentration, it was possible to demonstrate the extent of the abnormalities observed in this group of neoplasms and show their severity as compared with the normal pattern. When the data are compared against disease-free survival and total survival, correlations were noted that, although weak, suggested that some patterns were predictive of increased risk of metastasis and death. The effect of treatment could also be assessed by evaluating the pattern before and after chemotherapy and correlating these with survival. It seems likely that with some improvement in technology, flow cytometry will be of value in the future in assessing the prognosis for osteosarcoma and predicting whether treatment has been effective.

  8. Functionalized Nanofiber Meshes Enhance Immunosorbent Assays.

    Science.gov (United States)

    Hersey, Joseph S; Meller, Amit; Grinstaff, Mark W

    2015-12-01

    Three-dimensional substrates with high surface-to-volume ratios and subsequently large protein binding capacities are of interest for advanced immunosorbent assays utilizing integrated microfluidics and nanosensing elements. A library of bioactive and antifouling electrospun nanofiber substrates, which are composed of high-molecular-weight poly(oxanorbornene) derivatives, is described. Specifically, a set of copolymers are synthesized from three 7-oxanorbornene monomers to create a set of water insoluble copolymers with both biotin (bioactive) and triethylene glycol (TEG) (antifouling) functionality. Porous three-dimensional nanofiber meshes are electrospun from these copolymers with the ability to specifically bind streptavidin while minimizing the nonspecific binding of other proteins. Fluorescently labeled streptavidin is used to quantify the streptavidin binding capacity of each mesh type through confocal microscopy. A simplified enzyme-linked immunosorbent assay (ELISA) is presented to assess the protein binding capabilities and detection limits of these nanofiber meshes under both static conditions (26 h) and flow conditions (1 h) for a model target protein (i.e., mouse IgG) using a horseradish peroxidase (HRP) colorimetric assay. Bioactive and antifouling nanofiber meshes outperform traditional streptavidin-coated polystyrene plates under flow, validating their use in future advanced immunosorbent assays and their compatibility with microfluidic-based biosensors.

  9. The corneal pocket assay.

    Science.gov (United States)

    Ziche, Marina; Morbidelli, Lucia

    2015-01-01

    The cornea in most species is physiologically avascular, and thus this assay allows the measurement of newly formed vessels. The continuous monitoring of neovascular growth in the same animal allows the evaluation of drugs acting as suppressors or stimulators of angiogenesis. Under anesthesia a micropocket is produced in the cornea thickness and the angiogenesis stimulus (tumor tissue, cell suspension, growth factor) is placed into the pocket in order to induce vascular outgrowth from the limbal capillaries. Neovascular development and progression can be modified by the presence of locally released or applied inhibitory factors or by systemic treatments. In this chapter the experimental details of the avascular cornea assay, the technical challenges, and advantages and disadvantages in different species are discussed. Protocols for local drug treatment and tissue sampling for histology and pharmacokinetic profile are reported.

  10. Kinetic Tetrazolium Microtiter Assay

    Science.gov (United States)

    Pierson, Duane L.; Stowe, Raymond; Koenig, David

    1993-01-01

    Kinetic tetrazolium microtiter assay (KTMA) involves use of tetrazolium salts and Triton X-100 (or equivalent), nontoxic, in vitro color developer solubilizing colored metabolite formazan without injuring or killing metabolizing cells. Provides for continuous measurement of metabolism and makes possible to determine rate of action of antimicrobial agent in real time as well as determines effective inhibitory concentrations. Used to monitor growth after addition of stimulatory compounds. Provides for kinetic determination of efficacy of biocide, greatly increasing reliability and precision of results. Also used to determine relative effectiveness of antimicrobial agent as function of time. Capability of generating results on day of test extremely important in treatment of water and waste, disinfection of hospital rooms, and in pharmaceutical, agricultural, and food-processing industries. Assay also used in many aspects of cell biology.

  11. B cell helper assays.

    Science.gov (United States)

    Abrignani, Sergio; Tonti, Elena; Casorati, Giulia; Dellabona, Paolo

    2009-01-01

    Activation, proliferation and differentiation of naïve B lymphocytes into memory B cells and plasma cells requires engagement of the B cell receptor (BCR) coupled to T-cell help (1, 2). T cells deliver help in cognate fashion when they are activated upon recognition of specific MHC-peptide complexes presented by B cells. T cells can also deliver help in a non-cognate or bystander fashion, when they do not find specific MHC-peptide complexes on B cells and are activated by alternative mechanisms. T-cell dependent activation of B cells can be studied in vitro by experimental models called "B cell helper assays" that are based on the co-culture of B cells with activated T cells. These assays allow to decipher the molecular bases for productive T-dependent B cell responses. We show here examples of B cell helper assays in vitro, which can be reproduced with any subset of T lymphocytes that displays the appropriate helper signals.

  12. Non-Linear Optical Flow Cytometry Using a Scanned, Bessel Beam Light-Sheet

    Science.gov (United States)

    Collier, Bradley B.; Awasthi, Samir; Lieu, Deborah K.; Chan, James W.

    2015-01-01

    Modern flow cytometry instruments have become vital tools for high-throughput analysis of single cells. However, as issues with the cellular labeling techniques often used in flow cytometry have become more of a concern, the development of label-free modalities for cellular analysis is increasingly desired. Non-linear optical phenomena (NLO) are of growing interest for label-free analysis because of the ability to measure the intrinsic optical response of biomolecules found in cells. We demonstrate that a light-sheet consisting of a scanned Bessel beam is an optimal excitation geometry for efficiently generating NLO signals in a microfluidic environment. The balance of photon density and cross-sectional area provided by the light-sheet allowed significantly larger two-photon fluorescence intensities to be measured in a model polystyrene microparticle system compared to measurements made using other excitation focal geometries, including a relaxed Gaussian excitation beam often used in conventional flow cytometers. PMID:26021750

  13. Two-step protocol for preparing adherent cells for high-throughput flow cytometry.

    Science.gov (United States)

    Kaur, Mandeep; Esau, Luke

    2015-09-01

    We have developed a simple, cost-effective, and labor-efficient two-step protocol for preparing adherent cells for high-throughput flow cytometry. Adherent cells were grown on microplates, detached with 2.9 mM EDTA (pH 6.14) added directly to wells containing cell culture medium, stained, and then analyzed on a flow cytometer. This protocol bypasses washing, centrifugation, and transfer between plates, reducing the cell loss that occurs in standard multistep protocols. The method has been validated using six adherent cell lines, four commercially available dyes, and two antibodies; the results have been confirmed using two different flow cytometry (FC) instruments. Our approach has been used for estimating apoptosis, mitochondrial membrane potential, reactive oxygen species, and autophagy in response to exposure to pure compounds as well as plant and bacterial extracts.

  14. High throughput RNAi assay optimization using adherent cell cytometry

    Directory of Open Access Journals (Sweden)

    Pradhan Leena

    2011-04-01

    Full Text Available Abstract Background siRNA technology is a promising tool for gene therapy of vascular disease. Due to the multitude of reagents and cell types, RNAi experiment optimization can be time-consuming. In this study adherent cell cytometry was used to rapidly optimize siRNA transfection in human aortic vascular smooth muscle cells (AoSMC. Methods AoSMC were seeded at a density of 3000-8000 cells/well of a 96well plate. 24 hours later AoSMC were transfected with either non-targeting unlabeled siRNA (50 nM, or non-targeting labeled siRNA, siGLO Red (5 or 50 nM using no transfection reagent, HiPerfect or Lipofectamine RNAiMax. For counting cells, Hoechst nuclei stain or Cell Tracker green were used. For data analysis an adherent cell cytometer, Celigo® was used. Data was normalized to the transfection reagent alone group and expressed as red pixel count/cell. Results After 24 hours, none of the transfection conditions led to cell loss. Red fluorescence counts were normalized to the AoSMC count. RNAiMax was more potent compared to HiPerfect or no transfection reagent at 5 nM siGLO Red (4.12 +/-1.04 vs. 0.70 +/-0.26 vs. 0.15 +/-0.13 red pixel/cell and 50 nM siGLO Red (6.49 +/-1.81 vs. 2.52 +/-0.67 vs. 0.34 +/-0.19. Fluorescence expression results supported gene knockdown achieved by using MARCKS targeting siRNA in AoSMCs. Conclusion This study underscores that RNAi delivery depends heavily on the choice of delivery method. Adherent cell cytometry can be used as a high throughput-screening tool for the optimization of RNAi assays. This technology can accelerate in vitro cell assays and thus save costs.

  15. Growth cone collapse assay.

    Science.gov (United States)

    Cook, Geoffrey M W; Jareonsettasin, Prem; Keynes, Roger J

    2014-01-01

    The growth cone collapse assay has proved invaluable in detecting and purifying axonal repellents. Glycoproteins/proteins present in detergent extracts of biological tissues are incorporated into liposomes, added to growth cones in culture and changes in morphology are then assessed. Alternatively purified or recombinant molecules in aqueous solution may be added directly to the cultures. In both cases after a defined period of time (up to 1 h), the cultures are fixed and then assessed by inverted phase contrast microscopy for the percentage of growth cones showing a collapsed profile with loss of flattened morphology, filopodia, and lamellipodia.

  16. FLUIDICS DEVICE FOR ASSAY

    DEFF Research Database (Denmark)

    2007-01-01

    The present invention relates to a device for use in performing assays on standard laboratory solid supports whereon chemical entities are attached. The invention furthermore relates to the use of such a device and a kit comprising such a device. The device according to the present invention is a......, when operatively connected, one or more chambers (21) comprising the chemical entities (41), the inlet(s) (5) and outlet(s) (6) and chambers (21) being in fluid connection. The device further comprise means for providing differing chemical conditions in each chamber (21)....

  17. Radon assay for SNO+

    Energy Technology Data Exchange (ETDEWEB)

    Rumleskie, Janet [Laurentian University, Greater Sudbury, Ontario (Canada)

    2015-12-31

    The SNO+ experiment will study neutrinos while located 6,800 feet below the surface of the earth at SNOLAB. Though shielded from surface backgrounds, emanation of radon radioisotopes from the surrounding rock leads to back-grounds. The characteristic decay of radon and its daughters allows for an alpha detection technique to count the amount of Rn-222 atoms collected. Traps can collect Rn-222 from various positions and materials, including an assay skid that will collect Rn-222 from the organic liquid scintillator used to detect interactions within SNO+.

  18. Applications of Imaging Flow Cytometry for Microalgae.

    Science.gov (United States)

    Hildebrand, Mark; Davis, Aubrey; Abbriano, Raffaela; Pugsley, Haley R; Traller, Jesse C; Smith, Sarah R; Shrestha, Roshan P; Cook, Orna; Sánchez-Alvarez, Eva L; Manandhar-Shrestha, Kalpana; Alderete, Benjamin

    2016-01-01

    The ability to image large numbers of cells at high resolution enhances flow cytometric analysis of cells and cell populations. In particular, the ability to image intracellular features adds a unique aspect to analyses, and can enable correlation between molecular phenomena resulting in alterations in cellular phenotype. Unicellular microalgae are amenable to high-throughput analysis to capture the diversity of cell types in natural samples, or diverse cellular responses in clonal populations, especially using imaging cytometry. Using examples from our laboratory, we review applications of imaging cytometry, specifically using an Amnis(®) ImageStream(®)X instrument, to characterize photosynthetic microalgae. Some of these examples highlight advantages of imaging flow cytometry for certain research objectives, but we also include examples that would not necessarily require imaging and could be performed on a conventional cytometer to demonstrate other concepts in cytometric evaluation of microalgae. We demonstrate the value of these approaches for (1) analysis of populations, (2) documentation of cellular features, and (3) analysis of gene expression.

  19. RAS - Screens & Assays - Drug Discovery

    Science.gov (United States)

    The RAS Drug Discovery group aims to develop assays that will reveal aspects of RAS biology upon which cancer cells depend. Successful assay formats are made available for high-throughput screening programs to yield potentially effective drug compounds.

  20. Diurnal Variations of Circulating Extracellular Vesicles Measured by Nano Flow Cytometry

    Science.gov (United States)

    Tigges, John; Toxavidis, Vasilis; Camacho, Virginia; Felton, Edward J.; Khoory, Joseph; Kreimer, Simion; Ivanov, Alexander R.; Mantel, Pierre-Yves; Jones, Jennifer; Akuthota, Praveen; Das, Saumya; Ghiran, Ionita

    2016-01-01

    The identification of extracellular vesicles (EVs) as intercellular conveyors of biological information has recently emerged as a novel paradigm in signaling, leading to the exploitation of EVs and their contents as biomarkers of various diseases. However, whether there are diurnal variations in the size, number, and tissue of origin of blood EVs is currently not known, and could have significant implications when using EVs as biomarkers for disease progression. Currently available technologies for the measurement of EV size and number are either time consuming, require specialized equipment, or lack sufficient accuracy across a range of EV sizes. Flow cytometry represents an attractive alternative to these methods; however, traditional flow cytometers are only capable of measuring particles down to 500 nm, which is significantly larger than the average and median sizes of plasma EVs. Utilizing a Beckman Coulter MoFlo XDP flow cytometer with NanoView module, we employed nanoscale flow cytometry (termed nanoFCM) to examine the relative number and scatter distribution of plasma EVs at three different time points during the day in 6 healthy adults. Analysis of liposomes and plasma EVs proved that nanoFCM is capable of detecting biologically-relevant vesicles down to 100 nm in size. With this high resolution configuration, we observed variations in the relative size (FSC/SSC distributions) and concentration (proportions) of EVs in healthy adult plasma across the course of a day, suggesting that there are diurnal variations in the number and size distribution of circulating EV populations. The use of nanoFCM provides a valuable tool for the study of EVs in both health and disease; however, additional refinement of nanoscale flow cytometric methods is needed for use of these instruments for quantitative particle counting and sizing. Furthermore, larger scale studies are necessary to more clearly define the diurnal variations in circulating EVs, and thus further inform

  1. Bacterial assays for recombinagens.

    Science.gov (United States)

    Hoffmann, G R

    1992-12-01

    Two principal strategies have been used for studying recombinagenic effects of chemicals and radiation in bacteria: (1) measurement of homologous recombination involving defined alleles in a partially diploid strain, and (2) measurement of the formation and loss of genetic duplications in the bacterial chromosome. In the former category, most methods involve one allele in the bacterial chromosome and another in a plasmid, but it is also possible to detect recombination between two chromosomal alleles or between two extrachromosomal alleles. This review summarizes methods that use each of these approaches for detecting recombination and tabulates data on agents that have been found to be recombinagenic in bacteria. The assays are discussed with respect to their effectiveness in testing for recombinagens and their potential for elucidating mechanisms underlying recombinagenic effects.

  2. A New Submersible Imaging-in-flow Instrument to Monitor Nano- and Microplankton: Imaging FlowCytobot

    Science.gov (United States)

    Olson, R. J.; Sosik, H. M.; Shalapyonok, A.

    2004-12-01

    Understanding of how coastal plankton communities are regulated has traditionally been limited by undersampling, but cabled observatories now provide opportunities to deploy submersible sensors that have high power and data transmission requirements. We have developed an in situ instrument to carry out high-resolution, long term monitoring of phytoplankton and microzooplankton in the size range 10 to100 micrometers, to be deployed at cabled research facilities such as the Martha's Vineyard Coastal Observatory (MVCO). The new instrument is designed to complement FlowCytobot, a submersible flow cytometer currently deployed at MVCO that uses fluorescence and light scattering signals from a laser beam to characterize the smallest phytoplankton cells (less than 10 micrometers). Imaging FlowCytobot uses a combination of flow cytometric and video technology to capture images of organisms for identification and to measure chlorophyll fluorescence associated with each image. Images will be classified using neural net software, while the measurements of chlorophyll fluorescence will allow us to discriminate heterotrophic from phototrophic cells. The new instrument, like the original FlowCytobot is autonomous but remotely programmable. It utilizes a computer controlled syringe pump and distribution valve that allows periodic anti-fouling treatment and analysis of standard beads. Samples are analyzed continuously (0.25 to 2.5 ml per min) and data is sent over a fiber optic link to a remote computer for analysis. Preliminary results indicate that we can detect cells as small as 5 micrometers and discriminate several taxa of diatoms and dinoflagellates.

  3. Flow cytometry detection of planktonic cells with polycyclic aromatic hydrocarbons sorbed to cell surfaces

    KAUST Repository

    Cerezo, Maria I.

    2017-02-17

    Polycyclic aromatic hydrocarbons are very important components of oil pollution. These pollutants tend to sorb to cell surfaces, exerting toxic effects on organisms. Our study developed a flow cytometric method for the detection of PAHs sorbed to phytoplankton by exploiting their spectral characteristics. We discriminated between cells with PAHs from cells free of PAHs. Clear discrimination was observed with flow cytometer provided with 375 or 405nm lasers in addition to the standard 488nm laser necessary to identify phytoplankton. Using this method, we measured the relationship between the percentages of phytoplankton organisms with PAHs, with the decrease in the growth rate. Moreover, the development of this method could be extended to facilitate the study of PAHs impact on cell cultures from a large variety of organisms.

  4. Herbicide resistance screening assay.

    Science.gov (United States)

    Peterson, Joan M

    2009-01-01

    Herbicide resistance screening is a method that can be used not only to determine presence of the enzyme, phosphinothricin acetyltransferase, encoded by either the Bar or the Pat gene in transgenic maize, but also to assess the inheritance ratio of those genes in a segregating population. Herbicide screening can also be used to study linkage of a transgene of interest that was cotransformed with the herbicide resistance marker gene. By combining the herbicide screen assay with a PCR-based screen of leaf tissue DNA for the presence of both the Bar or the Pat gene marker and a cotransformed transgene of interest from the same seedling tissue and maintaining that seedling identity, the researcher can identify linkage or the possible breakdown in linkage of the marker gene and the transgene of interest. Further, the occurrence of "DNA silencing" can be evaluated if an individual seedling that was susceptible to the applied herbicide nonetheless gave PCR data that indicated presence of the gene responsible for herbicide resistance. Similarly, "DNA silencing" of the gene of interest may be investigated if the seeds can be screened and scored for that phenotypic trait in a nondestructive manner prior to planting.

  5. Mass-based readout for agglutination assays

    Science.gov (United States)

    Chunara, Rumi; Godin, Michel; Knudsen, Scott M.; Manalis, Scott R.

    2007-11-01

    We present a mass-based readout for agglutination assays. The suspended microchannel resonator (SMR) is used to classify monomers and dimers that are formed during early stage aggregation, and to relate the total count to the analyte concentration. Using a model system of streptavidin functionalized microspheres and biotinylated antibody as the analyte, we obtain a dose-response curve over a concentration range of 0.63-630nM and show that the results are comparable to what has been previously achieved by image analysis and conventional flow cytometry.

  6. Detection of Vibrio cholerae O1 and O139 in environmental waters of rural Bangladesh: a flow-cytometry-based field trial.

    Science.gov (United States)

    Righetto, L; Zaman, R U; Mahmud, Z H; Bertuzzo, E; Mari, L; Casagrandi, R; Gatto, M; Islam, S; Rinaldo, A

    2015-08-01

    Presence of Vibrio cholerae serogroups O1 and O139 in the waters of the rural area of Matlab, Bangladesh, was investigated with quantitative measurements performed with a portable flow cytometer. The relevance of this work relates to the testing of a field-adapted measurement protocol that might prove useful for cholera epidemic surveillance and for validation of mathematical models. Water samples were collected from different water bodies that constitute the hydrological system of the region, a well-known endemic area for cholera. Water was retrieved from ponds, river waters, and irrigation canals during an inter-epidemic time period. Each sample was filtered and analysed with a flow cytometer for a fast determination of V. cholerae cells contained in those environments. More specifically, samples were treated with O1- and O139-specific antibodies, which allowed precise flow-cytometry-based concentration measurements. Both serogroups were present in the environmental waters with a consistent dominance of V. cholerae O1. These results extend earlier studies where V. cholerae O1 and O139 were mostly detected during times of cholera epidemics using standard culturing techniques. Furthermore, our results confirm that an important fraction of the ponds' host populations of V. cholerae are able to self-sustain even when cholera cases are scarce. Those contaminated ponds may constitute a natural reservoir for cholera endemicity in the Matlab region. Correlations of V. cholerae concentrations with environmental factors and the spatial distribution of V. cholerae populations are also discussed.

  7. A novel assay detecting recall response to Mycobacterium tuberculosis: Comparison with existing assays.

    Science.gov (United States)

    Hsu, Denise C; Zaunders, John J; Plit, Marshall; Leeman, Craig; Ip, Susanna; Iampornsin, Thatri; Pett, Sarah L; Bailey, Michelle; Amin, Janaki; Ubolyam, Sasiwimol; Avihingsanon, Anchalee; Ananworanich, Jintanat; Ruxrungtham, Kiat; Cooper, David A; Kelleher, Anthony D

    2012-07-01

    A strategy to reduce the burden of active TB is isoniazid preventive therapy for latent TB infection (LTBI). However, current assays used to diagnose LTBI all have limitations. In these proof of concept studies, we compared the agreement of a novel flow cytometry assay detecting CD25/CD134 co-expression with QuantiFERON-TB Gold In-Tube (QFN-GIT) and Tuberculin skin test (TST) in the detection of recall immune response to TB. The CD25/CD134 assay, QFN-GIT and TST were performed on 74 participants referred for TB screening in Sydney and on 50 participants with advanced HIV infection (CD4 ≤ 350 × 10(6) cells/L) in Bangkok. The agreement between CD25/CD134 assay and QFN-GIT was 93.2% (Kappa 0.631 95% CI 0.336-0.926) in Sydney and 90% (Kappa 0.747 95% CI 0.541-0.954) in Bangkok. Discordant results occurred around the cut off of both tests. The agreement between CD25/CD134 assay and TST was 73.6% (Kappa 0.206 95% CI 0.004-0.409) in Sydney and 84% (Kappa 0.551 95% CI 0.296-0.806) in Bangkok. The CD25/CD134 assay showed good agreement with QFN-GIT in detecting recall response to TB both in well and less resourced setting as well as in persons with advanced HIV infection. Further study into the performance of this assay is thus warranted.

  8. Disagreement between Human Papillomavirus Assays

    DEFF Research Database (Denmark)

    Rebolj, Matejka; Preisler, Sarah; Ejegod, Ditte Møller

    2014-01-01

    assays. Positive agreement between the assays was measured as the conditional probability that the results of all compared assays were positive given that at least one assay returned a positive result. Of all 5,064 samples, 1,679 (33.2%) tested positive on at least one of the assays. Among these, 41......We aimed to determine the disagreement in primary cervical screening between four human papillomavirus assays: Hybrid Capture 2, cobas, CLART, and APTIMA. Material from 5,064 SurePath samples of women participating in routine cervical screening in Copenhagen, Denmark, was tested with the four......% tested positive on all four. Agreement was lower in women aged ≥ 30 years (30%, vs. 49% at samples (29%, vs. 38% in follow-up samples), and in women with concurrent normal cytology (22%, vs. 68% with abnormal cytology). Among primary screening samples from women aged 30...

  9. Overview of very small embryonic-like stem cells (VSELs) and methodology of their identification and isolation by flow cytometric methods.

    Science.gov (United States)

    Zuba-Surma, Ewa K; Ratajczak, Mariusz Z

    2010-01-01

    The protocols presented here describe the procedures employed to identify and isolate very small embryonic-like stem cells (VSELs) using flow cytometric technologies including fluorescence-activated cell sorting (FACS). We describe the recommended steps in detail for their successful identification and isolation from adult tissues. These protocols were initially established to isolate such cells from murine bone marrow (BM) and human cord blood (CB) and may also be employed to isolate these primitive cells from other adult organs and embryonic tissues. Here, we focus on some critical parameters/key points required for the successful identification and purification of these rare cells by employing classical flow cytometry. In the last part of this unit, we also discuss a novel flow cytometric tool, ImageStream, an imaging flow cytometer, which allows better identification and morphological analysis of sorted cells.

  10. Practical assay issues with the PERT/PBRT assay: a highly sensitive reverse transcriptase assay.

    Science.gov (United States)

    Chang, A; Dusing, S

    2006-01-01

    Product safety testing for retroviruses can be achieved by a panel of screening assays, including electron microscopy, viral gene specific PCRs, virus propagation, and detection of reverse transciptase activity. The application of PCR-based reverse transcriptase assays (PERT) that are approximately a million-fold more sensitive than conventional nucleotide incorporation assays in the testing of biologicals is described. Use of PERT assays can be applied to three areas: (i) screening for adventitious retrovirus contamination; (ii) detecting and quantifying endogenous viral particle load and (iii) monitoring levels of infectious retrovirus generation in cell lines that contain endogenous retroviruses.

  11. From Antenna to Assay

    Science.gov (United States)

    Moore, Evan G.; Samuel, Amanda P. S.; Raymond, Kenneth N.

    2009-01-01

    Conspectus Ligand-sensitized, luminescent lanthanide(III) complexes are of considerable importance because their unique photophysical properties (microsecond to millisecond lifetimes, characteristic and narrow emission bands, and large Stokes shifts) make them well suited as labels in fluorescence-based bioassays. The long-lived emission of lanthanide(III) cations can be temporally resolved from scattered light and background fluorescence to vastly enhance measurement sensitivity. One challenge in this field is the design of sensitizing ligands that provide highly emissive complexes with sufficient stability and aqueous solubility for practical applications. In this Account, we give an overview of some of the general properties of the trivalent lanthanides and follow with a summary of advances made in our laboratory in the development of highly luminescent Tb(III) and Eu(III) complexes for applications in biotechnology. A focus of our research has been the optimization of these compounds as potential commercial agents for use in Homogeneous Time-Resolved Fluorescence (HTRF) technology. Our approach involves developing high-stability octadentate Tb(III) and Eu(III) complexes that rely on all-oxygen donor atoms and using multi-chromophore chelates to increase molar absorptivity; earlier examples utilized a single pendant chromophore (that is, a single “antenna”). Ligands based on 2-hydroxyisophthalamide (IAM) provide exceptionally emissive Tb(III) complexes with quantum yield values up to ∼60% that are stable at the nanomolar concentrations required for commercial assays. Through synthetic modification of the IAM chromophore and time-dependent density functional theory (TD-DFT) calculations, we have developed a method to predict absorption and emission properties of these chromophores as a tool to guide ligand design. Additionally, we have investigated chiral IAM ligands that yield Tb(III) complexes possessing both high quantum yield values and strong

  12. Rapid Detection of Vibrio vulnificus by Loop-mediated Isothermal Amplification Combined with Lateral Flow Dipstick Assay%环介导等温扩增联合横向流动试纸条快速检测创伤弧菌检测方法的建立

    Institute of Scientific and Technical Information of China (English)

    王耀焕; 王瑞娜; 周前进; 陈炯

    2014-01-01

    环介导等温扩增技术(LAMP)与横向流动试纸条(LFD)检测联合应用,建立了一种新的快速、便捷的创伤弧菌检测方法。针对创伤弧菌的外膜蛋白TolC基因设计6条特异性引物和1条异硫氰酸荧光素(FITC)标记的探针。生物素标记的LAMP扩增产物能够特异性地与FITC标记的探针杂交,杂交产物经LFD检测。优化后的扩增温度和时间为63℃反应35 min,加上细菌基因组DNA提取步骤,完成检测仅需要80 min。LAMP-LFD方法可特异性地检出创伤弧菌,对哈维氏弧菌等9种水产品常见病原菌的检测均呈阴性;对纯细菌培养物的检测灵敏度为3.7×102 CFU/mL或7.4 CFU/反应,是利用外引物建立的常规PCR检测的100倍。结果表明,该方法能够准确、快速、灵敏地检出创伤弧菌,可应用于创伤弧菌污染的水产品的检测。%A novel and rapid loop-mediated isothermal amplification(LAMP)combined with chromatographic lateral flow dipstick(LFD) assay was developed to detect Vibrio vulnificus. A set of six primers and a fluorescein isothiocyanate(FITC)-labeled probe that recognized V. vulnificus outer membrane protein TolC gene were designed. Biotinylated LAMP amplicons were hybridized exclusively with the FITC-labeled probe and detected by LFD assay. The assay was optimized and could detect V. vulnificus by incubation at 63℃for only 35 min, and the whole detection procedure from extraction of bacterial genomic DNA to the visualization of the amplicons by LFD last 80 min. V. vulnificus could be accurately detected by LAMP-LFD, and no amplification could be observed when another 9 bacterial genomic DNA were used. The sensitivity for V. vulnificus detection in pure culture was 3.7×102 CFU/mL or equivalent to 7.4 CFU per reaction, which is 100 times higher than that of PCR assay. The results indicate that LAMP-LFD is an accurate, rapid and sensitive tool for V. vulnificus detection and can be used for

  13. Transporter assays and assay ontologies: useful tools for drug discovery.

    Science.gov (United States)

    Zdrazil, Barbara; Chichester, Christine; Zander Balderud, Linda; Engkvist, Ola; Gaulton, Anna; Overington, John P

    2014-06-01

    Transport proteins represent an eminent class of drug targets and ADMET (absorption, distribution, metabolism, excretion, toxicity) associated genes. There exists a large number of distinct activity assays for transport proteins, depending on not only the measurement needed (e.g. transport activity, strength of ligand–protein interaction), but also due to heterogeneous assay setups used by different research groups. Efforts to systematically organize this (divergent) bioassay data have large potential impact in Public-Private partnership and conventional commercial drug discovery. In this short review, we highlight some of the frequently used high-throughput assays for transport proteins, and we discuss emerging assay ontologies and their application to this field. Focusing on human P-glycoprotein (Multidrug resistance protein 1; gene name: ABCB1, MDR1), we exemplify how annotation of bioassay data per target class could improve and add to existing ontologies, and we propose to include an additional layer of metadata supporting data fusion across different bioassays.

  14. The resolution of aneuploid DNA stem lines by flow cytometry: limitations imposed by the coefficient of variation and the percentage of aneuploid nuclei.

    Science.gov (United States)

    Cusick, E L; Milton, J I; Ewen, S W

    1990-04-01

    Factors important in the resolution of cell sub-populations with differing DNA contents were investigated using an EPICS C flow cytometer. Software is available for the EPICS C which permits data from any two histograms to be superimposed or added together before display. Samples of fresh and archival thyroid tissue, stained with propidium iodide, were analysed on the flow cytometer and the peak channel number noted. The photomultiplier (PMT) voltage was increased and the sample analysed again producing a second histogram with a higher peak channel number. The two histograms were added together to simulate a cell suspension with two sub-populations with a different DNA content. By systematically altering the PMT voltage and the number of nuclei included in each analysis, it was possible to examine the importance of DNA index and the percentage of tumor cells with an aneuploid DNA content for both fresh and paraffin-embedded thyroid nuclei. The crucial importance of achieving a low coefficient of variation (CV) was demonstrated and consequently the reservations that pertain when archival material is studied, particularly in tumours where DNA aneuploidy is frequently expressed with a low DNA index.

  15. Determination of micro-litre volumes with high accuracy for flow cytometric blood cell counting

    Science.gov (United States)

    Reitz, S.; Kummrow, A.; Kammel, M.; Neukammer, J.

    2010-07-01

    We have gravimetrically calibrated the volumes dispensed by 1 mL syringes in the range between 1 µL and 100 µL using ultra-pure water. Protocols are based on series of consecutive difference measurements of masses in order to precisely compensate for evaporation, being the most important disturbing quantity. We determined expanded uncertainties of volume measurements for glass syringes of typically 0.2% (expansion factor 2) when dispensing volumes of 10 µL. For polypropylene syringes, selected with respect to the manufacturer, expanded uncertainties of 0.25% (expansion factor 2) were observed. Calibrated syringes were applied for measuring concentrations of blood cells in a flow cytometer demonstrating the capability to determine reference measurement values. Since the direct interaction of blood cells and syringe walls may lead to cell adhesion, glass syringes as well as (disposable) polypropylene syringes were calibrated.

  16. A measure of endosomal pH by flow cytometry in Dictyostelium

    Directory of Open Access Journals (Sweden)

    Cosson Pierre

    2009-01-01

    Full Text Available Abstract Background Dictyostelium amoebae are frequently used to study the organization and function of the endocytic pathway, and specific protocols are essential to measure the dynamics of endocytic compartments and their internal pH. Findings We have revisited these classical protocols to measure more accurately endosomal pH, making use of a fluorescent probe (Oregon green more adequate for very acidic pH values. This pH-sensitive probe was combined with a pH-insensitive marker, in order to visualize simultaneously endosome dynamics and pH changes. Finally, a flow cytometer was used to measure endosomal pH in individual cells. Conclusion Using these simple protocols the endosomal pH of endocytic compartments can be assessed accurately, revealing the extreme acidity of Dictyostelium lysosomes (pH

  17. MICROBIOLOGICAL ASSAY FOR VITAMIN B

    OpenAIRE

    Bishnoi Kapil*, , ,; Kataria Mahesh; Singhal Vipin; Gupta Deepika

    2012-01-01

    Micronutrients added to foods are analyzed using various procedures depending on their nature and properties. The microbiological assays are better than chemical method because any suitable change in vitamin molecule which may not be detected by chemical method will be revealed by change in microbial activity. The microbiological assay of vitamins is based upon the comparison of the stimulation of growth of bacteria by measured concentration of vitamin with that produced by known concentratio...

  18. Study of inertial hydrodynamic focusing in sheath-driven flows for lab-on-a-chip flow cytometry

    Science.gov (United States)

    Panwar, Nishtha; Song, Peiyi; Yong, Ken-Tye; Tjin, Swee Chuan

    2017-05-01

    Miniature flow cytometer models enable fast and cost-effective management of diseases in vulnerable and low-end settings. The single-line focusing of cell or particle samples is achieved using hydrodynamic forces in the microfluidic channels. The two common configurations among them are the single-sheath and dual-sheath flows wherein the sample is directed through the main channel, and the surrounding sheath fluids are directed into the main channel through inlets on either side of the main channel. Most models predict the width of the focused sample stream based on hydrodynamic focusing in the low Reynolds number regime (Re << 1), where the viscous forces dominate the inertial forces. In this work, we present comparative analysis of particle focusing by single-sheath and dual-sheath configurations for focusing of micron-sized cells/particles in the range 2 to 20 μm in the higher Re (10 < Re < 80) laminar regime. A quantitative analysis of the relative focused stream width (wf/wch) as a function of flow rate ratio (FRR = Sample flow rate/Sheath flow rate) for the two configurations is presented. The particle tracing results are also compared with the experimental fluorescent microscopy results at various FRR. The deviations of the results from the theoretical predictions of hydrodynamic focusing at Re << 1, are explained analytically. These findings clearly outline the range of flow parameters and relative particle sizes that can be used for cytometry studies for a given channel geometry. This is a highly predictive modeling method as it provides substantial results of particle positions across the microchannel width according to their size and FRR for single-line focusing of particles. Such information is crucial for one to engineer miniaturized flow cytometry for screening of desired cells or particles.

  19. Smart fast blood counting of trace volumes of body fluids from various mammalian species using a compact custom-built microscope cytometer (Conference Presentation)

    Science.gov (United States)

    Smith, Zachary J.; Gao, Tingjuan; Lin, Tzu-Yin; Carrade-Holt, Danielle; Lane, Stephen M.; Matthews, Dennis L.; Dwyre, Denis M.; Wachsmann-Hogiu, Sebastian

    2016-03-01

    Cell counting in human body fluids such as blood, urine, and CSF is a critical step in the diagnostic process for many diseases. Current automated methods for cell counting are based on flow cytometry systems. However, these automated methods are bulky, costly, require significant user expertise, and are not well suited to counting cells in fluids other than blood. Therefore, their use is limited to large central laboratories that process enough volume of blood to recoup the significant capital investment these instruments require. We present in this talk a combination of a (1) low-cost microscope system, (2) simple sample preparation method, and (3) fully automated analysis designed for providing cell counts in blood and body fluids. We show results on both humans and companion and farm animals, showing that accurate red cell, white cell, and platelet counts, as well as hemoglobin concentration, can be accurately obtained in blood, as well as a 3-part white cell differential in human samples. We can also accurately count red and white cells in body fluids with a limit of detection ~3 orders of magnitude smaller than current automated instruments. This method uses less than 1 microliter of blood, and less than 5 microliters of body fluids to make its measurements, making it highly compatible with finger-stick style collections, as well as appropriate for small animals such as laboratory mice where larger volume blood collections are dangerous to the animal's health.

  20. Correlation between the genotoxicity endpoints measured by two different genotoxicity assays: comet assay and CBMN assay

    Directory of Open Access Journals (Sweden)

    Carina Ladeira

    2015-06-01

    The results concerning of positive findings by micronuclei and non significant ones by comet assay, are corroborated by Deng et al. (2005 study performed in workers occupationally exposed to methotrexate, also a cytostatic drug. According to Cavallo et al. (2009, the comet assay seems to be more suitable for the prompt evaluation of the genotoxic effects, for instance, of polycyclic aromatic hydrocarbons mixtures containing volatile substances, whereas the micronucleus test seems more appropriate to evaluate the effects of exposure to antineoplastic agents. However, there are studies that observed an increase in both the comet assay and the micronucleus test in nurses handling antineoplastic drugs, although statistical significance was only seen in the comet assay, quite the opposite of our results (Maluf & Erdtmann, 2000; Laffon et al. 2005.

  1. Establishing a cost-per-result of laboratory-based, reflex Cryptococcal antigenaemia screening (CrAg) in HIV+ patients with CD4 counts less than 100 cells/μl using a Lateral Flow Assay (LFA) at a typical busy CD4 laboratory in South Africa.

    Science.gov (United States)

    Cassim, Naseem; Schnippel, Kathryn; Coetzee, Lindi Marie; Glencross, Deborah Kim

    2017-01-01

    Cryptococcal meningitis is a major cause of mortality and morbidity in countries with high HIV prevalence, primarily affecting patients whose CD4 are results are positive. A laboratory-based reflexed CrAg screening approach, using a Lateral Flow Assay (LFA) on remnant EDTA CD4 blood samples, was piloted at three CD4 laboratories. This study aimed to assess the cost-per-result of laboratory-based reflexed CrAg screening at one pilot CD4 referral laboratory. CD4 test volumes from 2014 were extracted to estimate percentage of CD4 result was estimated using a bottom-up method, inclusive of test kits and consumables (reagents), laboratory equipment and technical effort costs. The ZAR/$ exchange of 14.696/$1 was used, where applicable. One-way sensitivity analyses on the cost-per-result were conducted for possible error rates (3%- 8%, reductions or increases in reagent costs as well as test volumes (ranging from -60% to +60%). The pilot CD4 laboratory performed 267000 CD4 tests in 2014; ~ 9.3% (27500) reported CD4result of $4.28 was reported, with reagents contributing $3.11 (72.8%), while technical effort and laboratory equipment overheads contributed $1.17 (27.2%) and $0.03 (result range of $3.84 to $6.03. A cost-per-result of $4.28 was established in a typical CD4 service laboratory to enable local budgetary cost projections and programmatic cost-effectiveness modelling. Varying reagent costs linked to currency exchange and varying test volumes in different levels of service can lead to varying cost-per-test and technical effort to manage workload, with an inverse relationship of higher costs expected at lower volumes of tests.

  2. Towards a high throughput droplet-based agglutination assay

    KAUST Repository

    Kodzius, Rimantas

    2013-10-22

    This work demonstrates the detection method for a high throughput droplet based agglutination assay system. Using simple hydrodynamic forces to mix and aggregate functionalized microbeads we avoid the need to use magnetic assistance or mixing structures. The concentration of our target molecules was estimated by agglutination strength, obtained through optical image analysis. Agglutination in droplets was performed with flow rates of 150 µl/min and occurred in under a minute, with potential to perform high-throughput measurements. The lowest target concentration detected in droplet microfluidics was 0.17 nM, which is three orders of magnitude more sensitive than a conventional card based agglutination assay.

  3. Use of Bifunctional Immunotherapeutic Agents to Target Breast Cancer

    Science.gov (United States)

    2007-07-01

    Selective Tumor Cell Targeting Using Low-Affinity, Multivalent Interactions Coby B. Carlson†,‡, Patricia Mowery‡, Robert M. Owen†, Emily C. Dykhuizen†, and...washed cells and immediately analyzed for fluorescence using a FACSCalibur flow cytometer (Becton Dickinson ). Data were ana- lyzed using CellQuest...software (Becton Dickinson ). An identical assay omitting the bifunctional conjugate assessed background fluorescence. The relative fluorescence is

  4. Barcoded microchips for biomolecular assays.

    Science.gov (United States)

    Zhang, Yi; Sun, Jiashu; Zou, Yu; Chen, Wenwen; Zhang, Wei; Xi, Jianzhong Jeff; Jiang, Xingyu

    2015-01-20

    Multiplexed assay of analytes is of great importance for clinical diagnostics and other analytical applications. Barcode-based bioassays with the ability to encode and decode may realize this goal in a straightforward and consistent manner. We present here a microfluidic barcoded chip containing several sets of microchannels with different widths, imitating the commonly used barcode. A single barcoded microchip can carry out tens of individual protein/nucleic acid assays (encode) and immediately yield all assay results by a portable barcode reader or a smartphone (decode). The applicability of a barcoded microchip is demonstrated by human immunodeficiency virus (HIV) immunoassays for simultaneous detection of three targets (anti-gp41 antibody, anti-gp120 antibody, and anti-gp36 antibody) from six human serum samples. We can also determine seven pathogen-specific oligonucleotides by a single chip containing both positive and negative controls.

  5. Radioreceptor assay method for insulin

    Energy Technology Data Exchange (ETDEWEB)

    Mori, K.F.; Wood, R.J. (Bureau of Drug Research, Health and Welfare Canada, Ottawa, Ontario. Health Protection Branch)

    1984-01-01

    A sensitive practical radioreceptor assay method for pharmaceutical insulin products has been developed with partially purified rat liver plasma membranes and the optimal conditions under which the best overall assay performance is obtainable have been defined. Intra- and inter-assay variations of the method averaged 7.3 and 12.2% of the man, respectively, when expressed as the coefficient of variation. Potency estimates of an insulin product obtained with the proposed method correlated well with those determined by the mouse convulsion bioassay method. Liver membranes prepared according to the method could be stored for up to ten weeks at 4/sup 0/C and for 6 months or more at -18/sup 0/C without losing insulin-binding ability.

  6. Flow virometric sorting and analysis of HIV quasispecies from plasma

    Science.gov (United States)

    Jones, Jennifer C.; Keele, Brandon F.; Jenkins, Lisa M. Miller; Demberg, Thorsten

    2017-01-01

    Flow cytometry is utilized extensively for cellular analysis, but technical limitations have prevented its routine application for characterizing virus. The recent introduction of nanoscale fluorescence-activated cytometric cell sorting now allows analysis of individual virions. Here, we demonstrate staining and sorting of infectious HIV. Fluorescent antibodies specific for cellular molecules found on budding virions were used to label CCR5-tropic Bal HIV and CXCR4-tropic NL4.3 HIV Env-expressing pseudovirions made in THP-1 cells (monocyte/macrophage) and H9 cells (T cells), respectively. Using a flow cytometer, we resolved the stained virus beyond isotype staining and demonstrated purity and infectivity of sorted virus populations on cells with the appropriate coreceptors. We subsequently sorted infectious simian/human immunodeficiency virus from archived plasma. Recovery was approximately 0.5%, but virus present in plasma was already bound to viral-specific IgG generated in vivo, likely contributing to the low yield. Importantly, using two broadly neutralizing HIV antibodies, PG9 and VRC01, we also sorted virus from archived human plasma and analyzed the sorted populations genetically and by proteomics, identifying the quasispecies present. The ability to sort infectious HIV from clinically relevant samples provides material for detailed molecular, genetic, and proteomic analyses applicable to future design of vaccine antigens and potential development of personalized treatment regimens. PMID:28239654

  7. Chromosome aberration assays in Allium

    Energy Technology Data Exchange (ETDEWEB)

    Grant, W.F.

    1982-01-01

    The common onion (Allium cepa) is an excellent plant for the assay of chromosome aberrations after chemical treatment. Other species of Allium (A. cepa var. proliferum, A. carinatum, A. fistulosum and A. sativum) have also been used but to a much lesser extent. Protocols have been given for using root tips from either bulbs or seeds of Allium cepa to study the cytological end-points, such as chromosome breaks and exchanges, which follow the testing of chemicals in somatic cells. It is considered that both mitotic and meiotic end-points should be used to a greater extent in assaying the cytogenetic effects of a chemical. From a literature survey, 148 chemicals are tabulated that have been assayed in 164 Allium tests for their clastogenic effect. Of the 164 assays which have been carried out, 75 are reported as giving a positive reaction, 49 positive and with a dose response, 1 positive and temperature-related, 9 borderline positive, and 30 negative; 76% of the chemicals gave a definite positive response. It is proposed that the Allium test be included among those tests routinely used for assessing chromosomal damage induced by chemicals.

  8. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities

    Directory of Open Access Journals (Sweden)

    Josep M. Gasol

    2000-06-01

    Full Text Available Flow cytometry is rapidly becoming a routine methodology in aquatic microbial ecology. The combination of simple to use bench-top flow cytometers and highly fluorescent nucleic acid stains allows fast and easy determination of microbe abundance in the plankton of lakes and oceans. The different dyes and protocols used to stain and count planktonic bacteria as well as the equipment in use are reviewed, with special attention to some of the problems encountered in daily routine practice such as fixation, staining and absolute counting. One of the main advantages of flow cytometry over epifluorescence microscopy is the ability to obtain cell-specific measurements in large numbers of cells with limited effort. We discuss how this characteristic has been used for differentiating photosynthetic from non-photosynthetic prokaryotes, for measuring bacterial cell size and nucleic acid content, and for estimating the relative activity and physiological state of each cell. We also describe how some of the flow cytometrically obtained data can be used to characterize the role of microbes on carbon cycling in the aquatic environment and we prospect the likely avenues of progress in the study of planktonic prokaryotes through the use of flow cytometry.

  9. Flow cytometry for the assessment of animal sperm integrity and functionality: state of the art

    Institute of Scientific and Technical Information of China (English)

    Md.Sharoare Hossain; Anders Johannisson; Margareta Wallgren; Szabolcs Nagy; Amanda Pimenta Siqueira; Heriberto Rodriguez-Martinez

    2011-01-01

    Flow cytometry is now a recognized methodology within animal spermatology, and has moved from being a research tool to become routine in the assessment of animal semen destined to breeding. The availability of 'bench-top' flow cytometers and of newer and versatile markers for cell structure and function had allowed the instrumentation to measure more sperm parameters, from viability to reactiveness when exposed to exogenous stimuli, and to increase our capabilities to sort spermatozoa for potential fertilizing capacity, or chromosomal sex. The present review summarizes the state of the art regarding flow cytometry applied to animal andrology, albeit keeping an open comparative intent. It critically evaluates the present and future capabilities of flow cytometry for the diagnostics of potential fertility and for the development of current reproductive technologies such as sperm freezing, sperm selection and sperm sorting. The flow cytometry methods will probably further revolutionize our understanding of the sperm physiology and their functionality, and will undoubtedly extend its application in isolating many uncharacterized features of spermatozoa. However, continuous follow-up of the methods is a necessity owing to technical developments and the complexity of mapping spermatozoa.

  10. Simplified flow cytometric assay to detect minimal residual disease in childhood with acute lymphoblastic leukemia Detecção de doença residual mínima em crianças com leucemia linfoblástica aguda por citometria de fluxo

    Directory of Open Access Journals (Sweden)

    Elizabete Delbuono

    2008-08-01

    Full Text Available The detection of minimal residual disease (MRD is an important prognostic factor in childhood acute lymphoblastic leukemia (ALL providing crucial information on the response to treatment and risk of relapse. However, the high cost of these techniques restricts their use in countries with limited resources. Thus, we prospectively studied the use of flow cytometry (FC with a simplified 3-color assay and a limited antibody panel to detect MRD in the bone marrow (BM and peripheral blood (PB of children with ALL. BM and PB samples from 40 children with ALL were analyzed on days (d 14 and 28 during induction and in weeks 24-30 of maintenance therapy. Detectable MRD was defined as > 0.01% cells expressing the aberrant immunophenotype as characterized at diagnosis among total events in the sample. A total of 87% of the patients had an aberrant immunophenotype at diagnosis. On d14, 56% of the BM and 43% of the PB samples had detectable MRD. On d28, this decreased to 45% and 31%, respectively. The percentage of cells with the aberrant phenotype was similar in both BM and PB in T-ALL but about 10 times higher in the BM of patients with B-cell-precursor ALL. Moreover, MRD was detected in the BM of patients in complete morphological remission (44% on d14 and 39% on d28. MRD was not significantly associated to gender, age, initial white blood cell count or cell lineage. This FC assay is feasible, affordable and readily applicable to detect MRD in centers with limited resources.A detecção de doença residual mínima (DRM é um importante fator prognóstico na leucemia linfóide aguda (LLA infantil e fornece informações sobre a resposta ao tratamento e o risco de recaída. Entretanto, os altos custos das técnicas utilizadas limitam seu uso nos países em desenvolvimento. Desta forma, realizamos um estudo prospectivo para avaliar a citometria de fluxo (CF, utilizando três fluorescências e um painel limitado de anticorpos monoclonais, como método de detec

  11. Flow visualization

    CERN Document Server

    Merzkirch, Wolfgang

    1974-01-01

    Flow Visualization describes the most widely used methods for visualizing flows. Flow visualization evaluates certain properties of a flow field directly accessible to visual perception. Organized into five chapters, this book first presents the methods that create a visible flow pattern that could be investigated by visual inspection, such as simple dye and density-sensitive visualization methods. It then deals with the application of electron beams and streaming birefringence. Optical methods for compressible flows, hydraulic analogy, and high-speed photography are discussed in other cha

  12. Establishing a cost-per-result of laboratory-based, reflex Cryptococcal antigenaemia screening (CrAg) in HIV+ patients with CD4 counts less than 100 cells/μl using a Lateral Flow Assay (LFA) at a typical busy CD4 laboratory in South Africa

    Science.gov (United States)

    Cassim, Naseem; Schnippel, Kathryn; Coetzee, Lindi Marie

    2017-01-01

    Introduction Cryptococcal meningitis is a major cause of mortality and morbidity in countries with high HIV prevalence, primarily affecting patients whose CD4 are Cryptococcal Antigen (CrAg) screening is thus recommended in the South African HIV treatment guidelines for all patients with CD4 counts < = 100 cells/μl, followed by pre-emptive anti-fungal therapy where CrAg results are positive. A laboratory-based reflexed CrAg screening approach, using a Lateral Flow Assay (LFA) on remnant EDTA CD4 blood samples, was piloted at three CD4 laboratories. Objectives This study aimed to assess the cost-per-result of laboratory-based reflexed CrAg screening at one pilot CD4 referral laboratory. Methods CD4 test volumes from 2014 were extracted to estimate percentage of CD4 < = 100 cells/μl. Daily average volumes were derived, assuming 12 months per/year and 21.73 working days per/month. Costing analyses were undertaken using Microsoft Excel and Stata with a provider prospective. The cost-per-result was estimated using a bottom-up method, inclusive of test kits and consumables (reagents), laboratory equipment and technical effort costs. The ZAR/$ exchange of 14.696/$1 was used, where applicable. One-way sensitivity analyses on the cost-per-result were conducted for possible error rates (3%– 8%, reductions or increases in reagent costs as well as test volumes (ranging from -60% to +60%). Results The pilot CD4 laboratory performed 267000 CD4 tests in 2014; ~ 9.3% (27500) reported CD4< = 100 cells/μl, equivalent to 106 CrAg tests performed daily. A batch of 30-tests could be performed in 1.6 hours, including preparation and analysis time. A cost-per-result of $4.28 was reported, with reagents contributing $3.11 (72.8%), while technical effort and laboratory equipment overheads contributed $1.17 (27.2%) and $0.03 (<1%) respectively. One-way sensitivity analyses including increasing or decreasing test volumes by 60% revealed a cost-per-result range of $3.84 to $6

  13. 21 CFR 225.158 - Laboratory assays.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Laboratory assays. 225.158 Section 225.158 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... Laboratory assays. Where the results of laboratory assays of drug components, including assays by State...

  14. Rapid detection of viable bacteria by integrated CTC (5-Cyano-2, 3-ditoyl tetrazolium chloride) dying and flow cytometry assay (CTC-FCM)%基于CTC-流式细胞仪活性细菌总数的快速检测技术研究

    Institute of Scientific and Technical Information of China (English)

    林怡雯; 杨天; 李丹; 何苗

    2013-01-01

    以大肠杆菌作为研究对象,建立一种5-cyano-2,3-ditolyl tetrazolium chloride(CTC)染色结合流式细胞仪(CTC-FCM)的方法,以选择性检测水环境中具有代谢活性的细菌总数.该方法的原理是细菌与具有氧化还原性的染料CTC发生反应,形成红色荧光物质,被流式细胞仪特异性识别进而可选择性检测活性菌.研究结果表明,CTC染色的最佳反应条件为:CTC浓度为2 mmol·L-1、37℃避光孵育3h.该方法最低检测限为103个·mL-1.通过比较培养法和CTC-FCM方法检测热灭活后的大肠杆菌,结果表明CTC-FCM方法可准确区分活性菌和灭活菌,且与培养法之间具有较好的线性关系(R2=0.9465).应用CTC-FCM方法检测实际样品,结果显示该方法与培养法之间有较好的线性关系(R2=0.8121).本研究建立的CTC-FCM方法可满足饮用水水质标准需求,且检测时间比平板培养法缩短20~40 h,可以用于环境水样中活性细菌总数检测.%An integrated tetrazolium redox CTC (5-Cyano-2,3-ditoyl tetrazolium chloride) dying and flow cytometry assay (CTC-FCM) was developed by using Escherichia coli as a representative organism.This method can selectively detect and quantify bacteria with metabolic activity,based on the principle that only active bacteria can react with CTC and form a fluorescent red intracellular CTC-formazan (CTF) easily detected and counted by flow cytometry.The results showed that the optimized detection parameters were 2 mmol· L-1 CTC at 37 ℃ for 3-hour incubation.The detection limit of CTC-FCM method was 103 CFU·mL-1.Compared with culture-based method for detection of heat-treated bacteria,CTC-FCM method can effectively distinguish viable bacteria from non-viable bacteria,and a good correlation was observed between these two methods (R2 =0.9465).This method was also applied to detect viable bacteria in environmental water samples,including tap water and reclaimed water.Results showed that the correlation

  15. Comet Assay in Cancer Chemoprevention.

    Science.gov (United States)

    Santoro, Raffaela; Ferraiuolo, Maria; Morgano, Gian Paolo; Muti, Paola; Strano, Sabrina

    2016-01-01

    The comet assay can be useful in monitoring DNA damage in single cells caused by exposure to genotoxic agents, such as those causing air, water, and soil pollution (e.g., pesticides, dioxins, electromagnetic fields) and chemo- and radiotherapy in cancer patients, or in the assessment of genoprotective effects of chemopreventive molecules. Therefore, it has particular importance in the fields of pharmacology and toxicology, and in both environmental and human biomonitoring. It allows the detection of single strand breaks as well as double-strand breaks and can be used in both normal and cancer cells. Here we describe the alkali method for comet assay, which allows to detect both single- and double-strand DNA breaks.

  16. T-cell Receptor Assay and Reticulocyte-Micronuclei Assay as Biological Dosimeters for Ionizing Radiation in Humans

    OpenAIRE

    Vershenya, Stanislav; Biko, Johannes; Lorenz, Reinhard; Reiners, Christoph; Stopper, Helga; Grawe, Jan; Hempel, Klaus

    2005-01-01

    In radiation accidents, biological methods are used for dosimetry if the radiation dose could not be measured by physical means. The knowledge of individual dose is a prerequisite for planning medical treatment and for health risk evaluations. In this paper we represent the summary of biodosimetrical methods used in our laboratory in the patients treated with radioiodine for thyroid cancer. The dose-response relationship was measured by the flow cytometry-based micronucleus assay in transferr...

  17. Bioluminescence assay for cell viability.

    Science.gov (United States)

    Lomakina, G Yu; Modestova, Yu A; Ugarova, N N

    2015-06-01

    Theoretical aspects of the adenosine triphosphate bioluminescence assay based on the use of the firefly luciferin-luciferase system are considered, as well as its application for assessing cell viability in microbiology, sanitation, medicine, and ecology. Various approaches for the analysis of individual or mixed cultures of microorganisms are presented, and capabilities of the method for investigation of biological processes in live cells including necrosis, apoptosis, as well as for investigation of the dynamics of metabolism are described.

  18. Protein binding assay for hyaluronate

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, B.E.; Underhill, C.B.

    1986-11-01

    A relatively quick and simple assay for hyaluronate was developed using the specific binding protein, hyaluronectin. The hyaluronectin was obtained by homogenizing the brains of Sprague-Dawley rats, and then centrifuging the homogenate. The resulting supernatant was used as a source of crude hyaluronectin. In the binding assay, the hyaluronectin was mixed with (/sup 3/H)hyaluronate, followed by an equal volume of saturated (NH/sub 4/)/sub 2/SO/sub 4/, which precipitated the hyaluronectin and any (/sup 3/H)hyaluronate associated with it, but left free (/sup 3/H)hyaluronate in solution. The mixture was then centrifuged, and the amount of bound (/sup 3/H)hyaluronate in the precipitate was determined. Using this assay, the authors found that hyaluronectin specifically bound hyaluronate, since other glycosaminoglycans failed to compete for the binding protein. In addition, the interaction between hyaluronectin and hyaluronate was of relatively high affinity, and the size of the hyaluronate did not appear to substantially alter the amount of binding. To determine the amount of hyaluronate in an unknown sample, they used a competition assay in which the binding of a set amount of (/sup 3/H)hyaluronate was blocked by the addition of unlabeled hyaluronate. By comparing the degree of competition of the unknown samples with that of known amounts of hyaluronate, it was possible to determine the amount of hyaluronate in the unknowns. They have found that this method is sensitive to 1 ..mu..g or less of hyaluronate, and is unaffected by the presence of proteins.

  19. Flow Injection Analysis

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    2004-01-01

    This chapter provides an introduction to automated chemical analysis, which essentially can be divided into two groups: batch assays, where the solution is stationary while the container is moved through a number of stations where various unit operations performed; and continuous-flow procedures,......, but it permits thr execution of novel and unique analytical procedures which are difficult or even impossible by conventional means. The performance and applicability of FIA, SI and LOV are illustrated by a series of practical examples.......This chapter provides an introduction to automated chemical analysis, which essentially can be divided into two groups: batch assays, where the solution is stationary while the container is moved through a number of stations where various unit operations performed; and continuous-flow procedures......, where the system is stationary while the solution moves through a set of conduits in which all required manipulations are performed. Emphasis is placed on flow injection analysis (FIA) and its further developments, that is, sequential injection analysis (SIA) and the Lab-on-Valve (LOV) approach. Since...

  20. Digital analysis and sorting of fluorescence lifetime by flow cytometry.

    Science.gov (United States)

    Houston, Jessica P; Naivar, Mark A; Freyer, James P

    2010-09-01

    Frequency-domain flow cytometry techniques are combined with modifications to the digital signal-processing capabilities of the open reconfigurable cytometric acquisition system (ORCAS) to analyze fluorescence decay lifetimes and control sorting. Real-time fluorescence lifetime analysis is accomplished by rapidly digitizing correlated, radiofrequency (RF)-modulated detector signals, implementing Fourier analysis programming with ORCAS' digital signal processor (DSP) and converting the processed data into standard cytometric list mode data. To systematically test the capabilities of the ORCAS 50 MS/sec analog-to-digital converter (ADC) and our DSP programming, an error analysis was performed using simulated light scatter and fluorescence waveforms (0.5-25 ns simulated lifetime), pulse widths ranging from 2 to 15 micros, and modulation frequencies from 2.5 to 16.667 MHz. The standard deviations of digitally acquired lifetime values ranged from 0.112 to >2 ns, corresponding to errors in actual phase shifts from 0.0142 degrees to 1.6 degrees. The lowest coefficients of variation (digital analysis system to a previous analog phase-sensitive flow cytometer demonstrated similar precision and accuracy on measurements of a range of fluorescent microspheres, unstained cells, and cells stained with three common fluorophores. Sorting based on fluorescence lifetime was accomplished by adding analog outputs to ORCAS and interfacing with a commercial cell sorter with a RF-modulated solid-state laser. Two populations of fluorescent microspheres with overlapping fluorescence intensities but different lifetimes (2 and 7 ns) were separated to approximately 98% purity. Overall, the digital signal acquisition and processing methods we introduce present a simple yet robust approach to phase-sensitive measurements in flow cytometry. The ability to simply and inexpensively implement this system on a commercial flow sorter will allow both better dissemination of this technology and better

  1. Multiplexed Recombinase Polymerase Amplification Assay To Detect Intestinal Protozoa.

    Science.gov (United States)

    Crannell, Zachary; Castellanos-Gonzalez, Alejandro; Nair, Gayatri; Mejia, Rojelio; White, A Clinton; Richards-Kortum, Rebecca

    2016-02-01

    This work describes a proof-of-concept multiplex recombinase polymerase amplification (RPA) assay with lateral flow readout that is capable of simultaneously detecting and differentiating DNA from any of the diarrhea-causing protozoa Giardia, Cryptosporidium, and Entamoeba. Together, these parasites contribute significantly to the global burden of diarrheal illness. Differential diagnosis of these parasites is traditionally accomplished via stool microscopy. However, microscopy is insensitive and can miss up to half of all cases. DNA-based diagnostics such as polymerase chain reaction (PCR) are far more sensitive; however, they rely on expensive thermal cycling equipment, limiting their availability to centralized reference laboratories. Isothermal DNA amplification platforms, such as the RPA platform used in this study, alleviate the need for thermal cycling equipment and have the potential to broaden access to more sensitive diagnostics. Until now, multiplex RPA assays have not been developed that are capable of simultaneously detecting and differentiating infections caused by different pathogens. We developed a multiplex RPA assay to detect the presence of DNA from Giardia, Cryptosporidium, and Entamoeba. The multiplex assay was characterized using synthetic DNA, where the limits-of-detection were calculated to be 403, 425, and 368 gene copies per reaction of the synthetic Giardia, Cryptosporidium, and Entamoeba targets, respectively (roughly 1.5 orders of magnitude higher than for the same targets in a singleplex RPA assay). The multiplex assay was also characterized using DNA extracted from live parasites spiked into stool samples where the limits-of-detection were calculated to be 444, 6, and 9 parasites per reaction for Giardia, Cryptosporidium, and Entamoeba parasites, respectively. This proof-of-concept assay may be reconfigured to detect a wide variety of targets by re-designing the primer and probe sequences.

  2. Fluorescent multiplex cell flow systems and methods

    KAUST Repository

    Merzaban, Jasmeen

    2017-06-01

    Systems and methods are provided for simultaneously assaying cell adhesion or cell rolling for multiple cell specimens. One embodiment provides a system for assaying adhesion or cell rolling of multiple cell specimens that includes a confocal imaging system containing a parallel plate flow chamber, a pump in fluid communication with the parallel plate flow chamber via a flow chamber inlet line and a cell suspension in fluid communication with the parallel plate flow chamber via a flow chamber outlet line. The system also includes a laser scanning system in electronic communication with the confocal imaging system, and a computer in communication with the confocal imaging system and laser scanning system. In certain embodiments, the laser scanning system emits multiple electromagnetic wavelengths simultaneously it cause multiple fluorescent labels having different excitation wavelength maximums to fluoresce. The system can simultaneously capture real-time fluorescence images from at least seven cell specimens in the parallel plate flow chamber.

  3. Magnetic fingerprints of rolling cells for quantitative flow cytometry in whole blood

    Science.gov (United States)

    Reisbeck, Mathias; Helou, Michael Johannes; Richter, Lukas; Kappes, Barbara; Friedrich, Oliver; Hayden, Oliver

    2016-09-01

    Over the past 50 years, flow cytometry has had a profound impact on preclinical and clinical applications requiring single cell function information for counting, sub-typing and quantification of epitope expression. At the same time, the workflow complexity and high costs of such optical systems still limit flow cytometry applications to specialized laboratories. Here, we present a quantitative magnetic flow cytometer that incorporates in situ magnetophoretic cell focusing for highly accurate and reproducible rolling of the cellular targets over giant magnetoresistance sensing elements. Time-of-flight analysis is used to unveil quantitative single cell information contained in its magnetic fingerprint. Furthermore, we used erythrocytes as a biological model to validate our methodology with respect to precise analysis of the hydrodynamic cell diameter, quantification of binding capacity of immunomagnetic labels, and discrimination of cell morphology. The extracted time-of-flight information should enable point-of-care quantitative flow cytometry in whole blood for clinical applications, such as immunology and primary hemostasis.

  4. Enhanced red and near infrared detection in flow cytometry using avalanche photodiodes.

    Science.gov (United States)

    Lawrence, William G; Varadi, Gyula; Entine, Gerald; Podniesinski, Edward; Wallace, Paul K

    2008-08-01

    Polychromatic flow cytometry enables detailed identification of cell phenotype using multiple fluorescent parameters. The photomultiplier tubes (PMTs) used to detect fluorescence in current instruments limit the sensitivity in the long wavelength spectral range. We demonstrate the flow cytometric applications of silicon avalanche photodiodes (APDs), which have improved red sensitivity and a working fluorescence detection range beyond 1,000 nm. A comparison of the wavelength-dependent performance of the APD and PMT was carried out using pulsed light-emitting diode sources, calibrated test beads, and biological samples. A breadboard flow cytometer test bench was constructed to compare the performance of PMTs and APD detectors. The APD used an additional amplifier stage to match the internal gain of the PMT. The resolution of the APD and PMT was compared for flow cytometry applications using a pulsed light-emitting diode source over the 500-1060 nm spectral range. These measurements showed the relative changes in the signal-to-noise performance of the APD and PMT over a broad spectral range. Both the APD and PMTs were used to measure the signal-to-noise response for a set of six peak calibration beads over the 530-800 nm wavelength range. CD4-positive cells labeled with antibody-conjugated phycoerythrin or 800 nm quantum dots were identified by simultaneous detection using the APD and the PMT. The ratios of the intensities of the CD4- and CD4+ populations were found to be similar for both detectors in the visible wavelengths, but only the APD was able to separate these populations at wavelengths above 800 nm. These measurements illustrate the differences in APD and PMT performance at different wavelengths and signal intensity levels. While the APD and PMT show similar signal-to-noise performance in the visible spectral range, the dark noise of the APD detector reduces the sensitivity at low signal levels. At wavelengths longer than 650 nm, the high quantum efficiency

  5. Correlation between the genotoxicity endpoints measured by two different genotoxicity assays: comet assay and CBMN assay

    OpenAIRE

    Carina Ladeira; Susana Viegas; Manuel C. Gomes

    2015-01-01

    The cytokinesis-block micronucleus cytome (CBMN) assay is a comprehensive system for measuring DNA damage; cytostasis and cytotoxicity-DNA damage events are scored specifically in once-divided binucleated cells. The endpoints possible to be measured are micronuclei (MN), a biomarker of chromosome breakage and/or whole chromosome loss, nucleoplasmic bridges (NPB), a biomarker of DNA misrepair and/or telomere end-fusions, and nuclear buds (NBUD), a biomarker of elimination of amplified DNA and/...

  6. From continuous flow analysis to programmable Flow Injection techniques. A history and tutorial of emerging methodologies.

    Science.gov (United States)

    Ruzicka, Jaromir Jarda

    2016-09-01

    Automation of reagent based assays, also known as Flow Analysis, is based on sample processing, in which a sample flows towards and through a detector for monitoring of its components. The Achilles heel of this methodology is that the majority of FA techniques use constant continuous forward flow to transport the sample - an approach which continually consumes reagents and generates chemical waste. Therefore the purpose of this report is to highlight recent developments of flow programming that not only save reagents, but also lead by means of advanced sample processing to selective and sensitive assays based on stop flow measurement. Flow programming combined with a novel approach to data harvesting yields a novel approach to single standard calibration, and avoids interference caused by refractive index. Finally, flow programming is useful for sample preparation, such as rapid, extensive sample dilution. The principles are illustrated by selected references to an available online tutorial http://www.flowinjectiontutorial,com/.

  7. Flow Control

    Science.gov (United States)

    2013-04-08

    an aerodynamic design. A few examples of this type of flow control are winglets , fins, or dimples on a golf ball. The other type of flow control is...represented the density states of the flow field. The first parameter was the composition of the regression vector, Θ j. This regression vector was...Development Using Proper Orthogonal De- composition and Volterra Theory. In AIAA 2003-1922, 2003. A. Mani, M. Wang, and P. Moin. Resolution requirements

  8. Rotating flow

    CERN Document Server

    Childs, Peter R N

    2010-01-01

    Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics

  9. Validation and application of an assay for deoxyribonucleic acid to estimate concentrations of bull sperm.

    Science.gov (United States)

    Fenton, S E; Ax, R L; Cowan, C M; Coyle, T; Gilbert, G R; Lenz, R W

    1990-11-01

    Spectrophotometers are used for estimating sperm concentrations from raw ejaculates in semen processing laboratories. Unfortunately, these instruments have a limited detection spectrum and do not permit accurate quantification of sperm numbers in highly diluted or concentrated samples. The objectives of this study were to validate a DNA assay for quantification of sperm numbers in extended or undiluted semen samples and to determine precision of the assay. The principle of the assay is based upon a fluorescent dye that binds to adenine-thymine base pairs in double-stranded DNA. Semen samples and calf thymus DNA standards were sonicated in 2 M NaCl buffer with 1 mM EDTA. The DNA content of samples was compared to standards of calf thymus DNA using fluorometry. Sensitivity of the assay was determined to be 1.4 x 10(5) sperm cells. Concentrations of sperm estimated from DNA assay values did not differ from flow cytometric cell counts. Assays were performed in three different laboratories, using different equipment, to assess the assay's repeatability. Estimates of sperm concentrations determined by the DNA assay were similar, regardless of location and source of equipment used to perform the assays. This assay fulfills statistical criteria for being sensitive, accurate, and repeatable, and it can be employed in laboratories processing semen for artificial insemination as a tool for spectrophotometer calibration, a check for straw filling accuracy, or to quantify sperm numbers in extended, packaged semen.

  10. Multiplexed microbead immunoassays by flow cytometry for molecular profiling: Basic concepts and proteomics applications.

    Science.gov (United States)

    Krishhan, V V; Khan, Imran H; Luciw, Paul A

    2009-01-01

    Flow cytometry was originally established as an automated method for measuring optical or fluorescence characteristics of cells or particles in suspension. With the enormous increase in development of reliable electronics, lasers, micro-fluidics, as well as many advances in immunology and other fields, flow cytometers have become user-friendlier, less-expensive instruments with an increasing importance for both basic research and clinical applications. Conventional uses of flow cytometry include immunophenotyping of blood cells and the analysis of the cell cycle. Importantly, methods for labeling microbeads with unique combinations of fluorescent spectral signatures have made multiplex analysis of soluble analytes (i.e. the ability to detect multiple targets in a single test sample) feasible by flow cytometry. The result is a rapid, high-throughput, sensitive, and reproducible detection technology for a wide range of biomedical applications requiring detection of proteins (in cells and biofluids) and nucleic acids. Thus, novel methods of flow cytometry are becoming important for diagnostic purposes (e.g. identifying multiple clinical biomarkers for a wide range of diseases) as well as for developing novel therapies (e.g. elucidating drug mechanisms and potential toxicities). In addition, flow cytometry for multiplex analysis, coupled with automated sample handling devices, has the potential to significantly enhance proteomics research, particularly analysis of post-translational modifications of proteins, on a large scale. Inherently, flow cytometry methods are strongly rooted in the laws of the physics of optics, fluidics, and electromagnetism. This review article describes principles and early sources of flow cytometry, provides an introduction to the multiplex microbead technology, and discusses its applications and advantages in comparison to other methods. Anticipated future directions, particularly for translational research in medicine, are also discussed.

  11. 21 CFR 864.7525 - Heparin assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Heparin assay. 864.7525 Section 864.7525 Food and... HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7525 Heparin assay. (a) Identification. A heparin assay is a device used to determine the level of the anticoagulant heparin in the...

  12. A colorimetric assay for cytokinin oxidase.

    Science.gov (United States)

    Libreros-Minotta, C A; Tipton, P A

    1995-11-01

    A simple and rapid colorimetric assay for cytokinin oxidase is described. The assay is based on the formation of a Schiff base between the enzymatic reaction product 3-methyl-2-butenal and p-aminophenol. The assay is effective in the submicromolar concentration range and can be used in crude plant extracts as well as in more highly purified preparations.

  13. 21 CFR 866.3210 - Endotoxin assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endotoxin assay. 866.3210 Section 866.3210 Food... DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3210 Endotoxin assay. (a) Identification. An endotoxin assay is a device that uses serological techniques in whole blood. The device...

  14. Capillary Electrophoresis Analysis of Conventional Splicing Assays

    DEFF Research Database (Denmark)

    de Garibay, Gorka Ruiz; Acedo, Alberto; García-Casado, Zaida;

    2014-01-01

    of these assays is often challenging. Here, we explore this issue by conducting splicing assays in 31 BRCA2 genetic variants. All variants were assessed by RT-PCR followed by capillary electrophoresis and direct sequencing. If assays did not produce clear-cut outputs (Class-2 or Class-5 according to analytical...

  15. Network Flows

    Science.gov (United States)

    1988-12-01

    Researchers have suggested other solution strategies, using ideas from nonlinear progamming for solving this general separable convex cost flow problems. Some...plane methods and branch and bound procedures of integer programming, primal-dual methods of linear and nonlinear programming, and polyhedral methods...Combinatorial Optimization: Networks and Matroids), Bazaraa and Jarvis [1978] (Linear Programming and Network Flows), Minieka [1978] (Optimization Algorithms for

  16. Steroid assays in paediatric endocrinology.

    Science.gov (United States)

    Honour, John W

    2010-01-01

    Most steroid disorders of the adrenal cortex come to clinical attention in childhood and in order to investigate these problems, there are many challenges to the laboratory which need to be appreciated to a certain extent by clinicians. The analysis of sex steroids in biological fluids from neonates, over adrenarche and puberty present challenges of specificities and concentrations often in small sample sizes. Different reference ranges are also needed for interpretations. For around 40 years, quantitative assays for the steroids and their regulatory peptide hormones have been possible using immunoassay techniques. Problems are recognised and this review aims to summarise the benefits and failings of immunoassays and introduce where tandem mass spectrometry is anticipated to meet the clinical needs for steroid analysis in paediatric endocrine investigations. It is important to keep a dialogue between clinicians and the laboratory, especially when any laboratory result does not make sense in the clinical investigation.

  17. Vortical flows

    CERN Document Server

    Wu, Jie-Zhi; Zhou, Ming-De

    2015-01-01

    This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers.  Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific ap...

  18. Predictive Assay For Cancer Targets

    Energy Technology Data Exchange (ETDEWEB)

    Suess, A; Nguyen, C; Sorensen, K; Montgomery, J; Souza, B; Kulp, K; Dugan, L; Christian, A

    2005-09-19

    Early detection of cancer is a key element in successful treatment of the disease. Understanding the particular type of cancer involved, its origins and probable course, is also important. PhIP (2-amino-1-methyl-6 phenylimidazo [4,5-b]pyridine), a heterocyclic amine produced during the cooking of meat at elevated temperatures, has been shown to induce mammary cancer in female, Sprague-Dawley rats. Tumors induced by PhIP have been shown to contain discreet cytogenetic signature patterns of gains and losses using comparative genomic hybridization (CGH). To determine if a protein signature exists for these tumors, we are analyzing expression levels of the protein products of the above-mentioned tumors in combination with a new bulk protein subtractive assay. This assay produces a panel of antibodies against proteins that are either on or off in the tumor. Hybridization of the antibody panel onto a 2-D gel of tumor or control protein will allow for identification of a distinct protein signature in the tumor. Analysis of several gene databases has identified a number of rat homologs of human cancer genes located in these regions of gain and loss. These genes include the oncogenes c-MYK, ERBB2/NEU, THRA and tumor suppressor genes EGR1 and HDAC3. The listed genes have been shown to be estrogen-responsive, suggesting a possible link between delivery of bio-activated PhIP to the cell nucleus via estrogen receptors and gene-specific PhIP-induced DNA damage, leading to cell transformation. All three tumors showed similar silver staining patterns compared to each other, while they all were different than the control tissue. Subsequent screening of these genes against those from tumors know to be caused by other agents may produce a protein signature unique to PhIP, which can be used as a diagnostic to augment optical and radiation-based detection schemes.

  19. Detection and capture of breast cancer cells with photoacoustic flow cytometry

    Science.gov (United States)

    Bhattacharyya, Kiran; Goldschmidt, Benjamin S.; Viator, John A.

    2016-08-01

    According to the Centers for Disease Control and Prevention, breast cancer is the most common cancer and the second leading cause of cancer related deaths among women. Metastasis-the presence of secondary tumors caused by the spread of cancer cells via the circulatory or lymphatic systems-significantly worsens the prognosis of any breast cancer patient. A technique is developed to detect circulating breast cancer cells in human blood using a photoacoustic flow cytometry method. A Q-switched laser is used to interrogate thousands of blood cells with one pulse as they flow through the beam path. Cells that are optically absorbing, either naturally or artificially, emit an ultrasound wave as a result of the photoacoustic (PA) effect. Breast cancer cells are targeted with chromophores through immunochemistry in order to enhance optical absorption. After which, the PA cytometry device is calibrated to demonstrate the ability to detect single cells. Cultured breast cancer cells are added to whole blood to reach a biologically relevant concentration of about 25 to 45 breast cancer cells per 1 mL of blood. An in vitro PA flow cytometer is used to detect and isolate these cells followed by capture with the use of a micromanipulator. This method can not only be used to determine the disease state of the patient and the response to therapy but also it can be used for genetic testing and in vitro drug trials since the circulating cell can be captured and studied.

  20. Detection, isolation, and capture of circulating breast cancer cells with photoacoustic flow cytometry

    Science.gov (United States)

    Bhattacharyya, Kiran; Njoroge, Martin; Goldschmidt, Benjamin S.; Gaffigan, Brian; Rood, Kyle; Viator, John A.

    2013-03-01

    According to the CDC, breast cancer is the most common cancer and the second leading cause of cancer related deaths among women. Metastasis, or the presence of secondary tumors caused by the spread of cancer cells via the circulatory or lymphatic systems, significantly worsens the prognosis of any breast cancer patient. In this study, a technique is developed to detect circulating breast cancer cells in human blood using a photoacoustic flow cytometry method. A Q-switched laser with a 5 ns pulse at 532 nm is used to interrogate thousands of cells with one pulse as they flow through the beam path. Cells which are pigmented, either naturally or artificially, emit an ultrasound wave as a result of the photoacoustic (PA) effect. Breast cancer cells are targeted with chromophores through immunochemistry in order to provide pigment. After which, the device is calibrated to demonstrate a single-cell detection limit. Cultured breast cancer cells are added to whole blood to reach a biologically relevant concentration of about 25-45 breast cancer cells per 1 mL of blood. An in vitro photoacoustic flow cytometer is used to detect and isolate these cells followed by capture with the use of a micromanipulator. This method can not only be used to determine the disease state of the patient and the response to therapy, it can also be used for genetic testing and in vitro drug trials since the circulating cell can be captured and studied.

  1. Using the BioAssay Ontology for analyzing high-throughput screening data.

    Science.gov (United States)

    Zander Balderud, Linda; Murray, David; Larsson, Niklas; Vempati, Uma; Schürer, Stephan C; Bjäreland, Marcus; Engkvist, Ola

    2015-03-01

    High-throughput screening (HTS) is the main starting point for hit identification in drug discovery programs. This has led to a rapid increase of available screening data both within pharmaceutical companies and the public domain. We have used the BioAssay Ontology (BAO) 2.0 for assay annotation within AstraZeneca to enable comparison with external HTS methods. The annotated assays have been analyzed to identify technology gaps, evaluate new methods, verify active hits, and compare compound activity between in-house and PubChem assays. As an example, the binding of a fluorescent ligand to formyl peptide receptor 1 (FPR1, involved in inflammation, for example) in an in-house HTS was measured by fluorescence intensity. In total, 155 active compounds were also tested in an external ligand binding flow cytometry assay, a method not used for in-house HTS detection. Twelve percent of the 155 compounds were found active in both assays. By the annotation of assay protocols using BAO terms, internal and external assays can easily be identified and method comparison facilitated. They can be used to evaluate the effectiveness of different assay methods, design appropriate confirmatory and counterassays, and analyze the activity of compounds for identification of technology artifacts.

  2. 流式细胞术(FCM)在生物学研究中的应用%Application Progress of Flow Cytometry (FCM) in the Biological Research

    Institute of Scientific and Technical Information of China (English)

    李靖; 李成斌; 顿文涛; 王政; 方庆

    2008-01-01

    流式细胞仪(FlOW Cytometer)是一种对细胞进行定量分析与分选的精密仪器,它具有分析速度快、特异性好和灵敏度高的优点,是生物学研究的有力工具.流式细胞术(Flow Cytometry,FCM)是用流式细胞仪测量液相中悬浮细胞或微粒的一种现代分析技术,它是众多不同学术背景、不同科技领域相结合的结晶.概述了FCM在国内外生物学领域应用的最新动态.

  3. On-line radiochemical assay for monoamine oxidase utilizing high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Nissinen, E.; Linko-Loeppoenen SMae; Maennistoe P4

    1984-12-01

    A fast and sensitive assay for the determination of monoamine oxidase activity was developed. The method is based on the separation and quantitation of /sup 14/C-labeled assay products by high-performance liquid chromatography, which is interfaced directly into a flow-through radioactivity detector. This allows on-line quantitation of the radioactive compounds with picomole sensitivity. The method makes possible the complete separation and detection of the deaminated products of monoamine oxidase A and B substrates benzylamine and 5-hydroxytryptamine, respectively. This assay has been applied to the measurement of monoamine oxidase A and B activities in rat brain.

  4. Clinical application of a rapid, functional assay for multidrug resistance based on accumulation of the fluorescent dye, fluo-3.

    Science.gov (United States)

    Wall, D M; Sparrow, R; Hu, X F; Nadalin, G; Zalcberg, J R; Marschner, I C; Van der Weyden, M; Parkin, J D

    1993-01-01

    A rapid and simple functional assay for P-glycoprotein (Pgp) using flow cytometry to measure the accumulation of the flurophore fluo-3 has been applied to samples from patients with B-cell chronic lymphocytic leukaemia (B-CLL). Peripheral blood lymphocytes from 37 patients with B-CLL were studied for Pgp. Pgp expression, using MRK-16, a monoclonal antibody recognising an external surface epitope of Pgp, was detected in 92% of patients with B-CLL. The functional assays for Pgp expression were positive in 78 and 59% of patients using the fluo-3 and doxorubicin (dox) assays, respectively. When compared with the MRK-16 assay, the fluo-3 assay had a sensitivity of 82% compared to a sensitivity of 56% for the dox assay (P = 0.004). The specificity of the fluo-3 and dox assays could not be evaluated because of the low number of MRK-16 negative CLL cells.

  5. Development and application of assays for serotonin

    Energy Technology Data Exchange (ETDEWEB)

    Gow, I.F.

    1987-01-01

    In this thesis, two assays for serotonin were developed, validated, and used to investigate the relationship between platelet aggregation, serotonin levels and sodium status and serotonin levels and platelet function in patients with cardiovascular disease. A radioimmunoassay (RIA) using an (/sup 125/I)-labelled tracer was developed and validated for the measurement of serotonin in human platelet-rich plasma (PRP) and rat serum. Antisera were raised against N-succinamylserotonin conjugated to bovine albumin and, to improve assay sensitivity, the analyte was made chemically similar to the immunogen by conversion to N-acetylserotonin prior to assay, using the specific amino reagent N-acetoxysuccinimide. An assay for serotonin using high-pressure liquid chromatography with electrochemical detection (HPLC-ECD) was developed, and used to validate the RIA. The RIA can be used to assay up to 100 samples/day compared with 10-20/day by the HPLC-ECD assay.

  6. A Calorimetric Assay For Enzymatic Saccharification Of Biomass

    DEFF Research Database (Denmark)

    Murphy, Leigh; Borch, Kim; McFarland, K.C.;

    2010-01-01

    A limited selection of assay and screening methodologies for cellulolytic enzymes has been stated as a restriction in biomass research. In this report we test the potential of isothermal calorimetry for this purpose. The primary observable in this technique (the heat flow in Watts), scales...... with the rate of hydrolysis, and unlike other approaches, it provides a continuous picture of the hydrolytic rate. It was found that the activity of a standard enzyme cocktail against purified cellulose substrates and dilute acid pretreated corn stover (PCS) was readily detected in calorimeters of different...... types, and that the calorimetric signal scaled with the enzyme activity measured by established analytical techniques. Hence, it was concluded that the heat flow provided a valid measure of the hydrolytic rate also in a complex biomass. The hydrolysis process was consistently found to be exothermic...

  7. Dynamic quantification of antigen molecules with flow cytometry

    Science.gov (United States)

    Moskalensky, A.E.; Chernyshev, A.V.; Yurkin, M.A.; Nekrasov, V.M.; Polshchitsin, A.A.; Parks, D.R.; Moore, W.A.; Herzenberg, L.A.; Filatenkov, A.; Maltsev, V.P.; Orlova, D.Y.

    2015-01-01

    Traditional methods for estimating the number of expressed molecules, based on the detection of target antigens bound with fluorescently labeled antibodies, assume that the antigen-antibody reaction reaches equilibrium. A calibration procedure is used to convert the intensity of the fluorescence signal to the number of target molecules. Along with the different limitations of every calibration system, this substantially limits the applicability of the traditional approaches especially in the case of low affinity antibodies. We address this problem here with studies in which we demonstrate a new approach to the antigen molecule quantification problem. Instead of using a static calibration system, we analyzed mean fluorescence values over time by flow cytometry during antibody-antigen binding. Experimental data obtained with an LSRII cytometer were fitted by a diffusion-reaction mathematical model using the Levenberg–Marquardt nonlinear least squares curve-fitting algorithm in order to obtain the number of target antigen molecules per cell. Results were compared with the Quanti-BRITE calibration system. We conclude that, instead of using experiment-specific calibration, the value of the binding rate constant for each particular antibody-antigen reaction can be used to quantify antigen molecules with flow cytometry. The radius of CD8 antibody molecule binding site was found, that allows recalculating the binding rate constant for other conditions (different sizes of reagent molecules, fluorescent label, medium viscosity and temperature). This approach is independent of specially prepared calibration beads, antibody reagents and the specific dye and can be applied to both low and high affinity antibodies, under both saturating and non-saturating binding conditions. The method was demonstrated on a human blood sample dataset investigating CD8α antigen on T cells in stable binding conditions. PMID:25687877

  8. Direct Spectrophotometric Assay for Benzaldehyde Lyase Activity

    Directory of Open Access Journals (Sweden)

    Dessy Natalia

    2011-01-01

    Full Text Available Benzaldehyde lyase from Pseudomonas fluorescens Biovar I. (BAL, EC 4.1.2.38 is a versatile catalyst for the organic synthesis of chiral α-hydroxy ketones. To allow fast assessment of enzyme activity, a direct spectrophotometric assay is desirable. Here, a new robust and easy-to-handle assay based on UV absorption is presented. The assay developed is based on the ligation of the α-hydroxy ketone (R-2,2′-furoin from 2-furaldehyde. A robust assay with direct monitoring of the product is facilitated with a convenient concentration working range minimising experimental associated with low concentrations.

  9. Femtosecond laser fabrication of fiber based optofluidic platform for flow cytometry applications

    Science.gov (United States)

    Serhatlioglu, Murat; Elbuken, Caglar; Ortac, Bulend; Solmaz, Mehmet E.

    2017-02-01

    Miniaturized optofluidic platforms play an important role in bio-analysis, detection and diagnostic applications. The advantages of such miniaturized devices are extremely low sample requirement, low cost development and rapid analysis capabilities. Fused silica is advantageous for optofluidic systems due to properties such as being chemically inert, mechanically stable, and optically transparent to a wide spectrum of light. As a three dimensional manufacturing method, femtosecond laser scanning followed by chemical etching shows great potential to fabricate glass based optofluidic chips. In this study, we demonstrate fabrication of all-fiber based, optofluidic flow cytometer in fused silica glass by femtosecond laser machining. 3D particle focusing was achieved through a straightforward planar chip design with two separately fabricated fused silica glass slides thermally bonded together. Bioparticles in a fluid stream encounter with optical interrogation region specifically designed to allocate 405nm single mode fiber laser source and two multi-mode collection fibers for forward scattering (FSC) and side scattering (SSC) signals detection. Detected signal data collected with oscilloscope and post processed with MATLAB script file. We were able to count number of events over 4000events/sec, and achieve size distribution for 5.95μm monodisperse polystyrene beads using FSC and SSC signals. Our platform shows promise for optical and fluidic miniaturization of flow cytometry systems.

  10. Evaluation of Red Cell Membrane Cytoskeletal Disorders Using a Flow Cytometric Method in South Iran

    Directory of Open Access Journals (Sweden)

    Habib Alah Golafshan

    2014-03-01

    Full Text Available OBJECTIVE: The diagnosis of hereditary red blood cell (RBC membrane disorders, and in particular hereditary spherocytosis (HS and Southeast Asian ovalocytosis (SAO, is based on clinical history, RBC morphology, and other conventional tests such as osmotic fragility. However, there are some milder cases of these disorders that are difficult to diagnose. The application of eosin-5’-maleimide (EMA was evaluated for screening of RBC membrane defects along with some other anemias. We used EMA dye, which binds mostly to band 3 protein and to a lesser extent some other membrane proteins, for screening of some membrane defects such as HS. METHODS: Fresh RBCs from hematologically normal controls and patients with HS, SAO, hereditary elliptocytosis, hereditary spherocytosis with pincered cells, severe iron deficiency, thalassemia minor, and autoimmune hemolytic anemia were stained with EMA dye and analyzed for mean fluorescent intensity (MFI using a flow cytometer. RESULTS: RBCs from patients with HS and iron deficiency showed a significant reduction in MFI compared to those from normal controls (p<0.0001 and p<0.001, respectively, while macrocytic RBCs showed a significant increase in MFI (p<0.01. A significant correlation was shown between mean corpuscular volume and MFI, with the exceptions of HS and thalassemia minor. CONCLUSION: Our results showed that the flow cytometric method could be a reliable diagnostic method for screening and confirmation, with higher sensitivity and specificity (95% and 93%, respectively than conventional routine tests for HS patients prior to further specific membrane protein molecular tests.

  11. A novel, rapid method to quantify intraplatelet calcium dynamics by ratiometric flow cytometry.

    Directory of Open Access Journals (Sweden)

    Alice Assinger

    Full Text Available Cytosolic free calcium ions represent important second-messengers in platelets. Therefore, quantitative measurement of intraplatelet calcium provides a popular and very sensitive tool to evaluate platelet activation and reactivity. Current protocols for determination of intracellular calcium concentrations in platelets have a number of limitations. Cuvette-based methods do not allow measurement of calcium flux in complex systems, such as whole blood, and therefore require isolation steps that potentially interfere with platelet activation. Flow cytometry has the potential to overcome this limitation, but to date the application of calibrated, quantitative readout of calcium kinetics has only been described for Indo-1. As excitation of Indo-1 requires a laser in the ultraviolet range, such measurements cannot be performed with a standard flow cytometer. Here, we describe a novel, rapid calibration method for ratiometric calcium measurement in platelets using both Ar(+-laser excited fluorescence dyes Fluo-4 and Fura Red. We provide appropriate equations that allow rapid quantification of intraplatelet calcium fluxes by measurement of only two standardisation buffers. We demonstrate that this method allows quantitative calcium measurement in platelet rich plasma as well as in whole blood. Further, we show that this method prevents artefacts due to platelet aggregate formation and is therefore an ideal tool to determine basal and agonist induced calcium kinetics.

  12. High-precision characterization of individual E. coli cell morphology by scanning flow cytometry.

    Science.gov (United States)

    Konokhova, Anastasiya I; Gelash, Andrey A; Yurkin, Maxim A; Chernyshev, Andrey V; Maltsev, Valeri P

    2013-06-01

    We demonstrate a flow-cytometric method to measure length and diameter of single Escherichia coli cells with sub-diffraction precision. The method is based on the original scanning flow cytometer that measures angle-resolved light-scattering patterns (LSPs) of individual particles. We modeled the shape of E. coli cells as a cylinder capped with hemispheres of the same radius, and simulated light scattering by the models using the discrete dipole approximation. We computed a database of the LSPs of individual bacteria in a wide range of model parameters and used it to solve the inverse light-scattering problem by the nearest-neighbor interpolation. The solution allows us to determine length and diameter of each individual bacterium, including uncertainties of these estimates. The developed method was tested on two strains of E. coli. The resulting precision of bacteria length and diameter measurements varied from 50 nm to 250 nm and from 5 nm to 25 nm, respectively. The measured distributions of samples over length and diameter were in good agreement with measurements performed by optical microscopy and literature data. The described approach can be applied for rapid morphological characterization of any rod-shaped bacteria.

  13. Flow cytometric analysis of microbial contamination in food industry technological lines – initial study

    Directory of Open Access Journals (Sweden)

    Katarzyna Czaczyk

    2012-06-01

    Full Text Available Background. Flow cytometry constitutes an alternative for traditional methods of microorganisms identifi cation and analysis, including methods requiring cultivation step. It enables the detection of pathogens and other microorganisms contaminants without the need to culture microbial cells meaning that the sample (water, waste or food e.g. milk, wine, beer may be analysed directly. This leads to a signifi cant reduction of time required for analysis allowing monitoring of production processes and immediate reaction in case of contamination or any disruption occurs. Apart from the analysis of raw materials or products on different stages of manufacturing process, the fl ow cytometry seems to constitute an ideal tool for the assessment of microbial contamination on the surface of technological lines. Material and methods. In the present work samples comprising smears from 3 different surfaces of technological lines from fruit and vegetable processing company from Greater Poland were analysed directly with fl ow cytometer. The measured parameters were forward and side scatter of laser light signals allowing the estimation of microbial cell contents in each sample. Results. Flow cytometric analysis of the surface of food industry production lines enable the preliminary evaluation of microbial contamination within few minutes from the moment of sample arrival without the need of sample pretreatment. Conclusions. The presented method of fl ow cytometric initial evaluation of microbial state of food industry technological lines demonstrated its potential for developing a robust, routine method for the rapid and laborsaving detection of microbial contamination in food industry.

  14. Assay-dependent variability of serum insulin concentrations: a comparison of eight assays.

    Science.gov (United States)

    Tohidi, Maryam; Arbab, Parvaneh; Ghasemi, Asghar

    2017-04-01

    Although insulin measurement is essential for both clinical and research purposes, there is currently no reference method for insulin assays. The aim of this study was to compare results of serum insulin determined by a number of commercially available assays. We compared eight insulin assays by analyzing 165 serum samples. Assays included two chemiluminescence (Roche and DiaSorin), four ELISA (Tosoh, Mercodia, Monobind, and Diametra), and two IRMA (Izotop and BioSource) methods. Each assay was compared with the mean of all assay methods and Bland-Altman difference plots were used to measure agreement between each assay and overall mean. Least squared perpendicular distance regression analysis (Deming's method) was used to calculate slope and intercept for bias and also for each assay vs. mean of eight assays. Findings showed that the lowest and highest median insulin concentrations varied by a factor of 1.8. Maximum and minimum correlations with mean of assays were observed for Roche (0.992) and BioSource (0.844), respectively. Significant bias was observed in six assays. In pairwise comparisons of different assays, the highest and least mean differences were 7.78 μU/mL and -0.14 μU/mL, respectively. In conclusion, serum insulin measurement with different assays showed a maximum of 1.8-fold difference, a point that should be taken into consideration in the interpretation of circulating insulin levels in both clinical and research fields.

  15. Assay in engine of agricultural tractor with biofuel

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Reny Adilmar Prestes; Meyer, Wagner [Universidade Estadual de Maringa (DEA/CCA/UEM), Cidade Gaucha, PR (Brazil). Centro de Ciencias Agrarias. Dept. de Engenharia Agricola], E-mail: raplopes@uem.br; Pinheiro Neto, Raimundo; Pinheiro, Andreia Cristina [Universidade Estadual de Maringa (DAG/CCA/UEM), PR (Brazil). Centro de Ciencias Agrarias. Dept. de Agronomia; Laurindo, Jose Carlos [Instituto de Tecnologia do Parana (CERBIO/TECPAR), Curitiba, PR (Brazil). Centro Brasileiro de Referencia em Biocombustiveis; Biazzono, Sergio Luis [Instituto de Tecnologia do Parana (TECPAR), Maringa, PR (Brazil). Inspecao Veicular

    2008-07-01

    The use of biofuel in tractors of diesel engines and agricultural harvester, in the operations of soil preparation and harvest, is a good option of fuel economy for the agriculturist. For a good performance of the machine a good regulation is necessary. The experiment was carried through in the Experimental Farm Iguatemi of the State University of Maringa, Maringa - PR. A tractor Massey Ferguson MF275 was used for the assay connected to be even grating. It carried through if the assays of consumption of diesel (100%) and biofuel (diesel 80% + vegetable oil 20%). To carry through the assay tractor + grating with three openings and without load was used to be even set. The rotation without load and of work was of 1900 rpm and mean speed of 6 km h{sup -1}. The hourly consumption was verified by a test tube and a fluxgate OVAL Flow mate M III - LSF 45L0-M2 connected to data logger CR23X. The hourly consumption was express in L h{sup -1}. The engine of the tractor presented similar behavior of fuel consumption for diesel and biofuel. The mean values of consumption had been inside of the specified one for the manufacturer. Mixture 80% diesel + 20% vegetable oil can be used as biofuel in the engine in study. (author)

  16. METHODOLOGICAL ASPECTS OF QUANTITATIVE RECEPTOR ASSAYS

    NARCIS (Netherlands)

    SMISTEROVA, J; ENSING, K; DEZEEUW, RA

    1994-01-01

    Receptor assays occupy a particular position in the methods used in bioanalysis, as they do not exploit the physico-chemical properties of the analyte. These assays make use of the property of the analyte to bind to the specific binding site (receptor) and to competitively replace a labelled ligand

  17. Assessing sediment contamination using six toxicity assays

    Directory of Open Access Journals (Sweden)

    Allen G. BURTON Jr.

    2001-08-01

    Full Text Available An evaluation of sediment toxicity at Lake Orta, Italy was conducted to compare a toxicity test battery of 6 assays and to evaluate the extent of sediment contamination at various sediment depths. Lake Orta received excessive loadings of copper and ammonia during the 1900’s until a large remediation effort was conducted in 1989-90 using lime addition. Since that time, the lake has shown signs of a steady recovery of biological communities. The study results showed acute toxicity still exists in sediments at a depth of 5 cm and greater. Assays that detected the highest levels of toxicity were two whole sediment exposures (7 d using Hyalella azteca and Ceriodaphnia dubia. The MicrotoxR assay using pore water was the third most sensitive assay. The Thamnotox, Rototox, Microtox solid phase, and Seed Germination-Root Elongation (pore and solid phase assays showed occasional to no toxicity. Based on similarity of responses and assay sensitivity, the two most useful assays were the C. dubia (or H. azteca and Microtox pore water. These assays were effective at describing sediment toxicity in a weight-of-evidence approach.

  18. Radioreceptor assay: theory and applications to pharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Perret, G. (U.E.R. de Medecine, Sante et Biologie Humaine, 93 - Bobigny (France)); Simon, P. (Faculte de Medecine Pitie-Salpetriere, 75 - Paris (France))

    The aim of the first part of this work is to present the theory of the radioreceptor assay and to compare it to the other techniques of radioanalysis (radioimmunoassay, competitive protein binding assays). The technology of the radioreceptor assay is then presented and its components (preparation of the receptors, radioligand, incubation medium) are described. The analytical characteristics of the radioreceptor assay (specificity, sensitivity, reproductibility, accuracy) and the pharmacological significance of the results are discussed. The second part is devoted to the description of the radioreceptor assays of some pharmacological classes (neuroleptics, tricyclic antidepressants, benzodiazepines, ..beta..-blockers, anticholinergic drugs) and to their use in therapeutic drug monitoring. In conclusion, by their nature, radioreceptor assays are highly sensitive, reliable, precise, accurate and simple to perform. Their chief disadvantage relates to specificity, since any substance having an appreciable affinity to the receptor site will displace the specifically bound radioligand. Paradoxically in some cases, this lack of specificity may be advantageous in that it allows for the detection of not only the apparent compound but of active metabolites and endogenous receptor agonists as well and in that radioreceptors assays can be devised for a whole pharmacological class and not only for one drug as it is the case for classical physico-chemical techniques. For all these reasons future of radioreceptor assay in pharmacology appears promising.

  19. A Continuous, Fluorogenic Sirtuin 2 Deacylase Assay

    DEFF Research Database (Denmark)

    Galleano, Iacopo; Schiedel, Matthias; Jung, Manfred

    2016-01-01

    and kinetic insight regarding sirtuin inhibitors, it is important to have access to efficient assays. In this work, we report readily synthesized fluorogenic substrates enabling enzyme-economical evaluation of SIRT2 inhibitors in a continuous assay format as well as evaluation of the properties of SIRT2...

  20. Acellular comet assay: a tool for assessing variables influencing the alkaline comet assay.

    Science.gov (United States)

    Kennedy, Erin K; McNamee, James P; Prud'homme Lalonde, Louise; Jones, Trevor; Wilkinson, Diana

    2012-01-01

    In this study, an acellular modification to the alkaline comet assay to further evaluate key variables within the assay that may influence the outcome of genotoxicity studies is described. This acellular comet assay can detect differences of 0.2 Gy of (60)Co gamma-ray radiation between 0 and 1 Gy and differences of 1 Gy between 0 and 8 Gy; thus, this assay is applicable for a wide range of DNA damage levels. It is also shown that DNA damage from different radiation energies was not significantly different from (60)Co gamma-ray. This assay displayed a statistical increase in DNA damage due to uncontrolled exposure to natural light; however, the slope of the dose-response curve for light-exposed samples was similar to that for samples protected from light. A comparison of the alkaline comet assay with the acellular comet assay allowed for the intrinsic repair capacity of the alkaline comet assay to be quantified.