WorldWideScience

Sample records for florida coastal everglades

  1. Visioning the Future: Scenarios Modeling of the Florida Coastal Everglades

    Science.gov (United States)

    Flower, Hilary; Rains, Mark; Fitz, Carl

    2017-11-01

    In this paper, we provide screening-level analysis of plausible Everglades ecosystem response by 2060 to sea level rise (0.50 m) interacting with macroclimate change (1.5 °C warming, 7% increase in evapotranspiration, and rainfall that either increases or decreases by 10%). We used these climate scenarios as input to the Ecological Landscape Model to simulate changes to seven interactive hydro-ecological metrics. Mangrove forest and other marine influences migrated up to 15 km inland in both scenarios, delineated by the saltwater front. Freshwater habitat area decreased by 25-30% under our two climate change scenarios and was largely replaced by mangroves and, in the increased rainfall scenario, open water as well. Significant mangroves drowned along northern Florida Bay in both climate change scenarios due to sea level rise. Increased rainfall of 10% provided significant benefits to the spatial and temporal salinity regime within the marine-influenced zone, providing a more gradual and natural adjustment for at-risk flora and fauna. However, increased rainfall also increased the risk of open water, due to water depths that inhibited mangrove establishment and reduced peat accumulation rates. We infer that ecological effects related to sea level rise may occur in the extreme front-edge of saltwater intrusion, that topography will control the incursion of this zone as sea level rises, and that differences in freshwater availability will have ecologically significant effects on ecosystem resilience through the temporal and spatial pattern of salinity changes.

  2. Land-margin ecosystem hydrologic data for the coastal Everglades, Florida, water years 1996-2012

    Science.gov (United States)

    Anderson, Gordon H.; Smith, Thomas J.; Balentine, Karen M.

    2014-01-01

    Mangrove forests and salt marshes dominate the landscape of the coastal Everglades (Odum and McIvor, 1990). However, the ecological effects from potential sea-level rise and increased water flows from planned freshwater Everglades restoration on these coastal systems are poorly understood. The National Park Service (NPS) proposed the South Florida Global Climate Change Project (SOFL-GCC) in 1990 to evaluate climate change and the effect from rising sea levels on the coastal Everglades, particularly at the marsh/mangrove interface or ecotone (Soukup and others, 1990). A primary objective of SOFL-GCC project was to monitor and synthesize the hydrodynamics of the coastal Everglades from the upstream freshwater marsh to the downstream estuary mangrove. Two related hypotheses were set forward (Nuttle and Cosby, 1993): 1. There exists hydrologic conditions (tide, local rainfall, and upstream water deliveries), which characterize the location of the marsh/mangrove ecotone along the marine and terrestrial hydrologic gradient; and 2. The marsh/mangrove ecotone is sensitive to fluctuations in sea level and freshwater inflow from inland areas. Hydrologic monitoring of the SOFL-GCC network began in 1995 after startup delays from Hurricane Andrew (August 1992) and organizational transfers from the NPS to the National Biological Survey (October 1993) and the merger with the U.S. Geological Survey (USGS) Biological Research Division in 1996 (Smith, 2004). As the SOFL-GCC project progressed, concern by environmental scientists and land managers over how the diversion of water from Everglades National Park would affect the restoration of the greater Everglades ecosystem. Everglades restoration scenarios were based on hydrodynamic models, none of which included the coastal zone (Fennema and others, 1994). Modeling efforts were expanded to include the Everglades coastal zone (Schaffranek and others, 2001) with SOFL-GCC hydrologic data assisting the ecological modeling needs. In 2002

  3. Descriptions and preliminary report on sediment cores from the southwest coastal area, Everglades National Park, Florida

    Science.gov (United States)

    Wingard, G. Lynn; Cronin, Thomas M.; Holmes, Charles W.; Willard, Debra A.; Budet, Carlos A.; Ortiz, Ruth E.

    2005-01-01

    Sediment cores were collected from five locations in the southwest coastal area of Everglades National Park, Florida, in May 2004 for the purpose of determining the ecosystem history of the area and the impacts of changes in flow through the Shark River Slough. An understanding of natural cycles of change prior to significant human disturbance allows land managers to set realistic performance measures and targets for salinity and other water quality and quantity quality measures. Preliminary examination of the cores indicates significant changes have taken place over the last 1000-2000 years. The cores collected from the inner bays - the most landward bays - are distinctly different from other estuarine sediment cores examined in Florida Bay and Biscayne Bay. Peats in the inner-bay cores from Big Lostmans Bay, Broad River Bay, and Tarpon Bay were deposited at least 1000 years before present (BP) based on radiocarbon analyses. The peats are overlain by poorly sorted organic muds and sands containing species indicative of deposition in a freshwater to very low salinity environment. The Alligator Bay core, the most northern inner-bay core, is almost entirely sand; no detailed faunal analyses or radiometric dating has been completed on this core. The Roberts River core, taken from the mouth of the River where it empties into Whitewater Bay, is lithologically and faunally similar to previously examined cores from Biscayne and Florida Bays; however, the basal unit was deposited ~2000 years before the present based on radiocarbon analyses. A definite trend of increasing salinity over time is seen in the Roberts River core, from sediments representing a terrestrially dominated freshwater environment at the bottom of the core to those representing an estuarine environment with a strong freshwater influence at the top. The changes seen at Roberts River could represent a combination of factors including rising sea-level and changes in freshwater supply, but the timing and

  4. Effects of Hydrologic Restoration on the Residence Times and Water Quality of a Coastal Wetland in the Florida Everglades

    Science.gov (United States)

    Sandoval, E.; Price, R. M.; Melesse, A. M.; Whitman, D.

    2013-05-01

    The Everglades, located in southern Florida, is a dominantly freshwater coastal wetland ecosystem that has experienced many alterations and changes led by urbanization and water management practices with most cases resulting in decreased water flow across the system. The Comprehensive Everglades Restoration Plan, passed in 2000, has the final goal of restoring natural flow and clean water to the Everglades while also balancing flood control and water supply needs of the south Florida population with approximately 60 projects to be constructed and completed in the following 30 years. One way to assess the success of restoration projects is to observe long-term hydrological and geochemical changes as the projects undergo completion. The purpose of this research was to investigate the effects of restoration on the water balance, flushing time, and water chemistry of Taylor Slough; one of the main natural waterways located within the coastal Everglades. A water balance equation was used to solve for groundwater-surface water exchange. The major parameters for the water balance equation (precipitation, evapotranspiration (ET), surface water storage, inflow and outflow) were obtained from the U.S. Geological Survey and Everglades National Park databases via the Everglades Depth Estimation Network (EDEN). Watershed flushing times were estimated as the surface water volume divided by the total outputs from the watershed. Both the water balance equation and water flushing time were calculated on a monthly time step from 2001 - 2011. Water chemistry of major ions and Total Nitrogen (TN) and Total Phosphorus (TP) was analyzed on water samples, 3-day composites collected every 18 hours from 2008 - 2012, and correlated with water flushing times. Stable isotopes of oxygen and hydrogen of water samples were obtained to support the dominant inputs of water into Taylor Slough as identified by the water budget equation. Results for flushing times varied between 3 and 78 days, with

  5. Palynological reconstruction of environmental changes in coastal wetlands of the Florida Everglades since the mid-Holocene

    Science.gov (United States)

    Yao, Qiang; Liu, Kam-biu; Platt, William J.; Rivera-Monroy, Victor H.

    2015-05-01

    Palynological, loss-on-ignition, and X-ray fluorescence data from a 5.25 m sediment core from a mangrove forest at the mouth of the Shark River Estuary in the southwestern Everglades National Park, Florida were used to reconstruct changes occurring in coastal wetlands since the mid-Holocene. This multi-proxy record contains the longest paleoecological history to date in the southwestern Everglades. The Shark River Estuary basin was formed 5700 cal yr BP in response to increasing precipitation. Initial wetlands were frequently-burned short-hydroperiod prairies, which transitioned into long-hydroperiod prairies with sloughs in which peat deposits began to accumulate continuously about 5250 cal yr BP. Our data suggest that mangrove communities started to appear after 3800 cal yr BP; declines in the abundance of charcoal suggested gradual replacement of fire-dominated wetlands by mangrove forest over the following 2650 yr. By 1150 cal yr BP, a dense Rhizophora mangle dominated mangrove forest had formed at the mouth of the Shark River. The mangrove-dominated coastal ecosystem here was established at least 2000 yr later than has been previously estimated.

  6. Associations between the molecular and optical properties of dissolved organic matter in the Florida Everglades, a model coastal wetland system

    Science.gov (United States)

    Wagner, Sasha; Jaffe, Rudolf; Cawley, Kaelin; Dittmar, Thorsten; Stubbins, Aron

    2015-11-01

    Optical properties are easy-to-measure proxies for dissolved organic matter (DOM) composition, source and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows) and DOM sources (e.g., terrestrial, microbial and marine). As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275-295, S350-400, SR, FI, freshness index and HIX) and ultrahigh resolution mass spectrometry (FTICR-MS). Spearman’s rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands.

  7. Associations between the molecular and optical properties of dissolved organic matter in the Florida Everglades, a model coastal wetland system

    Directory of Open Access Journals (Sweden)

    Sasha eWagner

    2015-11-01

    Full Text Available Optical properties are easy-to-measure proxies for dissolved organic matter (DOM composition, source and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows and DOM sources (e.g., terrestrial, microbial and marine. As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275-295, S350-400, SR, FI, freshness index and HIX and ultrahigh resolution mass spectrometry (FTICR-MS. Spearman’s rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands.

  8. The role of ocean tides on groundwater-surface water exchange in a mangrove-dominated estuary: Shark River Slough, Florida Coastal Everglades, USA

    Science.gov (United States)

    Smith, Christopher G.; Price, René M.; Swarzenski, Peter W.; Stalker, Jeremy C.

    2016-01-01

    Low-relief environments like the Florida Coastal Everglades (FCE) have complicated hydrologic systems where surface water and groundwater processes are intimately linked yet hard to separate. Fluid exchange within these lowhydraulic-gradient systems can occur across broad spatial and temporal scales, with variable contributions to material transport and transformation. Identifying and assessing the scales at which these processes operate is essential for accurate evaluations of how these systems contribute to global biogeochemical cycles. The distribution of 222Rn and 223,224,226Ra have complex spatial patterns along the Shark River Slough estuary (SRSE), Everglades, FL. High-resolution time-series measurements of 222Rn activity, salinity, and water level were used to quantify processes affecting radon fluxes out of the mangrove forest over a tidal cycle. Based on field data, tidal pumping through an extensive network of crab burrows in the lower FCE provides the best explanation for the high radon and fluid fluxes. Burrows are irrigated during rising tides when radon and other dissolved constituents are released from the mangrove soil. Flushing efficiency of the burrows—defined as the tidal volume divided by the volume of burrows— estimated for the creek drainage area vary seasonally from 25 (wet season) to 100 % (dry season) in this study. The tidal pumping of the mangrove forest soil acts as a significant vector for exchange between the forest and the estuary. Processes that enhance exchange of O2 and other materials across the sediment-water interface could have a profound impact on the environmental response to larger scale processes such as sea level rise and climate change. Compounding the material budgets of the SRSE are additional inputs from groundwater from the Biscayne Aquifer, which were identified using radium isotopes. Quantification of the deep groundwater component is not obtainable, but isotopic data suggest a more prevalent signal in the dry

  9. Northern Everglades, Florida, satellite image map

    Science.gov (United States)

    Thomas, Jean-Claude; Jones, John W.

    2002-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program with support from the Everglades National Park. The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  10. South Florida Everglades: satellite image map

    Science.gov (United States)

    Jones, John W.; Thomas, Jean-Claude; Desmond, G.B.

    2001-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program (http://access.usgs.gov/) with support from the Everglades National Park (http://www.nps.gov/ever/). The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  11. Hydrologic Monitoring and Water Balance Modeling in West and Seven Palm Lake Drainages in the Florida Everglades

    Science.gov (United States)

    Allen, J.; Whitman, D.; Price, R.

    2016-02-01

    In the Florida Everglades, sea level rise and reduced freshwater inputs have altered the hydrologic and chemical conditions in coastal estuaries. Brackish coastal groundwater discharge, an inland intrusion of submarine groundwater discharge, has been shown to occur seasonally along the coastal wetlands of the Everglades. This brackish groundwater is enriched in total phosphorus, the limiting nutrient in the Everglades. A major component of the Comprehensive Everglades Restoration Plan is to increase freshwater delivery to the southern coastal Everglades and adjacent bays, in an effort to restore a salinity and nutrient regime conducive for the development of submerged aquatic vegetation. This study is being conducted in the estuarine lakes of the Everglades that are connected to Florida Bay. Water quality in these lakes has diminished over time, potentially due to increased nutrient deliveries from coastal groundwater discharge. Current hydrologic and chemical conditions are being established within the lakes in order to gain a better understanding of the effects of restoration efforts through time. Water budgets are being constructed on daily, monthly and annual time steps to estimate the groundwater-surface water interaction term. In addition, hydrologic and topographic data from the Everglades Depth Estimation Network is being utilized in order to calculate water budgets for the lakes region spanning ten years prior to the study period. Water chemistry in the lakes and groundwater is also being monitored to determine the influence of groundwater-surface water exchange on salinity and nutrient conditions in the lakes. The results of this study can be used to assess the influence of restoration efforts on the hydrochemical conditions of downstream coastal areas affected by coastal groundwater discharge and sea level rise.

  12. Occurrence of monoethylmercury in the Florida Everglades: Identification and verification

    International Nuclear Information System (INIS)

    Mao Yuxiang; Yin Yongguang; Li Yanbin; Liu Guangliang; Feng Xinbin; Jiang Guibin; Cai Yong

    2010-01-01

    A few studies have reported the occurrence of monoethylmercury (CH 3 CH 2 Hg + ) in the natural environment, but further verification is needed due to the lack of direct evidence and/or uncertainty in analytical procedures. Various analytical techniques were employed to verify the occurrence of CH 3 CH 2 Hg + in soil of the Florida Everglades. The identity of CH 3 CH 2 Hg + in Everglades soil was clarified, for the first time, by GC/MS. The employment of the recently developed aqueous phenylation-purge-and-trap-GC coupled with ICPMS confirmed that the detected CH 3 CH 2 Hg + was not a misidentification of CH 3 SHg + . Stable isotope-tracer experiments further indicated that the detected CH 3 CH 2 Hg + indeed originated from Everglades soil and was not an analytical artifact. All these evidence clearly confirmed the occurrence of CH 3 CH 2 Hg + in Everglades soil, presumably as a consequence of ethylation occurring in this wetland. The prevalence of CH 3 CH 2 Hg + in Everglades soil suggests that ethylation could play an important role in the biogeochemical cycling of Hg. - A combination of various analytical techniques and stable isotope tracer experiments confirms monoethylmercury is present in Everglades soil.

  13. The Impact of Sea Level Rise on Florida's Everglades

    Science.gov (United States)

    Senarath, S. U.

    2005-12-01

    Global warming and the resulting melting of polar ice sheets could increase global sea levels significantly. Some studies have predicted mean sea level increases in the order of six inches to one foot in the next 25 to 50 years. This could have severe irreversible impacts on low-lying areas of Florida's Everglades. The key objective of this study is to evaluate the effects of a one foot sea level rise on Cape Sable Seaside Sparrow (CSSS) nesting areas within the Everglades National Park (ENP). A regional-scale hydrologic model is used to assess the sensitivities of this sea-level rise scenario. Florida's Everglades supports a unique ecosystem. At present, about 50 percent of this unique ecosystem has been lost due to urbanization and farming. Today, the water flow in the remnant Everglades is also regulated to meet a variety of competing environmental, water-supply and flood-control needs. A 30-year, eight billion dollar (1999 estimate) project has been initiated to improve Everglades' water flows. The expected benefits of this restoration project will be short-lived if the predicted sea level rise causes severe impacts on the environmentally sensitive areas of the Everglades. Florida's Everglades is home to many threatened and endangered species of wildlife. The Cape Sable Seaside Sparrow population in the ENP is one such species that is currently listed as endangered. Since these birds build their nests close to the ground surface (the base of the nest is approximately six inches from the ground surface), they are directly affected by any sea level induced ponding depth, frequency or duration change. Therefore, the CSSS population serves as a good indicator species for evaluating the negative impacts of sea level rise on the Everglades' ecosystem. The impact of sea level rise on the CSSS habitat is evaluated using the Regional Simulation Model (RSM) developed by the South Florida Water Management District. The RSM is an implicit, finite-volume, continuous

  14. Using Florida Keys Reference Sites As a Standard for Restoration of Forest Structure in Everglades Tree Islands

    International Nuclear Information System (INIS)

    Ross, M.S.; Sah, J.P.; Ruiz, P.L.; Ross, M.S.; Ogurcak, D.E.

    2010-01-01

    In south Florida, tropical hardwood forests (hammocks) occur in Everglades tree islands and as more extensive forests in coastal settings in the nearby Florida Keys. Keys hammocks have been less disturbed by humans, and many qualify as old-growth, while Everglades hammocks have received much heavier use. With improvement of tree island condition an important element in Everglades restoration efforts, we examined stand structure in 23 Keys hammocks and 69 Everglades tree islands. Based on Stand Density Index and tree diameter distributions, many Everglades hammocks were characterized by low stocking and under-representation in the smaller size classes. In contrast, most Keys forests had the dense canopies and open under stories usually associated with old-growth hardwood hammocks. Subject to the same caveats that apply to off-site references elsewhere, structural information from mature Keys hammocks can be helpful in planning and implementing forest restoration in Everglades tree islands. In many of these islands, such restoration might involve supplementing tree stocking by planting native trees to produce more complete site utilization and a more open under story.

  15. The role of the Everglades Mangrove Ecotone Region (EMER) in regulating nutrient cycling and wetland productivity in South Florida

    Science.gov (United States)

    Rivera-Monroy, Victor H.; Twilley, Robert R.; Davis, Stephen E.; Childers, Daniel L.; Simard, Marc; Chambers, Randolph; Jaffe, Rudolf; Boyer, Joseph N.; Rudnick, David T.; Zhang, Keqi; Castañeda-Moya, Edward; Ewe, Sharon M.L.; Price, Rene M.; Coronado-Molina, Carlos; Ross, Michael; Smith, Thomas J.; Michot, Beatrice; Meselhe, Ehab; Nuttle, William; Troxler, Tiffany G.; Noe, Gregory B.

    2011-01-01

    The authors summarize the main findings of the Florida Coastal Everglades Long-Term Ecological Research (FCE-LTER) program in the EMER, within the context of the Comprehensive Everglades Restoration Plan (CERP), to understand how regional processes, mediated by water flow, control population and ecosystem dynamics across the EMER landscape. Tree canopies with maximum height -1) in the calcareous marl substrate and long hydroperiod. Phosphorus limits the EMER and its freshwater watersheds due to the lack of terrigenous sediment input and the phosphorus-limited nature of the freshwater Everglades. Reduced freshwater delivery over the past 50 years, combined with Everglades compartmentalization and a 10 cm rise in coastal sea level, has led to the landward transgression (~1.5 km in 54 years) of the mangrove ecotone. Seasonal variation in freshwater input strongly controls the temporal variation of nitrogen and P exports (99%) from the Everglades to Florida Bay. Rapid changes in nutrient availability and vegetation distribution during the last 50 years show that future ecosystem restoration actions and land use decisions can exert a major influence, similar to sea level rise over the short term, on nutrient cycling and wetland productivity in the EMER.

  16. Empirical tools for simulating salinity in the estuaries in Everglades National Park, Florida

    Science.gov (United States)

    Marshall, F. E.; Smith, D. T.; Nickerson, D. M.

    2011-12-01

    Salinity in a shallow estuary is affected by upland freshwater inputs (surface runoff, stream/canal flows, groundwater), atmospheric processes (precipitation, evaporation), marine connectivity, and wind patterns. In Everglades National Park (ENP) in South Florida, the unique Everglades ecosystem exists as an interconnected system of fresh, brackish, and salt water marshes, mangroves, and open water. For this effort a coastal aquifer conceptual model of the Everglades hydrologic system was used with traditional correlation and regression hydrologic techniques to create a series of multiple linear regression (MLR) salinity models from observed hydrologic, marine, and weather data. The 37 ENP MLR salinity models cover most of the estuarine areas of ENP and produce daily salinity simulations that are capable of estimating 65-80% of the daily variability in salinity depending upon the model. The Root Mean Squared Error is typically about 2-4 salinity units, and there is little bias in the predictions. However, the absolute error of a model prediction in the nearshore embayments and the mangrove zone of Florida Bay may be relatively large for a particular daily simulation during the seasonal transitions. Comparisons show that the models group regionally by similar independent variables and salinity regimes. The MLR salinity models have approximately the same expected range of simulation accuracy and error as higher spatial resolution salinity models.

  17. Tree island pattern formation in the Florida Everglades

    Science.gov (United States)

    Carr, Joel; D'Odorico, P.; Engel, Victor C.; Redwine, Jed

    2016-01-01

    The Florida Everglades freshwater landscape exhibits a distribution of islands covered by woody vegetation and bordered by marshes and wet prairies. Known as “tree islands”, these ecogeomorphic features can be found in few other low gradient, nutrient limited freshwater wetlands. In the last few decades, however, a large percentage of tree islands have either shrank or disappeared in apparent response to altered water depths and other stressors associated with human impacts on the Everglades. Because the processes determining the formation and spatial organization of tree islands remain poorly understood, it is still unclear what controls the sensitivity of these landscapes to altered conditions. We hypothesize that positive feedbacks between woody plants and soil accretion are crucial to emergence and decline of tree islands. Likewise, positive feedbacks between phosphorus (P) accumulation and trees explain the P enrichment commonly observed in tree island soils. Here, we develop a spatially-explicit model of tree island formation and evolution, which accounts for these positive feedbacks (facilitation) as well as for long range competition and fire dynamics. It is found that tree island patterns form within a range of parameter values consistent with field data. Simulated impacts of reduced water levels, increased intensity of drought, and increased frequency of dry season/soil consuming fires on these feedback mechanisms result in the decline and disappearance of tree islands on the landscape.

  18. Attempted eradication of Porphyrio porphyrio Linnaeus in the Florida Everglades

    Directory of Open Access Journals (Sweden)

    Dave EGGEMAN

    2011-01-01

    Full Text Available Porphyrio porphyrio (Fulica porphyrio Linnaeus was reported to the South Florida Water Management District in a Water Conservation Area and in constructed wetlands in the Everglades in 2006. A rapid assessment, including casual observations and surveys of land managers, indicated a limited number of P. porphyrio (~300 birds was present, and an eradication attempt was initiated. From 2006 – 2008, more than 3100 P. porphyrio were killed by shotgun from airboats during 73 hunts, suggesting the initial population assessment was severely underestimated. After removing nearly 1500 P. porphyrio in 2008, we concluded that eradication was not possible. Failure of this eradication attempt is attributed to P. porphyrio’s affinity with dense emergent vegetation, which greatly limited shooting effectiveness. Further, the failed eradication underscores the importance of a reporting network to improve early detection and the chance to eliminate naturalized or feral populations of non‐native species.

  19. Analysis of changes in water-level dynamics at selected sites in the Florida Everglades

    Science.gov (United States)

    Conrads, Paul; Benedict, Stephen T.

    2013-01-01

    The historical modification and regulation of the hydrologic patterns in the Florida Everglades have resulted in changes in the ecosystem of South Florida and the Florida Everglades. Since the 1970s, substantial focus has been given to the restoration of the Everglades ecosystem. The U.S. Geological Survey through its Greater Everglades Priority Ecosystem Science and National Water-Quality Assessment Programs has been providing scientific information to resource managers to assist in the Everglades restoration efforts. The current investigation included development of a simple method to identify and quantify changes in historical hydrologic behavior within the Everglades that could be used by researchers to identify responses of ecological communities to those changes. Such information then could be used by resource managers to develop appropriate water-management practices within the Everglades to promote restoration. The identification of changes in historical hydrologic behavior within the Everglades was accomplished by analyzing historical time-series water-level data from selected gages in the Everglades using (1) break-point analysis of cumulative Z-scores to identify hydrologic changes and (2) cumulative water-level frequency distribution curves to evaluate the magnitude of those changes. This analytical technique was applied to six long-term water-level gages in the Florida Everglades. The break-point analysis for the concurrent period of record (1978–2011) identified 10 common periods of changes in hydrologic behavior at the selected gages. The water-level responses at each gage for the 10 periods displayed similarity in fluctuation patterns, highlighting the interconnectedness of the Florida Everglades hydrologic system. While the patterns were similar, the analysis also showed that larger fluctuations in water levels between periods occurred in Water Conservation Areas 2 and 3 in contrast to those in Water Conservation Area 1 and the Everglades

  20. Dissolved organic matter in the Florida everglades: Implications for ecosystem restoration

    Science.gov (United States)

    Aiken, G.R.; Gilmour, C.C.; Krabbenhoft, D.P.; Orem, W.

    2011-01-01

    Dissolved organic matter (DOM) in the Florida Everglades controls a number of environmental processes important for ecosystem function including the absorption of light, mineral dissolution/precipitation, transport of hydrophobic compounds (e.g., pesticides), and the transport and reactivity of metals, such as mercury. Proposed attempts to return the Everglades to more natural flow conditions will result in changes to the present transport of DOM from the Everglades Agricultural Area and the northern conservation areas to Florida Bay. In part, the restoration plan calls for increasing water flow throughout the Everglades by removing some of the manmade barriers to flow in place today. The land- and water-use practices associated with the plan will likely result in changes in the quality, quantity, and reactivity of DOM throughout the greater Everglades ecosystem. The authors discuss the factors controlling DOM concentrations and chemistry, present distribution of DOM throughout the Everglades, the potential effects of DOM on key water-quality issues, and the potential utility of dissolved organic matter as an indicator of success of restoration efforts. Copyright ?? 2011 Taylor & Francis Group, LLC.

  1. South Florida land-water use and its impact on the Everglades

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, C.J.

    1995-12-31

    The Everglades National Park (ENP) is the largest marsh in the United States and is the only subtropical wetland ecosystem in the U.S. that is enrolled in the international Ramsar Convention of wetland preserves. Because of its size, floral and faunal diversity, geological history and hydrological functions on the Florida landscape it is considered by many ecologists and conservationists as one of the most unique and important wetlands in the world. Unfortunately, the Everglades is surrounded by agricultural and urban development in a state whose population has increased by 33% in the last 10 years. Approximately 50% of the original 900,000 ha Everglades were historically a rainfall driven, nutrient poor (oligotrophic) phosphorous limited wetland ecosystem whose primary vegetation, - sawgrass (Cladium jamaicense Crantz) developed peat soils (Histosols) 0.2 to 6 m in depth over the past 5,000 years. Hydroperiod, nutrient additions, water quantity as well as water delivery schedules in the Everglades, have been altered significantly during the past four decades due primarily to the development of 1600 km of canals by 1967, and the pumping of nutrient enriched water from the Everglades Agricultural Area and Lake Okeechobee during certain portions of the year. Water pumping into and withdrawls from the Everglades during drought periods have altered the natural hydroperiod, but more importantly movement of water through the Everglades via canals to the ocean has removed almost all natural surface water flow across the marsh. Simply stated, the water regime of south Florida has been intensely managed for human uses but not for Everglades sustainability.

  2. Measuring and Mapping the Topography of the Florida Everglades for Ecosystem Restoration

    Science.gov (United States)

    Desmond, Gregory B.

    2003-01-01

    One of the major issues facing ecosystem restoration and management of the Greater Everglades is the availability and distribution of clean, fresh water. The South Florida ecosystem encompasses an area of approximately 28,000 square kilometers and supports a human population that exceeds 5 million and is continuing to grow. The natural systems of the Kissimmee-Okeechobee-Everglades watershed compete for water resources primarily with the region's human population and urbanization, and with the agricultural and tourism industries. Surface water flow modeling and ecological modeling studies are important means of providing scientific information needed for ecosystem restoration planning and modeling. Hydrologic and ecological models provide much-needed predictive capabilities for evaluating management options for parks, refuges, and land acquisition and for understanding the impacts of land management practices in surrounding areas. These models require various input data, including elevation data that very accurately define the topography of the Florida Everglades.

  3. Compartment-based hydrodynamics and water quality modeling of a NorthernEverglades Wetland, Florida, USA

    Science.gov (United States)

    The last remaining large remnant of softwater wetlands in the US Florida Everglades lies within the Arthur R. Marshall Loxahatchee National Wildlife Refuge. However, Refuge water quality today is impacted by pumped stormwater inflows to the eutrophic and mineral-enriched 100-km c...

  4. Application of FTLOADDS to Simulate Flow, Salinity, and Surface-Water Stage in the Southern Everglades, Florida

    Science.gov (United States)

    Wang, John D.; Swain, Eric D.; Wolfert, Melinda A.; Langevin, Christian D.; James, Dawn E.; Telis, Pamela A.

    2007-01-01

    The Comprehensive Everglades Restoration Plan requires numerical modeling to achieve a sufficient understanding of coastal freshwater flows, nutrient sources, and the evaluation of management alternatives to restore the ecosystem of southern Florida. Numerical models include a regional water-management model to represent restoration changes to the hydrology of southern Florida and a hydrodynamic model to represent the southern and western offshore waters. The coastal interface between these two systems, however, has complex surface-water/ground-water and freshwater/saltwater interactions and requires a specialized modeling effort. The Flow and Transport in a Linked Overland/Aquifer Density Dependent System (FTLOADDS) code was developed to represent connected surface- and ground-water systems with variable-density flow. The first use of FTLOADDS is the Southern Inland and Coastal Systems (SICS) application to the southeastern part of the Everglades/Florida Bay coastal region. The need to (1) expand the domain of the numerical modeling into most of Everglades National Park and the western coastal area, and (2) better represent the effect of water-delivery control structures, led to the application of the FTLOADDS code to the Tides and Inflows in the Mangroves of the Everglades (TIME) domain. This application allows the model to address a broader range of hydrologic issues and incorporate new code modifications. The surface-water hydrology is of primary interest to water managers, and is the main focus of this study. The coupling to ground water, however, was necessary to accurately represent leakage exchange between the surface water and ground water, which transfers substantial volumes of water and salt. Initial calibration and analysis of the TIME application produced simulated results that compare well statistically with field-measured values. A comparison of TIME simulation results to previous SICS results shows improved capabilities, particularly in the

  5. Ecosystem resistance in the face of climate change: A case study from the freshwater marshes of the Florida Everglades

    Science.gov (United States)

    Sparkle L. Malone; Cynthia Keough; Christina L. Staudhammer; Michael G. Ryan; William J. Parton; Paulo Olivas; Steven F. Oberbauer; Jessica Schedlbauer; Gregory Starr

    2015-01-01

    Shaped by the hydrology of the Kissimmee-Okeechobee-Everglades watershed, the Florida Everglades is composed of a conglomerate of wetland ecosystems that have varying capacities to sequester and store carbon. Hydrology, which is a product of the region’s precipitation and temperature patterns combined with water management policy, drives community composition...

  6. Distribution and turnover of carbon in natural and constructed wetlands in the Florida Everglades

    International Nuclear Information System (INIS)

    Stern, J.; Wang, Y.; Gu, B.; Newman, J.

    2007-01-01

    Stable and radiocarbon isotopic contents of dissolved organic C (DOC), dissolved inorganic C (DIC), particulate organic C (POC) and plants were used to examine the source and turnover rate of C in natural and constructed wetlands in the Florida Everglades. DOC concentrations decreased, with P concentrations, along a water quality gradient from the agriculturally impacted areas in the northern Everglades to the more pristine Everglades National Park. δ 13 C values of DOC in the area reflect contributions of both wetland vegetation and sugarcane from agriculture. Radiocarbon ages of DOC, POC and DIC in the Everglades ranged from 2.01 ka BP to '>modern'. The old 14 C ages of DOC and POC were found in impacted areas near the Everglades Agricultural Area (EAA) in the northern Everglades. In contrast, DOC and POC in pristine marsh areas had near modern or '>modern' 14 C ages. These data indicate that a major source of POC and DOC in impacted areas is the degradation of historic peat deposits in the EAA. In the pristine areas of the marsh, DOC represents a mix of modern and historic C sources, whereas POC comes from modern primary production as indicated by positive Δ 14 C values, suggesting that DOC is transported farther away from its source than POC. High Δ 14 C values of DIC indicate that dissolution of limestone bedrock is not a significant source of DIC in the Everglades wetlands. As a restored wetland moves towards its 'original' or 'natural' state, the 14 C signatures of DOC should approach that of modern atmosphere. In addition, measurements of concentration and C isotopic composition of DOC in two small constructed wetlands (i.e., test cells) indicate that these freshwater wetland systems contain a labile DOC pool with rapid turnover times of 26-39 days and that the test cells are overall net sinks of DOC

  7. Soil recovery across a chronosequence of restored wetlands in the Florida Everglades

    OpenAIRE

    Qibing Wang; Yuncong Li; Min Zhang

    2015-01-01

    The restoration project in the Hole-in-the-Donut of Everglades National Park in Florida, USA is to reestablish native wetlands by complete removal of the invasive plants and the associated soil. However, there is little information available about changes in properties of the newly formed Marl soils in restored wetlands. In this study, we measured soil physicochemical properties, soil enzymatic activities, and stable isotopes of carbon (?13C) in plants and soil organic carbon (SOC) in an undi...

  8. Results of time-domain electromagnetic soundings in Everglades National Park, Florida

    Science.gov (United States)

    Fitterman, D.V.; Deszcz-Pan, Maria; Stoddard, C.E.

    1999-01-01

    This report describes the collection, processing, and interpretation of time-domain electromagnetic soundings from Everglades National Park. The results are used to locate the extent of seawater intrusion in the Biscayne aquifer and to map the base of the Biscayne aquifer in regions where well coverage is sparse. The data show no evidence of fresh, ground-water flows at depth into Florida Bay.

  9. River of Interests: Water Management in South Florida and the Everglades, 1948-2010

    Science.gov (United States)

    2011-07-01

    influencing hundreds of people to write letters to the secretary of the interior about the project. In this essay , entitled "Rape of the Oklawaha...as "the prospect of helter-skelter development around the airport.ඏ Look issued a photo essay depicting "the assault on the Everglades,ඐ while...the town of Kissimmee, meandered along a 92-mile course through central Florida, eventu- ally reaching Lake Okeechobee. A lyrical description of the

  10. Integrated conceptual ecological model and habitat indices for the southwest Florida coastal wetlands

    Science.gov (United States)

    Wingard, G. Lynn; Lorenz, J. L.

    2014-01-01

    The coastal wetlands of southwest Florida that extend from Charlotte Harbor south to Cape Sable, contain more than 60,000 ha of mangroves and 22,177 ha of salt marsh. These coastal wetlands form a transition zone between the freshwater and marine environments of the South Florida Coastal Marine Ecosystem (SFCME). The coastal wetlands provide diverse ecosystem services that are valued by society and thus are important to the economy of the state. Species from throughout the region spend part of their life cycle in the coastal wetlands, including many marine and coastal-dependent species, making this zone critical to the ecosystem health of the Everglades and the SFCME. However, the coastal wetlands are increasingly vulnerable due to rising sea level, changes in storm intensity and frequency, land use, and water management practices. They are at the boundary of the region covered by the Comprehensive Everglades Restoration Plan (CERP), and thus are impacted by both CERP and marine resource management decisions. An integrated conceptual ecological model (ICEM) for the southwest coastal wetlands of Florida was developed that illustrates the linkages between drivers, pressures, ecological process, and ecosystem services. Five ecological indicators are presented: (1) mangrove community structure and spatial extent; (2) waterbirds; (3) prey-base fish and macroinvertebrates; (4) crocodilians; and (5) periphyton. Most of these indicators are already used in other areas of south Florida and the SFCME, and therefore will allow metrics from the coastal wetlands to be used in system-wide assessments that incorporate the entire Greater Everglades Ecosystem.

  11. Late Holocene vegetation, climate, and land-use impacts on carbon dynamics in the Florida Everglades

    Science.gov (United States)

    Jones, Miriam C.; Bernhardt, Christopher E.; Willard, Debra A.

    2014-01-01

    Tropical and subtropical peatlands are considered a significant carbon sink. The Florida Everglades includes 6000-km2 of peat-accumulating wetland; however, detailed carbon dynamics from different environments within the Everglades have not been extensively studied or compared. Here we present carbon accumulation rates from 13 cores and 4 different environments, including sawgrass ridges and sloughs, tree islands, and marl prairies, whose hydroperiods and vegetation communities differ. We find that the lowest rates of C accumulation occur in sloughs in the southern Everglades. The highest rates are found where hydroperiods are generally shorter, including near-tails of tree islands and drier ridges. Long-term average rates of 100 to >200 g C m−2 yr−1 are as high, and in some cases, higher than rates recorded from the tropics and 10–20 times higher than boreal averages. C accumulation rates were impacted by both the Medieval Climate Anomaly and the Little Ice Age, but the largest impacts to C accumulation rates over the Holocene record have been the anthropogenic changes associated with expansion of agriculture and construction of canals and levees to control movement of surface water. Water management practices in the 20th century have altered the natural hydroperiods and fire regimes of the Everglades. The Florida Everglades as a whole has acted as a significant carbon sink over the mid- to late-Holocene, but reduction of the spatial extent of the original wetland area, as well as the alteration of natural hydrology in the late 19th and 20th centuries, have significantly reduced the carbon sink capacity of this subtropical wetland.

  12. Assessment of the peat resources of Florida, with a detailed survey of the northern everglades

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, G.M.; Wieland, C.C.; Hood, L.Q.; Goode, R.W. III; Sawyer, R.K.; McNeill, D.F.

    1982-01-01

    Available data, including previous publications, modern soil surveys, and detailed coring in the Northern Everglades for this project have been used to update information on Florida's peat resources. It is now estimated that Florida could, if no other constraints existed, produce 606 million tons of moisture-free fuel-grade peat, which may yield approximately 10.0 x 10/sup 15/ Btu of energy. These estimates are much lower than previously published projections for the state. The principal effort of this survey was in the largest peat region of the state, the Northern Everglades of Palm Beach and adjacent counties, where more than 800 core holes were drilled. Based on analyses of these cores, the Northern Everglades is now estimated to contain 191 million tons of moisture-free peat, with a potential energy yield of 2.98 x 10/sup 15/ Btu. These values are considerably less than previously published estimates, probably due to bacterial oxidation and other forms of drainage-induced subsidence in the Everglades agricultural areas. The present fuel-peat resources of the Northern Everglades occur in 19 separate deposits. Of these, the deposits in the Port Mayaca, Bryant, Six Mile Bend, and Loxahatchee Quadrangles comprise the highest concentration of the resource. These lands are generally privately owned and used for sugar cane and other crops, and the conversion of these lands to peat removal seems unlikely. It seems even less likely that the extensive peat deposits within the Loxahatchee National Wildlife Refuge will be available for fuel use, barring a dire national emergency. The utilization of peat as a fuel must be approached with caution and careful study; large scale use may require state or federal action. 34 references.

  13. Using Stable Isotopes to Link Nutrient Sources in the Everglades and Biological Sinks in Florida Bay: A Biogeochemical Approach to Evaluate Ecosystem Response to Changing Nutrient Regimes

    Science.gov (United States)

    Hoare, A. M.; Hollander, D. J.; Heil, C.; Glibert, P.; Murasko, S.; Revilla, M.; Alexander, J.

    2005-05-01

    Anthropogenic influences in South Florida have led to deterioration of its two major ecosystems, the Everglades wetlands and the Florida Bay estuary. Consequently, the Comprehensive Everglades Restoration Plan has been proposed to restore the Everglades ecosystem; however, restoration efforts will likely exert new ecological changes in the Everglades and ultimately Florida Bay. The success of the Florida Everglades restoration depends on our understanding and ability to predict how regional changes in the distribution and composition of dissolved organic and inorganic nutrients will direct the downstream biogeochemical dynamics of Florida Bay. While the transport of freshwater and nutrients to Florida Bay have been studied, much work remains to directly link nutrient dynamics in Florida Bay to nutrient sources in the Everglades. Our study uses stable C and N isotopic measurements of chemical and biological materials from the Everglades and Florida Bay as part of a multi-proxy approach to link nutrient sources in the Everglades to biological sinks in Florida Bay. Isotopic analyses of dissolved and particulate species of water, aquatic vegetation and sedimentary organic matter show that the watersheds within the Everglades are chemically distinct and that these signatures are also reflected in the bay. A large east-west gradient in both carbon and nitrogen (as much as 10‰ for δ15N POM) reflect differing nutrient sources for each region of Florida Bay and is strongly correlated with upstream sources in the Everglades. Isotopic signatures also reflect seasonal relationships associated with wet and dry periods. High C and N measurements of DOM and POM measurements suggest significant influence from waste water in Canal C-111 in eastern Florida Bay, particularly during the dry season. These observations show that nutrients from the Everglades watersheds enter Florida Bay and are important in controlling biogeochemical processes in the bay. This study proves that

  14. Predicting ecological responses of the Florida Everglades to possible future climate scenarios: Introduction

    Science.gov (United States)

    Aumen, Nicholas G.; Havens, Karl E; Best, G. Ronnie; Berry, Leonard

    2015-01-01

    Florida’s Everglades stretch from the headwaters of the Kissimmee River near Orlando to Florida Bay. Under natural conditions in this flat landscape, water flowed slowly downstream as broad, shallow sheet flow. The ecosystem is markedly different now, altered by nutrient pollution and construction of canals, levees, and water control structures designed for flood control and water supply. These alterations have resulted in a 50 % reduction of the ecosystem’s spatial extent and significant changes in ecological function in the remaining portion. One of the world’s largest restoration programs is underway to restore some of the historic hydrologic and ecological functions of the Everglades, via a multi-billion dollar Comprehensive Everglades Restoration Plan. This plan, finalized in 2000, did not explicitly consider climate change effects, yet today we realize that sea level rise and future changes in rainfall (RF), temperature, and evapotranspiration (ET) may have system-wide impacts. This series of papers describes results of a workshop where a regional hydrologic model was used to simulate the hydrology expected in 2060 with climate changes including increased temperature, ET, and sea level, and either an increase or decrease in RF. Ecologists with expertise in various areas of the ecosystem evaluated the hydrologic outputs, drew conclusions about potential ecosystem responses, and identified research needs where projections of response had high uncertainty. Resource managers participated in the workshop, and they present lessons learned regarding how the new information might be used to guide Everglades restoration in the context of climate change.

  15. Estimating methane gas production in peat soils of the Florida Everglades using hydrogeophysical methods

    Science.gov (United States)

    Wright, William; Comas, Xavier

    2016-04-01

    The spatial and temporal variability in production and release of greenhouse gases (such as methane) in peat soils remains uncertain, particularly for low-latitude peatlands like the Everglades. Ground penetrating radar (GPR) is a hydrogeophysical tool that has been successfully used in the last decade to noninvasively investigate carbon dynamics in peat soils; however, application in subtropical systems is almost non-existent. This study is based on four field sites in the Florida Everglades, where changes in gas content within the soil are monitored using time-lapse GPR measurements and gas releases are monitored using gas traps. A weekly methane gas production rate is estimated using a mass balance approach, considering gas content estimated from GPR, gas release from gas traps and incorporating rates of diffusion, and methanotrophic consumption from previous studies. Resulting production rates range between 0.02 and 0.47 g CH4 m-2 d-1, falling within the range reported in literature. This study shows the potential of combining GPR with gas traps to monitor gas dynamics in peat soils of the Everglades and estimate methane gas production. We also show the enhanced ability of certain peat soils to store gas when compared to others, suggesting that physical properties control biogenic gas storage in the Everglades peat soils. Better understanding biogenic methane gas dynamics in peat soils has implications regarding the role of wetlands in the global carbon cycle, particularly under a climate change scenario.

  16. Modeling fish community dynamics in Florida Everglades: Role of temperature variation

    Science.gov (United States)

    Al-Rabai'ah, H. A.; Koh, H. L.; DeAngelis, Donald L.; Lee, Hooi-Ling

    2002-01-01

    Temperature variation is an important factor in Everglade wetlands ecology. A temperature fluctuation from 17°C to 32°C recorded in the Everglades may have significant impact on fish dynamics. The short life cycles of some of Everglade fishes has rendered this temperature variation to have even more impacts on the ecosystem. Fish population dynamic models, which do not explicitly consider seasonal oscillations in temperature, may fail to describe the details of such a population. Hence, a model for fish in freshwater marshes of the Florida Everglades that explicitly incorporates seasonal temperature variations is developed. The model's main objective is to assess the temporal pattern of fish population and densities through time subject to temperature variations. Fish population is divided into 2 functional groups (FGs) consisting of small fishes; each group is subdivided into 5-day age classes during their life cycles. Many governing sub-modules are set directly or indirectly to be temperature dependent. Growth, fecundity, prey availability, consumption rates and mortality are examples. Several mortality sub-modules are introduced in the model, of which starvation mortality is set to be proportional to the ratio of prey needed to prey available at that particular time step. As part of the calibration process, the model is run for 50 years to ensure that fish densities do not go to extinction, while the simulation period is about 8 years.

  17. Climate Change Projected Effects on Coastal Foundation Communities of the Greater Everglades Using a 2060 Scenario: Need for a New Management Paradigm

    Science.gov (United States)

    Koch, M. S.; Coronado, C.; Miller, M. W.; Rudnick, D. T.; Stabenau, E.; Halley, R. B.; Sklar, F. H.

    2015-04-01

    Rising sea levels and temperature will be dominant drivers of coastal Everglades' foundation communities (i.e., mangrove forests, seagrass/macroalgae, and coral reefs) by 2060 based on a climate change scenario of +1.5 °C temperature, +1.5 foot (46 cm) in sea level, ±10 % in precipitation and 490 ppm CO2. Current mangrove forest soil elevation change in South Florida ranges from 0.9 to 2.5 mm year-1 and would have to increase twofold to fourfold in order to accommodate a 2060 sea level rise rate. No evidence is available to indicate that coastal mangroves from South Florida and the wider Caribbean can keep pace with a rapid rate of sea level rise. Thus, particles and nutrients from destabilized coastlines could be mobilized and impact benthic habitats of southern Florida. Uncertainties in regional geomorphology and coastal current changes under higher sea levels make this prediction tentative without further research. The 2060 higher temperature scenario would compromise Florida's coral reefs that are already degraded. We suggest that a new paradigm is needed for resource management under climate change that manages coastlines for resilience to marine transgression and promotes active ecosystem management. In the case of the Everglades, greater freshwater flows could maximize mangrove peat accumulation, stabilize coastlines, and limit saltwater intrusion, while specific coral species may require propagation. Further, we suggest that regional climate drivers and oceanographic processes be incorporated into Everglades and South Florida management plans, as they are likely to impact coastal ecosystems, interior freshwater wetlands and urban coastlines over the next few decades.

  18. Ecological implications of Laurel Wilt infestation on Everglades Tree Islands, southern Florida

    Science.gov (United States)

    Snyder, James R.

    2014-01-01

    , laurel wilt disease also kills other native trees that are members of the laurel family, including swamp bay (Persea palustris), silk bay (Persea borbonia var. humilis), and sassafras (Sassafras albidum), as well as the economically important cultivated avocado (Persea americana) (Fraedrich and others, 2008). This paper is concerned primarily with swamp bay, an important component of Everglades tree islands.The spread of the redbay ambrosia beetle and its fungal symbiont has been very rapid, exceeding model predictions (Koch and Smith, 2008); by 2011, laurel wilt disease was found from the southern coastal plain of North Carolina to southern peninsular Florida. The first redbay ambrosia beetle was trapped in Miami-Dade County in March 2010, and laurel wilt disease was discovered in swamp bays in February 2011 and in commercial avocado groves about a year later (Kendra and others, 2013). By 2013, laurel wilt disease was seen in swamp bays throughout the southern Everglades in Everglades National Park, Big Cypress National Preserve, and Water Conservation Areas (WCAs) 3A and 3B (Rodgers and others, 2014).

  19. Phosphorus fractionation and distribution in sediments from wetlands and canals of a water conservation area in the Florida Everglades

    Science.gov (United States)

    Qingren Wang; Yuncong Li; Ying. Ouyang

    2011-01-01

    Phosphorus (P) fractionation and distribution in sediments are of great concern in the Florida Everglades ecosystem because potential eutrophication of surface waters usually results from P external loading and stability. Intact core sediment samples were collected to a depth of 35 cm from wetlands and canals across Water Conservation Area 3 (WCA‐3) of the Florida...

  20. Occurrence and distribution of novel botryococcene hydrocarbons in freshwater wetlands of the Florida Everglades.

    Science.gov (United States)

    Gao, Min; Simoneit, Bernd R T; Gantar, Miroslav; Jaffé, Rudolf

    2007-12-01

    A high abundance of isoprenoid hydrocarbons, the botryococcenes, with carbon numbers from 32 to 34 were detected in the Florida Everglades freshwater wetlands. These compounds were present in varying amounts up to 106microg/gdw in periphyton, 278microg/gdw in floc, and 46microg/gdw in soils. Their structures were determined based on comparison to standards, interpretation of their mass spectra and those of their hydrogenation products, and comparison of Kovats indexes to those reported in the literature. A total of 26 cyclic and acyclic botryococcenes with 8 skeletons were identified, including those with fewer degrees of unsaturation, which are proposed as early diagenetic derivatives from the natural products. This is the first report that botryococcenes occur in the Everglades freshwater wetlands. Their potential biogenetic sources from green algae and cyanobacteria were examined, but neither contained botryococcenes. Thus, the source implication of botryococcenes in this ecosystem needs further study.

  1. Using Bi-Seasonal WorldView-2 Multi-Spectral Data and Supervised Random Forest Classification to Map Coastal Plant Communities in Everglades National Park

    Directory of Open Access Journals (Sweden)

    Kristie S. Wendelberger

    2018-03-01

    Full Text Available Coastal plant communities are being transformed or lost because of sea level rise (SLR and land-use change. In conjunction with SLR, the Florida Everglades ecosystem has undergone large-scale drainage and restoration, altering coastal vegetation throughout south Florida. To understand how coastal plant communities are changing over time, accurate mapping techniques are needed that can define plant communities at a fine-enough resolution to detect fine-scale changes. We explored using bi-seasonal versus single-season WorldView-2 satellite data to map three mangrove and four adjacent plant communities, including the buttonwood/glycophyte community that harbors the federally-endangered plant Chromolaena frustrata. Bi-seasonal data were more effective than single-season to differentiate all communities of interest. Bi-seasonal data combined with Light Detection and Ranging (LiDAR elevation data were used to map coastal plant communities of a coastal stretch within Everglades National Park (ENP. Overall map accuracy was 86%. Black and red mangroves were the dominant communities and covered 50% of the study site. All the remaining communities had ≤10% cover, including the buttonwood/glycophyte community. ENP harbors 21 rare coastal species threatened by SLR. The spatially explicit, quantitative data provided by our map provides a fine-scale baseline for monitoring future change in these species’ habitats. Our results also offer a method to monitor vegetation change in other threatened habitats.

  2. Using Bi-Seasonal WorldView-2 Multi-Spectral Data and Supervised Random Forest Classification to Map Coastal Plant Communities in Everglades National Park.

    Science.gov (United States)

    Wendelberger, Kristie S; Gann, Daniel; Richards, Jennifer H

    2018-03-09

    Coastal plant communities are being transformed or lost because of sea level rise (SLR) and land-use change. In conjunction with SLR, the Florida Everglades ecosystem has undergone large-scale drainage and restoration, altering coastal vegetation throughout south Florida. To understand how coastal plant communities are changing over time, accurate mapping techniques are needed that can define plant communities at a fine-enough resolution to detect fine-scale changes. We explored using bi-seasonal versus single-season WorldView-2 satellite data to map three mangrove and four adjacent plant communities, including the buttonwood/glycophyte community that harbors the federally-endangered plant Chromolaena frustrata . Bi-seasonal data were more effective than single-season to differentiate all communities of interest. Bi-seasonal data combined with Light Detection and Ranging (LiDAR) elevation data were used to map coastal plant communities of a coastal stretch within Everglades National Park (ENP). Overall map accuracy was 86%. Black and red mangroves were the dominant communities and covered 50% of the study site. All the remaining communities had ≤10% cover, including the buttonwood/glycophyte community. ENP harbors 21 rare coastal species threatened by SLR. The spatially explicit, quantitative data provided by our map provides a fine-scale baseline for monitoring future change in these species' habitats. Our results also offer a method to monitor vegetation change in other threatened habitats.

  3. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  4. Factors affecting spatial and temporal variability in material exchange between the Southern Everglades wetlands and Florida Bay (USA)

    Science.gov (United States)

    Sutula, Martha A.; Perez, Brian C.; Reyes, Enrique; Childers, Daniel L.; Davis, Steve; Day, John W.; Rudnick, David; Sklar, Fred

    2003-08-01

    Physical and biological processes controlling spatial and temporal variations in material concentration and exchange between the Southern Everglades wetlands and Florida Bay were studied for 2.5 years in three of the five major creek systems draining the watershed. Daily total nitrogen (TN), and total phosphorus (TP) fluxes were measured for 2 years in Taylor River, and ten 10-day intensive studies were conducted in this creek to estimate the seasonal flux of dissolved inorganic nitrogen (N), phosphorus (P), total organic carbon (TOC), and suspended matter. Four 10-day studies were conducted simultaneously in Taylor, McCormick, and Trout Creeks to study the spatial variation in concentration and flux. The annual fluxes of TOC, TN, and TP from the Southern Everglades were estimated from regression equations. The Southern Everglades watershed, a 460-km 2 area that includes Taylor Slough and the area south of the C-111 canal, exported 7.1 g C m -2, 0.46 g N m -2, and 0.007 g P m -2, annually. Everglades P flux is three to four orders of magnitude lower than published flux estimates from wetlands influenced by terrigenous sedimentary inputs. These low P flux values reflect both the inherently low P content of Everglades surface water and the efficiency of Everglades carbonate sediments and biota in conserving and recycling this limiting nutrient. The seasonal variation of freshwater input to the watershed was responsible for major temporal variations in N, P, and C export to Florida Bay; approximately 99% of the export occurred during the rainy season. Wind-driven forcing was most important during the later stages of the dry season when low freshwater head coincided with southerly winds, resulting in a net import of water and materials into the wetlands. We also observed an east to west decrease in TN:TP ratio from 212:1 to 127:1. Major spatial gradients in N:P ratios and nutrient concentration and flux among the creek were consistent with the westward decrease in

  5. Monitoring hydrogeochemical interactions in coastal mangroves in Everglades National Park using field spectroscopy and remote sensing

    Science.gov (United States)

    Lagomasino, D.; Price, R. M.; Campbell, P. K.

    2011-12-01

    Coastal tropical and subtropical environments, where there are distinct seasonal shifts in precipitation, can be highly susceptible to environmental changes caused by increasing anthropogenic pressure (e.g., urbanization, deforestation) in addition to natural "press and pulse" events, such as sea-level rise, tropical storms, and a changing climate. These man-made and natural perturbations directly affect the quality and quantity of water flowing through the ecosystem, both on the surface and subsurface. Changes in groundwater and surface water interactions will impact ecological communities, including highly vulnerable coastal mangrove communities. Nearly 1,445 km2 of mangroves cover Everglades National Park along the southern and southwestern coast of Florida. Rising sea levels, a predicted drier climate, and increased water demand may accelerate the landward migration of salt water intrusion which poses threats to the ecological communities along this coastal ecotone. This is a growing concern for the region and it is necessary that we understand the present hydrogeologic conditions to better monitor and model the future and inevitable changes to the coastal environment. The purpose of this preliminary study was to test the feasibility of measuring water quality indirectly from the spectral responses of mangrove vegetation on a regional scale. Spectra-derived biophysical indices were used to assess various relationships between the spectral signatures of the 3 main mangrove species (i.e., Avicennia germinans, Rhizophora mangle, and Laguncularia racemosa) and the ionic and nutrient concentrations in the porewater (i.e., 20cm and 100cm depths), surface water, and groundwater of the mangrove ecotone. Water samples from these sources were collected during the dry season, a transitional period, and the wet season at three sites in large, high-biomass mangroves along Shark River and two sites in dwarf, low-biomass, mangroves along Taylor River. Water samples were

  6. Fluctuating water depths affect American alligator (Alligator mississippiensis) body condition in the Everglades, Florida, USA

    Science.gov (United States)

    Brandt, Laura A.; Beauchamp, Jeffrey S.; Jeffery, Brian M.; Cherkiss, Michael S.; Mazzotti, Frank J.

    2016-01-01

    Successful restoration of wetland ecosystems requires knowledge of wetland hydrologic patterns and an understanding of how those patterns affect wetland plant and animal populations.Within the Everglades, Florida, USA restoration, an applied science strategy including conceptual ecological models linking drivers to indicators is being used to organize current scientific understanding to support restoration efforts. A key driver of the ecosystem affecting the distribution and abundance of organisms is the timing, distribution, and volume of water flows that result in water depth patterns across the landscape. American alligators (Alligator mississippiensis) are one of the ecological indicators being used to assess Everglades restoration because they are a keystone species and integrate biological impacts of hydrological operations through all life stages. Alligator body condition (the relative fatness of an animal) is one of the metrics being used and targets have been set to allow us to track progress. We examined trends in alligator body condition using Fulton’s K over a 15 year period (2000–2014) at seven different wetland areas within the Everglades ecosystem, assessed patterns and trends relative to restoration targets, and related those trends to hydrologic variables. We developed a series of 17 a priori hypotheses that we tested with an information theoretic approach to identify which hydrologic factors affect alligator body condition. Alligator body condition was highest throughout the Everglades during the early 2000s and is approximately 5–10% lower now (2014). Values have varied by year, area, and hydrology. Body condition was positively correlated with range in water depth and fall water depth. Our top model was the “Current” model and included variables that describe current year hydrology (spring depth, fall depth, hydroperiod, range, interaction of range and fall depth, interaction of range and hydroperiod). Across all models, interaction

  7. Endosulfan in the atmosphere of South Florida: Transport to Everglades and Biscayne National Parks

    Science.gov (United States)

    Hapeman, Cathleen J.; McConnell, Laura L.; Potter, Thomas L.; Harman-Fetcho, Jennifer; Schmidt, Walter F.; Rice, Clifford P.; Schaffer, Bruce A.; Curry, Richard

    2013-02-01

    Nutrient inputs from urban encroachment and agricultural activities have been implicated in contributing to the environmental health decline and loss of organism diversity of South Florida ecosystems. Intensive agricultural pesticide use may also challenge these ecosystems. One possible mechanism is pesticide release to the atmosphere after application. The process is enhanced in this region due to the calcareous soils, frequent rainfall, and high humidity and temperatures. This study examined the atmospheric fate of the widely-used insecticide endosulfan. Air samples were collected over a five-year period (2001-2006) at a site within the agricultural community of Homestead, Florida and at sites located in nearby Biscayne and Everglades National Parks (NPs). Mean gas phase air concentrations of α-endosulfan were 17 ± 19 ng m-3 at Homestead, 2.3 ± 3.6 ng m-3 at Everglades NP, and 0.52 ± 0.69 ng m-3 at Biscayne NP. Endosulfan emissions from agricultural areas around Homestead appeared to influence air concentration observations at the NP sites. During an intensive sampling campaign, the highest total endosulfan concentrations at the NP sites were observed on days when air parcels were predicted to move from Homestead towards the sampling locations. The α-endosulfan fraction (α/(α + β)) was used to examine the contribution of pesticide drift versus volatilization to the overall residue level. The formulated product has an α fraction of approximately 0.7, whereas volatilization is predicted to have an α fraction of ≥0.9. The median α- fraction observed during periods of high agricultural activity at Homestead and Everglades NP was 0.84 and 0.88, respectively, and during periods of low agricultural activity the median at Homestead was 0.86, indicating contributions from drift. The median α fraction at Everglades NP was 1.0 during periods of low agricultural activity, while Biscayne NP was 1.0 year round indicating air concentrations are primarily

  8. Wading bird guano enrichment of soil nutrients in tree islands of the Florida Everglades

    Energy Technology Data Exchange (ETDEWEB)

    Irick, Daniel L. [University of Florida, Soil and Water Science Department, Tropical Research and Education Center, 18905 SW 280th St., Homestead, FL 33031 (United States); Gu, Binhe [University of Florida, Soil and Water Science Department, 2181 McCarty Hall, Gainesville, FL 32611 (United States); Li, Yuncong C., E-mail: yunli@ufl.edu [University of Florida, Soil and Water Science Department, Tropical Research and Education Center, 18905 SW 280th St., Homestead, FL 33031 (United States); Inglett, Patrick W. [University of Florida, Soil and Water Science Department, 2181 McCarty Hall, Gainesville, FL 32611 (United States); Frederick, Peter C. [University of Florida, Department of Wildlife Ecology and Conservation, 110 Newins-Ziegler Hall, PO Box 110430, Gainesville, FL 32611 (United States); Ross, Michael S. [Florida International University, Department of Earth and Environment, Southeast Environmental Research Center, 11200 SW 8th St, Miami, FL 33199 (United States); Wright, Alan L. [University of Florida, Soil and Water Science Department, Everglades Research and Education Center, 3200 E. Palm Beach Rd., Belle Glade, FL 33430 (United States); Ewe, Sharon M.L. [Ecology and Environment, Inc., 12300 South Shore Blvd, Wellington, FL 33414 (United States)

    2015-11-01

    Differential distribution of nutrients within an ecosystem can offer insight of ecological and physical processes that are otherwise unclear. This study was conducted to determine if enrichment of phosphorus (P) in tree island soils of the Florida Everglades can be explained by bird guano deposition. Concentrations of total carbon, nitrogen (N), and P, and N stable isotope ratio (δ{sup 15}N) were determined on soil samples from 46 tree islands. Total elemental concentrations and δ{sup 15}N were determined on wading bird guano. Sequential chemical extraction of P pools was also performed on guano. Guano contained between 53.1 and 123.7 g-N kg{sup −1} and 20.7 and 56.7 g-P kg{sup −1}. Most of the P present in guano was extractable by HCl, which ranged from 82 to 97% of the total P. Total P of tree islands classified as having low or high P soils averaged 0.71 and 40.6 g kg{sup −1}, respectively. Tree island soil with high total P concentration was found to have a similar δ{sup 15}N signature and total P concentration as bird guano. Phosphorus concentrations and δ{sup 15}N were positively correlated in tree island soils (r = 0.83, p < 0.0001). Potential input of guano with elevated concentrations of N and P, and {sup 15}N enriched N, relative to other sources suggests that guano deposition in tree island soils is a mechanism contributing to this pattern. - Highlights: • Tree island soil P concentration and δ{sup 15}N values exceed other Everglades soils. • Characteristics of Everglades tree island soil may indicate guano deposition. • Deposition of stable guano P can exceed other P sources to tree island soil.

  9. Levels of mercury in alligators (Alligator mississippiensis) collected along a transect through the Florida Everglades

    Science.gov (United States)

    Rumbold, D.G.; Fink, L.E.; Laine, K.A.; Niemczyk, S.L.; Chandrasekhar, T.; Wankel, Scott D.; Kendall, C.

    2002-01-01

    As part of a multi-agency study of alligator health, 28 American alligators (Alligator mississippiensis) were captured along a transect through the Florida Everglades in 1999. Liver and tail muscle tissues were sampled and analyzed on a wet weight basis for total mercury (THg) using cold-vapor atomic absorption spectrophotometry. All tissues had detectable concentrations of THg that ranged from 0.6 to 17 mg/kg in liver and from 0.1 to 1.8 mg/kg in tail muscle. THg was more concentrated in liver tissue than tail muscle, but levels were highly correlated between tissues. THg concentrations in tissue differed significantly among locations, with animals from Everglades National Park (ENP) having mean concentrations of THg in liver (10.4 mg/kg) and tail muscle (1.2 mg/kg) that were two-fold higher than basin-wide averages (4.9 and 0.64 mg/kg, respectively). The reasons for higher contamination of ENP alligators were unclear and could not be explained by differences in sex, length, weight or animal age. While ??15N values were positively correlated with THg concentrations in tail muscle, spatial patterns in isotopic composition did not explain the elevated THg levels in ENP alligators. Therefore, it appears that ENP alligators were more highly exposed to mercury in their environment than individuals in other areas. Comparisons to a previous survey by Yanochko et al. [Arch Environ Contam Toxicol 32 (1997) 323] suggest that mercury levels have declined in some Everglades alligators since 1994. ?? 2002 Elsevier Science B.V. All rights reserved.

  10. Lower lethal temperatures for nonnative freshwater fishes in Everglades National Park, Florida

    Science.gov (United States)

    Schofield, Pam; Kline, Jeffrey L.

    2018-01-01

    Temperature is an important factor that shapes biogeography and species composition. In southern Florida, the tolerance of nonnative freshwater fishes to low temperatures is a critical factor in delineating their geographic spread. In this study, we provide empirical information on experimentally derived low-temperature tolerance limits of Banded Cichlid Heros severus and Spotfin Spiny Eel Macrognathus siamensis, two nonnative Everglades fishes that were lacking data, and African Jewelfish Hemichromis letourneuxi and Mayan Cichlid Cichlasoma urophthalmus, species for which previous results were derived from studies with small sample sizes. We also provide a literature review summarizing the current state of knowledge of low-temperature tolerances for all 17 nonnative freshwater fishes that have been found in Everglades National Park. Mean lower lethal temperature tolerances ranged from 4°C (Orinoco Sailfin Catfish Pterygoplichthys multiradiatus) to 16.1°C (Butterfly Peacock Bass Cichla ocellaris). These low-temperature limits may inform the understanding of the ecological role or influence of nonnative fishes and may lead to potential management opportunities and applications.

  11. A Key to the Pupal Exuviae of the Midges (Diptera: Chironomidae) of Everglades National Park, Florida

    Science.gov (United States)

    Jacobsen, Richard E.

    2008-01-01

    A key has been developed for identifying the pupal exuviae of 132 taxa of chironomid midges collected in Everglades National Park, as well as 18 additional species from freshwater habitats adjacent to the Park. Descriptions and illustrations are based upon voucher specimens from extensive collections of chironomid pupal exuviae for faunal surveys and biomonitoring research conducted in ENP and surrounding freshwater areas from 1998 to 2007. The key includes taxonomic comments for confirming identifications, as well as brief summaries of the distribution and ecology of each species in southern Florida waters. Information is also provided on the morphology of chironomid pupal exuviae, recommended references for identifying pupal exuviae, techniques for making slides, and methods to confirm proper identification.

  12. Molecular characterization of dissolved organic matter in freshwater wetlands of the Florida Everglades.

    Science.gov (United States)

    Lu, X Q; Maie, N; Hanna, J V; Childers, D L; Jaffé, R

    2003-06-01

    In this study, the molecular composition of dissolved organic matter (DOM), collected from wetlands of the Southern Everglades, was examined using a variety of analytical techniques in order to characterize its sources and transformation in the environment. The methods applied for the characterization of DOM included fluorescence spectroscopy, solid state 13C CPMAS NMR spectroscopy, and pyrolysis-GC/MS. The relative abundance of protein-like components and carbohydrates increased from the canal site to more remote freshwater marsh sites suggesting that significant amounts of non-humic DOM are autochthonously produced within the freshwater marshes, and are not exclusively introduced through canal inputs. Such in situ DOM production is important when considering how DOM from canals is processed and transported to downstream estuaries of Florida Bay.

  13. Physiological responses of red mangroves to the climate in the Florida Everglades

    Science.gov (United States)

    Barr, Jordan G.; Fuentes, Jose D.; Engel, Vic; Zieman, Joseph C.

    2009-06-01

    This manuscript reports the findings of physiological studies of red mangrove (Rhizophora mangle L.) conducted from June to August 2001 and from May to June 2003 in the Florida Everglades. In situ physiological measurements were made using environmentally controlled gas exchange systems. The field investigations were carried out to define how regional climate constrains mangrove physiology and ecosystem carbon assimilation. In addition, maximum carboxylation and photosynthetic active radiation (PAR) limited carbon assimilation capacities were investigated during the summer season to evaluate whether ecophysiological models developed for mesophyte plant species can be applied to mangroves. Under summertime conditions in the Florida Everglades, maximum foliar carbon dioxide (CO2) assimilation rates reached 18 μmol CO2 m-2 s-1. Peak molar stomatal conductance to water vapor (H2O) diffusion reached 300 mmol H2O m-2 s-1. Maximum carboxylation and PAR-limited carbon assimilation rates at the foliage temperature of 30°C attained 76.1 ± 23.4 μmol CO2 m-2 s-1 and 128.1 ± 32.9 μmol (e-) m-2 s-1, respectively. Environmental stressors such as the presence of hypersaline conditions and high solar irradiance loading (>500 W m-2 or >1000 μmoles of photons m-2 s-1 of PAR) imposed sharp reductions in carbon assimilation rates and suppressed stomatal conductance. On the basis of both field observations and model analyses, it is also concluded that existing ecophysiological models need to be modified to consider the influences of hypersaline and high radiational loadings on the physiological responses of red mangroves.

  14. Methanogens Are Major Contributors to Nitrogen Fixation in Soils of the Florida Everglades.

    Science.gov (United States)

    Bae, Hee-Sung; Morrison, Elise; Chanton, Jeffrey P; Ogram, Andrew

    2018-04-01

    The objective of this study was to investigate the interaction of the nitrogen (N) cycle with methane production in the Florida Everglades, a large freshwater wetland. This study provides an initial analysis of the distribution and expression of N-cycling genes in Water Conservation Area 2A (WCA-2A), a section of the marsh that underwent phosphorus (P) loading for many years due to runoff from upstream agricultural activities. The elevated P resulted in increased primary productivity and an N limitation in P-enriched areas. Results from quantitative real-time PCR (qPCR) analyses indicated that the N cycle in WCA-2A was dominated by nifH and nirK / S , with an increasing trend in copy numbers in P-impacted sites. Many nifH sequences (6 to 44% of the total) and nifH transcript sequences (2 to 49%) clustered with the methanogenic Euryarchaeota , in stark contrast to the proportion of core gene sequences representing Archaea (≤0.27% of SSU rRNA genes) for the WCA-2A microbiota. Notably, archaeal nifH gene transcripts were detected at all sites and comprised a significant proportion of total nifH transcripts obtained from the unimpacted site, indicating that methanogens are actively fixing N 2 Laboratory incubations with soils taken from WCA-2A produced nifH transcripts with the production of methane from H 2 plus CO 2 and acetate as electron donors and carbon sources. Methanogenic N 2 fixation is likely to be an important, although largely unrecognized, route through which fixed nitrogen enters the anoxic soils of the Everglades and may have significant relevance regarding methane production in wetlands. IMPORTANCE Wetlands are the most important natural sources of the greenhouse gas methane, and much of that methane emanates from (sub)tropical peatlands. Primary productivity in these peatlands is frequently limited by the availability of nitrogen or phosphorus; however, the response to nutrient limitations of microbial communities that control biogeochemical cycling

  15. 78 FR 13081 - Draft Environmental Impact Statement for General Management Plan, Everglades National Park, Florida

    Science.gov (United States)

    2013-02-26

    ... visitor use in the Park. The GMP will provide updated management direction for the entire park. The EEWS....YP0000] Draft Environmental Impact Statement for General Management Plan, Everglades National Park... the General Management Plan (GMP) and East Everglades Wilderness Study (EEWS) for Everglades National...

  16. Satellite tracking reveals habitat use by juvenile green sea turtles Chelonia mydas in the Everglades, Florida, USA

    Science.gov (United States)

    Hart, Kristen M.; Fujisaki, Ikuko

    2010-01-01

    We tracked the movements of 6 juvenile green sea turtles captured in coastal areas of southwest Florida within Everglades National Park (ENP) using satellite transmitters for periods of 27 to 62 d in 2007 and 2008 (mean ± SD: 47.7 ± 12.9 d). Turtles ranged in size from 33.4 to 67.5 cm straight carapace length (45.7 ± 12.9 cm) and 4.4 to 40.8 kg in mass (16.0 ± 13.8 kg). These data represent the first satellite tracking data gathered on juveniles of this endangered species at this remote study site, which may represent an important developmental habitat and foraging ground. Satellite tracking results suggested that these immature turtles were resident for several months very close to capture and release sites, in waters from 0 to 10 m in depth. Mean home range for this springtime tracking period as represented by minimum convex polygon (MCP) was 1004.9 ± 618.8 km2 (range 374.1 to 2060.1 km2), with 4 of 6 individuals spending a significant proportion of time within the ENP boundaries in 2008 in areas with dense patches of marine algae. Core use areas determined by 50% kernel density estimates (KDE) ranged from 5.0 to 54.4 km2, with a mean of 22.5 ± 22.1 km2. Overlap of 50% KDE plots for 6 turtles confirmed use of shallow-water nearshore habitats =0.6 m deep within the park boundary. Delineating specific habitats used by juvenile green turtles in this and other remote coastal areas with protected status will help conservation managers to prioritize their efforts and increase efficacy in protecting endangered species.

  17. Preliminary Use of Uric Acid as a Biomarker for Wading Birds on Everglades Tree Islands, Florida, United States

    Science.gov (United States)

    Bates, Anne L.; Orem, William H.; Newman, Susan; Gawlik, Dale E.; Lerch, Harry E.; Corum, Margo D.; Van Winkle, Monica

    2010-01-01

    Concentrations of organic biomarkers and concentrations of phosphorus in soil cores can potentially be used as proxies for historic population densities of wading birds on tree islands in the Florida Everglades. This report focuses on establishing a link between the organic biomarker uric acid found in wading bird guano and the high phosphorus concentrations in tree island soils in the Florida Everglades. Uric acid was determined in soil core sections, in surface samples, and in bird guano by using a method of high-performance liquid chromatography-mass spectrometry (HPLC-MS) developed for this purpose. Preliminary results show an overall correlation between uric acid and total phosphorus in three soil cores, with a general trend of decreasing concentrations of both uric acid and phosphorus with depth. However, we have also found no uric acid in a soil core having high concentrations of phosphorus. We believe that this result may be explained by different geochemical circumstances at that site.

  18. Landscape factors and hydrology influence mercury concentrations in wading birds breeding in the Florida Everglades, USA.

    Science.gov (United States)

    Herring, Garth; Eagles-Smith, Collin A; Ackerman, Joshua T; Gawlik, Dale E; Beerens, James M

    2013-08-01

    The hydrology of wetland ecosystems is a key driver of both mercury (Hg) methylation and waterbird foraging ecology, and hence may play a fundamental role in waterbird exposure and risk to Hg contamination. However, few studies have investigated hydrological factors that influence waterbird Hg exposure. We examined how several landscape-level hydrological variables influenced Hg concentrations in great egret and white ibis adults and chicks in the Florida Everglades. The great egret is a visual "exploiter" species that tolerates lower prey densities and is less sensitive to hydrological conditions than is the white ibis, which is a tactile "searcher" species that pursues higher prey densities in shallow water. Mercury concentrations in adult great egrets were most influenced by the spatial region that they occupied in the Everglades (higher in the southern region); whereas the number of days a site was dry during the previous dry season was the most important factor influencing Hg concentrations in adult ibis (Hg concentrations increased with the number of days dry). In contrast, Hg concentrations in egret chicks were most influenced by calendar date (increasing with date), whereas Hg concentrations in ibis chicks were most influenced by chick age, region, and water recession rate (Hg concentrations decreased with age, were higher in the southern regions, and increased with positive water recession rates). Our results indicate that both recent (preceding two weeks) hydrological conditions, and those of the prior year, influence Hg concentrations in wading birds. Further, these results suggest that Hg exposure in wading birds is driven by complex relationships between wading bird behavior and life stage, landscape hydrologic patterns, and biogeochemical processes. Published by Elsevier B.V.

  19. Comparison of the South Florida Natural System Model with Pre-canal Everglades Hydrology Estimated from Historical Sources

    Science.gov (United States)

    McVoy, Christopher; Park, Winifred A.; Obeysekera, Jayantha

    1996-01-01

    Preservation and restoration of the remaining Everglades ecosystem is focussed on two aspects: improving upstream water quality and improving 'hydropatterns' - the timing, depth and flow of surface water. Restoration of hydropatterns requires knowledge of the original pre-canal drainage conditions as well as an understanding of the soil, topo-graphic, and vegetation changes that have taken place since canal drainage began in the 1880's. The Natural System Model (NSM), developed by the South Florida Water Management District (SFWMD) and Everglades National Park, uses estimates of pre-drainage vegetation and topography to estimate the pre-drainage hydrologic response of the Everglades. Sources of model uncertainty include: (1) the algorithms, (2) the parameters (particularly those relating to vegetation roughness and evapotranspiration), and (3) errors in the assumed pre-drainage vegetation distribution and pre-drainage topography. Other studies are concentrating on algorithmic and parameter sources of uncertainty. In this study we focus on the NSM output -- predicted hydropattern -- and evaluate this by comparison with all available direct and indirect information on pre-drainage hydropatterns. The unpublished and published literature is being searched exhaustively for observations of water depth, flow direction, flow velocity and hydroperiod, during the period prior and just after drainage (1840-1920). Additionally, a comprehensive map of soils in the Everglades region, prepared in the 1940's by personnel from the University of Florida Agricultural Experiment Station, the U.S. Soil Conservation Service, the U.S. Geological Survey, and the Everglades Drainage District, is being used to identify wetland soils and to infer the spatial distribution of pre-drainage hydrologic conditions. Detailed study of this map and other early soil and vegetation maps in light of the history of drainage activities will reveal patterns of change and possible errors in the input to the

  20. Emissions of sulfur gases from marine and freshwater wetlands of the Florida Everglades: Rates and extrapolation using remote sensing

    Science.gov (United States)

    Hines, Mark E.; Pelletier, Ramona E.; Crill, Patrick M.

    1992-01-01

    Rates of emissions of the biogenic sulfur (S) gases carbonyl sulfide (COS), methyl mercaptan (MSH), dimethyl sulfide (DMS), and carbon disulfide (CS2) were measured in a variety of marine and freshwater wetland habitats in the Florida Everglades during a short duration period in October using dynamic chambers, cryotrapping techniques, and gas chromatography. The most rapid emissions of greater than 500 nmol/m(sup -2)h(sup -1) occurred in red mangrove-dominated sites that were adjacent to open seawater and contained numerous crab burrows. Poorly drained red mangrove sites exhibited lower fluxes of approximately 60 nmol/m(sup -2)h(sup -1) which were similar to fluxes from the black mangrove areas which dominated the marine-influenced wetland sites in the Everglades. DMS was the dominant organo-S gas emitted especially in the freshwater areas. Spectral data from a scene from the Landsat thematic mapper were used to map habitats in the Everglades. Six vegetation categories were delineated using geographical information system software and S gas emission were extrapolated for the entire Everglades National Park. The black mangrove-dominated areas accounted for the largest portion of S gas emissions to the area. The large area extent of the saw grass communities (42 percent) accounted for approximately 24 percent of the total S emissions.

  1. Ecological characterization of the lower Everglades, Florida Bay, and the Florida Keys

    Energy Technology Data Exchange (ETDEWEB)

    Schomer, N.S.; Drew, R.D.

    1982-09-01

    A conceptual model of the study area identifies four major ecological zones: (1) terrestrial and freshwater wetlands, (2) estuarine and saltwater wetlands, (3) Florida Bay and mangrove islands, and (4) the Florida Keys. These zones are delineated by differences in basic physical-chemical background factors which in turn promote characteristic ecological communities. The terrestrial and freshwater wetlands support pinelands, sawgrass marshes, wet prairies, sloughs and occasional tree islands. The estuarine and saltwater wetlands support mangrove forests, salt marshes and oscillating salinity systems. Florida Bay exhibits oscillating meso- to hypersaline waters over grassbeds on marine lime mud sediments surrounding deeper lake areas. The exposed tips of the mud banks frequently support mangrove or salt prairie vegetation. The Florida Keys support almost all of the above communities to some small degree but are characterized by extensive offshore coral reefs. The productivity of these communities with regard to fish and wildlife reflects (1) the diversity and type of habitats available to species that are potentially capable of exploiting them, (2) the degree of alteration of these habitats by man and natural forces, and (3) historical, biogeographic and random factors that restrict organisms to specific environments or prohibit them from exploiting a potential habitat.

  2. Soil recovery across a chronosequence of restored wetlands in the Florida Everglades

    Science.gov (United States)

    Wang, Qibing; Li, Yuncong; Zhang, Min

    2015-12-01

    The restoration project in the Hole-in-the-Donut of Everglades National Park in Florida, USA is to reestablish native wetlands by complete removal of the invasive plants and the associated soil. However, there is little information available about changes in properties of the newly formed Marl soils in restored wetlands. In this study, we measured soil physicochemical properties, soil enzymatic activities, and stable isotopes of carbon (δ13C) in plants and soil organic carbon (SOC) in an undisturbed natural wetland (UNW) and three wetlands restored respectively in 1989, 1996 and 1999 (WR89, WR96 and WR99). The older restored wetlands (WR89 and WR96) are characterized by greater SOC and mineral nitrogen. The values of soil dehydrogenase and phosphatase activities in the four wetlands follow the order: UNW > WR89 > WR96 > WR99, and are consistent with changes in vegetation coverage. The principal component analysis shows that dehydrogenase and phosphatase activities are the vital variables contributing to the soil of UNW. The similar δ13C values of SOC and plants in the restored wetlands suggest the formation of SOC during restoration is mainly derived from the associated plants. These results indicate that the newly restored soils develop toward the soil in the UNW with time since restoration.

  3. Fatty acid-oxidizing consortia along a nutrient gradient in the Florida Everglades.

    Science.gov (United States)

    Chauhan, Ashvini; Ogram, Andrew

    2006-04-01

    The Florida Everglades is one of the largest freshwater marshes in North America and has been subject to eutrophication for decades. A gradient in P concentrations extends for several kilometers into the interior of the northern regions of the marsh, and the structure and function of soil microbial communities vary along the gradient. In this study, stable isotope probing was employed to investigate the fate of carbon from the fermentation products propionate and butyrate in soils from three sites along the nutrient gradient. For propionate microcosms, 16S rRNA gene clone libraries from eutrophic and transition sites were dominated by sequences related to previously described propionate oxidizers, such as Pelotomaculum spp. and Syntrophobacter spp. Significant representation was also observed for sequences related to Smithella propionica, which dismutates propionate to butyrate. Sequences of dominant phylotypes from oligotrophic samples did not cluster with known syntrophs but with sulfate-reducing prokaryotes (SRP) and Pelobacter spp. In butyrate microcosms, sequences clustering with Syntrophospora spp. and Syntrophomonas spp. dominated eutrophic microcosms, and sequences related to Pelospora dominated the transition microcosm. Sequences related to Pelospora spp. and SRP dominated clone libraries from oligotrophic microcosms. Sequences from diverse bacterial phyla and primary fermenters were also present in most libraries. Archaeal sequences from eutrophic microcosms included sequences characteristic of Methanomicrobiaceae, Methanospirillaceae, and Methanosaetaceae. Oligotrophic microcosms were dominated by acetotrophs, including sequences related to Methanosarcina, suggesting accumulation of acetate.

  4. Experimentally derived salinity tolerance of hatchling Burmese pythons (Python molurus bivittatus) from the Everglades, Florida (USA)

    Science.gov (United States)

    Hart, Kristen M.; Schofield, Pamela J.; Gregoire, Denise R.

    2012-01-01

    In a laboratory setting, we tested the ability of 24 non-native, wild-caught hatchling Burmese pythons (Python molurus bivittatus) collected in the Florida Everglades to survive when given water containing salt to drink. After a one-month acclimation period in the laboratory, we grouped snakes into three treatments, giving them access to water that was fresh (salinity of 0, control), brackish (salinity of 10), or full-strength sea water (salinity of 35). Hatchlings survived about one month at the highest marine salinity and about five months at the brackish-water salinity; no control animals perished during the experiment. These results are indicative of a "worst-case scenario", as in the laboratory we denied access to alternate fresh-water sources that may be accessible in the wild (e.g., through rainfall). Therefore, our results may underestimate the potential of hatchling pythons to persist in saline habitats in the wild. Because of the effect of different salinity regimes on survival, predictions of ultimate geographic expansion by non-native Burmese pythons that consider salt water as barriers to dispersal for pythons may warrant re-evaluation, especially under global climate change and associated sea-level-rise scenarios.

  5. Using scenario planning to evaluate the impacts of climate change on wildlife populations and communities in the Florida Everglades

    Science.gov (United States)

    Catano, Christopher P.; Romañach, Stephanie S.; Beerens, James M.; Pearlstine, Leonard G.; Brandt, Laura A.; Hart, Kristen M.; Mazzotti, Frank J.; Trexler, Joel C.

    2015-01-01

    It is uncertain how climate change will impact hydrologic drivers of wildlife population dynamics in freshwater wetlands of the Florida Everglades, or how to accommodate this uncertainty in restoration decisions. Using projections of climate scenarios for the year 2060, we evaluated how several possible futures could affect wildlife populations (wading birds, fish, alligators, native apple snails, amphibians, threatened and invasive species) across the Everglades landscape and inform planning already underway. We used data collected from prior research and monitoring to parameterize our wildlife population models. Hydrologic data were simulated using a spatially explicit, regional-scale model. Our scenario evaluations show that expected changes in temperature, precipitation, and sea level could significantly alter important ecological functions. All of our wildlife indicators were negatively affected by scenarios with less rainfall and more evapotranspiration. Under such scenarios, habitat suitability was substantially reduced for iconic animals such as wading birds and alligators. Conversely, the increased rainfall scenario benefited aquatic prey productivity and apex predators. Cascading impacts on non-native species is speculative, but increasing temperatures could increase the time between cold events that currently limit expansion and abundance of non-native fishes, amphibians, and reptiles with natural ranges in the tropics. This scenario planning framework underscored the benefits of proceeding with Everglades restoration plans that capture and clean more freshwater with the potential to mitigate rainfall loss and postpone impacts of sea level rise.

  6. Using Scenario Planning to Evaluate the Impacts of Climate Change on Wildlife Populations and Communities in the Florida Everglades

    Science.gov (United States)

    Catano, Christopher P.; Romañach, Stephanie S.; Beerens, James M.; Pearlstine, Leonard G.; Brandt, Laura A.; Hart, Kristen M.; Mazzotti, Frank J.; Trexler, Joel C.

    2015-04-01

    It is uncertain how climate change will impact hydrologic drivers of wildlife population dynamics in freshwater wetlands of the Florida Everglades, or how to accommodate this uncertainty in restoration decisions. Using projections of climate scenarios for the year 2060, we evaluated how several possible futures could affect wildlife populations (wading birds, fish, alligators, native apple snails, amphibians, threatened and invasive species) across the Everglades landscape and inform planning already underway. We used data collected from prior research and monitoring to parameterize our wildlife population models. Hydrologic data were simulated using a spatially explicit, regional-scale model. Our scenario evaluations show that expected changes in temperature, precipitation, and sea level could significantly alter important ecological functions. All of our wildlife indicators were negatively affected by scenarios with less rainfall and more evapotranspiration. Under such scenarios, habitat suitability was substantially reduced for iconic animals such as wading birds and alligators. Conversely, the increased rainfall scenario benefited aquatic prey productivity and apex predators. Cascading impacts on non-native species is speculative, but increasing temperatures could increase the time between cold events that currently limit expansion and abundance of non-native fishes, amphibians, and reptiles with natural ranges in the tropics. This scenario planning framework underscored the benefits of proceeding with Everglades restoration plans that capture and clean more freshwater with the potential to mitigate rainfall loss and postpone impacts of sea level rise.

  7. Composition of methane-oxidizing bacterial communities as a function of nutrient loading in the Florida everglades.

    Science.gov (United States)

    Chauhan, Ashvini; Pathak, Ashish; Ogram, Andrew

    2012-10-01

    Agricultural runoff of phosphorus (P) in the northern Florida Everglades has resulted in several ecosystem level changes, including shifts in the microbial ecology of carbon cycling, with significantly higher methane being produced in the nutrient-enriched soils. Little is, however, known of the structure and activities of methane-oxidizing bacteria (MOB) in these environments. To address this, 0 to 10 cm plant-associated soil cores were collected from nutrient-impacted (F1), transition (F4), and unimpacted (U3) areas, sectioned in 2-cm increments, and methane oxidation rates were measured. F1 soils consumed approximately two-fold higher methane than U3 soils; additionally, most probable numbers of methanotrophs were 4-log higher in F1 than U3 soils. Metabolically active MOB containing pmoA sequences were characterized by stable-isotope probing using 10 % (v/v) (13)CH(4). pmoA sequences, encoding the alpha subunit of methane monooxygenase and related to type I methanotrophs, were identified from both impacted and unimpacted soils. Additionally, impacted soils also harbored type II methanotrophs, which have been shown to exhibit preferences for high methane concentrations. Additionally, across all soils, novel pmoA-type sequences were also detected, indicating presence of MOB specific to the Everglades. Multivariate statistical analyses confirmed that eutrophic soils consisted of metabolically distinct MOB community that is likely driven by nutrient enrichment. This study enhances our understanding on the biological fate of methane being produced in productive wetland soils of the Florida Everglades and how nutrient-enrichment affects the composition of methanotroph bacterial communities.

  8. An evaluation of peat loss from an Everglades tree island, Florida, USA

    Directory of Open Access Journals (Sweden)

    S. Aich

    2014-03-01

    Full Text Available The tree islands of the Everglades are considered to be biodiversity “hotspots”, where the majority of terrestrial species of the Everglades are found. Drainage for agricultural and urban development in the early 1900s has had a severe impact, converting many of them into “ghost tree islands” which have lost most of their woody vegetation and much of their altitude (elevation. A survey conducted in 1973 on one of the prominent ghost tree islands, named “Dineen Island”, provides insights into the past. We compared the results of the 1973 survey with those of a survey conducted in 2009, in order to examine changes in Dineen Island that had taken place over 36 years and to provide information about general trends in the Everglades. Peat loss at Dineen Island was roughly 4 mm yr-1. This subsidence, as a consequence of peat loss, has been accompanied by losses in nitrogen and phosphorus of 234 and 2.5 metric tons (4.5 and 0.05 metric tons per hectare, respectively. As many of the Everglades tree islands have been lost from the landscape due to historical water management practices, quantifying nutrient losses from this ecosystem may be useful in helping to predict non-anthropogenic nutrient biogeochemistry shifts in Everglades oligotrophy.

  9. Detrital floc and surface soil microbial biomarker responses to active management of the nutrient impacted Florida everglades.

    Science.gov (United States)

    Bellinger, Brent J; Hagerthey, Scot E; Newman, Susan; Cook, Mark I

    2012-11-01

    Alterations in microbial community composition, biomass, and function in the Florida Everglades impacted by cultural eutrophication reflect a new physicochemical environment associated with monotypic stands of Typha domingensis. Phospholipid fatty acid (PLFA) biomarkers were used to quantify microbial responses in detritus and surface soils in an active management experiment in the eutrophic Everglades. Creation of open plots through removal of Typha altered the physical and chemical characteristics of the region. Mass of PLFA biomarkers increased in open plots, but magnitude of changes differed among microbial groups. Biomarkers indicative of Gram-negative bacteria and fungi were significantly greater in open plots, reflective of the improved oxic environment. Reduction in the proportion of cyclopropyl lipids and the ratio of Gram-positive to Gram-negative bacteria in open plots further suggested an altered oxygen environment and conditions for the rapid growth of Gram-negative bacteria. Changes in the PLFA composition were greater in floc relative to soils, reflective of rapid inputs of new organic matter and direct interaction with the new physicochemical environment. Created open plot microbial mass and composition were significantly different from the oligotrophic Everglades due to differences in phosphorus availability, plant community structure, and a shift to organic peat from marl-peat soils. PLFA analysis also captured the dynamic inter-annual hydrologic variability, notably in PLFA concentrations, but to a lesser degree content. Recently, use of concentration has been advocated over content in studies of soil biogeochemistry, and our results highlight the differential response of these two quantitative measures to similar pressures.

  10. Copper desorption in flooded agricultural soils and toxicity to the Florida apple snail (Pomacea paludosa): Implications in Everglades restoration

    International Nuclear Information System (INIS)

    Hoang, Tham C.; Rogevich, Emily C.; Rand, Gary M.; Gardinali, Piero R.; Frakes, Robert A.; Bargar, Timothy A.

    2008-01-01

    Copper (Cu) desorption and toxicity to the Florida apple snail were investigated from soils obtained from agricultural sites acquired under the Comprehensive Everglades Restoration Plan. Copper concentrations in 11 flooded soils ranged from 5 to 234 mg/kg on day 0 and from 6.2 to 204 mg/kg on day 28 (steady-state). The steady-state Cu concentration in overlying water ranged from 9.1 to 308.2 μg/L. In a 28-d growth study, high mortality in snails occurred within 9 to 16 d in two of three soil treatments tested. Growth of apple snails over 28 d was affected by Cu in these two treatments. Tissue Cu concentrations by day 14 were 12-23-fold higher in snails exposed to the three soil treatments compared to controls. The endangered Florida snail kite and its main food source, the Florida apple snail, may be at risk from Cu exposure in these managed agricultural soil-water ecosystems. - Copper desorbs from agricultural soils and is toxic to the Florida apple snail

  11. Mangrove forest recovery in the Everglades following Hurricane Wilma

    Science.gov (United States)

    Sarmiento, Daniel; Barr, Jordan; Engel, Vic; Fuentes, Jose D.; Smith, Thomas J.; Zieman, Jay C.

    2009-01-01

    On October 24th, 2005, Hurricane Wilma made landfall on the south western shore of the Florida peninsula. This major disturbance destroyed approximately 30 percent of the mangrove forests in the area. However, the damage to the ecosystem following the hurricane provided researchers at the Florida Coastal Everglades (FCE) LTER site with the rare opportunity to track the recovery process of the mangroves as determined by carbon dioxide (CO2) and energy exchanges, measured along daily and seasonal time scales.

  12. Internet-based Modeling, Mapping, and Analysis for the Greater Everglades (IMMAGE; Version 1.0): web-based tools to assess the impact of sea level rise in south Florida

    Science.gov (United States)

    Hearn, Paul; Strong, David; Swain, Eric; Decker, Jeremy

    2013-01-01

    South Florida's Greater Everglades area is particularly vulnerable to sea level rise, due to its rich endowment of animal and plant species and its heavily populated urban areas along the coast. Rising sea levels are expected to have substantial impacts on inland flooding, the depth and extent of surge from coastal storms, the degradation of water supplies by saltwater intrusion, and the integrity of plant and animal habitats. Planners and managers responsible for mitigating these impacts require advanced tools to help them more effectively identify areas at risk. The U.S. Geological Survey's (USGS) Internet-based Modeling, Mapping, and Analysis for the Greater Everglades (IMMAGE) Web site has been developed to address these needs by providing more convenient access to projections from models that forecast the effects of sea level rise on surface water and groundwater, the extent of surge and resulting economic losses from coastal storms, and the distribution of habitats. IMMAGE not only provides an advanced geographic information system (GIS) interface to support decision making, but also includes topic-based modules that explain and illustrate key concepts for nontechnical users. The purpose of this report is to familiarize both technical and nontechnical users with the IMMAGE Web site and its various applications.

  13. Development of allometric relations for three mangrove species in South Florida for use in the Greater Everglades Ecosystem restoration

    Science.gov (United States)

    Smith, T. J.; Whelan, K.R.T.

    2006-01-01

    Mathematical relations that use easily measured variables to predict difficult-to-measure variables are important to resource managers. In this paper we develop allometric relations to predict total aboveground biomass and individual components of biomass (e.g., leaves, stems, branches) for three species of mangroves for Everglades National Park, Florida, USA. The Greater Everglades Ecosystem is currently the subject of a 7.8-billion-dollar restoration program sponsored by federal, state, and local agencies. Biomass and production of mangroves are being used as a measure of restoration success. A technique for rapid determination of biomass over large areas is required. We felled 32 mangrove trees and separated each plant into leaves, stems, branches, and for Rhizophora mangle L., prop roots. Wet weights were measured in the field and subsamples returned to the laboratory for determination of wet-to-dry weight conversion factors. The diameter at breast height (DBH) and stem height were also measured. Allometric equations were developed for each species for total biomass and components of biomass. We compared our equations with those from the same, or similar, species from elsewhere in the world. Our equations explained ???93% of the variance in total dry weight using DBH. DBH is a better predictor of dry weight than is stem height and DBH is much easier to measure. Furthermore, our results indicate that there are biogeographic differences in allometric relations between regions. For a given DBH, stems of all three species have less mass in Florida than stems from elsewhere in the world. ?? Springer 2006.

  14. Research objectives to support the South Florida Ecosystem Restoration initiative-Water Conservation Areas, Lake Okeechobee, and the East/West waterways

    OpenAIRE

    Kitchens, Wiley M.

    1994-01-01

    The South Florida Ecosystem encompasses an area of approximately 28,000 km2 comprising at least 11 major physiographic provinces, including the Kissimmee River Valley, Lake Okeechobee, the Immokalee Rise, the Big Cypress, the Everglades, Florida Bay, the Atlantic Coastal Ridge, Biscayne Bay, the Florida Keys, the Florida Reef Tract, and nearshore coastal waters. South Florida is a heterogeneous system of wetlands, uplands, coastal areas, and marine areas, dominated by the watershe...

  15. Impact of anthropogenic development on coastal ground-water hydrology in southeastern Florida, 1900-2000

    Science.gov (United States)

    Renken, Robert A.; Dixon, Joann; Koehmstedt, John A.; Ishman, Scott; Lietz, A.C.; Marella, Richard L.; Telis, Pamela A.; Rodgers, Jeff; Memberg, Steven

    2005-01-01

    Southeastern Florida is an area that has been subject to widely conflicting anthropogenic stress to the Everglades and coastal ecosystems. This stress is a direct consequence of the 20th century economic competition for limited land and water resources needed to satisfy agricultural development and its expansion, its displacement by burgeoning urban development, and the accompanying growth of the limestone mining industry. The development of a highly controlled water-management system designed to reclaim land for urban and agricultural development has severely impacted the extent, character, and vitality of the historic Everglades and coastal ecosystems. An extensive conveyance system of canals, levees, impoundments, surface- water control structures, and numerous municipal well fields are used to sustain the present-day Everglades hydrologic system, prevent overland flow from moving eastward and flooding urban and agricultural areas, maintain water levels to prevent saltwater intrusion, and provide an adequate water supply. Extractive mining activities expanded considerably in the latter part of the 20th century, largely in response to urban construction needs. Much of the present-day urban-agricultural corridor of southeastern Florida lies within an area that is no more than 15 feet above NGVD 1929 and formerly characterized by freshwater marsh, upland, and saline coastal wetland ecosystems. Miami- Dade, Broward, and Palm Beach Counties have experienced explosive population growth, increasing from less than 4,000 inhabitants in 1900 to more than 5 million in 2000. Ground-water use, the principal source of municipal supply, has increased from about 65 Mgal/d (million gallons per day) obtained from 3 well fields in 1930 to more than 770 Mgal/d obtained from 65 well fields in 1995. Water use for agricultural supply increased from 505 Mgal/d in 1953 to nearly 1,150 Mgal/d in 1988, but has since declined to 764 Mgal/d in 1995, partly as a result of displacement of the

  16. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krupa, Steven L.

    2006-04-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/ 3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d -1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to

  17. Can differences in phosphorus uptake kinetics explain the distribution of cattail and sawgrass in the Florida Everglades?

    Directory of Open Access Journals (Sweden)

    McKee Karen L

    2010-02-01

    Full Text Available Abstract Background Cattail (Typha domingensis has been spreading in phosphorus (P enriched areas of the oligotrophic Florida Everglades at the expense of sawgrass (Cladium mariscus spp. jamaicense. Abundant evidence in the literature explains how the opportunistic features of Typha might lead to a complete dominance in P-enriched areas. Less clear is how Typha can grow and acquire P at extremely low P levels, which prevail in the unimpacted areas of the Everglades. Results Apparent P uptake kinetics were measured for intact plants of Cladium and Typha acclimated to low and high P at two levels of oxygen in hydroponic culture. The saturated rate of P uptake was higher in Typha than in Cladium and higher in low-P acclimated plants than in high-P acclimated plants. The affinity for P uptake was two-fold higher in Typha than in Cladium, and two- to three-fold higher for low-P acclimated plants compared to high-P acclimated plants. As Cladium had a greater proportion of its biomass allocated to roots, the overall uptake capacity of the two species at high P did not differ. At low P availability, Typha increased biomass allocation to roots more than Cladium. Both species also adjusted their P uptake kinetics, but Typha more so than Cladium. The adjustment of the P uptake system and increased biomass allocation to roots resulted in a five-fold higher uptake per plant for Cladium and a ten-fold higher uptake for Typha. Conclusions Both Cladium and Typha adjust P uptake kinetics in relation to plant demand when P availability is high. When P concentrations are low, however, Typha adjusts P uptake kinetics and also increases allocation to roots more so than Cladium, thereby improving both efficiency and capacity of P uptake. Cladium has less need to adjust P uptake kinetics because it is already efficient at acquiring P from peat soils (e.g., through secretion of phosphatases, symbiosis with arbuscular mycorrhizal fungi, nutrient conservation growth

  18. The tides and inflows in the mangroves of the Everglades (TIME) interdisciplinary project of the South Florida Ecosystem Program

    Science.gov (United States)

    Schaffranek, R.W.

    2001-01-01

    The U. S. Geological Survey (USGS) has a prominent role in the Federal Government's comprehensive restoration plan for the south Florida ecosystem encompassing the Everglades-the largest remaining subtropical wilderness in the continental United States. USGS scientists, in collaboration with researchers from the National Park Service (NPS), other governmental agencies, and academia, are providing scientific information to land and resource managers for planning, executing, and evaluating restoration actions. One major thrust of the restoration effort is to restore the natural functioning of the ecosystem to predrainage conditions, an objective that requires knowledge of the hydrologic and hydraulic factors that affect the flow of water. A vast network of interlaced canals, rimmed with levees and fitted with hydraulic control structures, and highways, built on elevated embankments lined by borrow ditches and undercut by culverts, now act to control and direct the flow of water through the shallow low-gradient wetlands. As water flows south from Lake Okeechobee past the city of Miami and through Everglades National Park (ENP), it is diminished by canal diversions, augmented by seasonably variable precipitation, and depleted through evapotranspiration. Along its path, the shallow flowing water, referred to as sheet flow, interacts with surficial aquifers and is subject to the resistance effects of variably dense vegetation and forcing effects of winds. New scientific investigations are providing additional insight into the hydrologic and hydraulic processes governing the flow, and recent data-collection efforts are supplying more comprehensive data describing the flow behavior, both of which are benefiting development of improved numerical models to evaluate and restore the natural functioning of the ecosystem.

  19. Copepod communities from surface and ground waters in the everglades, south Florida

    Science.gov (United States)

    Bruno, M.C.; Cunningham, K.J.; Perry, S.A.

    2003-01-01

    We studied species composition and individual abundance of copepods in the surficial aquifer northeast of Everglades National Park. We identified the spatial distribution of subsurface habitats by assessing the depth of the high porosity layers in the limestone along a canal system, and we used copepods to assess the exchange between surface water and ground water along canal banks, at levels in the wells where high porosity connections to the canals exist. Surface- and ground-water taxa were defined, and species composition was related to areal position, sampling depth, and time. Subsurface copepod communities were dominated by surface copepods that disperse into the aquifer following the groundwater seepage along canal L-31N. The similarities in species composition between wells along canal reaches, suggest that copepods mainly enter ground water horizontally along canals via active and passive dispersal. Thus, the copepod populations indicate continuous connections between surface- and ground waters. The most abundant species were Orthocyclops modestus, Arctodiaptomus floridanus, Mesocyclops edax, and Thermocyclops parvus, all known in literature from surface habitats; however, these species have been collected in ground water in ENP. Only two stygophiles were collected: Diacylcops nearcticus and Diacyclops crassicaudis brachycercus. Restoration of the Everglades ecosystem requires a mosaic of data to reveal a complete picture of this complex system. The use of copepods as indicators of seepage could be a tool in helping to assess the direction and the duration of surface and ground water exchange.

  20. Wading bird guano contributes to Hg accumulation in tree island soils in the Florida Everglades

    International Nuclear Information System (INIS)

    Zhu, Yingjia; Gu, Binhe; Irick, Daniel L.; Ewe, Sharon; Li, Yuncong; Ross, Michael S.; Ma, Lena Q.

    2014-01-01

    Tree islands are habitat for wading birds and a characteristic landscape feature in the Everglades. A total of 93 surface soil and 3 soil core samples were collected from 7 degraded/ghost and 34 live tree islands. The mean Hg concentration in surface soils of ghost tree islands was low and similar to marsh soil. For live tree islands, Hg concentrations in the surface head region were considerably greater than those in mid and tail region, and marsh soils. Hg concentrations in bird guano (286 μg kg −1 ) were significantly higher than those in mammal droppings (105 μg kg −1 ) and plant leaves (53 μg kg −1 ). In addition, Hg concentrations and δ 15 N values displayed positive correlation in soils influenced by guano. During 1998–2010, estimated annual Hg deposition by guano was 148 μg m −2 yr −1 and ∼8 times the atmospheric deposition. Highlights: • Hg concentrations in the head region of tree islands were the highest. • Hg concentrations in bird guano (286 μg kg −1 ) were significantly higher than those in mammal droppings and plant leaves. • Hg concentrations and δ 15 N values showed positive correlation in soils influenced by guano. • Estimated annual Hg deposition by guano was 148 μg m −2 yr −1 , ∼8 times the atmospheric deposition. -- The annual Hg deposition by bird guano to tree island soils in the Everglades was ∼8 times the atmospheric deposition

  1. SICS: the Southern Inland and Coastal System interdisciplinary project of the USGS South Florida Ecosystem Program

    Science.gov (United States)

    ,

    2011-01-01

    State and Federal agencies are working jointly on structural modifications and improved water-delivery strategies to reestablish more natural surface-water flows through the Everglades wetlands and into Florida Bay. Changes in the magnitude, duration, timing, and distribution of inflows from the headwaters of the Taylor Slough and canal C-111 drainage basins have shifted the seasonal distribution and extent of wetland inundation, and also contributed to the development of hypersaline conditions in nearshore embayments of Florida Bay. Such changes are altering biological and vegetative communities in the wetlands and creating stresses on aquatic habitat. Affected biotic resources include federally listed species such as the Cape Sable seaside sparrow, American crocodile, wood stork, and roseate spoonbill. The U.S. Geological Survey (USGS) is synthesizing scientific findings from hydrologic process studies, collecting data to characterize the ecosystem properties and functions, and integrating the results of these efforts into a research tool and management model for this Southern Inland and Coastal System(SICS). Scientists from all four disciplinary divisions of the USGS, Biological Resources, Geology, National Mapping, and Water Resources are contributing to this interdisciplinary project.

  2. Evaluation of the Possible Sources and Controlling Factors of Toxic Metals/Metalloids in the Florida Everglades and Their Potential Risk of Exposure.

    Science.gov (United States)

    Li, Yanbin; Duan, Zhiwei; Liu, Guangliang; Kalla, Peter; Scheidt, Daniel; Cai, Yong

    2015-08-18

    The Florida Everglades is an environmentally sensitive wetland ecosystem with a number of threatened and endangered fauna species susceptible to the deterioration of water quality. Several potential toxic metal sources exist in the Everglades, including farming, atmospheric deposition, and human activities in urban areas, causing concerns of potential metal exposure risks. However, little is known about the pollution status of toxic metals/metalloids of potential concern, except for Hg. In this study, eight toxic metals/metalloids (Cd, Cr, Pb, Ni, Cu, Zn, As, and Hg) in Everglades soils were investigated in both dry and wet seasons. Pb, Cr, As, Cu, Cd, and Ni were identified to be above Florida SQGs (sediment quality guidelines) at a number of sampling sites, particularly Pb, which had a level of potential risk to organisms similar to that of Hg. In addition, a method was developed for quantitative source identification and controlling factor elucidation of toxic metals/metalloids by introducing an index, enrichment factor (EF), in the conventional multiple regression analysis. EFs represent the effects of anthropogenic sources on metals/metalloids in soils. Multiple regression analysis showed that Cr and Ni were mainly controlled by anthropogenic loading, whereas soil characteristics, in particular natural organic matter (NOM), played a more important role for Hg, As, Cd, and Zn. NOM may control the distribution of these toxic metals/metalloids by affecting their mobility in soils. For Cu and Pb, the effects of EFs and environmental factors are comparable, suggesting combined effects of loading and soil characteristics. This study is the first comprehensive research with a vast amount of sampling sites on the distribution and potential risks of toxic metals/metalloids in the Everglades. The finding suggests that in addition to Hg other metals/metalloids could also potentially be an environmental problem in this wetland ecosystem.

  3. Solute transport and storage mechanisms in wetlands of the Everglades, south Florida

    Science.gov (United States)

    Harvey, Judson W.; Saiers, James E.; Newlin, Jessica T.

    2005-01-01

    Solute transport and storage processes in wetlands play an important role in biogeochemical cycling and in wetland water quality functions. In the wetlands of the Everglades, there are few data or guidelines to characterize transport through the heterogeneous flow environment. Our goal was to conduct a tracer study to help quantify solute exchange between the relatively fast flowing water in the open part of the water column and much more slowly moving water in thick floating vegetation and in the pore water of the underlying peat. We performed a tracer experiment that consisted of a constant‐rate injection of a sodium bromide (NaBr) solution for 22 hours into a 3 m wide, open‐ended flume channel in Everglades National Park. Arrival of the bromide tracer was monitored at an array of surface water and subsurface samplers for 48 hours at a distance of 6.8 m downstream of the injection. A one‐dimensional transport model was used in combination with an optimization code to identify the values of transport parameters that best explained the tracer observations. Parameters included dimensions and mass transfer coefficients describing exchange with both short (hours) and longer (tens of hours) storage zones as well as the average rates of advection and longitudinal dispersion in the open part of the water column (referred to as the “main flow zone”). Comparison with a more detailed set of tracer measurements tested how well the model's storage zones approximated the average characteristics of tracer movement into and out of the layer of thick floating vegetation and the pore water in the underlying peat. The rate at which the relatively fast moving water in the open water column was exchanged with slowly moving water in the layer of floating vegetation and in sediment pore water amounted to 50 and 3% h−1, respectively. Storage processes decreased the depth‐averaged velocity of surface water by 50% relative to the water velocity in the open part of the water

  4. Occurrence and distribution of monomethylalkanes in the freshwater wetland ecosystem of the Florida Everglades.

    Science.gov (United States)

    He, Ding; Simoneit, Bernd R T; Jara, Blanca; Jaffé, Rudolf

    2015-01-01

    A series of mono-methylalkanes (MMAs) with carbon numbers from C10 to C23 and C29 were detected in freshwater wetlands of the Everglades. A decrease in concentration and molecular complexity was observed in the order from periphyton and floc, to surface soil and deeper soil horizons. These compounds were present in varying amounts up to 27 μg gdw(-1) in periphyton, 74 μg gdw(-1) in floc, 1.8 μg gdw(-1) in surface soil, <0.03 μg gdw(-1) in deeper soils (12-15 cm). A total of 46 MMAs, including three iso and three anteiso-alkanes, were identified. Compound specific carbon isotopes values were determined for some dominant MMAs, and suggest that they originate from microbial sources, including cyanobacteria. Potential decarboxylation from fatty acids could also potentially contribute to the MMAs detected. Early diagenetic degradation was suggested to affect the accumulation of MMAs in soils and further studies are needed to address their applications as biomarkers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Panama City, Florida Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  6. Daytona Beach, Florida Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  7. Understanding Coastal Wetland Vulnerability to Sea-Level Rise Enhanced Inundation Using Real-Time Stage Monitoring, LiDAR, and Monte Carlo Simulation in Everglades National Park

    Science.gov (United States)

    Cooper, H.; Zhang, C.

    2017-12-01

    Coastal wetlands are one of the most productive ecological systems in the world, providing critical habitat area and valuable ecosystem services such as carbon sequestration. However, due to their location in low lying areas, coastal wetlands are particularly vulnerable to sea-level rise (SLR). Everglades National Park (ENP) encompasses the southern-most portion of the Greater Everglades Ecosystem, and is the largest subtropical wetland in the USA. Water depths have shown to have a significant relationship to vegetation community composition and organization while also playing a crucial role in vegetation health throughout the Everglades. Live plants play a vital role in maintaining soil structure (i.e. elevation), and decreases in vegetation health can cause peat collapse or wetland loss resulting in dramatic habitat, organic soil, and elevation loss posing concerns for Everglades management and restoration. One suspected mechanism for peat collapse is enhanced inundation due to SLR, thus mapping and modeling water depths is a critical component to understanding the potential impacts of future SLR. Previous research in the Everglades focused on a conventional Water Depth Model (WDM) approach where a Digital Elevation Model (DEM) is subtracted from a Water Table Elevation Model (WTEM). In this study, the conventional WDM approach is extended to a more rigorous WDM technique so that the accuracy and precision of the underlying data may be considered. Monte Carlo simulation is used to propagate probability distributions through our SLR depth model using our Random Forest-based LiDAR DEM, Empirical Bayesian Kriging-based WTEMs, uncertainties in vertical datums, soil accretion projections, and regional sea-level rise projections. Water depth maps were produced for the wet and dry seasons in April and October, which successfully revealed the potential spatial and temporal water depth variations due to future SLR. It is concluded that a more rigorous WDM technique helps

  8. Flow Velocity Water Temperature, and Conductivity in Shark River Slough, Everglades National Park, Florida: August 2001-June 2002

    National Research Council Canada - National Science Library

    Riscassi, Ami L; Schaffranek, Raymond W

    2003-01-01

    The data-collection effort described in this report is in support of the U.S. Geological Survey (USGS) Place-Based Studies project investigating "Forcing Effects on Flow Structure in Vegetated Wetland of the Everglades...

  9. Flow Velocity Water Temperature, and Conductivity in Shark River Slough, Everglades National Park, Florida: August 2001-June 2002

    National Research Council Canada - National Science Library

    Riscassi, Ami L; Schaffranek, Raymond W

    2003-01-01

    ...." Data collected at four locations in Shark River Slough, Everglades National Park during the 2001 -2002 wet season are documented in the report and methods used to process the data are described...

  10. Diatom paleoecology Pass Key core 37, Everglades National Park, Florida Bay

    Science.gov (United States)

    Pyle, Laura; Cooper, S.R.; Huvane, J.K.

    1998-01-01

    During the 20th century, there have been large-scale anthropogenic modifications to the South Florida ecosystem. The effects of these changes on Florida Bay and its biological communities are currently of political and scientific interest. This study is part of a larger effort to reconstruct the history of environmental changes in the bay, using paleoecological techniques. We are using diatom indicators preserved in Florida Bay sediments to infer long-term water quality, productivity, nutrient, and salinity changes. We are also obtaining information concerning the natural variability of the ecosystem. Diatoms are microscopic algae, the remains of which are generally well preserved in sediments, and their distributions are closely linked to water quality. Diatoms were extracted from a 70-cm sediment core collected from the Pass Key mudbank of Florida Bay by the U.S. Geological Survey. Between 300-500 diatom valves from each of 15 core samples were identified and counted. Estimates of absolute abundance, species richness, Shannon-Wiener diversity, and centric:pennate ratios were calculated for each sample that was counted. Information on the ecology of the diatom species is presented, and changes in diatom community composition are evaluated. Samples contained an average of four million diatom valves per gram of sediment. Major changes in the diatom community are evident down core. These include increases in the percent abundance of marine diatoms in the time period represented by the core, probably the result of increasing salinity at Pass Key. Benthic diatoms become less abundant in the top half of the core. This may be related to a number of factors including the die-off of sea grass beds or increased turbidity of the water column. Once the chronology of the Pass Key core 37 is established, these down-core changes can be related to historical events and compared with other indicators in the sedimentary record that are currently being investigated by U.S Geological

  11. The Role of Created and Restored Wetlands in Mitigating N and P Pollutants in Agricultural Landscapes: Case Studies in the Florida Everglades, Mississippi-Ohio-Missouri Basin, and Laurentian Great Lakes

    Science.gov (United States)

    Mitsch, W. J.

    2016-12-01

    On a global scale, we have lost half of our original wetlands to our current extent of 8 to 12 million km2, with most of that loss in the 20th century. In the United States, we lost 50% of our wetlands by the beginning of the 1970s. I am proposing here a sizeable increase in our wetland resources for solving the diminishing wetland habitat problem, but with the strategic purpose of minimizing the excess phosphorus and nitrogen in our aquatic ecosystems, with the added benefit of sometimes sequesting carbon from the atmosphere, in our rural, urban, and coastal landscapes in a sustainable fashion. Examples include attempts to minimize phosphorus inflows to the Florida Everglades with wetlands to quite low concentrations and a proposal to restore parts of the Black Swamp in NW Ohio to minimize eutrophication of Lake Erie in the Laurentian Great Lakes. Nitrogen retention by wetlands and riparian forests in the Mississippi-Ohio-Missouri Basin, especially in Midwestern USA, has been proposed for 15 years as a solution and endorsed by the Federal government to solve the seasonal hypoxia in the northern portion of the Gulf of Mexico, but there has been little if any progress over those 15 years. Solutions to recycle the nutrients retained in the wetlands back to agriculture to decrease fertilizer use will be presented as a solution to the multiple problems of wetland habitat loss, downstream lake, reservoir, river, and coastal nutrient pollution, diminishing supplies of phosphorus fertilizer, and fertilizer costs.

  12. CDOM Distribution and Dynamics in a Mangrove Ecosystem along the Shark River, Florida Everglades

    Science.gov (United States)

    Andrew, A. A.; del Castillo, C. E.

    2016-02-01

    Mangrove forests, a fraction of tropical forest, are in general a disproportionately important component in the global carbon cycle. Mangroves are highly productive, sequestering CO2 at rates higher than many other ecosystems, however more than half of this fixed carbon cannot be accounted for. Additionally, as they sit at the intersection of land and ocean, it's hypothesized that a large fraction of DOC transformations occur in these ecosystems and represent a major sink of terrigenous DOM. These factors highlight the importance of understanding mangrove environments in terms of DOM optical signals as well as reactivity upon light absorption. Here, we present the CDOM dynamics and distribution for a mangrove ecosystem in the Shark River, along the Southwest coast of Florida, part of the largest contiguous mangrove forest in North America. Station sampling of the study area occurred over 4 cruises, approximately one week in length: October 2014, March 2015, July 2015 and September 2015. Most of the stations were along the Shark River, with a smaller number in the vicinity of Tarpon bay and Harney River. Optical measurements of CDOM absorption and fluorescence, fluorescence quantum yields, DOC and spectral slope were obtained for over 70 stations in the study area. The spatial distribution of these optical properties are presented including their relation to salinity and tidal patterns in the study area. Additionally, we present the wavelength dependent quantum photoproduction efficiencies of DIC obtained via irradiation experiments of selective samples in the study area.

  13. Mapping of Florida's Coastal and Marine Resources: Setting Priorities Workshop

    Science.gov (United States)

    Robbins, Lisa; Wolfe, Steven; Raabe, Ellen

    2008-01-01

    The importance of mapping habitats and bioregions as a means to improve resource management has become increasingly clear. Large areas of the waters surrounding Florida are unmapped or incompletely mapped, possibly hindering proper management and good decisionmaking. Mapping of these ecosystems is among the top priorities identified by the Florida Oceans and Coastal Council in their Annual Science Research Plan. However, lack of prioritization among the coastal and marine areas and lack of coordination of agency efforts impede efficient, cost-effective mapping. A workshop on Mapping of Florida's Coastal and Marine Resources was sponsored by the U.S. Geological Survey (USGS), Florida Department of Environmental Protection (FDEP), and Southeastern Regional Partnership for Planning and Sustainability (SERPPAS). The workshop was held at the USGS Florida Integrated Science Center (FISC) in St. Petersburg, FL, on February 7-8, 2007. The workshop was designed to provide State, Federal, university, and non-governmental organizations (NGOs) the opportunity to discuss their existing data coverage and create a prioritization of areas for new mapping data in Florida. Specific goals of the workshop were multifold, including to: * provide information to agencies on state-of-the-art technology for collecting data; * inform participants of the ongoing mapping programs in waters off Florida; * present the mapping needs and priorities of the State and Federal agencies and entities operating in Florida; * work with State of Florida agencies to establish an overall priority for areas needing mapping; * initiate discussion of a unified classification of habitat and bioregions; * discuss and examine the need to standardize terminology and data collection/storage so that data, in particular habitat data, can be shared; 9 identify opportunities for partnering and leveraging mapping efforts among agencies and entities; * identify impediments and organizational gaps that hinder collection

  14. Interaction between ground water and surface water in Taylor Slough and vicinity, Everglades National Park, South Florida; study methods and appendixes

    Science.gov (United States)

    Harvey, Judson W.; Jackson, J.M.; Mooney, R.H.; Choi, Jungyill

    2000-01-01

    The data presented in this report are products of an investigation that quantified interactions between ground water and surface water in Taylor Slough in Everglades National Park. Determining the extent of hydrologic interactions between wetland surface water and ground water in Taylor Slough is important because the balance of freshwater flow in the lower part of the Slough is uncertain. Although freshwater flows through Taylor Slough are quite small in comparison to Shark Slough (the larger of the two major sloughs in Everglades National Park), flows through Taylor Slough are especially important to the ecology of estuarine mangrove embayments of northeastern Florida Bay. Also, wetland and ground- water interactions must be quantified if their role in affecting water quality is to be determined. In order to define basic hydrologic characteristics of the wetland, depth of wetland peat was mapped, and hydraulic conductivity and vertical hydraulic gradients in peat were determined. During specific time periods representing both wet and dry conditions in the area, the distribution of major ions, nutrients, and water stable isotopes throughout the slough were determined. The purpose of chemical measurements was to identify an environmental tracer could be used to quantify ground-water discharge.

  15. Herpetofaunal inventories of the National Parks of South Florida and the Caribbean: Volume I. Everglades National Park

    Science.gov (United States)

    Rice, Kenneth G.; Waddle, J. Hardin; Crockett, Marquette E.; Jeffery, Brian M.; Percival, H. Frankin

    2004-01-01

    Amphibian declines and extinctions have been documented around the world, often in protected natural areas. Concern for this alarming trend has prompted the U.S. Geological Survey and the National Park Service to document all species of amphibians that occur within U.S. National Parks and to search for any signs that amphibians may be declining. This study, an inventory of amphibian species in Everglades National Park, was conducted during 2000 to 2003. The goals of the project were to create a georeferenced inventory of amphibian species, use new analytical techniques to estimate proportion of sites occupied by each species, look for any signs of amphibian decline (missing species, disease, die-offs, etc.), and to establish a protocol that could be used for future monitoring efforts. Several sampling methods were used to accomplish all of these goals. Visual encounter surveys and anuran vocalization surveys were conducted in all habitats throughout the park to estimate the proportion of sites or proportion of area occupied (PAO) by each amphibian species in each habitat. Opportunistic collections, as well as some drift fence and aquatic funnel trap data were used to augment the visual encounter methods for highly aquatic or cryptic species. A total of 562 visits to 118 sites were conducted for standard sampling alone, and 1788 individual amphibians and 413 reptiles were encountered. Data analysis was done in program PRESENCE to provide PAO estimates for each of the anuran species. All but one of the amphibian species thought to occur in Everglades National Park was detected during this project. That species, the Everglades dwarf siren (Pseudobranchus axanthus belli), is especially cryptic and probably geographically limited in its range in Everglades National Park. The other three species of salamanders and all of the anurans in the park were sampled adequately using standard herpetological sampling methods. PAO estimates were produced for each species of anuran

  16. 77 FR 74923 - Water Quality Standards for the State of Florida's Estuaries, Coastal Waters, and South Florida...

    Science.gov (United States)

    2012-12-18

    ... proposing numeric water quality criteria to protect ecological systems, aquatic life, and human health from... III surface waters share water quality criteria established to protect fish consumption, recreation... Water Quality Standards for the State of Florida's Estuaries, Coastal Waters, and South Florida Inland...

  17. Predicting future mangrove forest migration in the Everglades under rising sea level

    Science.gov (United States)

    Doyle, Thomas W.

    2003-01-01

    Mangroves are highly productive ecosystems that provide valued habitat for fish and shorebirds. Mangrove forests are universally composed of relatively few tree species and a single overstory strata. Three species of true mangroves are common to intertidal zones of the Caribbean and Gulf of Mexico Coast, namely, black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). Mangrove forests occupy intertidal settings of the coastal margin of the Everglades along the southwest tip of the Florida peninsula (fig. 1).

  18. Determining the Role of Sediment Deposition and Transport in the Formation and Maintenance of Tree Islands in the Florida Everglades

    Science.gov (United States)

    Mitchell-Bruker, S.; Childers, D.; Ross, M.; Leonard, L.; Solo-Gabriel, H.; Stothoff, S.

    2002-05-01

    Tree islands are a prominent feature in the Everglades ridge and slough wetlands. These tree islands are believed to be a remnant of the historical pre-drainage flow system. Within Everglades National Park, hardwood hammock and bayhead tree islands commonly form as teardrop-shaped mounds, rising above the sawgrass marsh. These tree islands are usually oriented along the direction of surface water flow, with the highest elevation and widest part of the island at the upstream head. The island narrows as it descends into the marsh at the downstream end, terminating in a tail that sometimes includes a zone of dead or dying sawgrass. The shape and orientation of the tree islands suggests that surface water flow has been instrumental in their formation, however occasional flow measurements indicate that the slow moving water of the Everglades does not provide sufficient energy to transport even moderate amounts of suspended sediment. This low flow velocity, coupled with the extremely low turbidity of the Everglades water suggests that if sediment transport and deposition processes are instrumental in forming tree islands, the process is probably occurring over short distances and long time intervals. It is also possible that concentration and transport of nutrients is an important element in tree island formation. Because the Everglades marsh is a low nutrient environment, processes that create areas of increased phosphorous concentration result in changes in the vegetation. Because many hardwood hammock and bayhead tree islands have heads that are situated on bedrock highs, the higher and drier elevation of the head allows for trees to grow. These trees could concentrate phosphorous either by acting as wildlife attractors, or by acting as \\x8Dphosphorous pumpsŒ, transporting groundwater with high concentrations of phosphorous through the roots to the tree. We are characterizing vegetation, litter fall, sediments, surface water flow, hydrologic gradients and nutrient

  19. 76 FR 28130 - Coastal Bank, Cocoa Beach, Florida; Notice of Appointment of Receiver

    Science.gov (United States)

    2011-05-13

    ... DEPARTMENT OF THE TREASURY Office of Thrift Supervision Coastal Bank, Cocoa Beach, Florida; Notice of Appointment of Receiver Notice is hereby given that, pursuant to the authority contained in... Federal Deposit Insurance Corporation as sole Receiver for Coastal Bank, Cocoa Beach, Florida, (OTS No...

  20. Development of a Long-term Sampling Network to Monitor Restoration Success in the Southwest Coastal Everglades: Vegetation, Hydrology, and Sediments

    Science.gov (United States)

    Smith, Thomas J.

    2004-01-01

    Introduction and History Hurricane Andrew, a Category 5 storm, crossed the southern Florida peninsula on the morning of August 24, 1992 (Fig. 1). Following the storm, the National Park Service conducted an environmental damage assessment to gauge the storm's impacts on the natural resources of south Florida Park Service holdings (Pimm et al., 1994). Although hurricanes have impacted Park Service lands such as the Everglades in the past (Houston and Powell, 2003), no systematic, permanent sampling scheme has been established to monitor long-term recovery (or lack thereof) following disturbance. In October 1992, vegetation monitoring plots were established in heavily damaged areas of mangrove forest on the southwest coast of the Everlgades, along the Lostmans and Broad Rivers (Smith et al., 1994, see Fig. 2). As the permanent plot network was being established, funding was awarded for the South Florida Global Climate Change project (SOFL-GCC). This led to the establishment of a network of hydrological monitoring stations (Anderson and Smith, 2004). Finally, sediment elevation tables (SETs) were installed at many locations. SETs provide the means to measure very small changes (2 mm) in the sediment surface elevation accurately over time (Cahoon et al., 2002). We also set up marker horizons to measure accretion of sediment at each site (Smith and Cahoon, 2003). Sampling sites were located along three transects extending from upstream freshwater wetlands to downstream saltwater wetlands along the Shark, Lostmans and Chatham Rivers in Everglades National Park (Fig. 2). While we were developing our sampling network for basic scientific research needs, concern mounted over the health of the Greater Everglades Ecosystem and in particular over the influence of decreased freshwater flows (Smith et al., 1989). Ecosystem restoration planning was begun, resulting in the multi-agency, $8 billion Comprehensive Everglades Restoration Plan (CERP). Our co-located sampling networks

  1. The influence of disturbed habitat on the spatial ecology of Argentine black and white tegu (Tupinambis merianae), a recent invader in the Everglades ecosystem (Florida, USA)

    Science.gov (United States)

    Klug, Page E.; Reed, Robert N.; Mazzotti, Frank J.; McEachern, Michelle A.; Vinci, Joy J.; Craven, Katelin K.; Yackel Adams, Amy A.

    2015-01-01

    The threat of invasive species is often intensified in disturbed habitat. To optimize control programs, it is necessary to understand how degraded habitat influences the behavior of invasive species. We conducted a radio telemetry study to characterize movement and habitat use of introduced male Argentine black and white tegus (Tupinambis merianae) in the Everglades of southern Florida from May to August 2012 at the core and periphery of the introduced range. Tegus at the periphery moved farther per day (mean 131.7 ± 11.6 m, n = 6) compared to tegus at the core (mean 50.3 ± 12.4 m, n = 6). However, activity ranges were not significantly smaller in the core (mean 19.4 ± 8.4 ha, n = 6) compared to periphery (mean 29.1 ± 5.2 ha, n = 6). Peripheral activity ranges were more linear due to activity being largely restricted to levee habitat surrounded by open water or marsh. Tegus were located in shrub or tree habitat (mean 96%) more often than expected based on random locations (mean 58%), and the percent cover of trees and shrubs was higher in activity ranges (mean 61%) than the general study area (17%). Our study highlighted the ability of tegus to spread across the Florida landscape, especially in linear disturbed habitats where increased movement occurred and in areas of altered hydrology where movement is not restricted by water.

  2. Salinity effects on behavioural response to hypoxia in the non-native Mayan cichlid Cichlasoma urophthalmus from Florida Everglades wetlands.

    Science.gov (United States)

    Schofield, P J; Loftus, W F; Fontaine, J A

    2009-04-01

    This study quantified the hypoxia tolerance of the Mayan cichlid Cichlasoma urophthalmus over a range of salinities. The species was very tolerant of hypoxia, using aquatic surface respiration (ASR) and buccal bubble holding when oxygen tensions dropped to <20 mmHg (c. 1.0 mg l(-1)) and 6 mmHg, respectively. Salinity had little effect on the hypoxia tolerance of C. urophthalmus, except that bubble holding was more frequent at the higher salinities tested. Levels of aggression were greatest at the highest salinity. The ASR thresholds of C. urophthalmus were similar to native centrarchid sunfishes from the Everglades, however, aggression levels for C. uropthalmus were markedly higher.

  3. Multi-temporal Linkages of Net Ecosystem Exchanges (NEE) with the Climatic and Ecohydrologic Drivers in a Florida Everglades Short-hydroperiod Freshwater Marsh

    Science.gov (United States)

    Zaki, M. T.; Abdul-Aziz, O. I.; Ishtiaq, K. S.

    2017-12-01

    Wetlands are considered one of the most productive and ecologically valuable ecosystems on earth. We investigated the multi-temporal linkages of net ecosystem exchange (NEE) with the relevant climatic and ecohydrological drivers for a Florida Everglades short-hydroperiod freshwater wetland. Hourly NEE observations and the associated driving variables during 2008-12 were collected from the AmeriFlux and EDEN databases, and then averaged for the four temporal scales (1-day, 8-day, 15-day, and 30-day). Pearson correlation and factor analysis were employed to identify the interrelations and grouping patterns among the participatory variables for each time scale. The climatic and ecohydrological linkages of NEE were then reliably estimated using bootstrapped (1000 iterations) partial least squares regressions by resolving multicollinearity. The analytics identified four bio-physical components exhibiting relatively robust interrelations and grouping patterns with NEE across the temporal scales. In general, NEE was most strongly linked with the `radiation-energy (RE)' component, while having a moderate linkage with the `temperature-hydrology (TH)' and `aerodynamic (AD)' components. However, the `ambient atmospheric CO2 (AC)' component was very weakly linked to NEE. Further, RE and TH had a decreasing trend with the increasing time scales (1-30 days). In contrast, the linkages of AD and AC components increased from 1-day to 8-day scales, and then remained relatively invariable at the longer scales of aggregation. The estimated linkages provide insights into the dominant biophysical process components and drivers of ecosystem carbon in the Everglades. The invariant linking pattern and linkages would help to develop low-dimensional models to reliably predict CO2 fluxes from the tidal freshwater wetlands.

  4. Near Surface Geophysical Investigations of Potential Direct Recharge Zones in the Biscayne Aquifer within Everglades National Park, Florida.

    Science.gov (United States)

    Mount, G.; Comas, X.

    2017-12-01

    The karstic Miami Limestone of the Biscayne aquifer is characterized as having water flow that is controlled by the presence of dissolution enhanced porosity and mega-porous features. The dissolution features and other high porosity areas create horizontal preferential flow paths and high rates of ground water velocity, which may not be accurately conceptualized in groundwater flow models. In addition, recent research suggests the presence of numerous vertical dissolution features across Everglades National Park at Long Pine Key Trail, that may act as areas of direct recharge to the aquifer. These vertical features have been identified through ground penetrating radar (GPR) surveys as areas of velocity pull-down which have been modeled to have porosity values higher than the surrounding Miami Limestone. As climate change may induce larger and longer temporal variability between wet and dry times in the Everglades, a more comprehensive understanding of preferential flow pathways from the surface to the aquifer would be a great benefit to modelers and planners. This research utilizes near surface geophysical techniques, such as GPR, to identify these vertical dissolution features and then estimate the spatial variability of porosity using petrophysical models. GPR transects that were collected for several kilometers along the Long Pine Key Trail, show numerous pull down areas that correspond to dissolution enhanced porosity zones within the Miami Limestone. Additional 3D GPR surveys have attempted to delineate the boundaries of these features to elucidate their geometry for future modelling studies. We demonstrate the ability of near surface geophysics and petrophysical models to identify dissolution enhanced porosity in shallow karstic limestones to better understand areas that may act as zones of direct recharge into the Biscayne Aquifer.

  5. Physiological condition of juvenile wading birds in relation to multiple landscape stressors in the Florida Everglades: effects of hydrology, prey availability, and mercury bioaccumulation

    Science.gov (United States)

    Herring, Garth; Eagles-Smith, Collin A.; Gawlik, Dale E.; Beerens, James M.; Ackerman, Joshua T.

    2014-01-01

    The physiological condition of juvenile birds can be influenced by multiple ecological stressors, and few studies have concurrently considered the effects of environmental contaminants in combination with ecological attributes that can influence foraging conditions and prey availability. Using three temporally distinct indices of physiological condition, we compared the physiological response of nestling great egrets (Ardea alba) and white ibises (Eudocimus albus) to changing prey availability, hydrology (water depth, recession rate), and mercury exposure in the Florida Everglades. We found that the physiological response of chicks varied between species and among environmental variables. Chick body condition (short-term index) and fecal corticosterone levels (medium-term) were influenced by wetland water depth, prey availability, region, and age, but not by mercury contamination. However, mercury exposure did influence heat shock protein 70 (HSP70) in egret chicks, indicating a longer-term physiological response to contamination. Our results indicate that the physiological condition of egret and ibis chicks were influenced by several environmental stressors, and the time frame of the effect may depend on the specialized foraging behavior of the adults provisioning the chicks.

  6. Physiological condition of juvenile wading birds in relation to multiple landscape stressors in the Florida Everglades: effects of hydrology, prey availability, and mercury bioaccumulation.

    Directory of Open Access Journals (Sweden)

    Garth Herring

    Full Text Available The physiological condition of juvenile birds can be influenced by multiple ecological stressors, and few studies have concurrently considered the effects of environmental contaminants in combination with ecological attributes that can influence foraging conditions and prey availability. Using three temporally distinct indices of physiological condition, we compared the physiological response of nestling great egrets (Ardea alba and white ibises (Eudocimus albus to changing prey availability, hydrology (water depth, recession rate, and mercury exposure in the Florida Everglades. We found that the physiological response of chicks varied between species and among environmental variables. Chick body condition (short-term index and fecal corticosterone levels (medium-term were influenced by wetland water depth, prey availability, region, and age, but not by mercury contamination. However, mercury exposure did influence heat shock protein 70 (HSP70 in egret chicks, indicating a longer-term physiological response to contamination. Our results indicate that the physiological condition of egret and ibis chicks were influenced by several environmental stressors, and the time frame of the effect may depend on the specialized foraging behavior of the adults provisioning the chicks.

  7. Physiological condition of juvenile wading birds in relation to multiple landscape stressors in the Florida Everglades: effects of hydrology, prey availability, and mercury bioaccumulation.

    Science.gov (United States)

    Herring, Garth; Eagles-Smith, Collin A; Gawlik, Dale E; Beerens, James M; Ackerman, Joshua T

    2014-01-01

    The physiological condition of juvenile birds can be influenced by multiple ecological stressors, and few studies have concurrently considered the effects of environmental contaminants in combination with ecological attributes that can influence foraging conditions and prey availability. Using three temporally distinct indices of physiological condition, we compared the physiological response of nestling great egrets (Ardea alba) and white ibises (Eudocimus albus) to changing prey availability, hydrology (water depth, recession rate), and mercury exposure in the Florida Everglades. We found that the physiological response of chicks varied between species and among environmental variables. Chick body condition (short-term index) and fecal corticosterone levels (medium-term) were influenced by wetland water depth, prey availability, region, and age, but not by mercury contamination. However, mercury exposure did influence heat shock protein 70 (HSP70) in egret chicks, indicating a longer-term physiological response to contamination. Our results indicate that the physiological condition of egret and ibis chicks were influenced by several environmental stressors, and the time frame of the effect may depend on the specialized foraging behavior of the adults provisioning the chicks.

  8. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: ESIL (ESI Shoreline Types - Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ESIL data set contains vector lines representing the shoreline and coastal habitats of South Florida classified according to the Environmental Sensitivity Index...

  9. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: ESIP (ESI Shoreline Types - Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ESIP data set contains vector polygons representing the shoreline and coastal habitats of South Florida classified according to the Environmental Sensitivity...

  10. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Florida Panhandle: ESIL (ESI Shoreline Types - Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ESIL data set contains vector lines representing the shoreline and coastal habitats of the Florida Panhandle, classified according to the Environmental...

  11. Water resources in the Everglades

    Science.gov (United States)

    Schneider, William J.

    1966-01-01

    Aerial photography is playing an important role in the evaluation of the water resources of the almost-inaccessible 1,400 square miles of Everglades in southern Florida. Color, infrared, and panchromatic photographs show salient features that permit evaluation of the overall water resources picture. The fresh water-salt water interface, drainage patterns, ecologic changes resulting from flood and drought, quantities of flow, and other hydrologic features are easily observed or measured from the photographs. Such data permit areal extension of very limited point observations of water resources data, and will assist in providing the necessary guidelines for decisions in water management in the Everglades.

  12. Impact of sea-level rise on Everglades carbon storage capacity in the Holocene

    Science.gov (United States)

    Jones, M.; Bernhardt, C. E.; Wingard, G. L. L.; Keller, K.; Stackhouse, B.; Landacre, B.

    2017-12-01

    Sea-level rise (SLR) and climate have driven environmental changes in South Florida over time. Florida Bay, a shallow carbonate bay located to the south of the Florida Peninsula, contains carbonate islands and mudbanks that formed over the last few thousand years and once comprised the freshwater Everglades. The islands, often ringed with mangroves, provide wildlife habitat, physical barriers to storm surge, tidal flux, and wave development along South Florida's coastline. Because most of South Florida is only 1-2 m above mean sea level, and IPCC AR5 projections of 0.26 to 0.98 m of SLR by 2100, vertical accommodation space could outpace sediment accretion in the southern freshwater Everglades and Florida Bay islands, impacting carbon (C) storage, as well as wildlife habitat and the ability to protect shorelines from coastal storms. We analyzed sediment cores that reached the Plio-Pleistocene limestone bedrock from four islands in Florida Bay to determine how floral and faunal communities and source C change in response to Holocene sea level transgression. We used pollen and mollusk assemblages, δ13C, and C/N ratios, along with radiometric dating, bulk density, and organic C content to calculate changes in C accumulation rates (CAR) over the last 4 ka, as deposition transitioned from freshwater peat to estuarine carbonate mud, to mangrove peat and ultimately to the hyper-saline playa-like carbonate sediments deposited today. Results show that CAR are more than twice as high in the basal freshwater Everglades peat than in the overlying estuarine sediments and slightly greater than the short-lived period of Rhizophora (red mangrove) peat accumulation. Avicennia (black mangrove) and playa-like environments have similar CAR as the estuarine carbonate mud and hypersaline carbonate sediments but accretion rates are less than the current rate of SLR. These results suggest that with current rates of accretion and SLR, these islands could disappear in <200 years, and the C

  13. Characterization of the porosity distribution in the upper part of the karst Biscayne aquifer using common offset ground penetrating radar, Everglades National Park, Florida

    Science.gov (United States)

    Mount, Gregory J.; Comas, Xavier; Cunningham, Kevin J.

    2014-07-01

    The karst Biscayne aquifer is characterized by a heterogeneous spatial arrangement of porosity and hydraulic conductivity, making conceptualization difficult. The Biscayne aquifer is the primary source of drinking water for millions of people in south Florida; thus, information concerning the distribution of karst features that concentrate the groundwater flow and affect contaminant transport is critical. The principal purpose of the study was to investigate the ability of two-dimensional ground penetrating radar (GPR) to rapidly characterize porosity variability in the karst Biscayne aquifer in south Florida. An 800-m-long GPR transect of a previously investigated area at the Long Pine Key Nature Trail in Everglades National Park, collected in fast acquisition common offset mode, shows hundreds of diffraction hyperbolae. The distribution of diffraction hyperbolae was used to estimate electromagnetic (EM) wave velocity at each diffraction location and to assess both horizontal and vertical changes in velocity within the transect. A petrophysical model (complex refractive index model or CRIM) was used to estimate total bulk porosity. A set of common midpoint surveys at selected locations distributed along the common-offset transect also were collected for comparison with the common offsets and were used to constrain one-dimensional (1-D) distributions of porosity with depth. Porosity values for the saturated Miami Limestone ranged between 25% and 41% for common offset GPR surveys, and between 23% and 39% for common midpoint GPR surveys. Laboratory measurements of porosity in five whole-core samples from the saturated part of the aquifer in the study area ranged between 7.1% and 41.8%. GPR estimates of porosity were found to be valid only under saturated conditions; other limitations are related to the vertical resolution of the GPR signal and the volume of the material considered by the measurement methodology. Overall, good correspondence between GPR estimates and

  14. EAARL Coastal Topography--Cape Canaveral, Florida, 2009: First Surface

    Science.gov (United States)

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Plant, Nathaniel; Wright, C.W.; Nagle, D.B.; Serafin, K.S.; Klipp, E.S.

    2011-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived first-surface (FS) topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Kennedy Space Center, FL. This project provides highly detailed and accurate datasets of a portion of the eastern Florida coastline beachface, acquired on May 28, 2009. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine aircraft, but the instrument was deployed on a Pilatus PC-6. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed

  15. COASTAL STUDY, COLLIER COUNTY, FLORIDA AND INCORPORATED AREAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Coastal study data as defined in FEMA Guidelines and Specifications, Appendix D: Guidance for Coastal Flooding Analyses and Mapping, submitted as a result of a...

  16. Airborne Lidar Measurements of Below-canopy Surface Water Height , Slope and Optical Properties in the Florida Everglades Shark River Slough

    Science.gov (United States)

    Dabney, P.; Harding, D. J.; Valett, S. R.; Yu, A. W.; Feliciano, E. A.; Neuenschwander, A. L.; Pitts, K.

    2015-12-01

    with 8 cm ranging precision, the surface altimetry data is acquired with very high spatial and vertical resolution. Examples of these capabilities will be shown using data collected in 2011 along and across the flow axis of the Florida Everglades Shark River Slough, targeting the slough's Long Term Ecology Research (LTER) field sites.

  17. Pink shrimp as an indicator for restoration of everglades ecosystems

    Science.gov (United States)

    Browder, Joan A.; Robblee, M.B.

    2009-01-01

    The pink shrimp, Farfantepenaeus duorarum, familiar to most Floridians as either food or bait shrimp, is ubiquitous in South Florida coastal and offshore waters and is proposed as an indicator for assessing restoration of South Florida's southern estuaries: Florida Bay, Biscayne Bay, and the mangrove estuaries of the lower southwest coast. Relationships between pink shrimp and salinity have been determined in both field and laboratory studies. Salinity is directly relevant to restoration because the salinity regimes of South Florida estuaries, critical nursery habitat for the pink shrimp, will be altered by changes in the quantity, timing, and distribution of freshwater inflow planned as part of the Comprehensive Everglades Restoration Project (CERP). Here we suggest performance measures based on pink shrimp density (number per square meter) in the estuaries and propose a restoration assessment and scoring scheme using these performance measures that can readily be communicated to managers, policy makers, and the interested public. The pink shrimp is an appropriate restoration indicator because of its ecological as well as its economic importance and also because scientific interest in pink shrimp in South Florida has produced a wealth of information about the species and relatively long time series of data on both juveniles in estuarine nursery habitats and adults on the fishing grounds. We suggest research needs for improving the pink shrimp performance measure.

  18. Development of a Florida Coastal Mapping Program Through Local and Regional Coordination

    Science.gov (United States)

    Hapke, C. J.; Kramer, P. A.; Fetherston-Resch, E.; Baumstark, R.

    2017-12-01

    The State of Florida has the longest coastline in the contiguous United States (2,170 km). The coastal zone is heavily populated and contains 1,900 km of sandy beaches that support economically important recreation and tourism. Florida's waters also host important marine mineral resources, unique ecosystems, and the largest number of recreational boats and saltwater fishermen in the country. There is increasing need and demand for high resolution data of the coast and adjacent seafloor for resource and habitat mapping, understanding coastal vulnerability, evaluating performance of restoration projects, and many other coastal and marine spatial planning efforts. The Florida Coastal Mapping Program (FCMP), initiated in 2017 as a regional collaboration between four federal and three state agencies, has goals of establishing the priorities for high resolution seafloor mapping of Florida's coastal environment, and developing a strategy for leveraging funds to support mapping priorities set by stakeholders. We began by creating a comprehensive digital inventory of existing data (collected by government, the private sector, and academia) from 1 kilometer inland to the 200 meter isobath for a statewide geospatial database and gap analysis. Data types include coastal topography, bathymetry, and acoustic data such as sidescan sonar and subbottom profiles. Next, we will develop appropriate proposals and legislative budget requests in response to opportunities to collect priority data in high priority areas. Data collection will be undertaken by a combination of state and federal agencies. The FCMP effort will provide the critical baseline information that is required for characterizing changes to fragile ecosystems, assessing marine resources, and forecasting the impacts on coastal infrastructure and recreational beaches from future storms and sea-level rise.

  19. CDOM PRODUCTION BY MANGROVE LEAF LITTER AND SARGASSUM COLONIES IN FLORIDA KEYS COASTAL WATERS

    Science.gov (United States)

    We have investigated the importance of leaf litter from red mangroves (Rhizophora mangle) and living Sargassum plants as sources of chromophoric dissolved organic matter (CDOM) to the coastal ocean waters and coral reef system of the Florida Keys. The magnitude of UVB exposure t...

  20. Florida 2006 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic, Gulf of Mexico in the summer of 2006....

  1. Florida 2003 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2003. The data...

  2. Florida 2004 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2004. The data...

  3. Florida 2010 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic Coast and Gulf of Mexico in 2010. The...

  4. Florida 2009 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in 2009. The data types collected...

  5. Two-Dimensional Hydrodynamic Simulation of Surface-Water Flow and Transport to Florida Bay through the Southern Inland and Coastal Systems (SICS)

    Science.gov (United States)

    Swain, Eric D.; Wolfert, Melinda A.; Bales, Jerad D.; Goodwin, Carl R.

    2004-01-01

    Successful restoration of the southern Florida ecosystem requires extensive knowledge of the physical characteristics and hydrologic processes controlling water flow and transport of constituents through extremely low-gradient freshwater marshes, shallow mangrove-fringed coastal creeks and tidal embayments, and near-shore marine waters. A sound, physically based numerical model can provide simulations of the differing hydrologic conditions that might result from various ecosystem restoration scenarios. Because hydrology and ecology are closely linked in southern Florida, hydrologic model results also can be used by ecologists to evaluate the degree of ecosystem restoration that could be achieved for various hydrologic conditions. A robust proven model, SWIFT2D, (Surface-Water Integrated Flow and Transport in Two Dimensions), was modified to simulate Southern Inland and Coastal Systems (SICS) hydrodynamics and transport conditions. Modifications include improvements to evapotranspiration and rainfall calculation and to the algorithms that describe flow through coastal creeks. Techniques used in this model should be applicable to other similar low-gradient marsh settings in southern Florida and elsewhere. Numerous investigations were conducted within the SICS area of southeastern Everglades National Park and northeastern Florida Bay to provide data and parameter values for model development and testing. The U.S. Geological Survey and the National Park Service supported investigations for quantification of evapotranspiration, vegetative resistance to flow, wind-induced flow, land elevations, vegetation classifications, salinity conditions, exchange of ground and surface waters, and flow and transport in coastal creeks and embayments. The good agreement that was achieved between measured and simulated water levels, flows, and salinities through minimal adjustment of empirical coefficients indicates that hydrologic processes within the SICS area are represented properly

  6. Geospatial characteristics of Florida's coastal and offshore environments: Distribution of important habitats for coastal and offshore biological resources and offshore sand resources

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Foster, Ann M.; Jones, Michal L.; Gualtieri, Daniel J.

    2011-01-01

    The Geospatial Characteristics GeoPDF of Florida's Coastal and Offshore Environments is a comprehensive collection of geospatial data describing the political boundaries and natural resources of Florida. This interactive map provides spatial information on bathymetry, sand resources, and locations of important habitats (for example, Essential Fish Habitats (EFH), nesting areas, strandings) for marine invertebrates, fish, reptiles, birds, and marine mammals. The map should be useful to coastal resource managers and others interested in marine habitats and submerged obstructions of Florida's coastal region. In particular, as oil and gas explorations continue to expand, the map can be used to explore information regarding sensitive areas and resources in the State of Florida. Users of this geospatial database will have access to synthesized information in a variety of scientific disciplines concerning Florida's coastal zone. This powerful tool provides a one-stop assembly of data that can be tailored to fit the needs of many natural resource managers. The map was originally developed to assist the Bureau of Ocean Energy Management, Regulation, and Enforcement (BOEMRE) and coastal resources managers with planning beach restoration projects. The BOEMRE uses a systematic approach in planning the development of submerged lands of the Continental Shelf seaward of Florida's territorial waters. Such development could affect the environment. BOEMRE is required to ascertain the existing physical, biological, and socioeconomic conditions of the submerged lands and estimate the impact of developing these lands. Data sources included the National Oceanic and Atmospheric Administration, BOEMRE, Florida Department of Environmental Protection, Florida Geographic Data Library, Florida Fish and Wildlife Conservation Commission, Florida Natural Areas Inventory, and the State of Florida, Bureau of Archeological Research. Federal Geographic Data Committee (FGDC) compliant metadata are

  7. Blue Carbon Sequestration in Florida Coastal Wetlands - Response to Recent Climate Change and Holocene Climate Variability

    Science.gov (United States)

    Vaughn, D.; Bianchi, T. S.; Osborne, T.; Shields, M. R.; Kenney, W.

    2017-12-01

    Intertidal forests and salt marshes represent a major component of Florida's coasts and are essential to the health and integrity of coastal Florida's ecological and economic systems. In addition, coastal wetlands have been recognized as highly efficient carbon sinks with their ability to store carbon on time scales from centuries to millennia. Although losses of salt marshes, mangroves, and seagrass beds through both natural and anthropogenic forces are threatening their ability to act as carbon sinks globally, the poleward encroachment of mangroves into higher latitude salt marshes may lead to regional increases in carbon sequestration as mangroves store more carbon than salt marshes. For Florida, this encroachment of mangroves into salt marshes is prominent along the northern coasts where fewer freeze events have coincided with an increase in mangrove extent over the past several decades. Soil cores collected from a northeastern Florida wetland will allow us to determine whether the recent poleward encroachment of mangroves into northern Florida salt marshes has led to an increase in belowground carbon storage. The soil cores, which are approximately two to three meters in length, will also provide the first known record of carbon storage in a northern Florida wetland during the Holocene. Initial results from the top 40 cm, which represents 100 years based on dating of other northern Florida wetland cores, suggest more carbon is currently being stored within the transition between marsh and mangrove than in areas currently covered by salt marsh vegetation or mangroves. The transitional zone also has a much larger loss of carbon within the top 40 cm compared to the mangrove and marsh cores. Lignin-based degradation indices along with other biomarker data and 210Pb/137Cs ages will be presented to demonstrate how much of this loss of carbon may be related to degradation and how much may be related to changes in carbon sources.

  8. Use of Tritium and Helium to Define Groundwater Flow Conditions in a Coastal Aquifer Influenced by Seawater Intrusion: Everglades National Park

    Science.gov (United States)

    Price, R. M.; Top, Z.; Happell, J. D.; Swart, P. K.

    2002-05-01

    The concentrations of tritium (3H) and helium isotopes (3He, 4He) were used as tracers of groundwater flow in Everglades National Park, South Florida (USA). Both fresh and brackish groundwaters were collected from 47 wells completed at depths ranging from 2 m to 73 m within the Surficial Aquifer System (SAS). Ages as determined by 3H/3He techniques indicate that groundwater within the upper 28 m originated after the nuclear era (within the last 42 yr) and below 28 m before then with evidence of some mixing at the interface. Inter-annual variation of the 3H/3He ages within the upper 28 m was significant throughout the three year investigation, suggesting varying hydrologic conditions. The age of the shallow groundwater in the southern regions of ENP (Rocky Glades and Taylor Slough) tended to be younger following times of high water level when the dominant direction of groundwater flow water was to the southeast. In the same region, significantly older groundwater was observed following times of low water levels and a shift in the groundwater flow direction toward the southwest. Near the canals, the reverse occurred with the ages of shallow groundwater tending to be younger following times of low water levels, suggesting a greater influence of recharge water from the canals to the surrounding aquifer. Although water levels and the direction of hydrologic gradients vary greatly within a 3-month time period, the average age of the shallow (Aquifer suggesting a preferential flow path to the deeper formation. An increase in 4He with depth suggests that radiogenic 4He produced in the underlying Hawthorn Group is dispersed into the SAS. Higher Δ 4He values in brackish groundwaters compared to fresh waters from similar depths indicate an enhanced vertical transport of 4He in the seawater mixing zone. Seawater intrudes at distances of 6 to 28 km at shallow depths (Florida Bay and the Gulf of Mexico over an approximately 6 to 28 km wide strip that parallels the coastline.

  9. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (South Florida). STRIPED MULLET.

    Science.gov (United States)

    1985-04-01

    Perciformes body; body bluish-gray dorsally and Family ............. . Mugilidae white ventrally; scales cycloid in young, feebly ctenoid in adults; dis- tinct... Mugilidae ) with special reference University Press, College to the seas of the Near East. Station. 327 pp. Aquaculture 5:65-80. Kilby, J. D. 1949. A...nddieaeso ____ ______ n to glfmullets ( Mugilidae ). Pages 411-Mugil cephalus L. in two gulf 493 in 0. H. Oren, ed. Aquacul- coastal areas of Florida. Q. J

  10. ATM Coastal Topography-Florida 2001: Eastern Panhandle

    Science.gov (United States)

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the eastern Florida panhandle coastline, acquired October 2, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used to create

  11. ATM Coastal Topography-Florida 2001: Western Panhandle

    Science.gov (United States)

    Yates, Xan; Nayegandhi, Amar; Brock, John C.; Sallenger, A.H.; Bonisteel, Jamie M.; Klipp, Emily S.; Wright, C. Wayne

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced collaboratively by the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the western Florida panhandle coastline, acquired October 2-4 and 7-10, 2001. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative scanning Lidar instrument originally developed by NASA, and known as the Airborne Topographic Mapper (ATM), was used during data acquisition. The ATM system is a scanning Lidar system that measures high-resolution topography of the land surface and incorporates a green-wavelength laser operating at pulse rates of 2 to 10 kilohertz. Measurements from the laser-ranging device are coupled with data acquired from inertial navigation system (INS) attitude sensors and differentially corrected global positioning system (GPS) receivers to measure topography of the surface at accuracies of +/-15 centimeters. The nominal ATM platform is a Twin Otter or P-3 Orion aircraft, but the instrument may be deployed on a range of light aircraft. Elevation measurements were collected over the survey area using the ATM system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom-built processing system developed in a NASA-USGS collaboration. ALPS supports the exploration and processing of Lidar data in an interactive or batch mode. Modules for presurvey flight line definition, flight path plotting, Lidar raster and waveform investigation, and digital camera image playback have been developed. Processing algorithms have been developed to extract the range to the first and last significant return within each waveform. ALPS is routinely used

  12. Derivation of Ground Surface and Vegetation in a Coastal Florida Wetland with Airborne Laser Technology

    Science.gov (United States)

    Raabe, Ellen A.; Harris, Melanie S.; Shrestha, Ramesh L.; Carter, William E.

    2008-01-01

    The geomorphology and vegetation of marsh-dominated coastal lowlands were mapped from airborne laser data points collected on the Gulf Coast of Florida near Cedar Key. Surface models were developed using low- and high-point filters to separate ground-surface and vegetation-canopy intercepts. In a non-automated process, the landscape was partitioned into functional landscape units to manage the modeling of key landscape features in discrete processing steps. The final digital ground surface-elevation model offers a faithful representation of topographic relief beneath canopies of tidal marsh and coastal forest. Bare-earth models approximate field-surveyed heights by + 0.17 m in the open marsh and + 0.22 m under thick marsh or forest canopy. The laser-derived digital surface models effectively delineate surface features of relatively inaccessible coastal habitats with a geographic coverage and vertical detail previously unavailable. Coastal topographic details include tidal-creek tributaries, levees, modest topographic undulations in the intertidal zone, karst features, silviculture, and relict sand dunes under coastal-forest canopy. A combination of laser-derived ground-surface and canopy-height models and intensity values provided additional mapping capabilities to differentiate between tidal-marsh zones and forest types such as mesic flatwood, hydric hammock, and oak scrub. Additional derived products include fine-scale shoreline and topographic profiles. The derived products demonstrate the capability to identify areas of concern to resource managers and unique components of the coastal system from laser altimetry. Because the very nature of a wetland system presents difficulties for access and data collection, airborne coverage from remote sensors has become an accepted alternative for monitoring wetland regions. Data acquisition with airborne laser represents a viable option for mapping coastal topography and for evaluating habitats and coastal change on marsh

  13. Climate change and coastal environmental risk perceptions in Florida.

    Science.gov (United States)

    Carlton, Stuart J; Jacobson, Susan K

    2013-11-30

    Understanding public perceptions of climate change risks is a prerequisite for effective climate communication and adaptation. Many studies of climate risk perceptions have either analyzed a general operationalization of climate change risk or employed a case-study approach of specific adaptive processes. This study takes a different approach, examining attitudes toward 17 specific, climate-related coastal risks and cognitive, affective, and risk-specific predictors of risk perception. A survey of 558 undergraduates revealed that risks to the physical environment were a greater concern than economic or biological risks. Perceptions of greater physical environment risks were significantly associated with having more pro-environmental attitudes, being female, and being more Democratic-leaning. Perceptions of greater economic risks were significantly associated with having more negative environmental attitudes, being female, and being more Republican-leaning. Perceptions of greater biological risks were significantly associated with more positive environmental attitudes. The findings suggest that focusing on physical environment risks maybe more salient to this audience than communications about general climate change adaptation. The results demonstrate that climate change beliefs and risk perceptions are multifactorial and complex and are shaped by individuals' attitudes and basic beliefs. Climate risk communications need to apply this knowledge to better target cognitive and affective processes of specific audiences, rather than providing simple characterizations of risks. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Accelerated sea level rise and Florida Current transport

    Directory of Open Access Journals (Sweden)

    J. Park

    2015-07-01

    Full Text Available The Florida Current is the headwater of the Gulf Stream and is a component of the North Atlantic western boundary current from which a geostrophic balance between sea surface height and mass transport directly influence coastal sea levels along the Florida Straits. A linear regression of daily Florida Current transport estimates does not find a significant change in transport over the last decade; however, a nonlinear trend extracted from empirical mode decomposition (EMD suggests a 3 Sv decline in mean transport. This decline is consistent with observed tide gauge records in Florida Bay and the straits exhibiting an acceleration of mean sea level (MSL rise over the decade. It is not known whether this recent change represents natural variability or the onset of the anticipated secular decline in Atlantic meridional overturning circulation (AMOC; nonetheless, such changes have direct impacts on the sensitive ecological systems of the Everglades as well as the climate of western Europe and eastern North America.

  15. Baseline coastal oblique aerial photographs collected from Key Largo, Florida, to the Florida/Georgia border, September 5-6, 2014

    Science.gov (United States)

    Morgan, Karen L. M.

    2015-09-14

    The U.S. Geological Survey (USGS) conducts baseline and storm response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms (Morgan, 2009). On September 5-6, 2014, the USGS conducted an oblique aerial photographic survey from Key Largo, Florida, to the Florida/Georgia border (Figure 1), aboard a Cessna 182 at an altitude of 500 feet (ft) and approximately 1,200 ft offshore (Figure 2). This mission was flown to collect baseline data for assessing incremental changes since the last survey, flown October 1998, and the data can be used in the assessment of future coastal change.

  16. Occurrence and distribution of steroids, hormones and selected pharmaceuticals in South Florida coastal environments.

    Science.gov (United States)

    Singh, Simrat P; Azua, Arlette; Chaudhary, Amit; Khan, Shabana; Willett, Kristine L; Gardinali, Piero R

    2010-02-01

    The common occurrence of human derived contaminants like pharmaceuticals, steroids and hormones in surface waters has raised the awareness of the role played by the release of treated or untreated sewage in the water quality along sensitive coastal ecosystems. South Florida is home of many important protected environments ranging from wetlands to coral reefs which are in close proximity to large metropolitan cities. Because, large portions of South Florida and most of the Florida Keys population are not served by modern sewage treatment plants and rely heavily on the use of septic systems, a comprehensive survey of selected human waste contamination markers was conducted in three areas to assess water quality with respect to non-traditional micro-constituents. This study documents the occurrence and distribution of fifteen hormones and steroids and five commonly detected pharmaceuticals in surface water samples collected from different near shore environments along South Florida between 2004 and 2006. The compounds most frequently detected were: cholesterol, caffeine, estrone, DEET, coprostanol, biphenol-A, beta-estradiol, and triclosan. The concentration detected for estrone and beta-estradiol were up to 5.2 and 1.8 ng/L, respectively. Concentrations of caffeine (5.5-68 ng/L) and DEET (4.8-49 ng/L) were generally higher and more prevalent than were the steroids. Distribution of microconstituents was site specific likely reflecting a diversity of sources. In addition to chemical analysis, the yeast estrogen screen assay was used to screen the samples for estrogen equivalency. Overall, the results show that water collected from inland canals and restricted circulation water bodies adjacent to heavily populated areas had high concentrations of multiple steroids, pharmaceuticals, and personal care products while open bay waters were largely devoid of the target analytes.

  17. Evaluation of a Florida coastal golf complex as a local and watershed source of bioavailable contaminants

    International Nuclear Information System (INIS)

    Lewis, Michael A.; Quarles, Robert L.; Dantin, Darrin D.; Moore, James C.

    2004-01-01

    Contaminant fate in coastal areas impacted by golf course runoff is not well understood. This report summarizes trace metal, pesticide and PCB residues for colonized periphyton, Ruppia maritima (widgeon grass), Callinectes sapidus Rathbun (blue crabs) and Crassostrea virginica Gemlin (Eastern oyster) collected from areas adjacent to a Florida golf course complex which receive runoff containing reclaimed municipal wastewater. Concentrations of 19 chlorinated pesticides and 18 PCB congeners were usually below detection in the biota. In contrast, 8 trace metals were commonly detected although concentrations were not usually significantly different for biota collected from reference and non-reference coastal areas. Residue concentrations in decreasing order were typically: zinc, arsenic, copper, chromium, lead, nickel, cadmium and mercury. Mean BCF values for the eight trace metals ranged between 160-57 000 (periphyton), 79-11 033 (R. maritima), 87-162 625 (C. virginica) and 12-9800 (C. sapidus). Most trace metal residues in periphyton colonized adjacent to the golf complex, were either similar to or significantly less than those reported for periphyton colonized in nearby coastal areas impacted by urban stormwater runoff and treated municipal and industrial wastewater discharges. Consequently, the recreational complex does not appear to be a major source of bioavailable contaminants locally nor in the immediate watershed based on results for the selected biota

  18. Effects of burn temperature on ash nutrient forms and availability from cattail (Typha domingensis) and sawgrass (Cladium jamaicense) in the Florida Everglades.

    Science.gov (United States)

    Qian, Y; Miao, S L; Gu, B; Li, Y C

    2009-01-01

    Plant ash derived from fire plays an important role in nutrient balance and cycling in ecosystems. Factors that determine the composition and availability of ash nutrients include fire intensity (burn temperature and duration), plant species, habitat nutrient enrichment, and leaf type (live or dead leaf). We used laboratory simulation methods to evaluate temperature effects on nutrient composition and metals in the residual ash of sawgrass (Cladium jamaicense) and cattail (Typha domingensis), particularly on post-fire phosphorus (P) availability in plant ash. Live and dead leaf samples were collected from Water Conservation Area 2A in the northern Everglades along a soil P gradient, where prescribed fire may be used to accelerate recovery of this unique ecosystem. Significant decreases in total carbon and total nitrogen were detected with increasing fire temperature. Organic matter combustion was nearly complete at temperatures > or = 450 degrees C. HCl-extractable P (average, 50% of total P in the ash) and NH(4)Cl-extractable P (average, 33% of total P in the ash) were the predominant P fractions for laboratory-burned ash. Although a low-intensity fire could induce an elevation of P availability, an intense fire generally resulted in decreased water-soluble P. Significant differences in nutrient compositions were observed between species, habitat nutrient status, and leaf types. More labile inorganic P remained in sawgrass ash than in cattail ash; hence, sawgrass ash has a greater potential to release available P than cattail. Fire intensity affected plant ash nutrient composition, particularly P availability, and the effects varied with plant species and leaf type. Therefore, it is important to consider fire intensity and vegetation community when using a prescribed fire for ecosystem management.

  19. Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades

    Science.gov (United States)

    Breithaupt, Joshua L.; Smoak, Joseph M.; Smith, Thomas J.; Sanders, Christian J.

    2014-10-01

    The objective of this research was to measure temporal variability in accretion and mass sedimentation rates (including organic carbon (OC), total nitrogen (TN), and total phosphorous (TP)) from the past century in a mangrove forest on the Shark River in Everglades National Park, USA. The 210Pb Constant Rate of Supply model was applied to six soil cores to calculate annual rates over the most recent 10, 50, and 100 year time spans. Our results show that rates integrated over longer timeframes are lower than those for shorter, recent periods of observation. Additionally, the substantial spatial variability between cores over the 10 year period is diminished over the 100 year record, raising two important implications. First, a multiple-decade assessment of soil accretion and OC burial provides a more conservative estimate and is likely to be most relevant for forecasting these rates relative to long-term processes of sea level rise and climate change mitigation. Second, a small number of sampling locations are better able to account for spatial variability over the longer periods than for the shorter periods. The site average 100 year OC burial rate, 123 ± 19 (standard deviation) g m-2 yr-1, is low compared with global mangrove values. High TN and TP burial rates in recent decades may lead to increased soil carbon remineralization, contributing to the low carbon burial rates. Finally, the strong correlation between OC burial and accretion across this site signals the substantial contribution of OC to soil building in addition to the ecosystem service of CO2 sequestration.

  20. The ecological - Societal underpinnings of Everglades restoration

    Science.gov (United States)

    Sklar, Fred H.; Chimney, M.J.; Newman, S.; McCormick, P.; Gawlik, D.; Miao, S.; McVoy, C.; Said, W.; Newman, J.; Coronado, C.; Crozier, G.; Korvela, M.; Rutchey, K.

    2005-01-01

    The biotic integrity of the Florida Everglades, a wetland of immense international importance, is threatened as a result of decades of human manipulation for drainage and development. Past management of the system only exacerbated the problems associated with nutrient enrichment and disruption of regional hydrology. The Comprehensive Everglades Restoration Plan (CERP) now being implemented by Federal and State governments is an attempt to strike a balance between the needs of the environment with the complex management of water and the seemingly unbridled economic growth of southern Florida. CERP is expected to reverse negative environmental trends by "getting the water right", but successful Everglades restoration will require both geochemical and hydrologic intervention on a massive scale. This will produce ecological trade-offs and will require new and innovative scientific measures to (1) reduce total phosphorus concentrations within the remaining marsh to 10 ??g/L or lower; (2) quantify and link ecological benefits to the restoration of depths, hydroperiods, and flow velocities; and (3) compensate for ecological, economic, and hydrologic uncertainties in the CERP through adaptive management. ?? The Ecological Society of America.

  1. Evaluating the effect of salinity on a simulated American crocodile (Crocodylus acutus) population with applications to conservation and Everglades restoration

    NARCIS (Netherlands)

    Richards, P.M.; Mooij, W.M.; DeAngelis, D.L.

    2004-01-01

    Everglades restoration will alter the hydrology of South Florida, affecting both water depth and salinity levels in the southern fringes of the Everglades, the habitat of the endangered American crocodile (Crocodylus acutus). A key question is what the effects of these hydrologic changes will be on

  2. Long time-series of turbid coastal water using AVHRR: an example from Florida Bay, USA

    Science.gov (United States)

    Stumpf, Richard P.; Frayer, M. L.

    1997-02-01

    The AVHRR can provide information on the reflectance of turbid case II water, permitting examination of large estuaries and plumes from major rivers. The AVHRR has been onboard several NOAA satellites, with afternoon overpasses since 1981, offering a long time-series to examine changes in coastal water. We are using AVHRR data starting in December 1989, to examine water clarity in Florida Bay, which has undergone a decline since the late 1980's. The processing involves obtaining a nominal reflectance for red light with standard corrections including those for Rayleigh and aerosol path radiances. Established relationships between reflectance and the water properties being measured in the Bay provide estimates of diffuse attenuation and light limitation for phytoplankton and seagrass productivity studies. Processing also includes monthly averages of reflectance and attenuation. The AVHRR data set describes spatial and temporal patterns, including resuspension of bottom sediments in the winter, and changes in water clarity. The AVHRR also indicates that Florida Bay has much higher reflectivity relative to attenuation than other southeastern US estuaries.

  3. Hydrocarbon Degradation and Sulfate Reduction in a Coastal Marsh of North Florida

    Science.gov (United States)

    Hsieh, Y.; Bugna, G. C.; Robinson, L.

    2001-05-01

    Hydrocarbon contamination of coastal waters has been an environmental concern for sometime. Coastal wetlands, which are rich in organic matter and microbial activities, have been considered natural systems that could degrade hydrocarbon in contaminated coastal waters. This study was initiated to investigate the potential of hydrocarbon degradation in a coastal salt marsh of North Florida with special reference to sulfate reduction. Freshly collected surface marsh sediments (0-20 cm) were incubated in a laboratory at ambient temperature (23.2° C) with the treatments of: 1) Control (i.e., no treatment), 2) +(crude) oil, 3) +NO3-1+oil, and 4) +MoO4-2+oil. Carbon dioxide evolution from the incubation was collected and analyzed for the total amount and the 13C signature. The NO3-1 and MoO4-2 treatments were intended to block the sulfate reduction activity. The results show that the indigenous organic matter and the crude oil have distinct δ 13C values of -19.8 and -27.6 \\permil, respectively, relative to PDB. Evolved CO2 concentrations and δ 13C values also indicate that microbial populations can adapt to the presence of anthropogenic hydrocarbons. Blocking of sulfate reducers by MoO4-2 addition started to reduce the carbon dioxide evolution rates after a 4-d incubation. After a 48-d incubation, the carbon dioxide evolution of the MoO4-2-treated samples was reduced to only 23 % of the non-MoO4-2-treated samples, indicating the increased significant role of sulfate reducers in digesting older soil organic matter and the hydrocarbons. T-tests also indicated that in NO3-1 treatment, δ 13C values significantly depleted (p=0.1) while CO2 concentration remained relatively constant. These indicate that while denitrifiers played a role in the degradation, the microbial population is predominantly composed of sulfate reducers. Salt marshes would be a much more significant source of CH4 if SO4-2 is suppressed. All MoO4-2-treated samples produced significant amount of methane

  4. Sedimentary and Vegetative Impacts of Hurricane Irma to Coastal Wetland Ecosystems across Southwest Florida

    Science.gov (United States)

    Moyer, R. P.; Khan, N.; Radabaugh, K.; Engelhart, S. E.; Smoak, J. M.; Horton, B.; Rosenheim, B. E.; Kemp, A.; Chappel, A. R.; Schafer, C.; Jacobs, J. A.; Dontis, E. E.; Lynch, J.; Joyse, K.; Walker, J. S.; Halavik, B. T.; Bownik, M.

    2017-12-01

    Since 2014, our collaborative group has been working in coastal marshes and mangroves across Southwest Florida, including Tampa Bay, Charlotte Harbor, Ten Thousand Islands, Biscayne Bay, and the lower Florida Keys. All existing field sites were located within 50 km of Hurricane Irma's eye path, with a few sites in the Lower Florida Keys and Naples/Ten Thousand Islands region suffering direct eyewall hits. As a result, we have been conducting storm-impact and damage assessments at these locations with the primary goal of understanding how major hurricanes contribute to and/or modify the sedimentary record of mangroves and salt marshes. We have also assessed changes to the vegetative structure of the mangrove forests at each site. Preliminary findings indicate a reduction in mangrove canopy cover from 70-90% pre-storm, to 30-50% post-Irma, and a reduction in tree height of approximately 1.2 m. Sedimentary deposits consisting of fine carbonate mud up to 12 cm thick were imported into the mangroves of the lower Florida Keys, Biscayne Bay, and the Ten Thousand Islands. Import of siliciclastic mud up to 5 cm thick was observed in Charlotte Harbor. In addition to fine mud, all sites had imported tidal wrack consisting of a mixed seagrass and mangrove leaf litter, with some deposits as thick as 6 cm. In areas with newly opened canopy, a microbial layer was coating the surface of the imported wrack layer. Overwash and shoreline erosion were also documented at two sites in the lower Keys and Biscayne Bay, and will be monitored for change and recovery over the next few years. Because active research was being conducted, a wealth of pre-storm data exists, thus these locations are uniquely positioned to quantify hurricane impacts to the sedimentary record and standing biomass across a wide geographic area. Due to changes in intensity along the storm path, direct comparisons of damage metrics can be made to environmental setting, wind speed, storm surge, and distance to eyewall.

  5. Measuring organic matter in Everglades wetlands and the Everglades Agricultural Area

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Alan L. [Univ. of Florida, Gainesville, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States)

    2015-01-01

    Here, organic matter is a complex material that represents the long-term decay products from plants and other organisms in the soil. When organic matter is allowed to build up in a soil, the soil color at the surface usually turns a darker color, often with a red or brown hue. Typically in Florida mineral soils, organic matter content is quite low, within the range of 1 to 5%. However, in some soils that remain flooded for most of the year, organic matter can build up with time and actually become the soil. Such is the case for the organic soils, or histosols, found in southern Florida. These organic soils comprise much of the Water Conservation Areas, Everglades National Park (ENP), Big Cypress Basin, and the Everglades Agricultural Area (EAA). It is important to document organic matter accumulation in the Everglades to gauge the effectiveness of wetland creation and succession. For the EAA, the drained soils lose organic matter due to oxidation, so measurement of the organic matter content of these soils over the course of time indicates the oxidation potential and mineral incorporation from bedrock. Due to the wide diversity of soil types and methods of measuring soil organic matter, there is a need to devise a more universal method applicable to many types of histosols in south Florida. The intent of this publication is: 1.To describe a simple laboratory method for determining the organic matter content of the organic soils of southern Florida and demonstrate the importance of using this new procedure for improved accuracy and precision; 2.To utilize this updated laboratory procedure for field sites across Everglades wetlands and the EAA; and 3. To recommend this procedure be used by growers, state and federal agencies, and university and agency researchers dealing with the management of organic soils in southern Florida. Growers can use this improvement to organic matter measurement to keep lab testing costs low while getting a better, more quantitative

  6. EAARL coastal topography-western Florida, post-Hurricane Charley, 2004: seamless (bare earth and submerged.

    Science.gov (United States)

    Nayegandhi, Amar; Bonisteel, Jamie M.; Wright, C. Wayne; Sallenger, A.H.; Brock, John C.; Yates, Xan

    2010-01-01

    Project Description These remotely sensed, geographically referenced elevation measurements of lidar-derived seamless (bare-earth and submerged) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Coastal and Marine Geology Program (CMGP), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the western Florida coastline beachface, acquired post-Hurricane Charley on August 17 and 18, 2004. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then

  7. The Gulf of Mexico Coastal Ocean Observing System: Building an MBON for the Florida Keys.

    Science.gov (United States)

    Howard, M.; Stoessel, M. M.; Currier, R. D.

    2016-02-01

    The Gulf of Mexico Coastal Ocean Observing System Regional Association (GCOOS-RA) Data Portal was designed to aggregate regional data and to serve it to the public through standards-based services in useful and desirable forms. These standards are established and sanctioned for use by the U.S. Integrated Ocean Observing System (IOOS) Program Office with inputs from experts on the Integrated Ocean Observation Committee and the RA informatics community. In 2012, with considerable input from staff from Ocean Biogeographical Information System USA (OBIS-USA), IOOS began to develop and adopt standards for serving biological datasets. GCOOS-RA applied these standards the following year and began serving fisheries independent data through an GCOOS ERDDAP server. In late 2014, GCOOS-RA partnered with the University of South Florida in a 5-year Marine Biodiversity Observing Network (MBON) Project sponsored by NOAA, NASA and BOEM. Work began in 2015. GCOOS' primary role is to aggregate, organize and serve data that are useful to an MBON for the Florida Keys National Marine Sanctuary. GCOOS, in collaboration with Axiom Data Science, will produce a decision support system (DSS) for stakeholders such as NOAA National Marine Sanctuaries Program managers. The datasets to be managed include environmental observations from: field surveys, fixed platforms, and satellites; GIS layers of: bathymetry, shoreline, sanctuary boundaries, living marine resources and habitats; outputs from ocean circulation models and ecosystem models (e.g., Ecopath/Ecosim) and Environmental DNA. Additionally, the DSS may be called upon to perform analyses, compute indices of biodiversity and present results in tabular, graphic and fused forms in an interactive setting. This presentation will discuss our progress to date for this challenging work in data integration.

  8. Estimating belowground carbon stocks in isolated wetlands of the Northern Everglades Watershed, central Florida, using ground penetrating radar (GPR) and aerial imagery

    Science.gov (United States)

    McClellan, Matthew; Comas, Xavier; Hinkle, Ross; Sumner, David M.

    2017-01-01

    Peat soils store a large fraction of the global soil carbon (C) pool and comprise 95% of wetland C stocks. While isolated freshwater wetlands in temperate and tropical biomes account for more than 20% of the global peatland C stock, most studies of wetland soil C have occurred in expansive peatlands in northern boreal and subarctic biomes. Furthermore, the contribution of small depressional wetlands in comparison to larger wetland systems in these environments is very uncertain. Given the fact that these wetlands are numerous and variable in terms of their internal geometry, innovative methods are needed for properly estimating belowground C stocks and their overall C contribution to the landscape. In this study, we use a combination of ground penetrating radar (GPR), aerial imagery, and direct measurements (coring) in conjunction with C core analysis to develop a relation between C stock and surface area, and estimate the contribution of subtropical depressional wetlands to the total C stock of pine flatwoods at the Disney Wilderness Preserve (DWP), Florida. Additionally, GPR surveys were able to image collapse structures underneath the peat basin of depressional wetlands, depicting lithological controls on the formation of depressional wetlands at the DWP. Results indicate the importance of depressional wetlands as critical contributors to the landscape C budget at the DWP and the potential of GPR-based approaches for (1) rapidly and noninvasively estimating the contribution of depressional wetlands to regional C stocks and (2) evaluating the formational processes of depressional wetlands.

  9. Estimating Belowground Carbon Stocks in Isolated Wetlands of the Northern Everglades Watershed, Central Florida, Using Ground Penetrating Radar and Aerial Imagery

    Science.gov (United States)

    McClellan, Matthew; Comas, Xavier; Benscoter, Brian; Hinkle, Ross; Sumner, David

    2017-11-01

    Peat soils store a large fraction of the global soil carbon (C) pool and comprise 95% of wetland C stocks. While isolated freshwater wetlands in temperate and tropical biomes account for more than 20% of the global peatland C stock, most studies of wetland soil C have occurred in expansive peatlands in northern boreal and subarctic biomes. Furthermore, the contribution of small depressional wetlands in comparison to larger wetland systems in these environments is very uncertain. Given the fact that these wetlands are numerous and variable in terms of their internal geometry, innovative methods are needed for properly estimating belowground C stocks and their overall C contribution to the landscape. In this study, we use a combination of ground penetrating radar (GPR), aerial imagery, and direct measurements (coring) in conjunction with C core analysis to develop a relation between C stock and surface area, and estimate the contribution of subtropical depressional wetlands to the total C stock of pine flatwoods at the Disney Wilderness Preserve (DWP), Florida. Additionally, GPR surveys were able to image collapse structures underneath the peat basin of depressional wetlands, depicting lithological controls on the formation of depressional wetlands at the DWP. Results indicate the importance of depressional wetlands as critical contributors to the landscape C budget at the DWP and the potential of GPR-based approaches for (1) rapidly and noninvasively estimating the contribution of depressional wetlands to regional C stocks and (2) evaluating the formational processes of depressional wetlands.

  10. Lower survival probabilities for adult Florida manatees in years with intense coastal storms

    Science.gov (United States)

    Langtimm, C.A.; Beck, C.A.

    2003-01-01

    The endangered Florida manatee (Trichechus manatus latirostris) inhabits the subtropical waters of the southeastern United States, where hurricanes are a regular occurrence. Using mark-resighting statistical models, we analyzed 19 years of photo-identification data and detected significant annual variation in adult survival for a subpopulation in northwest Florida where human impact is low. That variation coincided with years when intense hurricanes (Category 3 or greater on the Saffir-Simpson Hurricane Scale) and a major winter storm occurred in the northern Gulf of Mexico. Mean survival probability during years with no or low intensity storms was 0.972 (approximate 95% confidence interval = 0.961-0.980) but dropped to 0.936 (0.864-0.971) in 1985 with Hurricanes Elena, Kate, and Juan; to 0.909 (0.837-0.951) in 1993 with the March "Storm of the Century"; and to 0.817 (0.735-0.878) in 1995 with Hurricanes Opal, Erin, and Allison. These drops in survival probability were not catastrophic in magnitude and were detected because of the use of state-of-the-art statistical techniques and the quality of the data. Because individuals of this small population range extensively along the north Gulf coast of Florida, it was possible to resolve storm effects on a regional scale rather than the site-specific local scale common to studies of more sedentary species. This is the first empirical evidence in support of storm effects on manatee survival and suggests a cause-effect relationship. The decreases in survival could be due to direct mortality, indirect mortality, and/or emigration from the region as a consequence of storms. Future impacts to the population by a single catastrophic hurricane, or series of smaller hurricanes, could increase the probability of extinction. With the advent in 1995 of a new 25- to 50-yr cycle of greater hurricane activity, and longer term change possible with global climate change, it becomes all the more important to reduce mortality and injury

  11. Analysis of bathymetric surveys to identify coastal vulnerabilities at Cape Canaveral, Florida

    Science.gov (United States)

    Thompson, David M.; Plant, Nathaniel G.; Hansen, Mark E.

    2015-10-07

    Cape Canaveral, Florida, is a prominent feature along the Southeast U.S. coastline. The region includes Merritt Island National Wildlife Refuge, Cape Canaveral Air Force Station, NASA’s Kennedy Space Center, and a large portion of Canaveral National Seashore. The actual promontory of the modern Cape falls within the jurisdictional boundaries of Cape Canaveral Air Force Station. Erosion hazards result from winter and tropical storms, changes in sand resources, sediment budgets, and sea-level rise. Previous work by the USGS has focused on the vulnerability of the dunes to storms, where updated bathymetry and topography have been used for modeling efforts. Existing research indicates that submerged shoals, ridges, and sandbars affect patterns of wave refraction and height, coastal currents, and control sediment transport. These seabed anomalies indicate the availability and movement of sand within the nearshore environment, which may be directly related to the stability of the Cape Canaveral shoreline. Understanding the complex dynamics of the offshore bathymetry and associated sediment pathways can help identify current and future erosion vulnerabilities due to short-term (for example, hurricane and other extreme storms) and long-term (for example, sea-level rise) hazards.

  12. Mid- to late-Holocene coastal environmental changes in southwest Florida, USA

    NARCIS (Netherlands)

    Soelen, E.E. van; Brooks, G.R.; Larson, R.A.; Sinninghe Damsté, J.S.; Reichart, G.-J.

    2012-01-01

    During the Holocene, Florida experienced major changes in precipitation and runoff. To better understand these processes, shallow marine sediment cores from Charlotte Harbor (southwest Florida) were studied, covering approximately the past 9000 years. Whole core XRF scanning was applied to

  13. Environmental setting and factors that affect water quality in the Georgia-Florida Coastal Plain study unit

    Science.gov (United States)

    Berndt, M.P.; Oaksford, E.T.; Darst, M.R.; Marella, R.L.

    1996-01-01

    The Georgia-Florida Coastal Plain study unit covers an area of nearly 62,000 square miles in the southeastern United States, mostly in the Coastal Plain physiographic province. Land resource provinces have been designated based on generalized soil classifications. Land resource provinces in the study area include: the Coastal Flatwoods, the Southern Coastal Plain, the Central Florida Ridge, the Sand Hills, and the Southern Piedmont. The study area includes all or parts of seven hydrologic subregions: the Ogeechee-Savannah, the Altamaha- St.Marys, the Suwannee, the Ochlockonee, the St. Johns, the Peace-Tampa Bay, and the Southern Florida. The primary source of water for public supply in the study area is ground water from the Upper Floridan aquifer. In 1990, more than 90 percent of the 2,888 million gallons per day of ground water used came from this aquifer. The population of the study area was 9.3 million in 1990. The cities of Jacksonville, Orlando, St. Petersburg, Tallahassee, and Tampa, Florida, and parts of Atlanta and Savannah, Georgia, are located in the study area. Forest and agricultural areas are the most common land uses in the study area, accounting for 48 percent and 25 percent of the study area, respectively. Climatic conditions range from temperate in Atlanta, Georgia, where mean annual temperature is about 61.3 degrees Fahrenheit, to subtropical in Tampa, Florida, where mean annual temperature is about 72.4 degrees Fahrenheit. Long-term average precipitation (1961-90) ranges from 43.9 inches per year in Tampa, Florida, and 44.6 in Macon, Georgia, to 65.7 inches per year in Tallahassee, Florida. Floods in the study area result from frontal systems, hurricanes, tropical storms, or severe thunderstorms. Droughts are not common in the study area,especially in the Florida part of the study area due to extensive maritime exposure. The primary physical and cultural characteristics in the study area include physiography, soils and land resource provinces

  14. EAARL Coastal Topography and Imagery-Naval Live Oaks Area, Gulf Islands National Seashore, Florida, 2007

    Science.gov (United States)

    Nagle, David B.; Nayegandhi, Amar; Yates, Xan; Brock, John C.; Wright, C. Wayne; Bonisteel, Jamie M.; Klipp, Emily S.; Segura, Martha

    2010-01-01

    These remotely sensed, geographically referenced color-infrared (CIR) imagery and elevation measurements of lidar-derived bare-earth (BE) topography, first-surface (FS) topography, and canopy-height (CH) datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Science Center, St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Naval Live Oaks Area in Florida's Gulf Islands National Seashore, acquired June 30, 2007. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral CIR camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area

  15. Landscape characteristics of Rhizophora mangle forests and propagule deposition in coastal environments of Florida (USA)

    Science.gov (United States)

    Sengupta, R.; Middleton, B.; Yan, C.; Zuro, M.; Hartman, H.

    2005-01-01

    Field dispersal studies are seldom conducted at regional scales even though reliable information on mid-range dispersal distance is essential for models of colonization. The purpose of this study was to examine the potential distance of dispersal of Rhizophora mangle propagules by comparing deposition density with landscape characteristics of mangrove forests. Propagule density was estimated at various distances to mangrove sources (R. mangle) on beaches in southwestern Florida in both high-and low-energy environments, either facing open gulf waters vs. sheltered, respectively. Remote sensing and Geographic Information Systems were used to identify source forests and to determine their landscape characteristics (forest size and distance to deposition area) for the regression analyses. Our results indicated that increasing density of propagules stranded on beaches was related negatively to the distance of the deposition sites from the nearest stands of R. mangle and that deposition was greatly diminished 2 km or more from the source. Measures of fragmentation such as the area of the R. mangle forests were related to propagule deposition but only in low-energy environments. Our results suggest that geographic models involving the colonization of coastal mangrove systems should include dispersal dynamics at mid-range scales, i.e., for our purposes here, beyond the local scale of the forest and up to 5 km distant. Studies of mangrove propagule deposition at various spatial scales are key to understanding regeneration limitations in natural gaps and restoration areas. Therefore, our study of mid-range propagule dispersal has broad application to plant ecology, restoration, and modeling. ?? Springer 2005.

  16. The Effect of Coastal Development on Storm Surge Flooding in Biscayne Bay, Florida, USA (Invited)

    Science.gov (United States)

    Zhang, K.; Liu, H.; Li, Y.

    2013-12-01

    Barrier islands and associated bays along the Atlantic and Gulf Coasts are a favorite place for both living and visiting. Many of them are vulnerable to storm surge flooding because of low elevations and constantly being subjected to the impacts of storms. The population increase and urban development along the barrier coast have altered the shoreline configuration, resulting in a dramatic change in the coastal flooding pattern in some areas. Here we present such a case based on numerical simulations of storm surge flooding caused by the1926 hurricane in the densely populated area surrounding Biscayne Bay in Miami, Florida. The construction of harbor and navigation channels, and the development of real estate and the roads connecting islands along Biscayne Bay have changed the geometry of Biscayne Bay since 1910s. Storm surge simulations show that the Port of Miami and Dodge Island constructed by human after 1950 play an important role in changing storm surge inundation pattern along Biscayne Bay. Dodge Island enhances storm surge and increases inundation in the area south of the island, especially at the mouth of Miami River (Downtown of Miami), and reduces storm surge flooding in the area north of the island, especially in Miami Beach. If the Hurricane Miami of 1926 happened today, the flooding area would be reduced by 55% and 20% in the Miami Beach and North Miami areas, respectively. Consequently, it would prevent 400 million of property and 10 thousand people from surge flooding according to 2010 U.S census and 2007 property tax data. Meanwhile, storm water would penetrate further inland south of Dodge Island and increase the flooding area by 25% in the Miami River and Downtown Miami areas. As a result, 200 million of property and five thousand people would be impacted by storm surge.

  17. U.S. Coastal Relief Model - Florida and East Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  18. Post-Hurricane Ivan coastal oblique aerial photographs collected from Crawfordville, Florida, to Petit Bois Island, Mississippi, September 17, 2004

    Science.gov (United States)

    Morgan, Karen L.M.; Krohn, M. Dennis; Peterson, Russell D.; Thompson, Philip R.; Subino, Janice A.

    2015-01-01

    The U.S. Geological Survey (USGS) conducts baseline and storm response photography missions to document and understand the changes in vulnerability of the Nation's coasts to extreme storms. On September 17, 2004, the USGS conducted an oblique aerial photographic survey from Crawfordville, Florida, to Petit Bois Island, Mississippi aboard a Piper Navajo Chieftain (aircraft) at an altitude of 500 feet (ft) and approximately 1,000 ft offshore. This mission was flown to collect post-Hurricane Ivan data for assessing incremental changes in the beach and nearshore area since the last survey in 2001, and the data can be used in the assessment of future coastal change.

  19. Detection of coastal and submarine discharge on the Florida Gulf Coast with an airborne thermal-infrared mapping system

    Science.gov (United States)

    Raabe, Ellen; Stonehouse, David; Ebersol, Kristin; Holland, Kathryn; Robbins, Lisa

    2011-01-01

    Along the Gulf Coast of Florida north of Tampa Bay lies a region characterized by an open marsh coast, low topographic gradient, water-bearing limestone, and scattered springs. The Floridan aquifer system is at or near land surface in this region, discharging water at a consistent 70-72°F. The thermal contrast between ambient water and aquifer discharge during winter months can be distinguished using airborne thermal-infrared imagery. An airborne thermal-infrared mapping system was used to collect imagery along 126 miles of the Gulf Coast from Jefferson to Levy County, FL, in March 2009. The imagery depicts a large number of discharge locations and associated warm-water plumes in ponds, creeks, rivers, and nearshore waters. A thermal contrast of 6°F or more was set as a conservative threshold for identifying sites, statistically significant at the 99% confidence interval. Almost 900 such coastal and submarine-discharge locations were detected, averaging seven to nine per mile along this section of coast. This represents approximately one hundred times the number of previously known discharge sites in the same area. Several known coastal springs in Taylor and Levy Counties were positively identified with the imagery and were used to estimate regional discharge equivalent to one 1st-order spring, discharging 100 cubic feet per second or more, for every two miles of coastline. The number of identified discharge sites is a conservative estimate and may represent two-thirds of existing features due to low groundwater levels at time of overflight. The role of aquifer discharge in coastal and estuarine health is indisputable; however, mapping and quantifying discharge in a complex karst environment can be an elusive goal. The results of this effort illustrate the effectiveness of the instrument and underscore the influence of coastal springs along this stretch of the Florida coast.

  20. The west-central Florida inner shelf and coastal system: A geologic conceptual overview and introduction to the special issue

    Science.gov (United States)

    Hine, A.C.; Brooks, G.R.; Davis, R.A.; Duncan, D.S.; Locker, S.D.; Twichell, D.C.; Gelfenbaum, G.

    2003-01-01

    This paper provides an overview for this special publication on the geologic framework of the inner shelf and coastal zone of west-central Florida. This is a significant geologic setting in that it lies at the center of an ancient carbonate platform facing an enormous ramp that has exerted large-scale control on coastal geomorphology, the availability of sediments, and the level of wave energy. In order to understand the Holocene geologic history of this depositional system, a regional study defined by natural boundaries (north end of a barrier island to the apex of a headland) was undertaken by a group of government and university coastal geologists using a wide variety of laboratory and field techniques. It is the purpose of this introductory paper to define the character of this coastal/inner shelf system, provide a historical geologic perspective and background of environmental information, define the overall database, present the collective objectives of this regional study, and very briefly present the main aspects of each contribution. Specific conclusions are presented at the end of each paper composing this volume. ?? 2003 Elsevier B.V. All rights reserved.

  1. Everglades Ecological Forecasting II: Utilizing NASA Earth Observations to Enhance the Capabilities of Everglades National Park to Monitor & Predict Mangrove Extent to Aid Current Restoration Efforts

    Science.gov (United States)

    Kirk, Donnie; Wolfe, Amy; Ba, Adama; Nyquist, Mckenzie; Rhodes, Tyler; Toner, Caitlin; Cabosky, Rachel; Gotschalk, Emily; Gregory, Brad; Kendall, Candace

    2016-01-01

    Mangroves act as a transition zone between fresh and salt water habitats by filtering and indicating salinity levels along the coast of the Florida Everglades. However, dredging and canals built in the early 1900s depleted the Everglades of much of its freshwater resources. In an attempt to assist in maintaining the health of threatened habitats, efforts have been made within Everglades National Park to rebalance the ecosystem and adhere to sustainably managing mangrove forests. The Everglades Ecological Forecasting II team utilized Google Earth Engine API and satellite imagery from Landsat 5, 7, and 8 to continuously create land-change maps over a 25 year period, and to allow park officials to continue producing maps in the future. In order to make the process replicable for project partners at Everglades National Park, the team was able to conduct a supervised classification approach to display mangrove regions in 1995, 2000, 2005, 2010 and 2015. As freshwater was depleted, mangroves encroached further inland and freshwater marshes declined. The current extent map, along with transition maps helped create forecasting models that show mangrove encroachment further inland in the year 2030 as well. This project highlights the changes to the Everglade habitats in relation to a changing climate and hydrological changes throughout the park.

  2. Effects of Climate Change on Fishery Species in Florida

    Science.gov (United States)

    Shenker, Jonathan M.

    2009-07-01

    Recreational and commercial fishery species in Florida and elsewhere are under serious stress from overfishing and many types of habitat and water quality degradation. Climate change may add to that stress by affecting an array of biological processes, although the range of some subtropical and tropical species may expand northward in the state. It is expected to trigger sea level rise and changes in hurricanes and precipitation levels in Florida and elsewhere. Perhaps the most significant impacts of climate change on fishery species will also associated with changes in seagrasses and mangroves that function as Essential Nursery Habitats. Seagrasses in estuarine and coastal areas are limited by water depth and light penetration. Increases in sea level and in precipitation-induced turbidity may restrict the extent of seagrass habitats and their role in fishery production. Expanded efforts to reduce nutrient and sediment loading into seagrass habitats may help minimize the potential loss of a valuable fish nursery habitat. Mangroves have also been affected by human activities, and are the subject of restoration efforts in many areas. Potential sea level rise may cause an expansion of mangrove habitats in the Everglades, at the expense of freshwater habitats. This potential tradeoff of habitats should be considered by the water flow and habitat restoration programs in the Everglades.

  3. Investigation of Immature Sea Turtles in the Coastal Waters of West Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To survey immature sea turtles that inhabit the Ten Thousand Islands. Program funding came from South Florida Ecosystem Restoration. This project provided base-line...

  4. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Florida Panhandle: REPTPT (Reptile Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for threatened and endangered reptiles/amphibians for the Florida Panhandle. Vector points in this data set...

  5. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Florida Panhandle: NESTS (Nest Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for wading birds, shorebirds, raptors, diving birds, and gulls and terns in for the Florida Panhandle....

  6. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: FISH (Fish Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine and estuarine fish species in South Florida. Vector polygons in this data set represent fish...

  7. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: BENTHIC (Benthic Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains benthic habitats, including coral reef and hardbottom, seagrass, algae, and others in [for] South Florida. Vector polygons in the data set...

  8. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: REPTILES (Reptile Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for sea turtles, crocodiles, mangrove terrapins, and other rare species in [for] South Florida. Vector...

  9. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Florida Panhandle: INVERTPT (Invertebrate Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for threatened/endangered invertebrate species for the Florida Panhandle. Vector points in this data set...

  10. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Florida Panhandle: REPTILES (Reptile Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for sea turtles and select estuarine/freshwater reptiles for the Florida Panhandle. Vector polygons in this...

  11. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: INVERT (Invertebrate Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for marine and estuarine invertebrate species in South Florida. Vector polygons in this data set represent...

  12. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: HABITATS (Habitat Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for threatened/endangered/rare terrestrial plants and communities in [for] South Florida. The terrestrial...

  13. Modeled Sea Level Rise Impacts on Coastal Ecosystems at Six Major Estuaries on Florida's Gulf Coast: Implications for Adaptation Planning.

    Science.gov (United States)

    Geselbracht, Laura L; Freeman, Kathleen; Birch, Anne P; Brenner, Jorge; Gordon, Doria R

    2015-01-01

    The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida's Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway.

  14. Evaluation of a Florida coastal golf complex as a local and watershed source of bioavailable contaminants

    Science.gov (United States)

    Lewis, Michael A., Robert L. Quarles, Darrin D. Dantin and James C. Moore. 2004. Evaluation of a Coastal Golf Complex as a Local and Watershed Source of Bioavailable Contaminants. Mar. Pollut. Bull. 48(3-4):254-262. (ERL,GB 1183). Contaminant fate in coastal areas impacte...

  15. An analysis of attitudes towards the comprehensive Everglades Restoration Plan using market segmentation

    Science.gov (United States)

    Jeffrey J. Bransford; Robert D. Bixler; William E. Hammitt

    2006-01-01

    Manipulation of water systems in south Florida have created hundreds of miles of canals, dams, and other diversions. These efforts significantly altered the region?s hydrology and introduced unanticipated changes into the ecosystem. In 2000, the Comprehensive Everglades Restoration Plan (CERP) was authorized to restore, protect, and preserve these wetlands....

  16. Implications of a valuation study for ecological and social indicators associated with Everglades restoration.

    Science.gov (United States)

    Seeteram, Nadia A; Engel, Victor; Mozumder, Pallab

    2018-06-15

    The Everglades of south Florida, although degraded, imparts vital ecosystem benefits, including contributions to high quality drinking water supplies and habitat for a number of threatened and endangered species. Restoration of the Everglades can improve the provision of these benefits but also may impose tradeoffs with competing societal demands. This study focuses on understanding public preferences for Everglades restoration and estimating the willingness to pay (WTP) values for restored ecosystem services (ES) through the implementation of a discrete choice experiment (DCE). We collected data from 2302 respondents from the general public from an online survey designed to elicit WTP values for selected ecological and social attributes associated with Everglades restoration scenarios. We compare the findings to results from earlier studies (Milon et al., 1999; Milon and Scrogin, 2005), which also estimated WTP values among Floridians for Everglades restoration. For some attributes, WTP for Everglades restoration appears to have slightly increased while for others WTP appears to have decreased. We estimated statewide aggregate WTP values for components of species population restoration up to $2B over 10 years. Several factors impeded a direct comparison of current and historical WTP values, including time elapsed, different samples and sampling methods- which may have implications for integrating ecosystem service valuation studies into water management decisions. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Key West, Florida 1/3 Arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  18. Central Florida 1/3 arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  19. Central Florida 1/3 arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  20. Florida 2004 Post Ivan Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2004. The data...

  1. Florida 2005 Post Dennis Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2005. The data...

  2. Florida 2006 Post Wilma Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Atlantic in the summer of 2006. The data types...

  3. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: HYDRO (Hydrography Lines and Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for South...

  4. Destin, Florida 1/3 arc-second NAVD88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Centers for Environmental Information is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  5. Palm Beach, Florida 1/3 Arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  6. Panama City, Florida 1/3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico....

  7. Panama City, Florida 1/3 Arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico....

  8. Florida 2005 Post Katrina Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2005. The data...

  9. Looe Key, Florida 2004 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2004. The data...

  10. Key West, Florida 1/3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  11. Pensacola, Florida 1/3 arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Centers for Environmental Information (NCEI) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These...

  12. Palm Beach, Florida 1/3 Arc-second MWH Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  13. The ecological classification of coastal wet longleaf pine (pinus palustris) of Florida from reference conditions

    Science.gov (United States)

    George L. McCaskill; Jose. Shibu

    2012-01-01

    Tropical storms, fire, and urbanization have produced a heavily fragmented forested landscape along Florida’s Gulf coast. The longleaf pine forest, one of the most threatened ecosystems in the US, makes up a major part of this fragmented landscape. These three disturbance regimes have produced a mosaic of differently-aged pine patches of single or two cohort structures...

  14. Everglades Restoration: Competing Societal Factors Versus Good Science

    Science.gov (United States)

    Armstrong, T. R.

    2002-05-01

    For the most part, it is agreed that the future health and welfare of the Greater Everglades ecosystem relies on the critical timing and delivery of freshwater in a manner that simulates historical sheetflow (non-channelized flow). Successful restoration of sheetflow might be defined as getting the right volume of water to the right places at the right time; however, in order to achieve this a delicate balance of scientific, political and economic factors, many of which have competing interests, must be achieved. These factors include: 1) population growth and urban sprawl in south Florida. Increased demand for land and water to sustain sprawl will have some degree of detrimental impact on the time- and volume-critical delivery of water needed for restoration of essential habitat in both the terrestrial (tree islands, grasslands and marshes) and marine (Florida and Biscayne Bays and related estuaries) environments. 2) Increased demand for agriculture within south Florida requires significant management, sequestration, and diversion of surface and ground-water resources, as well as the acquisition of lands amenable to crop production. Since a large part of the agricultural area lies within the confines of the natural Everglades ecosystem, and "upstream" from Everglades National Park, impacts upon the surface and ground-water (agriculture-induced soil erosion, fertilization, pesticide practices, and surface and ground-water withdrawal) tend to have substantial impacts on the progress of natural ecosystem restoration. 3) Continued growth in the tourism and recreation markets will require concomitant growth in the development and acquisition of lands and resultant land-use changes that may have adverse impact on the natural ecosystem. Since the timing and delivery of water to the Everglades comes from recharge areas outside the boundaries of managed public lands, land-use practices within privately owned lands could have serious "downstream" impacts on the timing and

  15. Hurricane storm surge and amphibian communities in coastal wetlands of northwestern Florida

    Science.gov (United States)

    Gunzburger, M.S.; Hughes, W.B.; Barichivich, W.J.; Staiger, J.S.

    2010-01-01

    Isolated wetlands in the Southeastern United States are dynamic habitats subject to fluctuating environmental conditions. Wetlands located near marine environments are subject to alterations in water chemistry due to storm surge during hurricanes. The objective of our study was to evaluate the effect of storm surge overwash on wetland amphibian communities. Thirty-two wetlands in northwestern Florida were sampled over a 45-month period to assess amphibian species richness and water chemistry. During this study, seven wetlands were overwashed by storm surge from Hurricane Dennis which made landfall 10 July 2005 in the Florida panhandle. This event allowed us to evaluate the effect of storm surge overwash on water chemistry and amphibian communities of the wetlands. Specific conductance across all wetlands was low pre-storm (marine habitats are resistant to the effects of storm surge overwash. ?? 2010 Springer Science+Business Media B.V.

  16. Effect of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida.

    Science.gov (United States)

    Langevin, Christian D; Zygnerski, Michael

    2013-01-01

    A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  17. Effects of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida

    Science.gov (United States)

    Langevin, Christian D.; Zygnerski, Michael

    2013-01-01

    A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise.

  18. Stakeholder perspectives on land-use strategies for adapting to climate-change-enhanced coastal hazards: Sarasota, Florida

    Science.gov (United States)

    Frazier, Tim G.; Wood, Nathan; Yarnal, Brent

    2010-01-01

    Sustainable land-use planning requires decision makers to balance community growth with resilience to natural hazards. This balance is especially difficult in many coastal communities where planners must grapple with significant growth projections, the persistent threat of extreme events (e.g., hurricanes), and climate-change-driven sea level rise that not only presents a chronic hazard but also alters the spatial extent of sudden-onset hazards such as hurricanes. We examine these stressors on coastal, long-term land-use planning by reporting the results of a one-day community workshop held in Sarasota County, Florida that included focus groups and participatory mapping exercises. Workshop participants reflected various political agendas and socioeconomic interests of five local knowledge domains: business, environment, emergency management and infrastructure, government, and planning. Through a series of alternating domain-specific focus groups and interactive plenary sessions, participants compared the county 2050 comprehensive land-use plan to maps of contemporary hurricane storm-surge hazard zones and projected storm-surge hazard zones enlarged by sea level rise scenarios. This interactive, collaborative approach provided each group of domain experts the opportunity to combine geographically-specific, scientific knowledge on natural hazards and climate change with local viewpoints and concerns. Despite different agendas, interests, and proposed adaptation strategies, there was common agreement among participants for the need to increase community resilience to contemporary hurricane storm-surge hazards and to explore adaptation strategies to combat the projected, enlarged storm-surge hazard zones.

  19. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (south Florida)

    Energy Technology Data Exchange (ETDEWEB)

    Jory, D.E.; Iversen, E.S. (Miami Univ., FL (USA). Rosenstiel School of Marine and Atmospheric Sciences)

    1989-08-01

    Black, red, and Nassau groupers (Mycteroperca bonaci, Epinephelus morio, and E. striatus, respectively) are widely distributed on rocky bottoms and reefs along the south Florida coast. They are the most valuable marine finfish group in Florida, comprising about 25% of the total value of landings in 1984. The three species can be distinguished by morphometric, meristic, and body color characteristics. Younger fish are typically found in shallow, inshore grass beds, and larger, older fish are generally restricted to deep waters. The three species are protogynous hermaphrodites. Sexual transition can occur at any length over about 300 mm SL. An offshore movement apparently coincides with the onset of sexual maturity. Spawning aggregations have been observed throughout the year, but occur mostly between late spring and early summer. Fecundity estimates range from about 800,000 to 5,000,000 eggs per female. Both the eggs and the larvae are planktonic. Their early life history is poorly known. Larvae probably leave the plankton and become benthic at around 20--30 mm SL. Growth rates range from about 2 to 10 mm/month. The three species are unspecialized carnivores, feeding on a variety of fishes, crustaceans, and mollusks. Interspecific competition for food and shelter may be common because of the overlap in distribution, habitat, size, and food habitats. For the three species, a number of predators and parasites have been reported. Both the black and red groupers have been implicated in ciguatera poisonings in south Florida. 70 refs., 3 figs., 3 tabs.

  20. Challenges in Projecting Sea Level Rise impacts on the Coastal Environment of South Florida (Invited)

    Science.gov (United States)

    Obeysekera, J.; Park, J.; Irizarry-Ortiz, M. M.; Barnes, J. A.; Trimble, P.; Said, W.

    2010-12-01

    Due to flat topography, a highly transmissive groundwater aquifer, and a growing population with the associated infrastructure, South Florida’s coastal environment is one of the most vulnerable areas to sea level rise. Current projections of sea level rise and the associated storm surges will have direct impacts on coastal beaches and infrastructure, flood protection, freshwater aquifers, and both the isolated and regional wetlands. Uncertainties in current projections have made it difficult for regional and local governments to develop adaptation strategies as such measures will depend heavily on the temporal and spatial patterns of sea level rise in the coming decades. We demonstrate the vulnerability of both the built and natural environments of the coastal region and present the current efforts to understand and predict the sea level rise estimate that management agencies could employ in planning of adaptation strategies. In particular, the potential vulnerabilities of the flood control system as well as the threat to the water supply wellfields in the coastal belt will be presented. In an effort to understand the historical variability of sea level rise, we present linkages to natural phenomena such as Atlantic Multi-Decadal Oscillation, and the analytical methods we have developed to provide probabilistic projections of both mean sea level rise and the extremes.

  1. GOLF COURSES AS A SOURCE OF COASTAL CONTAMINATION AND TOXICITY: A FLORIDA EXPERIENCE

    Science.gov (United States)

    The chemical and biological impacts of two coastal golf courses that receive wastewater spray irrigation were determined during a two-year period. A variety of techniques were used to assess the spatial and temporal variability of contaminant levels and their bioavailability in t...

  2. Evaluation of sewage source and fate on southeast Florida coastal reefs

    Science.gov (United States)

    Carrie, Futch J.; Griffin, Dale W.; Banks, K.; Lipp, E.K.

    2011-01-01

    Water, sponge and coral samples were collected from stations impacted by a variety of pollution sources and screened for human enteric viruses as conservative markers for human sewage. While human enteroviruses and adenoviruses were not detected, noroviruses (NoV; human genogroups I and II) were detected in 31% of samples (especially in sponge tissue). Stations near inlets were the only ones to show multiple sample types positive for NoV. Fecal indicator bacteria and enteric viruses were further evaluated at multiple inlet stations on an outgoing tide. Greatest indicator concentrations and highest prevalence of viruses were found at the mouth of the inlet and offshore in the inlet plume. Results suggest that inlets moving large volumes of water into the coastal zone with tides may be an important source of fecal contaminants. Efforts to reduce run-off or unintended release of water into the Intracoastal Waterway may lower contaminants entering sensitive coastal areas. ?? 2011 Elsevier Ltd.

  3. Current and other data from meters attached to FIXED PLATFORMS in the coastal waters of Florida in support of the Subtropical Atlantic Climate Study 4 (STACS) from 1983-06-08 to 1983-12-13 (NODC Accession 8700019)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current and other data from meters attached to FIXED PLATFORMS in the coastal waters of Florida. Data were collected by University of Miami; Rosenstiel School of...

  4. Current and other data from meters attached to FIXED PLATFORMS in the coastal waters of Florida in support of the Subtropical Atlantic Climate Study 3 (STACS) from 1980-11-10 to 1983-06-07 (NODC Accession 8800120)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current and other data from meters attached to FIXED PLATFORMS in the coastal waters of Florida. Data were collected by University of Miami; Rosenstiel School of...

  5. Current and other data from meters attached to FIXED PLATFORMS in the coastal waters of Florida in support of the Subtropical Atlantic Climate Study 6 (STACS) from 1984-06-19 to 1987-03-27 (NODC Accession 8900060)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current and other data from meters attached to FIXED PLATFORMS in the coastal waters of Florida. Data were collected by University of Miami; Rosenstiel School of...

  6. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: Implications for mercury bioaccumulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu Guangliang [Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199 (United States); Southeast Environmental Research Center, Florida International University, Miami, FL 33199 (United States); Cai Yong [Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199 (United States); Southeast Environmental Research Center, Florida International University, Miami, FL 33199 (United States)], E-mail: cai@fiu.edu; Philippi, Thomas [Department of Biological Sciences, Florida International University, Miami, FL 33199 (United States); Kalla, Peter; Scheidt, Daniel [US Environmental Protection Agency, Region 4, Science and Ecosystem Support Division, Athens, GA 30605 (United States); Richards, Jennifer [Department of Biological Sciences, Florida International University, Miami, FL 33199 (United States); Scinto, Leonard [Southeast Environmental Research Center, Florida International University, Miami, FL 33199 (United States); Appleby, Charlie [US Environmental Protection Agency, Region 4, Science and Ecosystem Support Division, Athens, GA 30605 (United States)

    2008-05-15

    We analyzed Hg species distribution patterns among ecosystem compartments in the Everglades at the landscape level in order to explore the implications of Hg distribution for Hg bioaccumulation and to investigate major biogeochemical processes that are pertinent to the observed Hg distribution patterns. At an Everglade-wide scale, THg concentrations were significantly increased in the following order: periphyton < flocculent material (floc) < soil, while relatively high MeHg concentrations were observed in floc and periphyton. Differences in the methylation potential, THg concentration, and MeHg retention capacity could explain the relatively high MeHg concentrations in floc and periphyton. The MeHg/THg ratio was higher for water than for soil, floc, or periphyton probably due to high dissolved organic carbon (DOC) concentrations present in the Everglades. Mosquitofish THg positively correlated with periphyton MeHg and DOC-normalized water MeHg. The relative THg and MeHg distribution patterns among ecosystem compartments favor Hg bioaccumulation in the Everglades. - Mercury bioaccumulation in Florida Everglades is related to the distribution patterns of mercury species among ecosystem compartments.

  7. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: Implications for mercury bioaccumulation

    International Nuclear Information System (INIS)

    Liu Guangliang; Cai Yong; Philippi, Thomas; Kalla, Peter; Scheidt, Daniel; Richards, Jennifer; Scinto, Leonard; Appleby, Charlie

    2008-01-01

    We analyzed Hg species distribution patterns among ecosystem compartments in the Everglades at the landscape level in order to explore the implications of Hg distribution for Hg bioaccumulation and to investigate major biogeochemical processes that are pertinent to the observed Hg distribution patterns. At an Everglade-wide scale, THg concentrations were significantly increased in the following order: periphyton < flocculent material (floc) < soil, while relatively high MeHg concentrations were observed in floc and periphyton. Differences in the methylation potential, THg concentration, and MeHg retention capacity could explain the relatively high MeHg concentrations in floc and periphyton. The MeHg/THg ratio was higher for water than for soil, floc, or periphyton probably due to high dissolved organic carbon (DOC) concentrations present in the Everglades. Mosquitofish THg positively correlated with periphyton MeHg and DOC-normalized water MeHg. The relative THg and MeHg distribution patterns among ecosystem compartments favor Hg bioaccumulation in the Everglades. - Mercury bioaccumulation in Florida Everglades is related to the distribution patterns of mercury species among ecosystem compartments

  8. Application of an optimization algorithm to satellite ocean color imagery: A case study in Southwest Florida coastal waters

    Science.gov (United States)

    Hu, Chuanmin; Lee, Zhongping; Muller-Karger, Frank E.; Carder, Kendall L.

    2003-05-01

    A spectra-matching optimization algorithm, designed for hyperspectral sensors, has been implemented to process SeaWiFS-derived multi-spectral water-leaving radiance data. The algorithm has been tested over Southwest Florida coastal waters. The total spectral absorption and backscattering coefficients can be well partitioned with the inversion algorithm, resulting in RMS errors generally less than 5% in the modeled spectra. For extremely turbid waters that come from either river runoff or sediment resuspension, the RMS error is in the range of 5-15%. The bio-optical parameters derived in this optically complex environment agree well with those obtained in situ. Further, the ability to separate backscattering (a proxy for turbidity) from the satellite signal makes it possible to trace water movement patterns, as indicated by the total absorption imagery. The derived patterns agree with those from concurrent surface drifters. For waters where CDOM overwhelmingly dominates the optical signal, however, the procedure tends to regard CDOM as the sole source of absorption, implying the need for better atmospheric correction and for adjustment of some model coefficients for this particular region.

  9. Gopher Tortoise (Gopherus polyphemus) Densities in Coastal Scrub and Slash Pine Flatwoods in Florida

    Science.gov (United States)

    Breininger, David R.; Schmalzer, Paul A.; Hinkle, C. Ross

    1994-01-01

    Densities of gopher tortoises were compared with habitat characteristics in scrub and in flatwood habitats on the Kennedy Space Center, Florida. Tortoises were distributed widely among habitat types and did not have higher densities in well-drained (oak-palmetto) than in poorly-drained (saw palmetto) habitats. Fall densities of tortoises ranged from a mean of 2.7 individuals/ha in disturbed habitat to 0.0 individuals/ha in saw palmetto habitat. Spring densities of tortoises ranged from a mean of 2.5 individuals/ha in saw palmetto habitat to 0.7 individuals/ha in oak-palmetto habitat. Densities of tortoises were correlated positively with the percent herbaceous cover, an indicator of food resources. Plots were divided into three burn classes; these were areas burned within three years, burned four to seven years, and unburned for more than seven years prior to the study. Relationships between densities of tortoises and time-since-fire classes were inconsistent.

  10. Mercury accumulation in sharks from the coastal waters of southwest Florida.

    Science.gov (United States)

    Rumbold, Darren; Wasno, Robert; Hammerschlag, Neil; Volety, Aswani

    2014-10-01

    As large long-lived predators, sharks are particularly vulnerable to exposure to methylmercury biomagnified through the marine food web. Accordingly, nonlethal means were used to collect tissues for determining mercury (Hg) concentrations and stable isotopes of carbon (δ(13)C) and nitrogen (δ(15)N) from a total of 69 sharks, comprising 7 species, caught off Southwest Florida from May 2010 through June 2013. Species included blacknose (Carcharhinus acronotus), blacktip (C. limbatus), bull (C. leucas), great hammerhead (Sphyrna mokarran), lemon (Negaprion brevirostris), sharpnose (Rhizoprionodon terraenovae), and tiger sharks (Galeocerdo cuvier). The sharks contained Hg concentrations in their muscle tissues ranging from 0.19 mg/kg (wet-weight basis) in a tiger shark to 4.52 mg/kg in a blacktip shark. Individual differences in total length and δ(13)C explained much of the intraspecific variation in Hg concentrations in blacknose, blacktip, and sharpnose sharks, but similar patterns were not evident for Hg and δ(15)N. Interspecific differences in Hg concentration were evident with greater concentrations in slower-growing, mature blacktip sharks and lower concentrations in faster-growing, young tiger sharks than other species. These results are consistent with previous studies reporting age-dependent growth rate can be an important determinant of intraspecific and interspecific patterns in Hg accumulation. The Hg concentrations observed in these sharks, in particular the blacktip shark, also suggested that Hg may pose a threat to shark health and fitness.

  11. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Florida Panhandle: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for beach mice, red wolf, and Florida black bear for the Florida Panhandle. Vector polygons in this data...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from F.G. Walton Smith in the Coastal Waters of Florida, Coastal Waters of Louisiana and others from 2016-01-04 to 2016-12-13 (NCEI Accession 0157454)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157454 includes Surface underway, chemical, meteorological and physical data collected from F.G. Walton Smith in the Coastal Waters of Florida,...

  13. Hydrology of the coastal springs ground-water basin and adjacent parts of Pasco, Hernando, and Citrus Counties, Florida

    Science.gov (United States)

    Knochenmus, Lari A.; Yobbi, Dann K.

    2001-01-01

    The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year

  14. A spatial analysis of cultural ecosystem service valuation by regional stakeholders in Florida: a coastal application of the social values for ecosystem services (SolVES) tool

    Science.gov (United States)

    Coffin, Alisa W.; Swett, Robert A.; Cole, Zachary D.

    2012-01-01

    Livelihoods and lifestyles of people throughout the world depend on essential goods and services provided by marine and coastal ecosystems. However, as societal demand increases and available ocean and coastal space diminish, better methods are needed to spatially and temporally allocate ocean and coastal activities such as shipping, energy production, tourism, and fishing. While economic valuation is an important mechanism for doing so, cultural ecosystem services often do not lend themselves to this method. Researchers from the U.S. Geological Survey are working collaboratively with the Florida Sea Grant College Program to map nonmonetary values of cultural ecosystem services for a pilot area (Sarasota Bay) in the Gulf of Mexico. The research seeks to close knowledge gaps about the attitudes and perceptions, or nonmonetary values, held by coastal residents toward cultural ecosystem services, and to adapt related, terrestrial-based research methods to a coastal setting. A critical goal is to integrate research results with coastal and marine spatial planning applications, thus making them relevant to coastal planners and managers in their daily efforts to sustainably manage coastal resources. Using information about the attitudes and preferences of people toward places and uses in the landscape, collected from value and preference surveys, the USGS SolVES 2.0 tool will provide quantitative models to relate social values, or perceived nonmonetary values, assigned to locations by survey respondents with the underlying environmental characteristics of those same locations. Project results will increase scientific and geographic knowledge of how Sarasota Bay residents value their area’s cultural ecosystem services.

  15. Modeling Phosphorus Transport and Cycling in the Greater Everglades Ecosystem

    Science.gov (United States)

    James, A. I.; Grace, K. A.; Jawitz, J. W.; Muller, S.; Munoz-Carpena, R.; Flaig, E. G.

    2005-12-01

    A solute transport model was used to predict phosphorus mobility in the northern Everglades. Over the past several decades, agricultural drainage waters discharged into the northern Everglades, have been enriched in phosphorus (P) relative to the historic rainfall-driven inputs. While methods of reducing total P concentrations in the discharge water have been actively pursued through implementation of agricultural Best Management Practices (BMPs), a major parallel effort has focused on the construction of a network of constructed wetlands for P removal before these waters enter the Everglades. This study describes the development of a water quality model for P transport and cycling and its application to a large constructed wetland: Stormwater Treatment Area 1 West (STA 1W), located southeast of Lake Okeechobee on the eastern perimeter of the Everglades Agricultural Area (EAA). In STA 1W agricultural nutrients such as phosphorus (P) are removed from EAA runoff before entering the adjacent Water Conservation Areas (WCAs) and the Everglades. STA 1W is divided by levees into 4 cells, which are flooded for most of the year; thus the dominant mechanism for flow and transport is overland flow. P is removed either through deposition into sediments or is taken up by plants; in either case the soils end up being significantly enriched in P. The model has been applied and calibrated to several years of water quality data from Cell 4 within STA 1W. Most existing P models have been applied to agricultural/upland systems, with only a few relevant to treatment wetlands such as STA 1W. To ensure sufficient flexibility in selecting appropriate system components and reactions, the model has been designed to incorporate a wide range of user-selectable mechanisms for P uptake and release parameters between soils and inflowing water. The model can track a large number of mobile and nonmobile components and utilizes a Godunov-style operator-splitting technique for the transported

  16. Sampling design and procedures for fixed surface-water sites in the Georgia-Florida coastal plain study unit, 1993

    Science.gov (United States)

    Hatzell, H.H.; Oaksford, E.T.; Asbury, C.E.

    1995-01-01

    The implementation of design guidelines for the National Water-Quality Assessment (NAWQA) Program has resulted in the development of new sampling procedures and the modification of existing procedures commonly used in the Water Resources Division of the U.S. Geological Survey. The Georgia-Florida Coastal Plain (GAFL) study unit began the intensive data collection phase of the program in October 1992. This report documents the implementation of the NAWQA guidelines by describing the sampling design and procedures for collecting surface-water samples in the GAFL study unit in 1993. This documentation is provided for agencies that use water-quality data and for future study units that will be entering the intensive phase of data collection. The sampling design is intended to account for large- and small-scale spatial variations, and temporal variations in water quality for the study area. Nine fixed sites were selected in drainage basins of different sizes and different land-use characteristics located in different land-resource provinces. Each of the nine fixed sites was sampled regularly for a combination of six constituent groups composed of physical and chemical constituents: field measurements, major ions and metals, nutrients, organic carbon, pesticides, and suspended sediments. Some sites were also sampled during high-flow conditions and storm events. Discussion of the sampling procedure is divided into three phases: sample collection, sample splitting, and sample processing. A cone splitter was used to split water samples for the analysis of the sampling constituent groups except organic carbon from approximately nine liters of stream water collected at four fixed sites that were sampled intensively. An example of the sample splitting schemes designed to provide the sample volumes required for each sample constituent group is described in detail. Information about onsite sample processing has been organized into a flowchart that describes a pathway for each of

  17. Isotopic evidence for dead fish maintenance of Florida red tides, with implications for coastal fisheries over both source regions of the West Florida shelf and within downstream waters of the South Atlantic Bight

    Science.gov (United States)

    Walsh, J. J.; Weisberg, R. H.; Lenes, J. M.; Chen, F. R.; Dieterle, D. A.; Zheng, L.; Carder, K. L.; Vargo, G. A.; Havens, J. A.; Peebles, E.; Hollander, D. J.; He, R.; Heil, C. A.; Mahmoudi, B.; Landsberg, J. H.

    2009-01-01

    Toxic Florida red tides of the dinoflagellate Kareniabrevis have downstream consequences of 500-1000 km spatial extent. Fish stocks, shellfish beds, and harmful algal blooms of similar species occupy the same continental shelf waters of the southeastern United States, amounting to economic losses of more than 25 million dollars in some years. Under the aegis of the Center for Prediction of Red tides, we are now developing coupled biophysical models of the conditions that lead to red tides and impacted coastal fisheries, from the Florida Panhandle to Cape Hatteras. Here, a nitrogen isotope budget of the coastal food web of the West Florida shelf (WFS) and the downstream South Atlantic Bight (SAB) reaffirms that diazotrophs are the initial nutrient source for onset of red tides and now identifies clupeid fish as the major recycled nutrient source for their maintenance. The recent isotope budget of WFS and SAB coastal waters during 1998-2001 indicates that since prehistoric times of Timacua Indian settlements along the Georgia coast during 1075, ∼50% of the nutrients required for large red tides of >1 μg chl l -1 of K.brevis have been derived from nitrogen-fixers, with the other half from decomposing dead sardines and herrings. During 2001, >90% of the harvest of WFS clupeids was by large ichthyotoxic red tides of >10 μg chl l -1 of K.brevis, rather than by fishermen. After onset of the usual red tides in summer of 2006 and 2007, the simulated subsequent fall exports of Florida red tides in September 2007 to North Carolina shelf waters replicate observations of just ∼1 μg chl l -1 on the WFS that year. In contrast, the earlier red tides of >10 μg chl l -1 left behind off West Florida during 2006, with less physical export, are instead 10-fold larger than those of 2007. Earlier, 55 fish kills were associated with these coastal red tides during September 2006, between Tampa and Naples. Yet, only six fish kills were reported there in September 2007. With little

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from New Century 2 in the Caribbean Sea, Coastal Waters of Florida and others from 2015-03-16 to 2015-10-23 (NCEI Accession 0157369)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157369 includes Surface underway, chemical and physical data collected from New Century 2 in the Caribbean Sea, Coastal Waters of Florida, Coastal...

  19. Age, growth, and mortality of the Mayan cichlid (Cichlasoma urophthalmus) from the southeastern Everglades

    OpenAIRE

    Faunce, Craig H.; Patterson, Heather M.; Lorenz, Jerome J.

    2002-01-01

    Mayan cichlids (Cichlasoma urophthalmus) were collected monthly from March 1996 to October 1997 with hook-and-line gear at Taylor River, Florida, an area within the Crocodile Sanctuary of Everglades National Park, where human activities such as fishing are prohibited. Fish were aged by examining thin-sectioned otoliths, and past size-at-age information was generated by using back-calculation techniques. Marginal increment analysis showed that opaque growth zones were annuli deposited between ...

  20. Tracking sea turtles in the Everglades

    Science.gov (United States)

    Hart, Kristin M.

    2008-01-01

    The U.S. Geological Survey (USGS) has a long history of conducting research on threatened, endangered, and at-risk species inhabiting both terrestrial and marine environments, particularly those found within national parks and protected areas. In the coastal Gulf of Mexico region, for example, USGS scientist Donna Shaver at Padre Island National Seashore in Texas has focused on “headstarting” hatchlings of the rare Kemp’s ridley sea turtle (Lepidochelys kempii). She is also analyzing trends in sea turtle strandings onshore and interactions with Gulf shrimp fisheries. Along south Florida’s Gulf coast, the USGS has focused on research and monitoring for managing the greater Everglades ecosystem. One novel project involves the endangered green sea turtle (Chelonia mydas). The ecology and movements of adult green turtles are reasonably well understood, largely due to decades of nesting beach monitoring by a network of researchers and volunteers. In contrast, relatively little is known about the habitat requirements and movements of juvenile and subadult sea turtles of any species in their aquatic environment.

  1. ECOHAB: Culver_M- NOAA CSC/Coastal Remote Sensing West Florida Coast Cruise, 1999-04 (NODC Accession 0000535)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Abstract: The Coastal Services Center's (CSC) Coastal Remote Sensing (CRS) program is involved with programs to validate satellite algorithms for ocean properties....

  2. Swim speed, behavior, and movement of North Atlantic right whales (Eubalaena glacialis in coastal waters of northeastern Florida, USA.

    Directory of Open Access Journals (Sweden)

    James H W Hain

    Full Text Available In a portion of the coastal waters of northeastern Florida, North Atlantic right whales (Eubalaena glacialis occur close to shore from December through March. These waters are included within the designated critical habitat for right whales. Data on swim speed, behavior, and direction of movement--with photo-identification of individual whales--were gathered by a volunteer sighting network working alongside experienced scientists and supplemented by aerial observations. In seven years (2001-2007, 109 tracking periods or "follows" were conducted on right whales during 600 hours of observation from shore-based observers. The whales were categorized as mother-calf pairs, singles and non-mother-calf pairs, and groups of 3 or more individuals. Sample size and amount of information obtained was largest for mother-calf pairs. Swim speeds varied within and across observation periods, individuals, and categories. One category, singles and non mother-calf pairs, was significantly different from the other two--and had the largest variability and the fastest swim speeds. Median swim speed for all categories was 1.3 km/h (0.7 kn, with examples that suggest swim speeds differ between within-habitat movement and migration-mode travel. Within-habitat right whales often travel back-and-forth in a north-south, along-coast, direction, which may cause an individual to pass by a given point on several occasions, potentially increasing anthropogenic risk exposure (e.g., vessel collision, fishing gear entanglement, harassment. At times, mothers and calves engaged in lengthy stationary periods (up to 7.5 h that included rest, nursing, and play. These mother-calf interactions have implications for communication, learning, and survival. Overall, these behaviors are relevant to population status, distribution, calving success, correlation to environmental parameters, survey efficacy, and human-impacts mitigation. These observations contribute important parameters to

  3. Copepod (Crustacea) emergence from soils from everglades marshes with different hydroperiods

    Science.gov (United States)

    Loftus, W.F.; Reid, J.W.

    2000-01-01

    During a severe drought period in the winter and spring of 1989, we made three collections of dried marsh soils from freshwater sloughs in Everglades National Park, Florida, at sites characterized by either long or intermediate annual periods of flooding (hydroperiod). After rehydrating the soils in aquaria, we documented the temporal patterns of copepod emergence over two-week periods. The species richness of copepods in the rehydrated soils was lower than in pre-drought samples from the same slough sites. Only six of the 16 species recorded from the Everglades emerged in the aquarium tests. The long hydroperiod site had a slightly different assemblage and higher numbers of most species than the intermediate-hydroperiod sites. More individuals and species emerged from the early dry-season samples compared with samples taken later in the dry season. The harpacticoid, Cletocamptus deitersi, and the cyclopoid, Microcyclops rubellus, were abundant at most sites. The cyclopoids - Ectocyclops phaleratus, Homocyclops ater, and Paracyclops chiltoni - are new records for the Everglades. We infer that 1) only a subset of Everglades copepod species can survive drought by resting in soils; and that 2) survival ability over time differs by species.

  4. 2002 Florida USGS/NASA Airborne Lidar Assessment of Coastal Erosion (ALACE) Project for the US Coastline

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set includes data collected from October 22 and October 25, 2002, and covers coastline in Florida. Laser beach mapping uses a pulsed laser ranging system...

  5. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: MGT_FISH (Fishery Management Area Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains commercial fisheries in South Florida. Vector polygons in this data set represent statistical reporting grids used to aggregate commercial...

  6. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Florida Panhandle: M_MAMMAL (Marine Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for dolphins and manatees in for the Florida Panhandle. Vector polygons in this data set represent dolphins...

  7. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: M_MAMMAL (Marine Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for manatees and bottlenose dolphins in [for] South Florida. Vector polygons in this data set represent...

  8. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for State and Federally threatened and endangered terrestrial mammals in [for] South Florida. Vector...

  9. Evaluation of the effects of sea-level change and coastal canal management on saltwater intrusion in the Biscayne aquifer of south Florida, USA

    Science.gov (United States)

    Hughes, J. D.; Sifuentes, D. F.; White, J.

    2015-12-01

    Sea-level increases are expected to have an effect on the position of the freshwater-saltwater interface in the Biscayne aquifer in south Florida as a result of the low topographic relief of the area and high rates of groundwater withdrawal from the aquifer. To study the effects that future sea-level increases will have on saltwater intrusion in the Biscayne aquifer in Broward County, Florida, a three-dimensional, variable-density, groundwater-flow and transport model was developed. The model was calibrated to observed groundwater heads and chloride concentrations for a 62-year period that includes historic increases in sea level, development of a surface-water management system to control flooding, and increases in groundwater withdrawals as the area transitioned from agricultural to urban land uses. Sensitivity analyses indicate that downward leakage of saltwater from coastal canals and creeks was the primary source of saltwater to the Biscayne aquifer during the last 62-years in areas where the surface-water system is not actively managed and is tidally influenced. In areas removed from the coastal canals and creeks or under active surface-water management, historic groundwater withdrawals were the primary cause of saltwater intrusion into the aquifer. Simulation of future conditions suggests that possible increases in sea level will result in additional saltwater intrusion. Model scenarios suggest that additional saltwater intrusion will be greatest in areas where coastal canals and creeks were historically the primary source of seawater. Future saltwater intrusion in those areas, however, may be reduced by relocation of salinity-control structures.

  10. Assessing sea-level rise impact on saltwater intrusion into the root zone of a geo-typical area in coastal east-central Florida.

    Science.gov (United States)

    Xiao, Han; Wang, Dingbao; Medeiros, Stephen C; Hagen, Scott C; Hall, Carlton R

    2018-07-15

    Saltwater intrusion (SWI) into root zone in low-lying coastal areas can affect the survival and spatial distribution of various vegetation species by altering plant communities and the wildlife habitats they support. In this study, a baseline model was developed based on FEMWATER to simulate the monthly variation of root zone salinity of a geo-typical area located at the Cape Canaveral Barrier Island Complex (CCBIC) of coastal east-central Florida (USA) in 2010. Based on the developed and calibrated baseline model, three diagnostic FEMWATER models were developed to predict the extent of SWI into root zone by modifying the boundary values representing the rising sea level based on various sea-level rise (SLR) scenarios projected for 2080. The simulation results indicated that the extent of SWI would be insignificant if SLR is either low (23.4cm) or intermediate (59.0cm), but would be significant if SLR is high (119.5cm) in that infiltration/diffusion of overtopping seawater in coastal low-lying areas can greatly increase root zone salinity level, since the sand dunes may fail to prevent the landward migration of seawater because the waves of the rising sea level can reach and pass over the crest under high (119.5cm) SLR scenario. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from F.G. Walton Smith in the Coastal Waters of Florida, Florida Keys National Marine Sanctuary and others from 2011-10-20 to 2011-12-16 (NCEI Accession 0157433)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157433 includes Surface underway, chemical, meteorological and physical data collected from F.G. Walton Smith in the Coastal Waters of Florida,...

  12. Partial pressure (or fugacity) of carbon dioxide, pH, salinity and other variables collected from time series observations using Bubble type equilibrator for autonomous carbon dioxide (CO2) measurement, Carbon dioxide (CO2) gas analyzer and other instruments from MOORING_CHEECA_80W_25N in the Coastal Waters of Florida, Florida Keys National Marine Sanctuary and North Atlantic Ocean from 2011-12-07 to 2015-03-22 (NCEI Accession 0157417)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157417 includes chemical, meteorological, physical and time series data collected from MOORING_CHEECA_80W_25N in the Coastal Waters of Florida,...

  13. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from F.G. Walton Smith in the Coastal Waters of Florida, Florida Keys National Marine Sanctuary and others from 2015-01-12 to 2015-11-20 (NCEI Accession 0157434)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157434 includes Surface underway, chemical, meteorological and physical data collected from F.G. Walton Smith in the Coastal Waters of Florida,...

  14. 76 FR 36150 - Notice of Inventory Completion: Florida Department of State/Division of Historical Resources...

    Science.gov (United States)

    2011-06-21

    ....A. Pound Human Identification Laboratory and Dr. John Krigbaum, University of Florida, Department of... described as a multi-component black earth midden deposit on a relict Everglades tree island, associated... to the Florida Department of State/Division of Historical Resources for identification pending...

  15. 2016 USACE National Coastal Mapping Program (NCMP) Gulf Coast Lidar and Imagery Acquisition - Texas, Louisiana, Mississippi, Alabama and Florida

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) plans to perform a coastal survey along the Gulf Coast in 2016 with funding provided by...

  16. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates South Florida, Ladyfish and Tarpon

    Science.gov (United States)

    1989-07-01

    Elops saurus England (but uncommon north of Cape Linnaeus (Robins et al. TW T Hatteras) to Rio de Janeiro , Brazil, Preferred common name... lagoons , and coastal habitats (Breder (1966) in the laboratory from Stage 1944; Dahlberg 1972; Gilmore et al. III larvae (18.1-22.7 mm SL; mean, 1981...Biological Report 82P1104)--’ T R EL.82.4. /c0.- July 1989. 0t Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes DT

  17. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (South Florida): Gray, Lane, Mutton and Yellowtail Snappers.

    Science.gov (United States)

    1986-06-01

    pargo prieto, pargo, criollo , vivaneau sorbe (Cervigon pargo dienton, pargo de piedra, 1966, Fisher 1978) pargo moreno, vivaneau sarde grise, aquadera... criollo , Lutjanus 1970-79. Florida landings, analis. Cent. Invest. Pesq. annual summary 1969-1978. U.S. uba. Nota 2:1-16. Natl. Mar. Fish. Serv. Curr

  18. Species profiles: Life history and environmental requirements of coastal fishes and invertebrates (South Florida): King mackerel and Spanish mackerel. [Scomberomorus cavalla; Scomberomorus maculatus

    Energy Technology Data Exchange (ETDEWEB)

    Godcharles, M.F.; Murphy, M.D.

    1986-06-01

    This Species Profile on king and Spanish mackerel summarizes the taxonomy, morphology, distribution, life history, fishery descriptions, ecological role, and environmental requirements of these coastal pelagic fish to assist environmental impact assessment. King and Spanish mackerel support major commercial and sport fisheries in south Florida. In 1974 to 1983, Gulf of Mexico and Atlantic commercial landings of king mackerel declined from 10.4 to 4.3 million lb.; Spanish mackerel have fluctuated between 4.9 to 17.4 million lb. Both inhabit coastal waters, but Spanish mackerel are generally found closer to beaches and in outer estuarine waters. Both species feed principally on estuarine-dependent species. They are highly migratory, exhibiting seasonal migrations to winter feeding grounds off south Florida and summer spawning/feeding grounds in the northern Gulf of Mexico and off the Atlantic coast of the Southeastern US. Spawning occurs from March/April through September/October between the middle and Outer Continental Shelf (35 to 183 mi) for king mackerel and the inner shelf (12 to 34 mi) for Spanish mackerel. King mackerel reach sexual maturity in their 3rd and 4th years and Spanish, between their 2nd and 3rd. Female king mackerel live longer and grow larger and faster than males. Spanish mackerel live to 8 years; females also grow faster than males. King and Spanish mackerel feed principally on schooling fishes. Larvae and juveniles of both species are prey to little tunny and dolphin; adults are prey for sharks and bottlenose dolphin. Temperature and salinity are important factors regulating mackerel distribution.

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from F.G. Walton Smith in the Coastal Waters of Florida, Coastal Waters of Louisiana and others from 2014-04-22 to 2014-12-05 (NCEI Accession 0157432)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157432 includes Surface underway, chemical, meteorological and physical data collected from F.G. Walton Smith in the Coastal Waters of Florida,...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship GORDON GUNTER in the Coastal Waters of Florida, Coastal Waters of Mississippi and others from 2016-04-10 to 2016-11-14 (NCEI Accession 0157402)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157402 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship GORDON GUNTER in the Coastal Waters of Florida,...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship GORDON GUNTER in the Coastal Waters of Florida, Coastal Waters of Louisiana and others from 2014-02-15 to 2014-11-22 (NCEI Accession 0157328)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157328 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship GORDON GUNTER in the Coastal Waters of Florida,...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship GORDON GUNTER in the Coastal Waters of Florida, Coastal Waters of Mississippi and others from 2012-04-29 to 2012-11-20 (NCEI Accession 0157337)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157337 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship GORDON GUNTER in the Coastal Waters of Florida,...

  3. Hydrobiological characteristics of Shark River estuary, Everglades National Park, Florida

    Science.gov (United States)

    McPherson, B.F.

    1970-01-01

    Water quality in the Shark River estuary was strongly influenced by seasonal patterns of rainfall, water level and temperature. During the rainy season (summer and early fall) the salinity in the 20-mile long estuary ranged from that of fresh water to half that of sea water while concentrations of dissolved oxygen were low, 2-5 milligrams per liter (mg/l) presumably because, among other factors, microbial activity and respiration were accelerated by high temperatures (30-33 degrees C). During the dry season (late fall through spring) the salinity ranged from 18 grams per liter (g/l) in the headwaters to 36 g/l at the Gulf during a dry year such as 1967 and from 1 to 25 g/l during a wet year such as 1969. Concentrations of dissolved oxygen increased from 2-3 mg/l in the summer of 1967 to 4-7 mg/l in the winter of 1968, and temperature decreased from an average of about 30 degrees C in summer to 20 degrees C in winter. Water level declined 5 to 10 decimeters in the headwaters during the dry season, and salinity and tidal action increased. Large amounts of submerged vegetation died in some headwater creeks at the end of the dry season, presumably killed by salinities above 3 g/l. The decaying organic matter and the decrease in photosynthesis resulted in low dissolved oxygen (1-2 mg/l). Fish died at this time probably as a result of the low dissolved oxygen. Trace elements, heavy metals and insecticides occurred in the waters of the estuary in concentrations below those indicated as harmful for aquatic life by current standards established by the Federal Water Pollution Control Administration (1968). The insecticides detected were concentrated in sediment and in various organisms. The patterns of distribution of planktonic and small nektonic animals in the estuary were related to salinity. Copepods (Arcatia tonsa, Labidocera aestiva, Pseudodiaptomus coronatus), cumaceans (Cyclaspis sp.), chaetognaths (Sagitta hispida), bay anchovies (Anchoa mitchilli), and scaled sardines (Harengula pensacolae) were the dominant animals collected in the higher salinities (10-25 g/l) near the mouth of the estuary. Amphipods (Corophium sp. and Grandidierella sp.), mysids (Mysidopsis almyra and Gastrosaccus dissimilis), crab larvae, and the young anchovies, sardines, and related fish were the dominant forms in the brackish water (1-10 g/l) of the mid-estuary. The presence of large numbers of juvenile and young animals and young animals indicated the importance of these brackish waters as nursery grounds. Aquatic insects, cyclopoid copepods (Macrocyclops sp.), cladocerans, mysids (Taphromysis bowmani), ostracods (Cypridopsis sp. ), fresh-water prawns (Palaemonetes paludosus), and various marshfish were dominant in the ?fresh? headwaters. The amount of plant detritus collected in the estuary averaged about ten times that of the zooplankton. The estimated mean wet-weight of the zooplankton was 65 milligrams per cubic meter (mg/m?) and ranged from 1 to 173 mg/m?, with the smallest amounts occurring in the ?fresh? headwaters. Nekton, consisting of small fish and prawns, ranged from 3 to 214 mg/m? in weight and had a mean of 30 mg/m?. Largest catches were made in the headwaters at the end of the dry season, where the weight of the standing crop increased more than 15 times during the sampling period. The small fish and prawns, which were concentrated in the headwaters at the water level dropped, served as a rich source of food for predatory marine fish and birds.

  4. 77 FR 46298 - Phosphorus Water Quality Standards for Florida Everglades

    Science.gov (United States)

    2012-08-03

    ... of Science and Technology, Mail Code: 4305T, Environmental Protection Agency, 1200 Pennsylvania... limits. With this in mind, categories and entities that ultimately may be indirectly affected include... of the water and water quality criteria necessary to protect those uses. States must submit any new...

  5. 76 FR 38592 - Phosphorus Water Quality Standards for Florida Everglades

    Science.gov (United States)

    2011-07-01

    ..., Standards and Health Protection Division, Office of Science and Technology, Mail Code: 4305T, Environmental... Elimination System (NPDES) permit limits. With this in mind, categories and entities that may ultimately be... of the water and water quality criteria necessary to protect those uses. States must submit any new...

  6. Benthic habitat classification in Lignumvitae Key Basin, Florida Bay, using the U.S. Geological Survey Along-Track Reef Imaging System (ATRIS)

    Science.gov (United States)

    Reich, C.D.; Zawada, D.G.; Thompson, P.R.; Reynolds, C.E.; Spear, A.H.; Umberger, D.K.; Poore, R.Z.

    2011-01-01

    The Comprehensive Everglades Restoration Plan (CERP) funded in partnership between the U.S. Army Corps of Engineers, South Florida Water Management District, and other Federal, local and Tribal members has in its mandate a guideline to protect and restore freshwater flows to coastal environments to pre-1940s conditions (CERP, 1999). Historic salinity data are sparse for Florida Bay, so it is difficult for water managers to decide what the correct quantity, quality, timing, and distribution of freshwater are to maintain a healthy and productive estuarine ecosystem. Proxy records of seasurface temperature (SST) and salinity have proven useful in south Florida. Trace-element chemistry on foraminifera and molluscan shells preserved in shallow-water sediments has provided some information on historical salinity and temperature variability in coastal settings, but little information is available for areas within the main part of Florida Bay (Brewster-Wingard and others, 1996). Geochemistry of coral skeletons can be used to develop subannually resolved proxy records for SST and salinity. Previous studies suggest corals, specifically Solenastrea bournoni, present in the lower section of Florida Bay near Lignumvitae Key, may be suitable for developing records of SST and salinity for the past century, but the distribution and species composition of the bay coral community have not been well documented (Hudson and others, 1989; Swart and others, 1999). Oddly, S. bournoni thrives in the study area because it can grow on a sandy substratum and can tolerate highly turbid water. Solenastrea bournoni coral heads in this area should be ideally located to provide a record (~100-150 years) of past temperature and salinity variations in Florida Bay. The goal of this study was to utilize the U.S. Geological Survey's (USGS) Along-Track Reef Imaging System (ATRIS) capability to further our understanding of the abundance, distribution, and size of corals in the Lignumvitae Key Basin. The

  7. Detection of cyanotoxins (microcystins/nodularins) in livers from estuarine and coastal bottlenose dolphins (Tursiops truncatus) from Northeast Florida.

    Science.gov (United States)

    Brown, Amber; Foss, Amanda; Miller, Melissa A; Gibson, Quincy

    2018-06-01

    Microcystins/Nodularins (MCs/NODs) are potent hepatotoxic cyanotoxins produced by harmful algal blooms (HABs) that occur frequently in the upper basin of the St. Johns River (SJR), Jacksonville, FL, USA. Areas downstream of bloom locations provide critical habitat for an estuarine population of bottlenose dolphins (Tursiops truncatus). Since 2010, approximately 30 of these dolphins have stranded and died within this impaired watershed; the cause of death was inconclusive for a majority of these individuals. For the current study, environmental exposure to MCs/NODs was investigated as a potential cause of dolphin mortality. Stranded dolphins from 2013 to 2017 were categorized into estuarine (n = 17) and coastal (n = 10) populations. Because estuarine dolphins inhabit areas with frequent or recurring cyanoblooms, they were considered as a comparatively high-risk group for cyanotoxin exposure in relation to coastal animals. All available liver samples from estuarine dolphins were tested regardless of stranding date, and samples from coastal individuals that stranded outside of the known cyanotoxin bloom season were assessed as controls. The MMPB (2-methyl-3-methoxy-4-phenylbutiric acid) technique was used to determine total (bound and free) concentrations of MCs/NODS in liver tissues. Free MCs/NODs extractions were conducted and analyzed using ELISA and LC-MS/MS on MMPB-positive samples to compare test results. MMPB testing resulted in low-level total MCs/NODs detection in some specimens. The Adda ELISA produced high test values that were not supported by concurrent LC-MS/MS analyses, indicative of false positives. Our results indicate that both estuarine and coastal dolphins are exposed to MCs/NODs, with potential toxic and immune health impacts. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (South Florida). Reef-Building Corals.

    Science.gov (United States)

    1987-08-01

    2S-34. Dustan, P. 1979. Distribution of Davis, G. 1982. A century of natural zooxanthellae and photosynthetic change in coral distribution at the...Perturbation and change in National Climatic Center, Asheville, coral reef communities. Proc. Natl. N.C. 4 pp. Acad. Sci. 79:1678-1681. Neigel, J.E., and...expected to react to environmental changes caused by coastal development. Each profile has sections on taxonomy, life history, ecological role

  9. Coastal Flooding in Florida's Big Bend Region with Application to Sea Level Rise Based on Synthetic Storms Analysis

    Directory of Open Access Journals (Sweden)

    Scott C. Hagen Peter Bacopoulos

    2012-01-01

    Full Text Available Flooding is examined by comparing maximum envelopes of water against the 0.2% (= 1-in-500-year return-period flooding surface generated as part of revising the Federal Emergency Management Agency¡¦s flood insurance rate maps for Franklin, Wakulla, and Jefferson counties in Florida¡¦s Big Bend Region. The analysis condenses the number of storms to a small fraction of the original 159 used in production. The analysis is performed by assessing which synthetic storms contributed to inundation extent (the extent of inundation into the floodplain, coverage (the overall surface area of the inundated floodplain and the spatially variable 0.2% flooding surface. The results are interpreted in terms of storm attributes (pressure deficit, radius to maximum winds, translation speed, storm heading, and landfall location and the physical processes occurring within the natural system (storms surge and waves; both are contextualized against existing and new hurricane scales. The approach identifies what types of storms and storm attributes lead to what types of inundation, as measured in terms of extent and coverage, in Florida¡¦s Big Bend Region and provides a basis in the identification of a select subset of synthetic storms for studying the impact of sea level rise. The sea level rise application provides a clear contrast between a dynamic approach versus that of a static approach.

  10. Municipal solid-waste disposal and ground-water quality in a coastal environment, west-central Florida

    Science.gov (United States)

    Fernandez, Mario

    1983-01-01

    Solid waste is defined along with various methods of disposal and the hydrogeologic factors to be considered when locating land-fills is presented. Types of solid waste, composition, and sources are identified. Generation of municipal solid waste in Florida has been estimated at 4.5 pounds per day per person or about 7.8 million tons per year. Leachate is generated when precipitation and ground water percolate through the waste. Gases, mainly carbon dioxide and methane, are also produced. Leachate generally contains high concentrations of dissolved organic and inorganic matter. The two typical hydrogeologic conditions in west-central Florida are (1) permeable sand overlying clay and limestone and (2) permeable sand overlying limestone. These conditions are discussed in relation to leachate migration. Factors in landfill site selection are presented and discussed, followed by a discussion on monitoring landfills. Monitoring of landfills includes the drilling of test holes, measuring physical properties of the corings, installation of monitoring wells, and water-quality monitoring. (USGS)

  11. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from WEATHERBIRD II in the Coastal Waters of Florida and Gulf of Mexico from 2012-05-08 to 2012-08-12 (NCEI Accession 0157334)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157334 includes Surface underway, chemical, meteorological and physical data collected from WEATHERBIRD II in the Coastal Waters of Florida and Gulf...

  12. Characterization Of Dissolved Organic Mattter In The Florida Keys Ecosystem

    Science.gov (United States)

    Adams, D. G.; Shank, G. C.

    2009-12-01

    Over the past few decades, Scleractinian coral populations in the Florida Keys have increasingly experienced mortality due to bleaching events as well as microbial mediated illnesses such as black band and white band disease. Such pathologies seem to be most correlated with elevated sea surface temperatures, increased UV exposures, and shifts in the microbial community living on the coral itself. Recent studies indicate that corals’ exposure to UV in the Florida Keys is primarily controlled by the concentration of CDOM (Chromophoric Dissolved Organic Matter) in the water column. Further, microbial community alterations may be linked to changes in concentration and chemical composition of the larger DOM (Dissolved Organic Matter) pool. Our research characterized the spatial and temporal properties of DOM in Florida Bay and along the Keys ecosystems using DOC analyses, in-situ water column optical measurements, and spectral analyses including absorbance and fluorescence measurements. We analyzed DOM characteristics along transects running from the mouth of the Shark River at the southwest base of the Everglades, through Florida Bay, and along near-shore Keys coastal waters. Two 12 hour time-series samplings were also performed at the Seven-Mile Bridge, the primary Florida Bay discharge channel to the lower Keys region. Photo-bleaching experiments showed that the chemical characteristics of the DOM pool are altered by exposure to solar radiation. Results also show that DOC (~0.8-5.8 mg C/L) and CDOM (~0.5-16.5 absorbance coefficient at 305nm) concentrations exhibit seasonal fluctuations in our study region. EEM analyses suggest seasonal transitions between primarily marine (summer) and terrestrial (winter) sources along the Keys. We are currently combining EEM-PARAFAC analysis with in-situ optical measurements to model changes in the spectral properties of DOM in the water column. Additionally, we are using stable δ13C isotopic analysis to further characterize DOM

  13. Using High-Resolution Imagery to Characterize Disturbance from Hurricane Irma in South Florida Wetlands

    Science.gov (United States)

    Lagomasino, D.; Cook, B.; Fatoyinbo, T.; Morton, D. C.; Montesano, P.; Neigh, C. S. R.; Wooten, M.; Gaiser, E.; Troxler, T.

    2017-12-01

    Hurricane Irma, one of the strongest hurricanes recorded in the Atlantic, first made landfall in the Florida Keys before coming ashore in southwestern Florida near Everglades National Park (ENP) on September 9th and 10th of this year. Strong winds and storm surge impacted a 100+ km stretch of the southern Florida Gulf Coast, resulting in extensive damages to coastal and inland ecosystems. Impacts from previous catastrophic storms in the region have led to irreversible changes to vegetation communities and in some areas, ecosystem collapse. The processes that drive coastal wetland vulnerability and resilience are largely a function of the severity of the impact to forest structure and ground elevation. Remotely sensed imagery plays an important role in measuring changes to the landscape, particularly for extensive and inaccessible regions like the mangroves in ENP. We have estimated changes in coastal vegetation structure and soil elevation using a combination of repeat measurements from ground, airborne, and satellite platforms. At the ground level, we used before and after Structure-from-Motion models to capture the change in below canopy structure as result of stem breakage and fallen branches. Using airborne imagery collected before and after Hurricane Irma by Goddard's Lidar, Hyperspectral, and Thermal (G-LiHT) Airborne Imager, we measured the change in forest structure and soil elevation. This unique data acquisition covered an area over 130,000 ha in regions most heavily impacted storm surge. Lastly, we also combined commercial and NASA satellite Earth observations to measure forest structural changes across the entire South Florida coast. An analysis of long-term observations from the Landsat data archive highlights the heterogeneity of hurricane and other environmental disturbances along the Florida coast. These findings captured coastal disturbance legacies that have the potential to influence the trajectory of mangrove resilience and vulnerability

  14. Using Uncertainty Quantification to Guide Development and Improvements of a Regional-Scale Model of the Coastal Lowlands Aquifer System Spanning Texas, Louisiana, Mississippi, Alabama and Florida

    Science.gov (United States)

    Foster, L. K.; Clark, B. R.; Duncan, L. L.; Tebo, D. T.; White, J.

    2017-12-01

    Several historical groundwater models exist within the Coastal Lowlands Aquifer System (CLAS), which spans the Gulf Coastal Plain in Texas, Louisiana, Mississippi, Alabama, and Florida. The largest of these models, called the Gulf Coast Regional Aquifer System Analysis (RASA) model, has been brought into a new framework using the Newton formulation for MODFLOW-2005 (MODFLOW-NWT) and serves as the starting point of a new investigation underway by the U.S. Geological Survey to improve understanding of the CLAS and provide predictions of future groundwater availability within an uncertainty quantification (UQ) framework. The use of an UQ framework will not only provide estimates of water-level observation worth, hydraulic parameter uncertainty, boundary-condition uncertainty, and uncertainty of future potential predictions, but it will also guide the model development process. Traditionally, model development proceeds from dataset construction to the process of deterministic history matching, followed by deterministic predictions using the model. This investigation will combine the use of UQ with existing historical models of the study area to assess in a quantitative framework the effect model package and property improvements have on the ability to represent past-system states, as well as the effect on the model's ability to make certain predictions of water levels, water budgets, and base-flow estimates. Estimates of hydraulic property information and boundary conditions from the existing models and literature, forming the prior, will be used to make initial estimates of model forecasts and their corresponding uncertainty, along with an uncalibrated groundwater model run within an unconstrained Monte Carlo analysis. First-Order Second-Moment (FOSM) analysis will also be used to investigate parameter and predictive uncertainty, and guide next steps in model development prior to rigorous history matching by using PEST++ parameter estimation code.

  15. Magnitude and Distribution of Flows into Northeastern Florida Bay

    Science.gov (United States)

    Patino, Eduardo; Hittle, Clinton D.

    2000-01-01

    Changes in water-management practices have been made to accommodate a large and rapidly growing urban population along the Atlantic Coast and to meet the demand for intensive agricultural activities. These changes have resulted in a highly managed hydrologic system consisting of numerous canals, levees, control structures, and pumping stations that have altered the hydrology of the Everglades and Florida Bay ecosystems. Over the past decade, Florida Bay has experienced sea-grass die-off and algal blooms, which are indicators of ecological change attributed primarily to the increase in salinity and nutrient content of bay waters. Because plans are to restore sheetflow in the Everglades wetlands to its natural state, water managers anticipate a change in the magnitude and timing of freshwater exiting the mainland through the creeks that cut through the embankment or as sheetflow into Florida Bay.

  16. Dynamics of marsh-mangrove ecotone since the mid-Holocene: A palynological study of mangrove encroachment and sea level rise in the Shark River Estuary, Florida.

    Science.gov (United States)

    Yao, Qiang; Liu, Kam-Biu

    2017-01-01

    Sea level rise and the associated inland shift of the marsh-mangrove ecotone in south Florida have raised many scientific and management concerns in recent years. Holocene paleoecological records can provide an important baseline to shed light on the long-term dynamics of vegetation changes across this ecotone in the past, which is needed to predict the future. In this study, we present palynological, X-ray fluorescence, and loss-on ignition data from four sedimentary cores recovered from a 20-km marine-to-freshwater transect along the Shark River Estuary, southwest Everglades, to document the patterns and processes of coastal vegetation changes in response to sea level rise since the mid-Holocene. Our record indicates that freshwater marsh progressively replaced marl prairies at the Shark River Estuary between 5700 and 4400 cal yr BP. As marine transgression continued, marine influence reached the threshold necessary for mangroves to establish at the current mouth of the Shark River Slough at 3800 cal yr BP. During the next 3000 years, although sea level rise in the Western North Atlantic slowed down to 0.4 mm/yr, a spatial and temporal gradient was evident as the marsh-mangrove ecotone shifted inland by 20 km from 3800 to 800 cal yr BP, accompanied by a gradual landward replacement of freshwater marsh by mangrove forest. If sea level continues to rise at 2.33 mm/yr in the 21st century in south Florida, it is possible that marine influence will reach the threshold for mangroves to establish in the central Everglades, and we could expect a much more aggressive mangrove encroachment toward the northern and interior parts of south Florida in the next few centuries.

  17. Organic Carbon, Nitrogen and Phosphorus Accumulation Rates in the Soils of the Everglades Mangrove Ecotone

    Science.gov (United States)

    Smoak, J. M.; Breithaupt, J. L.; Sanders, C. J.

    2015-12-01

    One of the fundamental questions with regard to coastal ecotones relates to their role in the transformation, transport and storage of biogeochemically important constituents and how that role may be altered by climate change. Coastal wetlands provide a range of valuable ecosystem services including sequestering organic carbon (OC) and nutrients in their soils at rates greater than terrestrial ecosystems on a per area basis. As such the Everglades mangrove ecotone, the largest contiguous mangrove forest in North America, is a biogeochemical "hotspot" at the interface of freshwater marsh and the Gulf of Mexico. Over the last one hundred years this region has been impacted by a reduction in freshwater flow and a sea-level rise (SLR) of 2.3 mm/yr which combined to cause a landward shift in the ecotone. This creates an ideal setting to examine climate induced alterations in the mangrove-ecotone biogeochemical cycle. The ability of the Everglades mangrove forest to keep pace with SLR depends largely on the rate of organic matter accumulation as that accumulation is a key contributor to accretion. However, the basic threat from SLR can be exacerbated in some areas by accelerating organic matter mineralization due to increasing salinity. The increase in salinity supplies sulfate which functions as a terminal electron acceptor that soil microbes can utilize to enhance mineralization in the brackish ecotone regions of coastal wetlands. To investigate these processes, we measured mangrove forest soil accretion, OC, N and P accumulation rates over the most recent 10, 50 and 100 year periods (via 210Pb dating) from the Gulf of Mexico to the upper freshwater reaches of the mangrove forest within Everglades National Park. Lower organic carbon accumulation rates compared to the rest of the system were found in the ecotone region most susceptible to enhanced organic matter mineralization.

  18. Sources of dissolved inorganic nitrogen in a coastal lagoon adjacent to a major metropolitan area, Miami Florida (USA)

    International Nuclear Information System (INIS)

    Swart, Peter K.; Anderson, William T.; Altabet, Mark A.; Drayer, Courtney; Bellmund, Sarah

    2013-01-01

    Highlights: • A range of biota (algae and sea grasses) shows enriched δ 15 N close to the coast. • Enriched signals are evident in the particulate and sedimentary organic material. • δ 15 N signals are correlated with high inputs of dissolved inorganic matter. • The enriched values support the presence of a sewage related component. • The δ 15 N could arise from the local landfill, injected wastewater, or septic systems. - Abstract: Between 2006 and 2007, a study was carried out to determine the relative importance of natural and anthropogenic input of nitrogen into Biscayne Bay (South Florida, USA) using δ 13 C and δ 15 N values of algae, seagrasses, and particulate organic material, δ 18 O and δ 15 N of the NO 3 - and δ 13 C of the dissolved inorganic carbon. The δ 15 N values of all components showed a strong east to west gradient approaching more positive values (+7 to +10‰) close to the land-sea interface. The nitrogen could have emanated from the local waste water treatment plant, septic systems within the region, or nitrogen which had been affected by denitrification and leached from the local landfill, wastewater which had been injected into the Floridan aquifer and leaked back to the surface, and/or some other as yet unidentified source. The measured NO 3 - δ 15 N and δ 18 O values indicated that the dissolved nitrate originated from anthropogenic sources and was fractionated during assimilation

  19. The use of multiple tracers to evaluate the impact of sewered and non-sewered development on coastal water quality in a rural area of Florida.

    Science.gov (United States)

    Meeroff, Daniel E; Bloetscher, Frederick; Long, Sharon C; Bocca, Thais

    2014-05-01

    When onsite wastewater treatment and disposal systems (OSTDS) are not sited appropriately or installed properly, wastewater constituents can be a source of adverse environmental impacts to soil and groundwater, which can lead to potential public health risks. A paired monitoring design developed to compare water quality in sewered and non-sewered areas is presented here. It is suggested as a possible monitoring scheme for assessing the impact of sewer installation projects. As such, two sets of single-family, rural residential Florida neighborhoods were evaluated over a two-year period to gain insight into the effects of small-community use of OSTDS on coastal water quality. One set of two neighborhoods were connected to the sanitary sewer network and the other set of two were served exclusively by OSTDS. Water quality sampling was conducted at the paired sites during seasonal high water table (SHWT) and seasonal low water table (SLWT) events. Measured surface water quality during the SHWT showed indications of environmental impacts from OSTDS in terms of nutrients, microbial pathogen indicators, and other water quality measures, such as turbidity and conductivity. However, during the SLWT events, no obvious impacts attributable to OSTDS were detected. The water quality results indicate that OSTDS impacts may be measureable in rural areas. Other factors, such as microbial indicator survival and regrowth potential, may confound the understanding of water quality impacts of sewer projects. For example, the microbial indicators Escherichia coli and enterococci were found to persist over time and therefore did not always represent true comparisons of OSTDS and sewered areas between seasons. The timeframe for evaluating the effects of sewer projects may be longer than anticipated because of this survival and regrowth phenomenon.

  20. Water Source Utilization of Hammock and Pine Rockland Plant Communities in the Everglades, USA.

    Science.gov (United States)

    Saha, A. K.; Sternberg, L.; Miralles-Wilhelm, F.

    2007-12-01

    South Florida has a mosaic of plant communities resulting from topographical differences, spatially varying hydroperiods and fire. The only plant communities not flooded in the wet season are hardwood hammocks and often pine rocklands. Natural fires burn off litter accumulated in pine rocklands, with the exception of organic matter in sinkholes in the limestone bedrock. This relative lack of soil is thought to constrain pineland plants in the Everglades to depend upon groundwater that is typically low in nutrients. In contrast, adjoining hardwood hammocks have accumulated an organic soil layer that traps rainwater and nutrients. Plants in hammocks may be able to utilize this water and thereby access nutrients present in the litter. Hammocks are thus viewed as localized areas of high nutrients and instances of vegetation feedback upon the oligotrophic everglades landscape enabling establishment and survival of flood-intolerant tropical hardwood species. This study examines water source use and couples it to foliar nutrient concentrations of plants found in hammocks and pinelands. We examined the δ2H and δ18O of stem waters in plants in Everglades National Park and compared those with the δ2H and δ18O of potential water sources. In the wet season hammock plants accessed both groundwater and water in the surface organic soil layer while in the dry season they relied more on groundwater. A similar seasonal shift was observed in pineland plants; however groundwater constituted a much higher proportion of total water uptake throughout the year under observation. Concomitant with differential water utilization by hammock and pineland plant communities, we observed hammock plants having a significantly higher annual mean foliar N and P concentration than pineland plants. Most hammock species are intolerant of flooded soils and are thus constrained by the high water table in the wet season, yet access the lowered groundwater table in the dry season due to drying up of

  1. Simulation of integrated surface-water/ground-water flow and salinity for a coastal wetland and adjacent estuary

    Science.gov (United States)

    Langevin, C.; Swain, E.; Wolfert, M.

    2005-01-01

    The SWIFT2D surface-water flow and transport code, which solves the St Venant equations in two dimensions, was coupled with the SEAWAT variable-density ground-water code to represent hydrologic processes in coastal wetlands and adjacent estuaries. A sequentially coupled time-lagged approach was implemented, based on a variable-density form of Darcy's Law, to couple the surface and subsurface systems. The integrated code also represents the advective transport of salt mass between the surface and subsurface. The integrated code was applied to the southern Everglades of Florida to quantify flow and salinity patterns and to evaluate effects of hydrologic processes. Model results confirm several important observations about the coastal wetland: (1) the coastal embankment separating the wetland from the estuary is overtopped only during tropical storms, (2) leakage between the surface and subsurface is locally important in the wetland, but submarine ground-water discharge does not contribute large quantities of freshwater to the estuary, and (3) coastal wetland salinities increase to near seawater values during the dry season, and the wetland flushes each year with the onset of the wet season. ?? 2005 Elsevier B.V. All rights reserved.

  2. Temporal and spatial patterns of internal phosphorus recycling in a South Florida (USA) stormwater treatment area

    Science.gov (United States)

    Large constructed wetlands, known as stormwater treatment areas (STAs), have been deployed to remove phosphorus (P) in drainage waters before discharge into the Everglades in South Florida, USA. Their P removal performance depends on internal P cycling under typically hydrated, b...

  3. Isotopic evidence for the source and fate of phosphorus in Everglades wetland ecosystems

    International Nuclear Information System (INIS)

    Li Xin; Wang Yang; Stern, Jennifer; Gu Binhe

    2011-01-01

    Research highlights: → Oxygen isotopic analysis of phosphate is a useful tool for studying source and degree of microbial cycling of phosphorus (P) in freshwater ecosystems. → P was quickly cycled in the water column and the dissolved inorganic phosphate (DIP) pool consisted entirely of biologically cycled P in relatively pristine areas of the Everglades wetland ecosystem. →In wetland areas highly impacted by agricultural runoff, biological cycling of P was not rapid enough to completely remove the fertilizer δ 18 O signature. →DIP pool in these areas consisted of biologically cycled P as well as fertilizer P, with fertilizer P accounting for about 15-100% of the total DIP. - Abstract: Phosphorus has historically been a limiting nutrient in the Florida Everglades. Increased P loading to the Everglades over the past several decades has led to significant changes in water quality and plant communities. Stormwater runoff that drains agricultural lands and enters the Water Conservation Areas (WCAs) are known to contain elevated levels of P, but the exact source of this P has not been fully determined. Here the results of an O isotope study of dissolved inorganic phosphate (DIP) in both polluted and relatively pristine (or reference) areas of the Everglades are reported. The data reveal spatial and temporal variations in the δ 18 O signature of DIP, reflecting the source and the degree of cycling of P. The δ 18 O values of DIP collected from the Everglades National Park were close or equal to the predicted δ 18 O values of DIP formed in situ in equilibrium with ambient water, indicating that P is quickly cycled in the water column in oligotrophic ecosystems with very low P concentrations. However, most DIP samples collected from areas impacted by agricultural runoff yielded δ 18 O values that deviated from the predicted equilibrium DIP-δ 18 O values based on the δ 18 O of water and water temperature, suggesting that biological cycling of P was not rapid

  4. Estuaries of the Greater Everglades Ecosystem: Laboratories of Long-term Change

    Science.gov (United States)

    Wingard, G.L.; Hudley, J.W.; Marshall, F.E.

    2010-01-01

    Restoring the greater Everglades ecosystem of south Florida is arguably the largest ecosystem restoration effort to date. A critical goal is to return more natural patterns of flow through south Florida wetlands and into the estuaries, but development of realistic targets requires acknowledgement that ecosystems are constantly evolving and changing in response to a variety of natural and human-driven stressors. Examination of ecosystems over long periods of time requires analysis of sedimentary records, such as those deposited in the wetlands and estuaries of south Florida. As sediment accumulates, it preserves information about the animals and plants that lived in the environment and the physical, chemical, and climatic conditions present. One of the methods used to interpret this information is paleoecology-the study of the ecology of previously living organisms. Paleoecologic investigations of south Florida estuaries provide quantitative data on historical variability of salinity and trends that may be applied to statistical models to estimate historical freshwater flow. These data provide a unique context to estimate future ecosystem response to changes related to restoration activities and predicted changes in sea level and temperature, thus increasing the likelihood of successful and sustainable ecosystem restoration.

  5. Wetlands Research Program. Evaluation of Methods for Sampling Vegetation and Delineating Wetlands Transition Zones in Coastal West-Central Florida, January 1979-May 1981.

    Science.gov (United States)

    1984-04-01

    method ( Catana 1963) compensates for some of the limitations of the point-centered quarter method. A quarter is established at a sampling point and...Principal Soil Areas of Florida--A Supplement to the General Soils Map. University of Florida, in cooperation with USDA, Bulletin 717. Catana , H. J. 1963

  6. Simulation of ground-water flow in coastal Georgia and adjacent parts of South Carolina and Florida-predevelopment, 1980, and 2000

    Science.gov (United States)

    Payne, Dorothy F.; Rumman, Malek Abu; Clarke, John S.

    2005-01-01

    A digital model was developed to simulate steady-state ground-water flow in a 42,155-square-mile area of coastal Georgia and adjacent parts of South Carolina and Florida. The model was developed to (1) understand and refine the conceptual model of regional ground-water flow, (2) serve as a framework for the development of digital subregional ground-water flow and solute-transport models, and (3) serve as a tool for future evaluations of hypothetical pumping scenarios used to facilitate water management in the coastal area. Single-density ground-water flow was simulated using the U.S. Geological Survey finite-difference code MODFLOW-2000 for mean-annual conditions during predevelopment (pre?1900) and the years 1980 and 2000. The model comprises seven layers: the surficial aquifer system, the Brunswick aquifer system, the Upper Floridan aquifer, the Lower Floridan aquifer, and the intervening confining units. A combination of boundary conditions was applied, including a general-head boundary condition on the top active cells of the model and a time-variable fixed-head boundary condition along part of the southern lateral boundary. Simulated heads for 1980 and 2000 conditions indicate a good match to observed values, based on a plus-or-minus 10-foot (ft) calibration target and calibration statistics. The root-mean square of residual water levels for the Upper Floridan aquifer was 13.0 ft for the 1980 calibration and 9.94 ft for the 2000 calibration. Some spatial patterns of residuals were indicated for the 1980 and 2000 simulations, and are likely a result of model-grid cell size and insufficiently detailed hydraulic-property and pumpage data in some areas. Simulated potentiometric surfaces for predevelopment, 1980, and 2000 conditions all show major flow system features that are indicated by estimated peotentiometric maps. During 1980?2000, simulated water levels at the centers of pumping at Savannah and Brunswick rose more than 20 ft and 8 ft, respectively, in

  7. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from WEATHERBIRD II in the Coastal Waters of Florida and Gulf of Mexico from 2008-08-11 to 2011-06-30 (NCEI Accession 0144622)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144622 includes Surface underway data collected from WEATHERBIRD II in the Coastal Waters of Florida and Gulf of Mexico from 2008-08-11 to...

  8. Soil Salinity Mapping in Everglades National Park Using Remote Sensing Techniques

    Science.gov (United States)

    Su, H.; Khadim, F. K.; Blankenship, J.; Sobhan, K.

    2017-12-01

    The South Florida Everglades is a vast subtropical wetland with a globally unique hydrology and ecology, and it is designated as an International Biosphere Reserve and a Wetland of International Importance. Everglades National Park (ENP) is a hydro-ecologically enriched wetland with varying salinity contents, which is a concern for terrestrial ecosystem balance and sustainability. As such, in this study, time series soil salinity mapping was carried out for the ENP area. The mapping first entailed a maximum likelihood classification of seven land cover classes for the ENP area—namely mangrove forest, mangrove scrub, low-density forest, sawgrass, prairies and marshes, barren lands with woodland hammock and water—for the years 1996, 2000, 2006, 2010 and 2015. The classifications for 1996-2010 yielded accuracies of 82%-94%, and the 2015 classification was supported through ground truthing. Afterwards, electric conductivity (EC) tolerance thresholds for each vegetation class were established,which yielded soil salinity maps comprising four soil salinity classes—i.e., the non- (EC = 0 2 dS/m), low- (EC = 2 4 dS/m), moderate- (EC = 4 8 dS/m) and high-saline (EC = >8 dS/m) areas. The soil salinity maps visualized the spatial distribution of soil salinity with no significant temporal variations. The innovative approach of "land cover identification to salinity estimation" used in the study is pragmatic and application oriented, and the study upshots are also useful, considering the diversifying ecological context of the ENP area.

  9. Wetland fire remote sensing research--The Greater Everglades example

    Science.gov (United States)

    Jones, John W.

    2012-01-01

    Fire is a major factor in the Everglades ecosystem. For thousands of years, lightning-strike fires from summer thunderstorms have helped create and maintain a dynamic landscape suited both to withstand fire and recover quickly in the wake of frequent fires. Today, managers in the Everglades National Park are implementing controlled burns to promote healthy, sustainable vegetation patterns and ecosystem functions. The U.S. Geological Survey (USGS) is using remote sensing to improve fire-management databases in the Everglades, gain insights into post-fire land-cover dynamics, and develop spatially and temporally explicit fire-scar data for habitat and hydrologic modeling.

  10. Dynamics of mangrove-marsh ecotones in subtropical coastal wetlands: fire, sea-level rise, and water levels

    Science.gov (United States)

    Smith, Thomas J.; Foster, Ann M.; Tiling-Range, Ginger; Jones, John W.

    2013-01-01

    Ecotones are areas of sharp environmental gradients between two or more homogeneous vegetation types. They are a dynamic aspect of all landscapes and are also responsive to climate change. Shifts in the position of an ecotone across a landscape can be an indication of a changing environment. In the coastal Everglades of Florida, USA, a dominant ecotone type is that of mangrove forest and marsh. However, there is a variety of plants that can form the marsh component, including sawgrass (Cladium mariscus [L.] Pohl), needlegrass rush (Juncus roemerianus Scheele), and spikerush (Eleocharis spp.). Environmental factors including water depth, soil type, and occurrence of fires vary across these ecotones, influencing their dynamics. Altered freshwater inflows from upstream and increasing sea level over the past 100 years may have also had an impact. We analyzed a time series of historical aerial photographs for a number of sites in the coastal Everglades and measured change in position of mangrove–marsh ecotones. For three sites, detailed maps were produced and the area of marsh, mangrove, and other habitats was determined for five periods spanning the years 1928 to 2004. Contrary to our initial hypothesis on fire, we found that fire did not prevent mangrove expansion into marsh areas but may in fact assist mangroves to invade some marsh habitats, especially sawgrass. Disparate patterns in mangrove–marsh change were measured at two downstream sites, both of which had multiple fires over from 1948 to 2004. No change in mangrove or marsh area was measured at one site. Mangrove area increased and marsh area decreased at the second of these fire-impacted sites. We measured a significant increase in mangrove area and a decline in marsh area at an upstream site that had little occurrence of fire. At this site, water levels have increased significantly as sea level has risen, and this has probably been a factor in the mangrove expansion.

  11. Hydrogeology and Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer, Southern Florida

    Science.gov (United States)

    Reese, Ronald S.; Alvarez-Zarikian, Carlos A.

    2007-01-01

    Well construction, hydraulic well test, ambient water-quality, and cycle test data were inventoried and compiled for 30 aquifer storage and recovery facilities constructed in the Floridan aquifer system in southern Florida. Most of the facilities are operated by local municipalities or counties in coastal areas, but five sites are currently being evaluated as part of the Comprehensive Everglades Restoration Plan. The relative performance of all sites with adequate cycle test data was determined, and compared with four hydrogeologic and design factors that may affect recovery efficiency. Testing or operational cycles include recharge, storage, and recovery periods that each last days or months. Cycle test data calculations were made including the potable water (chloride concentration of less than 250 milligrams per liter) recovery efficiency per cycle, total recovery efficiency per cycle, and cumulative potable water recovery efficiencies for all of the cycles at each site. The potable water recovery efficiency is the percentage of the total amount of potable water recharged for each cycle that is recovered; potable water recovery efficiency calculations (per cycle and cumulative) were the primary measures used to evaluate site performance in this study. Total recovery efficiency, which is the percent recovery at the end of each cycle, however, can be substantially higher and is the performance measure normally used in the operation of water-treatment plants. The Upper Floridan aquifer of the Floridan aquifer system currently is being used, or planned for use, at 29 of the aquifer storage and recovery sites. The Upper Floridan aquifer is continuous throughout southern Florida, and its overlying confinement is generally good; however, the aquifer contains brackish to saline ground water that can greatly affect freshwater storage and recovery due to dispersive mixing within the aquifer. The hydrogeology of the Upper Floridan varies in southern Florida; confinement

  12. Efficient phosphorus management practices in the Everglades Agricultural Area

    Science.gov (United States)

    Bhadha, J. H.; Lang, T. A.; Daroub, S. H.; Alvarez, O.; Tootoonchi, M.; Capasso, J.

    2016-12-01

    In the 450,000 acres of the Everglades Agricultural Area (EAA) of South Florida, farming practices have long been mindful of phosphorus (P) management as it relates to sufficiency and efficiency of P utilization. Over two decades of P best management practices have resulted in 3001 metric-ton of P load reduction from the EAA to downstream ecosystems. During the summer, more than 50,000 acres of fallow sugarcane land is available for rice production. The net value of growing flooded rice in the EAA as a rotational crop with sugarcane far exceeds its monetary return. Soil conservation, improvement in tilth and P load reduction are only some of the benefits. With no P fertilizer applied, a two-year field trial on flooded rice showed improved outflow P concentrations by up to 40% as a result of particulate setting and plant P uptake. Harvested whole grain rice can effectively remove a significant amount of P from a rice field per growing season. In parts of the EAA where soils are sandy, the application of using locally derived organic amendments as potential P fertilizer has gained interest over the past few years. The use of local agricultural and urban organic residues as amendments in sandy soils of South Florida provide options to enhance soil properties and improve sugarcane yields, while reducing waste and harmful effects of agricultural production on the environment. A lysimeter study conducted to determine the effect of mill ash and three types of biochar (rice hulls, yard waste, horse bedding) on sugarcane yields, soil properties, and drainage water quality in sandy soils showed that mill ash and rice hull biochar increased soil TP, Mehlich 3-P (M3-P), and cation exchange capacity (CEC) compared to the control. TP and M3-P content remained constant after 9 months, CEC showed a significant increase over time with rich hull biochar addition. Future projects include the utilization of aquatic vegetation, such as chara and southern naiad as bio-filters in farm

  13. High Resolution Forecasts in the Florida Straits: Predicting the Modulations of the Florida Current and Connectivity Around South Florida and Cuba

    Science.gov (United States)

    Kourafalou, V.; Kang, H.; Perlin, N.; Le Henaff, M.; Lamkin, J. T.

    2016-02-01

    Connectivity around the South Florida coastal regions and between South Florida and Cuba are largely influenced by a) local coastal processes and b) circulation in the Florida Straits, which is controlled by the larger scale Florida Current variability. Prediction of the physical connectivity is a necessary component for several activities that require ocean forecasts, such as oil spills, fisheries research, search and rescue. This requires a predictive system that can accommodate the intense coastal to offshore interactions and the linkages to the complex regional circulation. The Florida Straits, South Florida and Florida Keys Hybrid Coordinate Ocean Model is such a regional ocean predictive system, covering a large area over the Florida Straits and the adjacent land areas, representing both coastal and oceanic processes. The real-time ocean forecast system is high resolution ( 900m), embedded in larger scale predictive models. It includes detailed coastal bathymetry, high resolution/high frequency atmospheric forcing and provides 7-day forecasts, updated daily (see: http://coastalmodeling.rsmas.miami.edu/). The unprecedented high resolution and coastal details of this system provide value added on global forecasts through downscaling and allow a variety of applications. Examples will be presented, focusing on the period of a 2015 fisheries cruise around the coastal areas of Cuba, where model predictions helped guide the measurements on biophysical connectivity, under intense variability of the mesoscale eddy field and subsequent Florida Current meandering.

  14. 78 FR 27364 - Reorganization of Foreign-Trade Zone 241 Under Alternative Site Framework Fort Lauderdale, Florida

    Science.gov (United States)

    2013-05-10

    ... Zone 241 Under Alternative Site Framework Fort Lauderdale, Florida Pursuant to its authority under the...-48-2012, docketed 6/27/2012) for authority to reorganize under the ASF with a service area comprised... Everglades Customs and Border Protection port of entry, to modify Site 1 by removing acreage, to expand Sites...

  15. Public participation in environmental decision-making: a case study of ecosystem restoration in South FloridaPublic participation in environmental decision-making: a case study of ecosystem restoration in South Florida

    OpenAIRE

    Ogden, Laura

    2006-01-01

    The “ecosystem” is the conceptual model guiding environmental restoration projects in the Florida Everglades, a large wetlands region in the southern United States. According to applied ecological frameworks, ecosystems are geographies (of various temporal and spatial scales) where systemic interrelationships of organisms and habitat occur. With current project estimates at 14.8 billion dollars, ecosystem restoration in South Florida represents one of the largest and most expensive environmen...

  16. The Everglades Depth Estimation Network (EDEN) surface-water model, version 2

    Science.gov (United States)

    Telis, Pamela A.; Xie, Zhixiao; Liu, Zhongwei; Li, Yingru; Conrads, Paul

    2015-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of water-level gages, interpolation models that generate daily water-level and water-depth data, and applications that compute derived hydrologic data across the freshwater part of the greater Everglades landscape. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for EDEN in order for EDEN to provide quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan.

  17. 2015 NOAA Ortho-rectified Below Mean High Water Color Mosaic of the Port of Palm Beach, Florida: Integrated Ocean and Coastal Mapping Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. The source imagery...

  18. Strengthening the resiliency of the coastal transportation system through integrated simulation of storm surge, inundation, and non-recurrent congestion in Northeast Florida.

    Science.gov (United States)

    2013-05-01

    In this study, the MTEVA (Developed as part of CMS #2009-010) has been advanced to apply storm surge and evacuation models to the greater Jacksonville area of Northeast Florida. Heuristic and time dynamic algorithms have been enhanced to work with th...

  19. 2012 NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Mobile/Tallahassee (AL/FL) WFO - Mobile County in Alabama and Escambia, Santa Rosa, and Okaloosa (portion) Counties in Florida

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  20. Application of a Coupled Vegetation Competition and Groundwater Simulation Model to Study Effects of Sea Level Rise and Storm Surges on Coastal Vegetation

    Directory of Open Access Journals (Sweden)

    Su Yean Teh

    2015-09-01

    Full Text Available Global climate change poses challenges to areas such as low-lying coastal zones, where sea level rise (SLR and storm-surge overwash events can have long-term effects on vegetation and on soil and groundwater salinities, posing risks of habitat loss critical to native species. An early warning system is urgently needed to predict and prepare for the consequences of these climate-related impacts on both the short-term dynamics of salinity in the soil and groundwater and the long-term effects on vegetation. For this purpose, the U.S. Geological Survey’s spatially explicit model of vegetation community dynamics along coastal salinity gradients (MANHAM is integrated into the USGS groundwater model (SUTRA to create a coupled hydrology–salinity–vegetation model, MANTRA. In MANTRA, the uptake of water by plants is modeled as a fluid mass sink term. Groundwater salinity, water saturation and vegetation biomass determine the water available for plant transpiration. Formulations and assumptions used in the coupled model are presented. MANTRA is calibrated with salinity data and vegetation pattern for a coastal area of Florida Everglades vulnerable to storm surges. A possible regime shift at that site is investigated by simulating the vegetation responses to climate variability and disturbances, including SLR and storm surges based on empirical information.

  1. Hydrology and Ecology of Freshwater Wetlands in Central Florida - A Primer

    Science.gov (United States)

    Haag, Kim H.; Lee, Terrie M.

    2010-01-01

    Freshwater wetlands are an integral part of central Florida, where thousands are distributed across the landscape. However, their relatively small size and vast numbers challenge efforts to characterize them collectively as a statewide water resource. Wetlands are a dominant landscape feature in Florida; in 1996, an estimated 11.4 million acres of wetlands occupied 29 percent of the area of the State. Wetlands represent a greater percentage of the land surface in Florida than in any other state in the conterminous United States. Statewide, 90 percent of the total wetland area is freshwater wetlands and 10 percent is coastal wetlands. About 55 percent of the freshwater wetlands in Florida are forested, 25 percent are marshes and emergent wetlands, 18 percent are scrub-shrub wetlands, and the remaining 2 percent are freshwater ponds. Freshwater wetlands are distributed differently in central Florida than in other parts of the State. In the panhandle and in northern Florida, there are fewer isolated wetlands than in the central and southern parts of the State, and few of those wetlands are affected by activities such as groundwater withdrawals. In southern Florida, the vast wetlands of the Everglades and the Big Cypress Swamp blanket the landscape and form contiguous shallow expanses of water, which often exhibit slow but continuous flow toward the southwestern coast. In contrast, the wetlands of central Florida are relatively small, numerous, mostly isolated, and widely distributed. In many places, wetlands are flanked by uplands, generating a mosaic of contrasting environments-unique wildlife habitat often adjacent to dense human development. As the population of central Florida increases, the number of residents living near wetlands also increases. Living in close proximity to wetlands provides many Floridians with an increased awareness of nature and an opportunity to examine the relationship between people and wetlands. Specifically, these residents can observe

  2. Geophysical log database for the Floridan aquifer system and southeastern Coastal Plain aquifer system in Florida and parts of Georgia, Alabama, and South Carolina

    Science.gov (United States)

    Williams, Lester J.; Raines, Jessica E.; Lanning, Amanda E.

    2013-04-04

    A database of borehole geophysical logs and other types of data files were compiled as part of ongoing studies of water availability and assessment of brackish- and saline-water resources. The database contains 4,883 logs from 1,248 wells in Florida, Georgia, Alabama, South Carolina, and from a limited number of offshore wells of the eastern Gulf of Mexico and the Atlantic Ocean. The logs can be accessed through a download directory organized by state and county for onshore wells and in a single directory for the offshore wells. A flat file database is provided that lists the wells, their coordinates, and the file listings.

  3. Response of the everglades ridge and slough landscape to climate variability and 20th-century water management

    Science.gov (United States)

    Bernhardt, C.E.; Willard, D.A.

    2009-01-01

    The ridge and slough landscape of the Florida Everglades consists of a mosaic of linear sawgrass ridges separated by deeper-water sloughs with tree islands interspersed throughout the landscape. We used pollen assemblages from transects of sediment cores spanning sawgrass ridges, sloughs, and ridge-slough transition zones to determine the timing of ridge and slough formation and to evaluate the response of components of the ridge and slough landscape to climate variability and 20th-century water management. These pollen data indicate that sawgrass ridges and sloughs have been vegetationally distinct from one another since initiation of the Everglades wetland in mid-Holocene time. Although the position and community composition of sloughs have remained relatively stable throughout their history, modern sawgrass ridges formed on sites that originally were occupied by marshes. Ridge formation and maturation were initiated during intervals of drier climate (the Medieval Warm Period and the Little Ice Age) when the mean position of the Intertropical Convergence Zone shifted southward. During these drier intervals, marsh taxa were more common in sloughs, but they quickly receded when precipitation increased. Comparison with regional climate records suggests that slough vegetation is strongly influenced by North Atlantic Oscillation variability, even under 20th-century water management practices. ?? 2009 by the Ecological Society of America.

  4. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone.

    Science.gov (United States)

    Ewe, Sharon M L; Sternberg, Leonel da S L; Childers, Daniel L

    2007-07-01

    The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (delta(18)O) was enriched (4.8 +/- 0.2 per thousand) in the DS relative to the WS (0.0 +/- 0.1 per thousand), but groundwater delta(18)O remained constant between seasons (DS: 2.2 +/- 0.4 per thousand; WS: 2.1 +/- 0.1 per thousand). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil-groundwater mix (delta 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on delta(18)O data, the roots of R. mangle roots were exposed to salinities of 25.4 +/- 1.4 PSU, less saline than either C. jamaicense (39.1 +/- 2.2 PSU) or S. portulacastrum (38.6 +/- 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to

  5. Design, revision, and application of ground-water flow models for simulation of selected water-management scenarios in the coastal area of Georgia and adjacent parts of South Carolina and Florida

    Science.gov (United States)

    Clarke, John S.; Krause, Richard E.

    2000-01-01

    Ground-water flow models of the Floridan aquifer system in the coastal area of Georgia and adjacent parts of South Carolina and Florida, were revised and updated to ensure consistency among the various models used, and to facilitate evaluation of the effects of pumping on the ground-water level near areas of saltwater contamination. The revised models, developed as part of regional and areal assessments of ground-water resources in coastal Georgia, are--the Regional Aquifer-System Analysis (RASA) model, the Glynn County area (Glynn) model, and the Savannah area (Savannah) model. Changes were made to hydraulic-property arrays of the RASA and Glynn models to ensure consistency among all of the models; results of theses changes are evidenced in revised water budgets and calibration statistics. Following revision, the three models were used to simulate 32 scenarios of hypothetical changes in pumpage that ranged from about 82 million gallons per day (Mgal/d) lower to about 438 Mgal/d higher, than the May 1985 pumping rate of 308 Mgal/d. The scenarios were developed by the Georgia Department of Natural Resources, Environmental Protection Division and the Chatham County-Savannah Metropolitan Planning Commission to evaluate water-management alternatives in coastal Georgia. Maps showing simulated ground-water-level decline and diagrams presenting changes in simulated flow rates are presented for each scenario. Scenarios were grouped on the basis of pumping location--entire 24-county area, central subarea, Glynn-Wayne-Camden County subarea, and Savannah-Hilton Head Island subarea. For those scenarios that simulated decreased pumpage, the water level at both Brunswick and Hilton Head Island rose, decreasing the hydraulic gradient and reducing the potential for saltwater contamination. Conversely, in response to scenarios of increased pumpage, the water level at both locations declined, increasing the hydraulic gradient and increasing the potential for saltwater contamination

  6. 36 CFR 7.45 - Everglades National Park.

    Science.gov (United States)

    2010-07-01

    ... SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.45 Everglades National Park. (a) Information...-edible form of fresh or salt water aquatic life for the purpose of sale or barter. (4) Dipnet means a... outboard motor, water-jet or an enclosed propeller or impeller system, where persons ride standing, sitting...

  7. Andrew spares Florida Coast

    Science.gov (United States)

    Bush, Susan

    When geologists heard of the intensity of Hurricane Andrew, which struck the Florida coast on August 25 and then moved on to southern Louisiana, they were expecting the same kinds of coastal damage that Hurricane Hugo brought to the Caribbean and Carolina shores in 1989. Both storms were category 4 hurricanes, having winds of 131-155 mph and surges of 13-18 feet. However, the coastal damage never materialized, leaving geologists to analyze the factors that lessened the impact of the storm. “For minimum coastal damage, you couldn't have designed a better storm,” said Orrin Pilkey, director of the Program for the Study of Developed Shorelines (PSDS) in Durham, N.C. This was due in part to the nature of the storm itself and where it hit land, and in part to the regional geology, said Rob Thieler of PSDS. Despite the huge amounts of damage to buildings, there was virtually no evidence of coastal process destruction, he said.

  8. Oceanographic and surface meteorological data collected from station gbtf1 by Everglades National Park (ENP) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118752)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118752 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  9. Oceanographic and surface meteorological data collected from station wiwf1 by Everglades National Park (ENP) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118765)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118765 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  10. Oceanographic and surface meteorological data collected from station wwef1 by Everglades National Park (ENP) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118767)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118767 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  11. Benthic Habitat Mapping - Indian River Lagoon, Florida Submerged Aquatic Vegetation (SAV) Data 1996 Geoform

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Office for Coastal Management's Coastal Change Analysis Program, in cooperation with the St. Johns River and South Florida Water Management Districts, used...

  12. Benthic Habitat Mapping - Indian River Lagoon, Florida Submerged Aquatic Vegetation (SAV) Data 1996 Geodatabase

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Office for Coastal Management's Coastal Change Analysis Program, in cooperation with the St. Johns River and South Florida Water Management Districts, used...

  13. Benthic Habitat Mapping - Indian River Lagoon, Florida Submerged Aquatic Vegetation (SAV) Data 1996 Substrate

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Office for Coastal Management's Coastal Change Analysis Program, in cooperation with the St. Johns River and South Florida Water Management Districts, used...

  14. Assessing the impacts of sea-level rise and precipitation change on the surficial aquifer in the low-lying coastal alluvial plains and barrier islands, east-central Florida (USA)

    Science.gov (United States)

    Xiao, Han; Wang, Dingbao; Hagen, Scott C.; Medeiros, Stephen C.; Hall, Carlton R.

    2016-11-01

    A three-dimensional variable-density groundwater flow and salinity transport model is implemented using the SEAWAT code to quantify the spatial variation of water-table depth and salinity of the surficial aquifer in Merritt Island and Cape Canaveral Island in east-central Florida (USA) under steady-state 2010 hydrologic and hydrogeologic conditions. The developed model is referred to as the `reference' model and calibrated against field-measured groundwater levels and a map of land use and land cover. Then, five prediction/projection models are developed based on modification of the boundary conditions of the calibrated `reference' model to quantify climate change impacts under various scenarios of sea-level rise and precipitation change projected to 2050. Model results indicate that west Merritt Island will encounter lowland inundation and saltwater intrusion due to its low elevation and flat topography, while climate change impacts on Cape Canaveral Island and east Merritt Island are not significant. The SEAWAT models developed for this study are useful and effective tools for water resources management, land use planning, and climate-change adaptation decision-making in these and other low-lying coastal alluvial plains and barrier island systems.

  15. Spatial and stage-structured population model of the American crocodile for comparison of comprehensive Everglades Restoration Plan (CERP) alternatives

    Science.gov (United States)

    Green, Timothy W.; Slone, Daniel H.; Swain, Eric D.; Cherkiss, Michael S.; Lohmann, Melinda; Mazzotti, Frank J.; Rice, Kenneth G.

    2010-01-01

    As part of the U.S. Geological Survey Priority Ecosystems Science (PES) initiative to provide the ecological science required during Everglades restoration, we have integrated current regional hydrologic models with American crocodile (Crocodylus acutus) research and monitoring data to create a model that assesses the potential impact of Comprehensive Everglades Restoration Plan (CERP) efforts on the American crocodile. A list of indicators was created by the Restoration Coordination and Verification (RECOVER) component of CERP to help determine the success of interim restoration goals. The American crocodile was established as an indicator of the ecological condition of mangrove estuaries due to its reliance upon estuarine environments characterized by low salinity and adequate freshwater inflow. To gain a better understanding of the potential impact of CERP restoration efforts on the American crocodile, a spatially explicit crocodile population model has been created that has the ability to simulate the response of crocodiles to various management strategies for the South Florida ecosystem. The crocodile model uses output from the Tides and Inflows in the Mangroves of the Everglades (TIME) model, an application of the Flow and Transport in a Linked Overland/Aquifer Density Dependent System (FTLOADDS) simulator. TIME has the capability to link to the South Florida Water Management Model (SFWMM), which is the primary regional tool used to assess CERP restoration scenarios. A crocodile habitat suitability index and spatial parameter maps that reflect salinity, water depth, habitat, and nesting locations are used as driving functions to construct crocodile finite rate of increase maps under different management scenarios. Local stage-structured models are integrated with a spatial landscape grid to display crocodile movement behavior in response to changing environmental conditions. Restoration efforts are expected to affect salinity levels throughout the habitat of

  16. Alligators and crocodiles as indicators for restoration of Everglades ecosystems

    Science.gov (United States)

    Mazzotti, Frank J.; Best, G. Ronnie; Brandt, Laura A.; Cherkiss, Michael S.; Jeffery, Brian M.; Rice, Kenneth G.

    2009-01-01

    Alligators and crocodiles integrate biological impacts of hydrological operations, affecting them at all life stages through three key aspects of Everglades ecology: (1) food webs, (2) diversity and productivity, and (3) freshwater flow. Responses of crocodilians are directly related to suitability of environmental conditions and hydrologic change. Correlations between biological responses and environmental conditions contribute to an understanding of species' status and trends over time. Positive or negative trends of crocodilian populations relative to hydrologic changes permit assessment of positive or negative trends in restoration. The crocodilian indicator uses monitoring parameters (performance measures) that have been shown to be both effective and efficient in tracking trends. The alligator component uses relative density (reported as an encounter rate), body condition, and occupancy rates of alligator holes; the crocodile component uses juvenile growth and hatchling survival. We hypothesize that these parameters are correlated with hydrologic conditions including depth, duration, timing, spatial extent and water quality. Salinity is a critical parameter in estuarine habitats. Assessments of parameters defined for crocodilian performance measures support these hypotheses. Alligators and crocodiles are the charismatic megafauna of the Everglades. They are both keystone and flagship species to which the public can relate. In addition, the parameters used to track trends are easy to understand. They provide answers to the following questions: How has the number of alligators or crocodiles changed? Are the animals fatter or thinner than they should be? Are the animals in the places (in terms of habitat and geography) where they should be? As surely as there is no other Everglades, no other single species defines the Everglades as does the American alligator. The Everglades is the only place in the world where both alligators and crocodiles exist. Crocodilians

  17. Agkistrodon piscivorus conanti (Florida cottonmouth) Diet

    Science.gov (United States)

    Grajal-Puche, Alejandro; Josimovich, Jillian; Falk, Bryan; Reed, Robert

    2016-01-01

    Agkistrodon piscivorus is a generalist predator that feeds on a variety of prey, including snakes (Gloyd and Conant 1990. Snakes of the Agkistrodon Complex: A Monographic Review. Society for the Study of Amphibians and Reptiles, Oxford, Ohio. 614 pp.; Lillywhite et al. 2002. Herpetol. Rev. 33:259–260; Hill and Beaupre 2008. Copeia 2008:105–114). Cemophora coccinea (Scarletsnake) is not known as one of the 26 species of snakes consumed by A. piscivorus (Ernst and Ernst 2011. Venomous Reptiles of the United States, Canada, and Northern Mexico: Volume 1. Johns Hopkins University Press, Baltimore, Maryland. 193 pp.). On 16 June 2015, at 2210 h, we found a dead-on-road A. piscivorus (total length [TL] = 51.0 cm) in Everglades National Park on Main Park Road, 1.88 km S Pa-hay-okee, Miami-Dade Co., Florida, USA (25.414085°N, 80.78183146°W, WGS84; elev. 3 m). The snake had been killed by a vehicle and some internal organs were exposed. Visible stomach contents included a small (TL ca. 15 cm) C. coccinea. Photographic vouchers of the A. piscivorus (UF-Herpetology 177194) and C. coccinea (UF-Herpetology 177195) were deposited in the Division of Herpetology, Florida Museum of Natural History, University of Florida. Despite the fact that these species are sympatric over large areas of the southeastern United States, this is the first known documented predation of C. coccinea by A. piscivorus.

  18. Everglades: The Catalyst to Combat the World Water Crisis

    Science.gov (United States)

    2009-02-27

    Everglades is a river, but also, a rich ecosystem that supports a multitude of life to include vast flora and algae, mangroves , wading birds, shrimp and...the first project ever for environmental concerns.98 As an indicator of the international 22 water crisis and a sign for hope, officials from Brazil ...Mississippi River nationally and the Danube and Nile Rivers, Aral, Baltic, and Black Seas, Pantanal wetlands of Brazil , and the Okavango Delta of

  19. Prediction of Groundwater Quality Trends Resulting from Anthropogenic Changes in Southeast Florida.

    Science.gov (United States)

    Yi, Quanghee; Stewart, Mark

    2018-01-01

    The effects of surface water flow system changes caused by constructing water-conservation areas and canals in southeast Florida on groundwater quality under the Atlantic Coastal Ridge was investigated with numerical modeling. Water quality data were used to delineate a zone of groundwater with low total dissolved solids (TDS) within the Biscayne aquifer under the ridge. The delineated zone has the following characteristics. Its location generally coincides with an area where the Biscayne aquifer has high transmissivities, corresponds to a high recharge area of the ridge, and underlies a part of the groundwater mound formed under the ridge prior to completion of the canals. This low TDS groundwater appears to be the result of pre-development conditions rather than seepage from the canals constructed after the 1950s. Numerical simulation results indicate that the time for low TDS groundwater under the ridge to reach equilibrium with high TDS surface water in the water-conservation areas and Everglades National Park are approximately 70 and 60 years, respectively. The high TDS groundwater would be restricted to the water-conservation areas and the park due to its slow eastward movement caused by small hydraulic gradients in Rocky Glades and its mixing with the low TDS groundwater under the high-recharge area of the ridge. The flow or physical boundary conditions such as high recharge rates or low hydraulic conductivity layers may affect how the spatial distribution of groundwater quality in an aquifer will change when a groundwater flow system reaches equilibrium with an associated surface water flow system. © 2017, National Ground Water Association.

  20. Temperature, salinity, photosynthetically active radiation and weather parameters at SEAKEYS stations in the Florida Keys, 2006 (NODC Accession 0058100)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains data collected at several Coastal-Marine Automated Network (C-MAN) stations in the Florida Keys National Marine Sanctuary and Florida Bay....

  1. Temperature, salinity, photosynthetically active radiation and weather parameters at SEAKEYS stations in the Florida Keys, 2003 (NODC Accession 0058097)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains data collected at several Coastal-Marine Automated Network (C-MAN) stations in the Florida Keys National Marine Sanctuary and Florida Bay....

  2. Temperature, salinity, photosynthetically active radiation and weather parameters at SEAKEYS stations in the Florida Keys, 2007 (NODC Accession 0058101)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains data collected at several Coastal-Marine Automated Network (C-MAN) stations in the Florida Keys National Marine Sanctuary and Florida Bay....

  3. Temperature, salinity, photosynthetically active radiation and weather parameters at SEAKEYS stations in the Florida Keys, 2004 (NODC Accession 0058098)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains data collected at several Coastal-Marine Automated Network (C-MAN) stations in the Florida Keys National Marine Sanctuary and Florida Bay....

  4. Temperature, salinity, photosynthetically active radiation and weather parameters at SEAKEYS stations in the Florida Keys, 2005 (NODC Accession 0058099)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains data collected at several Coastal-Marine Automated Network (C-MAN) stations in the Florida Keys National Marine Sanctuary and Florida Bay....

  5. Carbon dioxide exchange rates from short- and long-hydroperiod Everglades freshwater marsh

    Science.gov (United States)

    K. L. Jimenez; G. Starr; C. L. Staudhammer; J. L. Schedlbauer; H. W. Loescher; Sparkle L Malone; S. F. Oberbauer

    2012-01-01

    Everglades freshwater marshes were once carbon sinks, but human-driven hydrologic changes have led to uncertainty about the current state of their carbon dynamics. To investigate the effect of hydrology on CO2 exchange, we used eddy covariance measurements for 2 years (2008-2009) in marl (short-hydroperiod) and peat (long-hydroperiod) wetlands in Everglades National...

  6. Evapotranspiration over spatially extensive plant communities in the Big Cypress National Preserve, southern Florida, 2007-2010

    Science.gov (United States)

    Shoemaker, W. Barclay; Lopez, Christian D.; Duever, Michael J.

    2011-01-01

    Evapotranspiration (ET) was quantified over plant communities within the Big Cypress National Preserve (BCNP) using the eddy covariance method for a period of 3 years from October 2007 to September 2010. Plant communities selected for study included Pine Upland, Wet Prairie, Marsh, Cypress Swamp, and Dwarf Cypress. These plant communities are spatially extensive in southern Florida, and thus, the ET measurements described herein can be applied to other humid subtropical locations such as the Everglades.

  7. 1979 Ecological study of fishes and the water quality characteristics of Florida Bay, Everglades National Park, Florida

    OpenAIRE

    Schmidt, Thomas W.

    2002-01-01

    Fish collections under varying ecological conditions were made by trawling and seining, monthly and quarterly in depths of 45 ppt) persisted for nearly 2 years during the 1974 - 1975 severe drought period. Significant reductions in fish abundance/diversity were observed in relation to hypersaline conditions. Bay-wide macrobenthic communities were mapped (presence/absence) and were primarily comprised of turtle grass (Thalassia), shoalgrass [(Diplanthera = (Halodule)], and/or green algae P...

  8. Organic Carbon Burial Rates in Mangrove Soils Along Florida's Coast from Tampa Bay to Biscayne National Park

    Science.gov (United States)

    Smoak, J. M.; Breithaupt, J. L.; Moyer, R. P.; Sanders, C. J.; Proctor, M. R.; Jacobs, J. A.; Chappel, A. R.; Comparetto, K. R.

    2016-12-01

    Mangrove forests provide a range of valuable ecosystem services including sequestering organic carbon (OC) in their soils at rates much greater on a per area basis than those found in other types of forests. This restricts a large quantity of OC to a relatively small area along tropical and sub-tropical coastal margins, where dramatic climate-driven impacts are expected. Hence this small yet highly-vulnerable area will have a disproportionally large impact on global carbon cycling. One of the fundamental climate-related questions in mangrove systems is whether their soils will continue to function as a globally significant OC sink or become a source as previously buried OC is oxidized and returned to the atmosphere. While changes to precipitation, temperature, cyclone activity, etc. may influence this sink capacity, it is accelerating sea-level rise (SLR) that is of greatest immediate concern because if mangrove peat formation fails to keep pace then all ecosystem services, including carbon burial, will collapse. Mangroves that receive minimal terrigenous sediments (such as those in South Florida) are largely dependent on the rate of OC accumulation as a key contributor to accretion. To investigate these processes, we measured OC burial and accretion rates over the last 100 years (via 210Pb dating) from sites in Tampa Bay, Charlotte Harbor, Ten Thousand Islands, Everglades National Park, Biscayne National Park, and the Lower Florida Keys. The mean 100-year burial rate over all sites is 119 ± 33 (SD) g m-2 yr-1 which is lower than the global mean. Mean accretion rates were found to match (within error) the relatively modest average SLR over the last 100 years, but rates may not have kept pace with the substantially higher SLR in the last decade. This investigation contributes to establishing regional-scale Blue Carbon budgets, and examines how OC burial in mangroves has changed over the last 100 years. This improved understanding of past mangrove OC burial response

  9. Enhancement of Ecosystem Services through Active Management of a Eutrophic Area of the Florida Everglades

    Science.gov (United States)

    Ecosystem services of wetlands are relevant when considering management decisions and assessing restoration success. However, many services (e.g., biochemistry, wildlife habitat) are difficult to quantify and value (e.g., monetize), requiring non-use valuations (e.g., indicators)...

  10. H12118: NOS Hydrographic Survey , Miami to Port Everglades, Florida, 2008-08-24

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) has the statutory mandate to collect hydrographic data in support of nautical chart compilation for safe...

  11. F00532: NOS Hydrographic Survey , Miami and Port Everglades, Florida, 2007-04-26

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) has the statutory mandate to collect hydrographic data in support of nautical chart compilation for safe...

  12. H11896: NOS Hydrographic Survey , Miami to Port Everglades, Florida, 2009-03-12

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) has the statutory mandate to collect hydrographic data in support of nautical chart compilation for safe...

  13. F00533: NOS Hydrographic Survey , Miami and Port Everglades, Florida, 2007-04-25

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) has the statutory mandate to collect hydrographic data in support of nautical chart compilation for safe...

  14. F00531: NOS Hydrographic Survey , Port Everglades, Florida, 2007-02-14

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) has the statutory mandate to collect hydrographic data in support of nautical chart compilation for safe...

  15. H10749: NOS Hydrographic Survey , Approaches to Port Everglades, Florida, 1997-03-11

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) has the statutory mandate to collect hydrographic data in support of nautical chart compilation for safe...

  16. Fire history of Everglades National Park and Big Cypress National Preserve, southern Florida

    Science.gov (United States)

    Smith, Thomas J.; Foster, Ann M.; Jones, John W.

    2015-01-01

    Fire occurs naturally in the environment on most continents, including Africa (Ryan and Williams, 2011), Asia (Kauhanen, 2008), Australia (Kutt and Woinarski, 2007), Europe (Eshel and others, 2000), South America (Fidelis and others, 2010), and North America (Van Auken, 2000). Antarctica appears to be the only continent that has no reported natural fires, although fire is common in grasslands of Patagonia and on islands in the Subantarctic region (Gonzalez and others, 2005; McGlone and others, 2007).

  17. Influence of net freshwater supply on salinity in Florida Bay

    Science.gov (United States)

    Nuttle, William K.; Fourqurean, James W.; Cosby, Bernard J.; Zieman, Joseph C.; Robblee, Michael B.

    2000-01-01

    An annual water budget for Florida Bay, the large, seasonally hypersaline estuary in the Everglades National Park, was constructed using physically based models and long‐term (31 years) data on salinity, hydrology, and climate. Effects of seasonal and interannual variations of the net freshwater supply (runoff plus rainfall minus evaporation) on salinity variation within the bay were also examined. Particular attention was paid to the effects of runoff, which are the focus of ambitious plans to restore and conserve the Florida Bay ecosystem. From 1965 to 1995 the annual runoff from the Everglades into the bay was less than one tenth of the annual direct rainfall onto the bay, while estimated annual evaporation slightly exceeded annual rainfall. The average net freshwater supply to the bay over a year was thus approximately zero, and interannual variations in salinity appeared to be affected primarily by interannual fluctuations in rainfall. At the annual scale, runoff apparently had little effect on the bay as a whole during this period. On a seasonal basis, variations in rainfall, evaporation, and runoff were not in phase, and the net freshwater supply to the bay varied between positive and negative values, contributing to a strong seasonal pattern in salinity, especially in regions of the bay relatively isolated from exchanges with the Gulf of Mexico and Atlantic Ocean. Changes in runoff could have a greater effect on salinity in the bay if the seasonal patterns of rainfall and evaporation and the timing of the runoff are considered. One model was also used to simulate spatial and temporal patterns of salinity responses expected to result from changes in net freshwater supply. Simulations in which runoff was increased by a factor of 2 (but with no change in spatial pattern) indicated that increased runoff will lower salinity values in eastern Florida Bay, increase the variability of salinity in the South Region, but have little effect on salinity in the Central

  18. Testing the robustness of management decisions to uncertainty: Everglades restoration scenarios.

    Science.gov (United States)

    Fuller, Michael M; Gross, Louis J; Duke-Sylvester, Scott M; Palmer, Mark

    2008-04-01

    To effectively manage large natural reserves, resource managers must prepare for future contingencies while balancing the often conflicting priorities of different stakeholders. To deal with these issues, managers routinely employ models to project the response of ecosystems to different scenarios that represent alternative management plans or environmental forecasts. Scenario analysis is often used to rank such alternatives to aid the decision making process. However, model projections are subject to uncertainty in assumptions about model structure, parameter values, environmental inputs, and subcomponent interactions. We introduce an approach for testing the robustness of model-based management decisions to the uncertainty inherent in complex ecological models and their inputs. We use relative assessment to quantify the relative impacts of uncertainty on scenario ranking. To illustrate our approach we consider uncertainty in parameter values and uncertainty in input data, with specific examples drawn from the Florida Everglades restoration project. Our examples focus on two alternative 30-year hydrologic management plans that were ranked according to their overall impacts on wildlife habitat potential. We tested the assumption that varying the parameter settings and inputs of habitat index models does not change the rank order of the hydrologic plans. We compared the average projected index of habitat potential for four endemic species and two wading-bird guilds to rank the plans, accounting for variations in parameter settings and water level inputs associated with hypothetical future climates. Indices of habitat potential were based on projections from spatially explicit models that are closely tied to hydrology. For the American alligator, the rank order of the hydrologic plans was unaffected by substantial variation in model parameters. By contrast, simulated major shifts in water levels led to reversals in the ranks of the hydrologic plans in 24.1-30.6% of

  19. Exposure of great egret (Ardea albus) nestlings to mercury through diet in the Everglades ecosystem

    Science.gov (United States)

    Frederick, Peter C; Spalding, Marilyn G.; Sepalveda, Maria S.; Williams, Gary E.; Nico, Leo G.; Robins, Robert H.

    1999-01-01

    We estimated exposure of great egret (Ardea albus) nestlings to mercury in food in the Florida Everglades, USA, by collecting regurgitated food samples during the 1993 to 1996 breeding seasons and during 1995 measured concentrations of mercury in individual prey items from those samples. Great egret nestlings had a diet composed predominantly of fish (>95% of biomass), though the species composition of fish in the diet fluctuated considerably among years. Great egrets concentrated on the larger fish available in the marsh, especially members of the Centrarchidae. The importance of all nonnative fish fluctuated from 0 to 32% of the diet by biomass and was dominated by pike killifish (Belonesox belizanus) and cichlids (Cichlidae). Total mercury concentrations in prey fish ranged from 0.04 to 1.40 mg/kg wet weight, and we found a significant relationship between mass of individual fish and mercury concentration. We estimated the concentration of total mercury in the diet as a whole by weighting the mercury concentration in a given fish species by the proportion of that species in the diet. We estimate that total mercury concentrations in the diets ranged among years from 0.37 to 0.47 mg/kg fish (4-year mean = 0.41 mg/kg). We estimated total mercury exposure in great egret nestlings by combining these mercury concentrations with measurements of food intake rate, as measured over the course of the nestling period in both lab and field situations. We estimate that, at the 0.41 mg/kg level, nestlings would ingest 4.32 mg total mercury during an 80-day nestling period. Captive feeding studies reported elsewhere suggest that this level of exposure in the wild could be associated with reduced fledging mass, increased lethargy, decreased appetite, and, possibly, poor health and juvenile survival.

  20. Inventory and review of aquifer storage and recovery in southern Florida

    Science.gov (United States)

    Reese, Ronald S.

    2002-01-01

    publications > water resources investigations > report 02-4036 US Department of the Interior US Geological Survey WRI 02-4036Inventory and Review of Aquifer Storage and Recovery in Southern Florida By Ronald S. ReeseTallahassee, Florida 2002 prepared as part of the U.S. Geological Survey Place-Based Studies Program ABSTRACT Abstract Introduction Inventory of Data Case Studies Summary References Tables Aquifer storage and recovery in southern Florida has been proposed on an unprecedented scale as part of the Comprehensive Everglades Restoration Plan. Aquifer storage and recovery wells were constructed or are under construction at 27 sites in southern Florida, mostly by local municipalities or counties located in coastal areas. The Upper Floridan aquifer, the principal storage zone of interest to the restoration plan, is the aquifer being used at 22 of the sites. The aquifer is brackish to saline in southern Florida, which can greatly affect the recovery of the freshwater recharged and stored.Well data were inventoried and compiled for all wells at most of the 27 sites. Construction and testing data were compiled into four main categories: (1) well identification, location, and construction data; (2) hydraulic test data; (3) ambient formation water-quality data; and (4) cycle testing data. Each cycle during testing or operation includes periods of recharge of freshwater, storage, and recovery that each last days or months. Cycle testing data include calculations of recovery efficiency, which is the percentage of the total amount of potable water recharged for each cycle that is recovered.Calculated cycle test data include potable water recovery efficiencies for 16 of the 27 sites. However, the number of cycles at most sites was limited; except for two sites, the highest number of cycles was five. Only nine sites had a recovery efficiency above 10 percent for the first cycle, and 10 sites achieved a recovery efficiency above 30 percent during at least one cycle. The

  1. Multiple technologies applied to characterization of the porosity and permeability of the Biscayne aquifer, Florida

    Science.gov (United States)

    Cunningham, K.J.; Sukop, M.C.

    2011-01-01

    Research is needed to determine how seepage-control actions planned by the Comprehensive Everglades Restoration Plan (CERP) will affect recharge, groundwater flow, and discharge within the dual-porosity karstic Biscayne aquifer where it extends eastward from the Everglades to Biscayne Bay. A key issue is whether the plan can be accomplished without causing urban flooding in adjacent populated areas and diminishing coastal freshwater flow needed in the restoration of the ecologic systems. Predictive simulation of groundwater flow is a prudent approach to understanding hydrologic change and potential ecologic impacts. A fundamental problem to simulation of karst groundwater flow is how best to represent aquifer heterogeneity. Currently, U.S. Geological Survey (USGS) researchers and academic partners are applying multiple innovative technologies to characterize the spatial distribution of porosity and permeability within the Biscayne aquifer.

  2. Ecosystem history of South Florida; Biscayne Bay sediment core descriptions

    Science.gov (United States)

    Ishman, S.E.

    1997-01-01

    The 'Ecosystem History of Biscayne Bay and the southeast Coast' project of the U.S. Geological Survey is part of a multi-disciplinary effort that includes Florida Bay and the Everglades to provide paleoecologic reconstructions for the south Florida region. Reconstructions of past salinity, nutrients, substrate, and water quality are needed to determine ecosystem variability due to both natural and human-induced causes. Our understanding of the relations between the south Florida ecosystem and introduced forces will allow managers to make informed decisions regarding the south Florida ecosystem restoration and monitoring. The record of past ecosystem conditions can be found in shallow sediment cores. This U.S. Geological Survey Open-File Report describes six shallow sediment cores collected from Biscayne Bay. The cores described herein are being processed for a variety of analytical procedures, and this provides the descriptive framework for future analyses of the included cores. This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  3. Temperature, salinity, photosynthetically active radiation and weather parameters at SEAKEYS station Molasses Reef (MLRF) in the Florida Keys, 1992-2000 (NODC Accession 0058102)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains data collected at several Coastal-Marine Automated Network (C-MAN) stations in the Florida Keys National Marine Sanctuary and Florida Bay....

  4. Assessing the value of the Central Everglades Planning Project (CEPP) in Everglades restoration: an ecosystem service approach

    Science.gov (United States)

    Richardson, Leslie A.; Keefe, Kelly; Huber, Christopher C.; Racevskis, Laila; Gregg, Reynolds; Thourot, Scott; Miller, Ian

    2014-01-01

    This study identifies a full range of ecosystem services that could be affected by a restoration project in the central Everglades and monetizes the economic value of a subset of these services using existing data. Findings suggest that the project will potentially increase many ecosystem services that have considerable economic value to society. The ecosystem services monetized within the scope of this study are a subset of the difference between the future-with the Central Everglades Planning Project (CEPP) and the future-without CEPP, and they totaled ~ $1.8 billion USD at a 2.5% discount rate. Findings suggest that the use of ecosystem services in project planning and communications may require acknowledgment of the difficulty of monetizing important services and the limitations associated with using only existing data and models. Results of this study highlight the need for additional valuation efforts in this region, focused on those services that are likely to be impacted by restoration activities but were notably challenging to value in this assessment due to shortages of data.

  5. Southward flow on the western flank of the Florida Current

    Science.gov (United States)

    Soloviev, Alexander V.; Hirons, Amy; Maingot, Christopher; Dean, Cayla W.; Dodge, Richard E.; Yankovsky, Alexander E.; Wood, Jon; Weisberg, Robert H.; Luther, Mark E.; McCreary, Julian P.

    2017-07-01

    A suite of long-term in situ measurements in the Straits of Florida, including the ADCP bottom moorings at an 11-m isobath and 244-m isobath (Miami Terrace) and several ADCP ship transects, have revealed a remarkable feature of the ocean circulation - southward flow on the western, coastal flank of the Florida Current. We have observed three forms of the southward flow - a seasonally varying coastal countercurrent, an undercurrent jet attached to the Florida shelf, and an intermittent undercurrent on the Miami Terrace. According to a 13-year monthly climatology obtained from the near-shore mooring, the coastal countercurrent is a persistent feature from October through January. The southward flow in the form of an undercurrent jet attached to the continental slope was observed during five ship transects from April through September but was not observed during three transects in February, March, and November. This undercurrent jet is well mixed due to strong shear at its top associated with the northward direction of the surface flow (Florida Current) and friction at the bottom. At the same time, no statistically significant seasonal cycle has been observed in the undercurrent flow on the Miami Terrace. Theoretical considerations suggest that several processes could drive the southward current, including interaction between the Florida Current and the shelf, as well as forcing that is independent of the Florida Current. The exact nature of the southward flow on the western flank of the Florida Current is, however, unknown.

  6. Polypedilum nubifer, a Chironomid Midge (Diptera: Chironomidae) new to Florida that has nuisance potential

    International Nuclear Information System (INIS)

    Jacobsen, R.E.; Perry, S.A.

    2007-01-01

    We document the first record of Polypedilum nubifer in Pan-America. This eurytopic species often reaches severe nuisance population sizes in Australia, Asia, and Hawaii in warm, shallow, eutrophic waters subject to drying. A large population was discovered in newly-constructed infiltration basins and neighboring marshes along the eastern boundary of Everglades National Park. Presently, this population appears minimally invasive to Park marshes and is far removed from urban areas. However, we anticipate this species could disperse and attain nuisance population sizes in suitable urban and agricultural habitats in south Florida. (author)

  7. Hydrologic measurements and implications for tree island formation within Everglades National Park

    Science.gov (United States)

    Bazante, Jose; Jacobi, Gary; Solo-Gabriele, Helena M.; Reed, David; Mitchell-Bruker, Sherry; Childers, Daniel L.; Leonard, Lynn; Ross, Michael

    2006-10-01

    SummaryTree islands in the Shark River Slough of the Everglades National Park (ENP), in the southern state of Florida in the United States, are part of a wetland system of densely vegetated ridges interspersed within relatively open sloughs. Human alteration of this system has had dramatic negative effects on the landscape of the region and restoration efforts will require adjusting the hydrology of the region to assure the preservation of these important ecologic features. The primary objectives of this study were to document the hydrology in the vicinity of tree islands in ENP by measuring velocities in time and space and by characterizing suspended sediments. The results of such measurements were interpreted with respect to factors that may limit tree island growth. The measurements were conducted in the vicinity of three tree islands known as Black Hammock (BH), Gumbo Limbo (GL), and an unnamed island that was named for this study as Satin Leaf (SL). Acoustical Doppler Velocity (ADV) meters were used for measuring the low velocities of the Everglades water flow. Properties of suspended sediments were characterized through measurements of particle size distribution, turbidity, concentration and particle density. Mean velocities observed at each of the tree islands varied from 0.9 to 1.4 cm/s. Slightly higher mean velocities were observed during the wet season (1.2-1.6 cm/s) versus the dry season (0.8-1.3 cm/s). Maximum velocities of more than 4 cm/s were measured in areas of Cladium jamaicense die-off and at the hardwood hammock (head) of the islands. At the island's head, water is channelized around obstructions such as tree trunks in relatively rapid flow, which may limit the lateral extent of tree island growth. Channelization is facilitated by shade from the tree canopy, which limits the growth of underwater vegetation thereby minimizing the resistance to flow and limiting sediment deposition. Suspended sediment concentrations were low (0.5-1.5 mg/L) at all

  8. Prospects and limitations of citizen science in invasive species management: A case study with Burmese pythons in Everglades National Park

    Science.gov (United States)

    Falk, Bryan; Snow, Raymond W.; Reed, Robert

    2016-01-01

    Citizen-science programs have the potential to contribute to the management of invasive species, including Python molurus bivittatus (Burmese Python) in Florida. We characterized citizen-science–generated Burmese Python information from Everglades National Park (ENP) to explore how citizen science may be useful in this effort. As an initial step, we compiled and summarized records of Burmese Python observations and removals collected by both professional and citizen scientists in ENP during 2000–2014 and found many patterns of possible significance, including changes in annual observations and in demographic composition after a cold event. These patterns are difficult to confidently interpret because the records lack search-effort information, however, and differences among years may result from differences in search effort. We began collecting search-effort information in 2014 by leveraging an ongoing citizen-science program in ENP. Program participation was generally low, with most authorized participants in 2014 not searching for the snakes at all. We discuss the possible explanations for low participation, especially how the low likelihood of observing pythons weakens incentives to search. The monthly rate of Burmese Python observations for 2014 averaged ~1 observation for every 8 h of searching, but during several months, the rate was 1 python per >40 h of searching. These low observation-rates are a natural outcome of the snakes’ low detectability—few Burmese Pythons are likely to be observed even if many are present. The general inaccessibility of the southern Florida landscape also severely limits the effectiveness of using visual searches to find and remove pythons for the purposes of population control. Instead, and despite the difficulties in incentivizing voluntary participation, the value of citizen-science efforts in the management of the Burmese Python population is in collecting search-effort information.

  9. Coastal Morphology and Coastal Protection

    NARCIS (Netherlands)

    Van de Graaff, J.

    2009-01-01

    Lecture notes ct5309. Tides, currents and water; coastal problems; sediment transport processes; coastal transport modes; longshore transport; cross-shore transport; fundamentals of mud; channels and trenches; coastal protection; application of structures; application of nourishments.

  10. Intensified coastal development behind nourished beaches

    Science.gov (United States)

    Armstrong, Scott; Lazarus, Eli; Limber, Patrick; Goldstein, Evan; Thorpe, Curtis; Ballinger, Rhoda

    2016-04-01

    Population density, housing development, and property values in coastal counties along the U.S. Atlantic and Gulf Coasts continue to rise despite increasing hazard from storm impacts. Since the 1970s, beach nourishment, which involves importing sand to deliberately widen an eroding beach, has been the main strategy in the U.S. for protecting coastal properties from erosion and flooding hazards. Paradoxically, investment in hazard protection may intensify development. Here, we examine the housing stock of all existing shorefront single-family homes in Florida - a microcosm of U.S. coastal hazards and development - to quantitatively compare development in nourishing and non-nourishing towns. We find that nourishing towns now account for more than half of Florida's coastline, and that houses in nourishing towns are larger and more numerous. Even as the mean size of single-family homes nationwide has grown steadily since 1970, Florida's shorefront stock has exceeded the national average by 34%, and in nourishing towns by 45%. This emergent disparity between nourishing and non-nourishing towns in Florida demonstrates a pattern of intensifying coastal risk, and is likely representative of a dominant trend in coastal development more generally. These data lend empirical support to the hypothesis that US coastal development and hazard mitigation through beach nourishment have become dynamically coupled.

  11. Air/water exchange of mercury in the Everglades I: the behavior of dissolved gaseous mercury in the Everglades Nutrient Removal Project

    Science.gov (United States)

    Zhang; Lindberg

    2000-10-02

    From 1996 to 1998 we determined dissolved gaseous mercury (DGM) in waters of the Everglades Nutrient Removal Project (ENR), a constructed wetlands. The concentrations of DGM measured in these waters (mean 7.3 +/- 9.5 pg l(-1)) are among the lowest reported in the literature, and suggest a system often near or slightly above equilibrium with Hg in ambient air. DGM exhibited both seasonal and diel trends, peaking at midday and during the summer. A simple box budget model of DGM in waters of the Everglades was developed using an interactive spreadsheet based on a mass balance among light-induced reduction of HgII (production of DGM), Hg0 oxidation (removal), and Hg0 evasion in a box (water column) consisting of a surface region with sunlight available and a lower dark region. The modeling results suggest high sensitivity of hourly DGM concentrations to DGM production rates and initial DGM levels. The sensitivity to Hg oxidation is lower than the sensitivity to DGM production. The model performance demonstrates successful simulations of a variety of DGM trends in the Everglades. In particular, it clearly demonstrates how it is possible to measure comparable rates of evasion over several Everglades sites with different DGM concentrations.

  12. Artificial reef evaluation capabilities of Florida counties

    OpenAIRE

    Halusky, Joseph G.; Antonini, Gustavo A.; Seaman, William

    1993-01-01

    Florida's coastal county artificial reef sampling and data management programs are surveyed in this report. The survey describes the county level capability for artificial reef documentation and performance assessment based on their needs, interests, organizational structure and "in-situ" data collection and data management techniques. The. primary purpose of this study is to describe what staffing, training, techniques, organizational procedures and equipment are used by the c...

  13. Spatial and Temporal Variability in Biogenic Gas Accumulation and Release in The Greater Everglades at Multiple Scales of Measurement

    Science.gov (United States)

    McClellan, M. D.; Cornett, C.; Schaffer, L.; Comas, X.

    2017-12-01

    Wetlands play a critical role in the carbon (C) cycle by producing and releasing significant amounts of greenhouse biogenic gasses (CO2, CH4) into the atmosphere. Wetlands in tropical and subtropical climates (such as the Florida Everglades) have become of great interest in the past two decades as they account for more than 20% of the global peatland C stock and are located in climates that favor year-round C emissions. Despite the increase in research involving C emission from these types of wetlands, the spatial and temporal variability involving C production, accumulation and release is still highly uncertain, and is the focus of this research at multiple scales of measurement (i.e. lab, field and landscape). Spatial variability in biogenic gas content, build up and release, at both the lab and field scales, was estimated using a series of ground penetrating radar (GPR) surveys constrained with gas traps fitted with time-lapse cameras. Variability in gas content was estimated at the sub-meter scale (lab scale) within two extracted monoliths from different wetland ecosystems at the Disney wilderness Preserve (DWP) and the Blue Cypress Preserve (BCP) using high frequency GPR (1.2 GHz) transects across the monoliths. At the field scale (> 10m) changes in biogenic gas content were estimated using 160 MHz GPR surveys collected within 4 different emergent wetlands at the DWP. Additionally, biogenic gas content from the extracted monoliths was used to developed a landscape comparison of C accumulation and emissions for each different wetland ecosystem. Changes in gas content over time were estimated at the lab scale at high temporal resolution (i.e. sub-hourly) in monoliths from the BCP and Water Conservation Area 1-A. An autonomous rail system was constructed to estimate biogenic gas content variability within the wetland soil matrix using a series of continuous, uninterrupted 1.2 GHz GPR transects along the samples. Measurements were again constrained with an array

  14. Catalog of microscopic organisms of the Everglades, Part 1—The cyanobacteria

    Science.gov (United States)

    Rosen, Barry H.; Mareš, Jan

    2016-07-27

    The microscopic organisms of the Everglades include numerous prokaryotic organisms, including the eubacteria, such as the cyanobacteria and non-photosynthetic bacteria, as well as several eukaryotic algae and protozoa that form the base of the food web. This report is part 1 in a series of reports that describe microscopic organisms encountered during the examination of several hundred samples collected in the southern Everglades. Part 1 describes the cyanobacteria and includes a suite of images and the most current taxonomic treatment of each taxon. The majority of the images are of live organisms, allowing their true color to be represented. A number of potential new species are illustrated; however, corroborating evidence from a genetic analysis of the morphological characteristics is needed to confirm these designations as new species. Part 1 also includes images of eubacteria that resemble cyanobacteria. Additional parts of the report on microscopic organisms of the Everglades are currently underway, such as the green algae and diatoms. The report also serves as the basis for a taxonomic image database that will provide a digital record of the Everglades microscopic flora and fauna. It is anticipated that these images will facilitate current and future ecological studies on the Everglades, such as understanding food-web dynamics, sediment formation and accumulation, the effects of nutrients and flow, and climate change.

  15. Environmental Sensitivity Index (ESI) Atlas: West Florida, maps and geographic information systems data (NODC Accession 0006249)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) maps in Portable Document Format (.PDF) for the shoreline of West Florida (to encompass the coastal...

  16. Integrated Coral Observing Network (ICON) - Port Everglades (PVGF1 - Port Everglades, Florida) Meteorological and Oceanographic Observations from 01 Jan to 31 Dec 2012 (NODC Accession 0117727)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  17. Analysis and simulation of propagule dispersal and salinity intrusion from storm surge on the movement of a marsh–mangrove ecotone in South Florida

    Science.gov (United States)

    Jiang, Jiang; DeAngelis, Donald L.; Anderson, Gordon H.; Smith, Thomas J.

    2014-01-01

    Coastal mangrove–freshwater marsh ecotones of the Everglades represent transitions between marine salt-tolerant halophytic and freshwater salt-intolerant glycophytic communities. It is hypothesized here that a self-reinforcing feedback, termed a “vegetation switch,” between vegetation and soil salinity, helps maintain the sharp mangrove–marsh ecotone. A general theoretical implication of the switch mechanism is that the ecotone will be stable to small disturbances but vulnerable to rapid regime shifts from large disturbances, such as storm surges, which could cause large spatial displacements of the ecotone. We develop a simulation model to describe the vegetation switch mechanism. The model couples vegetation dynamics and hydrologic processes. The key factors in the model are the amount of salt-water intrusion into the freshwater wetland and the passive transport of mangrove (e.g., Rhizophora mangle) viviparous seeds or propagules. Results from the model simulations indicate that a regime shift from freshwater marsh to mangroves is sensitive to the duration of soil salinization through storm surge overwash and to the density of mangrove propagules or seedlings transported into the marsh. We parameterized our model with empirical hydrologic data collected from the period 2000–2010 at one mangrove–marsh ecotone location in southwestern Florida to forecast possible long-term effects of Hurricane Wilma (24 October 2005). The model indicated that the effects of that storm surge were too weak to trigger a regime shift at the sites we studied, 50 km south of the Hurricane Wilma eyewall, but simulations with more severe artificial disturbances were capable of causing substantial regime shifts.

  18. Forecasting in an integrated surface water-ground water system: The Big Cypress Basin, South Florida

    Science.gov (United States)

    Butts, M. B.; Feng, K.; Klinting, A.; Stewart, K.; Nath, A.; Manning, P.; Hazlett, T.; Jacobsen, T.

    2009-04-01

    The South Florida Water Management District (SFWMD) manages and protects the state's water resources on behalf of 7.5 million South Floridians and is the lead agency in restoring America's Everglades - the largest environmental restoration project in US history. Many of the projects to restore and protect the Everglades ecosystem are part of the Comprehensive Everglades Restoration Plan (CERP). The region has a unique hydrological regime, with close connection between surface water and groundwater, and a complex managed drainage network with many structures. Added to the physical complexity are the conflicting needs of the ecosystem for protection and restoration, versus the substantial urban development with the accompanying water supply, water quality and flood control issues. In this paper a novel forecasting and real-time modelling system is presented for the Big Cypress Basin. The Big Cypress Basin includes 272 km of primary canals and 46 water control structures throughout the area that provide limited levels of flood protection, as well as water supply and environmental quality management. This system is linked to the South Florida Water Management District's extensive real-time (SCADA) data monitoring and collection system. Novel aspects of this system include the use of a fully distributed and integrated modeling approach and a new filter-based updating approach for accurately forecasting river levels. Because of the interaction between surface- and groundwater a fully integrated forecast modeling approach is required. Indeed, results for the Tropical Storm Fay in 2008, the groundwater levels show an extremely rapid response to heavy rainfall. Analysis of this storm also shows that updating levels in the river system can have a direct impact on groundwater levels.

  19. Evolutionary and functional mitogenomics associated with the genetic restoration of the Florida panther

    Science.gov (United States)

    Ochoa, Alexander; Onorato, David P.; Fitak, Robert R.; Roelke-Parker, Melody; Culver, Melanie

    2017-01-01

    Florida panthers are endangered pumas that currently persist in reduced patches of habitat in South Florida, USA. We performed mitogenome reference-based assemblies for most parental lines of the admixed Florida panthers that resulted from the introduction of female Texas pumas into South Florida in 1995. With the addition of 2 puma mitogenomes, we characterized 174 single nucleotide polymorphisms (SNPs) across 12 individuals. We defined 5 haplotypes (Pco1–Pco5), one of which (Pco1) had a geographic origin exclusive to Costa Rica and Panama and was possibly introduced into the Everglades National Park, Florida, prior to 1995. Haplotype Pco2 was native to Florida. Haplotypes Pco3 and Pco4 were exclusive to Texas, whereas haplotype Pco5 had an undetermined geographic origin. Phylogenetic inference suggests that haplotypes Pco1–Pco4 diverged ~202000 (95% HPDI = 83000–345000) years ago and that haplotypes Pco2–Pco4 diverged ~61000 (95% HPDI = 9000–127000) years ago. These results are congruent with a south-to-north continental expansion and with a recent North American colonization by pumas. Furthermore, pumas may have migrated from Texas to Florida no earlier than ~44000 (95% HPDI = 2000–98000) years ago. Synonymous mutations presented a greater mean substitution rate than other mitochondrial functional regions: nonsynonymous mutations, tRNAs, rRNAs, and control region. Similarly, all protein-coding genes were under predominant negative selection constraints. We directly and indirectly assessed the presence of potential deleterious SNPs in the ND2 and ND5 genes in Florida panthers prior to and as a consequence of the introduction of Texas pumas. Screenings for such variants are recommended in extant Florida panthers.

  20. Water Budget Model for a Remnant of the Historic Northern Everglades

    Science.gov (United States)

    Arceneaux, J. C.; Meselhe, E. A.; Habib, E.; Waldon, M. G.

    2006-12-01

    The Arthur R. Marshall Loxahatchee National Wildlife Refuge overlays an area termed Water Conservation Area 1 (WCA-1, a 143,000 acre (58,000 ha) freshwater wetland. It is a remnant of the northern Everglades in Palm Beach County, Florida, USA. Sheetflow that naturally would flow across the Refuge wetlands was disrupted in the 1950s and early 1960s by construction of stormwater pumps, and levees with associated borrow canals which hydraulically isolated the Refuge from its watershed. The U.S. Fish and Wildlife Services (USFWS) concludes that changes in the water quantity, timing, and quality have caused negative impacts to the Refuge ecosystem. It is a top priority of the Refuge to ensure appropriate management that will produce maximum benefits for fish and wildlife, while meeting flood control and water supply needs. Models can improve our understanding and support improvement in these management decisions. The development of a water budget for the Loxahatchee Refuge will provide one useful modeling tool in support of Refuge water management decisions. The water budget model reported here was developed as a double- box (2-compartment) model with a daily time step that predicts temporal variations of water level in the Refuge rim canal and interior marsh based on observed inflows, outflows, precipitation, and evapotranspiration. The water budget model was implemented using Microsoft EXCEL. The model calibration period was from January 1, 1995 to December 31, 1999; the validation period extended from January 1, 2000 to December 31, 2004. Statistical analyses demonstrate the utility of this simple water budget model to predict the temporal variation of water levels in both the Refuge marsh and rim canal. The Refuge water budget model is currently being applied to evaluate various water management scenarios for the Refuge. Preliminary results modeling the mass balance of water quality constituents, including chloride, total phosphorus are encouraging. Success of this

  1. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park

    Science.gov (United States)

    Muñoz-Carpena, R.; Ritter, A.; Li, Y. C.

    2005-11-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one of the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the water quality interactions between the shallow aquifer and surface water is a key component in meeting current environmental regulations and fine-tuning ENP wetland restoration while still maintaining flood protection for the adjacent developed areas. Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary time-series, was applied to study fluctuations in groundwater quality in the area. More than two years of hydrological and water quality time series (rainfall; water table depth; and soil, ground and surface water concentrations of N-NO 3-, N-NH 4+, P-PO 43-, Total P, F -and Cl -) from a small agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability required for determining the concentration of each chemical in the 16 wells was greatly reduced by including in the analysis some of the observed time series as explanatory variables (rainfall, water table depth, and soil and canal water chemical concentration). DFA results showed that groundwater concentration of three of the agrochemical species studied (N-NO 3-, P-PO 43-and Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In the case of N-NH 4+, in addition to leaching, groundwater concentration is governed by lateral exchange with canals. F -and Cl - are mainly affected by periods of dilution by rainfall recharge, and by exchange with the canals. The unstructured nature of the common trends found suggests that these are related to the complex spatially and temporally varying

  2. Fine grained compositional analysis of Port Everglades Inlet microbiome using high throughput DNA sequencing.

    Science.gov (United States)

    O'Connell, Lauren; Gao, Song; McCorquodale, Donald; Fleisher, Jay; Lopez, Jose V

    2018-01-01

    Similar to natural rivers, manmade inlets connect inland runoff to the ocean. Port Everglades Inlet (PEI) is a busy cargo and cruise ship port in South Florida, which can act as a source of pollution to surrounding beaches and offshore coral reefs. Understanding the composition and fluctuations of bacterioplankton communities ("microbiomes") in major port inlets is important due to potential impacts on surrounding environments. We hypothesize seasonal microbial fluctuations, which were profiled by high throughput 16S rRNA amplicon sequencing and analysis. Surface water samples were collected every week for one year. A total of four samples per month, two from each sampling location, were used for statistical analysis creating a high sampling frequency and finer sampling scale than previous inlet microbiome studies. We observed significant differences in community alpha diversity between months and seasons. Analysis of composition of microbiomes (ANCOM) tests were run in QIIME 2 at genus level taxonomic classification to determine which genera were differentially abundant between seasons and months. Beta diversity results yielded significant differences in PEI community composition in regard to month, season, water temperature, and salinity. Analysis of potentially pathogenic genera showed presence of Staphylococcus and Streptococcus . However, statistical analysis indicated that these organisms were not present in significantly high abundances throughout the year or between seasons. Significant differences in alpha diversity were observed when comparing microbial communities with respect to time. This observation stems from the high community evenness and low community richness in August. This indicates that only a few organisms dominated the community during this month. August had lower than average rainfall levels for a wet season, which may have contributed to less runoff, and fewer bacterial groups introduced into the port surface waters. Bacterioplankton beta

  3. Fine grained compositional analysis of Port Everglades Inlet microbiome using high throughput DNA sequencing

    Directory of Open Access Journals (Sweden)

    Lauren O’Connell

    2018-05-01

    Full Text Available Background Similar to natural rivers, manmade inlets connect inland runoff to the ocean. Port Everglades Inlet (PEI is a busy cargo and cruise ship port in South Florida, which can act as a source of pollution to surrounding beaches and offshore coral reefs. Understanding the composition and fluctuations of bacterioplankton communities (“microbiomes” in major port inlets is important due to potential impacts on surrounding environments. We hypothesize seasonal microbial fluctuations, which were profiled by high throughput 16S rRNA amplicon sequencing and analysis. Methods & Results Surface water samples were collected every week for one year. A total of four samples per month, two from each sampling location, were used for statistical analysis creating a high sampling frequency and finer sampling scale than previous inlet microbiome studies. We observed significant differences in community alpha diversity between months and seasons. Analysis of composition of microbiomes (ANCOM tests were run in QIIME 2 at genus level taxonomic classification to determine which genera were differentially abundant between seasons and months. Beta diversity results yielded significant differences in PEI community composition in regard to month, season, water temperature, and salinity. Analysis of potentially pathogenic genera showed presence of Staphylococcus and Streptococcus. However, statistical analysis indicated that these organisms were not present in significantly high abundances throughout the year or between seasons. Discussion Significant differences in alpha diversity were observed when comparing microbial communities with respect to time. This observation stems from the high community evenness and low community richness in August. This indicates that only a few organisms dominated the community during this month. August had lower than average rainfall levels for a wet season, which may have contributed to less runoff, and fewer bacterial groups

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in the Coastal Waters of Florida, Florida Keys National Marine Sanctuary and others from 2012-07-21 to 2012-08-13 (NCEI Accession 0157303)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157303 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the Coastal Waters of...

  5. Brumation of introduced Black and White Tegus, Tupinambis merianae (Squamata: Teiidae), in southern Florida

    Science.gov (United States)

    McEachern, Michelle; Yackel Adams, Amy A.; Klug, Page E.; Fitzgerald, Lee A.; Reed, Robert N.

    2015-01-01

    An established population of Tupinambis merianae (Black and White Tegu) in southeastern Florida threatens the Everglades ecosystem. Understanding the behavioral ecology of Black and White Tegus could aid in management and control plans. Black and White Tegus are seasonally active and brumate during the winter in their native range, but brumation behavior is largely unstudied in either the native or the invasive range. We describe the first observations of Black and White Tegu brumation in southeastern Florida after monitoring 5 free-ranging, adult male Black and White Tegus through an inactive season using radiotelemetry and automated cameras. Duration of brumation averaged 137 days, beginning in September and ending by February. One of the 5 Black and White Tegus emerged to bask regularly during brumation, which to our knowledge represents the first documented instance of a free-ranging Black and White Tegu basking during brumation. These preliminary findings provide a basis for future research of brumation behavior.

  6. 15 CFR Appendix I to Subpart P of... - Florida Keys National Marine Sanctuary Boundary Coordinates

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Florida Keys National Marine Sanctuary... OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT NATIONAL MARINE SANCTUARY PROGRAM REGULATIONS Florida Keys National Marine Sanctuary Pt. 922, Subpt. P, App. I Appendix I to Subpart P of Part 922...

  7. Role of a naturally varying flow regime in Everglades restoration

    Science.gov (United States)

    Harvey, Judson; Wetzel, Paul R.; Lodge, Thomas E.; Engel, Victor C.; Ross, Michael S.

    2017-01-01

    The Everglades is a low-gradient floodplain predominantly on organic soil that undergoes seasonally pulsing sheetflow through a network of deepwater sloughs separated by slightly higher elevation ridges. The seasonally pulsing flow permitted the coexistence of ridge and slough vegetation, including the persistence of productive, well-connected sloughs that seasonally concentrated prey and supported wading bird nesting success. Here we review factors contributing to the origin and to degradation of the ridge and slough ecosystem in an attempt to answer “How much flow is needed to restore functionality”? A key restoration objective is to increase sheetflow lost during the past century to reestablish interactions between flow, water depth, vegetation production and decomposition, and transport of flocculent organic sediment that build and maintain ridge and slough distinctions. Our review finds broad agreement that perturbations of water level depth and its fluctuations were primary in the degradation of landscape functions, with critical contributions from perturbed water quality, and flow velocity and direction. Whereas water levels are expected to be improved on average across a range of restoration scenarios that replace between 79 and 91% of predrainage flows, the diminished microtopography substantially decreases the probability of timely improvements in some areas whereas others that retain microtopographic differences are poised for restoration benefits. New advances in predicting restoration outcomes are coming from biophysical modeling of ridge–slough dynamics, system-wide measurements of landscape functionality, and large-scale flow restoration experiments, including active management techniques to kick-start slough regeneration.

  8. Remote Sensing Applications to Water Quality Management in Florida

    Science.gov (United States)

    Lehrter, J. C.; Schaeffer, B. A.; Hagy, J.; Spiering, B.; Barnes, B.; Hu, C.; Le, C.; McEachron, L.; Underwood, L. W.; Ellis, C.; Fisher, B.

    2013-12-01

    Optical datasets from estuarine and coastal systems are increasingly available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data for local and regional coastal water quality management. Our presentation will highlight two recent applications of optical data and remote sensing to water quality decision-making in coastal regions of the state of Florida; (1) informing the development of estuarine and coastal nutrient criteria for the state of Florida and (2) informing the rezoning of the Florida Keys National Marine Sanctuary. These efforts involved building up the underlying science to demonstrate the applicability of satellite data as well as an outreach component to educate decision-makers about the use, utility, and uncertainties of remote sensing data products. Scientific developments included testing existing algorithms and generating new algorithms for water clarity and chlorophylla in case II (CDOM or turbidity dominated) estuarine and coastal waters and demonstrating the accuracy of remote sensing data products in comparison to traditional field based measurements. Including members from decision-making organizations on the research team and interacting with decision-makers early and often in the process were key factors for the success of the outreach efforts and the eventual adoption of satellite data into the data records and analyses used in decision-making. Florida coastal water bodies (black boxes) for which remote sensing imagery were applied to derive numeric nutrient criteria and in situ observations (black dots) used to validate imagery. Florida ocean color applied to development of numeric nutrient criteria

  9. Multi-tissue stable isotope analysis and acoustic telemetry reveal seasonal variability in the trophic interactions of juvenile bull sharks in a coastal estuary.

    Science.gov (United States)

    Matich, Philip; Heithaus, Michael R

    2014-01-01

    Understanding how natural and anthropogenic drivers affect extant food webs is critical to predicting the impacts of climate change and habitat alterations on ecosystem dynamics. In the Florida Everglades, seasonal reductions in freshwater flow and precipitation lead to annual migrations of aquatic taxa from marsh habitats to deep-water refugia in estuaries. The timing and intensity of freshwater reductions, however, will be modified by ongoing ecosystem restoration and predicted climate change. Understanding the importance of seasonally pulsed resources to predators is critical to predicting the impacts of management and climate change on their populations. As with many large predators, however, it is difficult to determine to what extent predators like bull sharks (Carcharhinus leucas) in the coastal Everglades make use of prey pulses currently. We used passive acoustic telemetry to determine whether shark movements responded to the pulse of marsh prey. To investigate the possibility that sharks fed on marsh prey, we modelled the predicted dynamics of stable isotope values in bull shark blood and plasma under different assumptions of temporal variability in shark diets and physiological dynamics of tissue turnover and isotopic discrimination. Bull sharks increased their use of upstream channels during the late dry season, and although our previous work shows long-term specialization in the diets of sharks, stable isotope values suggested that some individuals adjusted their diets to take advantage of prey entering the system from the marsh, and as such this may be an important resource for the nursery. Restoration efforts are predicted to increase hydroperiods and marsh water levels, likely shifting the timing, duration and intensity of prey pulses, which could have negative consequences for the bull shark population and/or induce shifts in behaviour. Understanding the factors influencing the propensity to specialize or adopt more flexible trophic interactions

  10. Coastal Engineering

    NARCIS (Netherlands)

    Van der Velden, E.T.J.M.

    1989-01-01

    Introduction, waves, sediment transport, littoral transport, lonshore sediment transport, onshore-offshore sediment transport, coastal changes, dune erosion and storm surges, sedimentation in channels and trenches, coastal engineering in practice.

  11. Archive of bathymetry data collected at Cape Canaveral, Florida, 2014

    Science.gov (United States)

    Hansen, Mark E.; Plant, Nathaniel G.; Thompson, David M.; Troche, Rodolfo J.; Kranenburg, Christine J.; Klipp, Emily S.

    2015-10-07

    Remotely sensed, geographically referenced elevation measurements of the sea floor, acquired by boat- and aircraft-based survey systems, were produced by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida, for the area at Cape Canaveral.

  12. Estimating mangrove in Florida: trials monitoring rare ecosystems

    Science.gov (United States)

    Mark J. Brown

    2015-01-01

    Mangrove species are keystone components in coastal ecosystems and are the interface between forest land and sea. Yet, estimates of their area have varied widely. Forest Inventory and Analysis (FIA) data from ground-based sample plots provide one estimate of the resource. Initial FIA estimates of the mangrove resource in Florida varied dramatically from those compiled...

  13. Florida sinkhole index

    OpenAIRE

    Spencer, Steven; Lane, Ed.

    1995-01-01

    The following data were compiled from the Florida Sinkhole Research Institute data base. That database, which contains approximately 1900 sinkholes, is available from the Florida Geological Survey upon request. The data are arranged alphabetically by county. The first two digits of the identification number represents the county. These numbers correspond to the Florida Department of Transportation county numbering system. Following the county number are three numbers which represe...

  14. Fate of phosphorus in Everglades agricultural soils after fertilizer application

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Alan L. [Everglades Research and Education Center, Belle Glade, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States); McCray, J. Mabry [Univ. of Florida, Gainesville, FL (United States)

    2012-07-01

    Land use changes, agricultural drainage and conventional cultivation of winter vegetables and sugarcane cropping in the Everglades Agricultural Area (EAA) may alter soil conditions and organic matter decomposition and ultimately influence the fate of phosphorus (P). Theses agricultural practices promote soil subsidence, reduce the soil depth to bedrock limestone and increase the potential for incorporation of limestone into the root zone of crops. The incorporation of limestone into surface soil has significantly increased soil pH which in turns causes greater fixation of P fertilizer into unavailable forms for plant growth. Additional P fertilization is thus required to satisfy crop nutrient requirements in plant-available P form. It is important to determine how the mixing of bedrock limestone into soils influences the behavior of P fertilizers after their application. To accomplish this task, P fertilizers were applied to (1) typical cultivated soils and to (2) soils that have never been fertilized or extensively tilled. The changes in P concentrations over time were then compared between the two land uses, with differences being attributable to the impacts of cultivation practices. The P distribution in soil varied between land uses, with sugarcane having more P in inorganic pools while the uncultivated soil had more in organic pools. Water-soluble P concentrations in soil increased with increasing fertilizer application rates for all sampling times and both land uses. However, concentrations in uncultivated soil increased proportionally to P-fertilized soil due to organic P mineralization. At all sampling times, plant-available P concentrations remained higher for uncultivated than sugarcane soil. Lower P concentrations for sugarcane were related to adsorption by mineral components (e.g. limestone). Cultivated soils have higher calcium concentrations resulting from incorporation of bedrock limestone into soil by tillage, which increased pH and fostered

  15. Florida Energy Assurance Plan

    Science.gov (United States)

    Turner, Niescja E.; Murtagh, William; Guthrie, Kevin; Nykyri, Katariina; Radasky, William A.; Senkowicz, Eric

    2012-08-01

    This spring, Florida held the nation's first statewide emergency preparedness training and exercises geared specifically to the aftermath of severe geomagnetic events. Funded by the State of Florida Division of Emergency Management (FDEM) via a Department of Energy grant and held in collaboration with Watch House International, Inquesta Corporation, and the Florida Institute of Technology, the 17-19 April 2012 workshop had 99 on-site attendees in an oceanfront hotel in Melbourne, Florida, as well as 16 over live Web streaming. The workshop was the capstone to a three-month season of 21 regional space weather training sessions and workshops serving 386 attendees in total.

  16. 77 FR 21448 - Security Zone; 2012 Fleet Week, Port Everglades, Fort Lauderdale, FL

    Science.gov (United States)

    2012-04-10

    ... Environmental Health Risks and Safety Risks. This rule is not an economically significant rule and does not create an environmental risk to health or risk to safety that may disproportionately affect children...-AA87 Security Zone; 2012 Fleet Week, Port Everglades, Fort Lauderdale, FL AGENCY: Coast Guard, DHS...

  17. Science Support for Climate Change Adaptation in South Florida

    Science.gov (United States)

    Early, Laura M.; Harvey, Rebecca G.

    2010-01-01

    Earth's changing climate is among the foremost conservation challenges of the 21st century, threatening to permanently alter entire ecosystems and contribute to extinctions of species. Lying only a few feet above sea level and already suffering effects of anthropogenic stressors, south Florida's ecosystems are particularly vulnerable to negative impacts of climate change. Recent research accounting for the gravitational effects of melting ice sheets predicts that sea level rise on U.S. coastlines will be much higher than global averages (Gomez et al. 2010), and the Miami-Dade Climate Change Advisory Task Force predicts that local sea level rise will be at least 3 to 5 ft. (0.9 m to 1.5 m) by 2100 (MDCCATF 2008). In a 5 ft. scenario, up to 873 additional square miles of the Everglades would be inundated with saltwater (see maps below). Accelerated sea level rise is likely to be accompanied by increasing temperatures (IPCC 2007a) and more intense tropical storms and hurricanes (Webster et al. 2005). In addition, changes in amount, timing, and distribution of rainfall in south Florida may lead to more severe droughts and floods (SFWMD 2009).

  18. Discharge competence and pattern formation in peatlands: a meta-ecosystem model of the Everglades ridge-slough landscape.

    Directory of Open Access Journals (Sweden)

    James B Heffernan

    Full Text Available Regular landscape patterning arises from spatially-dependent feedbacks, and can undergo catastrophic loss in response to changing landscape drivers. The central Everglades (Florida, USA historically exhibited regular, linear, flow-parallel orientation of high-elevation sawgrass ridges and low-elevation sloughs that has degraded due to hydrologic modification. In this study, we use a meta-ecosystem approach to model a mechanism for the establishment, persistence, and loss of this landscape. The discharge competence (or self-organizing canal hypothesis assumes non-linear relationships between peat accretion and water depth, and describes flow-dependent feedbacks of microtopography on water depth. Closed-form model solutions demonstrate that 1 this mechanism can produce spontaneous divergence of local elevation; 2 divergent and homogenous states can exhibit global bi-stability; and 3 feedbacks that produce divergence act anisotropically. Thus, discharge competence and non-linear peat accretion dynamics may explain the establishment, persistence, and loss of landscape pattern, even in the absence of other spatial feedbacks. Our model provides specific, testable predictions that may allow discrimination between the self-organizing canal hypotheses and competing explanations. The potential for global bi-stability suggested by our model suggests that hydrologic restoration may not re-initiate spontaneous pattern establishment, particularly where distinct soil elevation modes have been lost. As a result, we recommend that management efforts should prioritize maintenance of historic hydroperiods in areas of conserved pattern over restoration of hydrologic regimes in degraded regions. This study illustrates the value of simple meta-ecosystem models for investigation of spatial processes.

  19. Dynamic factor modeling of ground and surface water levels in an agricultural area adjacent to Everglades National Park

    Science.gov (United States)

    Ritter, A.; Muñoz-Carpena, R.

    2006-02-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the interaction between the shallow aquifer and surface water is a key component for fine-tuning the process. The Frog Pond is an intensively instrumented agricultural 2023 ha area adjacent to ENP. The interactions among 21 multivariate daily time series (ground and surface water elevations, rainfall and evapotranspiration) available from this area were studied by means of dynamic factor analysis, a novel technique in the field of hydrology. This method is designed to determine latent or background effects governing variability or fluctuations in non-stationary time series. Water levels in 16 wells and two drainage ditch locations inside the area were selected as response variables, and canal levels and net recharge as explanatory variables. Elevations in the two canals delimiting the Frog Pond area were found to be the main factors explaining the response variables. This influence of canal elevations on water levels inside the area was complementary and inversely related to the distance between the observation point and each canal. Rainfall events do not affect daily water levels significantly but are responsible for instantaneous or localized groundwater responses that in some cases can be directly associated with the risk of flooding. This close coupling between surface and groundwater levels, that corroborates that found by other authors using different methods, could hinder on-going environmental restoration efforts in the area by bypassing the function of wetlands and other surface features. An empirical model with a reduced set of parameters was successfully developed and validated in the area by interpolating the results from the dynamic factor analysis across the spatial domain (coefficient of efficiency across the domain: 0.66-0.99). Although

  20. Influence of particulates on phosphorus loading exported from farm drainage during a storm event in the Everglades Agricultural Area

    Science.gov (United States)

    Bhadha, J. H.; Lang, T. A.; Daroub, S. H.

    2015-12-01

    The purpose of this study was to evaluate the influence of particulates on P loading captured during a single storm event. The Everglades Agricultural Area of Florida comprises 280,000 hectares of organic soil farmland artificially drained by ditches, canals and pumps. Phosphorus (P)-enriched suspended particulates in canals are susceptible to transport and can contribute significantly to the overall P loads in drainage water. A settling tank experiment was conducted to capture particulates during tropical storm Isaac in 2012 from three farms approximately 2.4 to 3.6 km2 in size. Farm canal discharge water was collected in a series of two 200 liter settling tanks over a seven-day drainage period, during tropical storm Isaac. Water from the settling tanks was siphoned through Imhoff settling cones, where the particulates were allowed to settle and collected for P-fractionation analyses, and compared to intact sediment cores collected from the bottom of the canals. The discharged particulates contained higher organic matter content (OM), total P, and labile P fractions compared to the canal bottom sediments. Based on the equilibrium P concentrations, surface sediments behave as a source of P to the water column. A seven-day continuous drainage event exported 4.7 to 11.1 metric tons of suspended solids per farm, corresponding to 32 to 63 kg of particulate P being lost to downstream ecosystems. Drainage associated to a single seven-day storm event exported up to 61% of the total annual farm P load. It is evident from this study that short-term, high-intensity storm events can skew annual P loads due to the export of significantly higher particulate matter from farm canals. Exported particulates rich in P can provide a supplemental source of nutrients if captured and replenished back into the farmlands, as a sustainable farming practice.

  1. 'Florida Beauty' strawberry

    Science.gov (United States)

    Florida Beauty’ strawberry (Fragaria x ananassa) originated from a 2012 cross made by the Queensland breeding program between Queensland Australia selection 2010-119 (female parent) and ‘Florida Radiance’ (male parent). Selection 2010-119 was chosen as a parent for its excellent fruit shape and fl...

  2. Hydrologic record extension of water-level data in the Everglades Depth Estimation Network (EDEN), 1991-99

    Science.gov (United States)

    Conrads, Paul; Petkewich, Matthew D.; O'Reilly, Andrew M.; Telis, Pamela A.

    2015-01-01

    The real-time Everglades Depth Estimation Network (EDEN) has been established to support a variety of scientific and water management purposes. The expansiveness of the Everglades, limited number of gaging stations, and extreme sensitivity of the ecosystem to small changes in water depth have created a need for accurate water-level and water-depth maps. The EDEN water-surface elevation model uses data from approximately 240 gages in the Everglades to create daily continuous interpolations of the water-surface elevation and water depth for the freshwater portion of the Everglades from 2000 to the present (2014). These maps provide hydrologic data previously unavailable for assessing biological and ecological studies.

  3. Development of a methodology for the assessment of sea level rise impacts on Florida's transportation modes and infrastructure : [summary].

    Science.gov (United States)

    2012-01-01

    In Florida, low elevations can make transportation infrastructure in coastal and low-lying areas potentially vulnerable to sea level rise (SLR). Becuase global SLR forecasts lack precision at local or regional scales, SLR forecasts or scenarios for p...

  4. Environmental Sensitivity Index (ESI) Atlas: East Florida, maps in portable document format, Volume 1, Volume 2 (NODC Accession 0004150)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) maps in Portable Document Format (.PDF) for the shoreline of East Florida (to encompass the coastal...

  5. Organic matter and soil structure in the Everglades Agricultural Area

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Alan L. [Univ. of Florida, Gainesville, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States)

    2013-01-01

    This publication pertains to management of organic soils (Histosols) in the Everglades Agricultural Area (EAA). These former wetland soils are a major resource for efficient agricultural production and are important globally for their high organic matter content. Recognition of global warming has led to considerable interest in soils as a repository for carbon. Soils rich in organic matter essentially sequester or retain carbon in the profile and can contribute directly to keeping that sequestered carbon from entering the atmosphere. Identification and utilization of management practices that minimize the loss of carbon from organic soils to the atmosphere can minimize effects on global warming and increase the longevity of subsiding Histosols for agricultural use. Understanding and predicting how these muck soils will respond to current and changing land uses will help to manage soil carbon. The objectives of this document are to: a. Discuss organic soil oxidation relative to storing or releasing carbon and nitrogen b. Evaluate effects of cultivation (compare structure for sugarcane vs. uncultivated soil) Based upon the findings from the land-use comparison (sugarcane or uncultivated), organic carbon was higher with cultivation in the lower depths. There is considerable potential for minimum tillage and residue management to further enhance carbon sequestration in the sugarcane system. Carbon sequestration is improved and soil subsidence is slowed with sugarcane production, and both of these are positive outcomes. Taking action to increase or maintain carbon sequestration appears to be appropriate but may introduce some risk to farming operations. Additional management methods are needed to reduce this risk. For both the longevity of these organic soils and from a global perspective, slowing subsidence through BMP implementation makes sense. Since these BMPs also have considerable societal benefit, it remains to be seen if society will help to offset a part or all

  6. Three-hundred-year hydrological changes in a subtropical estuary, Rookery Bay (Florida): Human impact versus natural variability

    NARCIS (Netherlands)

    Donders, T.H.; Gorissen, P.M.; Sangiorgi, F.; Cremer, H.; Wagner-Cremer, F.; McGee, V.

    2008-01-01

    The coastal wetland ecosystems in Florida are highly sensitive to changes in freshwater budget, which is driven by regional sea surface temperature, tropical storm activity, and the El Niño-Southern Oscillation (ENSO). Although studying Florida wetlands is pivotal to the understanding of these

  7. Coastal Wetlands Protection Act: Case of Apalachicola-Chattahoochee-Flint (ACF) River

    OpenAIRE

    Latif Gürkan KAYA

    2007-01-01

    Coastal wetlands, being important components of estuarine and coastal systems, stand for all publicly owned lands subject to the ebb and flow of the tide. They are below the watermark of ordinary high tide. The coastal wetlands contain a vital natural resource system. The coastal wetlands resource system, unless impossible, to reconstruct or rehabilitate once adversely affected by human. In the USA, the Apalachicola-Chattahoochee-Flint (ACF) river states (i.e. Georgia, Alabama and Florida) ha...

  8. Coastal Dynamics

    NARCIS (Netherlands)

    Roelvink, J.A.; Steetzel, H.J.; Bliek, A.; Rakhorst, H.D.; Roelse, P.; Bakker, W.T.

    1998-01-01

    This book deals on "Coastal Dynamics", which will be defined in a narrow sense as a mathematical theory, which starts from given equations of motion for the sediment, which leads with the continuity equation and given boundary conditions to a calculated (eventually schematized) coastal topography,

  9. A field test of attractant traps for invasive Burmese pythons (Python molurus bivittatus) in southern Florida

    Science.gov (United States)

    Reed, Robert N.; Hart, Kristen M.; Rodda, Gordon H.; Mazzotti, Frank J.; Snow, Ray W.; Cherkiss, Michael; Rozar, Rondald; Goetz, Scott

    2011-01-01

    Context: Invasive Burmese pythons (Python molurus bivittatus) are established over thousands of square kilometres of southern Florida, USA, and consume a wide range of native vertebrates. Few tools are available to control the python population, and none of the available tools have been validated in the field to assess capture success as a proportion of pythons available to be captured. Aims: Our primary aim was to conduct a trap trial for capturing invasive pythons in an area east of Everglades National Park, where many pythons had been captured in previous years, to assess the efficacy of traps for population control. We also aimed to compare results of visual surveys with trap capture rates, to determine capture rates of non-target species, and to assess capture rates as a proportion of resident pythons in the study area. Methods: We conducted a medium-scale (6053 trap nights) experiment using two types of attractant traps baited with live rats in the Frog Pond area east of Everglades National Park. We also conducted standardised and opportunistic visual surveys in the trapping area. Following the trap trial, the area was disc harrowed to expose pythons and allow calculation of an index of the number of resident pythons. Key results: We captured three pythons and 69 individuals of various rodent, amphibian, and reptile species in traps. Eleven pythons were discovered during disc harrowing operations, as were large numbers of rodents.

  10. Landscape unit based digital elevation model development for the freshwater wetlands within the Arthur C. Marshall Loxahatchee National Wildlife Refuge, Southeastern Florida

    Science.gov (United States)

    Xie, Zhixiao; Liu, Zhongwei; Jones, John W.; Higer, Aaron L.; Telis, Pamela A.

    2011-01-01

    The hydrologic regime is a critical limiting factor in the delicate ecosystem of the greater Everglades freshwater wetlands in south Florida that has been severely altered by management activities in the past several decades. "Getting the water right" is regarded as the key to successful restoration of this unique wetland ecosystem. An essential component to represent and model its hydrologic regime, specifically water depth, is an accurate ground Digital Elevation Model (DEM). The Everglades Depth Estimation Network (EDEN) supplies important hydrologic data, and its products (including a ground DEM) have been well received by scientists and resource managers involved in Everglades restoration. This study improves the EDEN DEMs of the Loxahatchee National Wildlife Refuge, also known as Water Conservation Area 1 (WCA1), by adopting a landscape unit (LU) based interpolation approach. The study first filtered the input elevation data based on newly available vegetation data, and then created a separate geostatistical model (universal kriging) for each LU. The resultant DEMs have encouraging cross-validation and validation results, especially since the validation is based on an independent elevation dataset (derived by subtracting water depth measurements from EDEN water surface elevations). The DEM product of this study will directly benefit hydrologic and ecological studies as well as restoration efforts. The study will also be valuable for a broad range of wetland studies.

  11. Long-term hydrologic effects on marsh plant community structure in the southern Everglades

    Science.gov (United States)

    Busch, David E.; Loftus, W.F.; Bass, O.L.

    1998-01-01

    Although large-scale transformation of Everglades landscapes has occurred during the past century, the patterns of association among hydrologic factors and southern Everglades freshwater marsh vegetation have not been well-defined. We used a 10-year data base on the aquatic biota of Shark Slough to classify vegetation and describe plant community change in intermediate- to long-hydroperiod Everglades marshes. Study area marsh vegetation was quantitatively grouped into associations dominated by 1) Cladium jamaicense, 2) a group of emergents including Eleocharis cellulosa, Sagittaria lancifolia, and Rhyncospora tracyi, 3) taxa associated with algal mats (Utricularia spp. and Bacopa caroliniana), and 4) the grasses Panicum hemitomon and Paspalidium geminatum. During the decade evaluated, the range of water depths that characterized our study sites approached both extremes depicted in the 40-year hydrologic record for the region. Water depths were near the long-term average during the mid-1980s, declined sharply during a late 1980s drought, and underwent a prolonged increase from 1991 through 1995. Overall macrophyte cover varied inversely with water depth, while the response of periphyton was more complex. An ordination analysis, based on plant species abundance, revealed that study area vegetation structure was associated with hydrologic patterns. Marsh plant community structure showed evidence of cyclic interannual variation corresponding to hydrologic change over the decade evaluated. Lower water depths, the occurrence of marl substrates, and high periphyton cover were correlated. These factors contributed to reduced macrophyte cover in portions of the study area from which water had been diverted.

  12. Accounting for the Impact of Management Scenarios on Typha Domingensis (Cattail) in an Everglades Wetland.

    Science.gov (United States)

    Lagerwall, Gareth; Kiker, Gregory; Muñoz-Carpena, Rafael; Wang, Naiming

    2017-01-01

    The coupled regional simulation model, and the transport and reaction simulation engine were recently adapted to simulate ecology, specifically Typha domingensis (Cattail) dynamics in the Everglades. While Cattail is a native Everglades species, it has become invasive over the years due to an altered habitat over the last few decades, taking over historically Cladium jamaicense (Sawgrass) areas. Two models of different levels of algorithmic complexity were developed in previous studies, and are used here to determine the impact of various management decisions on the average Cattail density within Water Conservation Area 2A in the Everglades. A Global Uncertainty and Sensitivity Analysis was conducted to test the importance of these management scenarios, as well as the effectiveness of using zonal statistics. Management scenarios included high, medium and low initial water depths, soil phosphorus concentrations, initial Cattail and Sawgrass densities, as well as annually alternating water depths and soil phosphorus concentrations, and a steadily decreasing soil phosphorus concentration. Analysis suggests that zonal statistics are good indicators of regional trends, and that high soil phosphorus concentration is a pre-requisite for expansive Cattail growth. It is a complex task to manage Cattail expansion in this region, requiring the close management and monitoring of water depth and soil phosphorus concentration, and possibly other factors not considered in the model complexities. However, this modeling framework with user-definable complexities and management scenarios, can be considered a useful tool in analyzing many more alternatives, which could be used to aid management decisions in the future.

  13. Geophysical Characterization Of Groundwater in the Mangrove Lakes Region of Everglades National Park.

    Science.gov (United States)

    Kiflai, M. E.; Whitman, D.; Price, R.; Frankovich, T.; Allen, J.

    2017-12-01

    Everglades National Park has been adversely impacted by past human activities that altered freshwater flow through the system. The Comprehensive Everglades Restoration Plan (CERP) makes an effort to increase the flow of fresh water and modify the groundwater chemistry in Everglades National Park (ENP). This paper aims to present the changes in surface and ground water chemistry in response to CERP project. Electromagnetic (EM) surveys were conducted in Alligator Creek (West Lake) and McCormick Creek (Seven Palm) from 2013 to 2017. During the survey a GSSI Profiler EMP-400, multi- frequency Electromagnetic (EM) conductivity meter was deployed in a flat bottomed plastic kayak towed behind a motorized skiff. An inverse model of the data is performed by constraining the resistivity value of the surface water fixed. Then, the salinity of the groundwater is estimated by assuming a formation factor of 5. In the McCormick Creek system, between January 2016 and February 2017 the salinity of the groundwater shows a considerable decreases. In the northern end of Seven Palm, the salinity decreases from 3.64 PSU in 2016 to 2.5 PSU in 2017. In the southern end the salinity decreases from 8.05 PSU in 2016 to 3.05 in 2017. This demonstrates how the salinity of the groundwater increase from north to south and decreases yearly. Future work will integrate the EM data with DC resistivity measurements collected from a floating Schlumberger array.

  14. Philometrid nematodes infecting fishes from the Everglades National Park, Florida, USA, with description of two new species

    Czech Academy of Sciences Publication Activity Database

    Moravec, František; Bakenhaster, M.

    2010-01-01

    Roč. 57, č. 3 (2010), s. 213-222 ISSN 0015-5683 R&D Projects: GA MŠk LC522 Institutional research plan: CEZ:AV0Z60220518 Keywords : Philometridae * Marine fish * USA Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 1.533, year: 2010

  15. Water resources of southeastern Florida, with special reference to geology and ground water of the Miami area

    Science.gov (United States)

    Parker, Garald G.; Ferguson, G.E.; Love, S.K.

    1955-01-01

    The circulation of water, in any form, from the surface of the earth to the atmosphere and back again is called the hydrologic cycle. A comprehensive study of the water resources of any area must, therefore, include data on the climate of the area. The humid subtropical climate of southeast Florida is characterized by relatively high temperatures, alternating semi-annual wet and dry season, and usually light put persistent winds. The recurrence of drought in an area having relatively large rainfall such as southeastern Florida indicates that the agencies that remove water are especially effective. Two of the most important of the agencies associated with climate are evaporation and transpiration, or 'evapotranspiraton'. Evaporation losses from permanent water areas are believed to average between 40 and 45 inches per year. Over land areas indirect methods much be used to determine losses by evapotranspiration; necessarily, there values are not precise. Because of their importance in the occurrence and movement of both surface and ground waters, detailed studies were made of the geology and geomorphology of southern Florida. As a result of widespread crustal movements, southern Florida emerged from the sea in later Pliocene time and probably was slightly tilted to the west. At the beginning of the Pleistocene the continent emerged still farther as a result of the lowering of sea level attending the first widespread glaciation. During this epoch, south Florida may have stood several hundred feet above sea level. During the interglacial ages the sea repeatedly flooded southern Florida. The marine members of the Fort Thompson formation in the Lake Okeechobee-Everglades depression and the Calossahatchee River Valley apparently are the deposits of the interglacial invasions by the sea. The fresh-water marls, sands, and organic deposits of the Fort Thompson formation appear to have accumulated during glacial ages when seas level was low and the area was a land surface

  16. Monitoring Invasive Aquatic Vegetation in Lake Okeechobee, Florida, Using NDVI Derived from Modis Data

    Science.gov (United States)

    Woods, Kate; Brozen, Madeline; Malik, Sadaf; Maki, Angela

    2009-01-01

    Lake Okeechobee, located in southern Florida, encompasses approximately 1,700 sq km and is a vital part of the Lake Okeechobee and Everglades ecosystem. Major cyanobacterial blooms have been documented in Lake Okeechobee since the 1970s and have continued to plague the ecosystem. Similarly, hydrilla, water hyacinth, and water lettuce have been documented in the lake and continue to threaten the ecosystem by their rapid growth. This study examines invasive aquatic vegetation occurrence through the use of the Normalized Difference Vegetation Index (NDVI) calculated on MOD09 surface reflectance imagery. Occurrence during 2008 was analyzed using the Time Series Product Tool (TSPT), a MATLAB-based program developed at John C. Stennis Space Center. This project tracked spatial and temporal variability of cyanobacterial blooms, and overgrowth of water lettuce, water hyacinth, and hydrilla. In addition, this study presents an application of Moderate Resolution Imaging Spectroradiometer (MODIS) data to assist in water quality management.

  17. Mapping saltwater intrusion in the Biscayne Aquifer, Miami-Dade County, Florida using transient electromagnetic sounding

    Science.gov (United States)

    Fitterman, David V.

    2014-01-01

    Saltwater intrusion in southern Florida poses a potential threat to the public drinking-water supply that is typically monitored using water samples and electromagnetic induction logs collected from a network of wells. Transient electromagnetic (TEM) soundings are a complementary addition to the monitoring program because of their ease of use, low cost, and ability to fill in data gaps between wells. TEM soundings have been used to map saltwater intrusion in the Biscayne aquifer over a large part of south Florida including eastern Miami-Dade County and the Everglades. These two areas are very different with one being urban and the other undeveloped. Each poses different conditions that affect data collection and data quality. In the developed areas, finding sites large enough to make soundings is difficult. The presence of underground pipes further restricts useable locations. Electromagnetic noise, which reduces data quality, is also an issue. In the Everglades, access to field sites is difficult and working in water-covered terrain is challenging. Nonetheless, TEM soundings are an effective tool for mapping saltwater intrusion. Direct estimates of water quality can be obtained from the inverted TEM data using a formation factor determined for the Biscayne aquifer. This formation factor is remarkably constant over Miami-Dade County owing to the uniformity of the aquifer and the absence of clay. Thirty-six TEM soundings were collected in the Model Land area of southeast Miami-Dade County to aid in calibration of a helicopter electromagnetic (HEM) survey. The soundings and HEM survey revealed an area of saltwater intrusion aligned with canals and drainage ditches along U.S. Highway 1 and the Card Sound Road. These canals and ditches likely reduced freshwater levels through unregulated drainage and provided pathways for seawater to flow at least 12.4 km inland.

  18. Operational Actual Wetland Evapotranspiration Estimation for South Florida Using MODIS Imagery

    Directory of Open Access Journals (Sweden)

    Cristobal N. Ceron

    2015-03-01

    Full Text Available Evapotranspiration is a reliable indicator of wetland health. Wetlands are an important and valuable ecosystem on the South Florida landscape. Accurate wetland Actual Evapotranspiration (AET data can be used to evaluate the performance of South Florida’s Everglades restoration programs. However, reliable AET measurements rely on scattered point measurements restricting applications over a larger area. The objective of this study was to validate the ability of the Simplified Surface Energy Balance (SSEB approach and the Simple Method (also called the Abtew Method to provide large area AET estimates for wetland recovery efforts. The study used Moderate Resolution Imaging Spectroradiometer (MODIS sensor spectral data and South Florida Water Management District (SFWMD solar radiation data to derive weekly AET values for South Florida. The SSEB-Simple Method approach provided acceptable results with good agreement with observed values during the critical dry season period, when cloud cover was low (rave (n = 59 = 0.700, pave < 0.0005, but requires further refinement to be viable for yearly estimates because of poor performance during wet season months, mainly because of cloud contamination. The approach can be useful for short-term wetland recovery assessment projects that occur during the dry season and/or long term projects that compare site AET rates from dry season to dry season.

  19. A rop net and removable walkway used to quantitatively sample fishes over wetland surfaces in the dwarf mangrove of the Southern Everglades

    Science.gov (United States)

    Lorenz, J.J.; McIvor, C.C.; Powell, G.V.N.; Frederick, P.C.

    1997-01-01

    We describe a 9 m2 drop net and removable walkways designed to quantify densities of small fishes in wetland habitats with low to moderate vegetation density. The method permits the collection of small, quantitative, discrete samples in ecologically sensitive areas by combining rapid net deployment from fixed sites with the carefully contained use of the fish toxicant rotenone. This method requires very little contact with the substrate, causes minimal alteration to the habitat being sampled, samples small fishes in an unbiased manner, and allows for differential sampling of microhabitats within a wetland. When used in dwarf red mangrove (Rhizophora mangle) habitat in southern Everglades National Park and adjacent areas (September 1990 to March 1993), we achieved high recovery efficiencies (78–90%) for five common species <110 mm in length. We captured 20,193 individuals of 26 species. The most abundant fishes were sheepshead minnowCyprinodon variegatus, goldspotted killifishFloridichthys carpio, rainwater killifishLucania parva, sailfin mollyPoecilia latipinna, and the exotic Mayan cichlidCichlasoma urophthalmus. The 9 m2 drop net and associated removable walkways are versatile and can be used in a variety of wetland types, including both interior and coastal wetlands with either herbaceous or woody vegetation.

  20. Woodville Karst Plain, North Florida

    OpenAIRE

    2006-01-01

    Map showing the largest mapped underwater cave systems and conduit flow paths confirmed by tracer testing relative to surface streams, sinkholes and potentiometric surface of the Florida aquifer in the Woodville Karst Plain, Florida

  1. Project Summary (2012-2015) – Carbon Dynamics of the Greater Everglades Watershed and Implications of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Hinkle, Ross [University of Central Florida; Benscoter, Brian [Florida Atlantic University; Comas, Xavier [Florida Atlantic University; Sumner, David [USGS; DeAngelis, Donald [USGS

    2015-04-07

    Carbon Dynamics of the Greater Everglades Watershed and Implications of Climate Change The objectives of this project are to: 1) quantify above- and below-ground carbon stocks of terrestrial ecosystems along a seasonal hydrologic gradient in the headwaters region of the Greater Everglades watershed; 2) develop budgets of ecosystem gaseous carbon exchange (carbon dioxide and methane) across the seasonal hydrologic gradient; 3) assess the impact of climate drivers on ecosystem carbon exchange in the Greater Everglades headwater region; and 4) integrate research findings with climate-driven terrestrial ecosystem carbon models to examine the potential influence of projected future climate change on regional carbon cycling. Note: this project receives a one-year extension past the original performance period - David Sumner (USGS) is not included in this extension.

  2. Florida's forests-2005 update

    Science.gov (United States)

    Mark J. Brown

    2007-01-01

    This bulletin highlights principal findings of an annual inventory of Florida's forests. Data summaries are based on measurements of 60 percent of the plots in the State. Additional data summaries and bulletins will be published as the remaining plots are measured.

  3. Conservation: saving Florida's manatees

    Science.gov (United States)

    Bonde, Robert K.

    2008-01-01

    Robert K. Bonde of the U.S. Geological Survey writes about the protected population of manatees in Crystal River, Florida, including information about the threats they face as they migrate in and out of protected waters. Photographer Carol Grant shares images of "Angel," a newborn manatee she photographed early one winter morning.

  4. Polymorphic microsatellite DNA markers for the Florida manatee (Trichechus manatus latirostris)

    Science.gov (United States)

    Pause, K.C.; Nourisson, C.; Clark, A.; Kellogg, M.E.; Bonde, R.K.; McGuire, P.M.

    2007-01-01

    Florida manatees (Trichechus manatus latirostris) are marine mammals that inhabit the coastal waters and rivers of the southeastern USA, primarily Florida. Previous studies have shown that Florida manatees have low mitochondrial DNA variability, suggesting that nuclear DNA loci are necessary for discriminatory analyses. Here we report 10 polymorphic microsatellite loci with an average of 4.2 alleles per locus, and average heterozygosity of 50.1%. These loci have been developed for use in population studies, parentage assignment, and individual identification. ?? 2007 Blackwell Publishing Ltd.

  5. Flow monitoring along the western Tamiami Trail between County Road 92 and State Road 29 in support of the Comprehensive Everglades Restoration Plan, 2007-2010

    Science.gov (United States)

    Booth, Amanda C.; Soderqvist, Lars E.; Berry, Marcia C.

    2014-01-01

    The construction of U.S. Highway 41 (Tamiami Trail), the Southern Golden Gate Estates development, and the Barron River Canal has altered the flow of freshwater to the Ten Thousand Islands estuary of Southwest Florida. Two restoration projects, the Picayune Strand Restoration Project and the Tamiami Trail Culverts Project, both associated with the Comprehensive Everglades Restoration Plan, were initiated to address this issue. Quantifying the flow of freshwater to the estuary is essential to assessing the effectiveness of these projects. The U.S. Geological Survey conducted a study between March 2006 and September 2010 to quantify the freshwater flowing under theTamiami Trail between County Road 92 and State Road 29 in southwest Florida, excluding the Faka Union Canal (which is monitored by South Florida Water Management District). The study period was after the completion of the Tamiami Trail Culverts Project and prior to most of the construction related to the Picayune Restoration Project. The section of the Tamiami Trail that was studied contains too many structures (35 bridges and 16 culverts) to cost-effectively measure each structure on a continuous basis, so the area was divided into seven subbasins. One bridge within each of the subbasins was instrumented with an acoustic Doppler velocity meter. The index velocity method was used to compute discharge at the seven instrumented bridges. Periodic discharge measurements were made at all structures, using acoustic Doppler current profilers at bridges and acoustic Doppler velocity meters at culverts. Continuous daily mean values of discharge for the uninstrumented structures were calculated on the basis of relations between the measured discharge at the uninstrumented stations and the discharge and stage at the instrumented bridge. Estimates of daily mean discharge are available beginning in 2006 or 2007 through September 2010 for all structures. Subbasin comparison is limited to water years 2008–2010. The Faka

  6. Coastal zone

    International Nuclear Information System (INIS)

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on the coastal zone focuses on the impact of climate change on Canada's marine and Great Lakes coasts with tips on how to deal with the impacts associated with climate change in sensitive environments. This report is aimed at the sectors that will be most affected by adaptation decisions in the coastal zone, including fisheries, tourism, transportation and water resources. The impact of climate change in the coastal zone may include changes in water levels, wave patterns, storm surges, and thickness of seasonal ice cover. The Intergovernmental Panel on Climate Change projects global average sea level will rise between 9 and 88 centimetres between 1990 to 2100, but not all areas of Canada will experience the same rate of future sea level change. The main physical impact would be shoreline change that could result in a range of biophysical and socio-economic impacts, some beneficial, some negative. The report focuses on issues related to infrastructure and communities in coastal regions. It is noted that appropriate human adaptation will play a vital role in reducing the extent of potential impacts by decreasing the vulnerability of average zone to climate change. The 3 main trends in coastal adaptation include: (1) increase in soft protection, retreat and accommodation, (2) reliance on technology such as geographic information systems to manage information, and (3) awareness of the need for coastal adaptation that is appropriate for local conditions. 61 refs., 7 figs

  7. Intensified coastal development in beach-nourishment zones

    Science.gov (United States)

    Lazarus, E.; Armstrong, S.; Limber, P. W.; Goldstein, E. B.; Ballinger, R.

    2016-12-01

    Population density, housing development, and property values in coastal counties along the U.S. Atlantic and Gulf Coasts continue to rise despite increasing hazard from storm impacts. Beach nourishment, a method for mitigating coastal storm damage or chronic erosion by deliberately replacing sand on an eroded beach, has been the leading form of coastal protection in the U.S. since the 1970s. However, investment in hazard protection can have the unintended consequence of encouraging development in places especially vulnerable to damage. To quantitatively compare development in nourishing and non-nourishing zones, we examine the parcel-scale housing stock of all shorefront single-family homes in the state of Florida. We find that houses in nourishing zones are significantly larger and more numerous than in non-nourishing zones. Florida represents both an advanced case of coastal risk and an exemplar of ubiquitous, fundamental challenges in coastal management. The predominance of larger homes in nourishing zones indicates a positive feedback between nourishment and development that is compounding coastal risk in zones already characterized by high vulnerability. We offer that this phenomenon represents a variant of Jevons' paradox, a theoretical argument from environmental economics in which more efficient use of a resource spurs an increase in its consumption. Here, we suggest reductions in coastal risk through hazard protection are ultimately offset or reversed by increased coastal development.

  8. Climate variability during the Medieval Climate Anomaly and Little Ice Age based on ostracod faunas and shell geochemistry from Biscayne Bay, Florida: Chapter 14

    Science.gov (United States)

    Cronin, Thomas M.; Wingard, G. Lynn; Dwyer, Gary S.; Swart, Peter K.; Willard, Debra A.; Albietz, Jessica

    2012-01-01

    An 800-year-long environmental history of Biscayne Bay, Florida, is reconstructed from ostracod faunal and shell geochemical (oxygen, carbon isotopes, Mg/Ca ratios) studies of sediment cores from three mudbanks in the central and southern parts of the bay. Using calibrations derived from analyses of modern Biscayne and Florida Bay ostracods, palaeosalinity oscillations associated with changes in precipitation were identified. These oscillations reflect multidecadal- and centennial-scale climate variability associated with the Atlantic Multidecadal Oscillation during the late Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). Evidence suggests wetter regional climate during the MCA and drier conditions during the LIA. In addition, twentieth century anthropogenic modifications to Everglades hydrology influenced bay circulation and/or processes controlling carbon isotopic composition.

  9. Wetland fire scar monitoring and analysis using archival Landsat data for the Everglades

    Science.gov (United States)

    Jones, John W.; Hall, Annette E.; Foster, Ann M.; Smith, Thomas J.

    2013-01-01

    The ability to document the frequency, extent, and severity of fires in wetlands, as well as the dynamics of post-fire wetland land cover, informs fire and wetland science, resource management, and ecosystem protection. Available information on Everglades burn history has been based on field data collection methods that evolved through time and differ by land management unit. Our objectives were to (1) design and test broadly applicable and repeatable metrics of not only fire scar delineation but also post-fire land cover dynamics through exhaustive use of the Landsat satellite data archives, and then (2) explore how those metrics relate to various hydrologic and anthropogenic factors that may influence post-fire land cover dynamics. Visual interpretation of every Landsat scene collected over the study region during the study time frame produced a new, detailed database of burn scars greater than 1.6 ha in size in the Water Conservation Areas and post-fire land cover dynamics for Everglades National Park fires greater than 1.6 ha in area. Median burn areas were compared across several landscape units of the Greater Everglades and found to differ as a function of administrative unit and fire history. Some burned areas transitioned to open water, exhibiting water depths and dynamics that support transition mechanisms proposed in the literature. Classification tree techniques showed that time to green-up and return to pre-burn character were largely explained by fire management practices and hydrology. Broadly applicable as they use data from the global, nearly 30-year-old Landsat archive, these methods for documenting wetland burn extent and post-fire land cover change enable cost-effective collection of new data on wetland fire ecology and independent assessment of fire management practice effectiveness.

  10. Florida Hydrogen Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety

  11. Recreational Swordfish (Xiphias gladius Fishery: Angler Practices in South Florida (USA

    Directory of Open Access Journals (Sweden)

    Justin Lerner

    2017-10-01

    from US$15,000 to $200,000 with an average income of $91,940 (n = 33. Sixty-nine percent of polled anglers indicated they had more than 26 years of recreational fishing experience and 81% had less than 10 years of experience targeting swordfish in South Florida. Thirty-seven percent of surveyed anglers indicated they departed from Port Everglades, Florida. To target swordfish, anglers generally used five rods and set their bait, commonly squid, at 91 m. Anglers also indicated they changed their fishing tactics from day to night, and took about five fishing trips per month. Overall, anglers spent around $14,210 on annual costs associated with swordfishing, which was 16% of their annual income. Many polled anglers also reported they were dissatisfied with the current swordfish management regulations.

  12. Coastal Structures

    DEFF Research Database (Denmark)

    Oumeraci, H.; Burcharth, H. F.; Rouck, J. De

    1995-01-01

    The paper attempts to present an overview of five research projects supported by the Commission of the European Communities, Directorate General XII, under the MAST 2- Programme (Marine Sciences and Technology), with the overall objective of contributing to the development of improved rational me...... methods for the design of coastal structures....

  13. EAARL-B coastal topography: Fire Island, New York, pre-Hurricane Sandy, 2012: seamless (bare earth and submerged)

    Science.gov (United States)

    Wright, C. Wayne; Kranenburg, Christine J.; Klipp, Emily S.; Troche, Rodolfo J.; Fredericks, Alexandra M.; Masessa, Melanie L.; Nagle, David B.

    2014-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived seamless (bare-earth and submerged) topography datasets were produced by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida.

  14. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NOAA Ship RONALD H. BROWN in the Coastal Waters of Florida, Florida Keys National Marine Sanctuary and others from 2012-02-15 to 2012-08-27 (NODC Accession 0109926)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109926 includes Surface underway, chemical, meteorological and physical data collected from NOAA Ship RONALD H. BROWN in the Coastal Waters of...

  15. Florida statewide radiation study

    International Nuclear Information System (INIS)

    Nagda, N.L.; Koontz, M.D.; Fortmann, R.C.; Schoenborn, W.A.; Mehegan, L.L.

    1987-01-01

    Florida phosphate deposits contain higher levels of uranium than most other soils and rocks, thus exposing the population to higher-than-desirable levels of radon and its short-lived daughters. The Florida Legislature ordered a survey of significant land areas where an environmental radiation standard should be applied. Among other things, the study assessed indoor radon in 6,000 homes, soil radon at 3,000 residences, and all data existing prior to the study. The report explains the purpose of the study, how it was designed and conducted, and its results. It concludes with a discussion of radon/radon decay product equilibrium factor, correlation between indoor and soil radon, and preliminary attempts to develop a safe threshold for soil radon below which few elevated indoor levels would be anticipated

  16. Escaping a Rigidity Trap; Governance and Adaptive Capacity to Climate Change in the Everglades Social Ecological System

    Science.gov (United States)

    The Everglades is perhaps one of the most recognized ecosystems on the planet. Its international reputation arose in part because of the writings of Marjory Stoneman Douglas, who wove together a rich, natural, social, and cultural depiction of the area entitled River of Grass. 1 ...

  17. Everglades Depth Estimation Network (EDEN)—A decade of serving hydrologic information to scientists and resource managers

    Science.gov (United States)

    Patino, Eduardo; Conrads, Paul; Swain, Eric; Beerens, James M.

    2017-10-30

    IntroductionThe Everglades Depth Estimation Network (EDEN) provides scientists and resource managers with regional maps of daily water levels and depths in the freshwater part of the Greater Everglades landscape. The EDEN domain includes all or parts of five Water Conservation Areas, Big Cypress National Preserve, Pennsuco Wetlands, and Everglades National Park. Daily water-level maps are interpolated from water-level data at monitoring gages, and depth is estimated by using a digital elevation model of the land surface. Online datasets provide time series of daily water levels at gages and rainfall and evapotranspiration data (https://sofia.usgs.gov/eden/). These datasets are used by scientists and resource managers to guide large-scale field operations, describe hydrologic changes, and support biological and ecological assessments that measure ecosystem response to the implementation of the Comprehensive Everglades Restoration Plan. EDEN water-level data have been used in a variety of biological and ecological studies including (1) the health of American alligators as a function of water depth, (2) the variability of post-fire landscape dynamics in relation to water depth, (3) the habitat quality for wading birds with dynamic habitat selection, and (4) an evaluation of the habitat of the Cape Sable seaside sparrow.

  18. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Flats Wetlands in the Everglades

    Science.gov (United States)

    2002-07-01

    cylindrica Cogon grass lnamoea aouatica Water spinach Jasminum dichotomum Gold Coast jasmine Jasminum fluminense, Brazilian jasmine Jasminum sambac...dominated by Cladiumjamaicense (saw grass ) ............................................... 51 Figure 23. Relationship between percent concurrence of strata...Reference standard Marl Flats Everglades wetland dominated by Cladiumjamaicense (saw grass ), Spartina alterniflora (smooth cordgrass), Rhynchospora

  19. The influence of wave action on coastal erosion along Monwabisi ...

    African Journals Online (AJOL)

    Microsoft account

    commonly recognised effect of this warming is the eustatic rise of sea level (Allen ... 100km of the coastline and could be affected by future sea-level rise (SLR)- ..... Douglas, BC 2000, 'Sea Level Rise Shown to Drive Coastal Erosion', Florida.

  20. Coastal plain community tree guide: benefits, costs, and strategic planning

    Science.gov (United States)

    E. Gregory McPherson; James R. Simpson; Paula J. Peper; Shelley L. Gardner; Kelaine E. Vargas; Scott E. Maco; Qingfu Xiao

    2006-01-01

    This report quantifies benefits and costs for representative large, medium, and small broadleaf trees and coniferous trees in the Coastal Plain region: the species chosen as representative are the Southern live oak (Quercus virginiana), Southern magnolia (Magnolia grandiflora), flowering dogwood (Cornus florida...

  1. Biogeochemical processes on tree islands in the greater everglades: Initiating a new paradigm

    Science.gov (United States)

    Wetzel, P.R.; Sklar, Fred H.; Coronado, C.A.; Troxler, T.G.; Krupa, S.L.; Sullivan, P.L.; Ewe, S.; Price, R.M.; Newman, S.; Orem, W.H.

    2011-01-01

    Scientists' understanding of the role of tree islands in the Everglades has evolved from a plant community of minor biogeochemical importance to a plant community recognized as the driving force for localized phosphorus accumulation within the landscape. Results from this review suggest that tree transpiration, nutrient infiltration from the soil surface, and groundwater flow create a soil zone of confluence where nutrients and salts accumulate under the head of a tree island during dry periods. Results also suggest accumulated salts and nutrients are flushed downstream by regional water flows during wet periods. That trees modulate their environment to create biogeochemical hot spots and strong nutrient gradients is a significant ecological paradigm shift in the understanding of the biogeochemical processes in the Everglades. In terms of island sustainability, this new paradigm suggests the need for distinct dry-wet cycles as well as a hydrologic regime that supports tree survival. Restoration of historic tree islands needs further investigation but the creation of functional tree islands is promising. Copyright ?? 2011 Taylor & Francis Group, LLC.

  2. Coastal resuspension

    International Nuclear Information System (INIS)

    Garland, J.A.

    1991-11-01

    There are several potential mechanisms for the suspension in air of radioactive or other pollutants from coastal sea water, beaches, mud banks and salt marshes. Available measurements rarely allow these mechanisms to be distinguished. The limited data show a broad spread of results. When normalised by the concentration of radionuclides in beach sediments most of the data indicate concentrations equivalent to 1 to 30 μg m -3 of sediment suspended in air, both for sampling sites on open coasts and near estuaries. Limited evidence for sampling sites located on salt marshes indicates about 0.2 μg m -3 of suspended sediment. These values represent the aggregate effect of the mechanisms that operate at a limited number of coastal locations. At other locations it is possible that additional mechanisms will contribute to the suspension of sediment. (Author)

  3. Valuing snorkeling visits to the Florida Keys with stated and revealed preference models

    Science.gov (United States)

    Timothy Park; J. Michael Bowker; Vernon R. Leeworthy

    2002-01-01

    Coastal coral reefs, especially in the Florida Keys, are declining at a disturbing rate. Marine ecologists and reef scientists have emphasized the importance of establishing nonmarket values of coral reefs to assess the cost effectiveness of coral reef management and remediation programs. The purpose of this paper is to develop a travel cost--contingent valuation model...

  4. Everglades Ecosystem Assessment: Water Management and Quality, Eutrophication, Mercury Contamination, Soils and Habitat - EPA 904-R-07-001, August 2007

    Science.gov (United States)

    This report summarizes the results for the Program and 2005 Phase III biogeochemical sampling. This survey documented ecological condition for the 2,063-square-mile freshwater portion of the Everglades Protection Area.

  5. Geochemical evidence for groundwater behavior in an unconfined aquifer, south Florida

    Science.gov (United States)

    Meyers, Jayson B.; Swart, Peter K.; Meyers', Janet L.

    1993-07-01

    Five well sites have been investigated along an east-west transect across the surfical aquifer system (SAS) of south Florida. Differences between rainfall during wet seasons (June-October) and evaporation during dry seasons (November-May) give surface waters of this region isotopically light ( δ 18O -22‰ and δ D -7.6‰ ) and heavy ( δ 18O +4.2‰ ) compositions, respectively. Surface waters and shallow groundwaters are enriched in 18O and D to the west, which is consistent with westward decrease in equal excess of rainfall. In the shallow portion of the SAS (less than 20 m, Biscayne sub-aquifer) heterogeneous stable isotopic compositions occur over short spans of time (less than 90 days), reflecting seasonal changes in the isotopic composition of recharge and rapid flushing. Homogeneous stable isotopic compositions occur below the Biscayne sub-aquifer, marking the zone of delayed circulation. Surface evaporation calculated from a stable isotope evaporation model agrees with previously published estimates of 75-95% by physical evaporation measurements and water budget calculations. This model contains many parameters that are assumed to be mean values, but short-term variability in some of these parameters may make this model unsuitable for the application of yearly mean values. For the Everglades, changes in the isotopic composition of atmospheric vapor during the dry season may cause the model to yield anomalous results when annual mean values are used. Chloride-enriched waters (more than 280 mg 1 -1) form a plume emanating from the bottom central portion of the transect. Elevated chloride concentration and light stable isotopic composition ( δ 18O ≈ -2‰ , δ D ≈ -8‰ ) suggest this plume is probably caused not by salinity of residual seawater in the aquifer, but by leakage from the minor artesian water-bearing zone of the Floridan aquifer system. Stable isotope values from Floridan aquifer groundwater plot close to the meteoric water line, in the

  6. Urinary Phthalate Metabolites in American Alligators (Alligator mississippiensis) from Selected Florida Wetlands.

    Science.gov (United States)

    Brock, John W; Bell, Jane Margaret; Guillette, Louis J

    2016-07-01

    Phthalates have been shown to cause endocrine disruption in laboratory animals and are associated with altered development of the reproductive system in humans. Further, human have significant exposure to phthalates. However, little is known concerning the exposure of wildlife to phthalates. We report urinary phthalate metabolite concentrations from fifty juvenile alligators from three Florida lakes and a site in the Everglades. Urinary phthalate monoester concentrations varied widely among alligators from the different sites but also among alligators from the same site. Mono-2-ethylhexy phthalate and monobutyl phthalate were found in most samples of alligator urine with maximums of 35,700 ng/mL and 193 ng/mL, respectively. Monobenzyl phthalate was found in 5 alligators with a maximum of 66.7 ng/mL. Other monoesters were found in only one or two alligator urine samples. The wide variation within and among sites, in addition to the high levels of mEHP, mBP and mBzP, is consistent with exposure arising from the intermittent spraying of herbicide formulations to control invasive aquatic plants in Florida freshwater sites. Phthalate diesters are used as adjuvants in many of these formulations.

  7. Estimating the Cumulative Ecological Effect of Local Scale Landscape Changes in South Florida

    Science.gov (United States)

    Hogan, Dianna M.; Labiosa, William; Pearlstine, Leonard; Hallac, David; Strong, David; Hearn, Paul; Bernknopf, Richard

    2012-01-01

    Ecosystem restoration in south Florida is a state and national priority centered on the Everglades wetlands. However, urban development pressures affect the restoration potential and remaining habitat functions of the natural undeveloped areas. Land use (LU) planning often focuses at the local level, but a better understanding of the cumulative effects of small projects at the landscape level is needed to support ecosystem restoration and preservation. The South Florida Ecosystem Portfolio Model (SFL EPM) is a regional LU planning tool developed to help stakeholders visualize LU scenario evaluation and improve communication about regional effects of LU decisions. One component of the SFL EPM is ecological value (EV), which is evaluated through modeled ecological criteria related to ecosystem services using metrics for (1) biodiversity potential, (2) threatened and endangered species, (3) rare and unique habitats, (4) landscape pattern and fragmentation, (5) water quality buffer potential, and (6) ecological restoration potential. In this article, we demonstrate the calculation of EV using two case studies: (1) assessing altered EV in the Biscayne Gateway area by comparing 2004 LU to potential LU in 2025 and 2050, and (2) the cumulative impact of adding limestone mines south of Miami. Our analyses spatially convey changing regional EV resulting from conversion of local natural and agricultural areas to urban, industrial, or extractive use. Different simulated local LU scenarios may result in different alterations in calculated regional EV. These case studies demonstrate methods that may facilitate evaluation of potential future LU patterns and incorporate EV into decision making.

  8. Standing crop and aboveground biomass partitioning of a dwarf mangrove forest in Taylor River Slough, Florida

    Science.gov (United States)

    Coronado-Molina, C.; Day, J.W.; Reyes, E.; Perez, B.C.

    2004-01-01

    The structure and standing crop biomass of a dwarf mangrove forest, located in the salinity transition zone ofTaylor River Slough in the Everglades National Park, were studied. Although the four mangrove species reported for Florida occurred at the study site, dwarf Rhizophora mangle trees dominated the forest. The structural characteristics of the mangrove forest were relatively simple: tree height varied from 0.9 to 1.2 meters, and tree density ranged from 7062 to 23 778 stems haa??1. An allometric relationship was developed to estimate leaf, branch, prop root, and total aboveground biomass of dwarf Rhizophora mangle trees. Total aboveground biomass and their components were best estimated as a power function of the crown area times number of prop roots as an independent variable (Y = B ?? Xa??0.5083). The allometric equation for each tree component was highly significant (pRhizophora mangle contributed 85% of total standing crop biomass. Conocarpus erectus, Laguncularia racemosa, and Avicennia germinans contributed the remaining biomass. Average aboveground biomass allocation was 69% for prop roots, 25% for stem and branches, and 6% for leaves. This aboveground biomass partitioning pattern, which gives a major role to prop roots that have the potential to produce an extensive root system, may be an important biological strategy in response to low phosphorus availability and relatively reduced soils that characterize mangrove forests in South Florida.

  9. Update on the enhancement of Florida power and light 400 MW steam generator program

    International Nuclear Information System (INIS)

    Mazzarell, G.R.; Chang, P.S.

    1991-01-01

    Florida Power and Light has nine (9) 400 MW units, designed and installed by Foster Wheeler in the 1960's. These fossil units were designed as base loaded units with oil firing. However, natural gas capability was added and for more than seven years these units have been in a cycling mode of operation. The availability of these units has deteriorated over the same time period. This paper reports that Florida Power and Light instituted an enhancement program for improving the availability redundancy of all their fossil fired units. The 400 MW units were the main contributors to the system forced outage rate. Each design and operating problem of these units was studied in detail and the root causes of each problem were identified. The first two (2) units, Port Everglades units No. 3 and 4 have been modified and returned to service. Testing of these two (2) units with respect to performance guarantees and the effectiveness of each of the individual modifications, has been completed. The first unit modified, PPE No. 3 was returned to service May 1989, PPE No. 4 in May of 1990. Both units have performed satisfactorily during subsequent operation. Cape Canaveral Unit No. 2 is modified and scheduled to be returned to service in May 1991

  10. Advection within shallow pore waters of a coastal lagoon, Florida

    Science.gov (United States)

    Cable, J.E.; Martin, Jonathan B.; Swarzenski, Peter W.; Lindenberg, Mary K.; Steward, Joel

    2004-01-01

    Ground water sources can be a significant portion of a local water budget in estuarine environments, particularly in areas with high recharge rates, transmissive aquifers, and permeable marine sediments. However, field measurements of ground water discharge are often incongruent with ground water flow modeling results, leaving many scientists unsure which estimates are accurate. In this study, we find that both measurements and model results are reasonable. The difference between estimates apparently results from the sources of water being measured and not the techniques themselves. In two locations in the Indian River Lagoon estuarine system, we found seepage meter rates similar to rates calculated from the geochemical tracers 222Rn and 226Ra. Ground water discharge rates ranged from 4 to 9 cm/d using seepage meters and 3 to 20 cm/d using 222Rn and 226Ra. In contrast, in comparisons to other studies where finite element ground water flow modeling was used, much lower ground water discharge rates of ∼0.05 to 0.15 cm/d were estimated. These low rates probably represent discharge of meteoric ground water from land-recharged aquifers, while the much higher rates measured with seepage meters, 222Rn, and 226Ra likely include an additional source of surface waters that regularly flush shallow (recharged water and recirculated surface waters contributes to the total biogeochemical loading in this shallow estuarine environment.

  11. University of Florida Advanced Technologies Campus Testbed

    Science.gov (United States)

    2017-09-21

    The University of Florida (UF) and its Transportation Institute (UFTI), the Florida Department of Transportation (FDOT) and the City of Gainesville (CoG) are cooperating to develop a smart transportation testbed on the University of Florida (UF) main...

  12. Spatial patterns of fish communities along two estuarine gradients in southern Florida

    Science.gov (United States)

    Green, D.P.J.; Trexler, J.C.; Lorenz, J.J.; McIvor, C.C.; Philippi, T.

    2006-01-01

    In tropical and subtropical estuaries, gradients of primary productivity and salinity are generally invoked to explain patterns in community structure and standing crops of fishes. We documented spatial and temporal patterns in fish community structure and standing crops along salinity and nutrient gradients in two subtropical drainages of Everglades National Park, USA. The Shark River drains into the Gulf of Mexico and experiences diurnal tides carrying relatively nutrient enriched waters, while Taylor River is more hydrologically isolated by the oligohaline Florida Bay and experiences no discernable lunar tides. We hypothesized that the more nutrient enriched system would support higher standing crops of fishes in its mangrove zone. We collected 50 species of fish from January 2000 to April 2004 at six sampling sites spanning fresh to brackish salinities in both the Shark and Taylor River drainages. Contrary to expectations, we observed lower standing crops and density of fishes in the more nutrient rich tidal mangrove forest of the Shark River than in the less nutrient rich mangrove habitats bordering the Taylor River. Tidal mangrove habitats in the Shark River were dominated by salt-tolerant fish and displayed lower species richness than mangrove communities in the Taylor River, which included more freshwater taxa and yielded relatively higher richness. These differences were maintained even after controlling for salinity at the time of sampling. Small-scale topographic relief differs between these two systems, possibly created by tidal action in the Shark River. We propose that this difference in topography limits movement of fishes from upstream marshes into the fringing mangrove forest in the Shark River system, but not the Taylor River system. Understanding the influence of habitat structure, including connectivity, on aquatic communities is important to anticipate effects of construction and operational alternatives associated with restoration of the

  13. COASTAL, Pacific, Washington

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Coastal study data as defined in FEMA Guidelines and Specifications, Appendix D: Guidance for Coastal Flooding Analyses and Mapping, submitted as a coastal study.

  14. Coastal Inlet Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Inlet Model Facility, as part of the Coastal Inlets Research Program (CIRP), is an idealized inlet dedicated to the study of coastal inlets and equipped...

  15. Phosphorus cycling and partitioning in an oligotrophic Everglades wetland ecosystem: A radioisotope tracing study

    Science.gov (United States)

    Noe, G.B.; Scinto, L.J.; Taylor, J.; Childers, D.L.; Jones, R.D.

    2003-01-01

    1. Our goal was to quantify short-term phosphorus (P) partitioning and identify the ecosystem components important to P cycling in wetland ecosystems. To do this, we added P radiotracer to oligotrophic, P-limited Everglades marshes. 32PO4 was added to the water column in six 1-m2 enclosed mesocosms located in long-hydroperiod marshes of Shark River Slough, Everglades National Park. Ecosystem components were then repeatedly sampled over 18 days. 2. Water column particulates (>0.45 ??m) incorporated radiotracer within the first minute after dosing and stored 95-99% of total water column 32P activity throughout the study. Soluble (<0.45 ??m) 32P in the water column, in contrast, was always <5% of the 32P in surface water. Periphyton, both floating and attached to emergent macrophytes, had the highest specific activity of 32P (Bq g-131P) among the different ecosystem components. Fish and aquatic macroinvertebrates also had high affinity for P, whereas emergent macrophytes, soil and flocculent detrital organic matter (floc) had the lowest specific activities of radiotracer. 3. Within the calcareous, floating periphyton mats, 81% of the initial 32P uptake was associated with Ca, but most of this 32P entered and remained within the organic pool (Ca-associated = 14% of total) after 1 day. In the floc layer, 32P rapidly entered the microbial pool and the labile fraction was negligible for most of the study. 4. Budgeting of the radiotracer indicated that 32P moved from particulates in the water column to periphyton and floc and then to the floc and soil over the course of the 18 days incubations. Floc (35% of total) and soil (27%) dominated 32P storage after 18 days, with floating periphyton (12%) and surface water (10%) holding smaller proportions of total ecosystem 32P. 5. To summarise, oligotrophic Everglades marshes exhibited rapid uptake and retention of labile 32P. Components dominated by microbes appear to control short-term P cycling in this oligotrophic ecosystem.

  16. An Assessment of the Potential Effects of Aquifer Storage and Recovery on Mercury Cycling in South Florida

    Science.gov (United States)

    Krabbenhoft, David P.; Aiken, George R.; Anderson, Mary P.

    2007-01-01

    Mercury contamination in the environment is a global concern, especially in areas with abundant wetlands, such as south Florida. As the causal factors of this concern improve, scientists find that many factors that do not necessarily affect mercury concentrations, such as flooding and drying cycles, or changes to carbon and sulfate loading, can profoundly affect net mercury toxicity. Especially important are ecological factors that alter the conversion of mercury to methylmercury, which is the most bioaccumulative and toxic form of mercury in the environment. Resource managers, therefore, need to be aware of possible deleterious affects to mercury toxicity that could result from land and water management decisions. Several aspects of the Comprehensive Everglades Restoration Plan (CERP), including the planned Aquifer Storage and Recovery (ASR) program, have the potential to affect the abundance of methylmercury. In response to these concerns, the U.S. Geological Survey and U.S. Army Corps of Engineers collaborated on a study to evaluate how the proposed ASR program may affect mercury cycling and toxicity. This project was conducted as an initial assessment of the possible effects of the CERP ASR program on mercury in the south Florida environment. A twofold approach was employed: field sampling and controlled laboratory benchmark experiments. The field sampling survey collected ground-water samples from the Floridan and surficial aquifer systems for the ASR program to determine existing levels of mercury and methylmercury. Laboratory experiments, on the other hand, were designed to determine how the injected surface water would interact with the aquifer during storage periods. Overall, very low levels of mercury and methylmercury (mean values of 0.41 and 0.07 nanograms per liter, respectively) were observed in ground-water samples collected from the Floridan and surficial aquifer systems. These results indicate that 'recovered water' from the CERP ASR program would

  17. 77 FR 2754 - Establishment of Everglades Headwaters National Wildlife Refuge and Conservation Area

    Science.gov (United States)

    2012-01-19

    ... Refuge and Conservation Area in Polk, Osceola, Highlands, and Okeechobee Counties, Florida. The Service... south Florida, helping to protect and restore one of the great grassland and savanna landscapes of... Administration Act [16 U.S.C. 668dd(a)(2)], Endangered Species Act (16 U.S.C. 1534), Emergency Wetlands Resources...

  18. 33 CFR 385.8 - Goals and purposes of the Comprehensive Everglades Restoration Plan.

    Science.gov (United States)

    2010-07-01

    ... ecosystem while providing for other water-related needs of the region, including water supply and flood protection. (b) The Corps of Engineers, the South Florida Water Management District, and other non-Federal... of the loss of fresh water from, and the improvement of the environment of the South Florida...

  19. FLORIDA TOWER FOOTPRINT EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    WATSON,T.B.; DIETZ, R.N.; WILKE, R.; HENDREY, G.; LEWIN, K.; NAGY, J.; LECLERC, M.

    2007-01-01

    The Florida Footprint experiments were a series of field programs in which perfluorocarbon tracers were released in different configurations centered on a flux tower to generate a data set that can be used to test transport and dispersion models. These models are used to determine the sources of the CO{sub 2} that cause the fluxes measured at eddy covariance towers. Experiments were conducted in a managed slash pine forest, 10 km northeast of Gainesville, Florida, in 2002, 2004, and 2006 and in atmospheric conditions that ranged from well mixed, to very stable, including the transition period between convective conditions at midday to stable conditions after sun set. There were a total of 15 experiments. The characteristics of the PFTs, details of sampling and analysis methods, quality control measures, and analytical statistics including confidence limits are presented. Details of the field programs including tracer release rates, tracer source configurations, and configuration of the samplers are discussed. The result of this experiment is a high quality, well documented tracer and meteorological data set that can be used to improve and validate canopy dispersion models.

  20. Using inferential sensors for quality control of Everglades Depth Estimation Network water-level data

    Science.gov (United States)

    Petkewich, Matthew D.; Daamen, Ruby C.; Roehl, Edwin A.; Conrads, Paul

    2016-09-29

    The Everglades Depth Estimation Network (EDEN), with over 240 real-time gaging stations, provides hydrologic data for freshwater and tidal areas of the Everglades. These data are used to generate daily water-level and water-depth maps of the Everglades that are used to assess biotic responses to hydrologic change resulting from the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. The generation of EDEN daily water-level and water-depth maps is dependent on high quality real-time data from water-level stations. Real-time data are automatically checked for outliers by assigning minimum and maximum thresholds for each station. Small errors in the real-time data, such as gradual drift of malfunctioning pressure transducers, are more difficult to immediately identify with visual inspection of time-series plots and may only be identified during on-site inspections of the stations. Correcting these small errors in the data often is time consuming and water-level data may not be finalized for several months. To provide daily water-level and water-depth maps on a near real-time basis, EDEN needed an automated process to identify errors in water-level data and to provide estimates for missing or erroneous water-level data.The Automated Data Assurance and Management (ADAM) software uses inferential sensor technology often used in industrial applications. Rather than installing a redundant sensor to measure a process, such as an additional water-level station, inferential sensors, or virtual sensors, were developed for each station that make accurate estimates of the process measured by the hard sensor (water-level gaging station). The inferential sensors in the ADAM software are empirical models that use inputs from one or more proximal stations. The advantage of ADAM is that it provides a redundant signal to the sensor in the field without the environmental threats associated with field conditions at stations (flood or hurricane, for example). In the

  1. Climatic and hydrologic influences on wading bird foraging patterns in Everglades National Park

    Science.gov (United States)

    Kwon, H.; Lall, U.; Engel, V.

    2007-12-01

    A goal of the Everglades National Park (ENP) restoration project is to ensure that the ecological health of the ENP improves as a direct result of management activities. Achieving hydrologic targets through the proper timing and amount of releases from control structures is a first step in the management process. Significant climate and weather variations in the region influence the ability to make releases and also determine the ecological outcomes. An assessment of the relative impact of climate variations and water releases to ENP in determining ecological outcomes is consequently a key to the evaluation of the success or failure of any restoration plan. Seasonal water depths in ENP depend on managed surface water releases from control structures and on direct rainfall. Here we link wading bird foraging patterns - a fundamental aspect of Everglades' ecology - to hydrologic management and climate variability in the National Park. Our objective is multifold. First, we relate the water levels at P33 and Shark Slough to the synoptic hydrologic conditions. Second, we develop a statistical model relating water levels at a station in central Shark Slough (P33) to wading birds foraging patterns throughout ENP. We attempt to apply a Hierarchical Bayesian scheme to a time series of wading bird to provide an uncertainty distribution of the population over specified time periods given hydrologic condition. Third, we develop a set of hydrologic index derived by recorded water level at P33 for a use of the statistical model of wading birds as an input. Our study will focus on great egret and white ibis that are major species among wading birds in the ENP. The great egret and white ibis prediction predicted by the model using the proposed predictors exhibits strong correlation with the observed streamflow, with an correlation 0.8.

  2. Storeria occipitomaculata obscura (Florida red-bellied snake)

    Science.gov (United States)

    Muse, Lindy J.; Glorioso, Brad M.; Eaglestone, Chandler A. R.

    2016-01-01

    USA: LOUISIANA: Vermilion Parish: Palmetto Island State Park (29.86335°N, 92.14848°W; WGS 84). 19 February 2016. Lindy J. Muse. Verified by Jeff Boundy. Florida Museum of Natural History (UF 177730, photo voucher). New parish record (Dundee and Rossman 1989. The Amphibians and Reptiles of Louisiana. Louisiana State University Press, Baton Rouge, Louisiana. 300 pp.). Storeria occipitomaculata obscura has not been documented in any of the coastal parishes of Louisiana (Boundy. 2006. Snakes of Louisiana. Louisiana Department of Wildlife & Fisheries, Baton Rouge, Louisiana. 40 pp.). However, this species can be difficult to find in southern Louisiana and other populations in coastal parishes may eventually be discovered. This adult individual (SVL = 292 mm; TL = 70 mm) was found under a log in a wet bottomland forest dominated by Dwarf Palmetto and Bald Cypress.

  3. Water Withdrawals, Use, and Trends in Florida, 2005

    Science.gov (United States)

    Marella, Richard L.

    2009-01-01

    In 2005, the total amount of water withdrawals in Florida was estimated at 18,359 million gallons per day (Mgal/d). Saline water accounted for 11,486 Mgal/d (63 percent), and freshwater accounted for 6,873 Mgal/d (37 percent). Groundwater accounted for 4,247 Mgal/d (62 percent) of freshwater withdrawals, and surface water accounted for the remaining 2,626 Mgal/d (38 percent). Surface water accounted for nearly all (99.9 percent) saline-water withdrawals. An additional 660 Mgal/d of reclaimed wastewater was used in Florida during 2005. The largest amount of freshwater was withdrawn from Palm Beach County, and the largest amount of saline water was withdrawn from Pasco County. Fresh groundwater provided drinking water (public supplied and self-supplied) for 16.19 million people (90 percent of Florida's population), and fresh surface water provided drinking water for 1.73 million people (10 percent). The majority of groundwater withdrawals (nearly 60 percent) in 2005 was obtained from the Floridan aquifer system which is present throughout the entire State. The majority of fresh surface-water withdrawals (59 percent) came from the southern Florida hydrologic unit subregion and is associated with Lake Okeechobee and the canals in the Everglades Agricultural Area of Glades, Hendry, and Palm Beach Counties, as well as the Caloosahatchee River and its tributaries in the agricultural areas of Collier, Glades, Hendry, and Lee Counties. Overall, agricultural irrigation accounted for 40 percent of the total freshwater withdrawals (ground and surface), followed by public supply with 37 percent. Public supply accounted for 52 percent of groundwater withdrawals, followed by agricultural self-supplied (31 percent), ommercial-industrial-mining self-supplied (8.5 percent), recreational irrigation and domestic self-supplied (4 percent each), and power generation (0.5 percent). Agricultural self-supplied accounted for 56 percent of fresh surface-water withdrawals, followed by power

  4. Water withdrawals, use, and trends in Florida, 2010

    Science.gov (United States)

    Marella, Richard L.

    2014-01-01

    In 2010, the total amount of water withdrawn in Florida was estimated to be 14,988 million gallons per day (Mgal/d). Saline water accounted for 8,589 Mgal/d (57 percent) and freshwater accounted for 6,399 Mgal/d (43 percent). Groundwater accounted for 4,166 Mgal/d (65 percent) of freshwater withdrawals, and surface water accounted for the remaining 2,233 Mgal/d (35 percent). Surface water accounted for nearly all (99.9 percent) saline-water withdrawals. An additional 659 Mgal/d of reclaimed wastewater was used in Florida during 2010. Freshwater withdrawals were greatest in Palm Beach County (707 Mgal/d), and saline-water withdrawals were greatest in Hillsborough County (1,715 Mgal/d). Fresh groundwater provided drinking water (public supplied and self-supplied) for 17.33 million people (92 percent of Florida’s population), and fresh surface water provided drinking water for 1.47 million people (8 percent). The statewide public-supply gross per capita use for 2010 was 134 gallons per day, whereas the statewide public-supply domestic per capita use was 85 gallons per day. The majority of groundwater withdrawals (almost 62 percent) in 2010 were obtained from the Floridan aquifer system, which is present throughout most of the State. The majority of fresh surface-water withdrawals (56 percent) came from the southern Florida hydrologic unit subregion and is associated with Lake Okeechobee and the canals in the Everglades Agricultural Area of Glades, Hendry, and Palm Beach Counties, as well as the Caloosahatchee River and its tributaries in the agricultural areas of Collier, Glades, Hendry, and Lee Counties. Overall, agricultural irrigation accounted for 40 percent of the total freshwater withdrawals (ground and surface), followed by public supply with 35 percent. Public supply accounted for 48 percent of groundwater withdrawals, followed by agricultural self-supplied (34 percent), commercial-industrial-mining self-supplied (7 percent), recreational

  5. Spaceport Florida Authority: Business Plan

    Science.gov (United States)

    1996-01-01

    The Spaceport Florida Authority (SFA) was established under Florida Statute by the Governor and Legislature to assist the development of our nation's space transportation industry and to generate new space-related jobs, investment and opportunities statewide. Included in the Authorities' business plan is the statement of work and list of team members involved in creating the report, SFA's current operating concept, market analysis, assessment of accomplishments, a sample operating concept and a "roadmap to success".

  6. Adapting to Rising Sea Level: A Florida Perspective

    Science.gov (United States)

    Parkinson, Randall W.

    2009-07-01

    Global climate change and concomitant rising sea level will have a profound impact on Florida's coastal and marine systems. Sea-level rise will increase erosion of beaches, cause saltwater intrusion into water supplies, inundate coastal marshes and other important habitats, and make coastal property more vulnerable to erosion and flooding. Yet most coastal areas are currently managed under the premise that sea-level rise is not significant and the shorelines are static or can be fixed in place by engineering structures. The new reality of sea-level rise and extreme weather due to climate change requires a new style of planning and management to protect resources and reduce risk to humans. Scientists must: (1) assess existing coastal vulnerability to address short term management issues and (2) model future landscape change and develop sustainable plans to address long term planning and management issues. Furthermore, this information must be effectively transferred to planners, managers, and elected officials to ensure their decisions are based upon the best available information. While there is still some uncertainty regarding the details of rising sea level and climate change, development decisions are being made today which commit public and private investment in real estate and associated infrastructure. With a design life of 30 yrs to 75 yrs or more, many of these investments are on a collision course with rising sea level and the resulting impacts will be significant. In the near term, the utilization of engineering structures may be required, but these are not sustainable and must ultimately yield to "managed withdrawal" programs if higher sea-level elevations or rates of rise are forthcoming. As an initial step towards successful adaptation, coastal management and planning documents (i.e., comprehensive plans) must be revised to include reference to climate change and rising sea-level.

  7. Coastal wetland adaptation to sea level rise: Quantifying potential for landward migration and coastal squeeze

    Science.gov (United States)

    Borchert, Sinéad M.; Osland, Michael J.; Enwright, Nicholas M.; Griffith, Kereen

    2018-01-01

    Coastal wetland ecosystems are expected to migrate landwards in response to rising seas. However, due to differences in topography and coastal urbanization, estuaries vary in their ability to accommodate migration. Low‐lying urban areas can constrain migration and lead to wetland loss (i.e. coastal squeeze), especially where existing wetlands cannot keep pace with rising seas via vertical adjustments. In many estuaries, there is a pressing need to identify landward migration corridors and better quantify the potential for landward migration and coastal squeeze.We quantified and compared the area available for landward migration of tidal saline wetlands and the area where urban development is expected to prevent migration for 39 estuaries along the wetland‐rich USA Gulf of Mexico coast. We did so under three sea level rise scenarios (0.5, 1.0, and 1.5 m by 2100).Within the region, the potential for wetland migration is highest within certain estuaries in Louisiana and southern Florida (e.g. Atchafalaya/Vermilion Bays, Mermentau River, Barataria Bay, and the North and South Ten Thousand Islands estuaries).The potential for coastal squeeze is highest in estuaries containing major metropolitan areas that extend into low‐lying lands. The Charlotte Harbor, Tampa Bay, and Crystal‐Pithlachascotee estuaries (Florida) have the highest amounts of urban land expected to constrain wetland migration. Urban barriers to migration are also high in the Galveston Bay (Texas) and Atchafalaya/Vermilion Bays (Louisiana) estuaries.Synthesis and applications. Coastal wetlands provide many ecosystem services that benefit human health and well‐being, including shoreline protection and fish and wildlife habitat. As the rate of sea level rise accelerates in response to climate change, coastal wetland resources could be lost in areas that lack space for landward migration. Migration corridors are particularly important in highly urbanized estuaries where, due to low‐lying coastal

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from EXPLORER OF THE SEAS in the Caribbean Sea, Coastal Waters of Florida and North Atlantic Ocean from 2012-01-27 to 2012-11-24 (NODC Accession 0108232)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108232 includes Surface underway, chemical, meteorological and physical data collected from EXPLORER OF THE SEAS in the Caribbean Sea, Coastal Waters...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from NOAA Ship RONALD H. BROWN in the Coastal Waters of Florida, North Atlantic Ocean and others from 2004-12-29 to 2005-11-25 (NODC Accession 0081020)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081020 includes Surface underway, chemical, meteorological, optical and physical data collected from NOAA Ship RONALD H. BROWN in the Coastal Waters...

  10. Integrated Coral Observing Network (ICON) - Port Everglades (PVGF1 - Port Everglades, Florida) Meteorological and Oceanographic Observations from 2013-01-01 to 2013-12-31 (NODC Accession 0124002)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  11. Interactions between the invasive Burmese python, Python bivittatus Kuhl, and the local mosquito community in Florida, USA.

    Science.gov (United States)

    Reeves, Lawrence E; Krysko, Kenneth L; Avery, Michael L; Gillett-Kaufman, Jennifer L; Kawahara, Akito Y; Connelly, C Roxanne; Kaufman, Phillip E

    2018-01-01

    The Burmese python, Python bivittatus Kuhl, is a well-established invasive species in the greater Everglades ecosystem of southern Florida, USA. Most research on its ecological impacts focuses on its role as a predator and its trophic interactions with native vertebrate species, particularly mammals. Beyond predation, there is little known about the ecological interactions between P. bivittatus and native faunal communities. It is likely that established populations of P. bivittatus in southern Florida serve as hosts for native mosquito communities. To test this concept, we used mitochondrial cytochrome c oxidase subunit I DNA barcoding to determine the hosts of blood fed mosquitoes collected at a research facility in northern Florida where captive P. bivittatus and Argentine black and white tegu, Salvator merianae (Duméril and Bibron), are maintained in outdoor enclosures, accessible to local mosquitoes. We recovered python DNA from the blood meals of three species of Culex mosquitoes: Culex erraticus (Dyar and Knab), Culex quinquefasciatus Say, and Culex pilosus (Dyar and Knab). Culex erraticus conclusively (P = 0.001; Fisher's Exact Test) took more blood meals from P. bivittatus than from any other available host. While the majority of mosquito blood meals in our sample were derived from P. bivittatus, only one was derived from S. merianae. These results demonstrate that local mosquitoes will feed on invasive P. bivittatus, a recently introduced host. If these interactions also occur in southern Florida, P. bivittatus may be involved in the transmission networks of mosquito-vectored pathogens. Our results also illustrate the potential of detecting the presence of P. bivittatus in the field through screening mosquito blood meals for their DNA.

  12. Interactions between the invasive Burmese python, Python bivittatus Kuhl, and the local mosquito community in Florida, USA.

    Directory of Open Access Journals (Sweden)

    Lawrence E Reeves

    Full Text Available The Burmese python, Python bivittatus Kuhl, is a well-established invasive species in the greater Everglades ecosystem of southern Florida, USA. Most research on its ecological impacts focuses on its role as a predator and its trophic interactions with native vertebrate species, particularly mammals. Beyond predation, there is little known about the ecological interactions between P. bivittatus and native faunal communities. It is likely that established populations of P. bivittatus in southern Florida serve as hosts for native mosquito communities. To test this concept, we used mitochondrial cytochrome c oxidase subunit I DNA barcoding to determine the hosts of blood fed mosquitoes collected at a research facility in northern Florida where captive P. bivittatus and Argentine black and white tegu, Salvator merianae (Duméril and Bibron, are maintained in outdoor enclosures, accessible to local mosquitoes. We recovered python DNA from the blood meals of three species of Culex mosquitoes: Culex erraticus (Dyar and Knab, Culex quinquefasciatus Say, and Culex pilosus (Dyar and Knab. Culex erraticus conclusively (P = 0.001; Fisher's Exact Test took more blood meals from P. bivittatus than from any other available host. While the majority of mosquito blood meals in our sample were derived from P. bivittatus, only one was derived from S. merianae. These results demonstrate that local mosquitoes will feed on invasive P. bivittatus, a recently introduced host. If these interactions also occur in southern Florida, P. bivittatus may be involved in the transmission networks of mosquito-vectored pathogens. Our results also illustrate the potential of detecting the presence of P. bivittatus in the field through screening mosquito blood meals for their DNA.

  13. Molecular composition and bioavailability of dissolved organic nitrogen in a lake flow-influenced river in south Florida, USA

    Science.gov (United States)

    Dissolved organic nitrogen (DON) represents a large percentage of the total nitrogen in rivers and estuaries, and can contribute to coastal eutrophication and hypoxia. This study reports on the composition and bioavailability of DON along the Caloosahatchee River (Florida), a heavily managed system ...

  14. Hydrological and Biogeochemical Controls on Seasonal and Spatial Differences in Food Webs in the Everglades

    Science.gov (United States)

    Kendall, C.; Wankel, S. D.; Bemis, B. E.; Rawlik, P. S.; Krabbenhoft, D. P.; Lange, T.

    2002-05-01

    Stable isotopes can be used to determine the relative trophic positions of biota within a food web, and to improve our understanding of the biomagnification of contaminants. Plants at the base of the food web uptake dissolved organic carbon (DIC) and nitrogen (DIN) for growth, and their tissue reflects the isotopic composition of these sources. Animals then mirror the isotopic composition of the primary producers, as modified by consumer-diet fractionations at successive trophic steps. During 1995-99, we collected algae, macrophyte, invertebrate, and fish samples from 15 USGS sites in the Everglades and analyzed them for d13C and d15N with the goal of characterizing seasonal and spatial differences in food web relations. Carbon isotopes effectively distinguish between two main types of food webs: ones where algae is the dominant base of the food web, which are characteristic of relatively pristine marsh sites with long hydroperiods, and ones where macrophyte debris appears to be a significant source of nutrients, which are apparently characteristic of shorter hydroperiod sites, and nutrient-impacted marshes and canals. There usually is an inverse relation between d13C and d15N of organisms over time, especially in more pristine environments, reflecting seasonal changes in the d13C of DIC and the d15N of DIN. The d13C and d15N of algae also show strong positive correlations with seasonal changes in water levels. This variability is substantially damped up the food chain, probably because of the longer integration times of animals vs. plants. We speculate that these seasonal shifts in water level result in changes in biogeochemical reactions and nutrient levels, with corresponding variations in the d15N and d13C of biota. For example, small changes in water level may change the balance of photosynthesis, bacterial respiration, and atmospheric exchange reactions that control the d13C of DIC. Such changes will probably also affect the d15N of dissolved inorganic N (DIN

  15. Exploring the Dominant Modes of Shoreline Change Along the Central Florida Atlantic Coast

    Science.gov (United States)

    Conlin, M. P.; Adams, P. N.; Jaeger, J. M.; MacKenzie, R.

    2017-12-01

    Geomorphic change within the littoral zone can place communities, ecosystems, and critical infrastructure at risk as the coastal environment responds to changes in sea level, sediment supply, and wave climate. At NASA's Kennedy Space Center near Cape Canaveral, Florida, chronic shoreline retreat currently threatens critical launch infrastructure, but the spatial (alongshore) pattern of this hazard has not been well documented. During a 5-year monitoring campaign (2009-2014), 86 monthly and rapid-response RTK GPS surveys were completed along this 11 km-long coastal reach in order to monitor and characterize shoreline change and identify links between ocean forcing and beach morphology. Results indicate that the study area can be divided into four behaviorally-distinct alongshore regions based on seasonal variability in shoreline change, mediated by the complex offshore bathymetry of the Cape Canaveral shoals. In addition, seasonal erosion/accretion cycles are regularly interrupted by large erosive storm events, especially during the anomalous wave climates produced during winter Nor'Easter storms. An effective tool for analyzing multidimensional datasets like this one is Empirical Orthogonal Function (EOF) analysis, a technique to determine the dominant spatial and temporal signals within a dataset. Using this approach, it is possible to identify the main time and space scales (modes) along which coastal changes are occurring. Through correlation of these changes with oceanographic forcing mechanisms, we are enabled to infer the principal drivers of shoreline change at this site. Here, we document the results of EOF analysis applied to the Cape Canaveral shoreline change dataset, and further correlate the results of this analysis with oceanographic forcings in order to reveal the dominant modes as well as drivers of coastal variability along the central Atlantic coast of Florida. This EOF-based analysis, which is the first such analysis in the region, is shedding

  16. Hydrologic conditions in urban Miami-Dade County, Florida, and the effect of groundwater pumpage and increased sea level on canal leakage and regional groundwater flow

    Science.gov (United States)

    Hughes, Joseph D.; White, Jeremy T.

    2014-01-01

    The extensive and highly managed surface-water system in southeastern Florida constructed during the 20th Century has allowed for the westward expansion of urban and agricultural activities in Miami-Dade County. In urban areas of the county, the surface-water system is used to (1) control urban flooding, (2) supply recharge to production well fields, and (3) control seawater intrusion. Previous studies in Miami-Dade County have determined that on a local scale, leakage from canals adjacent to well fields can supply a large percentage (46 to 78 percent) of the total groundwater pumpage from production well fields. Canals in the urban areas also receive seepage from the Biscayne aquifer that is derived from a combination of local rainfall and groundwater flow from Water Conservation Area 3 and Everglades National Park, which are west of urban areas of Miami-Dade County.

  17. Estimating Coastal Digital Elevation Model (DEM) Uncertainty

    Science.gov (United States)

    Amante, C.; Mesick, S.

    2017-12-01

    Integrated bathymetric-topographic digital elevation models (DEMs) are representations of the Earth's solid surface and are fundamental to the modeling of coastal processes, including tsunami, storm surge, and sea-level rise inundation. Deviations in elevation values from the actual seabed or land surface constitute errors in DEMs, which originate from numerous sources, including: (i) the source elevation measurements (e.g., multibeam sonar, lidar), (ii) the interpolative gridding technique (e.g., spline, kriging) used to estimate elevations in areas unconstrained by source measurements, and (iii) the datum transformation used to convert bathymetric and topographic data to common vertical reference systems. The magnitude and spatial distribution of the errors from these sources are typically unknown, and the lack of knowledge regarding these errors represents the vertical uncertainty in the DEM. The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) has developed DEMs for more than 200 coastal communities. This study presents a methodology developed at NOAA NCEI to derive accompanying uncertainty surfaces that estimate DEM errors at the individual cell-level. The development of high-resolution (1/9th arc-second), integrated bathymetric-topographic DEMs along the southwest coast of Florida serves as the case study for deriving uncertainty surfaces. The estimated uncertainty can then be propagated into the modeling of coastal processes that utilize DEMs. Incorporating the uncertainty produces more reliable modeling results, and in turn, better-informed coastal management decisions.

  18. Review of Florida Red Tide and Human Health Effects

    Science.gov (United States)

    Fleming, Lora E.; Kirkpatrick, Barbara; Backer, Lorraine C.; Walsh, Cathy J.; Nierenberg, Kate; Clark, John; Reich, Andrew; Hollenbeck, Julie; Benson, Janet; Cheng, Yung Sung; Naar, Jerome; Pierce, Richard; Bourdelais, Andrea J; Abraham, William M.; Kirkpatrick, Gary; Zaias, Julia; Wanner, Adam; Mendes, Eliana; Shalat, Stuart; Hoagland, Porter; Stephan, Wendy; Bean, Judy; Watkins, Sharon; Clarke, Tainya; Byrne, Margaret; Baden, Daniel G.

    2010-01-01

    This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red tides. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red tide research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue—one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red tide organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people. PMID:21218152

  19. Electromagnetic methods for rapidly characterizing porosity distributions in the upper part of the Biscayne aquifer, southern Florida

    Science.gov (United States)

    Mount, G. J.; Comas, X.; Cunningham, K. J.

    2010-12-01

    Gregory J. Mount1, Xavier Comas1, and Kevin J. Cunningham2 1Department of Geosciences, Florida Atlantic University, Boca Raton, Florida 33431 2U.S. Geological Survey, 3110 SW 9th Avenue, Fort Lauderdale, Florida 33315 Although conventional hydrological techniques of aquifer characterization, which rely on data obtained from boreholes and wells can provide very valuable direct information about porosity, storativity and transmissivity, they are invasive and can often become time consuming and relatively expensive. Near-surface electromagnetic techniques, such as ground penetrating radar (GPR), provide indirect measurements of aquifer properties that complement traditional point measurements and provide a laterally continuous subsurface image in an efficient and cost effective manner with a minimal impact on the environment. We investigated the carbonate rocks of the uppermost part (3-5 meters) of the Biscayne aquifer in Everglades National Park to better understand the distribution of karst features that can create concentrated flow of groundwater, nutrients, and contaminants. As the Biscayne aquifer is the primary source of drinking water for millions of people in southern Palm Beach, Broward, and Miami-Dade counties, knowledge about these features could create a more complete understanding of a critical natural resource. These macroporous elements contribute to the overall storage, permeability, and transmissivity of the aquifer and for that reason, delineation of their distribution and areal extent should aid in the development of more accurate groundwater flow models. The macroporous elements create numerous hyperbolic diffractions in GPR common offset profiles, and these diffractions are used directly used to estimate two-dimensional (2D) models of electromagnetic (EM) wave velocity in the subsurface. Such models are further contrasted with one-dimensional (1D) velocity models using GPR common mid-point surveys at selected locations. In order to estimate

  20. Southern African Coastal vulnerability assessment

    CSIR Research Space (South Africa)

    Rautenbach, C

    2015-10-01

    Full Text Available or business. The CSIR coastal systems group uses specialist skills in coastal engineering, geographic engineering systems and numerical modelling to assess and map vulnerable coastal ecosystems to develop specific adaptation measures and coastal protection...

  1. Large reptiles and cold temperatures: Do extreme cold spells set distributional limits for tropical reptiles in Florida?

    Science.gov (United States)

    Mazzotti, Frank J.; Cherkiss, Michael S.; Parry, Mark; Beauchamp, Jeff; Rochford, Mike; Smith, Brian J.; Hart, Kristen M.; Brandt, Laura A.

    2016-01-01

    Distributional limits of many tropical species in Florida are ultimately determined by tolerance to low temperature. An unprecedented cold spell during 2–11 January 2010, in South Florida provided an opportunity to compare the responses of tropical American crocodiles with warm-temperate American alligators and to compare the responses of nonnative Burmese pythons with native warm-temperate snakes exposed to prolonged cold temperatures. After the January 2010 cold spell, a record number of American crocodiles (n = 151) and Burmese pythons (n = 36) were found dead. In contrast, no American alligators and no native snakes were found dead. American alligators and American crocodiles behaved differently during the cold spell. American alligators stopped basking and retreated to warmer water. American crocodiles apparently continued to bask during extreme cold temperatures resulting in lethal body temperatures. The mortality of Burmese pythons compared to the absence of mortality for native snakes suggests that the current population of Burmese pythons in the Everglades is less tolerant of cold temperatures than native snakes. Burmese pythons introduced from other parts of their native range may be more tolerant of cold temperatures. We documented the direct effects of cold temperatures on crocodiles and pythons; however, evidence of long-term effects of cold temperature on their populations within their established ranges remains lacking. Mortality of crocodiles and pythons outside of their current established range may be more important in setting distributional limits.

  2. Epidemiology of Ciguatera in Florida.

    Science.gov (United States)

    Radke, Elizabeth G; Reich, Andrew; Morris, John Glenn

    2015-08-01

    Ciguatera is the most commonly reported marine food-borne illness worldwide. Because there is a biological plausibility that ciguatera may be impacted by long-term climate variability and Florida is on the northern border of the geographic distribution of ciguatera, it is important to update our understanding of its epidemiology in Florida. We performed an analysis of 291 reports in Florida from 2000 to 2011 and an e-mail survey of 5,352 recreational fishers to estimate incidence and underreporting and identify high risk demographic groups, fish types, and catch locations. Incidence was 5.6 per 100,000 adjusted for underreporting. Hispanics had the highest incidence rate (relative risk [RR] = 3.4) and were more likely to eat barracuda than non-Hispanics. The most common catch locations for ciguatera-causing fish were the Bahamas and Florida Keys. Cases caused by fish from northern Florida were infrequent. These results indicate that ciguatera incidence is higher than estimated from public health reports alone. There is little evidence that incidence or geographic range has increased because of increased seawater temperatures since earlier studies. © The American Society of Tropical Medicine and Hygiene.

  3. Coastal Erosion Armoring 2005

    Data.gov (United States)

    California Natural Resource Agency — Coastal armoring along the coast of California, created to provide a database of all existing coastal armoring based on data available at the time of creation....

  4. Peat accretion and phosphorus accumulation along a eutrophication gradient in the northern Everglades

    International Nuclear Information System (INIS)

    Craft, C.B.; Richardson, C.J.

    1993-01-01

    Recent rates of peat accretion (as determined by Cs-137) and N, P, organic C, Ca and Na accumulation were measured along a 10 km eutrophication gradient in the northern Everglades area of Water Conservation Area 2A (WCA 2A) that has received agricultural drainage from the Hillsboro canal for the past 25-30 yrs. Rates of peat accretion were highest at sampling locations closest to the Hillsboro canal. Phosphorus and Na accumulation were a function of both peat accretion and soil P and Na concentrations. Although sodium enrichment of the peat was limited to 1.6 km downstream of the Hillsboro canal, increased rates of Na accumulation penetrated 5.2 km downstream of the Hillsboro canal, the extent of the area of enhanced peat accretion. In contrast to P and Na, there was no difference in the concentration of soil organic C, N and Ca along the eutrophication gradient. However, there was a gradient of organic C, N and Ca accumulation corresponding to the area of enhanced peat accretion. The areal extent of enhanced peat accretion and organic C, N, Ca and Na accumulation encompasses approximately 7700 ha of the northern part of WCA 2A. The area of enhanced P accumulation is larger, covering 11,500 ha or 26% of the total area of WCA 2A. The findings suggest that P accumulation is dependent on the P concentration in the water column and that decreasing P loadings per unit area result in less P storage per unit area

  5. Climatic and hydrologic influences on wading bird foraging patterns in Everglades National Park

    Science.gov (United States)

    Kwon, H.; Lall, U.; Engel, V.

    2008-05-01

    The ability to map the relationship between ecological outcomes and hydrologic conditions in the Everglades National Park is a key building block for the restoration program, a primary goal of which is to improve habitat for wading bird species and to promote nesting. This paper reports on a model linking wading bird foraging numbers to hydrologic conditions in the Park We demonstrate that seasonal hydrologic statistics derived from a single water level recording site are a) well correlated with water depths throughout most areas of the Park, and b) are effective as predictors of Great Egret and White Ibis foraging numbers at the end of the nesting season when using a nonlinear Bayesian Hierarchical model that permits the estimation of a conditional distribution of bird populations given the seasonal statistics of stage at the index location. Model parameters are estimated using a Markov Chain Monte Carlo procedure. Parameter and model uncertainty are both assessed as a byproduct of the estimation process. Water depths at the beginning of the nesting season, the recession rate, and the numbers of reversals in the recession are identified as significant predictors, consistent with the hydrologic conditions considered important in the seasonal production and concentration of prey organisms in this system. Long-term hydrologic records at the index location allow for a retrospective analysis (1952-2006) of wading bird foraging numbers showing low frequency oscillations in response to decadal and multi-decadal fluctuations in hydroclimatic conditions.

  6. Base-line data on everglades soil-plant systems: elemental composition, biomass, and soil depth

    International Nuclear Information System (INIS)

    Volk, B.G.; Schemnitz, S.D.; Gamble, J.F.; Sartain, J.B.

    1975-01-01

    Plants and soils from plots in the Everglades Wildlife Management Area, Conservation Area 3, were examined. Chemical composition (N, P, K, Ca, Mg, Na, Cu, Fe, Mn, Zn, Co, Sr, Pb, Ni, Cr, Al, and Si) of most plant and soil digests was determined. Cladium jamaicense was the predominant plant species contributing to biomass in all plots except the wet prairie, where Rhynchospora sp. and Panicum hemitomon were most common. The biomass of dead C. jamaicense was greater than that of the living plants in unburned saw-grass plots. The burned saw grass, muck burn, and wet prairie were characterized by a large number of plant species per square meter but smaller average biomass production than the unburned saw-grass locations. Levels of Cu, Mn, Ca, Mg, K, and N in C. jamaicense differed significantly across locations. Highly significant differences in elemental composition existed between plant species. Concentrations of several elements (particularly Zn, Ca, Mg, P, and N) were low in live C. jamaicense compared with other plant species. Cesium-137 levels ranged from 670 to 3100 pCi/kg in sandy and in organic soils, respectively. Polygonum had a 137 Cs level of 11,600 pCi/kg. Dead C. jamaicense indicated a rapid leaching loss of 137 Cs from dead tissue

  7. Potential ecological impacts of an oil spill in the Florida Keys

    International Nuclear Information System (INIS)

    Moore, E.A.; Swain, H.M.

    1991-01-01

    The Florida Keys are a unique ecosystem of natural communities, natural resources, and high biodiversity. The strong emphasis placed on the protection of the environment is reflected in the wide variety of parks and protected areas. The possibility of a major oil spill from extensive tanker and freighter traffic in the Florida Straits is cause for concern since all of the natural communities and associated biota in the coastal and marine environments are vulnerable to oiling. This paper will review and synthesize available information and present new data concerning the potential ecological impacts of a major spill in the Florida Keys. The review will focus on: the distribution of natural communities; the presence of endangered species; the location of parks and protected areas; and the abundance of natural resources

  8. Review of Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer in Southern Florida

    Science.gov (United States)

    Reese, Ronald S.

    2006-01-01

    Introduction: Interest and activity in aquifer storage and recovery (ASR) in southern Florida has increased greatly during the past 10 to 15 years. ASR wells have been drilled to the carbonate Floridan aquifer system at 30 sites in southern Florida, mostly by local municipalities or counties located in coastal areas. The primary storage zone at these sites is contained within the brackish to saline Upper Floridan aquifer of the Floridan aquifer system. The strategy for use of ASR in southern Florida is to store excess freshwater available during the wet season in an aquifer and recover it during the dry season when needed for supplemental water supply. Each ASR cycle is defined by three periods: recharge, storage, and recovery. This fact sheet summarizes some of the findings of a second phase retrospective assessment of existing ASR facilities and sites.

  9. Passage Key Inlet, Florida; CMS Modeling and Borrow Site Impact Analysis

    Science.gov (United States)

    2016-06-01

    Impact Analysis by Kelly R. Legault and Sirisha Rayaprolu PURPOSE: This Coastal and Hydraulics Engineering Technical Note (CHETN) describes the...driven sediment transport at Passage Key Inlet. This analysis resulted in issuing a new Florida Department of Environmental Protection (FDEP) permit to...Funding for this study was provided by the USACE Regional Sediment Management (RSM) Program, a Navigation Research, Development, and Technology Portfolio

  10. Coastal Imaging Spectroscopy

    Science.gov (United States)

    2006-09-30

    Year, Semi-Finalist, Florida Environmental Research Institute, W. Paul Bissett, Ph.D., Executive Director, Greater Tampa Chamber of Commerce . 2004...Small Business of the Year, -Finalist, Florida Environmental Research Institute, W. Paul Bissett, Ph.D., Executive Director, Greater Tampa Chamber of Commerce .

  11. Transpiration of gaseous elemental mercury through vegetation in a subtropical wetland in florida

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, Steven Eric [ORNL; Dong, Weijin [ORNL; Meyers, Tilden [NOAA, Oak Ridge, TN

    2002-07-01

    Four seasonal sampling campaigns were carried out in the Florida Everglades to measure elemental Hg vapor (Hg{sup o}) fluxes over emergent macrophytes using a modified Bowen ratio gradient approach. The predominant flux of Hg{sup o} over both invasive cattail and native sawgrass stands was emission; mean day time fluxes over cattail ranged from {approx}20 (winter) to {approx}40 (summer) ng m{sup -2} h{sup -1}. Sawgrass fluxes were about half those over cattail during comparable periods. Emission from vegetation significantly exceeded evasion of Hg{sup o} from the underlying water surface ({approx}1-2 ng m{sup -2} h{sup -1}) measured simultaneously using floating chambers. Among several environmental factors (e.g. CO{sub 2} flux, water vapor flux, wind speed, water, air and leaf temperature, and solar radiation), water vapor exhibited the strongest correlation with Hg{sup o} flux, and transpiration is suggested as an appropriate term to describe this phenomenon. The lack of significant Hg{sup o} emissions from a live, but uprooted (floating) cattail stand suggests that a likely source of the transpired Hg{sup o} is the underlying sediments. The pattern of Hg{sup o} fluxes typically measured indicated a diel cycle with two peaks, possibly related to different gas exchange dynamics: one in early morning related to lacunal gas release, and a second at midday related to transpiration; nighttime fluxes approached zero.

  12. Hydrology of Southeast Florida and Associated Topics.

    Science.gov (United States)

    Monsour, William, Comp.; Moyer, Maureen, Comp.

    This booklet deals with the hydrology of southeastern Florida. It is designed to provide the citizen, teacher, or student with hydrological information, to promote an understanding of water resources, and to initiate conservation practices within Florida communities. The collection of articles within the booklet deal with Florida water resources…

  13. Variations in water clarity and bottom albedo in Florida Bay from 1985 to 1997

    Science.gov (United States)

    Stumpf, R.P.; Frayer, M.L.; Durako, M.J.; Brock, J.C.

    1999-01-01

    Following extensive seagrass die-offs of the late 1980s and early 1990s, Florida Bay reportedly had significant declines in water clarity due to turbidity and algal blooms. Scant information exists on the extent of the decline, as this bay was not investigated for water quality concerns before the die-offs and limited areas were sampled after the primary die-off. We use imagery from the Advanced Very High Resolution Radiometer (AVHRR) to examine water clarity in Florida Bay for the period 1985 to 1997. The AVHRR provides data on nominal water reflectance and estimated fight attenuation, which are used here to describe turbidity conditions in the bay on a seasonal basis. In situ observations on changes in seagrass abundance within the bay, combined with the satellite data, provide additional insights into losses of seagrass. The imagery shows an extensive region to the west of Florida Bay having increased reflectance and fight attenuation in both winter and summer beginning in winter of 1988. These increases are consistent with a change from dense seagrass to sparse or negligible cover. Approximately 200 km2 of these offshore seagrasses may have been lost during the primary die-off (1988 through 1991), significantly more than in the bay. The imagery shows the distribution and timing of increased turbidity that followed the die-offs in the northwestern regions of the bay, exemplified in Rankin Lake and Johnson Key Basin, and indicates that about 200 km2 of dense seagrass may have been lost or severely degraded within the bay from the start of the die-off. The decline in water clarity has continued in the northwestern bay since 1991. The area west of the Everglades National Park boundaries has shown decreases in both winter turbidity and summer reflectances, suggestive of partial seagrass recovery. Areas of low reflectance associated with a major Syringodium filiforme seagrass meadow north of Marathon (Vaca Key, in the Florida Keys) appear to have expanded westward

  14. Miami, Florida: The Magic City

    Science.gov (United States)

    McIntosh, Phyllis

    2008-01-01

    With its subtropical climate and intimate ties to Latin America, Miami is like no other city in the United States. More than 65 percent of its population is Hispanic, and Spanish is the most commonly heard language. Situated at the southern tip of the 500-mile-long Florida peninsula, Miami is the largest urban area in the southeastern United…

  15. Residential Energy Efficiency Potential: Florida

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Florida single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  16. Endosulfan and its metabolite, endosulfan sulfate, in freshwater ecosystems of South Florida: a probabilistic aquatic ecological risk assessment.

    Science.gov (United States)

    Rand, Gary M; Carriger, John F; Gardinali, Piero R; Castro, Joffre

    2010-06-01

    Endosulfan is an insecticide-acaricide used in South Florida and is one of the remaining organochlorine insecticides registered under the Federal Insecticide Fungicide and Rodenticide Act by the U.S.EPA. The technical grade material consists of two isomers (alpha-, beta-) and the main environmental metabolite in water, sediment and tissue is endosulfan sulfate through oxidation. A comprehensive probabilistic aquatic ecological risk assessment was conducted to determine the potential risks of existing exposures to endosulfan and endosulfan sulfate in freshwaters of South Florida based on historical data (1992-2007). The assessment included hazard assessment (Tier 1) followed by probabilistic risk assessment (Tier 2). Tier 1 compared actual measured concentrations in surface freshwaters of 47 sites in South Florida from historical data to U.S.EPA numerical water quality criteria. Based on results of Tier 1, Tier 2 focused on the acute and chronic risks of endosulfan at nine sites by comparing distributions of surface water exposure concentrations of endosulfan [i.e., for total endosulfan (summation of concentrations of alpha- and beta-isomers plus the sulfate), alpha- plus beta-endosulfan, and endosulfan sulfate (alone)] with distributions of species effects from laboratory toxicity data. In Tier 2 the distribution of total endosulfan in fish tissue (whole body) from South Florida freshwaters was also used to determine the probability of exceeding a distribution of whole body residues of endosulfan producing mortality (critical lethal residues). Tier 1 showed the majority of endosulfan water quality violations in South Florida were at locations S-178 followed by S-177 in the C-111 system (southeastern boundary of Everglades National Park (ENP)). Nine surface water sampling sites were chosen for Tier 2. Tier 2 showed the highest potentially affected fraction of toxicity values (>10%) by the estimated 90th centile exposure concentration (total endosulfan) was at S-178

  17. Outlook for coastal plain forests: a subregional report from the Southern Forest Futures Project

    Science.gov (United States)

    Kier Klepzig; Richard Shelfer; Zanethia Choice

    2014-01-01

    The U.S. Coastal Plain consists of seven sections: the Northern Atlantic, Eastern Atlantic, Peninsular Florida, Southern Gulf, Middle Gulf-East, Middle Gulf-West, and Western Gulf. It covers a large area, consists of a diverse array of habitats, and supports a diverse array of uses. This report presents forecasts from the Southern Forest Futures Project that are...

  18. Long-term environmental drivers of DOC fluxes: Linkages between management, hydrology and climate in a subtropical coastal estuary

    Science.gov (United States)

    Regier, Peter; Briceño, Henry; Jaffé, Rudolf

    2016-12-01

    Urban and agricultural development of the South Florida peninsula has disrupted historic freshwater flow in the Everglades, a hydrologically connected ecosystem stretching from central Florida to the Gulf of Mexico, USA. Current system-scale restoration efforts aim to restore natural hydrologic regimes to reestablish pre-drainage ecosystem functioning through increased water availability, quality and timing. Aquatic transport of carbon in this ecosystem, primarily as dissolved organic carbon (DOC), plays a critical role in biogeochemical cycling and food-web dynamics, and will be affected both by water management policies and climate change. To better understand DOC dynamics in South Florida estuaries and how hydrology, climate and water management may affect them, 14 years of monthly data collected in the Shark River estuary were used to examine DOC flux dynamics in a broader environmental context. Multivariate statistical methods were applied to long-term datasets for hydrology, water quality and climate to untangle the interconnected environmental drivers that control DOC export at monthly and annual scales. DOC fluxes were determined to be primarily controlled by hydrology but also by seasonality and long-term climate patterns and episodic weather events. A four-component model (salinity, rainfall, inflow, Atlantic Multidecadal Oscillation) capable of predicting DOC fluxes (R2 = 0.84, p water management and salinity.

  19. Lessons Learned from the First Decade of Adaptive Management in Comprehensive Everglades Restoration

    Directory of Open Access Journals (Sweden)

    Andrew J. LoSchiavo

    2013-12-01

    Full Text Available Although few successful examples of large-scale adaptive management applications are available to ecosystem restoration scientists and managers, examining where and how the components of an adaptive management program have been successfully implemented yields insight into what approaches have and have not worked. We document five key lessons learned during the decade-long development and implementation of the Comprehensive Everglades Restoration Plan (CERP Collaborative Adaptive Management Program that might be useful to other adaptive management practitioners. First, legislative and regulatory authorities that require the development of an adaptive management program are necessary to maintain funding and support to set up and implement adaptive management. Second, integration of adaptive management activities into existing institutional processes, and development of technical guidance, helps to ensure that adaptive management activities are understood and roles and responsibilities are clearly articulated so that adaptive management activities are implemented successfully. Third, a strong applied science framework is critical for establishing a prerestoration ecosystem reference condition and understanding of how the system works, as well as for providing a conduit for incorporating new scientific information into the decision-making process. Fourth, clear identification of uncertainties that pose risks to meeting restoration goals helps with the development of hypothesis-driven strategies to inform restoration planning and implementation. Tools such as management options matrices can provide a coherent way to link hypotheses to specific monitoring efforts and options to adjust implementation if performance goals are not achieved. Fifth, independent external peer review of an adaptive management program provides important feedback critical to maintaining and improving adaptive management implementation for ecosystem restoration. These lessons

  20. Capture and characterization of particulate phosphorus from farm drainage waters in the Everglades Agricultural Area

    Science.gov (United States)

    Bhadha, J. H.; Lang, T.; Daroub, S.

    2012-12-01

    The buildup of highly labile, organic, phosphorus (P)-enriched sediments in farms canals within the Everglades Agricultural Area (EAA) has been associated with the production of floating aquatic vegetation. During drainage events, these sediments are susceptible to transport and contribute to the overall P load. In order to evaluate the total P load exiting the farm canals, a settling tank experiment was conducted to capture the sediments during drainage events from eight farms. Drainage water was channelized through two 200L polypropylene collection tanks which allowed sediments to settle at the bottom based on its particle size. Water was carefully siphoned out of the tanks and the sediments collected for analyses. A five step P-fractionation process was used to distinguish organic (o) and inorganic (i) forms of P: KCl extractable P, NaOH extractable P, HCl extractable P, and residual P. The KCl-Pi fraction represents the labile Pi that is water soluble and exchangeable (loosely adsorbed); NaOH extractable P represents Fe- and Al- bound inorganic P (NaOH-Pi) and organic P associated with humic and fulvic acids (NaOH-Po). The HCl-Pi fraction includes Ca- and Mg- bound P, while Residue-P represents recalcitrant organic P compounds and P bound to minerals. The sediments were also used to conduct a P-flux study under both aerobic and anaerobic conditions. Our goal is to provide growers with vital information and insight into P loading that will help them in their efforts to reduce off-farm P loads in the EAA.

  1. The Effect of Aquatic Vegetation on Water Quality in the Everglades Agricultural Area Canals

    Science.gov (United States)

    Gomez, S. M.; Bhadha, J. H.; Lang, T. A.; Josan, M. S.; Daroub, S. H.

    2011-12-01

    The canals in the Everglades Agricultural Area contain an abundance of floating aquatic vegetation (FAV) and submerged aquatic vegetation (SAV). These FAV flourish in waters with high phosphorus (P) concentrations and prevent the co-precipitation of P with the limestone bedrock (CaCO3). To test the effects of FAV and SAV and the presence of sediments on water quality in the canals, a lysimeter study was set up and stocked with FAV (water lettuce) and SAV (filamentous algae). There were four treatments with four replicates Treatment one contained limerock, sediment from the canals, and FAV. Treatment two contained limerock, sediment, and SAV. Treatment three contained limerock and FAV, while treatment four had limerock and SAV. After 7 days, the buckets were drained and replaced the water with new, high P canal water. Water samples were taken at 0, 0.25, 1, 3, and 7 days after each weekly water exchange. To test water quality soluble reactive P, total P, total dissolved P, Ca, and total organic carbon were analyzed. The impact of FAV and SAV and canal sediments on water quality will be discussed. We hypothesize water lettuce treatments will initially result in a reduction in P-concentration in all species, but will only serve as a short-term sink because of their high turn-over rate and production of labile high-P sediment (floc). In addition, we hypothesize the treatments with no sediment will have more P reduction because of the availability for P to co-precipitate with CaCO3.

  2. Coastal Economic Trends for Coastal Geographies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These market data provide a comprehensive set of measures of changes in economic activity throughout the coastal regions of the United States. In regard to the...

  3. Hurricane risk management and climate information gatekeeping in southeast Florida

    Science.gov (United States)

    Treuer, G.; Bolson, J.

    2013-12-01

    Tropical storms provide fresh water necessary for healthy economies and health ecosystems. Hurricanes, massive tropical storms, threaten catastrophic flooding and wind damage. Sea level rise exacerbates flooding risks from rain and storm surge for coastal communities. Climate change adaptation measures to manage this risk must be implemented locally, but actions at other levels of government and by neighboring communities impact the options available to local municipalities. When working on adaptation local decision makers must balance multiple types of risk: physical or scientifically described risks, legal risks, and political risks. Generating usable or actionable climate science is a goal of the academic climate community. To do this we need to expand our analysis to include types of risk that constrain the use of objective science. Integrating physical, legal, and political risks is difficult. Each requires specific expertise and uses unique language. An opportunity exists to study how local decision makers manage all three on a daily basis and how their risk management impacts climate resilience for communities and ecosystems. South Florida's particular vulnerabilities make it an excellent case study. Besides physical vulnerabilities (low elevation, intense coastal development, frequent hurricanes, compromised ecosystems) it also has unique legal and political challenges. Federal and state property rights protections create legal risks for government action that restricts land use to promote climate adaptation. Also, a lack of cases that deal with climate change creates uncertainty about the nature of these legal risks. Politically Florida is divided ideologically and geographically. The regions in the southeast which are most vulnerable are predominantly Hispanic and under-represented at the state level, where leadership on climate change is functionally nonexistent. It is conventional wisdom amongst water managers in Florida that little climate adaptation

  4. Effects of Seasonal and Spatial Differences in Food Webs on Mercury Concentrations in Fish in the Everglades

    Science.gov (United States)

    Kendall, C.; Bemis, B. E.; Wankel, S. D.; Rawlik, P. S.; Lange, T.; Krabbenhoft, D. P.

    2002-05-01

    A clear understanding of the aquatic food web is essential for determining the entry points and subsequent biomagnification pathways of contaminants such as methyl-mercury (MeHg) in the Everglades. Anthropogenic changes in nutrients can significantly affect the entry points of MeHg by changing food web structure from one dominated by algal productivity to one dominated by macrophytes and associated microbial activity. These changes in the base of the food web can also influence the distribution of animals within the ecosystem, and subsequently the bioaccumulation of MeHg up the food chain. As part of several collaborations with local and other federal agencies, more than 7000 Everglades samples were collected in 1995-99, and analysed for d13C and d15N. Many organisms were also analysed for d34S, gut contents, total Hg, and MeHg. Carbon isotopes effectively distinguish between two main types of food webs: ones where algae is the dominant base of the food web, which are characteristic of relatively pristine marsh sites with long hydroperiods, and ones where macrophyte debris appears to be a significant source of nutrients, which are apparently characteristic of shorter hydroperiod sites, and nutrient-impacted marshes and canals. Many organisms show significant (5-12%) spatial and temporal differences in d13C and d15N values across the Everglades. These differences may reflect site and season-specific differences in the relative importance of algae vs. macrophyte debris to the food web. However, there is a lack of evidence that these sites otherwise differ in food chain length (as determined by d15N values). This conclusion is generally supported by gut contents and mercury data. Furthermore, there are no statistically significant differences between the Delta d15N (predator-algae) values at pristine marsh, nutrient-impacted marsh, or canal sites. The main conclusions from this preliminary comparison of gut contents, stable isotope, and Hg data are: (1) there is

  5. Water Quality in Big Cypress National Preserve and Everglades National Park - Trends and Spatial Characteristics of Selected Constituents

    Science.gov (United States)

    Miller, Ronald L.; McPherson, Benjamin F.; Sobczak, Robert; Clark, Christine

    2004-01-01

    Seasonal changes in water levels and flows in Big Cypress National Preserve (BICY) and Everglades National Park (EVER) affect water quality. As water levels and flows decline during the dry season, physical, geochemical and biological processes increase the breakdown of organic materials and the build-up of organic waste, nutrients, and other constituents in the remaining surface water. For example, concentrations of total phosphorus in the marsh are less than 0.01 milligram per liter (mg/L) during much of the year. Concentrations can rise briefly above this value during the dry season and occasionally exceed 0.1 mg/L under drought conditions. Long-term changes in water levels, flows, water management, and upstream land use also affect water quality in BICY and EVER, based on analysis of available data (1959-2000). During the 1980's and early 1990's, specific conductance and concentrations of chloride increased in the Taylor Slough and Shark River Slough. Chloride concentrations more than doubled from 1960 to 1990, primarily due to greater canal transport of high dissolved solids into the sloughs. Some apparent long-term trends in sulfate and total phosphorus were likely attributable, at least in part, to high percentages of less-than and zero values and to changes in reporting levels over the period of record. High values in nutrient concentrations were evident during dry periods of the 1980's and were attributable either to increased canal inflows of nutrient-rich water, increased nutrient releases from breakdown of organic bottom sediment, or increased build-up of nutrient waste from concentrations of aquatic biota and wildlife in remaining ponds. Long-term changes in water quality over the period of record are less pronounced in the western Everglades and the Big Cypress Swamp; however, short-term seasonal and drought-related changes are evident. Water quality varies spatially across the region because of natural variations in geology, hydrology, and vegetation

  6. Adaptation to Sea Level Rise in Coastal Units of the National Park Service (Invited)

    Science.gov (United States)

    Beavers, R. L.

    2010-12-01

    83 National Park Service (NPS) units contain nearly 12,000 miles of coastal, estuarine and Great Lakes shoreline and their associated resources. Iconic natural features exist along active shorelines in NPS units, including, e.g., Cape Cod, Padre Island, Hawaii Volcanoes, and the Everglades. Iconic cultural resources managed by NPS include the Cape Hatteras Lighthouse, Fort Sumter, the Golden Gate, and heiaus and fish traps along the coast of Hawaii. Impacts anticipated from sea level rise include inundation and flooding of beaches and low lying marshes, shoreline erosion of coastal areas, and saltwater intrusion into the water table. These impacts and other coastal hazards will threaten park beaches, marshes, and other resources and values; alter the viability of coastal roads; and require the NPS to re-evaluate the financial, safety, and environmental implications of maintaining current projects and implementing future projects in ocean and coastal parks in the context of sea level rise. Coastal erosion will increase as sea levels rise. Barrier islands along the coast of Louisiana and North Carolina may have already passed the threshold for maintaining island integrity in any scenario of sea level rise (U.S. Climate Change Science Program Synthesis and Assessment Program Report 4.1). Consequently, sea level rise is expected to hasten the disappearance of historic coastal villages, coastal wetlands, forests, and beaches, and threaten coastal roads, homes, and businesses. While sea level is rising in most coastal parks, some parks are experiencing lower water levels due to isostatic rebound and lower lake levels. NPS funded a Coastal Vulnerability Project to evaluate the physical and geologic factors affecting 25 coastal parks. The USGS Open File Reports for each park are available at http://woodshole.er.usgs.gov/project-pages/. These reports were designed to inform park planning efforts. NPS conducted a Storm Vulnerability Project to provide ocean and coastal

  7. Statistical analysis and mapping of water levels in the Biscayne aquifer, water conservation areas, and Everglades National Park, Miami-Dade County, Florida, 2000–2009

    Science.gov (United States)

    Prinos, Scott T.; Dixon, Joann F.

    2016-02-25

    Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000–2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000–2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990–1999 and 2000–2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974–2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer.

  8. 33 CFR 165.761 - Security Zones; Port of Palm Beach, Port Everglades, Port of Miami, and Port of Key West, Florida.

    Science.gov (United States)

    2010-07-01

    ... of the law enforcement boats and cruise ship tenders which will mark a transit lane in channel. (ii... east of the law enforcement vessels and cruise ship tenders, which will mark a transit lane in the..., tug boats and contracted security vessels may assist the Coast Guard Captain of the Port under the...

  9. Coastal Innovation Imperative

    Directory of Open Access Journals (Sweden)

    Bruce C. Glavovic

    2013-03-01

    Full Text Available This is the second of two articles that explores the coastal innovation paradox and imperative. Paradoxically, innovation is necessary to escape the vulnerability trap created by past innovations that have degraded coastal ecosystems and imperil coastal livelihoods. The innovation imperative is to reframe and underpin business and technology with coherent governance innovations that lead to social transformation for coastal sustainability. How might coastal management help to facilitate this transition? It is argued that coastal management needs to be reconceptualised as a transformative practice of deliberative coastal governance. A foundation comprising four deliberative or process outcomes is posited. The point of departure is to build human and social capital through issue learning and improved democratic attitudes and skills. Attention then shifts to facilitating community-oriented action and improving institutional capacity and decision-making. Together, these endeavours enable improved community problem-solving. The ultimate process goal is to build more collaborative communities. Instituting transformative deliberative coastal governance will help to stimulate innovations that chart new sustainability pathways and help to resolve the coastal problems. This framework could be adapted and applied in other geographical settings.

  10. The 3D Elevation Program: summary for Florida

    Science.gov (United States)

    Carswell, William J.

    2013-01-01

    Elevation data are essential to a broad range of applications, including forest resources management, wildlife and habitat management, national security, recreation, and many others. For the State of Florida, elevation data are critical for natural resources conservation; flood risk management; infrastructure and construction management; coastal zone management; sea level rise and subsidence; wildfire management, planning, and response; and other business uses. Today, high-density light detection and ranging (lidar) data are the primary sources for deriving elevation models and other datasets. Federal, State, and local agencies work in partnership to (1) replace data that are older and of lower quality and (2) provide coverage where publicly accessible data do not exist. A joint goal of State and Federal partners is to acquire consistent, statewide coverage to support existing and emerging applications enabled by lidar data.

  11. Potentiometric Surface of the Upper Floridan Aquifer, West-Central Florida, September 2006

    Science.gov (United States)

    Ortiz, A.G.

    2007-01-01

    The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing freshwater are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public supply, domestic use, irrigation, and brackish water desalination in coastal communities (Southwest Florida Water Management District, 2000). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in September 2006. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in tightly cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the wet season, when ground-water levels usually are at an annual high and withdrawals for agricultural use typically are low. The cumulative average rainfall of 46.06 inches for west-central Florida (from October 2005 through September 2006) was 6.91 inches below the historical cumulative average of 52.97 inches (Southwest Florida Water Management District, 2006). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District. This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each

  12. Potentiometric Surface of the Upper Floridan Aquifer, West-Central Florida, September 2007

    Science.gov (United States)

    Ortiz, A.G.

    2008-01-01

    The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing fresh water are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public supply, domestic use, irrigation, and brackish water desalination in coastal communities (Southwest Florida Water Management District, 2000). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in September 2007. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in tightly-cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the wet season, when ground-water levels usually are at an annual high and withdrawals for agricultural use typically are low. The cumulative average rainfall of 39.50 inches for west-central Florida (from October 2006 through September 2007) was 13.42 inches below the historical cumulative average of 52.92 inches (Southwest Florida Water Management District, 2007). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District. This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each

  13. Potentiometric surface of the Upper Floridan aquifer, west-central Florida, September 2005

    Science.gov (United States)

    Ortiz, A.G.

    2006-01-01

    The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing freshwater are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public-supply, domestic use, irrigation, and brackish-water desalination in coastal communities (Southwest Florida Water Management District, 2000).This map report shows the potentiometric surface of the Upper Floridan aquifer measured in September 2005. The potentiometric surface is an imaginary surface, connecting points of equal altitude to which water will rise in tightly cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the wet season, when ground-water levels usually are at an annual high and withdrawals for agricultural use typically are low. The cumulative average rainfall of 55.19 inches for west-central Florida (from October 2004 through September 2005) was 2.00 inches above the historical cumulative average of 53.19 inches (Southwest Florida Water Management District, 2005). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District.This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year

  14. Potentiometric Surface of the Upper Floridan Aquifer, West-Central Florida, May 2007

    Science.gov (United States)

    Ortiz, A.G.

    2008-01-01

    The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing fresh water are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public supply, domestic use, irrigation, and brackish water desalination in coastal communities (Southwest Florida Water Management District, 2000). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in May 2007. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in tightly-cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the dry season, when ground-water levels usually are at an annual low and withdrawals for agricultural use typically are high. The cumulative average rainfall of 41.21 inches for west-central Florida (from June 2006 through May 2007) was 11.63 inches below the historical cumulative average of 52.84 inches (Southwest Florida Water Management District, 2007). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District. This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the

  15. Coastal Analysis, Nassau,NY

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Coastal study as defined in FEMA Guides and Specifications, Appendix D: Guidance for coastal Flooding Analyses and Mapping submitted as a result of a coastal study....

  16. Coastal Analysis, Mathews County, VA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Coastal study as defined in FEMA Guides and Specifications, Appendix D: Guidance for coastal Flooding Analyses and Mapping submitted as a result of a coastal study....

  17. Resilience from coastal protection.

    Science.gov (United States)

    Ewing, Lesley C

    2015-10-28

    Coastal areas are important residential, commercial and industrial areas; but coastal hazards can pose significant threats to these areas. Shoreline/coastal protection elements, both built structures such as breakwaters, seawalls and revetments, as well as natural features such as beaches, reefs and wetlands, are regular features of a coastal community and are important for community safety and development. These protection structures provide a range of resilience to coastal communities. During and after disasters, they help to minimize damages and support recovery; during non-disaster times, the values from shoreline elements shift from the narrow focus on protection. Most coastal communities have limited land and resources and few can dedicate scarce resources solely for protection. Values from shore protection can and should expand to include environmental, economic and social/cultural values. This paper discusses the key aspects of shoreline protection that influence effective community resilience and protection from disasters. This paper also presents ways that the economic, environmental and social/cultural values of shore protection can be evaluated and quantified. It presents the Coastal Community Hazard Protection Resilience (CCHPR) Index for evaluating the resilience capacity to coastal communities from various protection schemes and demonstrates the use of this Index for an urban beach in San Francisco, CA, USA. © 2015 The Author(s).

  18. 78 FR 43881 - Florida Petroleum Reprocessors Site, Davie, Broward County, Florida; Notice of Settlement

    Science.gov (United States)

    2013-07-22

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL9836-2; CERCLA-04-2013-3758] Florida Petroleum Reprocessors... entered into a settlement with Jap. Tech, Inc. concerning the Florida Petroleum Reprocessors Site located.... Painter. Submit your comments by Site name Florida Petroleum Reprocesssors Site by one of the following...

  19. Distribution and abundance of the west Indian manatee Trichechus manatus around selected Florida power plants following winter cold fronts: 1984-85

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J.E. III, Wilcox, J.R.

    1986-01-01

    Ten one-day aerial surveys were conducted in winter, 1984-85, to assess manatee distribution and abundance around five Florida Power and Light Company (FPL) plants: Cape Canaveral (PCC), Riviera (PRV), Port Everglades (PPE), Lauderdale (PFL) and Fort Myers (PFM). A total of 3804 manatees was observed, with a maximum of 636 animals for a single survey. Individual surveys for 1984-84 produced higher combined counts for all plants than in previous years. Maximum counts for PRV, PPE and PFM were the highest recorded for those particular plants. The maximum count for PCC in 1984-85 was lower than counts from most previous years, and the maximum from PFL was intermediate, relative to maxima from previous years. The counts along the east coast of Florida probably reflected a southward redistribution of manatees as well as very cold January weather after warm December conditions. The high count at PFM probably resulted from cold January weather and surface resting behavior by the manatees which made them more visible than usual. Calves represented 10 x 3% of the animals observed near the FPL plants and in Hobe Sound. PFM had a higher percentage of calves than did other plants.

  20. Supersize me: Remains of three white-tailed deer (Odocoileus virginianus) in an invasive Burmese python (Python molurus bivittatus) in Florida

    Science.gov (United States)

    Boback, Scott M.; Snow, Ray W.; Hsu, Teresa; Peurach, Suzanne C.; Dove, Carla J.; Reed, Robert N.

    2016-01-01

    Snakes have become successful invaders in a wide variety of ecosystems worldwide. In southern Florida, USA, the Burmese python (Python molurus bivittatus) has become established across thousands of square kilometers including all of Everglades National Park (ENP). Both experimental and correlative data have supported a relationship between Burmese python predation and declines or extirpations of mid- to large-sized mammals in ENP. In June 2013 a large python (4.32 m snout-vent length, 48.3 kg) was captured and removed from the park. Subsequent necropsy revealed a massive amount of fecal matter (79 cm in length, 6.5 kg) within the snake’s large intestine. A comparative examination of bone, teeth, and hooves extracted from the fecal contents revealed that this snake consumed three white-tailed deer (Odocoileus virginianus). This is the first report of an invasive Burmese python containing the remains of multiple white-tailed deer in its gut. Because the largest snakes native to southern Florida are not capable of consuming even mid-sized mammals, pythons likely represent a novel predatory threat to white-tailed deer in these habitats. This work highlights the potential impact of this large-bodied invasive snake and supports the need for more work on invasive predator-native prey relationships.

  1. Hyperspectral Imaging Sensors and the Marine Coastal Zone

    Science.gov (United States)

    Richardson, Laurie L.

    2000-01-01

    Hyperspectral imaging sensors greatly expand the potential of remote sensing to assess, map, and monitor marine coastal zones. Each pixel in a hyperspectral image contains an entire spectrum of information. As a result, hyperspectral image data can be processed in two very different ways: by image classification techniques, to produce mapped outputs of features in the image on a regional scale; and by use of spectral analysis of the spectral data embedded within each pixel of the image. The latter is particularly useful in marine coastal zones because of the spectral complexity of suspended as well as benthic features found in these environments. Spectral-based analysis of hyperspectral (AVIRIS) imagery was carried out to investigate a marine coastal zone of South Florida, USA. Florida Bay is a phytoplankton-rich estuary characterized by taxonomically distinct phytoplankton assemblages and extensive seagrass beds. End-member spectra were extracted from AVIRIS image data corresponding to ground-truth sample stations and well-known field sites. Spectral libraries were constructed from the AVIRIS end-member spectra and used to classify images using the Spectral Angle Mapper (SAM) algorithm, a spectral-based approach that compares the spectrum, in each pixel of an image with each spectrum in a spectral library. Using this approach different phytoplankton assemblages containing diatoms, cyanobacteria, and green microalgae, as well as benthic community (seagrasses), were mapped.

  2. Coastal Hazards: Hurricanes, Tsunamis, Coastal Erosion.

    Science.gov (United States)

    Vandas, Steve

    1998-01-01

    Details an ocean-based lesson and provides background information on the designation of 1998 as the "Year of the Ocean" by the United Nations. Contains activities on the poster insert that can help raise student awareness of coastal-zone hazards. (DDR)

  3. Coastal Geographic Structures in Coastal-Marine Environmental Management

    Science.gov (United States)

    Baklanov, P. Ya.; Ganzei, K. S.; Ermoshin, V. V.

    2018-01-01

    It has been proposed to distinguish the coastal geographic structures consisting of a spatial combination of three interconnected and mutually conditioned parts (coastal-territorial, coastal, coastal-marine), which are interlinked with each other by the cumulative effect of real-energy flows. Distinguishing specific resource features of the coastal structures, by which they play a connecting role in the complex coastalmarine management, has been considered. The main integral resource feature of the coastal structures is their connecting functions, which form transitional parts mutually connecting the coastal-territorial and coastalmarine environmental management.

  4. Benthic Habitats of Estero Bay Area, Florida 1999 Geodatabase

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data produced for the Florida Fish and Wildlife Conservation Commission's Florida Marine Research Institute (FMRI) in partnership with the South Florida Water...

  5. Benthic Habitats of Estero Bay Area, Florida 1999 Biotic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data produced for the Florida Fish and Wildlife Conservation Commission's Florida Marine Research Institute (FMRI) in partnership with the South Florida Water...

  6. Benthic Habitats of Estero Bay Area, Florida 1999 Geoform

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data produced for the Florida Fish and Wildlife Conservation Commission's Florida Marine Research Institute (FMRI) in partnership with the South Florida Water...

  7. Are the traditional large-scale drought indices suitable for shallow water wetlands? An example in the Everglades.

    Science.gov (United States)

    Zhao, Dehua; Wang, Penghe; Zuo, Jie; Zhang, Hui; An, Shuqing; Ramesh, Reddy K

    2017-08-01

    Numerous drought indices have been developed over the past several decades. However, few studies have focused on the suitability of indices for studies of ephemeral wetlands. The objective is to answer the following question: can the traditional large-scale drought indices characterize drought severity in shallow water wetlands such as the Everglades? The question was approached from two perspectives: the available water quantity and the response of wetland ecosystems to drought. The results showed the unsuitability of traditional large-scale drought indices for characterizing the actual available water quantity based on two findings. (1) Large spatial variations in precipitation (P), potential evapotranspiration (PE), water table depth (WTD) and the monthly water storage change (SC) were observed in the Everglades; notably, the spatial variation in SC, which reflects the monthly water balance, was 1.86 and 1.62 times larger than the temporal variation between seasons and between years, respectively. (2) The large-scale water balance measured based on the water storage variation had an average indicating efficiency (IE) of only 60.01% due to the redistribution of interior water. The spatial distribution of variations in the Normalized Different Vegetation Index (NDVI) in the 2011 dry season showed significantly positive, significantly negative and weak correlations with the minimum WTD in wet prairies, graminoid prairies and sawgrass wetlands, respectively. The significant and opposite correlations imply the unsuitability of the traditional large-scale drought indices in evaluating the effect of drought on shallow water wetlands. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Saltwater intrusion monitoring in Florida

    Science.gov (United States)

    Prinos, Scott T.

    2016-01-01

    Florida's communities are largely dependent on freshwater from groundwater aquifers. Existing saltwater in the aquifers, or seawater that intrudes parts of the aquifers that were fresh, can make the water unusable without additional processing. The quality of Florida's saltwater intrusion monitoring networks varies. In Miami-Dade and Broward Counties, for example, there is a well-designed network with recently constructed short open-interval monitoring wells that bracket the saltwater interface in the Biscayne aquifer. Geochemical analyses of water samples from the network help scientists evaluate pathways of saltwater intrusion and movement of the saltwater interface. Geophysical measurements, collected in these counties, aid the mapping of the saltwater interface and the design of monitoring networks. In comparison, deficiencies in the Collier County monitoring network include the positioning of monitoring wells, reliance on wells with long open intervals that when sampled might provide questionable results, and the inability of existing analyses to differentiate between multiple pathways of saltwater intrusion. A state-wide saltwater intrusion monitoring network is being planned; the planned network could improve saltwater intrusion monitoring by adopting the applicable strategies of the networks of Miami-Dade and Broward Counties, and by addressing deficiencies such as those described for the Collier County network.

  9. Sexual Harassment Policies in Florida School Districts.

    Science.gov (United States)

    Rienzo, Barbara A.; Moore, Michele Johnson

    1998-01-01

    Investigated the extent to which Florida's school districts complied with the Florida Department of Education's (FDOE) recommendations for addressing sexual harassment in schools. Surveys of district equity coordinators and analysis of policies indicated that most districts approved sexual harassment policies incorporating many FDOE…

  10. Smart Phone Application Development and Demonstration in Support of EPA HICO Imagery for Coastal and Ocean Protection

    Science.gov (United States)

    High resolution spectral data from the ISS Hyperspectral Imager of the Coastal Ocean (HICO) system has been used to map the spatial distribution of selected water quality indicators for four Florida Gulf Coast estuaries from 2010-2012. HICO is the first hyperspectral imager speci...

  11. Population viability analysis of the Florida manatee (Trichechus manatus latirostris), 1976-1991

    Science.gov (United States)

    Marmontel, M.; Humphrey, S.R.; O'Shea, T.J.

    1997-01-01

    Recent development of age-determination techniques for Florida manatees (Trichechus manatus latirostris) has permitted derivation of age-specific data on reproduction and survival of a sample of 1212 carcasses obtained throughout Florida from 1976–1991. Population viability analysis using these data projects a slightly negative growth rate (−0.003) and an unacceptably low probability of persistence (0.44) over 1000 years. The main factors affecting population projections were adult survival and fecundity. A 10% increase in adult mortality would drive the population to extinction over a 1000-year time scale, whereas a 10% decrease in adult mortality would allow slow population growth. A 10% decrease in reproduction would also result in extinction. We conclude that management must focus on retaining and improving the conditions under which manatee demography operates. The major identified agent of mortality is boat-manatee collisions, and rapidly increasing numbers of humans and registered boats portend an increase in manatee mortality. Zoning of manatee-occupied waters for reductions in boating activity and speed is essential to safeguard the manatee population. If boating regulations being implemented by the state of Florida in each of 13 key coastal counties are completed, enforced, and effective, manatees and human recreation could coexist indefinitely. If regulation is unsuccessful, the Florida manatee population is likely to decline slowly toward extinction.

  12. Seroepidemiology of TmPV1 infection in captive and wild Florida manatees (Trichechus manatus latirostris).

    Science.gov (United States)

    Donà, Maria Gabriella; Rehtanz, Manuela; Adimey, Nicole M; Bossart, Gregory D; Jenson, Alfred B; Bonde, Robert K; Ghim, Shin-je

    2011-07-01

    In 1997, cutaneous papillomatosis caused by Florida manatee (Trichechus manatus latirostris [Tm]) papillomavirus 1 (TmPV1) was detected in seven captive manatees at the Homosassa Springs Wildlife State Park, Florida, USA, and, subsequently, in two wild manatees from the adjacent Homosassa River. Since then, papillomatosis has been reported in captive manatees housed in other locations, but not in wild animals. To determine TmPV1 antibody prevalence in captive and wild manatees sampled at various locations throughout Florida coastal regions, virus-like particles, composed of the L1 capsid protein of TmPV1, were generated with a baculovirus expression system and used to measure anti-TmPV1 antibodies in an enzyme-linked immunosorbent assay. Serologic analysis of 156 manatees revealed a TmPV1 antibody prevalence of 26.3%, with no significant difference between captive (n=39) and wild (n=117) manatees (28.2% and 25.6%, respectively). No antibody-positive wild animal showed PV-induced cutaneous lesions, whereas papillomatosis was observed in 72.7% of antibody-positive captive manatees. Our data indicate that Florida manatees living in the wild are naturally infected by TmPV1 but rarely show TmPV1-induced papillomatosis. Hence, it appears that the wild population would not be harmed in a case of contact with captive animals without visible lesions and productive infections, which could be thus released into the wild.

  13. Do tropical cyclones shape shorebird habitat patterns? Biogeoclimatology of snowy plovers in Florida.

    Directory of Open Access Journals (Sweden)

    Matteo Convertino

    Full Text Available BACKGROUND: The Gulf coastal ecosystems in Florida are foci of the highest species richness of imperiled shoreline dependent birds in the USA. However environmental processes that affect their macroecological patterns, like occupancy and abundance, are not well unraveled. In Florida the Snowy Plover (Charadrius alexandrinus nivosus is resident along northern and western white sandy estuarine/ocean beaches and is considered a state-threatened species. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that favorable nesting areas along the Florida Gulf coastline are located in regions impacted relatively more frequently by tropical cyclones. The odds of Snowy Plover nesting in these areas during the spring following a tropical cyclone impact are seven times higher compared to the odds during the spring following a season without a cyclone. The only intensity of a tropical cyclone does not appear to be a significant factor affecting breeding populations. CONCLUSIONS/SIGNIFICANCE: Nevertheless a future climate scenario featuring fewer, but more extreme cyclones could result in a decrease in the breeding Snowy Plover population and its breeding range. This is because the spatio-temporal frequency of cyclone events was found to significantly affect nest abundance. Due to the similar geographic range and habitat suitability, and no decrease in nest abundance of other shorebirds in Florida after the cyclone season, our results suggest a common bioclimatic feedback between shorebird abundance and tropical cyclones in breeding areas which are affected by cyclones.

  14. User’s manual for the Automated Data Assurance and Management application developed for quality control of Everglades Depth Estimation Network water-level data

    Science.gov (United States)

    Petkewich, Matthew D.; Daamen, Ruby C.; Roehl, Edwin A.; Conrads, Paul

    2016-09-29

    The generation of Everglades Depth Estimation Network (EDEN) daily water-level and water-depth maps is dependent on high quality real-time data from over 240 water-level stations. To increase the accuracy of the daily water-surface maps, the Automated Data Assurance and Management (ADAM) tool was created by the U.S. Geological Survey as part of Greater Everglades Priority Ecosystems Science. The ADAM tool is used to provide accurate quality-assurance review of the real-time data from the EDEN network and allows estimation or replacement of missing or erroneous data. This user’s manual describes how to install and operate the ADAM software. File structure and operation of the ADAM software is explained using examples.

  15. Coastal Wetland Restoration Bibliography

    National Research Council Canada - National Science Library

    Yozzo, David

    1997-01-01

    This bibliography was compiled to provide biologists, engineers, and planners at Corps Districts and other agencies/ institutions with a guide to the diverse body of literature on coastal wetland restoration...

  16. Coastal Harbors Modeling Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Harbors Modeling Facility is used to aid in the planning of harbor development and in the design and layout of breakwaters, absorbers, etc.. The goal is...

  17. Coastal California Digital Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital ortho-imagery dataset is a survey of coastal California. The project area consists of approximately 3774 square miles. The project design of the digital...

  18. Pollution of Coastal Seas

    Indian Academy of Sciences (India)

    These are the things ideally required for locating industries also. The mega-cities .... waste water released into coastal seas raises the ambient temperature causing .... Problems of ozone holes and greenhouse gases were, perhaps, beyond ...

  19. National Coastal Condition Assessment

    Science.gov (United States)

    The NCCA is a collaborative, statistical survey of the nation's coastal waters and the Great Lakes. It is one of four national surveys that EPA and its partners conduct to assess the condition and health of the nation's water resources.

  20. Pollution of coastal seas

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Pollution of various environments is a consequence of population growth and industrialisation. Coastal seas form part of marine environment and are very rich in minerals, crude oil fishes etc. They are also being used for disposal of wastes from...