WorldWideScience

Sample records for flood plain deposition

  1. Two depositional models for Pliocene coastal plain fluvial systems, Goliad Formation, south Texas Gulf Coastal plain

    International Nuclear Information System (INIS)

    Hoel, H.D.; Galloway, W.E.

    1983-01-01

    The Goliad Formation consists of four depositional systems-the Realitos and Mathis bed-load fluvial systems in the southwest and the Cuero and Eagle Lake mixed-load fluvial systems in the northeast. Five facies are recognized in the Realitos and Mathis bed-load fluvial systems: (1) primary channel-fill facies, (2) chaotic flood channel-fill facies, (3) complex splay facies, (4) flood plain facies, and (5) playa facies. A model for Realitos-Mathis depositional environments shows arid-climate braided stream complexes with extremely coarse sediment load, highly variable discharge, and marked channel instability. Broad, shallow, straight to slightly sinuous primary channels were flanked by wide flood channels. Flood channels passed laterally into broad, low-relief flood plains. Small playas occupied topographic lows near large channel axes. Three facies are recognized in the Cuero and Eagle Lake mixed-load fluvial systems: (1) channel-fill facies, (2) crevasse splay facies, and (3) flood plain facies. A model for Cuero-Eagle Lake depositional environments shows coarse-grained meander belts in a semi-arid climate. Slightly to moderately sinuous meandering streams were flanked by low, poorly developed natural levees. Crevasse splays were common, but tended to be broad and ill-defined. Extensive, low-relief flood plains occupied interaxial areas. The model proposed for the Realitos and Mathis fluvial systems may aid in recognition of analogous ancient depositional systems. In addition, since facies characteristics exercise broad controls on Goliad uranium mineralization, the proposed depositional models aid in defining target zones for Goliad uranium exploration

  2. Flood Plain Aggradation Rates Based on Tree-Ring Growth-Suppression Dates

    Science.gov (United States)

    Friedman, J. M.

    2003-12-01

    When woody riparian plants are partially buried subsequent tree rings of the buried stems resemble those of roots. Annual rings in a buried stem are narrower and have larger vessels then those in unburied sections of the same stem. We have used this phenomenon to date flood plain sediments exposed in trenches, along two ephemeral streams in New Mexico (Rio Puerco and Chaco Wash) where the sediments are predominantly silt and very fine sand and the plants are predominantly tamarisk and willow. Cross dating down the stem allows dating of the first growth-season following burial by thick beds, and constrains the age of all stratigraphic units deposited since germination of the tree. We observed that the anatomical reaction to burial increases with bed thickness and cumulative deposition. Beds that are thicker than 30 cm can be dated to the year of the deposition event. Beds 10 to 30 cm thick can usually be dated to within several years. The period of deposition of multiple very thin beds can be constrained to the decade. Results can be improved by analyzing multiple stems from one tree and multiple trees linked together by the stratigraphy. Along our study streams, sites far from the channel tend to have moderate and relatively steady point-aggradation rates. Levees next to the channel tend to have the thickest deposits per flood and variable long-term rates, which can differ from the whole flood plain aggradation rates by several fold. Cross-sectionally averaged flood plain aggradation has been as large as a meter per decade along our study streams.

  3. 44 CFR 10.14 - Flood plains and wetlands.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions of... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR...

  4. 7 CFR 650.25 - Flood-plain management.

    Science.gov (United States)

    2010-01-01

    ... user how alternative land use decisions may affect the aquatic and terrestial ecosystems, human safety... Flood-plain management. Through proper planning, flood plains can be managed to reduce the threat to... encourages sound flood-plain management decisions by land users. (a) Policy—(1) General. NRCS provides...

  5. 137Cs contamination of Techa river flood plain in Brodokalmak settlement

    International Nuclear Information System (INIS)

    Chesnokov, A.V.; Govorun, A.P.; Liksonov, V.I.; Shcherbak, S.B.; Ivanitskaya, M.V.

    1999-01-01

    137 Cs contamination of the Techa river flood plain inside the Brodokalmak settlement has been mapped. The collimated scintillated detector technique was used for 137 Cs deposit measurements. The 137 Cs contamination is very heterogeneous. A comparison of this technique with the traditional sample method was performed at selected locations. The sampling data are in good agreement with in-situ data. Soil surface activity of 90 Sr was determined from the samples. It was shown that 137 Cs contamination correlates with 90 Sr contamination within the flood plain of the settlement

  6. A distribution of adsorbed forms of cesium 137 and strontium 90 in flood-plain formations of Sozh river

    International Nuclear Information System (INIS)

    Kuznetsov, V.A.; Generalova, V.A.

    1999-01-01

    The distribution of strontium 90 and cesium 137 forms in flood-plain geochemical system 'alluvial deposits - flood-plain turf - humus horizon - soil-source rock', where sorption and colloidal processes play main role in the isotopes migration, was studied. The bulk amount of strontium 90 is presented in adsorbed form in all investigated objects, whereas only 6% of cesium 137 amount in alluvial deposits, flood-plain turf and humus horizon is in adsorbed form. The content of exchange forms of cesium 137 and strontium 90 increases with the depth of the layer. The race of this increase for strontium 90 is large than for cesium 137. The distribution of radionuclides through the different parts of flood-plain of Sozh river has some distinctions due to more lability of adsorbed strontium 90 forms in comparison with cesium 137 ones

  7. Chemical weathering outputs from the flood plain of the Ganga

    Science.gov (United States)

    Bickle, Michael J.; Chapman, Hazel J.; Tipper, Edward; Galy, Albert; De La Rocha, Christina L.; Ahmad, Talat

    2018-03-01

    Transport of sediment across riverine flood plains contributes a significant but poorly constrained fraction of the total chemical weathering fluxes from rapidly eroding mountain belts which has important implications for chemical fluxes to the oceans and the impact of orogens on long term climate. We report water and bedload chemical analyses from the Ganges flood-plain, a major transit reservoir of sediment from the Himalayan orogen. Our data comprise six major southern tributaries to the Ganga, 31 additional analyses of major rivers from the Himalayan front in Nepal, 79 samples of the Ganga collected close to the mouth below the Farakka barrage every two weeks over three years and 67 water and 8 bedload samples from tributaries confined to the Ganga flood plain. The flood plain tributaries are characterised by a shallow δ18O - δD array, compared to the meteoric water line, with a low δDexcess from evaporative loss from the flood plain which is mirrored in the higher δDexcess of the mountain rivers in Nepal. The stable-isotope data confirms that the waters in the flood plain tributaries are dominantly derived from flood plain rainfall and not by redistribution of waters from the mountains. The flood plain tributaries are chemically distinct from the major Himalayan rivers. They can be divided into two groups. Tributaries from a small area around the Kosi river have 87Sr/86Sr ratios >0.75 and molar Na/Ca ratios as high as 6. Tributaries from the rest of the flood plain have 87Sr/86Sr ratios ≤0.74 and most have Na/Ca ratios waters have lost up to 70% of their Ca (average ∼ 50%) to precipitation of secondary calcite which is abundant as a diagenetic cement in the flood plain sediments. 31% of the Sr, 8% of the Ca and 45% of the Mg are calculated to be derived from silicate minerals. Because of significant evaporative loss of water across the flood plain, and in the absence of hydrological data for flood plain tributaries, chemical weathering fluxes from the

  8. 137Cs contamination of the Techa river flood plain near the village of Muslumovo

    International Nuclear Information System (INIS)

    Chesnokov, A.V.; Govorun, A.P.; Linnik, V.G.; Shcherbak, S.B.

    2000-01-01

    The results of a radiometric survey of the Techa river flood plain near the village of Muslumovo in the Chelyabinsk region of Russia are presented. The observed territory extended 16.6 km along the riverbed, with a total area of 2.5 km 2 . The collimated scintillation detector technique was applied to in situ field measurements of 137 Cs deposition on the soil. Maps of 137 Cs deposition and soil penetration depth were developed on the basis of approximately 5000 measurements. The total 137 Cs deposition within the surveyed territory has been estimated at 6.6 TBq. The means of the total 137 Cs soil depositions at half-kilometer sites on the flood plain and its distribution along the river have also been calculated. A maximum 137 Cs contamination above 7.5 MBq/m 2 is associated with a bank height up to 1 m above the usual water level. The data identify zones of intensive radionuclide sedimentation and transit zones

  9. Concentration and distribution patterns of naturally occurring radionuclides in sediments and flood plain soils of the catchment area of the river Elbe

    International Nuclear Information System (INIS)

    Barth, A.; Jurk, M.; Weiß, D.

    1998-01-01

    The impact of uranium mining and milling as well as that of traditional mining activities on river sediments and flood plain soils in the catchment area of the river Elbe was investigated over the years 1994 to 1995. Contamination resulting from mining activities has been identified by comparing the median values for the measured radionuclides, and by establishing the ratio between Ra-226 and Ra-228. The transport and deposition of contaminated materials as a result of high water events, and river discharge of waste water from mining and milling facilities, can be considered to be the main paths of sediment and soil contamination. Sediments and flood plain soils located in the vicinity of former uranium mining and milling sites are primarily influenced by discharges of waste water. Long distance transport and deposition at dams, barrages and on flood plains has mainly been caused by high water events. In many cases the radionuclide concentrations were higher in the subsurface layer than in the top layer of flood plain soil. Due to termination of uranium mining and milling activities, no significant contamination of newer or fresh sediments was found. Radiation exposure arising in relation to angling or walking on flood plains is low

  10. Radio monitoring of the Sozh-river flood plain

    International Nuclear Information System (INIS)

    Kuznetsova, V.A.; Generalova, V.A.; Kol'nenkov, V.P.; Glaz, A.S.

    2001-01-01

    only in 2,3 that is connected with the fresh radioactive material introduction by the river is marked. According to monitoring supervision of 1990 and 1997, the specific radioactivity of a terrestrial surface in the village Serebrovichy of Chechersk district made 120-130 and 135-140 mc R/h correspondingly. The reduction of Cs-137 concentration is basically connected with the burial radioactive dead channel silts of the first years of sedimentation after the Chernobyl disaster under younger and less radioactive river deposits, and also with partial silt carrying out. The water-producing territories near the villages still remain highly contaminated. Thus, as supervision shows, the radioactivity in the abnormal zones located in the Sozh-river flood plain, remains high, the conditions of secondary redistribution and accumulation of technogenic isotopes in alluvial streams of dispersion are kept. Monitoring supervision is proceeding

  11. 18 CFR 801.8 - Flood plain management and protection.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Flood plain management and protection. 801.8 Section 801.8 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands...

  12. Occurrence and variability of mining-related lead and zinc in the Spring River flood plain and tributary flood plains, Cherokee County, Kansas, 2009--11

    Science.gov (United States)

    Juracek, Kyle E.

    2013-01-01

    Historical mining activity in the Tri-State Mining District (TSMD), located in parts of southeast Kansas, southwest Missouri, and northeast Oklahoma, has resulted in a substantial ongoing input of cadmium, lead, and zinc to the environment. To provide some of the information needed to support remediation efforts in the Cherokee County, Kansas, superfund site, a 4-year study was begun in 2009 by the U.S. Geological Survey that was requested and funded by the U.S. Environmental Protection Agency. A combination of surficial-soil sampling and coring was used to investigate the occurrence and variability of mining-related lead and zinc in the flood plains of the Spring River and several tributaries within the superfund site. Lead- and zinc-contaminated flood plains are a concern, in part, because they represent a long-term source of contamination to the fluvial environment. Lead and zinc contamination was assessed with reference to probable-effect concentrations (PECs), which represent the concentrations above which adverse aquatic biological effects are likely to occur. The general PECs for lead and zinc were 128 and 459 milligrams per kilogram, respectively. The TSMD-specific PECs for lead and zinc were 150 and 2,083 milligrams per kilogram, respectively. Typically, surficial soils in the Spring River flood plain had lead and zinc concentrations that were less than the general PECs. Lead and zinc concentrations in the surficial-soil samples were variable with distance downstream and with distance from the Spring River channel, and the largest lead and zinc concentrations usually were located near the channel. Lead and zinc concentrations larger than the general or TSMD-specific PECs, or both, were infrequent at depth in the Spring River flood plain. When present, such contamination typically was confined to the upper 2 feet of the core and frequently was confined to the upper 6 inches. Tributaries with few or no lead- and zinc-mined areas in the basin—Brush Creek

  13. Morava River flood plain sediments deposited during the last millennium: Climatic and anthropogenic record

    Czech Academy of Sciences Publication Activity Database

    Kadlec, Jaroslav; Grygar, Tomáš; Světlík, Ivo; Ettler, V.; Mihaljevič, M.; Diehl, J.; Beske-Diehl, S.

    2008-01-01

    Roč. 34, 4/6 (2008), s. 1338314-1338314 ISSN 0161-6951. [International Geological Congress /33./. 06.08.2008-14.08.2008, Oslo ] R&D Projects: GA AV ČR IAA300130505; GA AV ČR IAA3013201; GA AV ČR IAAX00130801 Institutional research plan: CEZ:AV0Z30130516; CEZ:AV0Z40320502; CEZ:AV0Z10480505 Keywords : Morava River * flood * plain sediments * magnetic minerals Subject RIV: DB - Geology ; Mineralogy

  14. Precise Dating of Flood-Plain Stratigraphy Using Changes in Tree-Ring Anatomy Following Burial

    Science.gov (United States)

    Friedman, J. M.; Shafroth, P. B.; Vincent, K. R.; Scott, M. L.; Auble, G. T.

    2001-12-01

    Determination of sediment deposition rates from stratigraphy is typically limited by a scarcity of chronological information. We present a method for precise dating of sedimentary beds based on the change in anatomy of tree rings upon burial. When stems of tamarisk (Tamarix ramosissima)and sandbar willow (Salix exigua) are buried, subsequent annual rings in the buried portions become narrower and vessels within the rings become larger. Observation of these changes can be combined with tree ring counts to determine the year of deposition of sedimentary beds that are at least 10 cm thick. Using a backhoe we dug trenches across the flood plain at three locations along the arroyo of the Rio Puerco, New Mexico. At each cross section we prepared a detailed stratigraphic description and excavated several tamarisks to depths as great as 5 meters. From each excavated tree we cut and sanded 10-50 slabs for tree-ring analysis. We cross-dated slabs within and between plants and used the burial signature in the tree rings to date all sedimentary beds in the stratigraphic profile near each plant. We then used the trench stratigraphy to convert depths of sediment deposition around individual trees to areas of deposition in the cross section. In the lower Rio Puerco introduction of tamarisk in 1926 occurred just prior to the beginning of channel narrowing and arroyo filling. Thus the tamarisks record a process of channel change to which they may have contributed. Aggradation has not been synchronous along the lower arroyo. For example, near Highway 6 and Belen, the flood plain has aggraded more than 2 m since 1970, while there has been little aggradation downstream at Bernardo. Much of the sediment deposition in levies at Highway 6 occurred during a flood in 1988. Future work will document longitudinal variation in the arroyo so that we can convert areas of sediment deposition in cross sections to volumes in the arroyo.

  15. Geohazards (floods and landslides in the Ndop plain, Cameroon volcanic line

    Directory of Open Access Journals (Sweden)

    Wotchoko Pierre

    2016-07-01

    Full Text Available The Ndop Plain, located along the Cameroon Volcanic Line (CVL, is a volcano-tectonic plain, formed by a series of tectonic movements, volcanic eruptions and sedimentation phases. Floods (annually and landslides (occasionally occur with devastating environmental effects. However, this plain attracts a lot of inhabitants owing to its fertile alluvial soils. With demographic explosion in the plain, the inhabitants (143,000 people tend to farm and inhabit new zones which are prone to these geohazards. In this paper, we use field observations, laboratory analyses, satellite imagery and complementary methods using appropriate software to establish hazard (flood and landslide maps of the Ndop Plain. Natural factors as well as anthropogenic factors are considered.

  16. Responses of Carbon Dynamics to Nitrogen Deposition in Typical Freshwater Wetland of Sanjiang Plain

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-01-01

    Full Text Available The effects of nitrogen deposition (N-deposition on the carbon dynamics in typical Calamagrostis angustifolia wetland of Sanjiang Plain were studied by a pot-culture experiment during two continuous plant growing seasons. Elevated atmospheric N-deposition caused significant increases in the aboveground net primary production and root biomass; moreover, a preferential partition of carbon to root was also observed. Different soil carbon fractions gained due to elevated N-deposition and their response intensities followed the sequence of labile carbon > dissolved organic carbon > microbial biomass carbon, and the interaction between N-deposition and flooded condition facilitated the release of different carbon fractions. Positive correlations were found between CO2 and CH4 fluxes and liable carbon contents with N-deposition, and flooded condition also tended to facilitate CH4 fluxes and to inhibit the CO2 fluxes with N-deposition. The increases in soil carbon fractions occurring in the nitrogen treatments were significantly correlated with increases in root, aboveground parts, total biomass, and their carbon uptake. Our results suggested that N-deposition could enhance the contents of active carbon fractions in soil system and carbon accumulation in plant of the freshwater wetlands.

  17. Has land subsidence changed the flood hazard potential? A case example from the Kujukuri Plain, Chiba Prefecture, Japan

    Directory of Open Access Journals (Sweden)

    H. L. Chen

    2015-11-01

    Full Text Available Coastal areas are subject to flood hazards because of their topographic features, social development and related human activities. The Kujukuri Plain, Chiba Prefecture, Japan, is located nearby the Tokyo metropolitan area and it faces to the Pacific Ocean. In the Kujukuri Plain, widespread occurrence of land subsidence has been caused by exploitation of groundwater, extraction of natural gas dissolved in brine, and natural consolidation of the Holocene and landfill deposits. The locations of land subsidence include areas near the coast, and it may increase the flood hazard potential. Hence, it is very important to evaluate flood hazard potential by taking into account the temporal change of land elevation caused by land subsidence, and to prepare hazard maps for protecting the surface environment and for developing an appropriate land-use plan. In this study, flood hazard assessments at three different times, i.e., 1970, 2004, and 2013 are implemented by using a flood hazard model based on Multicriteria Decision Analysis with Geographical Information System techniques. The model incorporates six factors: elevation, depression area, river system, ratio of impermeable area, detention ponds, and precipitation. Main data sources used are 10 m resolution topography data, airborne laser scanning data, leveling data, Landsat-TM data, two 1:30 000 scale river watershed maps, and precipitation data from observation stations around the study area and Radar data. The hazard assessment maps for each time are obtained by using an algorithm that combines factors with weighted linear combinations. The assignment of the weight/rank values and their analysis are realized by the application of the Analytic Hierarchy Process method. This study is a preliminary work to investigate flood hazards on the Kujukuri Plain. A flood model will be developed to simulate more detailed change of the flood hazard influenced by land subsidence.

  18. Sediment transport and deposition in the lower Missouri River during the 2011 flood

    Science.gov (United States)

    Alexander, Jason S.; Jacobson, Robert B.; Rus, David L.

    2013-01-01

    , releases at Gavins Point Dam were the primary source of floodwater in the lower Missouri River, and total SSD at Hermann, Missouri, was only twice that estimated for Sioux City, Iowa. Sand deposition was estimated using analysis of multispectral satellite imagery collected in October and November 2011. Distributions of sand in the flood plain of the lower Missouri River also were quantified in relation to distance from the banks of the main channel for seven discrete river segments bounded by Gavins Point Dam and selected downstream tributaries. The areal extent of overbank flooding and flood-plain sand deposits increased downstream from Sioux City, Iowa to a broad peak near Rulo, Nebraska, and then decreased to levels near the lower limit of quantification downstream from Kansas City, Missouri. Most of the flood plain inundation and sediment-deposition damage to agricultural fields was observed between river miles 480 and 700, where 2011 peak streamflows had low exceedance frequencies, and the lower Missouri River channel was less incised or had aggraded recently. As channel capacity increased in the downstream direction, the relative magnitude of the flood decreased downstream, and overbank flooding was less extensive. In the constricted reaches, flood-plain sand deposits mainly were observed in association with levee breaks.

  19. Managing flood prone ecosystem for rice production in Bihar plains

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.

    2002-06-01

    A large area of the eastern region especially Bihar (0.5 million hectare) faces flood submergence and/or drought every year which creates an unfavorable environment for crop production. In this ecosystem only flood prone rice is grown whose cultivation is entirely different than normal rice crop. Managing the flood prone ecosystem for rice production needs to evaluate the reasons and a comprehensive appropriate technology through research efforts for better rice production under such harsh ecology. An attempt was made to develop a suitable agronomic package for rice cultivation during and after flooding in flood prone plains of Bihar. (author)

  20. Peculiarities of 239,240Pu behaviour in flood-plain soils of the Techa river

    International Nuclear Information System (INIS)

    Mikhailovskaya, L.N.; Molchanova, I.V.; Karavaeva, E.N.

    2004-01-01

    The Techa river was contaminated with the liquid nuclear waste discharged from the nuclear plant 'Mayak' within 1949-1956 years. In 1999-2002 flood-plain soils of the Techa river were investigated and the levels of content, a migration and a vertical distribution of 239,240 Pu in the flood-plain soils were studied. Reference plots were located in the pre-bed and in central flood plain at different distances from the source of contamination (78-240 km). It was shown that in the soils of the pre-bed the content of Pu isotopes was decreasing from 10.5 to 2.8 kBq/m 2 with the distance from the plant 'Mayak'. Besides, a non-uniform spatial distribution of 239,240 Pu was found in those plots, which were at the same distance from the source of the contamination. As a rule, the central flood plain (25-100 m from the river-bed) was contaminated with 239,240 Pu less than the area in the pre-bed (5-20 m from the the river-bed). Thus, in the area of the middle length of the river the density of the soil contamination with 239,240 Pu of the central flood plain is 0.3 to 0.8 kBq/m 2 and that of the pre-bed is 1.0 to 4.7 kBq/m 2 at a maximum migration depth being 25 to 30 cm and 40 to 50 cm, respectively. The determined value of the 239,240 Pu/ 137 Cs ratio proves that rates of the vertical migration of the Pu isotopes in the flood plain soils of the Techa river are comparable and higher (in some cases) than those of 137 Cs. (author)

  1. A participatory approach of flood vulnerability assessment in the Banat Plain, Romania

    Science.gov (United States)

    Balteanu, Dan; Costache, Andra; Sima, Mihaela; Dumitrascu, Monica; Dragota, Carmen; Grigorescu, Ines

    2014-05-01

    The Banat Plain (western Romania) is a low, alluvial plain affected by neotectonic subsidence movements, being a critical region in terms of exposure to floods. The latest extreme event was the historic floods occcured in the spring of 2005, which caused significant economic damage in several rural communities. The response to 2005 floods has highlighted a number of weaknesses in the management of hazards, such as the deficiencies of the early warning system, people awareness or the inefficiency of some mitigation measures, besides the past structural measures which are obsolete. For a better understanding of the local context of vulnerability and communities resilience to floods, the quantitative assessment of human vulnerability to floods was supplemented with a participatory research, in which there were involved five rural settlements from the Banat Plain (comprising 15 villages and a population of over 12,000 inhabitants). Thus, in the spring of 2013, a questionnaire-based survey was conducted in approx. 100 households of the affected communities and structured interviews were held with local authorities, in the framework of VULMIN project, funded by the Ministry of National Education. The questionnaire was designed based on a pilot survey conducted in 2005, several months after the flood, and was focused on two major issues: a) perception of the local context of vulnerability to environmental change and extreme events; b) perception of human vulnerability to floods (personal experience, post-disaster rehabilitation, awareness, worrying and opinion on the measures aimed to prevent and mitigate the effects of flooding). The results were correlated with a number of specific variables of the households included in the sample, such as: household structure; income source; income level; location of the dwelling in relation to floodplains. In this way, we were able to draw general conclusions about the way in which local people perceive the extreme events, such as

  2. Cycling of 137Cs in soil and vegetation of a flood plain 30 years after initial contamination

    International Nuclear Information System (INIS)

    Dahlman, R.C.; Van Voris, P.

    1976-01-01

    Distribution of radiocesium was determined in soil and vegetation components of a flood plain contaminated by Manhattan Project operations in 1944. Thirty years after contaminated waste effluents were deposited in a temporary holding basin, practically all the soil 137 Cs was still within 60 cm of the soil surface. Maximum 137 Cs concentrations occurred in the 12- to 22-cm horizon. Concentrations throughout the flood plain were variable; maximum levels of 137 Cs exceeded 20,000 pCi/g; intermediate levels of 5,000 to 20,000 pCi/g were encountered along the watercourse, and concentrations less than 5,000 pCi/g were found along the flood plain margins. Relative concentrations in soil, roots and aboveground vegetation (expressed as ratios on a gram per gram basis) were 0.6 for root/soil, 0.03 for aboveground vegetation/soil, and 0.04 for aboveground vegetation/roots. Vegetation-soil ratios ranged from 0.001 to 0.53 for all species, and average ratios for the 30-yr postcontamination study showed that the relative 137 Cs distribution between plants and soil has not changed from distributions reported 15 yr ago. The results also indicated that ratios were higher at low soil- 137 Cs concentration. Thus, when soil and environmental conditions remain unchanged over a 30-yr period, the relative concentration of 137 Cs between plants and soil does not appear to change as a function of time

  3. Holocene climatic fluctuations from Lower Brahmaputra flood plain

    Indian Academy of Sciences (India)

    Pollen analysis of a 3.2-m deep sedimentary profile cored from the Dabaka Swamp, Nagaon District, Lower Brahmaputra flood plain, Assam has revealed persistent fluvial activity during 14,120–12,700 cal years BP which may be attributed to the paucity of pollen and spores with encounterance of fluvial marker taxa like ...

  4. Terrain And Laboratory Conductivity Studies Of Flood Plains Of ...

    African Journals Online (AJOL)

    A shallow electromagnetic study (electrical conductivity and magnetic susceptibility measurements) and laboratory conductivity sampling of the flood plains of Oluwatuyi/Oshinle area of Akure have been undertaken. This is with the aim of correlating the terrain conductivity mapping with laboratory measurements to establish ...

  5. Cycling of 137Cs in soil and vegetation of a flood plain 30 years after initial contamination

    International Nuclear Information System (INIS)

    Dahlman, R.C.; Van Voris, P.

    1975-01-01

    Distribution of radiocesium was determined in soil and vegetation components of a flood plain contaminated by Manhattan Project operations in 1944. Thirty years after contaminated waste effluents were deposited in a temporary holding basin, practically all the soil 137 Cs was still within 60 cm of the soil surface. Maximum 137 Cs concentrations occurred in the 12- to 22-cm horizon. Concentrations throughout the flood plain were variable; maximum levels of 137 Cs exceeded 20,000 pCi/g; intermediate levels of 5,000 to 20,000 pCi/g were encountered along the watercourse, and concentrations less than 5,000 pCi/g were found along the flood plain margins. Relative concentrations in soil, roots, and above-ground vegetation (expressed as ratios on a gram per gram basis) were 0.6 for root/soil, 0.05 for above-ground vegetation/soil, and 0.03 for above-ground vegetation/roots. Ratios ranged from 0.001 to 0.53 for all species, and average ratios for the 30-year post-contamination study showed that the relative 137 Cs distribution between plants and soil has not changed significantly from distributions reported 15 years ago (plant/soil ratio 0.05 vs 0.03 by Auerbach et al., 1959). The results also indicated that ratios were higher at low soil- 137 Cs concentration. Thus, when soil and environmental conditions remain unchanged over a 30-year period, the relative concentration of 137 Cs between plants and soil does not appear to change significantly as a function of time. (U.S.)

  6. 13 CFR 120.172 - Flood-plain and wetlands management.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Flood-plain and wetlands management. 120.172 Section 120.172 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Policies Applying to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.172...

  7. Geochemical characterisation of Elbe river high flood sediments

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, F. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Falkenberg (Germany). Sektion Boden-/Gewaesserforschung]|[UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Magdeburg (Germany). Sektion Gewaesserforschung; Rupp, H.; Meissner, R. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Falkenberg (Germany). Sektion Boden-/Gewaesserforschung; Lohse, M.; Buettner, O.; Friese, K. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Magdeburg (Germany). Sektion Gewaesserforschung; Miehlich, G. [Hamburg Univ. (Germany). Inst. fuer Bodenkunde

    2001-07-01

    Quality aims for land usage in flood plains have to be worked out in the Russian-German research project 'Effects of floods on the pollution of agricultural used flood plain soils of the Oka River and the Elbe River'. It is financed by the Germany Ministry of Education and Research (FKZ 02 WT 9617/0). Beside the characterisation of the present pollution of soils for the middle Elbe, it is necessary to prognosticate the current pollutant input. At the examination site nearby Wittenberge, Elbe River kilometers 435 and 440, natural deposited flood sediments were sampled by artificial lawn mats. By the geochemical characterisation it is possible to record the metal input into the flood plain and to win knowledge about the sedimentation process. The results of sediment investigation of the high flood in spring 1997 are presented. (orig.)

  8. Modeling Flood Plain Hydrology and Forest Productivity of Congaree Swamp, South Carolina

    Science.gov (United States)

    Doyle, Thomas W.

    2009-01-01

    An ecological field and modeling study was conducted to examine the flood relations of backswamp forests and park trails of the flood plain portion of Congaree National Park, S.C. Continuous water level gages were distributed across the length and width of the flood plain portion - referred to as 'Congaree Swamp' - to facilitate understanding of the lag and peak flood coupling with stage of the Congaree River. A severe and prolonged drought at study start in 2001 extended into late 2002 before backswamp zones circulated floodwaters. Water levels were monitored at 10 gaging stations over a 4-year period from 2002 to 2006. Historical water level stage and discharge data from the Congaree River were digitized from published sources and U.S. Geological Survey (USGS) archives to obtain long-term daily averages for an upstream gage at Columbia, S.C., dating back to 1892. Elevation of ground surface was surveyed for all park trails, water level gages, and additional circuits of roads and boundaries. Rectified elevation data were interpolated into a digital elevation model of the park trail system. Regression models were applied to establish time lags and stage relations between gages at Columbia, S.C., and gages in the upper, middle, and lower reaches of the river and backswamp within the park. Flood relations among backswamp gages exhibited different retention and recession behavior between flood plain reaches with greater hydroperiod in the lower reach than those in the upper and middle reaches of the Congaree Swamp. A flood plain inundation model was developed from gage relations to predict critical river stages and potential inundation of hiking trails on a real-time basis and to forecast the 24-hour flood In addition, tree-ring analysis was used to evaluate the effects of flood events and flooding history on forest resources at Congaree National Park. Tree cores were collected from populations of loblolly pine (Pinus taeda), baldcypress (Taxodium distichum), water

  9. Floods, Droughts and Farming on the Plains of Argentina and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2015-04-01

    Floods, Droughts and Farming on the Plains of Argentina and Paraguay, Pampas and Chaco Regions ... End Date. April 1, 2015 ... Argentina, South America, Paraguay, North and Central America ... IDRC is now accepting applications for this year's IDRC Doctoral Research Awards (IDRA). ... Careers · Contact Us · Site map.

  10. Hydrology, vegetation, and soils of four north Florida River flood plains with an evaluation of state and federal wetland determinations

    Science.gov (United States)

    Light, H.M.; Darst, M.R.; MacLaughlin, M.T.; Sprecher, S.W.

    1993-01-01

    A study of hydrologic conditions, vegetation, and soils was made in wetland forests of four north Florida streams from 1987 to 1990. The study was conducted by the U.S. Geological Survey in cooperation with the Florida Department of Environmental Regulation to support State and Federal efforts to improve wetland delineation methodology in flood plains. Plant communities and soils were described and related to topographic position and long-term hydrologic conditions at 10 study plots located on 4 streams. Detailed appendixes give average duration, frequency, and depth of flooding; canopy, subcanopy, and ground-cover vegetation; and taxonomic classification, series, and profile descriptions of soils for each plot. Topographic relief, range in stage, and depth of flooding were greatest on the alluvial flood plain of the Ochlockonee River, the largest of the four streams. Soils were silty in the lower elevations of the flood plain, and tree communities were distinctly different in each topographic zone. The Aucilla River flood plain was dominated by levees and terraces with very few depressions or low backwater areas. Oaks dominated the canopy of both lower and upper terraces of the Aucilla flood plain. Telogia Creek is a blackwater stream that is a major tributary of the Ochlockonee River. Its low, wet flood plain was dominated by Wyssa ogeche (Ogeechee tupelo) trees, had soils with mucky horizons, and was inundated by frequent floods of very short duration. The St. Marks River, a spring-fed stream with high base flow, had the least topographic relief and lowest range in stage of the four streams. St. Marks soils had a higher clay content than the other streams, and limestone bedrock was relatively close to the surface. Wetland determinations of the study plots based on State and Federal regulatory criteria were evaluated. Most State and Federal wetland determinations are based primarily on vegetation and soil characteristics because hydrologic records are usually not

  11. Computations Of Critical Depth In Rivers With Flood Plains | Okoli ...

    African Journals Online (AJOL)

    Critical flows may occur at more than one depth in rivers with flood plains. The possibility of multiple critical depths affects the water-surface profile calculations. Presently available algorithms determine only one of the critical depths which may lead to large errors. It is the purpose of this paper to present an analytical ...

  12. Flood plain analysis for Petris, , Troas, and Monoros, tia watersheds, the Arad department, Romania

    Science.gov (United States)

    Győri, M.-M.; Haidu, I.

    2012-04-01

    The present study sets out to determine the flood plains corresponding to flood discharges having 10, 50 and 100 year recurrence intervals on the Monoroštia, Petriš and Troaš Rivers, located in Western Romania, the Arad department. The data of the study area is first collected and pre-processed in ArcGIS. It consists of land use data, soil data, the DEM, stream gauges' and meteorological stations' locations, on the basis of which the watersheds' hydrologic parameters' are computed using the Geospatial Hydrologic Modelling Extension (HEC Geo-HMS). HEC Geo-HMS functions as an interface between ArcGIS and HEC-HMS (Hydrologic Engineering Centre- Hydrologic Modelling System) and converts the data collected and generated in ArcGIS to data useable by HEC-HMS. The basin model component in HEC-HMS represents the physical watershed. It facilitates the effective rainfall computation on the basis of the input hyetograph, passing the results to a transform function that converts the excess precipitation into runoff at the subwatersheds' outlet. This enables the estimation and creation of hydrographs for the ungauged watersheds. In the present study, the results are achieved through the SCS CN loss method and the SCS Unit hydrograph transform method. The simulations use rainfall data that is registered at the stations situated in the catchments' vicinity, data that spans over two decades (1989-2009) and which allows the rainfall hyetographs to be determined for the above mentioned return periods. The model will be calibrated against measured streamflow data from the gauging stations on the main rivers, leading to the adjustment of watershed parameters, such as the CN parameter. As the flood discharges for 10, 50 and 100 year return periods have been determined, the profile of the water surface elevation along the channel will be computed through a steady flow analysis, with HEC-RAS (Hydrologic Engineering Centre- River Analysis System). For each of the flood frequencies, a

  13. Flood risk mitigation and anthropogenic modifications of a coastal plain in southern Italy: combined effects over the past 150 years

    Directory of Open Access Journals (Sweden)

    O. Petrucci

    2007-06-01

    Full Text Available A study of the effects of human modification of a coastal plain mainly involving land reclamation and flood protection is proposed. The approach involves historical, geomorphological and hydrological data as a whole, taking into account the equilibrium of rivers, plains and coastal areas.

    The test area, a telling example of profound economic and social transformation of a coastal plain, is the Piana di Sibari (Calabria, southern Italy, subject to major human modifications over the last 150 years. The study area, at most 300 m a.s.l., is 450 km2 wide and comprises 24 hydrographic basins.

    The approach is based on the creation and analysis of four databases: 1 a historical series of geo-coded flood damage (DAMAGES database, concerning damaging floods which occurred over the past few centuries in the study area; 2 a geocoded series of protection works for land reclamation, protection from floods and improvement of soil stability in steep areas (WORKS database, gathered from the archives of the agencies that carried out the works, organized in a GIS-format; 3 a historical series of maximum flood discharges and extreme rainy events (HYMAX database aimed at defining the trends of occurrence and the intensity of flooding; 4 a coastal line position and migration over time (COASTAL database, created using mainly literature data based on discontinuous data such as historical maps and images.

    The work describes the complex succession of floods, protection and reclamation works, human transformation of the plain and major land use changes over the last two centuries in the test area. The new characteristics of the plain and its modifications, including major engineering works, land-use transformation and urbanisation, are illustrated. The damaging floods of the last 200 years, the modifications of runoff and flooding due to works built over the basins, hydrological data and the records concerning coastal

  14. Raptor habitat use in the Lake Chad Basin : Insights into the effect of flood-plain transformation on Afrotropical and Palearctic raptors

    NARCIS (Netherlands)

    Buij, Ralph; Croes, Barbara M.

    West African flood-plains have undergone major land-use transformations in the second half of the 20th century. To obtain insight in the effect of flood-plain development for irrigated rice cultivation on the abundance, richness, and diversity of Palearctic and Afrotropical raptors, we conducted

  15. Raptor habitat use in the lake Chad basin: insights into the effect of flood-plain transformation on afrotropical and paleartic raptors

    NARCIS (Netherlands)

    Buij, R.; Croes, B.M.

    2013-01-01

    West African flood-plains have undergone major land-use transformations in the second half of the 20th century. To obtain insight in the effect of flood-plain development for irrigated rice cultivation on the abundance, richness, and diversity of Palearctic and Afrotropical raptors, we conducted

  16. Modeling of the solid-solution partitioning of heavy metals and arsenic in embanked flood plain soils of the rivers Rhine and Meuse

    NARCIS (Netherlands)

    Schröder, T.J.; Hiemstra, T.; Vink, J.P.M.

    2005-01-01

    The aim of this study is to predict the solid-solution partitioning of heavy metals in river flood plain soils. We compared mechanistic geochemical modeling with a statistical approach. To characterize the heavy metal contamination of embanked river flood plain soils in The Netherlands, we collected

  17. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Estimated thickness of ejecta deposits compared to to crater rim heights. Ph.D. Thesis

    Science.gov (United States)

    Leake, M. A.

    1982-01-01

    The area of the continuous ejecta deposits on mercury was calculated to vary from 2.24 to 0.64 times the crater's area for those of diameter 40 km to 300 km. Because crater boundaries on the geologic map include the detectable continuous ejecta blanket, plains exterior to these deposits must consist of farther-flung ejecta (of that or other craters), or volcanic deposits flooding the intervening areas. Ejecta models are explored.

  18. Combining Landform Thematic Layer and Object-Oriented Image Analysis to Map the Surface Features of Mountainous Flood Plain Areas

    Science.gov (United States)

    Chuang, H.-K.; Lin, M.-L.; Huang, W.-C.

    2012-04-01

    The Typhoon Morakot on August 2009 brought more than 2,000 mm of cumulative rainfall in southern Taiwan, the extreme rainfall event caused serious damage to the Kaoping River basin. The losses were mostly blamed on the landslides along sides of the river, and shifting of the watercourse even led to the failure of roads and bridges, as well as flooding and levees damage happened around the villages on flood bank and terraces. Alluvial fans resulted from debris flow of stream feeders blocked the main watercourse and debris dam was even formed and collapsed. These disasters have highlighted the importance of identification and map the watercourse alteration, surface features of flood plain area and artificial structures soon after the catastrophic typhoon event for natural hazard mitigation. Interpretation of remote sensing images is an efficient approach to acquire spatial information for vast areas, therefore making it suitable for the differentiation of terrain and objects near the vast flood plain areas in a short term. The object-oriented image analysis program (Definiens Developer 7.0) and multi-band high resolution satellite images (QuickBird, DigitalGlobe) was utilized to interpret the flood plain features from Liouguei to Baolai of the the Kaoping River basin after Typhoon Morakot. Object-oriented image interpretation is the process of using homogenized image blocks as elements instead of pixels for different shapes, textures and the mutual relationships of adjacent elements, as well as categorized conditions and rules for semi-artificial interpretation of surface features. Digital terrain models (DTM) are also employed along with the above process to produce layers with specific "landform thematic layers". These layers are especially helpful in differentiating some confusing categories in the spectrum analysis with improved accuracy, such as landslides and riverbeds, as well as terraces, riverbanks, which are of significant engineering importance in disaster

  19. Sedimentology of Fraser River delta peat deposits: a modern analogue for some deltaic coals

    Energy Technology Data Exchange (ETDEWEB)

    Styan, W B; Bustin, R M

    1984-01-01

    On the Recent lobe of the Fraser River delta, peat accumulation has actively occurred on the distal lower delta plain, the transition between upper and lower delta plains, and the alluvial plain. Distal lower delta plain peats developed from widespread salt and brackish marshes and were not influenced appreciably by fluvial activity. Lateral development of the marsh facies were controlled by compaction and eustatic sea-level rise. The resulting thin, discontinuous peat network contains numerous silty clay partings and high concentrations of sulphur. Freshwater marsh facies formed but were later in part eroded and altered by transgressing marine waters. Peats overlie a thin, fluvial, fining-upward sequence which in turn overlies a thick, coarsening-upward, prodelta-delta front succession. Lower- upper delta plain peats initially developed from interdistributary brackish marshes and were later fluvially influenced as the delta prograded. Thickest peats occur in areas where distributary channels were abandoned earliest. Sphagnum biofacies replace sedge-grass-dominated communities except along active channel margins, where the sedge-grass facies is intercalated with overbank and splay deposits. Peats are underlain by a relatively thin sequence of fluvial deposits which in turn is underlain by a major coarsening-upward delta front and pro-delta sequence. Alluvial plain peats accumulated in back swamp environments of the flood plain. Earliest sedge-clay and gyttja peats developed over thin fining-upward fluvial cycles or are interlaminated with fine-grained flood deposits. Thickest accumulations occur where peat fills small avulsed flood channels. Overlying sedge-grass and sphagnum biofacies are horizontally stratified and commonly have sharp boundaries with fine-grained flood sediments. At active channel margins, however, sedge-grass peats are intercalated with natural levee deposits consisting of silty clay.

  20. Representativeness of soil samples collected to assess mining-related contamination of flood plains in southeast Kansas

    Science.gov (United States)

    Juracek, Kyle E.

    2015-01-01

    Historical lead and zinc mining in the Tri-State Mining District (TSMD), located in parts of southeast Kansas, southwest Missouri, and northeast Oklahoma, has resulted in a substantial ongoing input of lead and zinc to the environment (Juracek, 2006; Juracek and Becker, 2009). In response to concern about the mining-related contamination, southeast Cherokee County, Kansas, was listed on the U.S. Environmental Protection Agency’s (USEPA) National Priority List as a Superfund hazardous waste site (fig. 1). To provide some of the information needed to support remediation efforts in the Cherokee County Superfund site, a study was begun in 2009 by the U.S. Geological Survey (USGS) that was requested and funded by USEPA. As part of the study, surficial-soil sampling was used to investigate the extent and magnitude of mining-related lead and zinc contamination in the flood plains of the Spring River and several tributaries within the Superfund site. In mining-affected areas, flood-plain soils had lead and zinc concentrations that far exceeded background levels as well as probable-effects guidelines for toxic aquatic biological effects (Juracek, 2013). Lead- and zinc-contaminated flood plains are a concern, in part, because they represent a long-term source of contamination to the fluvial environment.

  1. The foraging behaviour of herons and egrets on the Magela Creek flood plain, Northern Territory

    International Nuclear Information System (INIS)

    Recher, H.F.; Holmes, R.T.

    1982-03-01

    Five species of diurnal herons are common on the Magela Creek flood plain and forage along the edges of natural and artifical waterbodies both inside and outside the Ranger Uranium Project Area. The species of heron differ in the kinds and sizes of prey they take, their foraging location, degree of sociality and foraging behaviour. Because it takes relatively large fish, the Great Egret, E. alba, is most likely to be affected by any contamination of the aquatic environment by heavy metals or radionuclides. The Nankeen Night Heron, Nycticorax caledonicus is also abundant on the flood plain and probably feeds on large fish and frogs. The other herons take smaller or immature prey or hunt mostly in terrestrial habitats and are therefore less likely to be affected by contamination of the aquatic environment

  2. Flood-inundation maps for a nine-mile reach of the Des Plaines River from Riverwoods to Mettawa, Illinois

    Science.gov (United States)

    Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2012-01-01

    Digital flood-inundation maps for a 9-mile reach of the Des Plaines River from Riverwoods to Mettawa, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the Lake County Stormwater Management Commission and the Villages of Lincolnshire and Riverwoods. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Des Plaines River at Lincolnshire, Illinois (station no. 05528100). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05528100. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. The NWS forecasted peak-stage information, also shown on the Des Plaines River at Lincolnshire inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was then used to determine seven water-surface profiles for flood stages at roughly 1-ft intervals referenced to the streamgage datum and ranging from the 50- to 0.2-percent annual exceedance probability flows. The simulated water-surface profiles were then combined with a Geographic Information System (GIS) Digital Elevation Model (DEM) (derived from Light Detection And Ranging (LiDAR) data) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage height from USGS streamgages and forecasted stream stages from

  3. Middle Holocene marine flooding and human response in the south Yangtze coastal plain, East China

    Science.gov (United States)

    Wang, Zhanghua; Ryves, David B.; Lei, Shao; Nian, Xiaomei; Lv, Ye; Tang, Liang; Wang, Long; Wang, Jiehua; Chen, Jie

    2018-05-01

    Coastal flooding catastrophes have affected human societies on coastal plains around the world on several occasions in the past, and are threatening 21st century societies under global warming and sea-level rise. However, the role of coastal flooding in the interruption of the Neolithic Liangzhu culture in the lower Yangtze valley, East China coast has been long contested. In this study, we used a well-dated Neolithic site (the Yushan site) close to the present coastline to demonstrate a marine drowning event at the terminal stage of the Liangzhu culture and discuss its linkage to relative sea-level rise. We analysed sedimentology, chronology, organic elemental composition, diatoms and dinoflagellate cysts for several typical profiles at the Yushan site. The field and sedimentary data provided clear evidence of a palaeo-typhoon event that overwhelmed the Yushan site at ∼2560 BCE, which heralded a period of marine inundation and ecological deterioration at the site. We also infer an acceleration in sea-level rise at 2560-2440 BCE from the sedimentary records at Yushan, which explains the widespread signatures of coastal flooding across the south Yangtze coastal plain at that time. The timing of this mid-Holocene coastal flooding coincided with the sudden disappearance of the advanced and widespread Liangzhu culture along the lower Yangtze valley. We infer that extreme events and flooding accompanying accelerated sea-level rise were major causes of vulnerability for prehistoric coastal societies.

  4. Taenia spp. infections in wildlife in the Bangweulu and Kafue flood plains ecosystems of Zambia.

    Science.gov (United States)

    Muma, J B; Gabriël, S; Munyeme, M; Munang'andu, H M; Victor, B; Dorny, P; Nalubamba, K S; Siamudaala, V; Mwape, K E

    2014-09-15

    Taenia spp. have an indirect life cycle, cycling between a definitive and an intermediate host with zoonotic species causing public health problems in many developing countries. During the course of 2 separate surveys in Zambia (2004 and 2009), the presence of Taenia larval stages (cysticerci) was examined in Kafue lechwe (Kobus leche kafuensis), Black lechwe (Kobus leche smithermani) and other wildlife species from the Kafue and Bangweulu flood plains. Examinations involved post-mortem inspection and serum specific antigen detection. The recovered cysts from seven carcasses were characterised using PCR and DNA sequence analysis. The overall proportion of infection in wildlife on post-mortem examination was 19.0% (95% CI: 9.1-29.0%). The proportion of infected wildlife based on post-mortem examinations in the Kafue flood plains was estimated at 28.6% (95% CI: 13.3-43.9%), while the seroprevalence was estimated at 25.0% (95% CI: 2.9-47.1%). The seroprevalence for cattle in the Kafue flood plains was estimated at 61.5% (95% CI: 42.0-81.0%) while that of Kafue lechwe in the same ecosystem was estimated at 66.6% (95% CI: 45.6-85.7%). Infection rates were higher in Kafue lechwe than in Black lechwe suggesting differences in the exposure patterns. The sequencing results indicated that none of the recovered cysts were either Taenia solium or Taenia saginata. We therefore conclude they most likely belong to a less studied (wildlife) Taenia species that requires further characterisation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Flood deposits and their heavy metal load - example of the Neckar river

    International Nuclear Information System (INIS)

    Hellmann, H.

    1993-01-01

    Flood deposits may develop from suspended solids under certain conditions, e.g. after the passage of a flood wave. Depending on the origin of the suspended material, the heavy metal load in these deposits varies considerably. Recent sediments deposited in the Neckar waterway after the flood of February/March 1990 are taken as an example to explain that it is necessary to consider the contamination load in relation to the grain size of the material. To this end, the heavy metal contents of the fine grain fraction (grain diameter [de

  6. Bar deposition in glacial outburst floods: scaling, post-flood reworking, and implications for the geomorphological and sedimentary record

    Science.gov (United States)

    Marren, Philip

    2016-04-01

    The appearance of a flood deposit in the geomorphological and sedimentary record is a product of both the processes operating during the flood, and those that occur afterwards and which overprint the deposit with a record of 'normal' processes. This paper describes the creation and modification of jökulhlaup barforms in the Skeiðará river, relating the changes to post-flood fluvial processes and glacier retreat. Large compound bars formed from the amalgamation of unit bars up to 1.5 km long. Nearly half of the total discharge of the November 1996 jökulhlaup on Skeiðarársandur was discharged through the Skeiðará river. The flood deposits have been extensively reworked since, up until 2009 when the channel was abandoned, effectively leaving the Skeiðará as a terrace, when retreat of Skeiðarárjökull directed meltwater to the adjacent Gígjukvísl river system. Large compound bars formed in the flood channel, with their location governed by the macro-scale topography of the flood channel, and their size by upstream channel width in accordance with bar-scaling theory. Jökulhlaup bars are therefore scale invariant and formed in a similar fashion to braid bars in non-jökulhlaup braided rivers. Post-flood fragmentation and reworking of the bars consistently increased the length-width ratio of preserved bar fragments from approximately two and one half to over five. When combined with earlier work on the Skeiðará jökulhlaup bars, and studies of jökulhlaup deposits elsewhere on Skeiðarársandur these observations increase our understanding of the preservation potential and final form of jökulhlaup deposits and provide the basis for an improved model for the recognition of jökulhlaup deposits in the geomorphological and sedimentary record.

  7. Geochemical discrimination of five pleistocene Lava-Dam outburst-flood deposits, western Grand Canyon, Arizona

    Science.gov (United States)

    Fenton, C.R.; Poreda, R.J.; Nash, B.P.; Webb, R.H.; Cerling, T.E.

    2004-01-01

    Pleistocene basaltic lava dams and outburst-flood deposits in the western Grand Canyon, Arizona, have been correlated by means of cosmogenic 3He (3Hec) ages and concentrations of SiO2, Na2O, K2O, and rare earth elements. These data indicate that basalt clasts and vitroclasts in a given outburst-flood deposit came from a common source, a lava dam. With these data, it is possible to distinguish individual dam-flood events and improve our understanding of the interrelations of volcanism and river processes. At least five lava dams on the Colorado River failed catastrophically between 100 and 525 ka; subsequent outburst floods emplaced basalt-rich deposits preserved on benches as high as 200 m above the current river and up to 53 km downstream of dam sites. Chemical data also distinguishes individual lava flows that were collectively mapped in the past as large long-lasting dam complexes. These chemical data, in combination with age constraints, increase our ability to correlate lava dams and outburst-flood deposits and increase our understanding of the longevity of lava dams. Bases of correlated lava dams and flood deposits approximate the elevation of the ancestral river during each flood event. Water surface profiles are reconstructed and can be used in future hydraulic models to estimate the magnitude of these large-scale floods.

  8. BIOCHEM-ORCHESTRA: A tool for evaluating chemical speciation and ecotoxicological impacts of heavy metals on river flood plain systems

    International Nuclear Information System (INIS)

    Vink, J.P.M.; Meeussen, J.C.L.

    2007-01-01

    The chemical speciation model BIOCHEM was extended with ecotoxicological transfer functions for uptake of metals (As, Cd, Cu, Ni, Pb, and Zn) by plants and soil invertebrates. It was coupled to the object-oriented framework ORCHESTRA to achieve a flexible and dynamic decision support system (DSS) to analyse natural or anthropogenic changes that occur in river systems. The DSS uses the chemical characteristics of soils and sediments as input, and calculates speciation and subsequent uptake by biota at various scenarios. Biotic transfer functions were field-validated, and actual hydrological conditions were derived from long-term monitoring data. The DSS was tested for several scenarios that occur in the Meuse catchment areas, such as flooding and sedimentation of riverine sediments on flood plains. Risks are expressed in terms of changes in chemical mobility, and uptake by flood plain key species (flora and fauna). - A diagnostic risk-assessment tool for heavy metals, based on biotic and abiotic interactions, compares risks under different environmental scenarios

  9. Change of microelemental composition of flood-plain soils under the increase of the anthropogenic impact

    International Nuclear Information System (INIS)

    Dmitrakov, L.M.; Dmitrakova, L.K.

    2008-01-01

    Change of technogenic pressure and pedotechnogenic concentration were research for some heavy metals (Mn, Pb, Zn, Cu, Ni, Cr, Cd). They describe the general character of element into the soil and the risk of disturbance of geochemical equilibrium in flood-plain soils and depend on regional technogenic loads and combinations of sources of microelements emission.

  10. Impacts of channel deposition on the risk of flooding in a watershed

    Science.gov (United States)

    Ting-Yue, Hong; Chia-Ling, Chang

    2017-04-01

    Taiwan is located in East Asian where is always hit by typhoons. Typhoons usually bring huge amounts of rainfall and result in the problems of channel deposition. Deposition influences the functions of channel and increases the risk of flooding. The Luliao Reservoir Watershed is the case area in this study. It is the major water source for agricultural activity and domestic use. The objective of this study is to assess the possible impacts of channel deposition on the watershed environment. This study applies the Storm Water Management Model (SWMM) to predict the hydrologic responses and evaluate the risk of flooding. The results show that the decrease of cross section induced by deposition in a channel may increase the risk of flooding and impact the safety of watershed environment. Therefore, canal desilting is important in channel regulation. The discussion and analysis can be useful references for channel regulation.

  11. Study on ecological regulation of coastal plain sluice

    Science.gov (United States)

    Yu, Wengong; Geng, Bing; Yu, Huanfei; Yu, Hongbo

    2018-02-01

    Coastal plains are densely populated and economically developed, therefore their importance is self-evident. However, there are some problems related with water in coastal plains, such as low flood control capacity and severe water pollution. Due to complicated river network hydrodynamic force, changeable flow direction and uncertain flood concentration and propagation mechanism, it is rather difficult to use sluice scheduling to realize flood control and tackle water pollution. On the base of the measured hydrological data during once-in-a-century Fitow typhoon in 2013 in Yuyao city, by typical analysis, theoretical analysis and process simulation, some key technologies were researched systematically including plain river network sluice ecological scheduling, “one tide” flood control and drainage scheduling and ecological running water scheduling. In the end, single factor health diagnostic evaluation, unit hydrograph of plain water level and evening tide scheduling were put forward.

  12. Mapping of sand deposition from 1993 midwest floods with electromagnetic induction measurements

    International Nuclear Information System (INIS)

    Kitchen, N.R.; Sudduth, K.A.; Drummond, S.T.

    1996-01-01

    Sand deposition on river-bottom farmland was extensive from the 1993 Midwest floods. A technique coupling electromagnetic induction (EM) ground conductivity sensing and Global Positioning System (GPS) location data was used to map sand deposition depth at four sites in Missouri along the Missouri River. A strong relationship between EM reading and probe measured depth of sand deposition (r 2 values between 0.73-0.94) was found. This relationship differed significantly between sites, so calibration by ground-truthing was required for each sand deposition survey. An example of the sand deposition mapping using the EM/GPS system is shown for two 50-60 ha (125-150 ac) sites. Such maps can provide valuable detailed information for developing restoration plans for land affected by 1993 Midwest floods. (author)

  13. Missoula flood dynamics and magnitudes inferred from sedimentology of slack-water deposits on the Columbia Plateau, Washington

    International Nuclear Information System (INIS)

    Smith, G.A.

    1993-01-01

    Sedimentological study of late Wisconsin, Missoula-flood slack-water sediments deposited along the Columbia and Tucannon Rivers in southern Washington reveals important aspects of flood dynamics. Most flood facies were deposited by energetic flood surges (velocities>6 m/sec) entering protected areas along the flood tract, or flowing up and then directly out of tributary valleys. True still-water facies are less voluminous and restricted to elevations below 230 m. High flood stages attended the initial arrival of the flood wave and were not associated with subsequent hydraulic ponding upslope from channel constrictions. Among 186 flood beds studied in 12 sections, 57% have bioturbated tops, and about half of these bioturbated beds are separated from overlying flood beds by nonflood sediments. A single graded flood bed was deposited at most sites during most floods. Sequences in which 2-9 graded beds were deposited during a single flood are restricted to low elevations. These sequences imply complex, multi-peaked hydrographs in which the first flood surge was generally the largest, and subsequent surges were attenuated by water already present in slack-water areas. Slack-water - sediment stratigraphy suggests a wide range of flood discharges and volumes. Of >40 documented late Wisconsin floods that inundated the Pasco Basin, only about 20 crossed the Palouse-Snake divide. Floods younger than the set-S tephras from Mount St.Helens were generally smaller than earlier floods of late Wisconsin age, although most still crossed the Palouse-Snake divide. These late floods primarily traversed the Cheney-Palouse scabland because stratigraphy of slack-water sediment along the Columbia River implies that the largest flood volumes did not enter the Pasco Basin by way of the Columbia River. 47 refs., 17 figs., 2 tabs

  14. Physical and chemical properties of deposited airborne particulates over the Arabian Red Sea coastal plain

    KAUST Repository

    Engelbrecht, Johann; Stenchikov, Georgiy L.; Prakash, P. Jish; Lersch, Traci; Anisimov, Anatolii; Shevchenko, Illia

    2017-01-01

    ) situated on the Red Sea coastal plain of Saudi Arabia and subjected to the same chemical and mineralogical analysis we conducted on soil samples. Frisbee deposition samplers with foam inserts were used to collect dust and other deposits, for the period

  15. Aggradation of Leveed Channels and Their Flood Plains in Arroyo Bottoms

    Science.gov (United States)

    Vincent, K. R.

    2005-12-01

    the emerging flood plain became dominated by silt (or clay) while the levees next to the channel remained dominated by fine or very fine sand. Furthermore, the channel and floodplain aggraded at similar rates and thus had come into geomorphic equilibrium. Vertical accretion of the channel banks, which are the flanks of channel-margin levees, was accomplished by deposition of inclined lamina and very thin beds dominated by silt that have fairly uniform thickness. This may have been promoted by rapid infiltration of stream water into the banks, filtering fine suspended sediment at the solid interface.

  16. Sediment records of Yellow River channel migration and Holocene environmental evolution of the Hetao Plain, northern China

    Science.gov (United States)

    Wang, Jingzhong; Wu, Jinglu; Pan, Baotian; Jia, Hongjuan; Li, Xiao; Wei, Hao

    2018-05-01

    The origin and evolution of lakes in the Hetao Plain, northern China, were influenced by climate variation, channel migration, and human activity. We analyzed a suite of sediment cores from the region to investigate Yellow River channel migration and environmental change in this region over the Holocene. Short sediment cores show that environmental indicators changed markedly around CE 1850, a time that corresponds to flood events, when large amounts of river water accumulated in the western part of the Hetao Plain, giving rise to abundant small lakes. Multiple sediment variables (environmental proxies) from two long cores collected in the Tushenze Paleolake area show that sediments deposited between 12.0 and 9.0 cal ka BP were yellow clay, indicative of fluvial deposition and channel migration. From 9.0 to 7.5 cal ka BP, sand was deposited, reflecting a desert environment. From 7.5 to 2.2 cal ka BP, however, the sediments were blue-gray clay that represents lacustrine facies of Lake Tushenze, which owes its origin to an increase in strength of the East Asian monsoon. At about 2.2 cal ka BP, the north branch of the Yellow River was flooded, and the Tushenze Paleolake developed further. Around 2.0 cal ka BP, the paleolake shrank and eolian sedimentation was recorded. The analyzed sediment records are consistent with the written history from the region, which documents channel migration and environmental changes in the Hetao Plain over the Holocene.

  17. Mine waters of the flooded Příbram uranium deposit

    OpenAIRE

    Lusk, Karel

    2010-01-01

    From the Příbram deposit, which was the largest exploited uranium deposit in the Czech Republic, mine water has been drained under controlled conditions, treated and discharged into the Kocába River since the flooding of the deposit in October 2005. The amount of water drained in this way is determined at any particular moment by the volume of seepage from precipitation and surface water into the underground mine cavities. The draining of overbalance mine waters is carried out at two points t...

  18. Glacial vs. Interglacial Period Contrasts in Midlatitude Fluvial Systems, with Examples from Western Europe and the Texas Coastal Plain

    Science.gov (United States)

    Blum, M.

    2001-12-01

    Mixed bedrock-alluvial valleys are the conveyor belts for sediment delivery to passive continental margins. Mapping, stratigraphic and sedimentologic investigations, and development of geochronological frameworks for large midlatitude rivers of this type, in Western Europe and the Texas Coastal Plain, provide for evaluation of fluvial responses to climate change over the last glacial-interglacial period, and the foundations for future quantitative evaluation of long profile evolution, changes through time in flood magnitude, and changes in storage and flux of sediments. This paper focuses on two issues. First, glacial vs. interglacial period fluvial systems are fundamentally different in terms of channel geometry, depositional style, and patterns of sediment storage. Glacial-period systems were dominated by coarse-grained channel belts (braided channels in Europe, large-wavelength meandering in Texas), and lacked fine-grained flood-plain deposits, whereas Holocene units, especially those of late Holocene age, contain appreciable thicknesses of flood-plain facies. Hence, extreme overbank flooding was not significant during the long glacial period, most flood events were contained within bankfull channel perimeters, and fine sediments were bypassed through the system to marine basins. By contrast, extreme overbank floods have been increasingly important during the relatively short Holocene, and a significant volume of fine sediment is sequestered in flood-plain settings. Second, glacial vs. interglacial systems exhibit different amplitudes and frequencies of fluvial adjustment to climate change. High-amplitude but low-frequency adjustments characterized the long glacial period, with 2-3 extended periods of lateral migration and sediment storage puncuated by episodes of valley incision. Low-amplitude but high-frequency adjustments have been more typical of the short Holocene, when there has been little net valley incision or net changes in sediment storage, but

  19. Tracking sedimentation from the historic A.D. 2011 Mississippi River flood in the deltaic wetlands of Louisiana, USA

    Science.gov (United States)

    Khan, Nicole S.; Horton, Benjamin P.; McKee, Karen L.; Jerolmack, Douglas; Falcini, Federico; Enache, Mihaela D.; Vane, Christopher H.

    2013-01-01

    Management and restoration of the Mississippi River deltaic plain (southern United States) and associated wetlands require a quantitative understanding of sediment delivery during large flood events, past and present. Here, we investigate the sedimentary fingerprint of the 2011 Mississippi River flood across the Louisiana coast (Atchafalaya Delta, Terrebonne, Barataria, and Mississippi River Delta basins) to assess spatial patterns of sedimentation and to identify key indicators of sediment provenance. The sediment deposited in wetlands during the 2011 flood was distinguished from earlier deposits based on biological characteristics, primarily absence of plant roots and increased presence of centric (planktonic) diatoms indicative of riverine origin. By comparison, the lithological (bulk density, organic matter content, and grain size) and chemical (stable carbon isotopes of bulk organic matter) properties of flood sediments were nearly identical to the underlying deposit. Flood sediment deposition was greatest in wetlands near the Atchafalaya and Mississippi Rivers and accounted for a substantial portion (37% to 85%) of the annual accretion measured at nearby monitoring stations. The amount of sediment delivered to those basins (1.1–1.6 g cm−2) was comparable to that reported previously for hurricane sedimentation along the Louisiana coast (0.8–2.1 g cm−2). Our findings not only provide insight into how large-scale river floods influence wetland sedimentation, they lay the groundwork for identifying previous flood events in the stratigraphic record.

  20. Occurrence of inter-eruption debris flow and hyperconcentrated flood-flow deposits on Vesuvio volcano, Italy

    Science.gov (United States)

    Lirer, L.; Vinci, A.; Alberico, I.; Gifuni, T.; Bellucci, F.; Petrosino, P.; Tinterri, R.

    2001-02-01

    In the period between AD 79 and AD 472 eruptions, inter-eruption debris flow and hyperconcentrated-flood-flow deposits were deposited in the Somma-Vesuvio areas. These deposits, forming cliffs at the Torre Bassano and Torre Annunziata, were generated by highly erosive floods, whose erosive capacity was enhanced by acceleration due to the steepness of the volcano slopes. In this type of deposits were distinguished five depositional facies (from A to E) outcropping well at Torre Bassano where they are stacked in three fining-upward (FU) sequences, probably representing three forestepping — backstepping episodes in the emplacement area of gravity flows. These five facies from coarse to fine are interpreted to represent the downcurrent evolution of particular composite sediment gravity flows characterized by horizontal segregation of the main grain-size population. The blocking of these highly concentrated composite parent flows would first produce the deposition of the coarse front part to form facies A and then the overriding of this deposit by the bipartite flow, which constitutes the body of the flow. This flow is composed of a highly concentrated basal inertia carpet responsible for the deposition of facies B, C and D and an upper hyperconcentrated flood flow that forms facies E, through traction plus fallout processes, respectively. Finally, the occurrence of "lahar" type events at Somma-Vesuvio region even at present times is discussed.

  1. Continuous hydrologic simulation and flood-frequency, hydraulic, and flood-hazard analysis of the Blackberry Creek watershed, Kane County, Illinois

    Science.gov (United States)

    Soong, David T.; Straub, Timothy D.; Murphy, Elizabeth A.

    2006-01-01

    Results of hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kane County, Illinois, indicate that the 100-year and 500-year flood plains range from approximately 25 acres in the tributary F watershed (a headwater subbasin at the northeastern corner of the watershed) to almost 1,800 acres in Blackberry Creek main stem. Based on 1996 land-cover data, most of the land in the 100-year and 500-year flood plains was cropland, forested and wooded land, and grassland. A relatively small percentage of urban land was in the flood plains. The Blackberry Creek watershed has undergone rapid urbanization in recent decades. The population and urbanized lands in the watershed are projected to double from the 1990 condition by 2020. Recently, flood-induced damage has occurred more frequently in urbanized areas of the watershed. There are concerns about the effect of urbanization on flood peaks and volumes, future flood-mitigation plans, and potential effects on the water quality and stream habitats. This report describes the procedures used in developing the hydrologic models, estimating the flood-peak discharge magnitudes and recurrence intervals for flood-hazard analysis, developing the hydraulic model, and the results of the analysis in graphical and tabular form. The hydrologic model, Hydrological Simulation Program-FORTRAN (HSPF), was used to perform the simulation of continuous water movements through various patterns of land uses in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center-River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and to determine the 100-year floodway. The hydraulic model was calibrated and verified using high water marks and observed inundation maps for the July 17-18, 1996, flood event. Digital

  2. Reducing the impact of unplanned urbanization on a riparian ecosystem: a case study on designing a plan for sustainable utilization of flood plains on river Ravi

    International Nuclear Information System (INIS)

    Khan, A.U.

    2005-01-01

    This work emphasizes that utilization of flood plain must be preceded by a study that shows the extent of the flood plain with the primary objective to management and maintaining the integrity of riparian areas for their multiple values. One such design is presented here where the riparian land is used for designing a municipal waste water treatment plant in order to provide a reward feedback to river Ravi. Since the space is becoming expensive for setting up of a treatment plant, this high risk piece of land instead of being used for land filling and housing schemes should be used for designing multipurpose environmentally sustainable projects. The treatment plant is designed to mimic the functional properties of riparian corridor flood plains. This design is based on integrated series of interconnected basins including a sedimentation basin, infiltration basin and a created wetland. This system would promote ground water recharge and passively remove pollutants through a combination of filtering, settling and biological treatment mechanisms and providing an attractive recreation and learning environment for the community at large. Additionally, benefits of such treatment will allow a direct recycling of water and nutrients for beneficial use; the sewage becomes a valuable natural resource that is not simply disposed of untreated. (author)

  3. Testing optically stimulated luminescence dating on sand-sized quartz of deltaic deposits from the Sperchios delta plain, central Greece

    Directory of Open Access Journals (Sweden)

    Evangelos Tsakalos

    2018-04-01

    Full Text Available This study reports on the first investigation into the potential of luminescence dating to establish a chronological framework for the depositional sequences of the Sperchios delta plain, central Greece. A series of three borehole cores (20 m deep and two shallow cores (4 m deep, from across the delta plain, were extracted, and samples were collected for luminescence dating. The luminescence ages of sand-sized quartz grains were obtained from small aliquots of quartz, using the Single-Aliquot Regenerative-dose (SAR protocol. The equivalent dose determination included a series of tests and the selection of the Minimum Age Model (MAM as the most appropriate statistical model. This made it possible to confirm the applicability of quartz Optically Stimulated Luminescence (OSL dating to establish absolute chronology for deltaic sediments from the Sperchios delta plain.Testing age results of the five cores showed that the deltaic sediments were deposited during the Holocene. A relatively rapid deposition is implied for the top ∼14 m possibly as a result of the deceleration in the rate of the sea-level rise and the transition to terrestrial conditions, while on the deeper parts, the reduced sedimentation rate may indicate a lagoonal or coastal environment. Keywords: Luminescence dating, Holocene, Sedimentation rates, Deltaic deposits, Sperchios delta plain, Central Greece

  4. Environmental impact of flood: the study of arsenic speciation in exchangeable fraction of flood deposits of Warta river (Poland) in determination of "finger prints" of the pollutants origin and the ways of the migration.

    Science.gov (United States)

    Kozak, Lidia; Skolasińska, Katarzyna; Niedzielski, Przemysław

    2012-09-01

    The paper presents the application of the hyphenated technique - high-performance liquid chromatography with atomic absorption spectrometry detection with hydride generation (HPLC-HG-AAS) - in the determinations of inorganic forms of arsenic: As(III) and As(V) in the exchangeable fraction of flood deposits. The separation of analytical signals of the determined arsenic forms was obtained using an ion-exchange column in a chromatographic system with the atomic absorption spectrometer as a detector, at the determination limits of 5 ngg(-1) for As(III) and 10 ngg(-1) for As(V). Flood deposits were collected after big flood event in valley of the Warta river which took place in summer 2010. Samples of overbank deposits were taken in Poznań agglomeration and vicinity (NW Poland). The results of determinations of arsenic forms in the exchangeable fraction of flood deposits allowed indication of a hypothetical path of deposits migration transported by a river during flood and environmental threats posed by their deposition by flood. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Formation of fine sediment deposit from a flash flood river in the Mediterranean Sea

    Science.gov (United States)

    Grifoll, Manel; Gracia, Vicenç; Aretxabaleta, Alfredo L.; Guillén, Jorge; Espino, Manuel; Warner, John C.

    2014-01-01

    We identify the mechanisms controlling fine deposits on the inner-shelf in front of the Besòs River, in the northwestern Mediterranean Sea. This river is characterized by a flash flood regime discharging large amounts of water (more than 20 times the mean water discharge) and sediment in very short periods lasting from hours to few days. Numerical model output was compared with bottom sediment observations and used to characterize the multiple spatial and temporal scales involved in offshore sediment deposit formation. A high-resolution (50 m grid size) coupled hydrodynamic-wave-sediment transport model was applied to the initial stages of the sediment dispersal after a storm-related flood event. After the flood, sediment accumulation was predominantly confined to an area near the coastline as a result of preferential deposition during the final stage of the storm. Subsequent reworking occurred due to wave-induced bottom shear stress that resuspended fine materials, with seaward flow exporting them toward the midshelf. Wave characteristics, sediment availability, and shelf circulation determined the transport after the reworking and the final sediment deposition location. One year simulations of the regional area revealed a prevalent southwestward average flow with increased intensity downstream. The circulation pattern was consistent with the observed fine deposit depocenter being shifted southward from the river mouth. At the southern edge, bathymetry controlled the fine deposition by inducing near-bottom flow convergence enhancing bottom shear stress. According to the short-term and long-term analyses, a seasonal pattern in the fine deposit formation is expected.

  6. Flood of April 1975 at Williamston, Michigan

    Science.gov (United States)

    Knutilla, R.L.; Swallow, L.A.

    1975-01-01

    On April 18 between 5 p.m. and 12 p.m. the city of Williamston experienced an intense rain storm that caused the Red Cedar River and the many small streams in the area to overflow their banks and resulted in the most devastating flood since at least 1904. Local officials estimated a loss of \\$775,000 in property damage. Damage from flooding by the Red Cedar River was caused primarily by inundation, rather than by water moving at high velocity, as is common when many streams are flooded. During the flood of April 1975 many basements were flooded as well as the lower floors of some homes in the flood plain. Additional damage occurred in places when sewers backed up and flooded basements, and when ground water seeped through basement walls and floors—situations that affected many homes including those that were well outside of the flood plain.During the time of flooding the U.S. Geological Survey obtained aerial photography and data on a streamflow to document the disaster. This report shows on a photomosaic base map the extent of flooding along the Red Cedar River at Williamston, during the flood. It also presents data obtained at stream-gaging stations near Williamston, as well as the results of peak-flow discharge measurements made on the Red Cedar River at Michigan State Highway M-52 east of the city. Information on the magnitude of the flood can guide in making decisions pertaining to the use of flood-plains in the area. It is one of a series of reports on the April 1975 flood in the Lansing metropolitan area.

  7. Reconstruction of the 2015 Atacama Floods: Influence of Legacy Mining Deposits in the Salado River Mouth

    Science.gov (United States)

    Fuenzalida Callejas, M. J.; Contreras Vargas, M. T.; Escauriaza, C. R.

    2016-12-01

    In March 2015, the Salado watershed in the Atacama Desert was affected by unusual storms that unleashed floods never recorded before in northern Chile. Chañaral, an urban center located at the mouth of the Salado River, suffered the most catastrophic consequences on the population and infrastructure. Several natural and anthropic factors contributed to the magnitude and effects observed in this event. The total precipitation, of more than 80 mm in the upper section of the basin, produced a massive and rapid hyperconcentrated flow from the Andean foothills, which propagated along the channel with high velocities, depositing more than 2 m of mud in Chañaral. The dynamics of the flood in the city was also influenced by mine tailings deposited at the river mouth. The mining industry in this region during the previous century deposited approximately 200 million tons of mine tailings in the Chañaral Bay. The accumulation of this legacy mining deposits at the river mouth changed the local morphodynamics, which exacerbated the impacts of the flood. The objective of this work is to improve our understanding of the factors that affect the hydrodynamic of floods in hyper-arid regions. We perform numerical simulations using data collected in the field to reconstruct the event of March 2015 in Chañaral, integrating hydrological and hydrodynamic models to propagate the hydrograph in the city with high resolution. By using the reconstruction of the hydrograph and peak flow estimated by Wilcox et al., 2016, we simulate the flood using a two-dimensional model of the shallow-water equations, fully coupled with the sediment concentration (Contreras & Escauriaza, 2016). To identify the influence of the tailing deposits on the flow hydrodynamics, we use high-resolution data of the pre- and post-disaster topography. We compare the performance of different methodologies to assess the destructive power of the flood, considering also the influence of the sediment concentration in the

  8. Swiss Re Global Flood Hazard Zones: Know your flood risk

    Science.gov (United States)

    Vinukollu, R. K.; Castaldi, A.; Mehlhorn, J.

    2012-12-01

    Floods, among all natural disasters, have a great damage potential. On a global basis, there is strong evidence of increase in the number of people affected and economic losses due to floods. For example, global insured flood losses have increased by 12% every year since 1970 and this is expected to further increase with growing exposure in the high risk areas close to rivers and coastlines. Recently, the insurance industry has been surprised by the large extent of losses, because most countries lack reliable hazard information. One example has been the 2011 Thailand floods where millions of people were affected and the total economic losses were 30 billion USD. In order to assess the flood risk across different regions and countries, the flood team at Swiss Re based on a Geomorphologic Regression approach, developed in house and patented, produced global maps of flood zones. Input data for the study was obtained from NASA's Shuttle Radar Topographic Mission (SRTM) elevation data, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) and HydroSHEDS. The underlying assumptions of the approach are that naturally flowing rivers shape their channel and flood plain according to basin inherent forces and characteristics and that the flood water extent strongly depends on the shape of the flood plain. On the basis of the catchment characteristics, the model finally calculates the probability of a location to be flooded or not for a defined return period, which in the current study was set to 100 years. The data is produced at a 90-m resolution for latitudes 60S to 60N. This global product is now used in the insurance industry to inspect, inform and/or insure the flood risk across the world.

  9. Monitoring Streambed Scour/Deposition Under Nonideal Temperature Signal and Flood Conditions

    Science.gov (United States)

    DeWeese, Timothy; Tonina, Daniele; Luce, Charles

    2017-12-01

    Streambed erosion and deposition are fundamental geomorphic processes in riverbeds, and monitoring their evolution is important for ecological system management and in-stream infrastructure stability. Previous research showed proof of concept that analysis of paired temperature signals of stream and pore waters can simultaneously provide monitoring scour and deposition, stream sediment thermal regime, and seepage velocity information. However, it did not address challenges often associated with natural systems, including nonideal temperature variations (low-amplitude, nonsinusoidal signal, and vertical thermal gradients) and natural flooding conditions on monitoring scour and deposition processes over time. Here we addressed this knowledge gap by testing the proposed thermal scour-deposition chain (TSDC) methodology, with laboratory experiments to test the impact of nonideal temperature signals under a range of seepage velocities and with a field application during a pulse flood. Both analyses showed excellent match between surveyed and temperature-derived bed elevation changes even under very low temperature signal amplitudes (less than 1°C), nonideal signal shape (sawtooth shape), and strong and changing vertical thermal gradients (4°C/m). Root-mean-square errors on predicting the change in streambed elevations were comparable with the median grain size of the streambed sediment. Future research should focus on improved techniques for temperature signal phase and amplitude extractions, as well as TSDC applications over long periods spanning entire hydrographs.

  10. Assessment of Nutrient Limitation in Flood plain Forests with Two Different Techniques

    International Nuclear Information System (INIS)

    Neatrour, M.A.; Jones, R.H.; Golladay, S.W.

    2008-01-01

    We assessed nitrogen and phosphorus limitation in a flood plain forest in southern Georgia in USA using two commonly used methods: nitrogen to phosphorus (N:P) ratios in litterfall and fertilized ingrowth cores. We measured nitrogen (N) and phosphorus (P) concentrations in litterfall to determine N:P mass ratios. We also installed ingrowth cores within each site containing native soil amended with nitrogen (N), phosphorus (P), or nitrogen and phosphorus (N + P) fertilizers or without added fertilizer (C). Litter N:P ratios ranged from 16 to 22, suggesting P limitation. However, fertilized ingrowth cores indicated N limitation because fine-root length density was greater in cores fertilized with N or N + P than in those fertilized with P or without added fertilizer. We feel that these two methods of assessing nutrient limitation should be corroborated with fertilization trials prior to use on a wider basis.

  11. Extent and frequency of floods on Delaware River in vicinity of Belvidere, New Jersey

    Science.gov (United States)

    Farlekas, George M.

    1966-01-01

    A stream overflowing its banks is a natural phenomenon. This natural phenomenon of flooding has occurred on the Delaware River in the past and will occur in the future. T' o resulting inundation of large areas can cause property damage, business losses and possible loss of life, and may result in emergency costs for protection, rescue, and salvage work. For optimum development of the river valley consistent with the flood risk, an evaluation of flood conditions is necessary. Basic data and the interpretation of the data on the regimen of the streams, particularly the magnitude of floods to be expected, the frequency of their occurrence, and the areas inundated, are essential for planning and development of flood-prone areas.This report presents information relative to the extent, depth, and frequency of floods on the Delaware River and its tributaries in the vicinity of Belvidere, N.J. Flooding on the tributaries detailed in the report pertains only to the effect of backwater from the Delaware River. Data are presented for several past floods with emphasis given to the floods of August 19, 1955 and May 24, 1942. In addition, information is given for a hypothetical flood based on the flood of August 19, 1955 modified by completed (since 1955) and planned flood-control works.By use of relations presented in this report the extent, depth, and frequency of flooding can be estimated for any site along the reach of the Delaware River under study. Flood data and the evaluation of the data are presented so that local and regional agencies, organizations, and individuals may have a technical basis for making decisions on the use of flood-prone areas. The Delaware River Basin Commission and the U.S. Geological Survey regard this program of flood-plain inundation studies as a positive step toward flood-damage prevention. Flood-plain inundation studies, when followed by appropriate land-use regulations, are a valuable and economical supplement to physical works for flood

  12. Depositional environments of the uranium bearing Cutler Formations, Lisbon Valley, Utah

    International Nuclear Information System (INIS)

    Campbell, J.A.; Steele-Mallory, B.A.

    1979-01-01

    The Cutler Formation in Lisbon Valley, San Juan County, Utah, is composed predominantly of fluvial arkosic sandstones, siltstones, shales, and mudstones that were deposited by meandering streams that flowed across a flood plain and tidal flat close to sea level. Two types of channel deposits are recognized from their sedimentary structures: meandering and distributary. The flood plain was occasionally transgressed by a shallow sea from the west, resulting in the deposition of several thin limestones and marine sandstones. The marine sandstones were deposited as longshore bars. Wind transported sand along the shoreline of the shallow sea, forming a coastal dune field. Marine sandstones and eolian sandstones are more common in the upper Cutler in the southern part of the area, whereas in the central and northern part of the area the formation is predominantly fluvial. Crossbed orientation indicates that Cutler streams flowed S. 67 0 W. on the average, whereas marine currents moved sediment S. 36 0 E. and N. 24 0 W., and wind transported sand S. 80 0 E. The uranium in the Cutler is found in the central and northern part of the area, in the upper part of the formation, in small fluvial sandstone bodies that were deposited predominantly in a distributary environment. No uranium is known in the marine or eolian sandstones. Petrographically, the uranium-bearing sandstones are identical to other Cutler fluvial sandstones except that they contain less calcite and more clay and are slightly coarser grained. Ore formation has modified the host sandstones very little

  13. Depositional environments of the uranium-bearing Cutler Formations, Lisbon Valley, Utah

    Science.gov (United States)

    Campbell, John A.; Steele-Mallory, Brenda A.

    1979-01-01

    The Cutler Formation in Lisbon Valley, San Juan County, Utah, is composed predominantly of fluvial arkosic sandstones, siltstones, shales, and mudstones that were deposited by meandering streams that flowed across a flood plain and tidal flat close to sea level. Two types of channel deposits are recognized from their sedimentary structures: meandering and distributary. The flood plain was occasionally transgressed by a shallow sea from the west, resulting in the deposition of several thin limestones and marine sandstones. The marine sandstones were deposited as longshore bars. Wind transported sand along the shoreline of the shallow sea, forming a coastal dune field. Marine sandstones and eolian sandstones are more common in the upper Cutler in the southern part of the area, whereas in the central and northern part of the area the formation is predominantly fluvial. Crossbed orientation indicates that Cutler streams flowed S. 67? W. on the the average, whereas marine currents moved sediment S. 36? E. and N. 24? W., and wind transported sand S. 800 E. The uranium in the Cutler is found in the central and northern part of the area, in the upper part of the formation, in small fluvial sandstone bodies that were deposited predominantly in a distributary environment. No uranium is known in the marine or eolian sandstones. Petrographically, the uranium-bearing sandstones are identical to other Cutler fluvial sandstones except that they contain less calcite and more clay and are slightly coarser grained. Ore formation has modified the host sandstones very little.

  14. Flood Hazard Mapping using Hydraulic Model and GIS: A Case Study in Mandalay City, Myanmar

    Directory of Open Access Journals (Sweden)

    Kyu Kyu Sein

    2016-01-01

    Full Text Available This paper presents the use of flood frequency analysis integrating with 1D Hydraulic model (HECRAS and Geographic Information System (GIS to prepare flood hazard maps of different return periods in Ayeyarwady River at Mandalay City in Myanmar. Gumbel’s distribution was used to calculate the flood peak of different return periods, namely, 10 years, 20 years, 50 years, and 100 years. The flood peak from frequency analysis were input into HEC-RAS model to find the corresponding flood level and extents in the study area. The model results were used in integrating with ArcGIS to generate flood plain maps. Flood depths and extents have been identified through flood plain maps. Analysis of 100 years return period flood plain map indicated that 157.88 km2 with the percentage of 17.54% is likely to be inundated. The predicted flood depth ranges varies from greater than 0 to 24 m in the flood plains and on the river. The range between 3 to 5 m were identified in the urban area of Chanayetharzan, Patheingyi, and Amarapua Townships. The highest inundated area was 85 km2 in the Amarapura Township.

  15. Characterization of sediments laid on Solimoes/Amazonas river flood plains, using energy dispersive X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Carneiro, Ana E.V.; Nascimento Filho, Virgilio F. do

    1997-01-01

    This paper proposes sediment analysis with high light elements fraction using dispersive energy X-ray fluorescence technique with radioisotopic excitation, The proposed procedure is based on the Fundamental Parameters for analytical elements (Z ≥ 13) evaluation, and coherent and incoherent scattered radiation for quantification of the light fraction of the matrix (Z < 13). Laid sediments samples on Solimoes/Amazonas river flood plains were analyzed, determining simultaneously the Al, Si, K, Ca, Ti, Fe, Sc, V, Mn, Cu, Zn, Rb, Sr and Zr element concentrations, thus allowing chemical characterization and spatial variability, and some mineralogical and weathering sediments aspects. (author). 15 refs., 11 tabs

  16. Extending flood damage assessment methodology to include ...

    African Journals Online (AJOL)

    Optimal and sustainable flood plain management, including flood control, can only be achieved when the impacts of flood control measures are considered for both the man-made and natural environments, and the sociological aspects are fully considered. Until now, methods/models developed to determine the influences ...

  17. 2 Dimensional Hydrodynamic Flood Routing Analysis on Flood Forecasting Modelling for Kelantan River Basin

    Directory of Open Access Journals (Sweden)

    Azad Wan Hazdy

    2017-01-01

    Full Text Available Flood disaster occurs quite frequently in Malaysia and has been categorized as the most threatening natural disaster compared to landslides, hurricanes, tsunami, haze and others. A study by Department of Irrigation and Drainage (DID show that 9% of land areas in Malaysia are prone to flood which may affect approximately 4.9 million of the population. 2 Dimensional floods routing modelling demonstrate is turning out to be broadly utilized for flood plain display and is an extremely viable device for evaluating flood. Flood propagations can be better understood by simulating the flow and water level by using hydrodynamic modelling. The hydrodynamic flood routing can be recognized by the spatial complexity of the schematization such as 1D model and 2D model. It was found that most of available hydrological models for flood forecasting are more focus on short duration as compared to long duration hydrological model using the Probabilistic Distribution Moisture Model (PDM. The aim of this paper is to discuss preliminary findings on development of flood forecasting model using Probabilistic Distribution Moisture Model (PDM for Kelantan river basin. Among the findings discuss in this paper includes preliminary calibrated PDM model, which performed reasonably for the Dec 2014, but underestimated the peak flows. Apart from that, this paper also discusses findings on Soil Moisture Deficit (SMD and flood plain analysis. Flood forecasting is the complex process that begins with an understanding of the geographical makeup of the catchment and knowledge of the preferential regions of heavy rainfall and flood behaviour for the area of responsibility. Therefore, to decreases the uncertainty in the model output, so it is important to increase the complexity of the model.

  18. Rare Earth Elements (REE Deposits Associated with Great Plain Margin Deposits (Alkaline-Related, Southwestern United States and Eastern Mexico

    Directory of Open Access Journals (Sweden)

    Virginia T. McLemore

    2018-01-01

    Full Text Available W.G. Lindgren in 1933 first noted that a belt of alkaline-igneous rocks extends along the eastern edge of the Rocky Mountains and Basin and Range provinces from Alaska and British Columbia southward into New Mexico, Trans-Pecos Texas, and eastern Mexico and that these rocks contain relatively large quantities of important commodities such as, gold, fluorine, zirconium, rare earth elements (REE, tellurium, gallium, and other critical elements. In New Mexico, these deposits were called Great Plain Margin (GPM deposits, because this north-south belt of alkaline-igneous rocks roughly coincides with crustal thickening along the margin between the Great Plains physiographic province with the Basin and Range (including the Rio Grande rift and Rocky Mountains physiographic provinces, which extends into Trans-Pecos Texas and eastern Mexico. Since 1996, only minor exploration and development of these deposits in New Mexico, Texas, and eastern Mexico has occurred because of low commodity prices, permitting issues, and environmental concerns. However, as the current demand for gold and critical elements, such as REE and tellurium has increased, new exploration programs have encouraged additional research on the geology of these deposits. The lack of abundant quartz in these systems results in these deposits being less resistant to erosion, being covered, and not as well exposed as other types of quartz-rich deposits, therefore additional undiscovered alkaline-related gold and REE deposits are likely in these areas. Deposits of Th-REE-fluorite (±U, Nb epithermal veins and breccias are found in the several GPM districts, but typically do not contain significant gold, although trace amounts of gold are found in most GPM districts. Gold-rich deposits in these districts tend to have moderate to low REE and anomalously high tungsten and sporadic amounts of tellurium. Carbonatites are only found in New Mexico and Mexico. The diversity of igneous rocks, including

  19. 2011 floods of the central United States

    Science.gov (United States)

    ,

    2013-01-01

    The Central United States experienced record-setting flooding during 2011, with floods that extended from headwater streams in the Rocky Mountains, to transboundary rivers in the upper Midwest and Northern Plains, to the deep and wide sand-bedded lower Mississippi River. The U.S. Geological Survey (USGS), as part of its mission, collected extensive information during and in the aftermath of the 2011 floods to support scientific analysis of the origins and consequences of extreme floods. The information collected for the 2011 floods, combined with decades of past data, enables scientists and engineers from the USGS to provide syntheses and scientific analyses to inform emergency managers, planners, and policy makers about life-safety, economic, and environmental-health issues surrounding flood hazards for the 2011 floods and future floods like it. USGS data, information, and scientific analyses provide context and understanding of the effect of floods on complex societal issues such as ecosystem and human health, flood-plain management, climate-change adaptation, economic security, and the associated policies enacted for mitigation. Among the largest societal questions is "How do we balance agricultural, economic, life-safety, and environmental needs in and along our rivers?" To address this issue, many scientific questions have to be answered including the following: * How do the 2011 weather and flood conditions compare to the past weather and flood conditions and what can we reasonably expect in the future for flood magnitudes?

  20. A dynamic compartment model for assessing the transfer of radionuclide deposited onto flooded rice-fields

    International Nuclear Information System (INIS)

    Keum, Dong-Kwon; Lee, Han-Soo; Choi, Heui-Ju; Kang, Hee-Seok; Lim, Kwang-Muk; Choi, Young-Ho; Lee, Chang-Woo

    2004-01-01

    A dynamic compartment model has been studied to estimate the transfer of radionuclides deposited onto flooded rice-fields after an accidental release. In the model, a surface water compartment and a direct shoot-base absorption from the surface water to the rice-plant, which are major features discriminating the present model from the existing model, has been introduced to account for the flooded condition of rice-fields. The model has been applied to the deposition experiments of 137 Cs on rice-fields that were performed at three different times to simulate the deposition before transplanting (May 2) and during the growth of the rice (June 1 and August 12), respectively. In the case of the deposition of May 2, the root-uptake is the most predominant process for transferring 137 Cs to the rice-body and grain. When the radionuclide is applied just after transplanting (June 1), the activity of the body is controlled by the shoot-base absorption and the activity of the grain by the root-uptake. The deposition just before ear-emergence (August 12) shows that the shoot-base absorption contributes entirely to the increase of both the activities of the body and grain. The model prediction agrees within one or two factors with the experimental results obtained for a respective deposition experiment

  1. The pattern of spatial flood disaster region in DKI Jakarta

    Science.gov (United States)

    Tambunan, M. P.

    2017-02-01

    in beach ridge, coastal alluvial plain, and alluvial plain; while the flood potential area on the slope is found flat and steep at alluvial fan, alluvial plain, beach ridge, and coastal alluvial plain in DKI Jakarta. Based on the result can be concluded that actual flood prone is not distributed on potential flood prone

  2. Strategies for Mitigation of Flood Risk in the Niger Delta, Nigeria ...

    African Journals Online (AJOL)

    Strategies for Mitigation of Flood Risk in the Niger Delta, Nigeria. ... Journal of Applied Sciences and Environmental Management ... a false sense of security to flood plain dwellers and thereby encouraging investments in flood prone areas.

  3. Catastrophe loss modelling of storm-surge flood risk in eastern England.

    Science.gov (United States)

    Muir Wood, Robert; Drayton, Michael; Berger, Agnete; Burgess, Paul; Wright, Tom

    2005-06-15

    Probabilistic catastrophe loss modelling techniques, comprising a large stochastic set of potential storm-surge flood events, each assigned an annual rate of occurrence, have been employed for quantifying risk in the coastal flood plain of eastern England. Based on the tracks of the causative extratropical cyclones, historical storm-surge events are categorized into three classes, with distinct windfields and surge geographies. Extreme combinations of "tide with surge" are then generated for an extreme value distribution developed for each class. Fragility curves are used to determine the probability and magnitude of breaching relative to water levels and wave action for each section of sea defence. Based on the time-history of water levels in the surge, and the simulated configuration of breaching, flow is time-stepped through the defences and propagated into the flood plain using a 50 m horizontal-resolution digital elevation model. Based on the values and locations of the building stock in the flood plain, losses are calculated using vulnerability functions linking flood depth and flood velocity to measures of property loss. The outputs from this model for a UK insurance industry portfolio include "loss exceedence probabilities" as well as "average annualized losses", which can be employed for calculating coastal flood risk premiums in each postcode.

  4. Early diagenesis of recently deposited organic matter: A 9-yr time-series study of a flood deposit

    Science.gov (United States)

    Tesi, T.; Langone, L.; Goñi, M. A.; Wheatcroft, R. A.; Miserocchi, S.; Bertotti, L.

    2012-04-01

    In Fall 2000, the Po River (Italy) experienced a 100-yr return period flood that resulted in a 1-25 cm-thick deposit in the adjacent prodelta (10-25 m water depth). In the following years, numerous post-depositional perturbations occurred including bioturbation, reworking by waves with heights exceeding 5 m, as well as periods of extremely high and low sediment supply. Cores collected in the central prodelta after the Fall 2000 flood and over the following 9 yr, allowed characterization of the event-strata in their initial state and documentation of their subsequent evolution. Sedimentological characteristics were investigated using X-radiographs and sediment texture analyses, whereas the composition of sedimentary organic matter (OM) was studied via bulk and biomarker analyses, including organic carbon (OC), total nitrogen (TN), carbon stable isotope composition (δ13C), lignin phenols, cutin-products, p-hydroxy benzenes, benzoic acids, dicarboxylic acids, and fatty acids. The 9-yr time-series analysis indicated that roughly the lower half of the original event bed was preserved in the sediment record. Conversely, the upper half of the deposit experienced significant alterations including bioturbation, addition of new material, as well as coarsening. Comparison of the recently deposited material with 9-yr old preserved strata represented a unique natural laboratory to investigate the diagenesis of sedimentary OM in a non-steady system. Bulk data indicated that OC and TN were degraded at similar rates (loss ∼17%) whereas biomarkers exhibited a broad spectrum of reactivities (loss from ∼6% to ∼60%) indicating selective preservation during early diagenesis. Given the relevance of episodic sedimentation in several margins, this study has demonstrated the utility of event-response and time-series sampling of the seabed for understanding the early diagenesis in non-steady conditions.

  5. Exploitation of Documented Historical Floods for Achieving Better Flood Defense

    Directory of Open Access Journals (Sweden)

    Slobodan Kolaković

    2016-01-01

    Full Text Available Establishing Base Flood Elevation for a stream network corresponding to a big catchment is feasible by interdisciplinary approach, involving stochastic hydrology, river hydraulics, and computer aided simulations. A numerical model calibrated by historical floods has been exploited in this study. The short presentation of the catchment of the Tisza River in this paper is followed by the overview of historical floods which hit the region in the documented period of 130 years. Several well documented historical floods provided opportunity for the calibration of the chosen numerical model. Once established, the model could be used for investigation of different extreme flood scenarios and to establish the Base Flood Elevation. The calibration has shown that the coefficient of friction in case of the Tisza River is dependent both on the actual water level and on the preceding flood events. The effect of flood plain maintenance as well as the activation of six potential detention ponds on flood mitigation has been examined. Furthermore, the expected maximum water levels have also been determined for the case if the ever observed biggest 1888 flood hit the region again. The investigated cases of flood superposition highlighted the impact of tributary Maros on flood mitigation along the Tisza River.

  6. Impacts of Extreme Flooding on Hydrologic Connectivity and Water Quality in the Atlantic Coastal Plain and Implications for Vulnerable Populations

    Science.gov (United States)

    Riveros-Iregui, D. A.; Moser, H. A.; Christenson, E. C.; Gray, J.; Hedgespeth, M. L.; Jass, T. L.; Lowry, D. S.; Martin, K.; Nichols, E. G.; Stewart, J. R.; Emanuel, R. E.

    2017-12-01

    In October 2016, Hurricane Matthew brought extreme flooding to eastern North Carolina, including record regional flooding along the Lumber River and its tributaries in the North Carolina Coastal Plain. Situated in a region dominated by large-scale crop-cultivation and containing some of the highest densities of concentrated animal feeding operations (CAFOs) and animal processing operations in the U.S., the Lumber River watershed is also home to the Lumbee Tribe of American Indians. Most of the tribe's 60,000+ members live within or immediately adjacent to the 3,000 km2 watershed where they maintain deep cultural and historical connections. The region, however, also suffers from high rates of poverty and large disparities in healthcare, education, and infrastructure, conditions exacerbated by Hurricane Matthew. We summarize ongoing efforts to characterize the short- and long-term impacts of extreme flooding on water quality in (1) low gradient streams and riverine wetlands of the watershed; (2) surficial aquifers, which provide water resources for the local communities, and (3) public drinking water supplies, which derive from deeper, confined aquifers but whose infrastructure suffered widespread damage following Hurricane Matthew. Our results provide mechanistic understanding of flood-related connectivity across multiple hydrologic compartments, and provide important implications for how hydrological natural hazards combine with land use to drive water quality impacts and affect vulnerable populations.

  7. Integrating a Typhoon Event Database with an Optimal Flood Operation Model on the Real-Time Flood Control of the Tseng-Wen Reservoir

    Science.gov (United States)

    Chen, Y. W.; Chang, L. C.

    2012-04-01

    Typhoons which normally bring a great amount of precipitation are the primary natural hazard in Taiwan during flooding season. Because the plentiful rainfall quantities brought by typhoons are normally stored for the usage of the next draught period, the determination of release strategies for flood operation of reservoirs which is required to simultaneously consider not only the impact of reservoir safety and the flooding damage in plain area but also for the water resource stored in the reservoir after typhoon becomes important. This study proposes a two-steps study process. First, this study develop an optimal flood operation model (OFOM) for the planning of flood control and also applies the OFOM on Tseng-wun reservoir and the downstream plain related to the reservoir. Second, integrating a typhoon event database with the OFOM mentioned above makes the proposed planning model have ability to deal with a real-time flood control problem and names as real-time flood operation model (RTFOM). Three conditions are considered in the proposed models, OFOM and RTFOM, include the safety of the reservoir itself, the reservoir storage after typhoons and the impact of flooding in the plain area. Besides, the flood operation guideline announced by government is also considered in the proposed models. The these conditions and the guideline can be formed as an optimization problem which is solved by the genetic algorithm (GA) in this study. Furthermore, a distributed runoff model, kinematic-wave geomorphic instantaneous unit hydrograph (KW-GIUH), and a river flow simulation model, HEC-RAS, are used to simulate the river water level of Tseng-wun basin in the plain area and the simulated level is shown as an index of the impact of flooding. Because the simulated levels are required to re-calculate iteratively in the optimization model, applying a recursive artificial neural network (recursive ANN) instead of the HEC-RAS model can significantly reduce the computational burden of

  8. THE EFFECT OF THE GEOMETRIC STRUCTURE OF FLOOD PLAIN VEGETATION ON THE PROBABILITY OF PASSING FOR PLANT DEBRIS

    Directory of Open Access Journals (Sweden)

    Natalia Walczak

    2016-09-01

    Full Text Available Flood plains are a specific sedimentary environment. They are a natural clarifier and filter for rivers carrying large amounts of heavy metals, biogenic elements and other contaminants transported during high water and floods. Plenty of it is accumulated in the riverbank zone of channels i.e. a buffer strip. This is a relatively narrow strip of land situated along watercourses, often covered with riparian plants. It is functionally associated with river flooding and it forms a transition zone to ecosystems of mixed (oak-lime-hornbeam forest plants. These plants unquestionably grow into a natural protective system of surface waters against contamination flowing down from areas used for agricultural purposes. Buffer zones provide the opportunity for self-cleaning, and according researchers they are among the most efficient natural tools to protect a catchment area. They can reduce the amount of sediments and nutrients carried by surface water flowing down from agricultural areas. Besides positive effects, the zones are accompanied by the phenomenon of flow blockage, which is particularly hazardous in case of directing great water away from its main channel. Shrubby vegetation retains small elements of plant origin and thus the free flow of water stopped. The article analyses the effect of vegetation structure density on flow conditions for small plant debris on a laboratory scale.

  9. Flood, Seismic or Volcanic Deposits? New Insights from X-Ray Computed Tomography

    Science.gov (United States)

    Van Daele, M. E.; Moernaut, J.; Vermassen, F.; Llurba, M.; Praet, N.; Strupler, M. M.; Anselmetti, F.; Cnudde, V.; Haeussler, P. J.; Pino, M.; Urrutia, R.; De Batist, M. A. O.

    2014-12-01

    Event deposits, such as e.g. turbidites incorporated in marine or lacustrine sediment sequences, may be caused by a wide range of possible triggering processes: failure of underwater slopes - either spontaneous or in response to earthquake shaking, hyperpycnal flows and floods, volcanic processes, etc. Determining the exact triggering process remains, however, a major challenge. Especially when studying the event deposits on sediment cores, which typically have diameters of only a few cm, only a small spatial window is available to analyze diagnostic textural and facies characteristics. We have performed X-ray CT scans on sediment cores from Chilean, Alaskan and Swiss lakes. Even when using relatively low-resolution CT scans (0.6 mm voxel size), many sedimentary structures and fabrics that are not visible by eye, are revealed. For example, the CT scans allow to distinguish tephra layers that are deposited by fall-out, from those that reached the basin by river transport or mud flows and from tephra layers that have been reworked and re-deposited by turbidity currents. The 3D data generated by the CT scans also allow to examine relative orientations of sedimentary structures (e.g. convolute lamination) and fabrics (e.g. imbricated mud clasts), which can be used to reconstruct flow directions. Such relative flow directions allow to determine whether a deposit (e.g. a turbidite) had one or several source areas, the latter being typical for seismically triggered turbidites. When the sediment core can be oriented (e.g. using geomagnetic properties), absolute flow directions can be reconstructed. X-ray CT scanning, at different resolution, is thus becoming an increasingly important tool for discriminating the exact origin of EDs, as it can help determining whether e.g. an ash layer was deposited as fall out from an ash cloud or fluvially washed into the lake, or whether a turbidite was triggered by an earthquake or a flood.

  10. Flood damage assessment – Literature review and recommended procedure

    DEFF Research Database (Denmark)

    Olesen, Lea; Löwe, Roland; Arnbjerg-Nielsen, Karsten

    The assessment of flood risk is an essential tool in evaluating the potential consequences of a flood. The analysis of the risk can be applied as part of the flood plain management, but can also be used in a cost-benefit analysis, when comparing different adaption strategies. This analysis is the...

  11. Simulation of nitrogen deposition in the North China Plain by the FRAME model

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2011-11-01

    Full Text Available Simulation of atmospheric nitrogen (N deposition in the North China Plain (NCP at high resolution, 5 × 5 km2, was conducted for the first time by the Fine Resolution Atmospheric Multi-pollutant Exchange (FRAME model. The total N deposition budget was 1481 Gg in this region, with 77 % from reduced N and 23 % from oxidized N, and the annual deposition rate (47 kg N ha−1 was much higher than previously reported values for other parts of the world such as the UK (13 kg N ha−1, Poland (7.3 kg N ha−1 and EU27 (8.6 kg N ha−1. The exported N component (1981 Gg was much higher than the imported N component (584 Gg, suggesting that the NCP is an important net emission source of N pollutants. Contributions of N deposition budgets from the seven provinces in this region were proportional to their area ratios. The calculated spatial distributions of N deposition displayed high rates of reduced N deposition in the south and of oxidized N deposition in the eastern part. The N deposition exceeded an upper limit of 30 kg N ha−1 for natural ecosystems over more than 90 % of the region, resulting in terrestrial ecosystem deterioration, impaired air quality and coastal eutrophication not only in the NCP itself but also in surrounding areas including the Bohai Sea and the Yellow Sea.

  12. Multi-proxy Characterization of Two Recent Storm Deposits Attributed to Hurricanes Rita and Ike in the Chenier Plain of Southwestern Louisiana

    Science.gov (United States)

    Yao, Q.; Liu, K. B.; Ryu, J.

    2017-12-01

    The Chenier Plain in southwestern Louisiana owes its origin to dynamic depositional processes that are dominated by delta-switching of the Mississippi River to the east, while frequent hurricane activities also play an important role in its geomorphology and sedimentary history. However, despite several studies in the literature, the sediment-stratigraphic characteristics of recent or historic hurricane deposits are still not well documented from the Chenier Plain. In 2005 and 2008, Hurricane Rita (category 3) and Ike (category 2) made landfall on the coasts of Louisiana and Texas. Remote sensing images confirm that the Rockefeller Wildlife Refuge, located at the east end of the Louisiana Chenier Plain, was heavily impacted by both hurricanes. We analyzed the lithology and chemical stratigraphy of three 30 cm sediment monoliths (ROC-1, ROC-2, and ROC-3) recovered from a coastal saltmarsh in the Rockefeller Wildlife Refuge to identify the event deposits attributed to these two storms. Each monolith contains 2 distinct light-colored clastic sediment layers imbedded in brown organic clay. The loss-on-ignition and X-ray fluorescence results show that the hurricane layers have increased contents of Ca, Sr, Zr, and carbonates and decreased contents of water and organics. Surprisingly, despite its greater intensity and more severe impacts, Hurricane Rita left a much thinner storm deposit than did Hurricane Ike in all monoliths. Satellite data reveal that Hurricane Rita caused significant coastal erosion and shoreline recession, rendering the sampling sites much closer to the beach and ocean and therefore more prone to storm surges and overwash deposition than when Hurricane Ike struck three years later. Our results suggest that site-to-sea distance, which affects a study site's paleotempestological sensitivity, can play a bigger role in affecting the thicknesses of storm deposits than the intensity of the hurricane.

  13. Heavy metal contaminations in the groundwater of Brahmaputra flood plain: an assessment of water quality in Barpeta District, Assam (India).

    Science.gov (United States)

    Haloi, Nabanita; Sarma, H P

    2012-10-01

    A study was conducted to evaluate the heavy metal contamination status of groundwater in Brahmaputra flood plain Barpeta District, Assam, India. The Brahmaputra River flows from the southern part of the district and its many tributaries flow from north to south. Cd, Fe, Mn, Pb, and Zn are estimated by using atomic absorption spectrometer, Perkin Elmer AA 200. The quantity of heavy metals in drinking water should be checked time to time; as heavy metal accumulation will cause numerous problems to living being. Forty groundwater samples were collected mainly from tube wells from the flood plain area. As there is very little information available about the heavy metal contamination status in the heavily populated study area, the present work will help to be acquainted with the suitability of groundwater for drinking applications as well as it will enhance the database. The concentration of iron exceeds the WHO recommended levels of 0.3 mg/L in about 80% of the samples, manganese values exceed 0.4 mg/L in about 22.5% of the samples, and lead values also exceed limit in 22.5% of the samples. Cd is reported in only four sampling locations and three of them exceed the WHO permissible limit (0.003 mg/L). Zinc concentrations were found to be within the prescribed WHO limits. Therefore, pressing awareness is needed for the betterment of water quality; for the sake of safe drinking water. Statistical analysis of the data was carried out using Special Package for Social Sciences (SPSS 16).

  14. Strategies for Mitigation of Flood Risk in the Niger Delta, Nigeria ...

    African Journals Online (AJOL)

    jen

    ABSTRACT: The study has the major objective of evaluating flood risk mitigation strategies in the Niger. Delta, a coastal region of Nigeria that suffers from perennial flooding. The Raper argues that the structural methods of flood control tends to give a false sense of security to flood plain dwellers and thereby encouraging.

  15. Cold-climate slope deposits and landscape modifications of the Mid-Atlantic Coastal Plain, Eastern USA

    Science.gov (United States)

    Newell, Wayne L.; Dejong, B.D.

    2011-01-01

    The effects of Pleistocene cold-climate geomorphology are distributed across the weathered and eroded Mid-Atlantic Coastal Plain uplands from the Wisconsinan terminal moraine south to Tidewater Virginia. Cold-climate deposits and landscape modifications are superimposed on antecedent landscapes of old, weathered Neogene upland gravels and Pleistocene marine terraces that had been built during warm periods and sea-level highstands. In New Jersey, sequences of surficial deposits define a long history of repeating climate change events. To the south across the Delmarva Peninsula and southern Maryland, most antecedent topography has been obscured by Late Pleistocene surficial deposits. These are spatially variable and are collectively described as a cold-climate alloformation. The cold-climate alloformation includes time-transgressive details of climate deterioration from at least marine isotope stage (MIS) 4 through the end of MIS 2. Some deposits and landforms within the alloformation may be as young as the Younger Dryas. Southwards along the trend of the Potomac River, these deposits and their climatic affinities become diffused. In Virginia, a continuum of erosion and surficial deposits appears to be the product of ‘normal’ temperate, climate-forced processes. The cold-climate alloformation and more temperate deposits in Virginia are being partly covered by Holocene alluvium and bay mud.

  16. Quaternary deposits and landscape evolution of the central Blue Ridge of Virginia

    Science.gov (United States)

    Eaton, L. Scott; Morgan, Benjamin A.; Kochel, R. Craig; Howard, Alan D.

    2003-01-01

    A catastrophic storm that struck the central Virginia Blue Ridge Mountains in June 1995 delivered over 775 mm (30.5 in) of rain in 16 h. The deluge triggered more than 1000 slope failures; and stream channels and debris fans were deeply incised, exposing the stratigraphy of earlier mass movement and fluvial deposits. The synthesis of data obtained from detailed pollen studies and 39 radiometrically dated surficial deposits in the Rapidan basin gives new insights into Quaternary climatic change and landscape evolution of the central Blue Ridge Mountains.The oldest depositional landforms in the study area are fluvial terraces. Their deposits have weathering characteristics similar to both early Pleistocene and late Tertiary terrace surfaces located near the Fall Zone of Virginia. Terraces of similar ages are also present in nearby basins and suggest regional incision of streams in the area since early Pleistocene–late Tertiary time. The oldest debris-flow deposits in the study area are much older than Wisconsinan glaciation as indicated by 2.5YR colors, thick argillic horizons, and fully disintegrated granitic cobbles. Radiocarbon dating indicates that debris flow activity since 25,000 YBP has recurred, on average, at least every 2500 years. The presence of stratified slope deposits, emplaced from 27,410 through 15,800 YBP, indicates hillslope stripping and reduced vegetation cover on upland slopes during the Wisconsinan glacial maximum.Regolith generated from mechanical weathering during the Pleistocene collected in low-order stream channels and was episodically delivered to the valley floor by debris flows. Debris fans prograded onto flood plains during the late Pleistocene but have been incised by Holocene stream entrenchment. The fan incision allows Holocene debris flows to largely bypass many of the higher elevation debris fan surfaces and deposit onto the topographically lower surfaces. These episodic, high-magnitude storm events are responsible for

  17. Propagation and composition of the flood wave on the upper Mississippi River, 1993

    Science.gov (United States)

    Moody, John A.

    1995-01-01

    During spring and summer 1993, record flooding inundated much of the upper Mississippi River Basin. The magnitude of the damages-in terms of property, disrupted business, and personal trauma was unmatched by any other flood disaster in United States history. Property damage alone is expected to exceed $10 billion. Damaged highways and submerged roads disrupted overland transportation throughout the flooded region. The Mississippi and the Missouri Rivers were closed to navigation before, during, and after the flooding. Millions of acres of productive farmland remained under water for weeks during the growing season. Rills and gullies in many tilled fields are the result of the severe erosion that occurred throughout the Midwestern United States farmbelt. The hydrologic effects of extended rainfall throughout the upper Midwestern United States were severe and widespread. The banks and channels of many rivers were severely eroded, and sediment was deposited over large areas of the basin's flood plain. Record flows submerged many areas that had not been affected by previous floods. Industrial and agricultural areas were inundated, which caused concern about the transport and fate of industrial chemicals, sewage effluent, and agricultural chemicals in the floodwaters. The extent and duration of the flooding caused numerous levees to fail. One failed levee on the Raccoon River in Des Moines, Iowa, led to flooding of the city's water treatment plant. As a result, the city was without drinking water for 19 days.As the Nation's principal water-science agency, the U.S. Geological Survey (USGS) is in a unique position to provide an immediate assessment of some of the hydrological effects of the 1993 flood. The USGS maintains a hydrologic data network and conducts extensive water-resources investigations nationwide. Long-term data from this network and information on local and regional hydrology provide the basis for identifying and documenting the effects of the flooding

  18. Observations on the effect of flood on animals

    Science.gov (United States)

    Stickel, L.F.

    1948-01-01

    Summary. The flood plain of the Patuxent River is washed over periodically, and occasionally the entire bottomland is submerged to a depth of several feet. The effects of an unusually severe flood on the populations and home ranges of wood mice (Peromyscus leucopus) and box turtles (Terrapene carolina) were studied by means of collecting the animals before, during, and after the flood. The flood had little or no effect on the size of the populations, and individuals showed remarkable ability to remain within their home ranges despite the flood.

  19. Polders as active element of flood control

    International Nuclear Information System (INIS)

    Zilavy, M.

    2004-01-01

    In this presentation author deals with use of the polders as active element of flood control on the example Kysuca River and Podluzianka River (Slovakia). It was concluded that it is necessary: - dense network of rain gauge stations; - network of water level recorders; revision of design process for hydraulic objects - degree of safety; changes in legislation - permission for construction in flood-plains; maintenance of channel capacity; early flood forecasting - forecasting and warning service; river training works and maintenance; design of retention areas; preparation of retention areas prior to flood propagation

  20. Organic Geochemistry of the Tohoku Tsunami Deposits of 2011 (Japan)

    Science.gov (United States)

    Reicherter, K. R.; Schwarzbauer, J.; Szczucinski, W.; Jaffe, B. E.

    2014-12-01

    Geochemical investigations on paleotsunami deposits have mainly focused on inorganic proxies. Organic geochemistry has been used to distinguish between terrestrial and marine matter within the sediments, reflecting the mixture and transport of marine and terrestrial matter. The approach using organic substances with indicative properties (anthropogenic and xenobiotic compounds) for recent tsunami deposits is novel, but the approach of using specific bio- and anthropogenic markers indicators to determine (pre)historic and recent processes and impacts already exists. The Tohoku-oki tsunami in March 2011 showed the huge threat that tsunamis pose to society and landscape, including flooding of coastal lowlands and erosion/deposition of sediments. The mainly sandy tsunamites reach more than 4.5 km inland as there were run-up heights of ca. 10 m in the Sendai plain near the Sendai airport. The destruction of infrastructure by wave action and flooding was accompanied by the release of environmental pollutants (e.g. fuels, fats, tarmac, plastics, heavy metals, etc.) contaminating the coastal areas and ocean over large areas. To detect and characterize this process, we analyzed several sedimentary archives from the Bay of Sendai area (by using the same sample material as Szczucinski et al., 2012 from rice paddies of the Sendai Plain, Japan). The layers representing the tsunami deposits have been compared with pre-tsunami samples (supposedly to be unaffected) by means of organic-geochemical analyses based on GC/MS. Natural compounds and their diagenetic transformation products have been tested as marker compounds and proxies. The relative composition of fatty acids, n-alkanes, sesquiterpenes and further substances pointed to significant variations before and after the tsunami event. Additionally, anthropogenic marker compounds (such as soil derived pesticides, source specific PAHs, halogenated aromatics from industrial sources) have been detected and quantified

  1. An iron-age cultural hiatus enigma: mega-flooding and human settlement abandonment over the last millennium in the Lanyang Drainage System, northeastern Taiwan

    Science.gov (United States)

    Huang, Jyh-Jaan; Wei, Kuo-Yen; Löwemark, Ludvig; Song, Sheng-Rong; Huh, Chih-An; Chuang, Chih-Kai; Yang, Tien-Nan; Lee, Meng-Yang; Chen, Yu-Be; Lee, Teh-Quei

    2015-04-01

    Active tectonic activities and frequent typhoon landfalls make Taiwan unique in having very high rates of uplift, precipitation, denudation and sedimentation. Particularly, intense rainfall associated with typhoons often causes flooding, large-scale landslides, and debris flows in river systems. Such natural disasters have affected human societies both at present and in the past; the Typhoon Morakot in 2009 may serve as a modern example of such events. Kiwulan is a newly discovered archaeological site from the Iron Age situated on the Lanyang Plain in NE Taiwan. In the deposits from this society, a cultural hiatus centered around 1200-1500 cal. yr AD is found, suggesting that the settlement was abandoned for a period of a few hundred years before being recolonized. Until now it has remained a mystery what caused this cultural hiatus. This study assembles radiocarbon dates of upland river terraces, organic proxies in flood plain lake sediments, and content of wood shreds in nearby marine sediments from the continental slope off NE Taiwan. These records are synthesized to infer the frequency and magnitude of ancient flood events over the past 1250 years in the Lanyang Drainage System in northeastern Taiwan. Alluvial fan terraces distributed along the banks of the upper Lanyang River are considered to be the results of ancient debris flow events, and their radiocarbon dates fall in two time ranges: 850-1100 and 1400-1600 cal. yr AD. Organic proxies which representing terrestrial organic input were measured from bulk sediments of Lake Dahu and Lake Meihua in the Lanyang Plain. Peak values of TOC, C/N ratio and organic indicator (inc/coh) from Itrax-XRF core scanner measurements are conspicuous during 900-950, and 1400-1500 cal. yr AD, implying frequent flood events. Moreover, abundance peaks of wood shreds and peaks in the C/N ratio in marine box core ORI-801-7A from the continental slope SE of the Lanyang Plain are dated to about 950-1050 and 1450-1550 cal. yr AD

  2. The genesis of Kurišková U-Mo ore deposit

    International Nuclear Information System (INIS)

    Demko, R.; Biroň, A.; Novotný, L.; Bartalský, B.

    2014-01-01

    The U-Mo ores of the known uranium deposit Kurišková located in the Huta volcano-sedimentary complex (HVC) of lower Permian age belongs to the Petrova Hora Formation of the North-Gemeric tectonic unit (Western Carpathians). The HVC is built up by volcanic rocks of bimodal basalt-rhyolite association, intercalated with sandstones, mudstones and claystones. Based on the sedimentary facies reconstruction, it is supposed paleoenvironment of seasonally flooded shallow lakes of continental fluvial plain with transition to estuaries and shallow marine facies of continental shelf in the upper part of HVC.

  3. FLOOD PLAIN EVALUATION IN THE GANGA-BRAHMAPUTRA ...

    African Journals Online (AJOL)

    Dr Osondu

    2011-09-12

    Sep 12, 2011 ... Ethiopian Journal of Environmental Studies and Management Vol. 4 No.3 2011. FLOOD ..... middle units is fairly sharp, and the upper part of the lower unit is .... resources, but the architecture of the aquifers is not yet well ...

  4. Geospatial Analysis for the Determination of Hydro-Morphological Characteristics and Assessment of Flash Flood Potentiality in Arid Coastal Plains: A Case in Southwestern Sinai, Egypt

    Directory of Open Access Journals (Sweden)

    Ahmed Wahid

    2016-01-01

    Full Text Available Coastal plains with a unique geographic setting and renewable natural resources are promising for sustainable development; however, these areas may be subjected to some environmental hazards due to their geological setting. One of those hazards is the seasonal flash flood that can threaten existing and future development projects in such critical areas. Southwestern Sinai, Egypt, is a coastal plain that is characterized by complex geological setting an arid climate with seasonal rainfall which can result in a high runoff. The aim of this work is to model spatially the runoff amount and density related to flash flood development and to create a flash flood hazard map of the plain as an example of coastal plain in a desert environment with large and complex hydrologic setting. In this research, ASTER images are used to develop a digital elevation model (DEM and land use/land cover (LULC data sets of the study area. Geographic information system (GIS was used to perform runoff and ash potential flood analyses of the created databases and to show distributed runoff and flooding potential in spatial maps. A module was created in a GIS environment to develop a flash flood potential index map. It was clear that the main two factors controlling runoff amounts and flash flood potential in such kinds of areas are the slope and soil types. The final dataset map procedure by this work can be very helpful in land use planning by highlighting the areas subjected to flash floods.    Análisis Geoespacial para Determinar las Características Hidromorfológicas y Evaluar las Inundaciones Potenciales en Llanuras Costeras Áridas: Caso de Estudio en el Suroccidente de Sinaí, Egipto  Resumen Las llanuras costeras que poseen recursos naturales renovables y una configuración geográfíca única son promisorias para el desarrollo sostenible. Estas áreas, sin embargo, son objeto de algunas amenazas ambientales debido a su escenario geológico. Una de

  5. Assessment of undiscovered resources in calcrete uranium deposits, Southern High Plains region of Texas, New Mexico, and Oklahoma, 2017

    Science.gov (United States)

    Hall, Susan M.; Mihalasky, Mark J.; Van Gosen, Bradley S.

    2017-11-14

    The U.S. Geological Survey estimates a mean of 40 million pounds of in-place uranium oxide (U3O8) remaining as potential undiscovered resources in the Southern High Plains region of Texas, New Mexico, and Oklahoma. This estimate used a geology-based assessment method specific to calcrete uranium deposits.

  6. The depositional setting of the Late Quaternary sedimentary fill in southern Bannu basin, Northwest Himalayan fold and thrust belt, Pakistan.

    Science.gov (United States)

    Farid, Asam; Khalid, Perveiz; Jadoon, Khan Zaib; Jouini, Mohammed Soufiane

    2014-10-01

    Geostatistical variogram and inversion techniques combined with modern visualization tools have made it possible to re-model one-dimensional electrical resistivity data into two-dimensional (2D) models of the near subsurface. The resultant models are capable of extending the original interpretation of the data to depict alluvium layers as individual lithological units within the 2D space. By tuning the variogram parameters used in this approach, it is then possible to visualize individual lithofacies and geomorphological features for these lithologic units. The study re-examines an electrical resistivity dataset collected as part of a groundwater study in an area of the Bannu basin in Pakistan. Additional lithological logs from boreholes throughout the area have been combined with the existing resistivity data for calibration. Tectonic activity during the Himalayan orogeny uplifted and generated significant faulting in the rocks resulting in the formation of a depression which subsequently has been filled with clay-silt and dirty sand facies typical of lacustrine and flood plain environments. Streams arising from adjacent mountains have reworked these facies which have been eroded and replaced by gravel-sand facies along channels. It is concluded that the sediments have been deposited as prograding fan shaped bodies, flood plain, and lacustrine deposits. Clay-silt facies mark the locations of paleo depressions or lake environments, which have changed position over time due to local tectonic activity and sedimentation. The Lakki plain alluvial system has thus formed as a result of local tectonic activity with fluvial erosion and deposition characterized by coarse sediments with high electrical resistivities near the mountain ranges and fine sediments with medium to low electrical resistivities towards the basin center.

  7. Remote sensing of drivers of spring snowmelt flooding in the North Central US

    Science.gov (United States)

    Spring snowmelt poses an annual flood risk in non-mountainous regions, such as the northern Great Plains of North America. However, ground observations are often not sufficient to characterize the spatiotemporal variation of drivers of snowmelt floods for operational flood forecasting purposes. Re...

  8. Impacts of dyke development in flood prone areas in the Vietnamese Mekong Delta to downstream flood hazard

    Science.gov (United States)

    Khanh Triet Nguyen, Van; Dung Nguyen, Viet; Fujii, Hideto; Kummu, Matti; Merz, Bruno; Apel, Heiko

    2016-04-01

    The Vietnamese Mekong Delta (VMD) plays an important role in food security and socio-economic development of the country. Being a low-lying coastal region, the VMD is particularly susceptible to both riverine and tidal floods, which provide, on (the) one hand, the basis for the rich agricultural production and the livelihood of the people, but on the other hand pose a considerable hazard depending on the severity of the floods. But despite of potentially hazardous flood, the area remain active as a rice granary due to its nutrient-rich soils and sediment input, and dense waterways, canals and the long standing experience of the population living with floods. In response to both farmers' requests and governmental plans, the construction of flood protection infrastructure in the delta progressed rapidly in the last twenty years, notably at areas prone to deep flooding, i.e. the Plain of Reeds (PoR) and Long Xuyen Quadrangle (LXQ). Triple rice cropping becomes possible in farmlands enclosed by "full-dykes", i.e. dykes strong and high enough to prevent flooding of the flood plains for most of the floods. In these protected flood plains rice can be grown even during the peak flood period (September to November). However, little is known about the possibly (and already alleged) negative impacts of this fully flood protection measure to downstream areas. This study aims at quantifying how the flood regime in the lower part of the VMD (e.g. Can Tho, My Thuan, …) has been changed in the last 2 recent "big flood" events of 2000 and 2011 due to the construction of the full-dyke system in the upper part. First, an evaluation of 35 years of daily water level data was performed in order to detect trends at key gauging stations: Kratie: upper boundary of the Delta, Tan Chau and Chau Doc: areas with full-dyke construction, Can Tho and My Thuan: downstream. Results from the Mann-Kendall (MK) test show a decreasing trend of the annual maximum water level at 3 stations Kratie, Tan

  9. Radiocarbon dating of sediment cores from Hachinohe, the Kamikita Plain

    International Nuclear Information System (INIS)

    Hitoki, Eri; Nakamura, Toshio; Matsumoto, Yui; Tsuji, Sei-ichiro; Fujine, Hisashi

    2013-01-01

    We investigated stratigraphy and chronology by analyses of Holocene sediments and radiocarbon dating of sediment cores from the Kamikita Plain. On the Kamikita Plain, which faces the Pacific coast of Northeast Japan, marine and fluvial terraces covered with tephras derived from Towada and Hakkoda volcanoes are well developed. We clarified that Towada Chuseri tephra and fluvial deposits consisted of volcanic sediments influenced an alluvial depositional system in the Kamikita Plain after a maximum of the Jomon Transgression. (author)

  10. THE FLOOD RISK IN THE LOWER GIANH RIVER: MODELLING AND FIELD VERIFICATION

    Directory of Open Access Journals (Sweden)

    NGUYEN H. D.

    2016-03-01

    Full Text Available Problems associated with flood risk definitely represent a highly topical issue in Vietnam. The case of the lower Gianh River in the central area of Vietnam, with a watershed area of 353 km2, is particularly interesting. In this area, periodically subject to flood risk, the scientific question is strongly linked to risk management. In addition, flood risk is the consequence of the hydrological hazard of an event and the damages related to this event. For this reason, our approach is based on hydrodynamic modelling using Mike Flood to simulate the runoff during a flood event. Unfortunately the data in the studied area are quite limited. Our computation of the flood risk is based on a three-step modelling process, using rainfall data coming from 8 stations, cross sections, the topographic map and the land-use map. The first step consists of creating a 1-D model using Mike 11, in order to simulate the runoff in the minor river bed. In the second step, we use Mike 21 to create a 2-D model to simulate the runoff in the flood plain. The last step allows us to couple the two models in order to precisely describe the variables for the hazard analysis in the flood plain (the water level, the speed, the extent of the flooding. Moreover the model is calibrated and verified using observational data of the water level at hydrologic stations and field control data (on the one hand flood height measurements, on the other hand interviews with the community and with the local councillors. We then generate GIS maps in order to improve flood hazard management, which allows us to create flood hazard maps by coupling the flood plain map and the runoff speed map. Our results show that: the flood peak, caused by typhoon Nari, reached more than 6 m on October 16th 2013 at 4 p.m. (its area was extended by 149 km². End that the typhoon constitutes an extreme flood hazard for 11.39%, very high for 10.60%, high for 30.79%, medium for 31.91% and a light flood hazard for 15

  11. Decision Support for Flood Event Prediction and Monitoring

    DEFF Research Database (Denmark)

    Mioc, Darka; Anton, François; Liang, Gengsheng

    2007-01-01

    In this paper the development of Web GIS based decision support system for flood events is presented. To improve flood prediction we developed the decision support system for flood prediction and monitoring that integrates hydrological modelling and CARIS GIS. We present the methodology for data...... integration, floodplain delineation, and online map interfaces. Our Web-based GIS model can dynamically display observed and predicted flood extents for decision makers and the general public. The users can access Web-based GIS that models current flood events and displays satellite imagery and digital...... elevation model integrated with flood plain area. The system can show how the flooding prediction based on the output from hydrological modeling for the next 48 hours along the lower Saint John River Valley....

  12. Vyhodnotenie malakofauny z náplavov Neresnice (stredné Slovensko Interpretation of molluscan fauna from the Neresnica River flood deposits (Central Slovakia

    Directory of Open Access Journals (Sweden)

    Marek Čiliak

    2011-11-01

    Full Text Available Sampling of flood debris deposits can be useful method in insufficiently surveyed areas. This sampling method also allows us to detect the presence of rare and endangered species in the study area. We studied flood debris along the Neresnica River to gather data on mollusc fauna of the Pliešovská Kotlina basin and the Javorie Mts. (Central Slovakia. In spring 2010, samples of flood debris were taken at three sites along the river. Molluscan thanatocoenoses were composed of 68 species (56 terrestrial and 12 aquatic ones. The most notable records were two subterranean species – Lucilla scintilla and L. singleyana, and also the species of nature conservation interest – Vertigo angustior. We found representatives of all ecological groups of molluscs, which provide the evidence of ecosystem diversity in various habitats along the river. We documented that the land use of the studied drainage basin was only partially reflected by the structure of mollusc assemblages from flood deposits.

  13. Favourable environments for the deposition of uranium in the Subandean Belt and the Amazon Plain of Peru

    International Nuclear Information System (INIS)

    Canepa, L.; Rosado, F.

    1981-01-01

    The area described is located between the east flank of the eastern Cordillera on the territorial limits with Ecuador, Colombia, Brazil and Bolivia. It covers the morphological areas called sub-Andean zone and Amazon plain. The physiographic characteristics change from west to east. In the eastern Cordillera the morphology is rough, with altitudes of 5000 m. Descending to sub-Andean, it presents a moderate topography with low hills between 1000 and 2500 m. Further east the Amazon plain forms an extensive peneplain with altitudes of 400 m. The stratigraphy of the area includes rocks with ages from the Precambrian (eastern Cordillera) to recent. Outcrops of the Palaeozoic formations are found to the east of the eastern Cordillera. Rocks that belong to the Mesozoic and Cenozoic are extensively distributed in the area, as deposits of continental or deltaic facies. The geological evolution of the area is favourable for the formation of stratiform deposits of uranium. The intensity of the orogenic deformation decreases progressively from west to east. The tendency to low dips favours the conditions of migration and precipitation of uranium. The majority of the geological formations of continental and deltaic origin, as well as igneous bodies of upper Palaeozoic and Tertiary age, have been selected as rocks of good geological uranium favourability, taking into consideration criteria found in other parts of the world. These have been modified to suit local conditions. This area presents similar geological conditions to the eastern side of the Andean Cordillera in Argentina where a number of uranium deposits have been located. (author)

  14. Modeling flood events for long-term stability

    International Nuclear Information System (INIS)

    Schruben, T.; Portillo, R.

    1985-01-01

    The primary objective for the disposal of uranium mill tailings in the Uranium Mill Tailings Remedial Action (UMTRA) Project is isolation and stabilization to prevent their misuse by man and dispersal by natural forces such as wind, rain, and flood waters (40 CFR-192). Stabilization of sites that are located in or near flood plains presents unique problems in design for long-term performance. This paper discusses the process involved with the selection and hydrologic modeling of the design flood event; and hydraulic modeling with geomorphic considerations of the design flood event. The Gunnison, Colorado, and Riverton, Wyoming, sites will be used as examples in describing the process

  15. The determinants of private flood mitigation measures in Germany - evidence from a nationwide survey

    OpenAIRE

    Osberghaus, Daniel

    2014-01-01

    Public flood protection cannot totally eliminate the risk of flooding. Hence, private mitigation measures which proactively protect homes from being flooded or reduce flood damage are an essential part of modern flood risk management. This study analyses private flood mitigation measures among German households. The dataset covers more than 6000 households from all parts of the country, including flood plains as well as areas which are typically not at a high risk of riverine flooding. The re...

  16. The Plains of Venus

    Science.gov (United States)

    Sharpton, V. L.

    2013-12-01

    Volcanic plains units of various types comprise at least 80% of the surface of Venus. Though devoid of topographic splendor and, therefore often overlooked, these plains units house a spectacular array of volcanic, tectonic, and impact features. Here I propose that the plains hold the keys to understanding the resurfacing history of Venus and resolving the global stratigraphy debate. The quasi-random distribution of impact craters and the small number that have been conspicuously modified from the outside by plains-forming volcanism have led some to propose that Venus was catastrophically resurfaced around 725×375 Ma with little volcanism since. Challenges, however, hinge on interpretations of certain morphological characteristics of impact craters: For instance, Venusian impact craters exhibit either radar dark (smooth) floor deposits or bright, blocky floors. Bright floor craters (BFC) are typically 100-400 m deeper than dark floor craters (DFC). Furthermore, all 58 impact craters with ephemeral bright ejecta rays and/or distal parabolic ejecta patterns have bright floor deposits. This suggests that BFCs are younger, on average, than DFCs. These observations suggest that DFCs could be partially filled with lava during plains emplacement and, therefore, are not strictly younger than the plains units as widely held. Because the DFC group comprises ~80% of the total crater population on Venus the recalculated emplacement age of the plains would be ~145 Ma if DFCs are indeed volcanically modified during plains formation. Improved image and topographic data are required to measure stratigraphic and morphometric relationships and resolve this issue. Plains units are also home to an abundant and diverse set of volcanic features including steep-sided domes, shield fields, isolated volcanoes, collapse features and lava channels, some of which extend for 1000s of kilometers. The inferred viscosity range of plains-forming lavas, therefore, is immense, ranging from the

  17. The depositional setting of the Late Quaternary sedimentary fill in southern Bannu basin, Northwest Himalayan fold and thrust belt, Pakistan

    KAUST Repository

    Farid, Asam M.

    2014-07-10

    Geostatistical variogram and inversion techniques combined with modern visualization tools have made it possible to re-model one-dimensional electrical resistivity data into two-dimensional (2D) models of the near subsurface. The resultant models are capable of extending the original interpretation of the data to depict alluvium layers as individual lithological units within the 2D space. By tuning the variogram parameters used in this approach, it is then possible to visualize individual lithofacies and geomorphological features for these lithologic units. The study re-examines an electrical resistivity dataset collected as part of a groundwater study in an area of the Bannu basin in Pakistan. Additional lithological logs from boreholes throughout the area have been combined with the existing resistivity data for calibration. Tectonic activity during the Himalayan orogeny uplifted and generated significant faulting in the rocks resulting in the formation of a depression which subsequently has been filled with clay-silt and dirty sand facies typical of lacustrine and flood plain environments. Streams arising from adjacent mountains have reworked these facies which have been eroded and replaced by gravel-sand facies along channels. It is concluded that the sediments have been deposited as prograding fan shaped bodies, flood plain, and lacustrine deposits. Clay-silt facies mark the locations of paleo depressions or lake environments, which have changed position over time due to local tectonic activity and sedimentation. The Lakki plain alluvial system has thus formed as a result of local tectonic activity with fluvial erosion and deposition characterized by coarse sediments with high electrical resistivities near the mountain ranges and fine sediments with medium to low electrical resistivities towards the basin center. © 2014 Springer International Publishing Switzerland.

  18. Concentrations of selected metals in Quaternary-age fluvial deposits along the lower Cheyenne and middle Belle Fourche Rivers, western South Dakota, 2009-10

    Science.gov (United States)

    Stamm, John F.; Hoogestraat, Galen K.

    2012-01-01

    The headwaters of the Cheyenne and Belle Fourche Rivers drain the Black Hills of South Dakota and Wyoming, an area that has been affected by mining and ore-milling operations since the discovery of gold in 1875. A tributary to the Belle Fourche River is Whitewood Creek, which drains the area of the Homestake Mine, a gold mine that operated from 1876 to 2001. Tailings discharged into Whitewood Creek contained arsenopyrite, an arsenic-rich variety of pyrite associated with gold ore, and mercury used as an amalgam during the gold-extraction process. Approximately 18 percent of the tailings that were discharged remain in fluvial deposits on the flood plain along Whitewood Creek, and approximately 25 percent remain in fluvial deposits on the flood plain along the Belle Fourche River, downstream from Whitewood Creek. In 1983, a 29-kilometer (18-mile) reach of Whitewood Creek and the adjacent flood plain was included in the U.S. Environmental Protection Agency's National Priority List of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, commonly referred to as a "Superfund site." Listing of this reach of Whitewood Creek was primarily in response to arsenic toxicity of fluvial deposits on the flood plain. Lands along the lower Cheyenne River were transferred to adjoining States and Tribes in response to the Water Resources Development Act (WRDA) of 1999. An amendment in 2000 to WRDA required a study of sediment contamination of the Cheyenne River. In response to the WRDA amendment, the U.S. Geological Survey completed field sampling of reference sites (not affected by mine-tailing disposal) along the lower Belle Fourche and lower Cheyenne Rivers. Reference sites were located on stream terraces that were elevated well above historical stream stages to ensure no contamination from historical mining activity. Sampling of potentially contaminated sites was performed on transects of the active flood plain and adjacent terraces that could

  19. Assessment of the Efficiency of Sediment Deposition Reduction in the Zengwen River Watershed in Taiwan

    Science.gov (United States)

    Wu, M.; Tan, H. N.; Lo, W. C.; Tsai, C. T.

    2015-12-01

    The river upstream of watersheds in Taiwan is very steep, where soil and rock are often unstable so that the river watershed typically has the attribute of high sand yield and turbid runoff due to the excessive erosion in the heavy rainfall seasons. If flood water overflows the river bank, it would lead to a disaster in low-altitude plains. When flood retards or recesses, fine sediment would deposit. Over recent decades, many landslides arise in the Zengwen river watershed due to climate changes, earthquakes, and typhoons. The rocks and sands triggered by these landslides would move to the river channel through surface runoff, which may induce sediment disasters and also render an impact on the stability and sediment transport of the river channel. The risk of the sediment disaster could be reduced by implementing dredging works. However, because of the nature of the channel, the dredged river sections may have sediment depositions back; thus, causing an impact on flood safety. Therefore, it is necessary to evaluate the effectiveness of dredged works from the perspectives of hydraulic, sediment transport, and flood protection to achieve the objective of both disaster prevention and river bed stability. We applied the physiographic soil erosion-deposition (PSED) model to simulate the sediment yield, the runoff, and sediment transport rate of the Zengwen river watershed corresponding to one-day rainstorms of the return periods of 25, 50, and 100 year. The potential of sediment deposition and erosion in the river sections of the Zengwen river could be simulated by utilizing the alluvial river-movable bed two dimensional (ARMB-2D) model. The results reveal that the tendency for the potential of river sediment deposition and erosion obtained from these two models is agreeable. Furthermore, in order to evaluate the efficiency of sediment deposition reduction, two quantized values, the rate of sediment deposition reduction and the ratio of sediment deposition reduction

  20. Ground water geochemistry in the vicinity of the Jabiluka deposits

    International Nuclear Information System (INIS)

    Deutscher, R.L.; Mann, A.W.; Giblin, A.

    1980-01-01

    Seventeen exploration drill holes in the vicinity of the Jabiluka One and Jabiluka Two deposits were logged for Eh-pH and conductivity at 5 metre intervals to depths of up to 195 metres below ground surface. Forty-seven water samples from exploration drill holes, augered holes on the Magela flood plain and from two billabongs in the vicinity of the deposits were collected and analyzed. Analyses for pH and Fe were conducted in the field, and further analyses for major ions Ca 2+ , Mg 2+ , Na + , K + , SO 4 2- , Cl - , HCO 3 - and Si and minorelements Zn, Cd, Pb, Cu and U were conducted in the laboratory. The in situ Eh-pH and conductivity measurements, and analyses for major and minor elements of ground waters suggest that deep-lying chlorite-graphite schists containing the uranium mineralization are well protected from, or do not react rapidly with, ground water under present-day conditions, i.e. the schists of the Cahill Formation are a stable host for uranium mineralization at depth. In the vicinity of the Magela flood plain where the Cahill Formation and the permanent water table are close to the surface, some samples were found to contain high concentrations of sulphate, zinc, lead and iron. These same samples were characterized by low pH's in the pH range 3.0-4.0. The anomalies suggest weathering of sulphides associated with the mineralized Cahill Formation, where the schists are at shallow depths and in an oxidizing environment. The anomalies are not, however, necessarily indicative of zones of uranium enrichment in this formation. (author)

  1. Sele coastal plain flood risk due to wave storm and river flow interaction

    Science.gov (United States)

    Benassai, Guido; Aucelli, Pietro; Di Paola, Gianluigi; Della Morte, Renata; Cozzolino, Luca; Rizzo, Angela

    2016-04-01

    Wind waves, elevated water levels and river discharge can cause flooding in low-lying coastal areas, where the water level is the interaction between wave storm elevated water levels and river flow interaction. The factors driving the potential flood risk include weather conditions, river water stage and storm surge. These data are required to obtain inputs to run the hydrological model used to evaluate the water surface level during ordinary and extreme events regarding both the fluvial overflow and storm surge at the river mouth. In this paper we studied the interaction between the sea level variation and the river hydraulics in order to assess the location of the river floods in the Sele coastal plain. The wave data were acquired from the wave buoy of Ponza, while the water level data needed to assess the sea level variation were recorded by the tide gauge of Salerno. The water stages, river discharges and rating curves for Sele river were provided by Italian Hydrographic Service (Servizio Idrografico e Mareografico Nazionale, SIMN).We used the dataset of Albanella station (40°29'34.30"N, 15°00'44.30"E), located around 7 km from the river mouth. The extreme river discharges were evaluated through the Weibull equation, which were associated with their return period (TR). The steady state river water levels were evaluated through HEC-RAS 4.0 model, developed by Hydrologic Engineering Center (HEC) of the United States Army Corps of Engineers Hydrologic Engineering Center (USACE,2006). It is a well-known 1D model that computes water surface elevation (WSE) and velocity at discrete cross-sections by solving continuity, energy and flow resistance (e.g., Manning) equation. Data requirements for HEC-RAS include topographic information in the form of a series of cross-sections, friction parameter in the form of Manning's n values across each cross-section, and flow data including flow rates, flow change locations, and boundary conditions. For a steady state sub

  2. Communities of gastrointestinal helminths of fish in historically connected habitats: habitat fragmentation effect in a carnivorous catfish Pelteobagrus fulvidraco from seven lakes in flood plain of the Yangtze River, China

    Directory of Open Access Journals (Sweden)

    Yao Wei J

    2009-04-01

    Full Text Available Abstract Background Habitat fragmentation may result in the reduction of diversity of parasite communities by affecting population size and dispersal pattern of species. In the flood plain of the Yangtze River in China, many lakes, which were once connected with the river, have become isolated since the 1950s from the river by the construction of dams and sluices, with many larger lakes subdivided into smaller ones by road embankments. These artificial barriers have inevitably obstructed the migration of fish between the river and lakes and also among lakes. In this study, the gastrointestinal helminth communities were investigated in a carnivorous fish, the yellowhead catfish Pelteobagrus fulvidraco, from two connected and five isolated lakes in the flood plain in order to detect the effect of lake fragmentation on the parasite communities. Results A total of 11 species of helminths were recorded in the stomach and intestine of P. fulvidraco from seven lakes, including two lakes connected with the Yangtze River, i.e. Poyang and Dongting lakes, and five isolated lakes, i.e. Honghu, Liangzi, Tangxun, Niushan and Baoan lakes. Mean helminth individuals and diversity of helminth communities in Honghu and Dongting lakes was lower than in the other five lakes. The nematode Procamallanus fulvidraconis was the dominant species of communities in all the seven lakes. No significant difference in the Shannon-Wiener index was detected between connected lakes (0.48 and isolated lakes (0.50. The similarity of helminth communities between Niushan and Baoan lakes was the highest (0.6708, and the lowest was between Tangxun and Dongting lakes (0.1807. The similarity was low between Dongting and the other lakes, and the similarity decreased with the geographic distance among these lakes. The helminth community in one connected lake, Poyang Lake was clustered with isolated lakes, but the community in Dongting Lake was separated in the tree. Conclusion The

  3. Estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina

    Science.gov (United States)

    Feaster, Toby D.; Gotvald, Anthony J.; Weaver, J. Curtis

    2014-01-01

    Reliable estimates of the magnitude and frequency of floods are essential for such things as the design of transportation and water-conveyance structures, Flood Insurance Studies, and flood-plain management. The flood-frequency estimates are particularly important in densely populated urban areas. A multistate approach was used to update methods for determining the magnitude and frequency of floods in urban and small, rural streams that are not substantially affected by regulation or tidal fluctuations in Georgia, South Carolina, and North Carolina. The multistate approach has the advantage over a single state approach of increasing the number of stations available for analysis, expanding the geographical coverage that would allow for application of regional regression equations across state boundaries, and building on a previous flood-frequency investigation of rural streamflow-gaging stations (streamgages) in the Southeastern United States. In addition, streamgages from the inner Coastal Plain of New Jersey were included in the analysis. Generalized least-squares regression techniques were used to generate predictive equations for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probability flows for urban and small, rural ungaged basins for three hydrologic regions; the Piedmont-Ridge and Valley, Sand Hills, and Coastal Plain. Incorporation of urban streamgages from New Jersey also allowed for the expansion of the applicability of the predictive equations in the Coastal Plain from 2.1 to 53.5 square miles. Explanatory variables in the regression equations included drainage area (DA) and percent of impervious area (IA) for the Piedmont-Ridge and Valley region; DA and percent of developed land for the Sand Hills; and DA, IA, and 24-hour, 50-year maximum precipitation for the Coastal Plain. An application spreadsheet also was developed that can be used to compute the flood-frequency estimates along with the 95-percent prediction

  4. {sup 210}Pb geochronology and chemical characterization of sediment cores from lakes of the Parana river alluvial plain

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, L.F.L.; Damatto, S.R.; Scapin, M.A. [IPEN - Instituto de Pesquisas Energeticas e Nucleares (Brazil); Remor, M.B.; Sampaio, S.C. [UNIOESTE - Universidade Estadual do Oeste do Parana (Brazil)

    2014-07-01

    The flood plain of the upper Parana River is located among the lakes formed by the Brazilian hydroelectric plants being the last part of the Parana river, in Brazil, where there is an ecosystem with interaction river-flood plain. This flood plain has considerable habitat variability, with great diversity of terrestrial and aquatic species, and the floods are the main factor that regulates the operation of this ecosystem. The seasonality of the flood pulses is mainly influenced by the El Nino phenomenon, which increases precipitation in the drainage basin of the flood plain of the upper Parana River. Because of its unique characteristics this ecosystem is the subject of intense study since 1980, mainly from the ecological point of view. Therefore, two sediment cores were collected in the ponds formed by the floods, Patos pond and Garcas pond, in order to characterize the sediment chemically and evaluate a possible historic contamination. The trace element concentrations As, Ba, Br, Ce, Co, Cr, Cs, Eu, Hf, La, Lu, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th, U, Yb and Zn (mg.kg{sup -1}) and the major elements Si, Al, Fe, Ti, K, Ca, Mg, P, V, Mn, and Na (%) were determined in the sediment cores dated by {sup 210}Pb method, using instrumental neutron activation analysis, X-ray fluorescence and gross beta counting, respectively. The results obtained for the elements Ce, Cr, Cs, La, Nd, Sc, Sm and Th are higher than the values of Upper Continental Crust for both ponds. The sedimentation rates obtained for Garca pond, 0.77 cm.y{sup -1}, and Patos pond, 0.62 cm.y{sup -1} are in agreement with studies performed in sedimentary environments similar to the present work, such as Brazilian wetland Pantanal. The enrichment factor and the geo-accumulation index were used to assess the presence of anthropogenic sources of pollution. Document available in abstract form only. (authors)

  5. Digital geospatial presentation of geoelectrical and geotechnical data for the lower American River and flood plain, east Sacramento, California

    Science.gov (United States)

    Ball, Lyndsay B.; Burton, Bethany L.; Powers, Michael H.; Asch, Theodore H.

    2015-01-01

    To characterize the extent and thickness of lithologic units that may have differing scour potential, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, has performed several geoelectrical surveys of the lower American River channel and flood plain between Cal Expo and the Rio Americano High School in east Sacramento, California. Additional geotechnical data have been collected by the U.S. Army Corps of Engineers and its contractors. Data resulting from these surveys have been compiled into similar database formats and converted to uniform geospatial datums and projections. These data have been visualized in a digital three-dimensional framework project that can be viewed using freely available software. These data facilitate a comprehensive analysis of the resistivity structure underlying the lower American River corridor and assist in levee system management.

  6. Evidence of prehistoric flooding and the potential for future extreme flooding at Coyote Wash, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Glancy, P.A.

    1994-01-01

    Coyote Wash, an approximately 0.3-square-mile drainage on the eastern flank of Yucca Mountain, is the potential location for an exploratory shaft to evaluate the suitability of Yucca Mountain for construction of an underground repository for the storage of high-level radioactive wastes. An ongoing investigation is addressing the potential for hazards to the site and surrounding areas from flooding and related fluvial-debris movement. Unconsolidated sediments in and adjacent to the channel of North Fork Coyote Wash were examined for evidence of past floods. Trenches excavated across and along the valley bottom exposed multiple flood deposits, including debris-flow deposits containing boulders as large as 2 to 3 feet in diameter. Most of the alluvial deposition probably occurred during the late Quaternary. Deposits at the base of the deepest trench overlie bedrock and underlie stream terraces adjacent to the channel; these sediments are moderately indurated and probably were deposited during the late Pleistocene. Overlying nonindurated deposits clearly are younger and may be of Holocene age. This evidence of intense flooding during the past indicates that severe flooding and debris movement are possible in the future. Empirical estimates of large floods of the past range from 900 to 2,600 cubic feet per second from the 0.094-square-mile drainage area of North Fork Coyote Wash drainage at two proposed shaft sites. Current knowledge indicates that mixtures of water and debris are likely to flow from North Fork Coyote Wash at rates up to 2,500 cubic feet per second. South Fork Coyote Wash, which has similar basin area and hydraulic characteristics, probably will have concurrent floods of similar magnitudes. The peak flow of the two tributaries probably would combine near the potential sites for the exploratory shaft to produce future flow of water and accompanying debris potentially as large as 5,000 cubic feet per second

  7. Predicting geomorphically-induced flood risk for the Nepalese Terai communities

    Science.gov (United States)

    Dingle, Elizabeth; Creed, Maggie; Attal, Mikael; Sinclair, Hugh; Mudd, Simon; Borthwick, Alistair; Dugar, Sumit; Brown, Sarah

    2017-04-01

    Rivers sourced from the Himalaya irrigate the Indo-Gangetic Plain via major river networks that support 10% of the global population. However, many of these rivers are also the source of devastating floods. During the 2014 Karnali River floods in west Nepal, the Karnali rose to around 16 m at Chisapani (where it enters the Indo-Gangetic Plain), 1 m higher than the previous record in 1983; the return interval for this event was estimated to be 1000 years. Flood risk may currently be underestimated in this region, primarily because changes to the channel bed are not included when identifying areas at risk of flooding from events of varying recurrence intervals. Our observations in the field, corroborated by satellite imagery, show that river beds are highly mobile and constantly evolve through each monsoon. Increased bed levels due to sediment aggradation decreases the capacity of the river, increasing significantly the risk of devastating flood events; we refer to these as 'geomorphically-induced floods'. Major, short-lived episodes of sediment accumulation in channels are caused by stochastic variability in sediment flux generated by storms, earthquakes and glacial outburst floods from upstream parts of the catchment. Here, we generate a field-calibrated, geomorphic flood risk model for varying upstream scenarios, and predict changing flood risk for the Karnali River. A numerical model is used to carry out a sensitivity analysis of changes in channel geometry (particularly aggradation or degradation) based on realistic flood scenarios. In these scenarios, water and sediment discharge are varied within a range of plausible values, up to extreme sediment and water fluxes caused by widespread landsliding and/or intense monsoon precipitation based on existing records. The results of this sensitivity analysis will be used to inform flood hazard maps of the Karnali River floodplain and assess the vulnerability of the populations in the region.

  8. Use of Space Technology in Flood Mitigation (Western Province, Zambia)

    Science.gov (United States)

    Mulando, A.

    2001-05-01

    Disasters, by definition are events that appear suddenly and with little warning. They are usually short lived, with extreme events bringing death, injury and destruction of buildings and communications. Their aftermath can be as damaging as their physical effects through destruction of sanitation and water supplies, destruction of housing and breakdown of transport for food, temporary shelter and emergency services. Since floods are one of the natural disasters which endanger both life and property, it becomes vital to know its extents and where the hazards exists. Flood disasters manifest natural processes on a larger scale and information provided by Remote Sensing is a most appropriate input to analysis of actual events and investigations of potential risks. An analytical and qualitative image processing and interpretation of Remotely Sensed data as well as other data such as rainfall, population, settlements not to mention but a few should be used to derive good mitigation strategies. Since mitigation is the cornerstone of emergency management, it therefore becomes a sustained action that will reduce or eliminate long term risks to people and property from natural hazards such as floods and their effects. This will definitely involve keeping of homes and other sensitive structures away from flood plains. Promotion of sound land use planning based on this known hazard, "FLOODS" is one such form of mitigation that can be applied in flood affected areas within flood plain. Therefore future mitigation technologies and procedures should increasingly be based on the use of flood extent information provided by Remote Sensing Satellites like the NOAA AVHRR as well as information on the designated flood hazard and risk areas.

  9. Assessment of adaptation measures against flooding in the city of Dhaka, Bangladesh

    NARCIS (Netherlands)

    A. Nasra Haque (Anika); S. Grafakos (Stelios); M. Huijsman (Marijk)

    2010-01-01

    textabstractDhaka is one of the world’s largest megacities with a high rate of urbanization. Due to the setting of greater Dhaka in a deltaic plain, it is extremely prone to detrimental flooding. Risks associated with flood are expected to increase in the coming years because of the global climate

  10. Impacts of the 2013 Extreme Flood in Northeast China on Regional Groundwater Depth and Quality

    Directory of Open Access Journals (Sweden)

    Xihua Wang

    2015-08-01

    Full Text Available Flooding’s impact on shallow groundwater is not well investigated. In this study, we analyzed changes in the depth and quality of a regional shallow aquifer in the 10.9 × 104 km2 Sanjiang Plain, Northeast China, following a large flood in the summer of 2013. Pre- (2008–2012 and post-flood records on groundwater table depth and groundwater chemistry were gathered from 20 wells across the region. Spatial variability of groundwater recharge after the flood was assessed and the changes in groundwater quality in the post-flood period were determined. The study found a considerable increase in the groundwater table after the 2013 summer flood across the region, with the largest (3.20 m and fastest (0.80 m·s−1 rising height occurring in western Sanjiang Plain. The rising height and velocity gradually declined from the west to the east of the plain. For the entire region, we estimated an average recharge height of 1.24 m for the four flood months (June to September of 2013. Furthermore, we found that the extreme flood reduced nitrate (NO3− and chloride (Cl− concentrations and electrical conductivity (EC in shallow groundwater in the areas that were close to rivers, but increased NO3− and Cl− concentrations and EC in the areas that were under intensive agricultural practices. As the region’s groundwater storage and quality have been declining due to the rapidly increasing rice cultivation, this study shows that floods should be managed as water resources to ease the local water shortage as well as shallow groundwater pollution.

  11. Creating Flood Inundation Maps For Lower Sakarya River

    Directory of Open Access Journals (Sweden)

    Osman Sönmez

    2013-06-01

    Full Text Available The Sakarya River Basin in Turkey frequently floods. The allure of riverside settlement and of nutrient-rich riverbank soil has led to extensive residential and agricultural development in flood plains. In this study, the 100 years return period possible flood carrying capacites of last 113 km of the Lower Sakarya Riverbed were investigated, also dam break and risk analyses were performed by applying different scenarios for the floods likely to occur. Flooding scenarios and water depth within the floodplain during these scenarios were calculated with the HEC-RAS software program and results were converted into a map in HEC-GeoRAS,ArcGIS 9x and ArcView 3.2 programs. As a result, it was observed that the Lower Sakarya River is susceptible to flooding. Recent observations of the study area confirm the study findings. This study tries to underscore the importance of taking into account the different scenarios regarding flood prevention and reduction studies.

  12. Flash flood characterisation of the Haor area of Bangladesh

    Science.gov (United States)

    Bhattacharya, B.; Suman, A.

    2012-04-01

    Haors are large bowl-shaped flood plain depressions located mostly in north-eastern part of Bangladesh covering about 25% of the entire region. During dry season haors are used for agriculture and during rainy season it is used as fisheries. Haors have profound ecological importance. About 8000 migratory wild birds visit the area annually. Some of the haors are declared at Ramsar sites. Haors are frequently affected by the flash floods due to hilly topography and steep slope of the rivers draining the area. These flash floods spill onto low-lying flood plain lands in the region, inundating crops, damaging infrastructure by erosion and often causing loss of lives and properties. Climate change is exacerbating the situation. For appropriate risk mitigation mechanism it is necessary to explore flood characteristics of that region. The area is not at all studied well. Under a current project a numerical 1D2D model based on MIKE Flood is developed to study the flooding characteristics and estimate the climate change impacts on the haor region. Under this study the progression of flood levels at some key haors in relation to the water level data at specified gauges in the region is analysed. As the region is at the border with India so comparing with the gauges at the border with India is carried out. The flooding in the Haor area is associated with the rainfall in the upstream catchment in India (Meghalaya, Barak and Tripura basins in India). The flood propagation in some of the identified haors in relation to meteorological forcing in the three basins in India is analysed as well. Subsequently, a ranking of haors is done based on individual risks. Based on the IPCC recommendation the precipitation scenario in the upstream catchments under climate change is considered. The study provides the fundamental inputs for preparing a flood risk management plan of the region.

  13. Challenges of Modeling Flood Risk at Large Scales

    Science.gov (United States)

    Guin, J.; Simic, M.; Rowe, J.

    2009-04-01

    algorithm propagates the flows for each simulated event. The model incorporates a digital terrain model (DTM) at 10m horizontal resolution, which is used to extract flood plain cross-sections such that a one-dimensional hydraulic model can be used to estimate extent and elevation of flooding. In doing so the effect of flood defenses in mitigating floods are accounted for. Finally a suite of vulnerability relationships have been developed to estimate flood losses for a portfolio of properties that are exposed to flood hazard. Historical experience indicates that a for recent floods in Great Britain more than 50% of insurance claims occur outside the flood plain and these are primarily a result of excess surface flow, hillside flooding, flooding due to inadequate drainage. A sub-component of the model addresses this issue by considering several parameters that best explain the variability of claims off the flood plain. The challenges of modeling such a complex phenomenon at a large scale largely dictate the choice of modeling approaches that need to be adopted for each of these model components. While detailed numerically-based physical models exist and have been used for conducting flood hazard studies, they are generally restricted to small geographic regions. In a probabilistic risk estimation framework like our current model, a blend of deterministic and statistical techniques have to be employed such that each model component is independent, physically sound and is able to maintain the statistical properties of observed historical data. This is particularly important because of the highly non-linear behavior of the flooding process. With respect to vulnerability modeling, both on and off the flood plain, the challenges include the appropriate scaling of a damage relationship when applied to a portfolio of properties. This arises from the fact that the estimated hazard parameter used for damage assessment, namely maximum flood depth has considerable uncertainty. The

  14. The effect of prolonged flooding of an oil deposit on the special composition and the activity of hydrocarbon-oxidizing microflora

    Energy Technology Data Exchange (ETDEWEB)

    Berdichevskaya, M V

    1982-07-01

    The special composition of hydrocarbon-oxidizing bacteria was studied in terrigenous and carbonate oil-bearing strata from several deposits of the Permian Cis-Ural region. We isolated 43 strains and assigned them to the following genera: Mycobacterium, Micrococcus, Brevibacterium, Corynebacterium, Flavobacterium, Achromobacter and Pseudomonas. The special composition of the hydrocarbon-oxidizing microflora was shown to depend on the flooding of an oil stratum, as a result of which the ecological environment in a deposit changed. Gram-positive coryneform bacteria were found in stratal salinized waters and in diluted stratal waters. Gram-negative hydrocarbon-oxidizing bacteria were isolated from pumped-in river waters and from stratal waters diluted by 70-100% as the result of flooding. The metabolic activity of Corynebacterium fascians (2 strains), Mycobacterium rubrum (1 strain), Pseudomonas mira (1 strain) and Flavobacterium perigrinum (1 strain) was assayed in stratal waters with different concentrations of salts. The coryneform hydrocarbon-oxidizing bacteria were shown to be very halotolerant as the result of adaptation; that is why the incidence of these microorganisms is very great in highly mineralized stratal water of oil deposits.

  15. 貯水池堆砂の数値シミュレーション

    OpenAIRE

    芦田, 和男; 藤田, 正治

    1987-01-01

    Reservoir sedimentation is one of the most important problems in river engineering.Methods to predict the processes of sedimentation of bed material load and wash load aresuggested in detail. Channels often consist of a main channel and flood plains in alluvialrivers. Bed materials on flood plains are different from ones on main channels because finesand and silt that are transported as suspended load or wash load are only deposited onflood plains. The theory to explain such a phenomenon has ...

  16. Two dimensional modelling of flood flows and suspended sediment transport: the case of Brenta River

    Science.gov (United States)

    D'Alpaos, L.; Martini, P.; Carniello, L.

    2003-04-01

    The paper deals with numerical modelling of flood waves and suspended sediment in plain river basins. The two dimensional depth integrated momentum and continuity equations, modified to take into account of the bottom irregularities that strongly affect the hydrodynamic and the continuity in partially dry areas (for example, during the first stages of a plain flooding and in tidal flows), are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme and considering the role both of the small channel network and the regulation dispositive on the flooding wave propagation. Transport of suspended sediment and bed evolution are coupled with the flood propagation through the convection-dispersion equation and the Exner's equation. Results of a real case study are presented in which the effects of extreme flood of Brenta River (Italy) are examinated. The flooded areas (urban and rural areas) are identified and a mitigation solution based on a diversion channel flowing into Venice Lagoon is proposed. We show that this solution strongly reduces the flood risk in the downstream areas and can provide an important sediment source to the Venice Lagoon. Finally, preliminary results of the sediment dispersion in the Venice Lagoon are presented.

  17. MODIS-based multi-parametric platform for mapping of flood affected areas. Case study: 2006 Danube extreme flood in Romania

    Directory of Open Access Journals (Sweden)

    Craciunescu Vasile

    2016-12-01

    Full Text Available Flooding remains the most widely distributed natural hazard in Europe, leading to significant economic and social impact. Earth observation data is presently capable of making fundamental contributions towards reducing the detrimental effects of extreme floods. Technological advance makes development of online services able to process high volumes of satellite data without the need of dedicated desktop software licenses possible. The main objective of the case study is to present and evaluate a methodology for mapping of flooded areas based on MODIS satellite images derived indices and using state-of-the-art geospatial web services. The methodology and the developed platform were tested with data for the historical flood event that affected the Danube floodplain in 2006 in Romania. The results proved that, despite the relative coarse resolution, MODIS data is very useful for mapping the development flooded area in large plain floods. Moreover it was shown, that the possibility to adapt and combine the existing global algorithms for flood detection to fit the local conditions is extremely important to obtain accurate results.

  18. ISSUES CONCERNING OCCURRENCE OF FLOODS ON THE VEDEA RIVER

    Directory of Open Access Journals (Sweden)

    TOMA FLORENTINA-MARIANA

    2011-03-01

    Full Text Available Aspects of flood occurrence on the Vedea River. This study addresses several aspects of floods on the Vedea River, located in the Central Romanian Plain, located between Olt and Argeş rivers. Data recorded in the most important hydrological stations (Buzeşti, Văleni, Alexandria along the Vedea River were used, for a period of 40 years (1970-2009. Flood generating conditions, their typology and parameters were analyzed. Cavis software developed by specialists from INHGA Bucharest was employed, in order to draft the flood hydrographs and calculate the floods parameters. Also, we calculated the multi-annual and seasonal frequencies of flood occurrence. There are two main conclusions emerging from specific analysis. First, the most floods occur in late winter and early spring while the least are specific to autumn season. Second conclusion is that the highest flash floods recorded along the Vedea River are associated to heavy rainfall periods and they occurred in late spring and early summer.

  19. Performance of the Taber South polymer flood

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R A; Stright, Jr, D H

    1975-01-01

    A polymer flood was initiated in the Taber South Manville B Pool in Feb. 1967. The reservoir, which contains a viscous, highly undersaturated crude oil with no bottom water was depleted to the bubble-point pressure of 400 psig prior to polymer flooding. A 20% hydrocarbon pore volume slug of polyacrylamide (Pusher 700) was injected at the center of this long, narrow Lower Cretaceous sandstone reservoir. In early 1972, injection was converted to plain water by gradually reducing polymer concentration. The reservoir was studied with numerical reservoir simulation models in an attempt to evaluate the polymer flood performance. Additional laboratory work was initiated to evaluate polymer quality and to investigate wettability. The study results are presented.

  20. Assessment of hyporheic zone, flood-plain, soil-gas, soil, and surface-water contamination at the Old Incinerator Area, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface-water for contaminants at the Old Incinerator Area at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Total petroleum hydrocarbons were detected above the method detection level in all 13 samplers deployed in the hyporheic zone and flood plain of an unnamed tributary to Spirit Creek. The combined concentrations of benzene, toluene, ethylbenzene, and total xylene were detected at 3 of the 13 samplers. Other organic compounds detected in one sampler included octane and trichloroethylene. In the passive soil-gas survey, 28 of the 60 samplers detected total petroleum hydrocarbons above the method detection level. Additionally, 11 of the 60 samplers detected the combined masses of benzene, toluene, ethylbenzene, and total xylene above the method detection level. Other compounds detected above the method detection level in the passive soil-gas survey included octane, trimethylbenzene, perchlorethylene, and chloroform. Subsequent to the passive soil-gas survey, six areas determined to have relatively high contaminant mass were selected, and soil-gas samplers were deployed, collected, and analyzed for explosives and chemical agents. No explosives or chemical agents were detected above

  1. Mid-Holocene palaeoflood events recorded at the Zhongqiao Neolithic cultural site in the Jianghan Plain, middle Yangtze River Valley, China

    Science.gov (United States)

    Wu, Li; Zhu, Cheng; Ma, Chunmei; Li, Feng; Meng, Huaping; Liu, Hui; Li, Linying; Wang, Xiaocui; Sun, Wei; Song, Yougui

    2017-10-01

    Palaeo-hydrological and archaeological investigations were carried out in the Jianghan Plain in the middle reaches of the Yangtze River. Based on a comparative analysis of modern flood sediments and multidisciplinary approaches such as AMS14C and archaeological dating, zircon micromorphology, grain size, magnetic susceptibility, and geochemistry, we identified palaeoflood sediments preserved at the Zhongqiao archaeological site. The results indicate that three palaeoflood events (i.e. 4800-4597, 4479-4367, and 4168-3850 cal. yr BP) occurred at the Zhongqiao Site. Comparisons of palaeoflood deposit layers at a number of Neolithic cultural sites show that two extraordinary palaeoflood events occurred in the Jianghan Plain during approximately 4900-4600 cal. yr BP (i.e.mid-late Qujialing cultural period) and 4100-3800 cal. yr BP (i.e. from late Shijiahe cultural period to the Xia Dynasty). Further analysis of the environmental context suggests that these flooding events might have been connected with great climate variability during approximately 5000-4500 cal. yr BP and at ca. 4000 cal. yr BP. These two palaeoflood events were closely related to the expansion of the Jianghan lakes driven by the climatic change, which in turn influenced the rise and fall of the Neolithic cultures in the middle reaches of the Yangtze River. Other evidence also suggests that the intensified discrepancy between social development and environmental change processes (especially the hydrological process) during the late Shijiahe cultural period might be the key factor causing the collapse of the Shijiahe Culture. The extraordinary floods related to the climatic anomaly at ca. 4000 cal. yr BP and political conflicts from internal or other cultural areas all accelerated the collapse of the Shijiahe Culture.

  2. Geochronology and Geomorphology of the Pioneer Archaeological Site (10BT676), Upper Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Keene, Joshua L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The Pioneer site in southeastern Idaho, an open-air, stratified, multi-component archaeological locality on the upper Snake River Plain, provides an ideal situation for understanding the geomorphic history of the Big Lost River drainage system. We conducted a block excavation with the goal of understanding the geochronological context of both cultural and geomorphological components at the site. The results of this study show a sequence of five soil formation episodes forming three terraces beginning prior to 7200 cal yr BP and lasting until the historic period, preserving one cultural component dated to ~3800 cal yr BP and multiple components dating to the last 800 cal yr BP. In addition, periods of deposition and stability at Pioneer indicate climate fluctuation during the middle Holocene (~7200-3800 cal yr BP), minimal deposition during the late Holocene, and a period of increased deposition potentially linked to the Little Ice Age. In addition, evidence for a high-energy erosion event dated to ~3800 cal yr BP suggest a catastrophic flood event during the middle Holocene that may correlate with volcanic activity at the Craters of the Moon lava fields to the northwest. This study provides a model for the study of alluvial terrace formations in arid environments and their potential to preserve stratified archaeological deposits.

  3. Floods in Colorado

    Science.gov (United States)

    Follansbee, Robert; Sawyer, Leon R.

    1948-01-01

    resulting from a cloudburst rises so quickly that it is usually described as a 'wall of water.' It has a peak duration of only a few minutes, followed by a rapid subsidence. Nearly 90 cloudburst floods in Colorado are described in varying detail in this report. The earliest recorded cloudburst--called at that time a waterspout--occurred in Golden Gate Gulch, July 14, 1872. The 'wall of water' was described as a 'perpendicular breast of 10 or 12 feet.' A cloudburst flood on Kiowa Creek in May 1878 caused the loss of a standard-gage locomotive, and although search was made by means of long metallic rods, the locomotive was never recovered, as bedrock was about 50 feet below the creek bed. All available information relative to floods in Colorado, beginning with the flood of 1826 on the Arkansas River, is presented in this report, although for many of the earlier floods estimates of discharge are lacking. Floods throughout a large part of the State have occurred in 1844, June 1864, June 1884, May 1894, and June 1921. The highest floods of record were on the larger streams and occurred as follows: South Platte River, June 1921; Rio Grande, June 1927; Colorado River, June and July 1884; San Juan River, October 1911. The greatest floods on the plains streams occurred during May and June 1935 and were caused by cloudbursts. Ranchers living in the vicinity noted rainfalls as high as 24 inches in a 13-hour period, measurements being made in a stock tank. The effect of settlement on channel capacities can be clearly traced. When settlement began, and with it the beginning of the livestock industry, the plains were thickly covered with a luxuriant growth of grasses. With the development of the livestock industry the grass cover was grazed so closely that it afforded little protection against erosion during the violent rains and resulting floods. The intensive grazing packed the soil so hard as to increase greatly the percentage of rainfall that entered the streams. This co

  4. Mobilization and attenuation of metals downstream from a base-metal mining site in the Matra Mountains, northeastern Hungary

    Science.gov (United States)

    Odor, L.; Wanty, R.B.; Horvath, I.; Fugedi, U.; ,

    1999-01-01

    Regional geochemical baseline values have been established for Hungary by the use of low-density stream-sediment surveys of flood-plain deposits of large drainage basins and of the fine fraction of stream sediments. The baseline values and anomaly thresholds thus produced helped to evaluate the importance of high toxic element concentrations found in soils in a valley downstream of a polymetallic vein-type base-metal mine. Erosion of the mine dumps and flotation dump, losses of metals during filtering, storage and transportation, human neglects, and operational breakdowns, have all contributed to the contamination of a small catchment basin in a procession of releases of solid waste. The sulfide-rich waste material weathers to a yellow color; this layer of 'yellow sand' blankets a narrow strip of the floodplain of Toka Creek in the valley near the town of Gyongyosoroszi. Contamination was spread out in the valley by floods. Metals present in the yellow sand include Pb, As, Cd, Cu, Zn, and Sb. Exposure of the local population to these metals may occur through inhalation of airborne particulates or by ingestion of these metals that are taken up by crops grown in the valley. To evaluate the areal extent and depth of the contamination, active stream sediment, flood-plain deposits, lake or reservoir sediments, soils, and surface water were sampled along the erosion pathways downstream of the mine and dumps. The flood-plain profile was sampled in detail to see the vertical distribution of elements and to relate the metal concentrations to the sedimentation and contamination histories of the flood plain. Downward migration of mobile Zn and Cd from the contaminated upper layers under supergene conditions is observed, while vertical migration of Pb, As, Hg and Sb appears to be insignificant. Soil profiles of 137Cs which originated from above-ground atomic bomb tests and the Chernobyl accident, provide good evidence that the upper 30-40 cm of the flood-plain sections, which

  5. Physical and chemical properties of deposited airborne particulates over the Arabian Red Sea coastal plain

    Science.gov (United States)

    Engelbrecht, Johann P.; Stenchikov, Georgiy; Jish Prakash, P.; Lersch, Traci; Anisimov, Anatolii; Shevchenko, Illia

    2017-09-01

    Mineral dust is the most abundant aerosol, having a profound impact on the global energy budget. This research continues our previous studies performed on surface soils in the Arabian Peninsula, focusing on the mineralogical, physical and chemical composition of dust deposits from the atmosphere at the Arabian Red Sea coast. For this purpose, aerosols deposited from the atmosphere are collected during 2015 at six sites on the campus of the King Abdullah University of Science and Technology (KAUST) situated on the Red Sea coastal plain of Saudi Arabia and subjected to the same chemical and mineralogical analysis we conducted on soil samples. Frisbee deposition samplers with foam inserts were used to collect dust and other deposits, for the period December 2014 to December 2015. The average deposition rate measured at KAUST for this period was 14 g m-2 per month, with lowest values in winter and increased deposition rates in August to October. The particle size distributions provide assessments of particle size fractions in the dust deposits.X-ray diffraction (XRD) analysis of a subset of samples confirms variable amounts of quartz, feldspars, micas, and halite, with lesser amounts of gypsum, calcite, dolomite, hematite, and amphibole. Freeze-dried samples were re-suspended onto the Teflon® filters for elemental analysis by X-ray fluorescence (XRF), while splits from each sample were analyzed for water-soluble cations and anions by ion chromatography. The dust deposits along the Red Sea coast are considered to be a mixture of dust emissions from local soils and soils imported from distal dust sources. Airborne mineral concentrations are greatest at or close to dust sources, compared to those through medium- and long-range transport. It is not possible to identify the exact origin of deposition samples from the mineralogical and chemical results alone. These aerosol data are the first of their kind from the Red Sea region. They will help assess their potential

  6. The Effects of Saltwater Intrusion to Flood Mitigation Project

    Science.gov (United States)

    Azida Abu Bakar, Azinoor; Khairudin Khalil, Muhammad

    2018-03-01

    The objective of this study is to determine the effects of saltwater intrusion to flood mitigation project located in the flood plains in the district of Muar, Johor. Based on the studies and designs carried out, one of the effective flood mitigation options identified is the Kampung Tanjung Olak bypass and Kampung Belemang bypass at the lower reaches of Sungai Muar. But, the construction of the Kampung Belemang and Tanjung Olak bypass, while speeding up flood discharges, may also increase saltwater intrusion during drought low flows. Establishing the dynamics of flooding, including replicating the existing situation and the performance with prospective flood mitigation interventions, is most effectively accomplished using computer-based modelling tools. The finding of this study shows that to overcome the problem, a barrage should be constructed at Sungai Muar to solve the saltwater intrusion and low yield problem of the river.

  7. Effects of flood control and other reservoir operations on the water quality of the lower Roanoke River, North Carolina

    Science.gov (United States)

    Garcia, Ana Maria

    2012-01-01

    The Roanoke River is an important natural resource for North Carolina, Virginia, and the Nation. Flood plains of the lower Roanoke River, which extend from Roanoke Rapids Dam to Batchelor Bay near Albemarle Sound, support a large and diverse population of nesting birds, waterfowl, freshwater and anadromous fish, and other wildlife, including threatened and endangered species. The flow regime of the lower Roanoke River is affected by a number of factors, including flood-management operations at the upstream John H. Kerr Dam and Reservoir. A three-dimensional, numerical water-quality model was developed to explore links between upstream flows and downstream water quality, specifically in-stream dissolved-oxygen dynamics. Calibration of the hydrodynamics and dissolved-oxygen concentrations emphasized the effect that flood-plain drainage has on water and oxygen levels, especially at locations more than 40 kilometers away from the Roanoke Rapids Dam. Model hydrodynamics were calibrated at three locations on the lower Roanoke River, yielding coefficients of determination between 0.5 and 0.9. Dissolved-oxygen concentrations were calibrated at the same sites, and coefficients of determination ranged between 0.6 and 0.8. The model has been used to quantify relations among river flow, flood-plain water level, and in-stream dissolved-oxygen concentrations in support of management of operations of the John H. Kerr Dam, which affects overall flows in the lower Roanoke River. Scenarios have been developed to mitigate the negative effects that timing, duration, and extent of flood-plain inundation may have on vegetation, wildlife, and fisheries in the lower Roanoke River corridor. Under specific scenarios, the model predicted that mean dissolved-oxygen concentrations could be increased by 15 percent by flow-release schedules that minimize the drainage of anoxic flood-plain waters. The model provides a tool for water-quality managers that can help identify options that improve

  8. Physical and chemical properties of deposited airborne particulates over the Arabian Red Sea coastal plain

    KAUST Repository

    Engelbrecht, Johann

    2017-09-27

    Mineral dust is the most abundant aerosol, having a profound impact on the global energy budget. This research continues our previous studies performed on surface soils in the Arabian Peninsula, focusing on the mineralogical, physical and chemical composition of dust deposits from the atmosphere at the Arabian Red Sea coast. For this purpose, aerosols deposited from the atmosphere are collected during 2015 at six sites on the campus of the King Abdullah University of Science and Technology (KAUST) situated on the Red Sea coastal plain of Saudi Arabia and subjected to the same chemical and mineralogical analysis we conducted on soil samples. Frisbee deposition samplers with foam inserts were used to collect dust and other deposits, for the period December 2014 to December 2015. The average deposition rate measured at KAUST for this period was 14 g m−2 per month, with lowest values in winter and increased deposition rates in August to October. The particle size distributions provide assessments of  < 10 and  < 2.5 µm dust deposition rates, and it is suggested that these represent proxies for PM10 (coarse) and PM2. 5 (fine) particle size fractions in the dust deposits. X-ray diffraction (XRD) analysis of a subset of samples confirms variable amounts of quartz, feldspars, micas, and halite, with lesser amounts of gypsum, calcite, dolomite, hematite, and amphibole. Freeze-dried samples were re-suspended onto the Teflon® filters for elemental analysis by X-ray fluorescence (XRF), while splits from each sample were analyzed for water-soluble cations and anions by ion chromatography. The dust deposits along the Red Sea coast are considered to be a mixture of dust emissions from local soils and soils imported from distal dust sources. Airborne mineral concentrations are greatest at or close to dust sources, compared to those through medium- and long-range transport. It is not possible to identify the exact origin of deposition samples from the

  9. Effects of Mineral N and P Fertilizers on Yield and Yield Components of Flooded Lowland Rice on Vertisols of Fogera Plain, Ethiopia

    Directory of Open Access Journals (Sweden)

    Heluf Gebrekidan

    2006-10-01

    Full Text Available Despite its very recent history of cultivation in Ethiopia, rice is one of the potential grain crops that could contribute to the efforts for the realization of food security in the country. However, the scientific information available with regards to the response of flooded rice to N and P fertilizers for its optimum production on Vertisols of Fogera Plain is very limited. Therefore, a field experiment was conducted on Vertisols of Fogera plain, northern Ethiopia to study the yield and yield components response of rice and to establish the optimum N and P fertilizer levels required for improved grain yield of flooded rice. Six levels of N (0, 30, 60, 90, 120 and 150 kg ha−1 and five levels of P (0, 13.2, 26.4, 39.6 and 52.8 kg ha−1 laid down in a randomized complete block design with four replications were used as treatments. Nitrogen was applied in two equal splits (50% basal and 50% at maximum tillering as urea and the entire dose of P was applied basal as triple super phosphate at sowing. The main effects of N and P fertilizer levels showed significant differences (P ≤ 0.01 for all yield and yield components studied. The effects of N by P interaction were significant only for grain yield (P ≤ 0.05, number of panicles per m2 (P ≤ 0.01, number of spikelets per panicle (P ≤ 0.05 and plant height (P ≤ 0.01 among the different yield and yield components studied. Application of N and P significantly (P ≤ 0.01 increased grain yield of rice up to the levels of 60 kg N and 13.2 kg P ha−1. However, maximum grain yield (4282 kg ha−1 was obtained with the combined application of 60 kg N and 13.2 kg P ha−1, and the yield advantage over the control was 38.49% (1190 kg ha−1. Moreover, application of both N and P fertilizers have increased the magnitudes of the important yield attributes including number of panicles per m2, number of spikelets per panicle, panicle length, dry matter accumulation, straw yield and plant height

  10. The discovery and character of Pleistocene calcrete uranium deposits in the Southern High Plains of west Texas, United States

    Science.gov (United States)

    Van Gosen, Bradley S.; Hall, Susan M.

    2017-12-18

    This report describes the discovery and geology of two near-surface uranium deposits within calcareous lacustrine strata of Pleistocene age in west Texas, United States. Calcrete uranium deposits have not been previously reported in the United States. The west Texas uranium deposits share characteristics with some calcrete uranium deposits in Western Australia—uranium-vanadium minerals hosted by nonpedogenic calcretes deposited in saline lacustrine environments.In the mid-1970s, Kerr-McGee Corporation conducted a regional uranium exploration program in the Southern High Plains province of the United States, which led to the discovery of two shallow uranium deposits (that were not publicly reported). With extensive drilling, Kerr-McGee delineated one deposit of about 2.1 million metric tons of ore with an average grade of 0.037 percent U3O8 and another deposit of about 0.93 million metric tons of ore averaging 0.047 percent U3O8.The west-Texas calcrete uranium-vanadium deposits occur in calcareous, fine-grained sediments interpreted to be deposited in saline lakes formed during dry interglacial periods of the Pleistocene. The lakes were associated with drainages upstream of a large Pleistocene lake. Age determinations of tephra in strata adjacent to one deposit indicate the host strata is middle Pleistocene in age.Examination of the uranium-vanadium mineralization by scanning-electron microscopy indicated at least two generations of uranium-vanadium deposition in the lacustrine strata identified as carnotite and a strontium-uranium-vanadium mineral. Preliminary uranium-series results indicate a two-component system in the host calcrete, with early lacustrine carbonate that was deposited (or recrystallized) about 190 kilo-annum, followed much later by carnotite-rich crusts and strontium-uranium-vanadium mineralization in the Holocene (about 5 kilo-annum). Differences in initial 234U/238U activity ratios indicate two separate, distinct fluid sources.

  11. Topographic Rise in the Northern Smooth Plains of Mercury: Characteristics from Messenger Image and Altimetry Data and Candidate Modes of Origin

    Science.gov (United States)

    Dickson, James L.; Head, James W.; Whitten, Jennifer L.; Fassett, Caleb I.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.; Phillips, Roger J.

    2012-01-01

    MESSENGER observations from orbit around Mercury have revealed that a large contiguous area of smooth plains occupies much of the high northern latitudes and covers an area in excess of approx.6% of the surface of the planet [1] (Fig. 1). Smooth surface morphology, embayment relationships, color data, candidate flow fronts, and a population of partly to wholly buried craters provide evidence for the volcanic origin of these plains and their emplacement in a flood lava mode to depths at least locally in excess of 1 km. The age of these plains is similar to that of plains associated with and postdating the Caloris impact basin, confirming that volcanism was a globally extensive process in the post-heavy bombardment history of Mercury [1]. No specific effusive vent structures, constructional volcanic edifices, or lava distributary features (leveed flow fronts or sinuous rilles) have been identified in the contiguous plains, although vent structures and evidence of high-effusion-rate flood eruptions are seen in adjacent areas [1]. Subsequent to the identification and mapping of the extensive north polar smooth plains, data from the Mercury Laser Altimeter (MLA) on MESSENGER revealed the presence of a broad topographic rise in the northern smooth plains that is 1,000 km across and rises more than 1.5 km above the surrounding smooth plains [2] (Fig. 2). The purpose of this contribution is to characterize the northern plains rise and to outline a range of hypotheses for its origin.

  12. A Synoptic Climatology of Combined Severe/Weather/Flash Flood Events

    Science.gov (United States)

    Pallozzi, Kyle J.

    Classical forms of severe weather such as tornadoes, damaging convective wind gusts, and large hail, as well as flash flooding events, all have potentially large societal impacts. This impact is further magnified when these hazards occur simultaneously in time and space. A major challenge for operational forecasters is how to accurately predict the occurrence of combined storm hazards, and how to communicate the associated multiple threat hazards to the public. A seven-year climatology (2009-2015) of combined severe weather/flash flooding (SVR/FF) events across the contiguous United States was developed in attempt to study the combined SVR/FF event hazards further. A total of 211 total cases were identified and sub-divided into seven subcategories based on their convective morphology and meteorological characteristics. Heatmaps of event report frequency were created to extract spatial, seasonal and interannual patterns in SVR/FF event activity. Diurnal trends were examined from time series plots of tornado, hail, wind and flash flood/flood reports. Event-centered composites of environmental variables were created for each subcategory from 13 km RUC/RAP analyses. Representative cases studies were conducted for each subcategory. A "ring of fire" with the highest levels of SVR/FF event activity was noted across the central United States. SVR/FF events were least common in the Southeast, High Plains, and Northern Plains. Enhanced SVR/FF activity reflected contributions from synoptic events during the cool and shoulder seasons over the Lower Mississippi, Arkansas and Tennessee Valleys, and MCS activity during the warm season over the lower Great Plains, and the Upper Mississippi, Missouri and Ohio River Valleys. Results from the composite analyses indicated that relatively high values of CAPE, surface-500 hPa shear and precipitable water were observed for all subcategories. Case studies show that many high-end SVR/FF events featured slow-moving, or quasi

  13. Sedimentary facies and evolution of the upper member of cretaceou Sunjiawan formation in Heishui area of western Liaoning

    International Nuclear Information System (INIS)

    Zhao Zhonghua; Xi Haiyin; Chen Debing; Wang Liming; Rao Minghui

    2010-01-01

    The upper member of Sunjiawan formation in Heishui area is mainly alluvial fan facies. From the macroscopic view, alluvial fan facies can be divided into three sub-facies of proximal end gravel braided plain, distal end gravel braided plain and pre-fan flood-plain and further into some micro-facies of debris flow, gravel braided channel, gravel dam, flood-fine and peat bog etc. The upper member of Sunjiawan formation could be divided into three sub-members. The first sub-member is retrograding dry land type fan sediment under drought-humid climate. The second sub-member is retrograding wet land type fan deposit under humid climate. Third sub-member is progradational wetland type fan sediments under humid climate. Sunjiawan formation in Heishui area experienced three evolutionary stages: the early retrograding dryland type fan deposition, the medium term retrograding wet land type fan deposition and the later progradational wetland type fan. (authors)

  14. Application of remote sensing data to land use and land cover assessment in the Tubarao River coastal plain, Santa Catarina, Brazil

    Science.gov (United States)

    1982-01-01

    By means of aerial photography and MSS-LANDSAT data a land use/land cover classification was applied to the Tubarao River coastal plain. The following classes were identified: coal related areas, permanently flooded wetlands, periodically flooded wetlands, agricultural lands, bare soils, water bodies, urban areas, forestlands.

  15. Prehistoric floods on the Tennessee River—Assessing the use of stratigraphic records of past floods for improved flood-frequency analysis

    Science.gov (United States)

    Harden, Tessa M.; O'Connor, Jim E.

    2017-06-14

    Stratigraphic analysis, coupled with geochronologic techniques, indicates that a rich history of large Tennessee River floods is preserved in the Tennessee River Gorge area. Deposits of flood sediment from the 1867 peak discharge of record (460,000 cubic feet per second at Chattanooga, Tennessee) are preserved at many locations throughout the study area at sites with flood-sediment accumulation. Small exposures at two boulder overhangs reveal evidence of three to four other floods similar in size, or larger, than the 1867 flood in the last 3,000 years—one possibly as much or more than 50 percent larger. Records of floods also are preserved in stratigraphic sections at the mouth of the gorge at Williams Island and near Eaves Ferry, about 70 river miles upstream of the gorge. These stratigraphic records may extend as far back as about 9,000 years ago, giving a long history of Tennessee River floods. Although more evidence is needed to confirm these findings, a more in-depth comprehensive paleoflood study is feasible for the Tennessee River.

  16. Hydrology, geomorphology, and vegetation of Coastal Plain rivers in the southeastern United States

    Science.gov (United States)

    Cliff R. Hupp

    2000-01-01

    Rivers of the Coastal Plain of the southeastern United States are characteristically low-gradient meandering systems that develop broad floodplains subjected to frequent and prolonged flooding. These floodplains support a relatively unique forested wetland (Bottomland Hardwoods), which have received considerable ecological study, but distinctly less hydrogeomorphic...

  17. Reconstructing the Holocene depositional environments along the northern coast of Sfax (Tunisia): Mineralogical and sedimentological approaches

    Science.gov (United States)

    Lamourou, Ali; Touir, Jamel; Fagel, Nathalie

    2017-05-01

    parameters were consistent with a transition from a fluviatile depositional environment with some emersion phases marked by the gypsum precipitation, to a marine littoral environment. Such evolution was accompanied with a relative sea-level rise which flooded the fluvial system at the coastal plain during the Holocene, in agreement with sea-level fluctuations in southeast Tunisia during the Holocene.

  18. Social vulnerability analysis of the event flood puddle (case study in Lamongan regency, East Java province)

    Science.gov (United States)

    Soegiyanto; Rindawati

    2018-01-01

    This research was conducted in the flood plain Bonorowo in Lamongan East Java Province. The area was inundated almost every year, but people still survive and remain settled at the sites. This research is to identify and analyze the social vulnerability in the flood plains on the characteristics puddle Bonorowo This research method is the study of the characteristics and livelihood strategies of the communities living on marginal lands (floodplains Bonorowo) are regions prone to flooding / inundation. Based on the object of this study is a survey research method mix / mix method, which merge or combination of methods of quantitative and qualitative methods, so it will be obtained a description of a more comprehensive and holistic. The results obtained in this study are; Social vulnerability is not affected by the heightened puddles. Social capital is abundant making society safer and more comfortable to keep their activities and settle in the region

  19. Analysis of Hydrological Sensitivity for Flood Risk Assessment

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar Sharma

    2018-02-01

    Full Text Available In order for the Indian government to maximize Integrated Water Resource Management (IWRM, the Brahmaputra River has played an important role in the undertaking of the Pilot Basin Study (PBS due to the Brahmaputra River’s annual regional flooding. The selected Kulsi River—a part of Brahmaputra sub-basin—experienced severe floods in 2007 and 2008. In this study, the Rainfall-Runoff-Inundation (RRI hydrological model was used to simulate the recent historical flood in order to understand and improve the integrated flood risk management plan. The ultimate objective was to evaluate the sensitivity of hydrologic simulation using different Digital Elevation Model (DEM resources, coupled with DEM smoothing techniques, with a particular focus on the comparison of river discharge and flood inundation extent. As a result, the sensitivity analysis showed that, among the input parameters, the RRI model is highly sensitive to Manning’s roughness coefficient values for flood plains, followed by the source of the DEM, and then soil depth. After optimizing its parameters, the simulated inundation extent showed that the smoothing filter was more influential than its simulated discharge at the outlet. Finally, the calibrated and validated RRI model simulations agreed well with the observed discharge and the Moderate Imaging Spectroradiometer (MODIS-detected flood extents.

  20. Uranium favorability of late Eocene through Pliocene rocks of the South Texas Coastal Plain

    Energy Technology Data Exchange (ETDEWEB)

    Quick, J.V.; Thomas, N.G.; Brogdon, L.D.; Jones, C.A.; Martin, T.S.

    1977-02-01

    The results of a subsurface uranium favorability study of Tertiary rocks (late Eocene through Pliocene) in the Coastal Plain of South Texas are given. In ascending order, these rock units include the Yegua Formation, Jackson Group, Frio Clay, Catahoula Tuff, Oakville Sandstone, and Goliad Sand. The Vicksburg Group, Anahuac Formation, and Fleming Formation were not considered because they have unfavorable lithologies. The Yegua Formation, Jackson Group, Frio Clay, Catahoula Tuff, Oakville Sandstone, and Goliad Sand contain sandstones that may be favorable uranium hosts under certain environmental and structural conditions. All except the Yegua are known to contain ore-grade uranium deposits. Yegua and Jackson sandstones are found in strand plain-barrier bar systems that are aligned parallel to depositional and structural strike. These sands grade into shelf muds on the east, and lagoonal sediments updip toward the west. The lagoonal sediments in the Jackson are interrupted by dip-aligned fluvial systems. In both units, favorable areas are found in the lagoonal sands and in sands on the updip side of the strand-plain system. Favorable areas are also found along the margins of fluvial systems in the Jackson. The Frio and Catahoula consist of extensive alluvial-plain deposits. Favorable areas for uranium deposits are found along the margins of the paleo-channels where favorable structural features and numerous optimum sands are present. The Oakville and Goliad Formations consist of extensive continental deposits of fluvial sandstones. In large areas, these fluvial sandstones are multistoried channel sandstones that form very thick sandstone sequences. Favorable areas are found along the margins of the channel sequences. In the Goliad, favorable areas are also found on the updip margin of strand-plain sandstones where there are several sandstones of optimum thickness.

  1. Uranium favorability of late Eocene through Pliocene rocks of the South Texas Coastal Plain

    International Nuclear Information System (INIS)

    Quick, J.V.; Thomas, N.G.; Brogdon, L.D.; Jones, C.A.; Martin, T.S.

    1977-02-01

    The results of a subsurface uranium favorability study of Tertiary rocks (late Eocene through Pliocene) in the Coastal Plain of South Texas are given. In ascending order, these rock units include the Yegua Formation, Jackson Group, Frio Clay, Catahoula Tuff, Oakville Sandstone, and Goliad Sand. The Vicksburg Group, Anahuac Formation, and Fleming Formation were not considered because they have unfavorable lithologies. The Yegua Formation, Jackson Group, Frio Clay, Catahoula Tuff, Oakville Sandstone, and Goliad Sand contain sandstones that may be favorable uranium hosts under certain environmental and structural conditions. All except the Yegua are known to contain ore-grade uranium deposits. Yegua and Jackson sandstones are found in strand plain-barrier bar systems that are aligned parallel to depositional and structural strike. These sands grade into shelf muds on the east, and lagoonal sediments updip toward the west. The lagoonal sediments in the Jackson are interrupted by dip-aligned fluvial systems. In both units, favorable areas are found in the lagoonal sands and in sands on the updip side of the strand-plain system. Favorable areas are also found along the margins of fluvial systems in the Jackson. The Frio and Catahoula consist of extensive alluvial-plain deposits. Favorable areas for uranium deposits are found along the margins of the paleo-channels where favorable structural features and numerous optimum sands are present. The Oakville and Goliad Formations consist of extensive continental deposits of fluvial sandstones. In large areas, these fluvial sandstones are multistoried channel sandstones that form very thick sandstone sequences. Favorable areas are found along the margins of the channel sequences. In the Goliad, favorable areas are also found on the updip margin of strand-plain sandstones where there are several sandstones of optimum thickness

  2. Flood prediction, its risk and mitigation for the Babura River with GIS

    Science.gov (United States)

    Tarigan, A. P. M.; Hanie, M. Z.; Khair, H.; Iskandar, R.

    2018-03-01

    This paper describes the flood prediction along the Babura River, the catchment of which is within the comparatively larger watershed of the Deli River which crosses the centre part of Medan City. The flood plain and ensuing inundation area were simulated using HECRAS based on the available data of rainfall, catchment, and river cross-sections. The results were shown in a GIS format in which the city map of Medan and other infrastructure layers were stacked for spatial analysis. From the resulting GIS, it can be seen that 13 sub-districts were likely affected by the flood, and then the risk calculation of the flood damage could be estimated. In the spirit of flood mitigation thoughts, 6 locations of evacuation centres were identified and 15 evacuation routes were recommended to reach the centres. It is hoped that the flood prediction and its risk estimation in this study will inspire the preparedness of the stakeholders for the probable threat of flood disaster.

  3. Mathematical modelling of flooding at Magela Creek

    International Nuclear Information System (INIS)

    Vardavas, I.

    1989-01-01

    The extent and frequency of the flooding at Magela Creek can be predicted from a mathematical/computer model describing the hydrological phases of surface runoff. Surface runoff involves complex water transfer processes over very inhomogeneous terrain. A simple mathematical model of these has been developed which includes the interception of rainfall by the plant canopy, evapotranspiration, infiltration of surface water into the soil, the storage of water in surface depressions, and overland and subsurface water flow. The rainfall-runoff model has then been incorporated into a more complex computer model to predict the amount of water that enters and leaves the Magela Creek flood plain, downstream of the mine. 2 figs., ills

  4. Coastal geomorphology of the Martian northern plains

    Science.gov (United States)

    Parker, Timothy J.; Gorsline, Donn S.; Saunders, Stephen R.; Pieri, David C.; Schneeberger, Dale M.

    1993-01-01

    The paper considers the question of the formation of the outflow channels and valley networks discovered on the Martian northern plains during the Mariner 9 mission. Parker and Saunders (1987) and Parker et al. (1987, 1989) data are used to describe key features common both in the lower reaches of the outflow channels and within and along the margins of the entire northern plains. It is suggested, that of the geological processes capable of producing similar morphologies on earth, lacustrine or marine deposition and subsequent periglacial modification offer the simplest and most consistent explanation for the suit of features found on Mars.

  5. Application of flood-intensity-duration curve, rainfall-intensity-duration curve and time of concentration to analyze the pattern of storms and their corresponding floods for the natural flood events

    Science.gov (United States)

    Kim, Nam Won; Shin, Mun-Ju; Lee, Jeong Eun

    2016-04-01

    The analysis of storm effects on floods is essential step for designing hydraulic structure and flood plain. There are previous studies for analyzing the relationship between the storm patterns and peak flow, flood volume and durations for various sizes of the catchments, but they are not enough to analyze the natural storm effects on flood responses quantitatively. This study suggests a novel method of quantitative analysis using unique factors extracted from the time series of storms and floods to investigate the relationship between natural storms and their corresponding flood responses. We used a distributed rainfall-runoff model of Grid based Rainfall-runoff Model (GRM) to generate the simulated flow and areal rainfall for 50 catchments in Republic of Korea size from 5.6 km2 to 1584.2 km2, which are including overlapped dependent catchments and non-overlapped independent catchments. The parameters of the GRM model were calibrated to get the good model performances of Nash-Sutcliffe efficiency. Then Flood-Intensity-Duration Curve (FIDC) and Rainfall-Intensity-Duration Curve (RIDC) were generated by Flood-Duration-Frequency and Intensity-Duration-Frequency methods respectively using the time series of hydrographs and hyetographs. Time of concentration developed for the Korea catchments was used as a consistent measure to extract the unique factors from the FIDC and RIDC over the different size of catchments. These unique factors for the storms and floods were analyzed against the different size of catchments to investigate the natural storm effects on floods. This method can be easily used to get the intuition of the natural storm effects with various patterns on flood responses. Acknowledgement This research was supported by a grant (11-TI-C06) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  6. A depositional model for the Taylor coal bed, Martin and Johnson counties, eastern Kentucky

    Science.gov (United States)

    Andrews, W.M.; Hower, J.C.; Ferm, J.C.; Evans, S.D.; Sirek, N.S.; Warrell, M.; Eble, C.F.

    1996-01-01

    This study investigated the Taylor coal bed in Johnson and Martin counties, eastern Kentucky, using field and petrographic techniques to develop a depositional model of the coal bed. Petrography and chemistry of the coal bed were examined. Multiple benches of the Taylor coal bed were correlated over a 10 km distance. Three sites were studied in detail. The coal at the western and eastern sites were relatively thin and split by thick clastic partings. The coal at the central site was the thickest and unsplit. Two major clastic partings are included in the coal bed. Each represents a separate and distinct fluvial splay. The Taylor is interpreted to have developed on a coastal plain with periodic flooding from nearby, structurally-controlled fluvial systems. Doming is unlikely due to the petrographic and chemical trends, which are inconsistent with modern Indonesian models. The depositional history and structural and stratigraphic setting suggest contemporaneous structural influence on thickness and quality of the Taylor coal bed in this area.

  7. Radiocesium in wheat of the Po plain

    International Nuclear Information System (INIS)

    Dominici, G.; Malvicini, A.

    1988-01-01

    The Cs-137 measurements of many wheat samples, which was cultivated in Po plain during 1986 and 1987, are reported. A relationship is also shown between the quantity of Cs-137, which is contained in total fall-out, and that in the wheat by direct deposition

  8. Stratigraphy of the Martian northern plains

    Science.gov (United States)

    Tanaka, K. L.

    1993-01-01

    The northern plains of Mars are roughly defined as the large continuous region of lowlands that lies below Martian datum, plus higher areas within the region that were built up by volcanism, sedimentation, tectonism, and impacts. These northern lowlands span about 50 x 10(exp 6) km(sup 2) or 35 percent of the planet's surface. The age and origin of the lowlands continue to be debated by proponents of impact and tectonic explanations. Geologic mapping and topical studies indicate that volcanic, fluvial, and eolian deposition have played major roles in the infilling of this vast depression. Periglacial, glacial, fluvial, eolian, tectonic, and impact processes have locally modified the surface. Because of the northern plains' complex history of sedimentation and modification, much of their stratigraphy was obscured. Thus the stratigraphy developed is necessarily vague and provisional: it is based on various clues from within the lowlands as well as from highland areas within and bordering the plains. The results are summarized.

  9. Assessment of Hyporheic Zone, Flood-Plain, Soil-Gas, Soil, and Surface-Water Contamination at the McCoys Creek Chemical Training Area, Fort Gordon, Georgia, 2009-2010

    Science.gov (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface water for contaminants at the McCoys Creek Chemical Training Area (MCTA) at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of organic compounds classified as explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Ten passive samplers were deployed in the hyporheic zone and flood plain, and total petroleum hydrocarbons (TPH) and octane were detected above the method detection level in every sampler. Other organic compounds detected above the method detection level in the hyporheic zone and flood-plain samplers were trichloroethylene, and cis- and trans- 1, 2-dichloroethylene. One trip blank detected TPH below the method detection level but above the nondetection level. The concentrations of TPH in the samplers were many times greater than the concentrations detected in the blank; therefore, all other TPH concentrations detected are considered to represent environmental conditions. Seventy-one soil-gas samplers were deployed in a grid pattern across the MCTA. Three trip blanks and three method blanks were used and not deployed, and TPH was detected above the method detection level in two trip blanks and one method blank. Detection of TPH was observed at all 71 samplers, but because TPH was detected in the trip and method blanks, TPH was

  10. Assessment of floodplain vulnerability during extreme Mississippi River flood 2011.

    Science.gov (United States)

    Goodwell, Allison E; Zhu, Zhenduo; Dutta, Debsunder; Greenberg, Jonathan A; Kumar, Praveen; Garcia, Marcelo H; Rhoads, Bruce L; Holmes, Robert R; Parker, Gary; Berretta, David P; Jacobson, Robert B

    2014-01-01

    Regional change in the variability and magnitude of flooding could be a major consequence of future global climate change. Extreme floods have the capacity to rapidly transform landscapes and expose landscape vulnerabilities through highly variable spatial patterns of inundation, erosion, and deposition. We use the historic activation of the Birds Point-New Madrid Floodway during the Mississippi and Ohio River Flooding of 2011 as a scientifically unique stress experiment to analyze indicators of floodplain vulnerability. We use pre- and postflood airborne Light Detection and Ranging data sets to locate erosional and depositional hotspots over the 540 km(2) agricultural Floodway. While riparian vegetation between the river and the main levee breach likely prevented widespread deposition, localized scour and deposition occurred near the levee breaches. Eroded gullies nearly 1 km in length were observed at a low ridge of a relict meander scar of the Mississippi River. Our flow modeling and spatial mapping analysis attributes this vulnerability to a combination of erodible soils, flow acceleration associated with legacy fluvial landforms, and a lack of woody vegetation to anchor soil and enhance flow resistance. Results from this study could guide future mitigation and adaptation measures in cases of extreme flooding.

  11. Characterisation of the Ionian-Lucanian coastal plain aquifer

    OpenAIRE

    Polemio, M.; Limoni, P.P.; Mitolo, D.; Santaloia, F.

    2002-01-01

    This paper deals with a Southern Italy area, 40 km by 10 km wide, located where four river valleys anastomose themselves in the coastal plain. The geological and hydrogeological features of the study area and the chemical-physical groundwater characterisation have been inferred from the data analysis of 1130 boreholes. Some aquifers, connected among them, constituted by soils of different geological origin -marine terraces deposits, river valley alluvial deposits and alluvial and coastal depo...

  12. 2013 Flood Waters "Flush" Pharmaceuticals and other Contaminants of Emerging Concern into the Water and Sediment of the South Platte River, Colorado

    Science.gov (United States)

    Battaglin, W. A.; Bradley, P. M.; Paschke, S.; Plumlee, G. S.; Kimbrough, R.

    2016-12-01

    In September 2013, heavy rainfall caused severe flooding in Rocky Mountain National Park (ROMO) and environs extending downstream into the main stem of the South Platte River. In ROMO, flooding damaged infrastructure and local roads. In the tributary canyons, flooding damaged homes, septic systems, and roads. On the plains, flooding damaged several wastewater treatment plants. The occurrence and fate of pharmaceuticals and other contaminants of emerging concern (CECs) in streams during flood conditions is poorly understood. We assessed the occurrence and fate of CECs in this flood by collecting water samples (post-peak flow) from 4 headwaters sites in ROMO, 7 sites on tributaries to the South Platte River, and 6 sites on the main stem of the South Platte; and by collecting flood sediment samples (post-flood depositional) from 14 sites on tributaries and 10 sites on the main stem. Water samples were analysed for 110 pharmaceuticals and 69 wastewater indicators. Sediment samples were analysed for 57 wastewater indicators. Concentrations and numbers of CECs detected in water increased markedly as floodwaters moved downstream and some were not diluted despite the large flow increases in downstream reaches of the affected rivers. For example, in the Cache la Poudre River in ROMO, no pharmaceuticals and 1 wastewater indicator compound (camphor) were detected. At Greeley, the Cache la Poudre was transporting 19 pharmaceuticals [total concentration of 0.69 parts-per-billion (ppb)] and 22 wastewater indicators (total concentration of 2.81 ppb). In the South Platte downstream from Greeley, 24 pharmaceuticals (total concentration of 1.47 ppb) and 24 wastewater indicators (total concentration of 2.35 ppb) were detected. Some CECs such as the combustion products pyrene, fluoranthene, and benzo(a)pyrene were detected only at sub-ppb concentrations in water, but were detected at concentrations in the hundreds of ppb in flood sediment samples.

  13. Tertiary lithofacies and paleo-geographic framework and interlayer oxidation zone sandstone uranium deposits in Longjiang-Zhaozhou area

    International Nuclear Information System (INIS)

    Zhang Zhenqiang

    2003-01-01

    The main points of views for the experiment are: (1) Yi'an formation is mainly composed of limnetic facies of siltstone and fine sandstone, due to weak surface water, limited sedimentation and simple material source; (2) strengthened surface water and enormous material brought from north and west-north and enlarged sedimentation from north to south, the major deposition during Da'an period are channel facies of conglomerate and river bed facies of sandstone; (3) stronger surface water during Taikang period, led alluvial-flood plain facies brown-yellow conglomerate to develop along western margin of the basin, the channel facies of conglomerate and river bed facies of grey-green sandstone, pelitic siltstone were widely formed southward and eastward; (4) according to the lithofacies criterion for in-situ leachable sandstone uranium ore, Taikang formation is an ideal horizon, river bed facies is suitable for interlayer oxidation type uranium deposit. (author)

  14. Evaluating the Aquatic Habitat Potential of Flooded Polders in the Sacramento-San Joaquin Delta

    Directory of Open Access Journals (Sweden)

    John R. Durand

    2017-12-01

    Full Text Available https://doi.org/10.15447/sfews.2017v15iss4art4Large tracts of land in the Sacramento-San Joaquin Delta are subsided due to agricultural practices, creating polders up to 10 m below sea level that are vulnerable to flooding. As protective dikes breach, these become shallow, open water habitats that will not resemble any historical state. I investigated physical and biotic drivers of novel flooded polder habitat, using a Native Species Benefit Index (NSBI to predict the nature of future Delta ecosystems. Results suggest that flooded polders in the north Delta will have the ecology and fish community composition of a tidal river plain, those in the Cache-Lindsey Complex will have that of a tidal backwater, those in the confluence of the Sacramento and San Joaquin Rivers a brackish estuary, and those in the south Delta a fresh water lake. Flooded east-side Delta polders will likely be a transitional zone between south Delta lake-like ecosystems and north Delta tidal river plains. I compared each regional zone with the limited available literature and data on local fish assemblies to find support for NSBI predictions. Because flood probabilities and repair prioritization analyses suggest that polders in the south Delta are most likely to flood and be abandoned, without extensive intervention, much of the Delta will become a freshwater lake ecosystem, dominated by alien species. Proactive management of flooded tracts will nearly always hedge risks, save money and offer more functional habitats in the future; however, without proper immediate incentives, it will be difficult to encourage strong management practices.

  15. The applicability of the sediment deposition geochronology with 2'1'0PB as a tool in the sediment accumulation from the Taquari River, Pantanal, MS, Central region, Brazil

    International Nuclear Information System (INIS)

    Godoy, J.M.; Padovani, C.R.; Vieira, L.M.; Pereira, J.C.A.

    1998-01-01

    This work presents 210 Pb geochronology of five bottom sediment cores from flood plain lakes of middle Taquari River, Pantanal, MS. In two cores of a same lake, an increase of the sediment deposition rate were observed, reflecting an increasing of the sediment input to the Pantanal. The main causes suggested for this increasing are climatic change, and the development of agriculture and cattle-raising in the watershed highlands, for the last 25 years. The results pointed too for the importance of a additional sample in the superior region of the middle Taquari River. (author)

  16. Analysis of characteristic of flood evolution in Weihe middle and lower reaches in 2003

    International Nuclear Information System (INIS)

    Xinhui Jiang; Shiqing Huo; Yuebin Hu; Suqin Xu

    2004-01-01

    Due to the effects of continual strong rainfall, 4 floods are generated in partial area of upper and middle reaches of Weihe, the largest branch in Yellow River, from Aug. 26 to Sep. 22 in 2003. The biggest flood peak of Huaxian station, which is 3570 m 3 /s, occurred 11:00 in Sep. 1. It is the 33 rd among all historical biggest flood peaks, but the stage, 342.76 m, is the 1 st. During the evolution process of the flood, because of the effects of flood plain, inverse of branch flood, levee breach of partial branch etc. the largest cut down of flood peak of Lintong and Huaxian is 53.1 %, and the longest travel time is 52.3 h. Both are 1 st in history. The evolution characteristics of the flood and the most reasons of large cut down and long travel time are analyzed in this paper.(Author)

  17. Erosion and sedimentation during the September 2015 flooding of the Kinu River, central Japan.

    Science.gov (United States)

    Dan Matsumoto; Sawai, Yuki; Yamada, Masaki; Namegaya, Yuichi; Shinozaki, Tetsuya; Takeda, Daisuke; Fujino, Shigehiro; Tanigawa, Koichiro; Nakamura, Atsunori; Pilarczyk, Jessica E

    2016-09-28

    Erosional and sedimentary features associated with flooding have been documented in both modern and past cases. However, only a few studies have demonstrated the relationship between these features and the corresponding hydraulic conditions that produced them, making it difficult to evaluate the magnitude of paleo-flooding. This study describes the characteristics associated with inundation depth and flow direction, as well as the erosional and sedimentary features resulting from the disastrous flooding of the Kinu River, central Japan, in September 2015. Water levels rose rapidly due to heavy rainfall that eventually overtopped, and subsequently breached, a levee in Joso City, causing destructive flooding on the surrounding floodplain. Distinctive erosional features are found next to the breached levee, while depositional features, such as a sandy crevasse-splay deposit are found further away from the breach. The deposit can be divided into three units based on sedimentary facies. The vertical and lateral changes of these sedimentary facies may be the result of temporal and spatial changes associated with flow during the single flooding event. These observations and quantitative data provide information that can be used to reveal the paleohydrology of flood deposits in the stratigraphic record, leading to improved mitigation of future flooding disasters.

  18. [Aboveground biomass of Tamarix on piedmont plain of Tianshan Mountains south slope].

    Science.gov (United States)

    Zhao, Zhenyong; Wang, Ranghui; Zhang, Huizhi; Wang, Lei

    2006-09-01

    Based on the geo-morphological and hydro-geological characteristics, the piedmont plain of Tianshan Mountains south slope was classified into 4 geo-morphological belts, i.e., flood erosion belt, groundwater spill belt, delta belt, and the joining belt of piedmont plain and Tarim floodplain. A field investigation on the Tamarix shrub in this region showed that there was a significant difference in its aboveground biomass among the four belts, ranged from 1428.53 kg x hm(-2) at groundwater spill belt to 111.18 kg x hm(-2) at the joining belt of piedmont plain and Tarim floodplain. The main reason for such a big difference might be the different density of Tamarix shrub on different belts. Both the Tamarix aboveground biomass and the topsoil's salinity were decreased with increasing groundwater level. Groundwater level was the main factor limiting Tamarix growth, while soil salinity was not.

  19. Characteristics and origin of Earth-mounds on the Eastern Snake River Plain, Idaho

    International Nuclear Information System (INIS)

    Tullis, J.A.

    1995-09-01

    Earth-mounds are common features on the Eastern Snake River Plain, Idaho. The mounds are typically round or oval in plan view, <0.5 m in height, and from 8 to 14 m in diameter. They are found on flat and sloped surfaces, and appear less frequently in lowland areas. The mounds have formed on deposits of multiple sedimentary environments. Those studied included alluvial gravel terraces along the Big Lost River (late Pleistocene/early Holocene age), alluvial fan segments on the flanks of the Lost River Range (Bull Lake and Pinedale age equivalents), and loess/slopewash sediments overlying basalt flows. Backhoe trenches were dug to allow characterization of stratigraphy and soil development. Each mound has features unique to the depositional and pedogenic history of the site; however, there are common elements to all mounds that are linked to the history of mound formation. Each mound has a open-quotes floorclose quotes of a sediment or basement rock of significantly different hydraulic conductivity than the overlying sediment. These paleosurfaces are overlain by finer-grained sediments, typically loess or flood-overbank deposits. Mounds formed in environments where a sufficient thickness of fine-grained sediment held pore water in a system open to the migration to a freezing front. Heaving of the sediment occurred by the growth of ice lenses. Mound formation occurred at the end of the Late Pleistocene or early in the Holocene, and was followed by pedogenesis. Soils in the mounds were subsequently altered by bioturbation, buried by eolian deposition, and eroded by slopewash runoff. These secondary processes played a significant role in maintaining or increasing the mound/intermound relief

  20. Characteristics and origin of Earth-mounds on the Eastern Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Tullis, J.A.

    1995-09-01

    Earth-mounds are common features on the Eastern Snake River Plain, Idaho. The mounds are typically round or oval in plan view, <0.5 m in height, and from 8 to 14 m in diameter. They are found on flat and sloped surfaces, and appear less frequently in lowland areas. The mounds have formed on deposits of multiple sedimentary environments. Those studied included alluvial gravel terraces along the Big Lost River (late Pleistocene/early Holocene age), alluvial fan segments on the flanks of the Lost River Range (Bull Lake and Pinedale age equivalents), and loess/slopewash sediments overlying basalt flows. Backhoe trenches were dug to allow characterization of stratigraphy and soil development. Each mound has features unique to the depositional and pedogenic history of the site; however, there are common elements to all mounds that are linked to the history of mound formation. Each mound has a {open_quotes}floor{close_quotes} of a sediment or basement rock of significantly different hydraulic conductivity than the overlying sediment. These paleosurfaces are overlain by finer-grained sediments, typically loess or flood-overbank deposits. Mounds formed in environments where a sufficient thickness of fine-grained sediment held pore water in a system open to the migration to a freezing front. Heaving of the sediment occurred by the growth of ice lenses. Mound formation occurred at the end of the Late Pleistocene or early in the Holocene, and was followed by pedogenesis. Soils in the mounds were subsequently altered by bioturbation, buried by eolian deposition, and eroded by slopewash runoff. These secondary processes played a significant role in maintaining or increasing the mound/intermound relief.

  1. Colombia Mi Pronostico Flood Application: Updating and Improving the Mi Pronostico Flood Web Application to Include an Assessment of Flood Risk

    Science.gov (United States)

    Rushley, Stephanie; Carter, Matthew; Chiou, Charles; Farmer, Richard; Haywood, Kevin; Pototzky, Anthony, Jr.; White, Adam; Winker, Daniel

    2014-01-01

    Colombia is a country with highly variable terrain, from the Andes Mountains to plains and coastal areas, many of these areas are prone to flooding disasters. To identify these risk areas NASA's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was used to construct a digital elevation model (DEM) for the study region. The preliminary risk assessment was applied to a pilot study area, the La Mosca River basin. Precipitation data from the National Aeronautics and Space Administration (NASA) Tropical Rainfall Measuring Mission (TRMM)'s near-real-time rainfall products as well as precipitation data from the Instituto de Hidrologia, Meteorologia y Estudios Ambientales (the Institute of Hydrology, Meteorology and Environmental Studies, IDEAM) and stations in the La Mosca River Basin were used to create rainfall distribution maps for the region. Using the precipitation data and the ASTER DEM, the web application, Mi Pronóstico, run by IDEAM, was updated to include an interactive map which currently allows users to search for a location and view the vulnerability and current weather and flooding conditions. The geospatial information was linked to an early warning system in Mi Pronóstico that can alert the public of flood warnings and identify locations of nearby shelters.

  2. Sedimentary paleoenvironments of the Candeleros Formation(Rio Limay Subgroup)upper cretaceous, Ezequiel Ramos Mexia, Neuquen, Argentina daming west, Argentina

    International Nuclear Information System (INIS)

    Sanchez, M.

    2004-01-01

    Sedimentary facies from the Candeleros Formation (Rio Limay Subgroup), cropping out at the El Escondido creek, at the Ezequiel Ramos Mexia dam, are analyzed and interpreted in this paper. A sedimentological detailed section was measured to get the main goal of this paper which is the sedimentary paleoenvironment. The outcroppings were pictured and a section was measured, geometries and espacial relation between them were analyzed. Eight lithofacies were identified which are: coarse sandstone facies (Se), sandstones (Sm, St, Sp, Sh t Sr), siltstones and shales (Fl and Fr). These lithofacies were agrupated into eight facies associations (FA). AFA constitutes the registration of multiepisodic events of sheet floods; AFB, C and D are product of the depositation in a braided channel belt, AFE represents units of lateral accretion, AFF is assigned deposits of crevasse splay and AFG and H are assigned to plain of flood. The distribution of these associations in the column defines an terminal fan paleoenvironment where is represented of base to top: distal (AFA, B and G) and proximal area (AFD and G) of the distributary plain; zone of feeding of the system (AFC, And, F and G), media-proximal distributary plain (AFD and F), proximal distributary plain (AFC, And, F and G); and flood basin (AFF, G and H) [es

  3. Fluvial depositional environment evolving into deltaic setting with marine influences in the buntsandstein of northern vosges (France)

    Science.gov (United States)

    Gall, Jean-Claude

    supersaturation of stagnant waters with time. The fluvial environment persists up to the lower part of the Grès à Voltzia where the progression of the sea towards the west gives rise to a close intertonguing of fluvial and marine influences in a deltaic setting. Lenticular sandstone bodies are laid down as stream mouth bars at the end of the distributary channels and as river bars in the watercourses during both normal and flood discharge. Silty-clayey sediments settle out in stagnant water in restricted ponds, pools and puddles as well as in extensive veneers of shallow water in the overbank plain between the streams. Carbonate-bearing deposits originate in the coastal littoral mud flat, marsh seam, beach belt and tidal flat. The Grès à Voltzia has the greatest palaeoenvironmental and palaeoecological significance in the Buntsandstein of the Northern Vosges due to the occurrence of a wealth of extraordinarily well-preserved plant and animal fossils (having been recovered by Louis Grauvogel during almost 50 years and since abt. 25 years by Jean-Claude Gall). The rich suite of faunal and floral elements includes aquatic invertebrates, terrestrial animals and continental plants. The aquatic invertebrate fauna lives in fresh lakes and brackish ponds in the overbank plain and in brackish lagoons in the coastal seam as well as in hypersaline and euhaline marginal marine waters. The terrestrial plants colonize both dry and wet substrates, and the continental fauna consists of mainly arthropods, amphibians and reptiles inhabiting the levee zones of standing and flowing waters and strolling across the desiccated flats. The marine euryhaline association of invertebrates is with time replaced by a stenohaline community, and the deltaic plain of the Grès à Voltzia is finally inundated by a pellicular transgression representing the first stage of the Muschelkalk sea setting an end to Buntsandstein continental deposition.

  4. Correlation of Early Tertiary Terrestrial Deposits of the Amaga Basin, Cauca Depression, Colombian Andes

    Science.gov (United States)

    Sierra, G. M.; Sierra, G. M.; MacDonald, W. D.

    2001-05-01

    The Amaga Formation of the Amaga Basin preserves early Tertiary terrestrial deposits of many facies: channel, crevasse splay, paludal, flood plain, point bar, etc. These deposits lie between two major strike-slip fault zones, the Cauca and the Romeral in the Cauca Valley of the northern Andes of Colombia. Coal deposits characterize the lower part of the stratigraphic section; fine to medium clastic sediments otherwise dominate the sections. Within the basin, correlation between sections is difficult because various discontinuities interrupt the continuity of the strata. These include Tertiary intrusives, folding and faulting. Rapid lateral facies changes further complicate the correlations. Detailed studies on five stratigraphic sections are underway. Multiple methods of correlating sections are being used, including fluvial sequence stratigraphy in outcrops, architectural facies analysis, heavy mineral separates, grain-size and grain-ratio variations, paleocurrent directions, and magnetic property variations. Distinctive regional variations in magnetic anisotropic susceptibility indicate areas in which tectonic effects overprint sedimentary fabrics. The presence of secondary hematite and siderite is related to that overprinting. A major compositional break (identified by grain-ratio variations) has been found in the middle of the section. The integrated correlation results are summarized.

  5. Urban Floods in Lowlands—Levee Systems, Unplanned Urban Growth and River Restoration Alternative: A Case Study in Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo Gomes Miguez

    2015-08-01

    Full Text Available The development of cities has always had a very close relation with water. However, cities directly impact land use patterns and greatly change natural landscapes, aggravating floods. Considering this situation, this paper intends to discuss lowland occupation and city sustainability in what regards urban stormwater management, fluvial space, and river restoration, aiming at minimizing flood risks and improving natural and built environment conditions. River plains tend to be attractive places for a city to grow. From ancient times, levees have been used to protect lowland areas along major watercourses to allow their occupation. However, urban rivers demand space for temporary flood storage. From a systemic point of view, levees along extensive river reaches act as canalization works, limiting river connectivity with flood plains, rising water levels, increasing overtopping risks and transferring floods downstream. Departing from this discussion, four case studies in the Iguaçu-Sarapuí River Basin, a lowland area of Rio de Janeiro State, Brazil, are used to compose a perspective in which the central point refers to the need of respecting watershed limits and giving space to rivers. Different aspects of low-lying city planning are discussed and analyzed concerning the integration of the built and natural environments.

  6. Geochemical and sedimentologic problems of uranium deposits of Texas Gulf Coastal Plain

    International Nuclear Information System (INIS)

    Huang, W.H.

    1978-01-01

    Exploration targets for sedimentary uranium ore bodies in the Texas Gulf Coastal Plain include: (1) favorable source rocks for uranium, (2) favorable conditions for uranium leached and transported out of the source rocks, and (3) favorable geologic characteristics of the host rocks for the accumulation of uranium of economic importance. However, data available from known deposits point out more questions of research than answers. Mobility and accumulation of uranium of economic importance in host rocks are controlled by at least three factors - physical, chemical-mineralogic, and hydrologic - that interact dynamically. Physical factors include the nature (viscosity) of the transporting fluid, the permeability of host rock with respect to transporting solution in terms of medium rate, potential differentials, and temperature of the uranium-bearing solution in the macroenvironment. Chemical-mineralogic factors include the ionic strength of solution, chemical activities of species in the solution, chemical activities of pore water in host rocks, surface activity and surface energy of mineral constituents in host rocks, solubilities of ore and gangue minerals, pH, and Eh in the microenvironment. Hydrologic factors include fluctuation of the depth of the oxidation-reduction interfaces in the paleoaquifer host rocks, and their subsequent modification by present hydrologic factors. Geochemical mechanisms that are likely to have been in operation for uranium accumulation are precipitation, adsorption, and/or complexing. 4 figures

  7. Improving techniques to estimate the magnitude and frequency of floods on urban streams in South Carolina, North Carolina, and Georgia, 2011 (ver. 1.1, March 2014) : U.S. Geological Survey scientific investigations report 2014-5030.

    Science.gov (United States)

    2014-03-01

    Reliable estimates of the magnitude and frequency : of floods are essential for the design of transportation and : water-conveyance structures, flood-insurance studies, and : flood-plain management. Such estimates are particularly : important in dens...

  8. Reconstructing the deposition environment and long-term fate of Chernobyl 137Cs at the floodplain scale through mobile gamma spectrometry.

    Science.gov (United States)

    Varley, Adam; Tyler, Andrew; Bondar, Yuri; Hosseini, Ali; Zabrotski, Viachaslau; Dowdall, Mark

    2018-09-01

    Cs-137 is considered to be the most significant anthropogenic contributor to human dose and presents a particularly difficult remediation challenge after a dispersal following nuclear incident. The Chernobyl Nuclear Power Plant meltdown in April 1986 represents the largest nuclear accident in history and released over 80 PBq of 137 Cs into the environment. As a result, much of the land in close proximity to Chernobyl, which includes the Polessie State Radioecology Reserve in Belarus, remains highly contaminated with 137 Cs to such an extent they remain uninhabitable. Whilst there is a broad scale understanding of the depositional patterns within and beyond the exclusion zone, detailed mapping of the distribution is often limited. New developments in mobile gamma spectrometry provide the opportunity to map the fallout of 137 Cs and begin to reconstruct the depositional environment and the long-term behaviour of 137 Cs in the environment. Here, full gamma spectrum analysis using algorithms based on the peak-valley ratio derived from Monte Carlo simulations are used to estimate the total 137 Cs deposition and its depth distribution in the soil. The results revealed a pattern of 137 Cs distribution consistent with the deposition occurring at a time of flooding, which is validated by review of satellite imagery acquired at similar times of the year. The results were also consistent with systematic burial of the fallout 137 Cs by annual flooding events. These results were validated by sediment cores collected along a transect across the flood plain. The true merit of the approach was confirmed by exposing new insights into the spatial distribution and long term fate of 137 Cs across the floodplain. Such systematic patterns of behaviour are likely to be fundamental to the understanding of the radioecological behaviour of 137 Cs whilst also providing a tracer for quantifying the ecological controls on sediment movement and deposition at a landscape scale. Copyright © 2018

  9. Pittsfield Local Flood Protection, West Branch and Southwest Branch, Housatonic River, Pittsfield, Massachusetts. Detailed Project Report for Water Resources Development.

    Science.gov (United States)

    1980-10-01

    a bakery , a gas station, and the Linden Street bridge were flooded during the March 1977 storm. Flooding also occurred on the Southwest Branch...and service station, one bakery , and five other commercial establishments. Most of these structures are not suited to being elevated above the design...of a shopping plaza and a fast-food franchise in the flood plain on West Housatonic Street (Route 20). The following three alternate plans of

  10. New mechanism under International Flood Initiative toward robustness for flood management in the Asia Pacific region

    Science.gov (United States)

    Murase, M.; Yoshitani, J.; Takeuchi, K.; Koike, T.

    2015-12-01

    Climate change is likely to result in increases in the frequency or intensity of extreme weather events. It is imperative that a good understanding is developed of how climate change affects the events that are reflected in hydrological extremes such as floods and how practitioners in water resources management deal with them. Since there is still major uncertainty as to how the impact of climate change affect actual water resources management, it is important to build robustness into management schemes and communities. Flood management under such variety of uncertainty favors the flexible and adaptive implementation both in top-down and bottom-up approaches. The former uses projections of global or spatially downscaled models to drive resource models and project resource impacts. The latter utilizes policy or planning tools to identify what changes in climate would be most threatening to their long-range operations. Especially for the bottom-up approaches, it is essential to identify the gap between what should be done and what has not been achieved for disaster risks. Indicators or index are appropriate tools to measure such gaps, but they are still in progress to cover the whole world. The International Flood Initiative (IFI), initiated in January 2005 by UNESCO and WMO in close cooperation with UNU and ISDR, IAHS and IAHR, has promoted an integrated approach to flood management to take advantage of floods and use of flood plains while reducing the social, environmental and economic risks. Its secretariat is located in ICHARM. The initiative objective is to support national platforms to practice evidence-based disaster risk reduction through mobilizing scientific and research networks at national, regional and international levels. The initiative is now preparing for a new mechanism to facilitate the integrated approach for flood management on the ground regionally in the Asia Pacific (IFI-AP) through monitoring, assessment and capacity building.

  11. Variations in flood magnitude-effect relations and the implications for flood risk assessment and river management

    Science.gov (United States)

    Hooke, J. M.

    2015-12-01

    In spite of major physical impacts from large floods, present river management rarely takes into account the possible dynamics and variation in magnitude-impact relations over time in flood risk mapping and assessment nor incorporates feedback effects of changes into modelling. Using examples from the literature and from field measurements over several decades in two contrasting environments, a semi-arid region and a humid-temperate region, temporal variations in channel response to flood events are evaluated. The evidence demonstrates how flood physical impacts can vary at a location over time. The factors influencing that variation on differing timescales are examined. The analysis indicates the importance of morphological changes and trajectory of adjustment in relation to thresholds, and that trends in force or resistance can take place over various timescales, altering those thresholds. Sediment supply can also change with altered connectivity upstream and changes in state of hillslope-channel coupling. It demonstrates that seasonal timing and sequence of events can affect response, particularly deposition through sediment supply. Duration can also have a significant effect and modify the magnitude relation. Lack of response or deposits in some events can mean that flood frequency using such evidence is underestimated. A framework for assessment of both past and possible future changes is provided which emphasises the uncertainty and the inconstancy of the magnitude-impact relation and highlights the dynamic factors and nature of variability that should be considered in sustainable management of river channels.

  12. Clay minerals in uraniferous deposit of Imouraren (Tim Mersoi basin, Niger): implications on genesis of deposit and on ore treatment process

    International Nuclear Information System (INIS)

    Billon, Sophie

    2014-01-01

    Nigerian uraniferous deposits are located in carboniferous and Jurassic formations of Tim Mersoi basin. AREVA is shareholder of 3 mine sites in this area: SOMAIR and COMINAK, both in exploitation since 1960's and IMOURAREN, 80 km further South, whose exploitation is planned for 2015. Mineralization of Imouraren deposit is included in the fluvial formation of Tchirezrine 2 (Jurassic), composed of channels and flood plains. Facies of channel in-fillings range from coarse sandstones to siltstones, while overflow facies are composed of analcimolites. Secondary mineralogy was acquired during 2 stages: 1- diagenesis, with formation of clay minerals, analcime, secondary quartz and albites, and 2- stage of fluids circulations, which induced alteration of detrital and diagenetic minerals, formation of new phases and uranium deposition. A mineralogical zoning, at the scale of deposit resulted from this alteration. The heterogeneity of Tchirezrine 2, at the level of both facies and mineralogy, is also evidenced during ore treatment, as ore reacts differently depending on its source, with sometimes problems of U recovery. Ore treatment tests showed that analcimes and chlorites were both penalizing minerals, because of 1- the sequestration of U-bearing minerals into analcimes, 2- their dissolution which trends to move away from U solubilization conditions (pH and Eh) and to form numerous sulfates, and 3- problems of percolation. A detection method of analcime-rich ores, based on infrared spectroscopy, was developed in order to optimize ore blending and so to reduce negative effects during ore treatment process. (author)

  13. Urban floods: a case study in the Savigliano area (North-Western Italy

    Directory of Open Access Journals (Sweden)

    C. Audisio

    2011-11-01

    Full Text Available Flood processes and effects are examined, concerning two rivers in an urbanized area in North-Western Italy (Piedmont – Cuneo Plain. In May 2008, some areas in Northern Italy were struck by intense and persistent rainfall. In the Cuneo province (Southern Piedmont, floodplain with some urban areas was inundated over ca. ten square kilometres, and the city of Savigliano (about 21 000 inhabitants was particularly hit by flood. A purposely-made historical research has evidenced approximately fifty flood events as having occurred since 1350 in the Savigliano area. Based upon historical data, both documents and maps, GIS (Geographical Information System technique and field surveys were used to quantitatively assess the growing urbanization of the city and to describe flood processes and effects over years. This work aims to describe the dynamic behaviour of the 2008 flood, also comparing it to past events, in particular those that occurred in 1896. It is emphasized how the knowledge of past events can be helpful in reducing urban flooding.

  14. Revision of regional maximum flood (RMF) estimation in Namibia

    African Journals Online (AJOL)

    2013-11-26

    Nov 26, 2013 ... sediment deposits, also known as slackwater flood deposits, are stage indicators of ..... of these stations has been operational for 33 years. This cor- responds to ..... Management, University of Haifa, Haifa, Israel. GRODEK T ...

  15. Analytical data of holocene sediments in the Miyazaki Plain, Southern Kyushu, Japan

    International Nuclear Information System (INIS)

    Ikuta, Masafumi; Niwa, Masakazu; Takatori, Ryoichi; Kamataki, Takanobu; Kurosawa, Hideki

    2014-06-01

    Since the devastated tsunami induced by the Tohoku Region Pacific Coast Earthquake occurred on March 11, 2011, a lot of geologists have started to focus on the study of subduction-zone giant earthquakes using tsunami deposits. After the 2011 off the Pacific coast of Tohoku Earthquake, a lot of geologists studying tsunami deposits suggest the importance of the study concerning the tsunamis in the eastern coastal side of Kyushu. On the other hand, the Miyazaki Plain, facing the Hyuga-nada, had been attacked repeatedly by historical tsunami events induced by the giant earthquakes whose hypocenters were located in the Hyuga-nada or Nankai Trough. However, scientific studies concerning the tsunami events are still poor in this area. We are studying paleo-tsunami deposits in the Miyazaki Plain to develop investigation methods of tsunami deposits and elucidate the process of uplift and erosion for several thousand years in regional area. This data set shows the result of this study. A DVD-ROM is attached as an appendix. (J.P.N.)

  16. Characterization of recharge processes in shallow and deeper aquifers using isotopic signatures and geochemical behavior of groundwater in an arsenic-enriched part of the Ganga Plain

    International Nuclear Information System (INIS)

    Saha, Dipankar; Sinha, U.K.; Dwivedi, S.N.

    2011-01-01

    Research highlights: → Sub-regional scale aquifers delineated in arsenic-enriched belt in the Ganga Plain. Isotopic fingerprint of the groundwater, from arsenic-enriched and arsenic-safe aquifers established for the first time in the Ganga Plain. → Recharge processes and the water provenances of vertically separated Quaternary aquifers have been established. → Mean residence time of groundwater in the deeper aquifers has been worked out using C-14 isotope. → Water from the deeper aquifer has been correlated with the paleoclimatic model of the Middle Ganga Plain (Mid-Ganga Basin) for 6-2 ka. - Abstract: Arsenic concentrations in groundwater extracted from shallow aquifers in some areas of the Ganga Plain in the states of Bihar and Uttar Pradesh, exceed 50 μg L -1 and locally reach levels in the 400 μg L -1 range. The study covered 535 km 2 of active flood plain of the River Ganga, in Bihar where a two-tier aquifer system has been delineated in a multi-cyclic sequence of Quaternary sand, clay, sandy clay and silty clay all ≤∼250 m below ground surface. The research used isotopic signatures (δ 18 O, δ 2 Η, 3 H, 14 C) and major chemical constituents (HCO 3 - ,SO 4 2- ,NO 3 - ,Cl - ,Ca 2+ ,Mg 2+ ,Na + ,K + ,As total ) of groundwater to understand the recharge processes and groundwater circulation in the aquifers. Values of δ 18 O and δ 2 Η combined with 3 H data indicate that the recharge to the As-enriched top 40 m of the deposits is modern ( -1 ) is hydrologically isolated from the upper aquifer and is characterized by lower 14 C concentration and lower (more negative) δ 18 O values. Groundwater in the lower aquifer is ∼3 ka old, occurs under semi-confined to confined conditions, with hydrostatic head at 1.10 m above the head of the upper aquifer during the pre-monsoon. The recharge areas of the lower aquifer lies in Pleistocene deposits in basin margin areas with the exposed Vindhyan System, at about 55 km south of the area.

  17. Climatic-eustatic control of Holocene nearshore parasequence development, southeastern Texas coast

    Science.gov (United States)

    Morton, Robert A.; Kindinger, Jack G.; Flocks, James G.; Stewart, Laura B.

    1999-01-01

    Sediment cores, seismic profiles, radiocarbon dates, and faunal assemblages were used to interpret the depositional setting and geological evolution of the southeastern Texas coast during the last glacio-eustatic cycle. Discrete lithofacies and biofacies zones in the ebb-dominated Sabine Lake estuary and adjacent chenier plain record alternating periods of rapid marine flooding and gradual shoaling related to linked climatic/eustatic fluctuations. Monospecific zones of the mollusks Rangia cuneata and Crassostrea virginica, respectively, indicate high fresh water outflow followed by invasion of marine water, whereas intervening organic-rich zones record bayhead delta deposition. High-frequency parasequence stacking patterns within the valley fill and across the adjacent interfluve reflect an initial rapid rise in sea level about 9 ka that flooded abandoned alluvial terraces and caused onlap of Holocene marsh in the incised valley. The rapid rise was followed by slowly rising and oscillating sea level that filled the deepest portions of the incised valleys with fluvially dominated estuarine deposits, and then a maximum highstand (+1 m msl) about 5 ka that flooded the former subaerial coastal plain between the incised valleys and constructed the highest beach ridges. Between 3.5 and 1.5 ka, sea level oscillated and gradually fell, causing a forced regression and rapid progradation of both the chenier plain and accretionary barrier islands. The only significant sands in the valley fill are (1) falling-stage and lowstand-fluvial sediments between the basal sequence boundary and transgressive surface unconformity, and (2) highstand beach-ridge sediments of the chenier plain.

  18. Prospects for development of unified global flood observation and prediction systems (Invited)

    Science.gov (United States)

    Lettenmaier, D. P.

    2013-12-01

    Floods are among the most damaging of natural hazards, with global flood losses in 2011 alone estimated to have exceeded $100B. Historically, flood economic damages have been highest in the developed world (due in part to encroachment on historical flood plains), but loss of life, and human impacts have been greatest in the developing world. However, as the 2011 Thailand floods show, industrializing countries, many of which do not have well developed flood protection systems, are increasingly vulnerable to economic damages as they become more industrialized. At present, unified global flood observation and prediction systems are in their infancy; notwithstanding that global weather forecasting is a mature field. The summary for this session identifies two evolving capabilities that hold promise for development of more sophisticated global flood forecast systems: global hydrologic models and satellite remote sensing (primarily of precipitation, but also of flood inundation). To this I would add the increasing sophistication and accuracy of global precipitation analysis (and forecast) fields from numerical weather prediction models. In this brief overview, I will review progress in all three areas, and especially the evolution of hydrologic data assimilation which integrates modeling and data sources. I will also comment on inter-governmental and inter-agency cooperation, and related issues that have impeded progress in the development and utilization of global flood observation and prediction systems.

  19. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Greenwood quadrangle of Mississippi, Arkansas and Louisiana. Final report

    International Nuclear Information System (INIS)

    1980-08-01

    The Greenwood quadrangle covers a region largely within the Mississippi River flood plain in the extreme northern Gulf Coastal Province. Tertiary sediments in this area are relatively thick, and overlie a Mesozoic section gradually shoaling to the north. The Ouachita Tectonic Zone strikes southeasterly through the center of the quadrangle. The exposed sequence is almost entirely Recent alluvium of the flood plain area. Older Cenozoic deposits crop out in upland areas on both sides of the river valley. A search of available literature revealed no known uranium deposits. Ninety-three uranium anomalies were detected and are discussed briefly. None were considered significant, and all appeared to occur as the result of cultural and/or weather effects. Magnetic data appear to be in agreement with existing structural interpretations of the region

  20. Cordão Formation: loess deposits in the southern coastal plain of the state of Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    RENATO P. LOPES

    Full Text Available ABSTRACT Loess consists of silt-dominated sediments that cover ~10% of the Earth's surface. In southern South America it occurs in Argentina, Bolivia, Paraguay and Uruguay, and its presence in southern Brazil was never studied in detail. Here is proposed a new lithostratigraphic unit, Cordão Formation, consisting of loess deposits in the southern Brazilian coastal plain. It consists of fine-very fine silt with subordinate sand and clay, found mostly in lowland areas between Pleistocene coastal barriers. These sediments are pale-colored (10YR hue and forms ~1,5-2,0 meter-thick stable vertical walls. The clay minerals include illite, smectite, interstratified illite/smectite and kaolinite, the coarser fraction is mostly quartz and plagioclase. Caliche and iron-manganese nodules are also present. The only fossils found so far are rodent teeth and a tooth of a camelid (Hemiauchenia paradoxa. Luminescence ages indicate that this loess was deposited in the latest Pleistocene, between ~30 and 10 kyrs ago, and its upper portion was modified by erosion and accumulation of clay and organic matter in the Holocene. The estimated accumulation rate was ~630 g/m2/year. The probable source of this loess is the Pampean Aeolian System of Argentina and it would have been deposited by the increased aeolian processes of the last glacial.

  1. Mass-movement and flood-induced deposits in Lake Ledro, southern Alps, Italy: implications for Holocene palaeohydrology and natural hazards

    Directory of Open Access Journals (Sweden)

    A. Simonneau

    2013-03-01

    Full Text Available High-resolution seismic profiles and sediment cores from Lake Ledro combined with soil and riverbed samples from the lake's catchment area are used to assess the recurrence of natural hazards (earthquakes and flood events in the southern Italian Alps during the Holocene. Two well-developed deltas and a flat central basin are identified on seismic profiles in Lake Ledro. Lake sediments have been finely laminated in the basin since 9000 cal. yr BP and frequently interrupted by two types of sedimentary events (SEs: light-coloured massive layers and dark-coloured graded beds. Optical analysis (quantitative organic petrography of the organic matter present in soil, riverbed and lacustrine samples together with lake sediment bulk density and grain-size analysis illustrate that light-coloured layers consist of a mixture of lacustrine sediments and mainly contain algal particles similar to the ones observed in background sediments. Light-coloured layers thicker than 1.5 cm in the main basin of Lake Ledro are synchronous to numerous coeval mass-wasting deposits remoulding the slopes of the basin. They are interpreted as subaquatic mass-movements triggered by historical and pre-historical regional earthquakes dated to AD 2005, AD 1891, AD 1045 and 1260, 2545, 2595, 3350, 3815, 4740, 7190, 9185 and 11 495 cal. yr BP. Dark-coloured SEs develop high-amplitude reflections in front of the deltas and in the deep central basin. These beds are mainly made of terrestrial organic matter (soils and lignocellulosic debris and are interpreted as resulting from intense hyperpycnal flood event. Mapping and quantifying the amount of soil material accumulated in the Holocene hyperpycnal flood deposits of the sequence allow estimating that the equivalent soil thickness eroded over the catchment area reached up to 5 mm during the largest Holocene flood events. Such significant soil erosion is interpreted as resulting from the combination of heavy rainfall and snowmelt. The

  2. Flood Risk Mapping Using Flow Energy Equation and Geographic Information System

    Directory of Open Access Journals (Sweden)

    pourya Javan

    2013-09-01

    Full Text Available Flooding and its damages are not only found uplift water level in a region. In other words, the depth and speed parameters together have determining the level of flood risk at each point. This subject is visible in flooded plain with low height and high speed of 2 meters per second, which damages are extensive. According to the criteria of having both velocity and flow depth in the governing equation to the flows energy, this equation seems appropriate to analysis in this study. Various methods have been proposed for increase accuracy in flood zoning with different return periods and risks associated with it in land border of river. For example, some of these methods are considered factors such as analysis of past flooding in the area affected by floods, hydrological factors and consideration of hydraulic elements affecting in flood zoning (such as flow velocity. This paper investigates the effect of flood zoning by the energy flow in the areas affected by floods. Also risk due to flood based on energy flow in each section of the river is compared by the proposed graphs of hazard interval and other done flood zoning in this field. In this study, the FORDO river has been selected as the case study. This river is part of the rivers located in the city of QOM KAHAK. The characteristics of river in upstream and downstream are mountain, young and stable and adult, respectively. Also this river in different seasons is exposed the flood damage. The proposed method in this study can be improving recognition accuracy of flood risk in areas affected by flood. Also, this method facilitate the identify parts of the river bed, that is affected by severe flooding, for decision making to improve rivers organizing.

  3. Flood risk on the Black sea coast of Russia

    Science.gov (United States)

    Alekseevsky, Nikolay; Magritsky, Dmitry; Koltermann, Peter; Krylenko, Inna; Umina, Natalya; Aybulatov, Denis; Efremova, Natalya; Lebedeva, Seraphima

    2013-04-01

    The data of unique database "Floods in the coastal zones of Europeans part of Russia", developed by authors, are shown, that frequency of floods and damage in the coastal zones are growing. There is most dangerous situation on the Black sea coast of Russia. Here the main part of settlements, resorts and industry is situated in the river valleys and mouths. All main roads and pipelines cross the river channels. The Black sea rivers have flood regime with high intensity of flood formations and huge destructive flood power. Despite prevalence of floods during the cold period of year the most part of high floods in 100 years of supervision was noted here in the summer-fall (65% in July-October). Usually they were induced by the showers connected with passing of powerful cyclones, atmospheric fronts, and water tornadoes. The insignificant part of floods was connected with snow melting, backwater phenomena, showers in the cities and dam breaks. Thus shower induced floods here are the most widespread and destructive. Usually they arise within two-three watersheds simultaneously. Formation catastrophic heavy rain flood is possible on any site of a river valley of the Black Sea coast. The wave of a high water moves with very high speed, carrying a large number of deposits and garbage. To the mouth the flood can be transformed into debris flow. The water levels during a high water period rise on 3-6 m in the channels, and up to 11-12 m in the river canyons; the maximum depths of flow on the floodplains are 3 m and more. Flooding depths, induced by slope streams, can be to 0,5 m and higher. Flooding proceeds only some hours. After that water rather quickly flows down from a floodplains to the bed of the rivers and into the sea, leaving traces of destructions, a powerful layer of deposits (to 10-20 cm and more) and garbage. In the mouth river deposits quite often form the river mouth bar which is washed away during next storms. The damage from river floods on the Black Sea

  4. Controlling geological and hydrogeological processes in an arsenic contaminated aquifer on the Red River flood plain, Vietnam

    International Nuclear Information System (INIS)

    Larsen, Flemming; Nhan Quy Pham; Nhan Duc Dang; Postma, Dieke; Jessen, Soren; Viet Hung Pham; Nguyen, Thao Bach; Trieu, Huy Duc; Luu Thi Tran; Hoan Nguyen; Chambon, Julie; Hoan Van Nguyen; Dang Hoang Ha; Nguyen Thi Hue; Mai Thanh Duc; Refsgaard, Jens Christian

    2008-01-01

    Geological and hydrogeological processes controlling recharge and the mobilization of As were investigated in a shallow Holocene aquifer on the Red River flood plain near Hanoi, Vietnam. The geology was investigated using surface resistivity methods, geophysical borehole logging, drilling of boreholes and installation of more than 200 piezometers. Recharge processes and surface-groundwater interaction were studied using (i) time-series of hydraulic head distribution in surface water and aquifers, (ii) the stable isotope composition of waters and (iii) numerical groundwater modeling. The Red River and two of its distributaries run through the field site and control the groundwater flow pattern. For most of the year, there is a regional groundwater flow towards the Red River. During the monsoon the Red River water stage rises up to 6 m and stalls the regional groundwater flow. The two distributaries recharge the aquifer from perched water tables in the dry season, whilst in the flooding period surface water enters the aquifer through highly permeable bank sediments. The result is a dynamic groundwater flow pattern with rapid fluctuations in the groundwater table. A transient numerical model of the groundwater flow yields an average recharge rate of 60-100 mm/a through the confining clay, and a total recharge of approximately 200 mm/a was estimated from 3 H/ 3 He dating of the shallow groundwater. Thus in the model area, recharge of surface water from the river distributaries and recharge through a confining clay is of the same magnitude, being on average around 100 mm/a. The thickness of the confining clay varies between 2 and 10 m, and affects the recharge rate and the transport of electron acceptors (O 2 , NO 3 - and SO 4 2- ) into the aquifer. Where the clay layer is thin, an up to 2 m thick oxic zone develops in the shallow aquifer. In the oxic zone the As concentration is less than 1 μg/L but increases in the reduced zone below to 550 μg/L. In the Holocene

  5. Grain-size evolution in suspended sediment and deposits from the 2004 and 2008 controlled-flood experiments in Marble and Grand Canyons, Arizona

    Science.gov (United States)

    Draut, Amy E.; Topping, David J.; Rubin, David M.; Wright, Scott A.; Schmidt, John C.

    2010-01-01

    Since the closure of Glen Canyon Dam in 1963, the hydrology, sediment supply, and distribution and size of modern alluvial deposits in the Colorado River through Grand Canyon have changed substantially (e.g., Howard and Dolan, 1981; Johnson and Carothers, 1987; Webb et al., 1999; Rubin et al., 2002; Topping et al., 2000, 2003; Wright et al., 2005; Hazel et al., 2006). The dam has reduced the fluvial sediment supply at the upstream boundary of Grand Canyon National Park by about 95 percent. Regulation of river discharge by dam operations has important implications for the storage and redistribution of sediment in the Colorado River corridor. In the absence of natural floods, sediment is not deposited at elevations that regularly received sediment before dam closure. There has been a systemwide decrease in the size and number of subaerially exposed fluvial sand deposits since the 1960s, punctuated by episodic aggradation during the exceptional high-flow intervals in the early 1980s and by sediment input from occasional tributary floods (Beus and others, 1985; Schmidt and Graf, 1990; Kearsley et al., 1994; Schmidt et al., 2004; Wright et al., 2005; Hazel et al., 2006). Fluvial sandbars are an important component of riparian ecology that, among other functions, enclose eddy backwaters that form native-fish habitat, provide a source for eolian sand that protects some archaeological sites, and are used as campsites by thousands of river-runners annually (Rubin et al., 1990; Kearsley et al., 1994; Neal et al., 2000; Wright et al., 2005; Draut and Rubin, 2008).

  6. Late Holocene environmental reconstructions and the implications on flood events, typhoon patterns, and agriculture activities in NE Taiwan

    Science.gov (United States)

    Wang, L.-C.; Behling, H.; Lee, T.-Q.; Li, H.-C.; Huh, C.-A.; Shiau, L.-J.; Chang, Y.-P.

    2014-05-01

    In this study, we reconstructed the paleoenvironmental changes from a sediment archive of the floodplain lake in Ilan Plain of NE Taiwan on multi-decadal resolution for the last ca. 1900 years. On the basis of pollen and diatom records, we evaluated the record of past vegetation, floods, typhoons and agriculture activities of this area, which is sensitive to the hydrological conditions of the West Pacific. High sedimentation rates with low microfossil preservations reflected multiple flood events and humid climatic conditions during 100-1400 AD. A shortly interrupted dry phase can be found during 940-1010 AD. The driest phase corresponds to the Little Ice Age phase 1 (LIA1, 1400-1620 AD) with less disturbance by flood events, which enhanced the occurrence of wetlands (Cyperaceae) and diatom depositions. Humid phases with frequent typhoons are inferred by high percentages of Lagerstroemia and high ratios of planktonic/benthic diatoms, respectively, during 500-700 AD and Little Ice Age phase 2 (LIA2, 1630-1850 AD). The occurrences of cultivated Poaceae (Oryza) during 1250-1300 AD and the last ~400 years, reflect agriculture activities, which seems to implicate strongly with the environmental stability. Finally, we found flood events which dominated during the El Niño-like stage, but dry events as well as frequent typhoon events happened during the La Niña-like stage. After comparing our results with the reconstructed proxy for tropical hydrological conditions, we suggested that the local hydrology in coastal East Asia were strongly affected by the typhoon-triggered heavy rainfalls which were influenced by the variation of global temperature, expansion of the Pacific warm pool and intensification of ENSO events.

  7. The correlation of the Cs 137 lateral and radial migration in the Sozh valley soil

    International Nuclear Information System (INIS)

    Ryabova, L.N; Kuznetsov, V.A.; Glaz, A.S.

    2002-01-01

    Radiocesium distribution in soils of four geochemical landscapes: eluvial - watershed, transeluvial - terrace slope upper part, transaccumulative - slope lower part, accumulative - flood plain is discussed. Maximum concentration of Cs 137 (2,961...3,280 Bq/kg) was noted in the soil of eluvial landscapes, with a depth of the isotope migration being 26 cm. Its accumulation is associated with the biogeochemical and sorption geochemical barriers. Fe, Ca, Pb, Mn, Ni, Cr and Cu are accumulated simultaneously with Cs 137. The maximum concentration of Cs 137 is confined to the humus horizon of buried soils in the transition landscapes and in the upper part of relict horizons (geochemical barrier), where the Cs 137, Fe, Ca and Mn penetration increases. The lower part of the buried humus horizon is impermeable for Cs 137 migration and partly permeable for Fe, Ca, Mg, that migrate in soluble forms. Cs 137 is accumulated in the humus horizon of buried soils, that occur in the lower parts of slopes and are overlain by light deposits. Radiocesium is accumulated with Al, Fe, Ti, Ca, Mg and trace elements. By the value of a coefficient R9 the buried humus horizon is divided into the upper and lower parts. In the soils of accumulative landscapes radiocesium is accumulated in the sod of the central flood plain lows. In the elevated parts the radial migration is dominant and Cs-137 is accumulated in the humus horizons. Radiocesium is accumulated under the influence of different barriers in the river channel flood plain. A system of watershed - flood plain for Cs 137 is as follows: central flood plain low (6,045...1,955 Bq/kg) > watershed (2,961...3,280) > slope upper part (1,436) > central flood plain elevation (870...4,844), river channel flood plain (381 Bq/kg). Its accumulation in the humus horizons follows the pattern: central flood plain elevation (302...429 Bq/kg) > buried soils (1,055...1,941) > slope upper part (1,628) > river channel flood plain (424) > > watershed (52

  8. Flooding and Flood Management

    Science.gov (United States)

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim

    2011-01-01

    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  9. Evaluation of the Benefit of Flood Reduction by Artificial Groundwater Recharge Lake Operation in a Coastal Area

    Science.gov (United States)

    Chen, Ching-Nuo; Tsai, Chih-Heng

    2017-04-01

    Inundation disasters often occur in the southwestern coastal plains of Taiwan. The coastal plains suffers mostly from land-subsidence, surface water is difficult to be drained during the typhoon period, leading to more severe flood disasters. Global climate warming has become more significant, which in turn has resulted in the increase in amplitude and frequency of climate change related disasters. In addition, climate change also induces a rise in sea water level year by year. The rise in sea water level does not only weakens the function of existing drainage system but also increases tidal levels and storm tide levels, which increases the probability and amount of inundation disasters. The serious land subsidence area at Linbian river basin was selected as the study area. An artificial groundwater recharge lake has been set up in Linbian river basin by Pingtung government. The development area of this lake is 58 hectare and the storage volume is 2.1 million cubic meters (210 × 104m3). The surface water from Linbian basin during a wet season is led into the artificial groundwater recharge lake by water diversion project, and then employ special hydro-geological conditions of the area for groundwater recharge, increase groundwater supply and decrease land subsidence rate, and incidentally some of the flood diversion, detention, reduce flooding. In this study, a Real-time Interactive Inundation Model is applied to simulate different flooding storage volume and gate operations to estimate the benefits of flood mitigation. According to the simulation results, the hydrograph shape, peak-flow reduction and time lag to peak of the flood reduction hydrograph into the lake are apparently different for each case of different gate operation at the same storage volume. Therefore, the effect of flood control and disaster mitigation is different. The flood control and disaster mitigation benefits are evaluated by different operation modes, which provide decision makers to

  10. Geologic features of the Connecticut Valley, Massachusetts, as related to recent floods

    Science.gov (United States)

    Jahns, Richard Henry

    1947-01-01

    gorge is due to a filling by glacial debris, notably by sediments deposited in late glacial lakes. Following disappearance of the last ice sheet and draining of the associated, lakes, the Connecticut River resumed existence and began a new chapter in its history. In those areas where the river regained its preglacial course, it now flows on sediments considerably above the rock floor of the old gorge. Where the gorge was narrow and deep, the upper parts of its walls have confined the postglacial river within rather narrow limits, as in the northern part of the state. Where it was sufficiently wide to be filled by glacial sediments over large areas, the postglacial river has meandered broadly, as in the area north of the Holyoke-Mount Tom Range. In two areas in Massachusetts and in one immediately south in Connecticut, however, the river was forced from its preglacial gorge, and its new channel has been superimposed on bedrock, with development of rapids and falls. Each of these postglacial rock channels acts as a spillway whose level controls the local base level of the river as far upstream as the next spillway. These spillways are not to be confused with other, more spectacular gorges, which are of preglacial origin and in which the present river does not flow on bedrock. The Recent Connecticut has formed extensive flood plains and terraces through repeated sequences of erosion by lateral corrosion and downward scour, followed by deposition of .silt and sand veneers. These features, although irregular in detail, appear to be assignable to five general levels, whose means are approximately 49, 37, 30, 18, and 10 feet above present mean river level. In addition, an 80-foot terrace in the northern part of the valley was left perched, in its present position when the Connecticut abandoned its course over. a rock barrier near Turners Falls in favor of an adjacent much lower gap. The normal terraces and flood plains, slope very gently away from their riverw

  11. Assessing land-use changes driven by river dynamics in chronically flood affected Upper Brahmaputra plains, India, using RS-GIS techniques

    Directory of Open Access Journals (Sweden)

    Nabajit Hazarika

    2015-06-01

    Full Text Available This work documents land-use changes driven by river dynamics along two tributaries in the chronically flood affected Upper Brahmaputra floodplain which supports a population of more than half a million. Planform changes for a period of 40 years are documented using topographical map and Landsat data, and the associated land-use change is assessed by utilising hybrid classification in GIS environment. Quantification of bankline migration shows that the river courses are unstable. A reversal in the rate of erosion and deposition is also observed. Hybrid classification of Landsat images yielded a higher level of accuracy as evident from the confusion matrixes. Overall, the accuracy of land-use classification ranged between 88.5% and 96.25%. Land-use change shows that there is an increase in settlement and agriculture and a decrease in the grassland. The area affected by erosion–deposition and river migration comprises primarily of the agricultural land. Effect of river dynamics on settlements is also evident. Loss of agricultural land and homestead led to the loss of livelihood and internal migration in the floodplains. The observed pattern of river dynamics and the consequent land-use change in the recent decades have thrown newer environmental challenges at a pace and magnitude way beyond the coping capabilities of the dwellers.

  12. Hydro-morphodynamic modelling of a volcano-induced sediment-laden outburst flood at Sólheimajökull, Iceland

    Science.gov (United States)

    Guan, M.; Wright, N.; Sleigh, P. A.; Carrivick, J.; Staines, K.

    2013-12-01

    Outburst floods are one of the most catastrophic natural hazards for populations and infrastructure. Such high-magnitude sudden onset floods generally comprise of an advancing intense kinematic water wave that can induce considerable sediment transport. The exploration and investigation of sediment-laden outburst floods cannot be limited solely to water flow but must also include the flood-induced sediment transport. Understanding the complex flow-bed interaction process in large (field) scale outburst floods is still limited, not least due to a lack of well-constrained field data, but also because consensus on appropriate modelling schemes has yet to be decided. In recent years, attention has focussed on the numerical models capable of describing the process of erosion, transport and deposition in such flows and they are now at a point at which they provide useful quantitative data. Although the "exact" measure of bed change is still unattainable the numerical models enhance and improve insights into large outburst flood events. In this study, a volcano-induced jökulhlaup or glacial outburst flood (GLOF) at Sólheimajökull, Iceland is reproduced by novel 2D hydro-morphodynamic model that considers both bedload and suspended load based on shallow water theory. The simulation of sediment-laden outburst flood is shown to perform well, with further insights into the flow-bed interaction behaviour obtained from the modelling output. These results are beneficial to flood risk management and hazard prevention and mitigation. In summary, the modelling outputs show that (1) the quantity of bed erosion and deposition are sensitive to the sediment gain size, yet, the influences are not so significant when considering flow discharge; (2) finer resolution of topography increases the computational time significantly yet the results are not affected correspondingly; (3) the bed changes simulated by the present model achieves reasonably good agreement with those by the

  13. Stratigraphy and depositional environments of the upper Pleistocene Chemehuevi Formation along the lower Colorado River

    Science.gov (United States)

    Malmon, Daniel V.; Howard, Keith A.; House, P. Kyle; Lundstrom, Scott C.; Pearthree, Philip A.; Sarna-Wojcicki, Andrei M.; Wan, Elmira; Wahl, David B.

    2011-01-01

    The Chemehuevi Formation forms a conspicuous, widespread, and correlative set of nonmarine sediments lining the valleys of the Colorado River and several of its larger tributaries in the Basin and Range geologic province. These sediments have been examined by geologists since J. S. Newberry visited the region in 1857 and are widely cited in the geologic literature; however their origin remains unresolved and their stratigraphic context has been confused by inconsistent nomenclature and by conflicting interpretations of their origin. This is one of the most prominent stratigraphic units along the river below the Grand Canyon, and the formation records an important event or set of events in the history of the Colorado River. Here we summarize what is known about these deposits throughout their range, present new stratigraphic, sedimentologic, topographic, and tephrochronologic data, and formally define them as a lithostratigraphic unit. The Chemehuevi Formation consists primarily of a bluff-forming mud facies, consisting of gypsum-bearing, horizontally bedded sand, silt, and clay, and a slope-forming sand facies containing poorly bedded, well sorted, quartz rich sand and scattered gravel. The sedimentary characteristics and fossil assemblages of the two facies types suggest that they were deposited in flood plain and channel environments, respectively. In addition to these two primary facies, we identify three other mappable facies in the formation: a thick-bedded rhythmite facies, now drowned by Lake Mead; a valley-margin facies containing abundant locally derived sediment; and several tributary facies consisting of mixed fluvial and lacustrine deposits in the lower parts of major tributary valleys. Observations from the subsurface and at outcrops near the elevation of the modern flood plain suggest that the formation also contains a regional basal gravel member. Surveys of numerous outcrops using high-precision GPS demonstrate that although the sand facies commonly

  14. History of formation of forests in the plain part of Ukraine in the Holocene

    International Nuclear Information System (INIS)

    Bezusko, L.G.; Mosyakin, S.L.; Tsymbalyuk, Z.M.; Bezusko, A.G.

    2005-01-01

    Full text: The authors analyzed and generalized the results of palynological and radiocarbon-dating studies of Holocene deposits of the forest, forest-steppe and steppe zones of Ukraine. Based on the obtained data, we reconstructed the pattern of main changes of vegetation and climate starting from 10,300 years BP. We consider changes in forest vegetation of the studied area in the Early (PB-1, PB-2, BO-1, BO-2, BO-3), Middle (AT-1, AT-2, AT-3, SB-1, SB-2, SB-3) and Late Holocene. For most important forest-forming trees (species of Pinus, Betula, Alnus, Quercus, Tilia, Carpinus, Fagus etc.), the main periods of their maximum participation in Ukrainian forest vegetation were identified. Broadleaf forests and mixed forests with participation of broadleaf trees were most widespread in Ukraine 4,500-6,200 years BP. During the second phase of the Atlantic time of the Holocene the northern border of the steppe zone in Ukraine was stable. Expansion of forest communities in the steppe zone progressed through gradual increase of forest areas that originally occurred in flood plains and ravines. (author)

  15. Late Quarternary evolution of the northern Hatteras Abyssal Plain

    International Nuclear Information System (INIS)

    Dickson, S.M.; Laine, E.P.

    1986-05-01

    The sedimentary history and seismic structure of a deep-water turbidite basin in the Western North Atlantic Ocean has been investigated to understand further the evolution of abyssal plains. This study integrates analyses of sedimentary and seismic facies in order to examine the temporal and spatial patterns of sedimentation on the northern Hatteras Abyssal Plain during the Late Quaternary. Forty deep-sea sediment cores and 6000 km of high resolution (3.5 kHz) seismic reflection profiles from within 31-34 0 N and 69-74 0 W include portions of the Hatteras Outer Ridge, Lower Continental Rise and Bermuda Rise as well as the northern Hatteras Abyssal Plain. Seismic profiles (within 32-33 0 N, 70-71.5 0 W) define two acoustically-transparent seismic units beneath the Plain. The composition of these seismic units has been investigated with sediment cores. This study has found two notable features in the sedimentary framework of the Plain that appear to have resulted from temporal changes in sediment supply. The most recent change, a postglacial decline in turbidity current activity, produced a diagenetic iron enrichment at the Pleistocene-Holocene boundary. The stratigraphic thickness affected by diagenesis is related spatially to patterns of turbidite sedimentation. An earlier change, discovered in this research, occurred during the Wisconsinian glaciation and brought coarser-grained turbidity currents to the northern Plain. Deposition of sands from these flows appears to have been locally controlled by a broad topographic feature with less than ten meters relief. As a result of the topographic influence, there are abrupt boundaries, both verically and laterally, between an older mud facies and a younger sandy turbidite facies of the Plain

  16. Comparison of Cottonwood Dendrochronology and Optically Stimulated Luminescence Geochronometers Along a High Plains Meandering River, Powder River, Montana, USA

    Science.gov (United States)

    Hasse, T. R.; Schook, D. M.

    2017-12-01

    Geochronometers at centennial scales can aid our understanding of process rates in fluvial geomorphology. Plains cottonwood trees (Populus deltoides ssp. Monilifera) in the high plains of the United States are known to germinate on freshly created deposits such as point bars adjacent to rivers. As the trees mature they may be partially buried (up to a few meters) by additional flood deposits. Cottonwood age gives a minimum age estimate of the stratigraphic surface where the tree germinated and a maximum age estimate for overlying sediments, providing quantitative data on rates of river migration and sediment accumulation. Optically Stimulated Luminescence (OSL) of sand grains can be used to estimate the time since the sand grains were last exposed to sunlight, also giving a minimum age estimate of sediment burial. Both methods have disadvantages: Browsing, partial burial, and other damage to young cottonwoods can increase the time required for the tree to reach a height where it can be sampled with a tree corer, making the germination point a few years to a few decades older than the measured tree age; fluvial OSL samples can have inherited age (when the OSL age is older than the burial age) if the sediment was not completely bleached prior to burial. We collected OSL samples at 8 eroding banks of the Powder River Montana, and tree cores at breast height (±1.2 m) from cottonwood trees growing on the floodplain adjacent to the OSL sample locations. Using the Minimum Age Model (MAM) we found that OSL ages appear to be 500 to 1,000 years older than the adjacent cottonwood trees which range in age (at breast height) from 60 to 185 years. Three explanations for this apparent anomaly in ages are explored. Samples for OSL could be below a stratigraphic unconformity relative to the cottonwood germination elevation. Shallow samples for OSL could be affected by anthropogenic mixing of sediments due to plowing and leveling of hay fields. The OSL samples could have

  17. The 2014 Karnali River Floods in Western Nepal: Making Community Based Early Warning Systems Work When Data Is Lacking

    Science.gov (United States)

    Dugar, S.; MacClune, K.; Venkateswaran, K.; Yadav, S.; Szoenyi, M.

    2015-12-01

    Implementing Community Based Flood Early Warning System (EWS) in developing countries like Nepal is challenging. Complex topography and geology combined with a sparse network of river and rainfall gauges and little predictive meteorological capacity both nationally and regionally dramatically constrain EWS options. This paper provides a synopsis of the hydrological and meteorological conditions that led to flooding in the Karnali River, West Nepal during mid-August 2014, and analyses the effectiveness of flood EWS in the region. On August 14-15, 2014, a large, slow moving weather system deposited record breaking rainfall in the foothills of the Karnali River catchment. Precipitation depths of 200 to 500 mm were recorded over a 24-hour period, which led to rapid rise of river heights. At the Chisapani river gauge station used for the existing EWS, where the Karnali River exits the Himalaya onto the Indo-Gangetic Plain, water levels rapidly exceeded the 11 meter danger level. Between 3 to 6 am, water levels rose from 11 to 16. 1 meters, well beyond the design height of 15 meters. Analysis suggests that 2014 floods may have been a one-in-1000 year event. Starting with the onset of intense rainfall, the Chisapani gauge reader was in regular communication with downstream stakeholders and communities providing them with timely information regarding rising water level. This provided people just enough time to move to safe places with their livestock and key assets. Though households still lost substantial assets, without the EWS, floodwaters would have caught communities completely unaware and damage would almost certainly have been much worse. In particular, despite the complications associated with access to the Chisapani gauge and failure of critical communication nodes during the floods, EWS was instrumental in saving lives. This study explores both the details of the flood event and performance of the early warning system, and identifies lessons learned to help

  18. Anthropogenic influences on the flood of 1997 in the river Rivillas (Badajoz). Land uses changes and geomorphic impact

    International Nuclear Information System (INIS)

    Ortega Becerril, J. A.; Garzon Heydt, M. G.

    2009-01-01

    The Rivillas Stream, a tributary of the Guadiana River, is a small, seasonal watercourse that sporadically floods. The flooding that occurred on the 5th November 1977 was catastrophic; 22 deaths were recorded in the rivers basin plus another 15 in neighbouring basins. The intense transformation of the basin through agriculture and construction near the city of Badajoz have led to this river system becoming very unstable. This is equally true of its flood plain, its main course, its effluents, the slopes around the basin, and the remainder of the basin. The geomorphic impact of these changes only become noticeable when the flash-flood occurred ut to intense rainfall, highlighting the important negative effects of human activity in such sensitive environments. (Author) 7 refs.

  19. Flood Risk Assessment as a Part of Integrated Flood and Drought Analysis. Case Study: Southern Thailand

    Science.gov (United States)

    Prabnakorn, Saowanit; Suryadi, Fransiscus X.; de Fraiture, Charlotte

    2015-04-01

    Flood and drought are two main meteorological catastrophes that have created adverse consequences to more than 80% of total casualties universally, 50% by flood and 31% by drought. Those natural hazards have the tendency of increasing frequency and degree of severity and it is expected that climate change will exacerbate their occurrences and impacts. In addition, growing population and society interference are the other key factors that pressure on and exacerbate the adverse impacts. Consequently, nowadays, the loss from any disasters becomes less and less acceptable bringing about more people's consciousness on mitigation measures and management strategies and policies. In general, due to the difference in their inherent characteristics and time occurrences flood and drought mitigation and protection have been separately implemented, managed, and supervised by different group of authorities. Therefore, the objective of this research is to develop an integrated mitigation measure or a management policy able to surmount both problems to acceptable levels and is conveniently monitored by the same group of civil servants which will be economical in both short- and long-term. As aforementioned of the distinction of fundamental peculiarities and occurrence, the assessment processes of floods and droughts are separately performed using their own specific techniques. In the first part of the research flood risk assessment is focused in order to delineate the flood prone area. The study area is a river plain in southern Thailand where flooding is influenced by monsoon and depression. The work is mainly concentrated on physically-based computational modeling and an assortment of tools was applied for: data completion, areal rainfall interpolation, statistical distribution, rainfall-runoff analysis and flow model simulation. The outcome from the simulation can be concluded that the flood prone areas susceptible to inundation are along the riparian areas, particularly at the

  20. Heavy metals in soils and sedimentary deposits of the Padanian Plain (Ferrara, Northern Italy). Characterisation and biomonitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bianchini, Gianluca; Natali, Claudio [Ferrara Univ. (Italy). Dept. of Earth Sciences; C.N.R, Pisa (Italy). Ist. di Geoscienze e Georisorse; Di Giuseppe, Dario; Beccaluva, Luigi [Ferrara Univ. (Italy). Dept. of Earth Sciences

    2012-08-15

    Purpose: This contribution investigates agricultural soils and sedimentary deposits in the province of Ferrara (Padanian alluvial plain, Northern Italy) in order to: examine their genesis; to define the geochemical background of the area; and to evaluate the existence of anthropogenic contamination. Moreover, environmental risk related to the presence of potentially toxic heavy metals that can be transferred into agricultural products (and consequently bio-accumulated in the food chain) was also assessed. Materials and methods: The analyses (reported in an extensive supplementary dataset) include XRD, XRF and ICP-MS assessment of bulk sediments, tests of metal extraction with aqua regia, as well as analyses of local agricultural products, i.e. biomonitoring which is important in the evaluation of element mobility. Results and discussion: Based on the results, GIS-based geochemical maps were produced and local background levels were defined. This approach demonstrated that high concentrations of Cr and Ni is a natural (geogenic) feature of the local alluvial terrains, which in turn is related to the origin and provenance of the sediments, as confirmed by the lack of top enrichment in all of the investigated sites. Tests of metal extraction and analyses of agricultural products provide guidelines for agricultural activities, suggesting that extensive use of sewage sludge, industrial slurry and manure (that are often rich in metals) should be minimised. Conclusions: The dataset reported in this paper shows that the agricultural terrains of the studied alluvial plain are not characterised by anthropogenic heavy metal pollution. In spite of the elevated natural background of Cr and Ni, most of the local agricultural products do not show significant evidence of bio-magnification. Exceptions are represented by forage grass (alfalfa) and corn (maize) that tend to uptake As and Ni, respectively. This demonstrates that in agricultural areas, a geochemical risk assessment

  1. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Jackson quadrangle of Mississippi and Louisiana. Final report

    International Nuclear Information System (INIS)

    1980-07-01

    The Jackson quadrangle covers a region largely within the Mississippi River flood plain. In the extreme northern Gulf Coastal Physiographic Province. Underlying Mesozoic and Cenozoic sediments of the Mississippi Embayment are relatively thick. Exposed sediments are largely Quaternary in age, though older Cenozoic material of both marine and nonmarine origin are exposed in areas adjacent to the flood plain in the east. A search of the available literature revealed no known uranium deposits. Seventy-three uranium anomalies were detected and are discussed briefly. None were considered significant, and most appeared to be of cultural origin. Magnetic data appears to be in agreement with existing structural interpretations of the region

  2. Impact of modelling scale on probabilistic flood risk assessment: the Malawi case

    Directory of Open Access Journals (Sweden)

    Rudari Roberto

    2016-01-01

    Full Text Available In the early months of 2015, destructive floods hit Malawi, causing deaths and economic losses. Flood risk assessment outcomes can be used to increase scientific-supported awareness of risk. The recent increase in availability of high resolution data such as TanDEM-X at 12m resolution makes possible the use of detailed physical based flood hazard models in risk assessment. Nonetheless the scale of hazard modelling still remains an issue, which requires a compromise between level of detail and computational efforts. This work presents two different approaches on hazard modelling. Both methods rely on 32-years of numeric weather re-analysis and rainfall-runoff transformation through a fully distributed WFLOW-type hydrological model. The first method, applied at national scale, uses fast post-processing routines, which estimate flood water depth at a resolution of about 1×1km. The second method applies a full 2D hydraulic model to propagate water discharge into the flood plains and best suites for small areas where assets are concentrated. At the 12m resolution, three hot spots with a model area of approximately 10×10 km are analysed. Flood hazard maps obtained with both approaches are combined with flood impact models at the same resolution to generate indicators for flood risk. A quantitative comparison of the two approaches is presented in order to show the effects of modelling scale on both hazard and impact losses.

  3. Summary of floods in the United States during 1958

    Science.gov (United States)

    Hendricks, E.L.

    1964-01-01

    This report describes the most outstanding floods that occurred in the United States during 1958.A series of storms from January 23 to February 16 brought large amounts of precipitation to northern California and produced damaging floods, particularly in the Lower Sacramento Valley where losses totaled about \\$12 million.Major floods, notable because of the large area affected, occurred on many small streams in central and south Texas, following heavy general rains in late February. Extensive flooding occurred along the Gulf Coastal plain on the lower reaches of the major streams from the Brazos River to the Nueces River. Two lives were lost, and property damage exceeded \\$1 million.Damaging floods of April 1-7 followed one of the wettest winters in California history. Swollen streams overflowed their banks throughout the central part of the State, and discharge peaks on many streams exceeded those .of the floods of December 1955. Most severely flooded was the San Francisco Bay area. Total flood damage was estimated at \\$23 million.The storms and floods of April-May in Louisiana and adjacent States outranked all other floods in the United States during 1958 with respect to intensity of rain over a large area, number of streams having maximum discharge of record, rare occurrence of peaks, and great amount (\\$21 million) of resultant damage.Heavy rains on June 8-15 caused one of the greatest summer floods of record in central Indiana. Peak discharges were high and of rare occurrences. Failure of numerous levees along the Wabash River caused great damage. Crop damage alone was estimated at \\$48 million.Intense rains of July 1-2 caused record-breaking floods in southwestern Iowa. Rapid rises and the great magnitude of the floods on small streams resulted in 18 deaths and many injuries. Six towns and cities along the East Nishnabotna River and its tributaries were particularly hard hit; rural damage was also high. Total damage was estimated at \\$15 million

  4. Geological setting control of flood dynamics in lowland rivers (Poland).

    Science.gov (United States)

    Wierzbicki, Grzegorz; Ostrowski, Piotr; Falkowski, Tomasz; Mazgajski, Michał

    2018-04-27

    We aim to answer a question: how does the geological setting affect flood dynamics in lowland alluvial rivers? The study area covers three river reaches: not trained, relatively large on the European scale, flowing in broad valleys cut in the landscape of old glacial plains. We focus on the locations where levees [both: a) natural or b) artificial] were breached during flood. In these locations we identify (1) the erosional traces of flood (crevasse channels) on the floodplain displayed on DEM derived from ALS LIDAR. In the main river channel, we perform drillings in order to measure the depth of the suballuvial surface and to locate (2) the protrusions of bedrock resistant to erosion. We juxtapose on one map: (1) the floodplain geomorphology with (2) the geological data from the river channel. The results from each of the three study reaches are presented on maps prepared in the same manner in order to enable a comparison of the regularities of fluvial processes written in (1) the landscape and driven by (2) the geological setting. These processes act in different river reaches: (a) not embanked and dominated by ice jam floods, (b) embanked and dominated by rainfall and ice jam floods. We also analyse hydrological data to present hydrodynamic descriptions of the flood. Our principal results indicate similarity of (1) distinctive erosional patterns and (2) specific geological features in all three study reaches. We draw the conclusion: protrusions of suballuvial bedrock control the flood dynamics in alluvial rivers. It happens in both types of rivers. In areas where the floodplain remains natural, the river inundates freely during every flood. In other areas the floodplain has been reclaimed by humans who constructed an artificial levee system, which protects the flood-prone area from inundation, until levee breach occurs. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Effects on the upstream flood inundation caused from the operation of Chao Phraya Dam

    Directory of Open Access Journals (Sweden)

    Sutham Visutimeteegorn

    2007-11-01

    Full Text Available During the flooding events, the operation of Chao Phraya Dam to control downstream water discharge is one of the causes of the inundation occuring over the upstream area. The purposes of this research are to study the effects of the operation of Chao Phraya Dam upon the upstream flood inundation and to find out the new measures of the flood mitigation in the upstream areas of Chao Phraya Dam by using a hydrodynamic model. The results show that Manning's n in the Chao Phraya River and its tributaries is 0.030-0.035 in the main channels and 0.050-0.070 in the flood plain areas. The backwater due to the operation of the Chao Praya dam affects as far as 110 kilometers upstream. New methods of water diversion can mitigate the flood inundation without the effect on the floating rice fields. The construction of reservoirs in the Upper Sakaekang River Basin and the Upper Yom River Basin will mitigate the flood not only in their own basins but also in the Lower Chao Phraya River Basin. The coordinated operation of the Chao Phraya Dam, the regulators and the upper basin reservoirs will efficiently mitigate the flood inundation.

  6. Sedimentary architecture and depositional evolution of the Quaternary coastal plain of Maricá, Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    André Luiz Carvalho da Silva

    Full Text Available The coastal geomorphology of Maricá (Rio de Janeiro state is characterized by a large lagoon and by two sandy barriers that confine a series of small isolated chain-like lagoons. Data collected from ground-penetrating radar and boreholes from the central coastal plain of Maricá provided information on the sedimentary architecture and evolution of this area in the Quaternary. Six lithological units were identified comprising three depositional sequences limited by erosional surfaces, related to barrier-lagoon systems that migrated onshore, offshore, and longshore, giving rise to a sedimentary deposit 25 m thick or more. The data reveal a retrograding barrier overlying a basal mud unit which rests in unconformity upon Precambrian basement, thus characterizing an important Pleistocene transgression. A second Pleistocene barrier of 45,000 cal years BP migrated over a lagoonal mud unit (48,000-45,000 cal years BP reaching over the previous barrier. A progradational phase followed due to a fall of sea level. A long interval of erosion of the barrier created an unconformity that represents the Pleistocene-Holocene boundary. A beachrock in nearby Itaipuaçu, 100 m offshore from the present-day beach, dated as 8,500 cal years BP marks the onset of Holocene sedimentation due to gradually rising sea level, which continued until at about 5,000 years ago. This promoted the retrogradation of the barrier-lagoon system. A brief episode of progradation is observed as a series of paleobeach scarps. Today's rising sea level is causing the retrogradation of the barrier.

  7. Luminescence dating of paleoseismic events associated with the Muzaffarnagar fault in the Western Gangetic Plain

    International Nuclear Information System (INIS)

    Bhosle, Balaji; Parkash, B.; Awasthi, A.K.

    2006-01-01

    Using remote sensing and GIS techniques of satellite data processing, Muzaffarnagar fault is identified in western Gangetic Plain. Activity along the fault has resulted in deposition of colluvial deposits (alluvial fans) on the downthrown block. Luminescence dating of colluvial deposits suggests that the fault is segmented. The last activity which took place along the eastern segment was at 3.5 ka and middle and western segment were active during 2.5-2.8 ka. (author)

  8. The Neogene molasse deposits of the Zagros Mountains in central Dezful Embayment: facies, sedimentary environments and controls

    Directory of Open Access Journals (Sweden)

    Ali Hossein Jalilian

    2016-03-01

    Full Text Available The upper part of Neogene sequence of the Zagros Mountains consists of a clastic succession which is identified as Aghajari and Bakhtyari formations. The sequence is an excellent example of synorogenic sedimentation or molasse deposited in northern portion of the Zagros foreland basin. Sedimentological analysis of an outcrop section representing Miocene-Pliocene sediments in central Dezful Embayment resulted in recognizing 9 lithofacies and 4 architectural elements. These lithofacies include conglometate (Gt, Gh, Gmm, sandstone (Sp, Sh, Sr, St and mudstone (Fm, Fl that were deposited in meandering stream, braided river and alluvial fan environments. Paleocurrent analysis of cross-beds, channels and asymmetric ripple marks indicate that these Neogene clastics were mainly drived from Cretaceous to Paleogene highlands in the Zagros Mountains on the north. This stratigraphic record is coarsening-upward and formed by a regressive depositional megacycle under arid climate. Facies and depositional history analysis show that sedimentation of the Zagros molasse was primarily controlled by base-level changes rather than catchment lithology or climate. The sedimentary record of this regressive megacycle reveales the base-level was constantly falling down on one hand and the provenance was uplifting on the other hand. Tectonic activities and Zagros Mountains rising in the Late Miocene resulted in deposition of fining-upward point-bar and floodplain sequences of the Aghajari Formation in low-gradient meandering streams. The Lahbari Member of the Aghajari Formation represents deposition in braided rivers that composed predominantly of flood-plain deposits in the Early Pliocene. Finally, the sedimentary cycle of the Zagros molasse deposits terminated with massive conglomerates of the Bakhtyari Formation deposited in large alluvial fans near the source area.

  9. Jökulhlaup deposits in proglacial areas

    Science.gov (United States)

    Maizels, Judith

    This paper discusses the main causes and characteristics of jökulhlaup ('glacier burst') floods, and explores the extent to which they generate depositional landform and sediment assemblages that are distinct from those of 'normal', braided river outwash ('Type I' outwash). Two main jökulhlaup outwash environments are identified: Type II outwash, produced by sudden drainage of ice-dammed lakes; and Type III, associated with drainage during subglacial geothermal activity, and distinguished by deposits resulting from high sediment concentrations and hyperconcentrated flows. In fluid flows, especially ones yielding Type II outwash, the most common deposits are large-scale expansion bars (and locally, eddy and pendant bars), and 'mega-ripples' or dunes, both forms normally composed of large-scale gravel-cobble cross-bedding, often capped by an imbricated boulder lag (a 'Type B2' lithofacies sequence). The armour is absent only where runoff decreased too rapidly to allow surface winnowing. Other jökulhlaup facies include extensive boulder beds (Type C), inverse-normally graded cobble beds (Type DS), ice-proximal debris flow deposits and deformed bedding containing diamicton clasts (Types G and H), and slack-water sediments (Type A). Type III outwash is dominated by massive, homogeneous, flood surge granules, underlain by pre-surge gravels, and capped by post-surge fluid bedforms, reflecting deposition during both the rising and falling limbs of the flood hydrograph (Type E4). The paper demonstrates that jökulhlaups do generate distinctive assemblages of depositional landforms and sediments, and concludes with a model of the dominant lithofacies sequences and associated landforms in proglacial environments subject to jökulhlaup drainage.

  10. Decadal changes in channel morphology of a freely meandering river—Powder River, Montana, 1975–2016

    Science.gov (United States)

    Moody, John A.; Meade, Robert H.

    2018-03-19

    Few studies exist on the long-term geomorphic effects of floods. However, the U.S. Geological Survey (USGS) was able to begin such a study after a 50-year recurrence interval flood in 1978 because 20 channel cross sections along a 100-kilometer reach of river were established in 1975 and 1977 as part of a study for a proposed dam on Powder River in southeastern Montana. These cross-section measurements (data for each channel cross section are available at the USGS ScienceBase website) have been repeated about 30 times during four decades (1975–2016) and provide a unique dataset for understanding long-term changes in channel morphology caused by an extreme flood and a spectrum of annual floods.Changes in channel morphology of a 100-kilometer reach of Powder River are documented in a series of narratives for each channel cross section that include a time series of photographs as a record of these changes. The primary change during the first decade (1975–85) was the rapid vertical growth of a new inset flood plain within the flood-widened channel. Changes during the second decade (1985–95) were characterized by slower growth of the flood plain, and the effects of ice-jam floods typical of a northward-flowing river. Changes during the third decade (1995–2005) showed little vertical growth of the inset flood plain, which had reached a height that limited overbank deposition. And changes during the final decade (2005–16) covered in this report showed that, because the new inset flood plain had reached a limiting height, the effects of the large annual flood of 2008 (largest flood since 1978) were relatively small compared to smaller floods in previous decades. Throughout these four decades, the riparian vegetation, which interacts with the river, has undergone a gradual but substantial change that may have lasting effects on the channel morphology.

  11. Aminostratigraphic correlations and paleotemperature implications, Pliocene-Pleistocene high-sea-level deposits, northwestern Alaska

    Science.gov (United States)

    Kaufman, Darrell S.; Brigham-Grette, Julie

    Multiple periods of Late Pliocene and Pleistocene high sea level are recorded by surficial deposits along the coastal plains of northwestern Alaska. Analyses of the extent of amino acid epimerization in fossil molluscan shells from the Nome coastal plain of the northern Bering Sea coast, and from the Alaskan Arctic Coastal Plain of the Chukchi and Beaufort Sea coasts, allow recognition of at least five intervals of higher-than-present relative sea level. Three Late Pliocene transgressions are represented at Nome by the complex and protracted Beringian transgression, and on the Arctic Coastal Plain by the Colvillian, Bigbendian, and Fishcreekian transgressions. These were followed by a lengthy period of non-marine deposition during the Early Pleistocene when sea level did not reach above its present position. A Middle Pleistocene high-sea-level event is represented at Nome by the Anvilian transgression, and on the Arctic Coastal Plain by the Wainwrightian transgression. Anvilian deposits at the type locality are considerably younger than previously thought, perhaps as young as Oxygen-Isotope Stage 11 (˜410,000 BP). Finally, the last interglacial Pelukian transgression is represented discontinuously along the shores of northwestern Alaska. Amino acid epimerization data, together with previous paleomagnetic measurements, radiometric-age determinations, and paleontologic evidence provide geochronological constraints on the sequence of marine deposits. They form the basis of regional correlations and offer a means of evaluating the post-depositional thermal history of the high-sea-level deposits. Provisional correlations between marine units at Nome and the Artic Coastal Plain indicate that the temperature difference that separates the two sites today had existed by about 3.0 Ma. Since that time, the effective diagenetic temperature was lowered by about 3-4°C at both sites, and the mean annual temperature was lowered considerably more. This temperature decrease was

  12. The application of enhanced conveyance calculations in flood prediction

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, G.; Pender, G. [Glasgow Univ. (United Kingdom). Dept. of Civil Engineering

    2000-07-01

    Over the past twenty years extensive research has been conducted on overbank flow behaviour during river floods. When the main channel flow interacts with flood plain flow, secondary losses other than bed friction act to retard the flow. Traditional one-dimensional modelling tools commonly used in the UK, such as ISIS or HEC-RAS, currently take no account of these secondary losses In an attempt to establish the nature and significance of secondary losses the flood channel facility (FCF) was constructed at HR Wallingford in 1987. As a direct result of the meandering channel series B experiments the James and Wark Method (1992) was developed to predict stage discharge relationships. For a given water level, this method will calculate a value of discharge taking into account the secondary losses. The paper will report on the modification of the method to fit into the river modelling software ISIS. Within the ISIS framework the James and Wark Method is used to calculate conveyance. The aim is to produce a more accurate flood prediction tool than currently exists. The newly developed software has been tested on laboratory data and shown to be highly accurate in both stage discharge and water level prediction. The software has since been applied to natural rivers that have experienced significant flood events. The paper will illustrate the significance of applying flume based conveyance calculation methods at the field scale. (orig.)

  13. Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA

    Science.gov (United States)

    Fenton, Cassandra R.; Webb, Robert H.; Cerling, Thure E.

    2006-03-01

    The failure of a lava dam 165,000 yr ago produced the largest known flood on the Colorado River in Grand Canyon. The Hyaloclastite Dam was up to 366 m high, and geochemical evidence linked this structure to outburst-flood deposits that occurred for 32 km downstream. Using the Hyaloclastite outburst-flood deposits as paleostage indicators, we used dam-failure and unsteady flow modeling to estimate a peak discharge and flow hydrograph. Failure of the Hyaloclastite Dam released a maximum 11 × 10 9 m 3 of water in 31 h. Peak discharges, estimated from uncertainty in channel geometry, dam height, and hydraulic characteristics, ranged from 2.3 to 5.3 × 10 5 m 3 s -1 for the Hyaloclastite outburst flood. This discharge is an order of magnitude greater than the largest known discharge on the Colorado River (1.4 × 10 4 m 3 s -1) and the largest peak discharge resulting from failure of a constructed dam in the USA (6.5 × 10 4 m 3 s -1). Moreover, the Hyaloclastite outburst flood is the oldest documented Quaternary flood and one of the largest to have occurred in the continental USA. The peak discharge for this flood ranks in the top 30 floods (>10 5 m 3 s -1) known worldwide and in the top ten largest floods in North America.

  14. Long-lasting floods buffer the thermal regime of the Pampas

    Science.gov (United States)

    Houspanossian, Javier; Kuppel, Sylvain; Nosetto, Marcelo; Di Bella, Carlos; Oricchio, Patricio; Barrucand, Mariana; Rusticucci, Matilde; Jobbágy, Esteban

    2018-01-01

    The presence of large water masses influences the thermal regime of nearby land shaping the local climate of coastal areas by the ocean or large continental lakes. Large surface water bodies have an ephemeral nature in the vast sedimentary plains of the Pampas (Argentina) where non-flooded periods alternate with flooding cycles covering up to one third of the landscape for several months. Based on temperature records from 17 sites located 1 to 700 km away from the Atlantic coast and MODIS land surface temperature data, we explore the effects of floods on diurnal and seasonal thermal ranges as well as temperature extremes. In non-flooded periods, there is a linear increase of mean diurnal thermal range (DTR) from the coast towards the interior of the region (DTR increasing from 10 to 16 K, 0.79 K/100 km, r 2 = 0.81). This relationship weakens during flood episodes when the DTR of flood-prone inland locations shows a decline of 2 to 4 K, depending on surface water coverage in the surrounding area. DTR even approaches typical coastal values 500 km away from the ocean in the most flooded location that we studied during the three flooding cycles recorded in the study period. Frosts-free periods, a key driver of the phenology of both natural and cultivated ecosystems, are extended by up to 55 days during floods, most likely as a result of enhanced ground heat storage across the landscape ( 2.7 fold change in day-night heat transfer) combined with other effects on the surface energy balance such as greater night evaporation rates. The reduced thermal range and longer frost-free periods affect plant growth development and may offer an opportunity for longer crop growing periods, which may not only contribute to partially compensating for regional production losses caused by floods, but also open avenues for flood mitigation through higher plant evapotranspirative water losses.

  15. Variability in eddy sandbar dynamics during two decades of controlled flooding of the Colorado River in the Grand Canyon

    Science.gov (United States)

    Mueller, Erich R.; Grams, Paul E.; Hazel, Joseph E.; Schmidt, John C.

    2018-01-01

    Sandbars are iconic features of the Colorado River in the Grand Canyon, Arizona, U.S.A. Following completion of Glen Canyon Dam in 1963, sediment deficit conditions caused erosion of eddy sandbars throughout much of the 360 km study reach downstream from the dam. Controlled floods in 1996, 2004, and 2008 demonstrated that sand on the channel bed could be redistributed to higher elevations, and that floods timed to follow tributary sediment inputs would increase suspended sand concentrations during floods. Since 2012, a new management protocol has resulted in four controlled floods timed to follow large inputs of sand from a major tributary. Monitoring of 44 downstream eddy sandbars, initiated in 1990, shows that each controlled flood deposited significant amounts of sand and increased the size of subaerial sandbars. However, the magnitude of sandbar deposition varied from eddy to eddy, even over relatively short distances where main-stem suspended sediment concentrations were similar. Here, we characterize spatial and temporal trends in sandbar volume and site-scale (i.e., individual eddy) sediment storage as a function of flow, channel, and vegetation characteristics that reflect the reach-scale (i.e., kilometer-scale) hydraulic environment. We grouped the long-term monitoring sites based on geomorphic setting and used a principal component analysis (PCA) to correlate differences in sandbar behavior to changes in reach-scale geomorphic metrics. Sites in narrow reaches are less-vegetated, stage changes markedly with discharge, sandbars tend to remain dynamic, and sand storage change dominantly occurs in the eddy compared to the main channel. In wider reaches, where stage-change during floods may be half that of narrow sites, sandbars are more likely to be stabilized by vegetation, and floods tend to aggrade the vegetated sandbar surfaces. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of sandbar

  16. Nano-electrochemical deposition of fuel cells electrocatalysts

    CSIR Research Space (South Africa)

    Mathe

    2008-11-01

    Full Text Available stream_source_info Mathe_2008.pdf.txt stream_content_type text/plain stream_size 34594 Content-Encoding UTF-8 stream_name Mathe_2008.pdf.txt Content-Type text/plain; charset=UTF-8 1 Nano-electrochemical deposition... of fuel cells electrocatalysts MK MATHE a,*, TS MKWIZU a,b, I CUKROWSKI b * ,aCSIR Materials Science and Manufacturing, Energy and Processes, PO Box 395, Pretoria, 0001 bDepartment of Chemistry, University of Pretoria, Pretoria, 0002 Email: kmathe...

  17. Methods for estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina, 2011

    Science.gov (United States)

    Feaster, Toby D.; Gotvald, Anthony J.; Weaver, J. Curtis

    2014-01-01

    Reliable estimates of the magnitude and frequency of floods are essential for the design of transportation and water-conveyance structures, flood-insurance studies, and flood-plain management. Such estimates are particularly important in densely populated urban areas. In order to increase the number of streamflow-gaging stations (streamgages) available for analysis, expand the geographical coverage that would allow for application of regional regression equations across State boundaries, and build on a previous flood-frequency investigation of rural U.S Geological Survey streamgages in the Southeast United States, a multistate approach was used to update methods for determining the magnitude and frequency of floods in urban and small, rural streams that are not substantially affected by regulation or tidal fluctuations in Georgia, South Carolina, and North Carolina. The at-site flood-frequency analysis of annual peak-flow data for urban and small, rural streams (through September 30, 2011) included 116 urban streamgages and 32 small, rural streamgages, defined in this report as basins draining less than 1 square mile. The regional regression analysis included annual peak-flow data from an additional 338 rural streamgages previously included in U.S. Geological Survey flood-frequency reports and 2 additional rural streamgages in North Carolina that were not included in the previous Southeast rural flood-frequency investigation for a total of 488 streamgages included in the urban and small, rural regression analysis. The at-site flood-frequency analyses for the urban and small, rural streamgages included the expected moments algorithm, which is a modification of the Bulletin 17B log-Pearson type III method for fitting the statistical distribution to the logarithms of the annual peak flows. Where applicable, the flood-frequency analysis also included low-outlier and historic information. Additionally, the application of a generalized Grubbs-Becks test allowed for the

  18. Vistula River bed erosion processes and their influence on Warsaw’s flood safety

    Directory of Open Access Journals (Sweden)

    A. Magnuszewski

    2015-03-01

    Full Text Available Large cities have historically been well protected against floods as a function of their importance to society. In Warsaw, Poland, located on a narrow passage of the Vistula River valley, urban flood disasters were not unusual. Beginning at the end of the 19th century, the construction of river embankment and training works caused the narrowing of the flood passage path in the downtown reach of the river. The process of bed erosion lowered the elevation of the river bed by 205 cm over the 20th century, and the consequences of bed lowering are reflected by the rating curve change. Conditions of the flood passage have been analysed by the CCHE2D hydrodynamic model both in retro-modelling and scenario simulation modelling. The high water mark of the 1844 flood and iterative calculations in retro-modelling made possible estimation of the discharge, Q = 8250 m3 s−1. This highest observed historical flood in a natural river has been compared to recent conditions of the Vistula River in Warsaw by scenario modelling. The result shows dramatic changes in water surface elevation, velocities, and shear stress. The vertical velocity in the proximity of Port Praski gauge at km 513 can reach 3.5 m s−1, a very high value for a lowland river. The average flow conveyance is improving due to channel erosion but also declining in the case of extreme floods due to high resistance from vegetation on the flood plains.

  19. Investigated Miscible CO2 Flooding for Enhancing Oil Recovery in Wettability Altered Chalk and Sandstone Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Tabrizy, Vahid Alipour

    2012-07-01

    The thesis addresses oil recovery by miscible CO2 flooding from modified sandstone and chalk rocks. Calcite mineral surface is modified with stearic acid (SA) and asphaltene, and the silicate mineral surfaces are modified with N,N-dimethyldodecylamine (NN-DMDA) and asphaltene. The stability of adsorbed polar components in presence of SO4 2- and Mg2 + ions is also investigated. Recovery from sandstone cores is consistently lower than that from chalk cores saturated with the same oil and flooded with CO2 at all miscible flooding conditions. This may be due to the larger permeability contrasts in sandstone cores, which promote the fingering phenomenon. Miscible CO2 flooding for chalk and sandstone cores with distilled water, as initial water saturation, shows also lower oil recovery than cores saturated with different ions. At higher miscible flooding conditions, higher oil recovery is obtained. However, presence of light components (such as C1 or C3) in oil reduced the recovery. Oil recovery in presence of methane (C1) is lower than that in presence of methane and propane (C1/C3). A ternary diagram was constructed in order to understand the CO2 flooding mechanism(s) at the different flooding conditions and in presence of light components. The side effect of the flooding with CO2 is the probability for asphaltene deposition. An approach based on solubility parameter in the liquid, is used to assess the risk for asphaltene deposition during CO2 miscible flooding. The light components (C1/C3) and higher flooding conditions enhanced the risk for asphaltene instability. It is also shown higher amount of asphaltene deposition in chalk cores than that in sandstone cores at similar miscibility conditions.(au)

  20. Monitoring and Mapping the Hurricane Harvey Flooding in Houston, Texas.

    Science.gov (United States)

    Balaji Bhaskar, M. S.

    2017-12-01

    Monitoring and Mapping the Hurricane Harvey Flooding in Houston, Texas.Urban flooding is a hazard that causes major destruction and loss of life. High intense precipitation events have increased significantly in Houston, Texas in recent years resulting in frequent river and bayou flooding. Many of the historical storm events such as Allison, Rita and Ike have caused several billion dollars in losses for the Houston-Galveston Region. A category 4 Hurricane Harvey made landfall on South Texas resulting in heavy precipitation from Aug 25 to 29 of 2017. About 1 trillion gallons of water fell across Harris County over a 4-day period. This amount of water covers Harris County's 1,800 square miles with an average of 33 inches of water. The long rain event resulted in an average 40inch rainfall across the area in several rain gauges and the maximum rainfall of 49.6 inches was recorded near Clear Creek. The objectives of our study are to 1) Process the Geographic Information System (GIS) and satellite data from the pre and post Hurricane Harvey event in Houston, Texas and 2) Analyze the satellite imagery to map the nature and pattern of the flooding in Houston-Galveston Region. The GIS data of the study area was downloaded and processed from the various publicly available resources such as Houston Galveston Area Council (HGAC), Texas Commission of Environmental Quality (TCEQ) and Texas Natural Resource Information Systems (TNRIS). The satellite data collected soon after the Harvey flooding event were downloaded and processed using the ERDAS image processing software. The flood plain areas surrounding the Brazos River, Buffalo Bayou and the Addicks Barker reservoirs showed severe inundation. The different watershed areas affected by the catastrophic flooding in the wake of Hurricane Harvey were mapped and compared with the pre flooding event.

  1. Regional sediment deficits in the Dutch lowlands: Implications for long-term land-use options

    NARCIS (Netherlands)

    Meulen, M.J. van der; Spek, A.J.F. van der; Lange, G. de; Gruijters, S.H.L.L.; Gessel, S.F. van; Nguyen, B.L.; Maljers, D.; Schokker, J.; Mulder, J.P.M.; Krogt, R.A.A. van der

    2007-01-01

    Background, Aim and Scope. Coastal and river plains are the surfaces of depositional systems, to which sediment input is a parameter of key-importance. Their habitation and economic development usually requires protection with dikes, quays, etc., which are effective in retaining floods but have the

  2. Titanium mineral resources in heavy-mineral sands in the Atlantic coastal plain of the southeastern United States

    Science.gov (United States)

    Van Gosen, Bradley S.; Ellefsen, Karl J.

    2018-04-16

    This study examined titanium distribution in the Atlantic Coastal Plain of the southeastern United States; the titanium is found in heavy-mineral sands that include the minerals ilmenite (Fe2+TiO3), rutile (TiO2), or leucoxene (an alteration product of ilmenite). Deposits of heavy-mineral sands in ancient and modern coastal plains are a significant feedstock source for the titanium dioxide pigments industry. Currently, two heavy-mineral sands mining and processing operations are active in the southeast United States producing concentrates of ilmenite-leucoxene, rutile, and zircon. The results of this study indicate the potential for similar deposits in many areas of the Atlantic Coastal Plain.This study used the titanium analyses of 3,457 stream sediment samples that were analyzed as part of the U.S. Geological Survey’s National Geochemical Survey program. This data set was analyzed by an integrated spatial modeling technique known as Bayesian hierarchical modeling to map the regional-scale, spatial distribution of titanium concentrations. In particular, clusters of anomalous concentrations of titanium occur: (1) along the Fall Zone, from Virginia to Alabama, where metamorphic and igneous rocks of the Piedmont region contact younger sediments of the Coastal Plain; (2) a paleovalley near the South Carolina and North Carolina border; (3) the upper and middle Atlantic Coastal Plain of North Carolina; (4) the majority of the Atlantic Coastal Plain of Virginia; and (5) barrier islands and stretches of the modern shoreline from South Carolina to northeast Florida. The areas mapped by this study could help mining companies delimit areas for exploration.

  3. Our fingerprint in tsunami deposits - anthropogenic markers as a new tsunami identification tool

    Science.gov (United States)

    Bellanova, P.; Schwarzbauer, J.; Reicherter, K. R.; Jaffe, B. E.; Szczucinski, W.

    2016-12-01

    Several recent geochemical studies have focused on the use of inorganic indicators to evaluate a tsunami origin of sediment in the geologic record. However, tsunami transport not only particulate sedimentary material from marine to terrestrial areas (and vice versa), but also associated organic material. Thus, tsunami deposits may be characterized by organic-geochemical parameters. Recently increased attention has been given to the use of natural organic substances (biomarkers) to identify tsunami deposits. To date no studies have been made investigating anthropogenic organic indicators in recent tsunami deposits. Anthropogenic organic markers are more sensitive and reliable markers compared to other tracers due to their specific molecular structural properties and higher source specificity. In this study we evaluate whether anthropogenic substances are useful indicators for determining whether an area has been inundated by a tsunami. We chose the Sendai Plain and Sanemoura and Oppa Bays, Japan, as study sites because the destruction of infrastructure by flooding released environmental pollutants (e.g., fuels, fats, tarmac, plastics, heavy metals, etc.) contaminating large areas of the coastal zone during the 2011 Tohoku-oki tsunami. Organic compounds from the tsunami deposits are extracted from tsunami sediment and compared with the organic signature of unaffected pre-tsunami samples using gas chromatography-mass spectrometry (GS/MS) based analyses. For the anthropogenic markers, compounds such as soil derived pesticides (DDT), source specific PAHs, halogenated aromatics from industrial sources were detected and used to observe the inland extent and the impact of the Tohoku-oki tsunami on the coastal region around Sendai.

  4. Plateaus and sinuous ridges as the fingerprints of lava flow inflation in the Eastern Tharsis Plains of Mars

    Science.gov (United States)

    Bleacher, Jacob E.; Orr, Tim R.; de Wet, Andrew P.; Zimbelman, James R.; Hamilton, Christopher W.; Brent Garry, W.; Crumpler, Larry S.; Williams, David A.

    2017-08-01

    The Tharsis Montes rift aprons are composed of outpourings of lava from chaotic terrains to the northeast and southwest flank of each volcano. Sinuous and branching channel networks that are present on the rift aprons suggest the possibility of fluvial processes in their development, or erosion by rapidly emplaced lavas, but the style of lava flow emplacement throughout rift apron development is not clearly understood. To better characterize the style of lava emplacement and role of fluvial processes in rift apron development, we conducted morphological mapping of the Pavonis Mons southwest rift apron and the eastern Tharsis plains using images from the High Resolution Imaging Science Experiment (HiRISE), Mars Orbiter Camera (MOC), Context Camera (CTX), Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) along with the Mars Orbiter Laser Altimeter (MOLA) Precision Experiment Data Records (PEDRs) and gridded data. Our approach was to: (1) search for depositional fans at the slope break between the rift apron and adjacent low slope plains; (2) determine if there is evidence that previously formed deposits might have been buried by plains units; (3) characterize the Tharsis plains morphologies east of Pavonis Mons; and (4) assess their relationship to the rift apron units. We have not identified topographically significant depositional fans, nor did we observe evidence to suggest that plains units have buried older rift apron units. Flow features associated with the rift apron are observed to continue across the slope break onto the plains. In this area, the plains are composed of a variety of small fissures and low shield vents around which broad channel-fed and tube-fed flows have been identified. We also find broad, flat-topped plateaus and sinuous ridges mixed among the channels, tubes and vents. Flat-topped plateaus and sinuous ridges are morphologies that are analogous to those observed on the coastal plain of Hawai'i, where lava

  5. A Strategy for a Parametric Flood Insurance Using Proxies

    Science.gov (United States)

    Haraguchi, M.; Lall, U.

    2017-12-01

    Traditionally, the design of flood control infrastructure and flood plain zoning require the estimation of return periods, which have been calculated by river hydraulic models with rainfall-runoff models. However, this multi-step modeling process leads to significant uncertainty to assess inundation. In addition, land use change and changing climate alter the potential losses, as well as make the modeling results obsolete. For these reasons, there is a strong need to create parametric indexes for the financial risk transfer for large flood events, to enable rapid response and recovery. Hence, this study examines the possibility of developing a parametric flood index at the national or regional level in Asia, which can be quickly mobilized after catastrophic floods. Specifically, we compare a single trigger based on rainfall index with multiple triggers using rainfall and streamflow indices by conducting case studies in Bangladesh and Thailand. The proposed methodology is 1) selecting suitable indices of rainfall and streamflow (if available), 2) identifying trigger levels for specified return periods for losses using stepwise and logistic regressions, 3) measuring the performance of indices, and 4) deriving return periods of selected windows and trigger levels. Based on the methodology, actual trigger levels were identified for Bangladesh and Thailand. Models based on multiple triggers reduced basis risks, an inherent problem in an index insurance. The proposed parametric flood index can be applied to countries with similar geographic and meteorological characteristics, and serve as a promising method for ex-ante risk financing for developing countries. This work is intended to be a preliminary work supporting future work on pricing risk transfer mechanisms in ex-ante risk finance.

  6. Climate simulation and flood risk analysis for 2008-40 for Devils Lake, North Dakota

    Science.gov (United States)

    Vecchia, Aldo V.

    2008-01-01

    Devils Lake and Stump Lake in northeastern North Dakota receive surface runoff from a 3,810-square-mile drainage basin, and evaporation provides the only major water loss unless the lakes are above their natural spill elevation to the Sheyenne River. In September 2007, flow from Devils Lake to Stump Lake had filled Stump Lake and the two lakes consisted of essentially one water body with an elevation of 1,447.1 feet, about 3 feet below the existing base flood elevation (1,450 feet) and about 12 feet below the natural outlet elevation to the Sheyenne River (1,459 feet).Devils Lake could continue to rise, causing extensive additional flood damages in the basin and, in the event of an uncontrolled natural spill, downstream in the Red River of the North Basin. This report describes the results of a study conducted by the U.S. Geological Survey, in cooperation with the Federal Emergency Management Agency, to evaluate future flood risk for Devils Lake and provide information for developing updated flood-insurance rate maps and planning flood-mitigation activities such as raising levees or roads.In about 1980, a large, abrupt, and highly significant increase in precipitation occurred in the Devils Lake Basin and elsewhere in the Northern Great Plains, and wetter-than-normal conditions have persisted through the present (2007). Although future precipitation is impossible to predict, paleoclimatic evidence and recent research on climate dynamics indicate the current wet conditions are not likely to end anytime soon. For example, there is about a 72-percent chance wet conditions will last at least 10 more years and about a 37-percent chance wet conditions will last at least 30 more years.A stochastic simulation model for Devils Lake and Stump Lake developed in a previous study was updated and used to generate 10,000 potential future realizations, or traces, of precipitation, evaporation, inflow, and lake levels given existing conditions on September 30, 2007, and randomly

  7. Floods and Flash Flooding

    Science.gov (United States)

    Floods and flash flooding Now is the time to determine your area’s flood risk. If you are not sure whether you ... If you are in a floodplain, consider buying flood insurance. Do not drive around barricades. If your ...

  8. Canyon formation constraints on the discharge of catastrophic outburst floods of Earth and Mars

    Science.gov (United States)

    Lapotre, Mathieu G. A.; Lamb, Michael P.; Williams, Rebecca M. E.

    2016-07-01

    Catastrophic outburst floods carved amphitheater-headed canyons on Earth and Mars, and the steep headwalls of these canyons suggest that some formed by upstream headwall propagation through waterfall erosion processes. Because topography evolves in concert with water flow during canyon erosion, we suggest that bedrock canyon morphology preserves hydraulic information about canyon-forming floods. In particular, we propose that for a canyon to form with a roughly uniform width by upstream headwall retreat, erosion must occur around the canyon head, but not along the sidewalls, such that canyon width is related to flood discharge. We develop a new theory for bedrock canyon formation by megafloods based on flow convergence of large outburst floods toward a horseshoe-shaped waterfall. The model is developed for waterfall erosion by rock toppling, a candidate erosion mechanism in well fractured rock, like columnar basalt. We apply the model to 14 terrestrial (Channeled Scablands, Washington; Snake River Plain, Idaho; and Ásbyrgi canyon, Iceland) and nine Martian (near Ares Vallis and Echus Chasma) bedrock canyons and show that predicted flood discharges are nearly 3 orders of magnitude less than previously estimated, and predicted flood durations are longer than previously estimated, from less than a day to a few months. Results also show a positive correlation between flood discharge per unit width and canyon width, which supports our hypothesis that canyon width is set in part by flood discharge. Despite lower discharges than previously estimated, the flood volumes remain large enough for individual outburst floods to have perturbed the global hydrology of Mars.

  9. Braided fluvial sedimentation in the lower paleozoic cape basin, South Africa

    Science.gov (United States)

    Vos, Richard G.; Tankard, Anthony J.

    1981-07-01

    Lower Paleozoic braided stream deposits from the Piekenier Formation in the Cape Province, South Africa, provide information on lateral and vertical facies variability in an alluvial plain complex influenced by a moderate to high runoff. Four braided stream facies are recognized on the basis of distinct lithologies and assemblages of sedimentary structures. A lower facies, dominated by upward-fining conglomerate to sandstone and mudstone channel fill sequences, is interpreted as a middle to lower alluvial plain deposit with significant suspended load sedimentation in areas of moderate to low gradients. These deposits are succeeded by longitudinal conglomerate bars which are attributed to middle to upper alluvial plain sedimentation with steeper gradients. This facies is in turn overlain by braid bar complexes of large-scale transverse to linguoid dunes consisting of coarse-grained pebbly sandstones with conglomerate lenses. These bar complexes are compared with environments of the Recent Platte River. They represent a middle to lower alluvial plain facies with moderate gradients and no significant suspended load sedimentation or vegetation to stabilize channels. These bar complexes interfinger basinward with plane bedded medium to coarse-grained sandstones interpreted as sheet flood deposits over the distal portions of an alluvial plain with low gradients and lacking fine-grained detritus or vegetation.

  10. Flooded native pastures of the northern region of the Pantanal of Mato Grosso: biomass and primary productivity variations

    Directory of Open Access Journals (Sweden)

    C. G. Pozer

    Full Text Available The Pantanal comprises a number of landscape units, submitted to a flood pulse with variable intensity or regularity. One of these units, the flooded plains, is important in cattle raising. This study was carried out in the northern portion of the Pantanal and presents data related to the productive dynamics of the flooded native pastures both protected from and exposed to cattle. The greatest total biomass values were for the protected pasture due to accumulated dead biomass. Net primary production presented smaller values at the flood-season start and increasing gradually beginning in the subsequent rainy season. However, consumption by cattle was also more intense during the months of greater precipitation. The effect of cattle in pastures is of fundamental importance to management since it prevents the dead biomass excess that increases fire risks.

  11. Major floods, poor land use delay return of sedimentation to normal rates

    Science.gov (United States)

    Henry W. Anderson

    1972-01-01

    Recovery from flood-accelerated sedimentation affects both estimates of long-term average deposition and short-term monitoring of changes. "Years to return to normal" for 10 watersheds in northern California after a major flood accelerated sediment concentrations were analyzed. Returns to normalcy took from 0 to 9 years; rate of decline was related to both...

  12. Dark gray soils on two-layered deposits in the north of Tambov Plain: Agroecology, properties, and diagnostics

    Science.gov (United States)

    Zaidelman, F. R.; Nikiforova, A. S.; Stepantsova, L. V.; Volokhina, V. P.

    2012-05-01

    Dark gray soils in the Tambov Plain are developed from the light-textured glaciofluvial deposits underlain by the calcareous loam. Their morphology, water regime, and productivity are determined by the depth of the slightly permeable calcareous loamy layer, relief, and the degree of gleyzation. The light texture of the upper layer is responsible for its weak structure, high density, the low content of productive moisture, and the low water-holding capacity. If the calcareous loam is at a depth of 100-130 cm, dark gray soils are formed; if it lies at a depth of 40-70 cm, temporary perched water appears in the profile, and dark gray contact-gleyed soils are formed. Their characteristic pedofeatures are skeletans in the upper layers, calcareous nodules in the loamy clay layer, and iron nodules in the podzolized humus and podzolic horizons. The appearance of Fe-Mn concretions is related to gleyzation. The high yield of winter cereals is shown to be produced on the dark gray soils; the yields of spring crops are less stable. Spring cereals should not be grown on the contact-gleyed dark gray soils.

  13. Consequences of an unusual flood event: case study of a drainage canal breach on a fluvial plain in NE Slovenia

    Science.gov (United States)

    Vidmar, Ines; Ambrožič, Bojan; Debeljak, Barbara; Dolžan, Erazem; Gregorin, Špela; Grom, Nina; Herman, Polona; Keršmanc, Teja; Mencin, Eva; Mernik, Natalija; Švara, Astrid; Trobec, Ana; Turnšek, Anita; Vodeb, Petra; Torkar, Anja; Brenčič, Mihael

    2013-04-01

    On November 4-6 2012 heavy precipitation resulted in floods in the middle and lower course of Drava River in NE Slovenia causing damage to many properties in the flooded area. The meteorological situation that led to consequent floods was characterized by high precipitation, fast snowmelt, SW wind and relatively high air temperature. The weather event was part of a cyclone which was spreading over the area of North, West and Central Europe in the direction of Central Europe and carried with it the passing of a cold front through Slovenia on November 4 and 5. The flood wave travelled on the Drava River from Austria to Slovenia past the 11 hydroelectric power plants after eventually moving over the Slovenian-Croatian border. The river discharge increased in the early morning of November 5 reaching 3165 m3/s. This work focuses on a single event in the Ptujsko polje where among other damage caused by the flooding, the river broke through the drainage canal of the Formin hydroelectric power plant and changed its course. The Ptujsko polje contains two fluvial terraces. In the area of Formin HPP, the lower terrace is 1.5 km wide and the surface as well as the groundwater gradient shift from west to east with the groundwater flowing parallel to the river. These characteristics contributed to the flooding and consequential breach in the embankment of the drainage canal. Several aspects of the recent floods are discussed including a critical reflection of data accessibility, possible causes and mechanisms behind it as well as the possibility of its forecasting. Synthesis of accessible data from open domain sources is performed with emphasis on geological conditions. Discharge and precipitation data from the data base of Slovenian Environment Agency are collected, reviewed and analyzed. The flood event itself is analyzed and described in detail. It is determined that the flood wave was different from the ones regulated by natural processes which points to an anthropogenic

  14. Characterization of sediments laid on Solimoes/Amazonas river flood plains, using energy dispersive X-ray fluorescence technique; Caracterizacao dos sedimentos depositados nas planicies de inundacao do Rio Solimoes/Amazonas, utilizando a tecnica de fluorescencia de raios-X por dispersao de energia

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Ana E.V. [Universidade Metodista de Piracicaba (UNIMEP), Sao Paulo, SP (Brazil); Nascimento Filho, Virgilio F. do [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz]|[Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil)

    1997-10-01

    This paper proposes sediment analysis with high light elements fraction using dispersive energy X-ray fluorescence technique with radioisotopic excitation, The proposed procedure is based on the Fundamental Parameters for analytical elements (Z {>=} 13) evaluation, and coherent and incoherent scattered radiation for quantification of the light fraction of the matrix (Z < 13). Laid sediments samples on Solimoes/Amazonas river flood plains were analyzed, determining simultaneously the Al, Si, K, Ca, Ti, Fe, Sc, V, Mn, Cu, Zn, Rb, Sr and Zr element concentrations, thus allowing chemical characterization and spatial variability, and some mineralogical and weathering sediments aspects. (author). 15 refs., 11 tabs.

  15. On the use of InSAR technology to assess land subsidence in Jakarta coastal flood plain

    Science.gov (United States)

    Koudogbo, Fifame; Duro, Javier; Garcia Robles, Javier; Arnaud, Alain; Abidin, Hasanuddin Z.

    2014-05-01

    Jakarta is the capital of Indonesia and is home to approximately 10 million people on the coast of the Java Sea. It is situated on the northern coastal alluvial plane of Java which shares boundaries with West Java Province in the south and in the east, and with Banten Province in the west. The Capital District of Jakarta (DKI) sits in the lowest lying areas of the basin. Its topography varies, with the northern part just meters above current sea level and lying on a flood plain. Subsequently, this portion of the city frequently floods. The southern part of the city is hilly. Thirteen major rivers flow through Jakarta to the Java Sea. The Ciliwung River is the most significant river and divides the city West to East. In the last three decades, urban growing of Jakarta has been very fast in sectors as industry, trade, transportation, real estate, among others. This exponential development has caused several environmental issues; land subsidence is one of them. Subsidence in Jakarta has been known since the early part of the 20th century. It is mainly due to groundwater extraction, the fast development (construction load), soil natural consolidation and tectonics. Evidence of land subsidence exists through monitoring with GPS, level surveys and InSAR investigations. InSAR states for "Interferometric Synthetic Aperture Radar". Its principle is based on comparing the distance between the satellite and the ground in consecutive satellite passes over the same area on the Earth's surface. Radar satellites images record, with very high precision, the distance travelled by the radar signal that is emitted by the satellite is registered. When this distance is compared through time, InSAR technology can provide highly accurate ground deformation measurements. ALTAMIRA INFORMATION, company specialized in ground motion monitoring, has developed GlobalSARTM, which combines several processing techniques and algorithms based on InSAR technology, to achieve ground motion

  16. Assessment of reproductive capacity of estuarine plants Butomus umbellatus L. and Alisma plantago-aquatica L. from radioactively contaminated flood plains

    Energy Technology Data Exchange (ETDEWEB)

    Kaneva, A.V.; Majstrenko, T.A.; Rachkova, N.G.; Belykh, E.S.; Zainullin, V.G. [Institute of Biology, Komi Scientific Center, Ural Division of RAS, Syktyvkar, 167982 (Russian Federation)

    2014-07-01

    It is known that the vegetation, along with the climatic conditions and soil type, is one of the key components of terrestrial ecosystems. They are also first to respond to the substrate contamination with radionuclides, metals and organic substances. Biological effects observed in natural plant populations are associated with both presence of mobile compounds of pollutants in abiotic components of the ecosystem and their role in the metabolism of the plant. The goal of the study was to assess the impact of water and sediment contamination with artificial radionuclides and toxic non-radioactive compounds, on the reproductive capacity of estuarial plants using seed germination. Contaminated sites are located in flood plain of the Techa River (Chelabinsk region, Russia) between Muslumovo and Brodokalmak settlements. Radioactive contamination of the territory resulted from increased specific activities of {sup 137}Cs and {sup 90}Sr in water and sediments due to the accidents on the Mayak Production Association. Reference sites were chosen in the flood plains of Brusianka and Sysert' rivers (Sverdlovsk region, Russia). Reference sites are located out of the Eastern Ural Radioactive Trace. Seeds of Butomus umbellatus L. and Alisma plantago-aquatica L., which are common estuarine plant communities in this area, were collected. Specific activities of dose-forming radionuclides in the Techa river water vary from 120 up to 200 mBq/l for {sup 137}Cs and from 26 up to 45 mBq/l for {sup 90}Sr; and in sediments 720-10150 Bq/kg and 600-1500 Bq/kg for {sup 137}Cs and {sup 90}Sr correspondingly. Specific activities of {sup 137}Cs and {sup 90}Sr in water and sediments of both reference rivers do not exceed global fallout levels. B. umbellatus seeds germination was low for plant populations of both reference and contaminated sites. However, a significant (p<0.01) difference was found - the value was higher for reference populations (17.4 ±3.5 %) as compared with the ones from

  17. Floods of 1971 and 1972 on Glover Creek and Little River in southeastern Oklahoma

    Science.gov (United States)

    Thomas, Wilbert O.; Corley, Robert K.

    1973-01-01

    Heavy rains of December 9-10, 1971, and Oct. 30-31, 1972, caused outstanding floods on Glover Creek and Little River in McCurtain County in southeastern Oklahoma. This report presents hydrologic data that document the extent of flooding, flood profiles, and frequency of flooding on reaches of both streams. The data presented provide a technical basis for formulating effective flood-plain zoning that will minimize existing and future flood problems. The report also can be useful for locating waste-disposal and water-treatment facilities, and for the development of recreational areas. The area studied includes the reach of Little River on the Garvin and Idabel 7 1/2-minute quadrangles (sheet 1) and the reach of Glover Creek on the southwest quarter of the Golden 15-minute quadrangle (sheet 2). The flood boundaries delineated on the maps are the limits of flooding during the December 1971 and October 1972 floods. Any attempt to delineate the flood boundaries on streams in the study area other than Glover Creek and Little River was considered to be beyond the scope of this report. The general procedure used in defining the flood boundaries was to construct the flood profiles from high-water marks obtained by field surveys and by records at three stream-gaging stations (two on Little River and one on Glover Creek.). The extent of flooding was delineated on the topographic maps by using the flood profiles to define the flood elevations at various points along the channel and locating the elevations on the map by interpolating between contours (lines of equal ground elevation). In addition, flood boundaries were defined in places by field survey, aerial photographs, and information from local residents. The accuracy of the flood boundaries is consistent with the scale and contour interval of the maps (1 inch = 2,000 feet; contour interval 10 and 20 feet), which means the flood boundaries are drawn as accurately as possible on maps having 10- and 20-foot contour intervals.

  18. An integrated analysis of the March 2015 Atacama floods

    Science.gov (United States)

    Wilcox, Andrew C.; Escauriaza, Cristian; Agredano, Roberto; Mignot, Emmanuel; Zuazo, Vicente; Otárola, Sebastián.; Castro, Lina; Gironás, Jorge; Cienfuegos, Rodrigo; Mao, Luca

    2016-08-01

    In March 2015 unusual ocean and atmospheric conditions produced many years' worth of rainfall in a 48 h period over northern Chile's Atacama Desert, one of Earth's driest regions, resulting in catastrophic flooding. Here we describe the hydrologic and geomorphic drivers of and responses to the 2015 Atacama floods. In the Salado River, we estimated a flood peak discharge of approximately 1000 m3/s, which caused widespread damage and high sediment loads that were primarily derived from valley-fill erosion; hillslopes remained surprisingly intact despite their lack of vegetation. In the coastal city of Chañaral, flooding of the Salado River produced maximum water depths over 4.5 m, meters thick mud deposition in buildings and along city streets, and coastal erosion. The Atacama flooding has broad implications in the context of hazard reduction, erosion of contaminated legacy mine tailings, and the Atacama's status as a terrestrial analog for Mars.

  19. Uncertainty Analysis of A Flood Risk Mapping Procedure Applied In Urban Areas

    Science.gov (United States)

    Krause, J.; Uhrich, S.; Bormann, H.; Diekkrüger, B.

    In the framework of IRMA-Sponge program the presented study was part of the joint research project FRHYMAP (flood risk and hydrological mapping). A simple con- ceptual flooding model (FLOODMAP) has been developed to simulate flooded areas besides rivers within cities. FLOODMAP requires a minimum of input data (digital el- evation model (DEM), river line, water level plain) and parameters and calculates the flood extent as well as the spatial distribution of flood depths. of course the simulated model results are affected by errors and uncertainties. Possible sources of uncertain- ties are the model structure, model parameters and input data. Thus after the model validation (comparison of simulated water to observed extent, taken from airborne pictures) the uncertainty of the essential input data set (digital elevation model) was analysed. Monte Carlo simulations were performed to assess the effect of uncertain- ties concerning the statistics of DEM quality and to derive flooding probabilities from the set of simulations. The questions concerning a minimum resolution of a DEM re- quired for flood simulation and concerning the best aggregation procedure of a given DEM was answered by comparing the results obtained using all available standard GIS aggregation procedures. Seven different aggregation procedures were applied to high resolution DEMs (1-2m) in three cities (Bonn, Cologne, Luxembourg). Basing on this analysis the effect of 'uncertain' DEM data was estimated and compared with other sources of uncertainties. Especially socio-economic information and monetary transfer functions required for a damage risk analysis show a high uncertainty. There- fore this study helps to analyse the weak points of the flood risk and damage risk assessment procedure.

  20. Radar-based Flood Warning System for Houston, Texas and Its Performance Evaluation

    Science.gov (United States)

    Fang, N.; Bedient, P.

    2009-12-01

    Houston has a long history of flooding problems as a serious nature. For instance, Houstonians suffered from severe flood inundation during Tropical Storm Allison in 2001 and Hurricane Ike in 2008. Radar-based flood warning systems as non-structural tools to provide accurate and timely warnings to the public and private entities are greatly needed for urban areas prone to flash floods. Fortunately, the advent of GIS, radar-based rainfall estimation using NEXRAD, and real-time delivery systems on the internet have allowed flood alert systems to provide important advanced warning of impending flood conditions. Thus, emergency personnel can take proper steps to mitigate against catastrophic losses. The Rice and Texas Medical Center (TMC) Flood Alert System (FAS2) has been delivering warning information with 2 to 3 hours of lead time to facility personnel in a readily understood format for more than 40 events since 1997. The system performed well during these major rainfall events with R square value of 93%. The current system has been improved by incorporating a new hydraulic prediction tool - FloodPlain Map Library (FPML). The FPML module aims to provide visualized information such as floodplain maps and water surface elevations instead of just showing hydrographs in real time based on NEXRAD radar rainfall data. During Hurricane Ike (September, 2008), FAS2 successfully provided precise and timely flood warning information to TMC with the peak flow difference of 3.6% and the volume difference of 5.6%; timing was excellent for this double-peaked event. With the funding from the Texas Department of Transportation, a similar flood warning system has been developed at a critical transportation pass along Highway 288 in Houston, Texas. In order to enable emergency personnel to begin flood preparation with as much lead time as possible, FAS2 is being used as a prototype to develop warning system for other flood-prone areas such as City of Sugar Land.

  1. Peat-accumulating depositional systems of Sarawak, East Malaysia

    Science.gov (United States)

    Staub, James R.; Esterle, Joan S.

    1994-02-01

    Many coal deposits originate in deltaic, estuarine, and coastal plain settings and a knowledge of interrelationships between the tectonic and depositional elements active at the time of sediment deposition is necessary to formulate basin scale models. The prograding coastal depositional systems of Sarawak all contain domed peat-accumulating environments in which low-ash, low-sulfur peats are being deposited in areas of active clastic siliciclastic sedimentation. These depositional systems are as large as 11,400 km 2 and individual peat deposits within systems are in excess of 20 m thick and 1000 km 2 in area. The geographic positions and drainage basin areas of each depositional system are controlled by fault and fold systems. Although prograding into the same receiving basin, individual system geomorphology is variable and ranges from a wave-dominated microtidal delta, to a wave-dominated meso- to macro-tidal delta/coastal plain system, to a tide-dominated macrotidal estuarine embayment along a 450 km stretch of coastline. System variation is a function of sediment supply, shelf and embayment geometry, wave climate, and tidal range. These factors, which control depositional system geomorphology, also control the resulting long axis orientation of the thick, domed peat deposits. The surface vegetation and internal characteristics of most domed peat deposits, however, are similar. Internal characteristics consist of basal high-ash, high-sulfur, degraded peats overlain by low-ash, low-sulfur, well preserved peats in vertical profile. These systems demonstrate variable responses to late Pleistocene/Holocene sea-level rise and, in these instances, the variation is most attributable to local differences in siliciclastic sediment supply, which is a function of the drainage basin area.

  2. Flood damage in Italy: towards an assessment model of reconstruction costs

    Science.gov (United States)

    Sterlacchini, Simone; Zazzeri, Marco; Genovese, Elisabetta; Modica, Marco; Zoboli, Roberto

    2016-04-01

    Recent decades in Italy have seen a very rapid expansion of urbanisation in terms of physical assets, while demographics have remained stable. Both the characteristics of Italian soil and anthropic development, along with repeated global climatic stress, have made the country vulnerable to floods, the intensity of which is increasingly alarming. The combination of these trends will contribute to large financial losses due to property damage in the absence of specific mitigation strategies. The present study focuses on the province of Sondrio in Northern Italy (area of about 3,200 km²), which is home to more than 180,000 inhabitants and the population is growing slightly. It is clearly a hot spot for flood exposure, as it is primarily a mountainous area where floods and flash floods hit frequently. The model we use for assessing potential flood damage determines risk scenarios by overlaying flood hazard maps and economic asset data. In Italy, hazard maps are provided by Regional Authorities through the Hydrogeological System Management Plan (PAI) based on EU Flood Directive guidelines. The PAI in the study area includes both the large plain and the secondary river system and considers three hazard scenarios of Low, Medium and High Frequency associated with return periods of 20, 200 and 500 years and related water levels. By an overlay of PAI maps and residential areas, visualized on a GIS, we determine which existing built-up areas are at risk for flood according to each scenario. Then we investigate the value of physical assets potentially affected by floods in terms of market values, using the database of the Italian Property Market Observatory (OMI), and in terms of reconstruction costs, by considering synthetic cost indexes of predominant building types (from census information) and PAI water height. This study illustrates a methodology to assess flood damage in urban settlements and aims to determine general guidelines that can be extended throughout Italy

  3. Variability in eddy sandbar dynamics during two decades of controlled flooding of the Colorado River in the Grand Canyon

    Science.gov (United States)

    Mueller, Erich R.; Grams, Paul E.; Hazel, Joseph E.; Schmidt, John C.

    2018-01-01

    Sandbars are iconic features of the Colorado River in the Grand Canyon, Arizona, U.S.A. Following completion of Glen Canyon Dam in 1963, sediment deficit conditions caused erosion of eddy sandbars throughout much of the 360 km study reach downstream from the dam. Controlled floods in 1996, 2004, and 2008 demonstrated that sand on the channel bed could be redistributed to higher elevations, and that floods timed to follow tributary sediment inputs would increase suspended sand concentrations during floods. Since 2012, a new management protocol has resulted in four controlled floods timed to follow large inputs of sand from a major tributary. Monitoring of 44 downstream eddy sandbars, initiated in 1990, shows that each controlled flood deposited significant amounts of sand and increased the size of subaerial sandbars. However, the magnitude of sandbar deposition varied from eddy to eddy, even over relatively short distances where main-stem suspended sediment concentrations were similar. Here, we characterize spatial and temporal trends in sandbar volume and site-scale (i.e., individual eddy) sediment storage as a function of flow, channel, and vegetation characteristics that reflect the reach-scale (i.e., kilometer-scale) hydraulic environment. We grouped the long-term monitoring sites based on geomorphic setting and used a principal component analysis (PCA) to correlate differences in sandbar behavior to changes in reach-scale geomorphic metrics. Sites in narrow reaches are less-vegetated, stage changes markedly with discharge, sandbars tend to remain dynamic, and sand storage change dominantly occurs in the eddy compared to the main channel. In wider reaches, where stage-change during floods may be half that of narrow sites, sandbars are more likely to be stabilized by vegetation, and floods tend to aggrade the vegetated sandbar surfaces. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of sandbar

  4. Case studies of groundwater- surface water interactions and scale relationships in small alluvial aquifers

    NARCIS (Netherlands)

    Love, Dave; de Hamer, Wouter; Owen, Richard J.S.; Booij, Martijn J.; Uhlenbrook, Stefan; Hoekstra, Arjen Ysbert; van der Zaag, Pieter

    2007-01-01

    An alluvial aquifer can be described as a groundwater system, generally unconfined, that is hosted in laterally discontinuous layers of gravel, sand, silt and clay, deposited by a river in a river channel, banks or flood plain. In semi-arid regions, streams that are associated with alluvial aquifers

  5. Geomorphic changes resulting from floods in reconfigured gravel-bed river channels in Colorado, USA

    Science.gov (United States)

    Elliott, J.G.; Capesius, J.P.

    2009-01-01

    Geomorphic changes in reconfi gured reaches of three Colorado rivers in response to floods in 2005 provide a benchmark for "restoration" assessment. Sedimententrainment potential is expressed as the ratio of the shear stress from the 2 yr, 5 yr, 10 yr, and 2005 floods to the critical shear stress for sediment. Some observed response was explained by the excess of flood shear stress relative to the resisting force of the sediment. Bed-load entrainment in the Uncompahgre River and the North Fork Gunnison River, during 4 and 6 yr floods respectively, resulted in streambed scour, streambed deposition, lateral-bar accretion, and channel migration at various locations. Some constructed boulder and log structures failed because of high rates of bank erosion or bed-material deposition. The Lake Fork showed little or no net change after the 2005 flood; however, this channel had not conveyed floods greater than the 2.5 yr flood since reconfi guration. Channel slope and the 2 yr flood, a surrogate for bankfull discharge, from all three reconfi gured reaches plotted above the Leopold and Wolman channel-pattern threshold in the "braided channel" region, indicating that braiding, rather than a single-thread meandering channel, and midchannel bar formation may be the natural tendency of these gravel-bed reaches. When plotted against a total stream-power and median-sediment-size threshold for the 2 yr flood, however, the Lake Fork plotted in the "single-thread channel" region, the North Fork Gunnison plotted in the " multiplethread" region, and the Uncompahgre River plotted on the threshold. All three rivers plotted in the multiple-thread region for floods of 5 yr recurrence or greater. ?? 2009 Geological Society of America.

  6. Depositional characteristics of cretaceous cover in Xiangyangshan area of Heilongjiang province and analysis on prospect for sandstone hosted interlayer oxidation zone type uranium deposits

    International Nuclear Information System (INIS)

    Cai Yuqi; Li Shengxiang; Dong Wenming

    2003-01-01

    The depositional systems and characteristics of Cretaceous Cover depositional facies are discussed. In combination with logging curves in Xiangyangshan area, two depositional systems (namely, alluvial fan depositional system and alluvial plain depositional system) and five types of depositional facies are distinguished. Results of detailed research are given for each depositional facies in aspects of lithology, depositional structure, logging curve and grain size distribution pattern. Temporal and spatial distribution features of the depositional facies and the development features of interlayer oxidation zones of the second member of Quantou Formation are analyzed. Finally, conclusions on prospects for sandstone-hosted interlayer oxidation zone type uranium deposits in the study area are given in the aspect of depositional facies. (authors)

  7. Morrowan stratigraphy, depositional systems, and hydrocarbon accumulation, Sorrento field, Cheyenne County, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Orchard, D.M.; Kidwell, M.R.

    1983-08-01

    The Sorrento field, located on the western flank of the present-day Las Animas arch in western Cheyenne County, Colorado, has approximately 29 million bbl of oil and 12 bcf of gas in place in sandstones of the Lower Pennsylvanian Morrow units. The sandstones were deposited in a fluvially dominated deltaic system, and the trap for the hydrocarbon accumulation is formed by pinch-out of this deltaic system onto regional dip. The primary reservoirs are point-bar deposits. At the Sorrento field, the basal Keyes limestone member of the Morrow formation rests unconformably on the Mississippian St. Louis Formation. Above the Keyes limestone, the Morrow shale is 180 to 214 ft (55 to 65 m) thick, and locally contains reservoir sands. Gas/oil and oil/water contacts are not uniform through the field owing to discontinuities between separate point bars. One such discontinuity is formed by an apparent mud plug of an abandoned channel separating two point bars on the southeastern end of the field. In a well 7000 ft (2100 m) from the edge of the meander belt, the regressive sequence is represented by a shoreline siltstone unit 8 ft (2 m) thick with flaser bedding, graded bedding, load structures, and rare wave-ripple cross-bedding overlain by 3 ft (1 m) of flood-plain mudstone and coal with no indication of proximity to a nearby sand system.

  8. Evolution of depositional system and uraniferous characteristics of Damoguaihe formation in Kelulun sag

    International Nuclear Information System (INIS)

    Zhang Zhijie; Yu Xinghe; Zhang Chuanheng; Chen Zhankun

    2005-01-01

    Damoguaihe Formation, which is mainly of alluvial fan, fan delta and lacustrine depositional systems, is the target horizon for the prospecting of sandstone-type uranium deposit in Kelulun sag, Hailaer basin. According to the depositional environment and sediment characteristics, alluvial fan facies is subdivided into upper fan, middle fan and lower fan subfacies; the fan delta facies is subadivided into upper fan delta plain, lower fan delta plain, fan delta front and fan prodelta subfacies. At the northern edge of the sag occurred one fan delta and one alluvial fan, which can mutually transform one into another. The terrigenous coarse-grained clastic deposits in the study area provide favorable condition for the concentration of uranium and especially the main channels and distributary channels on the fan delta and alluvial fan are the most favorable sites for uranium concentration. (authors)

  9. Changes in flood risk in Lower Niger–Benue catchments

    Directory of Open Access Journals (Sweden)

    S. Odunuga

    2015-06-01

    Full Text Available Floods are devastating natural disasters with a significant impact on human life and the surrounding environment. This paper analyses historical and recent flood (2012 extreme peak flow at strategic locations, land use activities and Floodplain Vulnerability Index analyses of the Niger–Benue River Floodplain. The 2012 peak flow at Jederbode on the Niger River was about 50% above the long term average. At Jebba (Niger, the 2012 peak flow of 1567 m3 s−1 was also far higher than the long term mean annual peak flow of 1159 m3 s−1. The 2012 peak flow at Lokoja was also about 50 % above the historical average. The Benue River at Makurdi had peak flow of 16 387 m3 s−1 which was also unusually higher than the historical average while Wuroboki (Benue had peak flow of 3362 m3 s−1 which was also much higher that the historical average (694 m3 s−1. The mixed land use which supported diverse ecosystem services has the largest cover of 5654 km2 (36.85% of the Niger–Benue floodplain. The flood vulnerability of the various land uses within the floodplain include; medium, high and very high levels. A four levels hierarchical implementation adaptation strategy for sustainable agricultural practices along the rivers flood plain was proposed. The implementation hierarchy includes: Community Concern, Local Authority Concern, State Concern and National Concern.

  10. Morphology and modern sedimentary deposits of the macrotidal Marapanim Estuary (Amazon, Brazil)

    Science.gov (United States)

    Araújo da Silva, Cléa; Souza-Filho, Pedro Walfir M.; Rodrigues, Suzan W. P.

    2009-03-01

    The northern Brazilian coast, east of the Amazon River is characterized by several macrotidal estuarine systems that harbor large mangrove areas with approximately 7600 km 2. The Marapanim Estuary is influenced by macrotidal regime with moderate waves influence. Morphologic units were investigated by using remote sensing images (i.e., Landsat-7 ETM+, RADARSAT- 1 Wide and SRTM) integrated with bathymetric data. The modern sedimentary deposits were analyzed from 67 cores collected by Vibracore and Rammkersonde systems. Analysis of morphology and surface sedimentary deposits of the Marapanim River reveal they are strongly influenced by the interaction of tidal, wave and fluvial currents. Based on these processes it was possible to recognize three distinct longitudinal facies zonation that revels the geological filling of a macrotidal estuary. The estuary mouth contain fine to medium marine sands strongly influenced by waves and tides, responsible for macrotidal sandy beaches and estuarine channel development, which are characterized by wave-ripple bedding and longitudinal cross-bedding sands. The estuary funnel is mainly influenced by tides that form wide tidal mudflats, colonized by mangroves, along the estuarine margin, with parallel laminations, lenticular bedding, root fragments and organic matter lenses. The upstream estuary contains coarse sand to gravel of fluvial origin. Massive mud with organic matter lenses, marks and roots fragments occur in the floodplain accumulates during seasonal flooding providing a slowly aggrading in the alluvial plain. This morphologic and depositional pattern show easily a tripartite zonation of a macrotidal estuary, that are in the final stage of filling.

  11. Reconstructing the paleo-topography and paleo-environmental features of the Sarno River plain (Italy) before the AD 79 eruption of Somma-Vesuvius volcanic complex

    Science.gov (United States)

    Vogel, Sebastian; Märker, Michael

    2010-05-01

    SSP1.4 Understanding mixed siliciclastic-volcaniclastic depositional systems and their relationships with geodynamics or GD2.3/CL4.14/GM5.8/MPRG22/SSP3.5 Reconstruction of ancient continents: Dating and characterization of paleosurfaces Reconstructing the paleo-topography and paleo-environmental features of the Sarno River plain (Italy) before the AD 79 eruption of Somma-Vesuvius volcanic complex Sebastian Vogel[1] & Michael Märker[1] [1] Heidelberg Academy of Sciences and Humanities c/o University of Tübingen, Rümelinstraße 19-23, D-72070 Tübingen, Germany. Within the geoarchaeological research project "Reconstruction of the Ancient Cultural Landscape of the Sarno River Plain" undertaken by the German Archaeological Institute in cooperation with the Heidelberg Academy of Sciences and Humanities/University of Tübingen a methodology was developed to model the spatial dispersion of volcanic deposits of Somma-Vesuvius volcanic complex since its Plinian eruption AD 79. Eventually, this was done to reconstruct the paleo-topography and paleo-environment of the Sarno River plain before the eruption AD 79. We collected, localized and digitized more than 1,800 core drillings to gain a representative network of stratigraphical information covering the entire plain. Besides other stratigraphical data including the characteristics of the pre-AD 79 stratum, the depth to the pre-AD 79 paleo-surface was identified from the available drilling documentation. Instead of applying a simple interpolation of the drilling data, we reconstructed the pre-AD 79 paleo-surface with a sophisticated geostatistical methodology using a machine based learning approach based on classification and regression trees. We hypothesize that the present-day topography reflects the ancient topography, because the eruption of AD 79 coated the ancient topography, leaving ancient physiographic elements of the Sarno River plain still recognizable in the present-day topography. Therefore, a high resolution

  12. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Natchez quadrangle of, of Mississippi and Louisiana. Final report

    International Nuclear Information System (INIS)

    1980-07-01

    The Natchez quadrangle covers a region within and adjacent to the Mississippi River flood plain in the northern Gulf Coastal Physiographic Province. The underlying Mesozoic and Cenozoic sediments of the Mississippi Embayment are extremely thick and contain many piercement structures. Exposed sediments consist largely of recent alluvium in the flood plain area, and Cenozoic sediments of marine and nonmarine origin in adjacent areas. A search of available literature revealed no known uranium deposits in the area. Eighty-three uranium anomalies were found, using the selection criteria set forth in Appendix A, and are discussed briefly. None were considered significant, and most appeared to be of cultural origin. Magnetic data suggests extremely deep sources, and some possible structural complexity in the source area

  13. Flood-dominated fluvio-deltaic system: a new depositional model for the Devonian Cabeças Formation, Parnaíba Basin, Piauí, Brazil

    Directory of Open Access Journals (Sweden)

    Luiza Corral M.O. Ponciano

    2009-12-01

    Full Text Available The depositional model of the Cabeças Formation is re-evaluated in the context of the Devonian paleogeography of the Parnaíba Basin, and with particular reference to similarities between the formation's facies associations on the eastern border of the basin and the flood-dominated fluvio-deltaic system facies that have been discussed in recent literature. The widespread occurrence and nature of sigmoidal clinoforms (with asymptotic cross-stratification and climbing ripples of the Cabeças Formation are here considered as strong evidence of flood-influenced depositional settings. Sandy strata of the Passagem Member, in the vicinity of Pimenteiras and Picos (Piauí State, are interpreted as the distal part of fine-grained mouth-bar deposits interbedded with delta-front sandstone lobes showing hummocky cross-stratification. Richly fossiliferous levels, with diverse megainvertebrates and plant cuticles, occur within the delta-front lobes and the distal mouth-bar deposits, reflecting continuation of shallow marine conditions.O modelo deposicional da Formação Cabeças é reinterpretado no presente estudo com base no contexto paleogeográfico da Bacia do Parnaíba durante o Devoniano e na similaridade entre as fácies encontradas na Formação Cabeças com as fácies características dos sistemas flúvio-deltaicos dominados por inundações. O tipo das clinoformas sigmoidais (com estratificação cruzada assintótica e laminação cruzada cavalgante, e a sua predominância na Formação Cabeças, são consideradas como as principais evidências da influência de inundações nesta unidade. Depósitos do Membro Passagem, localizados nos arredores das cidades de Pimenteiras e Picos, são interpretados como o componente distal de um tipo de barra de desembocadura com a predominância de arenitos finos a conglomeráticos, intercalados com lobos arenosos tabulares de frente deltaica com estratificação cruzada hummocky. Diversos intervalos fossil

  14. Natural Flood Management in context: evaluating and enhancing the impact.

    Science.gov (United States)

    Metcalfe, Peter; Beven, Keith; Hankin, Barry; Lamb, Rob

    2016-04-01

    The series of flood events in the UK throughout December 2015 have led to calls for a reappraisal of the country's approach to flood management. In parts of Cumbria so-called "1 in 100" year floods have occurred three times in the last ten years, leading to significant infrastructure damage. Hard-engineered defences upgraded to cope with an anticipated 20% increase in peak flows and these 1% AEP events have been overwhelmed. It has become more widely acknowledged that unsympathetic agricultural and upland management practices, mainly since the Second World War, have led to a significant loss of storage in mid and upper catchments and their consequent ability to retain and slow storm run-off. Natural Flood Management (NFM) is a nature-based solution to restoring this storage and flood peak attenuation through a network of small-scale features exploiting natural topography and materials. Combined with other "soft" interventions such as restoring flood plain roughness and tree-planting, NFM offers the attractive prospect of an intervention that can target both the ecological and chemical objectives of the Water Framework Directive and the resilience demanded by the Floods Directive. We developed a simple computerised physical routing model that can account for the presence of in-channel and offline features such as would be found in a NFM scheme. These will add storage to the channel and floodplain and throttle the downstream discharge at storm flows. The model was applied to the heavily-modified channel network of an agricultural catchment in North Yorkshire using the run-off simulated for two storm events that caused flooding downstream in the autumn of 2012. Using up to 60 online features we demonstrated some gains in channel storage and a small impact on the flood hydrograph which would, however, have been insufficient to prevent the downstream floods in either of the storms. Complementary research at JBA has applied their hydrodynamic model JFLOW+ to identify

  15. Task 50 - deposition of lignites in the Fort Union Group and related strata of the northern Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, J.H.; Roth, B.; Kihm, A.J.

    1997-08-11

    Late Cretaceous, Paleocene, and early Eocene geologic and paleontologic studies were undertaken in western North Dakota, eastern and south-central Montana, and northwestern and northeastern Wyoming. These study areas comprise the Williston, Bighorn, and Powder River Basins, all of which contain significant lignite resources. Research was undertaken in these basins because they have the best geologic sections and fossil record for the development of a chronostratigraphic (time-rock) framework for the correlation of lignite beds and other economic resources. A thorough understanding of the precise geologic age of the deposition of sediments permits a powerful means of interpreting the record of geologic events across the northern Great Plains. Such an understanding allows for rigorous interpretation of paleoenviromnents and estimates of resource potential and quality in this area of economically significant deposits. This work is part of ongoing research to document change in the composition of molluscan fossil faunas to provide a paleoenvironmentally sensitive independent means of interpreting time intervals of brief duration during the Late Cretaceous, Paleocene, and Eocene. This study focuses on the record of mollusks and, to a lesser extent, mammals in the (1) Hell Creek-Tullock Formations, which include the Cretaceous-Paleocene boundary, in the western portion of the Williston Basin, Montana; (2) uppermost Cretaceous, Paleocene, and lowermost Eocene strata in western North Dakota, which -includes the last interior seaway in North Dakota; (3) upper Paleocene and lowermost Eocene of the northern portion of the Bighorn Basin of south-central Montana and northwestern Wyoming; and (4) Powder River Basin of northeastern Wyoming and southeastern Montana. The geologic record provides different physical and paleontological information to aid in interpreting the geologic record through the study interval.

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Two prominent depositional sequences are recognized in the Datta Formation with the lower high and upper low magnitude cycles. The Datta Formation thus represents a thick sedimentary succession and in the study area, i.e., western Salt Range, mainly channel belt, flood plain and/or delta top facies are exposed.

  17. Quantitative palaeodrainage analysis in the Pleistocene of the Po Plain (Italy)

    Science.gov (United States)

    Vezzoli, G.; Garzanti, E.; Sciunnach, D.

    2009-04-01

    During the Pleistocene, Po Plain deposits recorded repeated waxing and waning of Alpine ice caps, and thus provide an excellent opportunity to investigate the interactions between pronounced climatic fluctuations and background tectonic activity (Scardia et al., 2006), resulting in frequent changes of drainage patterns. A high-resolution Pleistocene stratigraphy, with a complete sedimentological, paleontological, petrographic-mineralogical, magneto-stratigraphic, and seismic data base, was recently obtained from eleven continuous cores drilled in the Lombardy Po Plain north of the Po River (ENI and Regione Lombardia, 2002). In the present study we focus on two cores in the proximal (Cilavegna) and distal plain (Pianengo), which best exemplify the drastic change in sedimentary systems and drainage patterns associated with the onset of major Pleistocene glaciations in the Alps (˜870ky; Muttoni et al., 2003). This climatic event is recorded by a regional unconformity (named R-unconformity by Muttoni et al., 2003), traced all across the Po Basin and encountered at -81 m depth in the Pianengo Core and at -98 m depth in the Cilavegna Core. The Cilavegna Core consists of metamorphiclastic floodplain sediments, capped by the R-unconformity and overlain by quartzofeldspathic braidplain deposits. The Pianengo Core consists of metamorphiclastic deltaic to floodpain sediments, capped by the R-unconformity and overlain by alluvial-fan gravels rich in carbonate pebbles; another unconformity at -39 m depth is overlain by metamorphiclastic braidplain deposits. Our quantitative approach to paleodrainage analysis is based on comprehensive information obtained from modern settings (Garzanti et al., 2004; 2006). End-member modelling and similarity analysis allows us to objectively compare detrital modes from modern and ancient deposits, and to reconstruct the evolution of sediment pathways through geologic time (Vezzoli and Garzanti 2009). The Cilavegna Core documents stepwise south

  18. Identification of flood-rich and flood-poor periods in flood series

    Science.gov (United States)

    Mediero, Luis; Santillán, David; Garrote, Luis

    2015-04-01

    Recently, a general concern about non-stationarity of flood series has arisen, as changes in catchment response can be driven by several factors, such as climatic and land-use changes. Several studies to detect trends in flood series at either national or trans-national scales have been conducted. Trends are usually detected by the Mann-Kendall test. However, the results of this test depend on the starting and ending year of the series, which can lead to different results in terms of the period considered. The results can be conditioned to flood-poor and flood-rich periods located at the beginning or end of the series. A methodology to identify statistically significant flood-rich and flood-poor periods is developed, based on the comparison between the expected sampling variability of floods when stationarity is assumed and the observed variability of floods in a given series. The methodology is applied to a set of long series of annual maximum floods, peaks over threshold and counts of annual occurrences in peaks over threshold series observed in Spain in the period 1942-2009. Mediero et al. (2014) found a general decreasing trend in flood series in some parts of Spain that could be caused by a flood-rich period observed in 1950-1970, placed at the beginning of the flood series. The results of this study support the findings of Mediero et al. (2014), as a flood-rich period in 1950-1970 was identified in most of the selected sites. References: Mediero, L., Santillán, D., Garrote, L., Granados, A. Detection and attribution of trends in magnitude, frequency and timing of floods in Spain, Journal of Hydrology, 517, 1072-1088, 2014.

  19. Flood Induced Disasters and Stakeholder Involvement to Implement Integrated Food Management in Nepal

    Science.gov (United States)

    Gautam, N. P.

    2016-12-01

    Nepal, a landlocked country in South Asia covers an area of 147, 181 square kilometers. Its elevation ranges from 61m as the lowest to 8848m, the highest peak Everest in the world. More than 80% of the annual rainfall occurs in the monsoon season from June to September. Thus, due to the intense rainfall that occurs within a short period, monsoon acts as the biggest cause for the occurrence of different disastrous events including flood. Beyond it, Nepal lies at the center and southern edge of Hindu-Kush Himalayan (HKH) region, which is the youngest geological formation in the world. Hence, floods and landslides are common in this region. In Nepal, from the records of 1971-2010, floods and landslides are the second biggest cause for casualties after epidemics. Hawaii based Center of Excellence in disaster management and humanitarian assistance in 2015 has declared Nepal as 30th vulnerable country from the aspect of floods. According to WMO definition, integrated flood management (IFM) is a process of promoting an integrated rather than a fragmented approach to flood management, integrating land and water resource development in a river basin within the context of integrated water resources management (IWRM), with the aim of maximizing the net benefits from flood plains while minimizing loss of life from flooding. That is the reason why the IFM is one of the important countermeasures to be implemented in Nepal to reduce the adverse effects of floods. This study emphasizes on the existing conditions along with the challenges of IFM with respect to stakeholder involvement in the context of Nepal. It can be assured that all the highlighted issues coming out from this study will be highly valuable to policy makers, implementing agencies along with scientific and local communities to enhance IFM works in the nation for the benefits of societies.

  20. The depositional setting of the Late Quaternary sedimentary fill in southern Bannu basin, Northwest Himalayan fold and thrust belt, Pakistan

    KAUST Repository

    Farid, Asam M.; Khalid, Perveiz; Jadoon, Khan; Jouini, Mohamed Soufiane

    2014-01-01

    with clay-silt and dirty sand facies typical of lacustrine and flood plain environments. Streams arising from adjacent mountains have reworked these facies which have been eroded and replaced by gravel-sand facies along channels. It is concluded

  1. 26 CFR 1.832-6 - Policyholders of mutual fire or flood insurance companies operating on the basis of premium...

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Policyholders of mutual fire or flood insurance... Insurance Companies § 1.832-6 Policyholders of mutual fire or flood insurance companies operating on the... taxpayer insured by a mutual fire or flood insurance company under a policy for which the premium deposit...

  2. Synfuels from low-rank coals at the Great Plains Gasification Plant

    International Nuclear Information System (INIS)

    Pollock, D.

    1992-01-01

    This presentation focuses on the use of low rank coals to form synfuels. A worldwide abundance of low rank coals exists. Large deposits in the United States are located in Texas and North Dakota. Low rank coal deposits are also found in Europe, India and Australia. Because of the high moisture content of lignite ranging from 30% to 60% or higher, it is usually utilized in mine mouth applications. Lignite is generally very reactive and contains varying amounts of ash and sulfur. Typical uses for lignite are listed. A commercial application using lignite as feedstock to a synfuels plant, Dakota Gasification Company's Great Plains Gasification Plant, is discussed

  3. Flooding and subsidence in the Thames Gateway: impact on insurance loss potential

    Science.gov (United States)

    Royse, Katherine; Horn, Diane; Eldridge, Jillian; Barker, Karen

    2010-05-01

    and sediment, or rehydration of sediment under flood water. The latter mechanism may be particularly critical on sites where Holocene sediments are currently protected from flooding and are no longer subsiding. Holocene deposits tend to compress, either under their own weight or under a superimposed load such as made ground, built structures or flood water. If protected dry sediments become flooded in the future, subsidence would be expected to resume. This research project aims to investigate the correlation between flood hazards and subsidence hazards and the effect that these two sources of risk will have on insurance losses in the Thames Gateway. In particular, the research will explore the potential hydrological and geophysical drivers and links between flood and subsidence events within the Thames Gateway, assessing the potential for significant event occurrence within the timescales relevant to insurers. In the first part of the project we have identified flood risk areas within the Thames Gateway development zone which have a high risk of flooding and may be affected by renewed or increased subsidence. This has been achieved through the use of national and local-scale 2D and 3D geo-environmental information such as the Geosure dataset (e.g. swell-shrink, collapsible and compressible deposits data layers), PSI data, thickness of superficial and artificial land deposits, and flood potential data etc. In the second stage of the project we will investigate the hydrological and geophysical links between flooding and subsidence events on developed sites; quantify the insurance loss potential in the Thames Gateway from correlated flooding and subsidence events; consider how climate change will affect risk to developments in the Thames Gateway in the context of subsidence and flooding; and develop new ways of communicating and visualise correlated flood and subsidence risk to a range of stakeholders, including the insurance industry, planners, policy makers and the

  4. Artesian water in the Malabar coastal plain of southern Kerala, India

    Science.gov (United States)

    Taylor, George C.; Ghosh, P.K.

    1964-01-01

    The present report is based on a geological and hydrological reconnaissance during 1954 of the Malabar Coastal Plain and adjacent island area of southern Kerala to evaluate the availability of ground water for coastal villages and municipalities and associated industries and the potentialities for future development. The work was done in cooperation with the Geological Survey of India and under the auspices of the U.S. Technical Cooperation Mission to India. The State of Kerala, which lies near the southern tip of India and along the eastern shore of the Caspian Sea, contains a total area of 14,937 square miles. The eastern part of the state is s rugged mountainous highland which attains altitudes of more than 6,000 feet. This highland descends westward through piedmont upland to s narrow coastal plain, which reaches a maximum width of about 16 miles in the latitude of Shertalli. A tropical monsoon rain-forest climate prevails in most of Kerala, and annual rainfall ranges from 65 to 130 inches in the southern part of the coastal plain to as much a 200 inches in the highland. The highland and piedmont upland tracts of Kerala are underlain by Precambrian meamorphic and igneous rocks belonging in large parabola-the so-called Charnockite Series. Beneath ahe coastal plain are semiconsolidated asunconsolidated sedimentary deposits whose age ranges from Miocene to Recent. These deposits include sofa sandstone and clay shale containing some marl or limestone and sand, and clay and pea containing some gravel. The sofa sandstone, sand, and gravel beds constitute important aquifers a depths ranging from a few tens of feet to 400 feet or more below the land surface. The shallow ground war is under water-able or unconfined conditions, but the deeper aquifers contain water under artesian pressure. Near the coast, drilled wells tapping the deeper aquifers commonly flow with artesian heads as much as 10 to 12 feet above the land surface. The draft from existing wells in the

  5. Sandstone-body and shale-body dimensions in a braided fluvial system: Salt wash sandstone member (Morrison formation), Garfield County, Utah

    Science.gov (United States)

    Robinson, J.W.; McCabea, P.J.

    1997-01-01

    Excellent three-dimensional exposures of the Upper Jurassic Salt Wash Sandstone Member of the Morrison Formation in the Henry Mountains area of southern Utah allow measurement of the thickness and width of fluvial sandstone and shale bodies from extensive photomosaics. The Salt Wash Sandstone Member is composed of fluvial channel fill, abandoned channel fill, and overbank/flood-plain strata that were deposited on a broad alluvial plain of low-sinuosity, sandy, braided streams flowing northeast. A hierarchy of sandstone and shale bodies in the Salt Wash Sandstone Member includes, in ascending order, trough cross-bedding, fining-upward units/mudstone intraclast conglomerates, singlestory sandstone bodies/basal conglomerate, abandoned channel fill, multistory sandstone bodies, and overbank/flood-plain heterolithic strata. Trough cross-beds have an average width:thickness ratio (W:T) of 8.5:1 in the lower interval of the Salt Wash Sandstone Member and 10.4:1 in the upper interval. Fining-upward units are 0.5-3.0 m thick and 3-11 m wide. Single-story sandstone bodies in the upper interval are wider and thicker than their counterparts in the lower interval, based on average W:T, linear regression analysis, and cumulative relative frequency graphs. Multistory sandstone bodies are composed of two to eight stories, range up to 30 m thick and over 1500 m wide (W:T > 50:1), and are also larger in the upper interval. Heterolithic units between sandstone bodies include abandoned channel fill (W:T = 33:1) and overbank/flood-plain deposits (W:T = 70:1). Understanding W:T ratios from the component parts of an ancient, sandy, braided stream deposit can be applied in several ways to similar strata in other basins; for example, to (1) determine the width of a unit when only the thickness is known, (2) create correlation guidelines and maximum correlation lengths, (3) aid in interpreting the controls on fluvial architecture, and (4) place additional constraints on input variables to

  6. Buried paleoindian-age landscapes in stream valleys of the central plains, USA

    Science.gov (United States)

    Mandel, R.D.

    2008-01-01

    A systematic study of late-Quaternary landscape evolution in the Central Plains documented widespread, deeply buried paleosols that represent Paleoindian-age landscapes in terrace fills of large streams (> 5th order), in alluvial fans, and in draws in areas of western Kansas with a thick loess mantle. Alluvial stratigraphic sections were investigated along a steep bio-climatic gradient extending from the moist-subhumid forest-prairie border of the east-central Plains to the dry-subhumid and semi-arid shortgrass prairie of the west-central Plains. Radiocarbon ages indicate that most large streams were characterized by slow aggradation accompanied by cumulic soil development from ca. 11,500 to 10,000??14C yr B.P. In the valleys of some large streams, such as the Ninnescah and Saline rivers, these processes continued into the early Holocene. The soil-stratigraphic record in the draws of western Kansas indicates slow aggradation punctuated by episodes of landscape stability and pedogenesis beginning as early as ca. 13,300??14C yr B.P. and spanning the Pleistocene-Holocene boundary. The development record of alluvial fans in western Kansas is similar to the record in the draws; slow aggradation was punctuated by multiple episodes of soil development between ca. 13,000 and 9000??14C yr B.P. In eastern Kansas and Nebraska, development of alluvial fans was common during the early and middle Holocene, but evidence shows fan development as early as ca. 11,300??14C yr B.P. Buried soils dating between ca. 12,600 and 9000??14C yr B.P. were documented in fans throughout the region. In stream valleys across the Central Plains, rapid alluviation after ca. 9000??14C yr B.P. resulted in deeply buried soils that may harbor Paleoindian cultural deposits. Hence, the paucity of recorded stratified Paleoindian sites in the Central Plains is probably related to poor visibility (i.e., deep burial in alluvial deposits) instead of limited human occupation in the region during the terminal

  7. Sources and flow of north Canterbury Plains groundwater, New Zealand

    International Nuclear Information System (INIS)

    Taylor, C.B.; Brown, L.J.; Stewart, M.K.; Brailsford, G.W.; Wilson, D.D.; Burden, R.J.

    1989-01-01

    Geological, hydrological, isotope (tritium and 18 O) and chemical evidence is interpreted to give a mutually consistent picture of the recharge sources and flow patterns of the important groundwater resource in the deep Quaternary deposits of the Canterbury Plains between Selwyn R. and Ashley R. The study period for tritium measurements extends over 27 years, encompassing the peak and decline of thermonuclear tritium fallout in this region. Major rivers emerging from mountain catchments to the west of the Plains are depleted in 18 O relative to average low-level precipitation. Most of the groundwater is river-recharged, but some areas with significant local precipitation recharge are clearly identified by 18 O and chemical concentrations. Artesian groundwater underlying Christchurch ascends from deeper aquifers into the shallowest aquifer via gaps in the confining layers; much of this flow is induced by withdrawal. The Christchurch aquifers are recharged by infiltration from Waimakariri R. in its central Plains reaches, and the resulting flow regime is E- and SE-directed; satisfactory water quality of the deeper Christchurch aquifer appears to be guaranteed for the future provided the river can be maintained in its present condition. Shallow groundwater, and water recharged to depth by other rivers, irrigation and local precipitation on the unconfined western areas of the Plains, are more susceptible to agricultural and other pollutants; none of this water is encountered in the deeper aquifers under Christchurch. (author). 15 refs., 12 figs

  8. Flood-flow analysis for Kabul river at Warsak on the basis of flow-records of Kabul river at Nowshera

    International Nuclear Information System (INIS)

    Khan, B.

    2007-01-01

    High flows and stream discharge have long been measured and used by the engineers in the design of hydraulic structures and flood-protection works and in planning for flood-plain use. Probability-analysis is the basis for the engineering design of many projects and advance information about flood-forecasting. High-flow analysis or flood-frequency studies interpret a past record of events, to predict the future probability of occurrence. In many countries, including the author's country, the long term flow data required for design of hydraulic structures and flood-protection works are not available. In such cases, the only tool with hydrologists is to extend the short-term flow data available at some other site in the region. The present study is made to find a reliable estimation of maximum instantaneous flood for higher frequencies of Kabul River at Warsak weir. Kabul River, at Nowshera gaging station is used or the purpose and regression-analysis is performed to extend the instantaneous peak-flow record up to 29 years at Warsak. The frequency-curves of high-flows are plotted on the normal probability paper, using different probability distributions. The Gumbel distribution seemed to be the best fit for the observed data-points, and is used here for estimation of flood for different return periods. (author)

  9. Flood scour monitoring system using fiber Bragg grating sensors

    Science.gov (United States)

    Lin, Yung Bin; Lai, Jihn Sung; Chang, Kuo Chun; Li, Lu Sheng

    2006-12-01

    The exposure and subsequent undermining of pier/abutment foundations through the scouring action of a flood can result in the structural failure of a bridge. Bridge scour is one of the leading causes of bridge failure. Bridges subject to periods of flood/high flow require monitoring during those times in order to protect the traveling public. In this study, an innovative scour monitoring system using button-like fiber Bragg grating (FBG) sensors was developed and applied successfully in the field during the Aere typhoon period in 2004. The in situ FBG scour monitoring system has been demonstrated to be robust and reliable for real-time scour-depth measurements, and to be valid for indicating depositional depth at the Dadu Bridge. The field results show that this system can function well and survive a typhoon flood.

  10. Bedrock Canyons Carved by the Largest Known Floods on Earth and Mars

    Science.gov (United States)

    Lamb, M. P.; Lapôtre, M. G. A.; Larsen, I. J.; Williams, R. M. E.

    2017-12-01

    The surface of Earth is a dynamic and permeable interface where the rocky crust is sculpted by ice, wind and water resulting in spectacular mountain ranges, vast depositional basins and environments that support life. These landforms and deposits contain a rich, yet incomplete, record of Earth history that we are just beginning to understand. Some of the most dramatic landforms are the huge bedrock canyons carved by catastrophic floods. On Mars, similar bedrock canyons, known as Outflow Channels, are the most important indicators of large volumes of surface water in the past. Despite their importance and now decades of observations of canyon morphology, we lack a basic understanding of how the canyons formed, which limits our ability to reconstruct flood discharge, duration and water volume. In this presentation I will summarize recent work - using mechanistic numerical models and field observations - that suggests that bedrock canyons carved by megafloods rapidly evolve to a size and shape such that boundary shear stresses just exceed that required to entrain fractured blocks of rock. The threshold shear stress constraint allows for quantitative reconstruction of the largest known floods on Earth and Mars, and implies far smaller discharges than previous methods that assume flood waters fully filled the canyons to high water marks.

  11. STUDY REGARDING DELINEATION OF FLOOD HAZARD ZONES IN THE HYDROGRAPHIC BASIN OF THE SOMEŞ RIVER, BORDER AREA

    Directory of Open Access Journals (Sweden)

    STOICA F.

    2014-03-01

    Full Text Available The hydrological studies will provide the characteristic parameters for the floods occurred for the calculus discharges with overflow probabilities of 0,1%; 1%, 5%, 10%. The hydrologic and hydraulic models will be made by using the hydro-meteorological data base and the topographical measurements on site; them calibration will be done according to the records of the historical floods. The studies on the hydrologic and hydraulic models will be necessary for the establishment of the carrying capacity of the riverbeds, for the delimitation of the flood plains and for the detection of the transit discharges at the hydro-technical installations, but also for the establishment of the parameters needed for the structural measures’ projects. These will be based on the 1D and 2D unstable hydro-dynamic models. Therefore, the users would be able to assess the proposed measures and the impact over the river’s system; of course with the potential combination of the 1D and 2D. The main objectives followed by the project are: • identification of the river basins or river sub-basins with flood risks; • regionalization of the flood hazard; • presentation of the main flash floods occurred during the last 30 years, which induced floods; • assessment of the consequences of eventual flood over the population, properties and environment; • the establishment of the protection degree, accepted for the human settlements, for the economic and social objectives, for the farm areas, etc.;

  12. Geology and uranium occurrences in the Forez tertiary plain (in the French 'Massif Central'); Geologie et mineralisations uraniferes de la plaine tertiaire du Forez (Massif Central francais)

    Energy Technology Data Exchange (ETDEWEB)

    Duclos, P [Commissariat a l' Energie Atomique, Fontenay-aux-Roses - 92 (France). Centre d' Etudes Nucleaires

    1967-01-01

    In the first part, the observations made during the geological survey of the Forez Tertiary plain (in the French 'Massif Central') are recalled. Then, using various methods, the author lists the formations according to chronology. Finally, a reconstitution of the geological history of this subsidence basin is attempted. In the second part, the occurrence of 17 uranium bearing geochemical anomalies is commented upon. Each of these various anomalies is given a place on the stratigraphic scale. This enables the author to put the successive phases of uranium deposition into their proper perspective in the history of the plain. In conclusion, the author points out the usefulness of these uraniferous geochemical anomalies. (author) [French] Dans la premiere partie, l'auteur rappelle les observations faites au cours de l'etude geologique de la plaine tertiaire du Forez (Massif Central francais). Puis se servant de differentes methodes, il etablit une chronologie des formations. Enfin, il termine par un essai de reconstitution de l'histoire geologique de ce bassin de subsidence. Dans la deuxieme partie, il commente la decouverte de 17 anomalies geochimiques uraniferes. Il situe ces differentes anomalies dans la serie stratigraphique. Ceci lui permet de replacer les depots successifs de l'uranium dans l'histoire de la plaine. Enfin, il indique l'interet de ces anomalies geochimiques uraniferes. (auteur)

  13. Tangible Results and Progress in Flood Risks Management with the PACTES Initiative

    Science.gov (United States)

    Costes, Murielle; Abadie, Jean-Paul; Ducuing, Jean-Louis; Denier, Jean-Paul; Stéphane

    The PACTES project (Prévention et Anticipation des Crues au moyen des Techniques Spatiales), initiated by CNES and the French Ministry of Research, aims at improving flood risk management, over the following three main phases : - Prevention : support and facilitate the analysis of flood risks and socio-economic impacts (risk - Forecasting and alert : improve the capability to predict and anticipate the flooding event - Crisis management : allow better situation awareness, communication and sharing of In order to achieve its ambitious objectives, PACTES: - integrates state-of-the-art techniques and systems (integration of the overall processing chains, - takes advantage of integrating recent model developments in wheather forecasting, rainfall, In this approach, space technology is thus used in three main ways : - radar and optical earth observation data are used to produce Digital Elevation Maps, land use - earth observation data are also an input to wheather forecasting, together with ground sensors; - satellite-based telecommunication and mobile positioning. Started in December 2000, the approach taken in PACTES is to work closely with users such as civil security and civil protection organisms, fire fighter brigades and city councils for requirements gathering and during the validation phase. It has lead to the development and experimentation of an integrated pre-operational demonstrator, delivered to different types of operational users. Experimentation has taken place in three watersheds representative of different types of floods (flash and plain floods). After a breaf reminder of what the PACTES project organization and aims are, the PACTES integrated pre-operational demonstrator is presented. The main scientific inputs to flood risk management are summarized. Validation studies for the three watersheds covered by PACTES (Moselle, Hérault and Thoré) are detailed. Feedback on the PACTES tangible results on flood risk management from an user point of view

  14. Groundwater Hydrochemical Zoning in Inland Plains and its Genetic Mechanisms

    Directory of Open Access Journals (Sweden)

    Liting Xing

    2018-06-01

    Full Text Available Pore water in inland plain areas, generally having poor water quality, contain complex hydrochemical properties. In order to examine groundwater chemical composition formation characteristics, groundwater in the Jiyang area of Lubei Plain was studied using stratified monitoring of drilling, analysis of water level and water quality, isotope analysis, ion ratio coefficient and isothermal adsorption experiments, hydrochemical characteristics, and analysis of variations in different shallow depths. Results show that: (1 Numerous hydrochemistry types are present in the diving. Along with the direction of groundwater flow, total dissolved solids (TDS of diving in the study area generally increases and the hydrochemical type changes from the HCO3 type to the HCO3·SO4 type, Cl·HCO3 type and the Cl·SO4 type. (2 Shallow brackish water and freshwater in the horizontal direction are alternately distributed, and shallow brackish water is distributed in the area between old channels, showing sporadic spots or bands, whose hydrochemistry type is predominantly Cl·SO4-Na·Mg·Ca. (3 Affected by the sedimentary environment, hydrodynamic conditions and other factors; diving, middle brackish water and deep freshwater are vertically deposited in the study area. The dynamics of middle brackish water quality are stable due to the sedimentary environment and clay deposits. The hydrochemistry types of middle brackish water are mainly Cl·SO4-Mg·Na and SO4·Cl-Na·Mg, while the deep confined water is dominated by HCO3. (4 The optimal adsorption isotherms of Na+, Ca2+ and Mg2+ in groundwater from clay, with a thickness raging from 6–112 m, conformed to the Henry equation and the Langmuir equation. The retardation of Na+, Ca2+ and Mg2+ in groundwater differed with differing depths of the clay deposit. The trend of change in retardation strength correlates strongly with the TDS of groundwater. Groundwater in the inland plain area is affected by complicated

  15. comparative analysis of the compressive strength of concrete

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... all cement manufacturing plants given rise to the emergence of a strong local burnt bricks industry. The bricks are made in various sizes using a local adapta- tion of the standards process controlled burnt bricks technology. The raw materials compromise solely of soil deposits found along the flood plains of ...

  16. Climatic and hydrologic aspects of the 2008 Midwest floods

    Science.gov (United States)

    Budikova, D.; Coleman, J.; Strope, S. A.

    2010-12-01

    Between May and June 2008 the Midwest region of the United States (U.S.) experienced record flooding. The event was produced by distinct hydroclimatic conditions that included saturated antecedent soil moisture conditions and atmospheric circulation that guided moist air from the Gulf of Mexico into the area between late May and mid-June. The latter included a well-developed trough over the central/west U.S., a strong Great Plains Low Level Jet (GPLLJ), and unseasonably strong westerlies that promoted upper level divergence in regions of positive vorticity advection. The flooding coincided with a strongly negative phase of the North Atlantic Oscillation linked to the strength of the GPLLJ. The atmospheric flow contributed to flooding within three river basins across nine states. Iowa, southern Wisconsin, and central Indiana located within the Upper Mississippi River Basin (UMRB) and the Wabash River Basin were most impacted and also recorded the greatest anomalies in rainfall. Record rainfall, persistent multi-day precipitation events, high frequency of localized high-intensity rainfall events all contributed to the severity of the flooding. Conditions peaked between May 21 and June 13 when rain fell somewhere within the region each day. River discharge rates reached record levels in June at many locations; return periods throughout Iowa, southern Wisconsin and in central Indiana were estimated to exceed 100 years, and often times 200 years. Record river stage levels were observed during this time in similar areas. Conditions began to recover into July and August. The timing of occurrence of the precipitation and hydrological anomalies towards late spring and into early summer in the Midwest was rather unusual. The 2008 flood event occurred 15 years after the infamous 1993 event. The importance of its occurrence is underscored by the observed increasing trends in extreme and flood-related precipitation characteristics during the 20th century and the anticipated

  17. Age of depositional and weathering events in Central Amazonia

    Science.gov (United States)

    Sant'Anna, Lucy Gomes; Soares, Emílio Alberto do Amaral; Riccomini, Claudio; Tatumi, Sonia Hatsue; Yee, Marcio

    2017-08-01

    In the last three decades, several studies have been devoted to understanding the role of Late Pleistocene-Holocene climate changes in the Amazonia lowlands environment. However, most of these studies used data obtained from sedimentary deposits (lakes, swamps, and colluvium) located away from the central plain or on the edges of the Amazonia region. This article integrates optically stimulated luminescence and accelerated mass spectrometry 14C ages with sedimentological and geomorphological data obtained during this study or compiled from the literature for fluvial and lacustrine deposits of the central alluvial plain of the Solimões-Amazon River. The age data allow us to present a chronological framework for the Late Pleistocene-Holocene deposits and conclude that (i) the dryness of the LGM in central Amazonia lowlands is recorded by the formation of fluvial terraces and their weathering to pedogenic hematite between 25.3 ka and 17.7 ka; (ii) floodplain deposition was contemporaneous with terrace weathering and occurred in a context of decreased water volume in fluvial channels, lowering of river base level and sea level, and isostatic rebound of the continent; and (iii) lateral and mid-channel fluvial bars in the Solimões-Amazon River have a minimum age of 11.5 ± 1.5 ka, and their deposition responded to increased precipitation at the beginning of the Holocene.

  18. Evaluating influence of active tectonics on spatial distribution pattern of floods along eastern Tamil Nadu, India

    Science.gov (United States)

    Selvakumar, R.; Ramasamy, SM.

    2014-12-01

    Flooding is a naturally recurrent phenomenon that causes severe damage to lives and property. Predictions on flood-prone zones are made based on intensity-duration of rainfall, carrying capacity of drainage, and natural or man-made obstructions. Particularly, the lower part of the drainage system and its adjacent geomorphic landforms like floodplains and deltaic plains are considered for analysis, but stagnation in parts of basins that are far away from major riverine systems is less unveiled. Similarly, uncharacteristic flooding in the upper and middle parts of drainage, especially in zones of an anomalous drainage pattern, is also least understood. Even though topographic differences are attributed for such anomalous spatial occurrence of floods, its genetic cause has to be identified for effective management practice. Added to structural and lithological variations, tectonic movements too impart micro-scale terrain undulations. Because active tectonic movements are slow-occurring, long-term geological processes, its resultant topographical variations and drainage anomalies are least correlated with floods. The recent floods of Tamil Nadu also exhibit a unique distribution pattern emphasizing the role of tectonics over it. Hence a detailed geoinformatics-based analysis was carried out to envisage the relationship between spatial distribution of flood and active tectonic elements such as regional arches and deeps, block faults, and graben and drainage anomalies such as deflected drainage, compressed meander, and eyed drainages. The analysis reveals that micro-scale topographic highs and lows imparted by active tectonic movements and its further induced drainage anomalies have substantially controlled the distribution pattern of flood.

  19. Oligocene paleogeography of the northern Great Plains and adjacent mountains

    International Nuclear Information System (INIS)

    Seeland, D.

    1985-01-01

    Early Oligocene paleogeography of the northern Great Plains and adjacent mountains is inferred in part from published surface and subsurface studies of the pre-Oligocene surface. These studies are combined with published and unpublished information on clast provenance, crossbedding orientation, and Eocene paleogeography. The Oligocene Arctic Ocean-Gulf of Mexico continental divide extended from the southern Absaroka Mountains east along the Owl Creek Mountains, across the southern Powder River Basin, through the northern Black Hills, and eastward across South Dakota. Streams north of the divide flowed northeastward. The Olligocene White River Group contains 50 to 90 percent airfall pyroclastic debris from a northern Great Basin source. Most of the uranium deposits of the region in pre-Oligocene rocks can be related to a uranium source in the volcanic ash of the White River; in many places the pre-Oligocene deposits can be related to specific Oligocene channels. Uranium deposits in sandstones of major Oligocene rivers are an important new type of deposit. The Oligocene channel sandstones also contain small quantities of gold, molybdenum, gas, and oil

  20. Restoration of Prime Farmland Disturbed by Mineral Sand Mining in the Upper Coastal Plain of Virginia

    OpenAIRE

    Schroeder, Philip D.

    1996-01-01

    Economic deposits of heavy mineral sand were identified in the late 1980's under prime farmland along the Upper Coastal Plain of Virginia. Mining in Virginia will commence in 1997 on the Old Hickory Deposit in Dinwiddie/Sussex Counties. Experiments were established on two mine pits representing two likely pit closure scenarios; regrading the surface with unprocessed subsoil (Pit 1) or filling to the surface with processed material (Pit 3). To evaluate topsoil replacement vs. organic amendment...

  1. Flood study of the Suncook River in Epsom, Pembroke, and Allenstown, New Hampshire, 2009

    Science.gov (United States)

    Flynn, Robert H.

    2010-01-01

    On May 15, 2006, a breach in the riverbank caused an avulsion in the Suncook River in Epsom, NH. The breach in the riverbank and subsequent avulsion changed the established flood zones along the Suncook River; therefore, a new flood study was needed to reflect this change and aid in flood recovery and restoration. For this flood study, the hydrologic and hydraulic analyses for the Suncook River were conducted by the U.S. Geological Survey, in cooperation with the Federal Emergency Management Agency. This report presents water-surface elevations and profiles determined using the U.S. Army Corps of Engineers one-dimensional Hydrologic Engineering Center River Analysis System model, also known as HEC-RAS. Steady-state water-surface profiles were developed for the Suncook River from its confluence with the Merrimack River in the Village of Suncook (in Allenstown and Pembroke, NH) to the upstream corporate limit of the town of Epsom, NH (approximately 15.9 river miles). Floods of magnitudes that are expected to be equaled or exceeded once on the average during any 2-, 5-, 10-, 25-, 50-, 100-, or 500-year period (recurrence interval) were modeled using HEC-RAS. These flood events are referred to as the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year floods and have a 50-, 20-, 10-, 4-, 2-, 1-, and 0.2-percent chance, respectively, of being equaled or exceeded during any year. The 10-, 50-, 100-, and 500-year flood events are important for flood-plain management, determination of flood-insurance rates, and design of structures such as bridges and culverts. The analyses in this study reflect flooding potentials that are based on existing conditions in the communities of Epsom, Pembroke, and Allenstown at the time of completion of this study (2009). Changes in the 100-year recurrence-interval flood elevation from the 1979 flood study were typically less than 2 feet with the exception of a location 900 feet upstream from the avulsion that, because of backwater from the dams in the

  2. Chernobyl accident. The ground deposition of radionuclides in Padana plain and in Alps Valleys and the radioactive contamination of the Como lake

    Energy Technology Data Exchange (ETDEWEB)

    Capra, D; Facchini, U; Gianelle, V; Ravasini, G; Ravera, O; Volta, L; Pizzola, A; Bacci, P

    1988-01-01

    The radioactive cloud released during the Chernobyl accident reached the Padana plain and Lombardy in the night of April 30th 1986; the cloud remained in the northern Italian skies for a few days and then disappeared either dispersed by winds and washed by rains. The evidence in atmosphere of radionuclides as Tellurium, Iodine, Cesium, was promptly observed. The intense rain, in first week of may, washed the radioactivity and fall-out contamined the land, soil, grass. The present work concerns the overall contamination of the Northern Italy territory and in particular the radioactive fall-out in the Lakes region. Samples of soil have been measured at the gamma spectroscope; a correlation is found between the radionuclides concentration in soil samples and the rain intensity, when appropriate deposition models are considered. A number of measurements has been done on the Como'lake ecosystem: sediments, plankton, fishes and the overall fall-out in the area has been investigated.

  3. Geomorphology of Afekan Crater, Titan: Terrain Relationships in Titan’s Blandlands

    Science.gov (United States)

    Malaska, Michael; Shoenfeld, Ashley M.; Lopes, Rosaly M.; Hayes, Alex G.; Le Gall, Alice; Birch, Sam; Solomonidou, Anezina; Neish, Catherine D.; Soderblom, Jason M.; Farr, Thomas G.

    2014-11-01

    The enigmatic mid-latitude undifferentiated plains of Saturn’s moon Titan cover an estimated 29% of the surface of that world, making them one of the most important terrain units. Nicknamed “blandlands”, they appear nearly featureless to the Cassini spacecraft’s Visual and Infrared Mapping Spectrometer (VIMS), Imaging Science Subsystems (ISS) and Synthetic Aperture Radar (SAR) imaging. The possible origins and identity of the vast undifferentiated plains have ranged from thick organic photochemical deposits to cryovolcanic flood deposits of aqueous materials. To help constrain these possibilities, we selected the region around Afekan Crater for detailed geomorphological mapping. We defined and determined terrain units in ArcGIS primarily using SAR images and used the resulting contact and embayment relationships to determine a preliminary stratigraphy between the previously known units and the undifferentiated plains.We find that although the plains are relatively featureless, they are not flat - some topographic variation is observed. Our work suggests Titan’s dunes embay the undifferentiated plains. This is consistent with dunes actively invading and depositing in the topographically low regions of the undifferentiated plains. Correlation of our defined undifferentiated plains regions with radiometric data is not consistent with large exposures of putative water-based cryovolcanic outflows, but is consistent with dune materials. The infrared reflectance obtained by Cassini VIMS and ISS show distinctive albedo differences between the dunes and undifferentiated plains materials. Combined, these results provide support that the undifferentiated plains are composed of organic materials, but that they are distinct from unmodified dune materials. Undifferentiated plains are found partially filling the interior of Afekan Crater, as well as in the presumed wind shadow of Afekan Crater, implying that plains material deposition happened after Afekan Crater was

  4. Evaluation of natural radioactivity in soil, sediment and water samples of Niger Delta (Biseni) flood plain lakes, Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Agbalagba, E.O., E-mail: ezek64@yahoo.com [Department of Physics, Federal University of Petroleum Resources, Effurun (Nigeria); Onoja, R.A. [Dept. of Radiation Biophysics, Centre for Energy Research and Training, Ahmadu Bello University, Zaria (Nigeria)

    2011-07-15

    This paper presents the findings of a baseline study undertaken to evaluate the natural radioactivity levels in soil, sediment and water samples in four flood plain lakes of the Niger Delta using a hyper pure germanium (HPGe) detector. The activity profile of radionuclides shows low activity across the study area. The mean activity level of the natural radionuclides {sup 226}Ra, {sup 232}Th and {sup 40}K is 20 {+-} 3, 20 {+-} 3 and 180 {+-} 50 Bq kg{sup -1}, respectively. These values are well within values reported elsewhere in the country and in other countries with similar environments. The study also examined some radiation hazard indices. The mean values obtained are, 76 {+-} 14 Bq kg{sup -1}, 30 {+-} 5.5 {eta}Gy h{sup -1}, 37 {+-} 6.8 {mu}Sv y{sup -1}, 0.17 and 0.23 for Radium Equivalent Activity (Ra{sub eq}), Absorbed Dose Rates (D), Annual Effective Dose Rates (E{sub ff} Dose), External Hazard Index (H{sub ex}) and Internal Hazard Index (H{sub in}) respectively. All the health hazard indices are well below their recommended limits. The soil and sediments from the study area provide no excessive exposures for inhabitants and can be used as construction materials without posing any significant radiological threat to the population. The water is radiologically safe for domestic and industrial use. The paper recommends further studies to estimate internal and external doses from other suspected radiological sources to the population of the Biseni kingdom. - Highlights: > The activity profile of the radionuclides has clearly showed the existence of low activity in the study area. > The average activity concentration of {sup 226}Ra, {sup 232}Th and {sup 40}K is 20 {+-} 3, 20 {+-} 3 and 185 {+-} 47 Bq kg{sup -1} DW (or L{sup -1}) respectively. > These values compared well with other values obtained within Nigeria and other countries of the world. > The soils and sediments of the area have no immediate health implication on the inhabitants. > This work has

  5. Diagnostic sedimentary structures of the fluvial-tidal transition zone – Evidence from deposits of the Rhine and Meuse

    NARCIS (Netherlands)

    Berg, J.H. van den; Boersma, J.R.; Gelder, A. van

    2007-01-01

    n mesotidal settings the transition of a coastal plain estuary to the river is marked by the change of a multiple ebb and flood channel configurationto a single channel system. At high river discharge fluvial processes operate, whereas in periods of low discharge the flow is complicated by a

  6. Are inundation limit and maximum extent of sand useful for differentiating tsunamis and storms? An example from sediment transport simulations on the Sendai Plain, Japan

    Science.gov (United States)

    Watanabe, Masashi; Goto, Kazuhisa; Bricker, Jeremy D.; Imamura, Fumihiko

    2018-02-01

    We examined the quantitative difference in the distribution of tsunami and storm deposits based on numerical simulations of inundation and sediment transport due to tsunami and storm events on the Sendai Plain, Japan. The calculated distance from the shoreline inundated by the 2011 Tohoku-oki tsunami was smaller than that inundated by storm surges from hypothetical typhoon events. Previous studies have assumed that deposits observed farther inland than the possible inundation limit of storm waves and storm surge were tsunami deposits. However, confirming only the extent of inundation is insufficient to distinguish tsunami and storm deposits, because the inundation limit of storm surges may be farther inland than that of tsunamis in the case of gently sloping coastal topography such as on the Sendai Plain. In other locations, where coastal topography is steep, the maximum inland inundation extent of storm surges may be only several hundred meters, so marine-sourced deposits that are distributed several km inland can be identified as tsunami deposits by default. Over both gentle and steep slopes, another difference between tsunami and storm deposits is the total volume deposited, as flow speed over land during a tsunami is faster than during a storm surge. Therefore, the total deposit volume could also be a useful proxy to differentiate tsunami and storm deposits.

  7. Doomed to drown? Sediment dynamics in the human-controlled floodplains of the active Bengal Delta

    Directory of Open Access Journals (Sweden)

    Kimberly G. Rogers

    2017-11-01

    Full Text Available The Ganges-Brahmaputra-Meghna (Bengal Delta in Bangladesh has been described as a delta in peril of catastrophic coastal flooding because sediment deposition on delta plain surfaces is insufficient to offset rates of subsidence and sea level rise. Widespread armoring of the delta by coastal embankments meant to protect crops from flooding has limited natural floodplain deposition, and in the tidally dominated delta, dikes lead to rapid compaction and lowered land surface levels. This renders the deltaic floodplains susceptible to flooding by sea level rise and storm surges capable of breaching poorly maintained embankments. However, natural physical processes are spatially variable across the delta front and therefore the impact of dikes on sediment dispersal and morphology should reflect these variations. We present the first ever reported sedimentation rates from the densely populated and human-controlled floodplains of the central lower Bengal Delta. We combine direct sedimentation measurements and short-lived radionuclides to show that transport processes and lateral sedimentation are highly variable across the delta. Overall aggradation rates average 2.3 ± 9 cm y–1, which is more than double the estimated average rate of local sea level rise; 83% of sampled sites contained sediment tagged with detectable 7 Be, indicating flood-pulse sourced sediments are widely delivered to the delta plain, including embanked areas. A numerical model is then used to demonstrate lateral accretion patterns arising from 50 years of sedimentation delivered through smaller order channels. Dominant modes of transport are reflected in the sediment routing and aggradation across the lower delta plain, though embankments are major controls on sediment dynamics throughout the delta. This challenges the assumption that the Bengal Delta is doomed to drown; rather it signifies that effective preparation for climate change requires consideration of how infrastructure

  8. Geomorphic change on the Missouri River during the flood of 2011: Chapter I in 2011 Floods of the Central United States

    Science.gov (United States)

    Schenk, Edward R.; Skalak, Katherine J.; Benthem, Adam J.; Dietsch, Benjamin J.; Woodward, Brenda K.; Wiche, Gregg J.; Galloway, Joel M.; Nustad, Rochelle A.; Hupp, Cliff R.

    2014-01-01

    The 2011 flood on the Missouri River was one of the largest floods since the river became regulated by a series of high dams in the mid-20th century (greater than 150,000 cubic feet per second during the peak). The flood persisted through most of the summer, eroding river banks, adding sand to sandbars, and moving the thalweg of the channel in many places. The U.S. Geological Survey monitored and assessed the changes in two reaches of the Missouri River: the Garrison Reach in North Dakota, bounded by the Garrison Dam and the Lake Oahe Reservoir, and the Recreational Reach along the boundary of South Dakota and Nebraska bounded upstream by the Gavins Point Dam and extending downstream from Ponca, Nebraska. Historical cross-section data from the Garrison Dam closure until immediately before the flood indicate that the upper reaches of the river near the dam experienced rapid erosion, channel incision, and island/sandbar loss following the dam closure. The erosion, incision, and land loss lessened with time. Conversely, the lower reach near the Lake Oahe Reservoir slackwaters became depositional with channel in-filling and sandbar growth through time as the flow slowed upon reaching the reservoir. Preliminary post-flood results in the Garrison Reach indicate that the main channel has deepened at most cross-sections whereas sandbars and islands have grown vertically. Sandbars and the thalweg migrated within the Recreational Reach, however net scouring and aggradation was minimal. Changes in the two-dimensional area of sandbars and islands are still being assessed using high-resolution satellite imagery. A sediment balance can be constructed for the Garrison Reach using cross-sections, bathymetric data, sand traps for wind-blown material, a quasi-three-dimensional numerical model, and dating of sediment cores. Data collection and analysis for a reach-scale sediment balance and a concurrent analysis of the effects of riparian and island vegetation on sediment deposition

  9. Field-trip guide to Columbia River flood basalts, associated rhyolites, and diverse post-plume volcanism in eastern Oregon

    Science.gov (United States)

    Ferns, Mark L.; Streck, Martin J.; McClaughry, Jason D.

    2017-08-09

    The Miocene Columbia River Basalt Group (CRBG) is the youngest and best preserved continental flood basalt province on Earth, linked in space and time with a compositionally diverse succession of volcanic rocks that partially record the apparent emergence and passage of the Yellowstone plume head through eastern Oregon during the late Cenozoic. This compositionally diverse suite of volcanic rocks are considered part of the La Grande-Owyhee eruptive axis (LOEA), an approximately 300-kilometer-long (185 mile), north-northwest-trending, middle Miocene to Pliocene volcanic belt located along the eastern margin of the Columbia River flood basalt province. Volcanic rocks erupted from and preserved within the LOEA form an important regional stratigraphic link between the (1) flood basalt-dominated Columbia Plateau on the north, (2) bimodal basalt-rhyolite vent complexes of the Owyhee Plateau on the south, (3) bimodal basalt-rhyolite and time-transgressive rhyolitic volcanic fields of the Snake River Plain-Yellowstone Plateau, and (4) the High Lava Plains of central Oregon.This field-trip guide describes a 4-day geologic excursion that will explore the stratigraphic and geochemical relationships among mafic rocks of the Columbia River Basalt Group and coeval and compositionally diverse volcanic rocks associated with the early “Yellowstone track” and High Lava Plains in eastern Oregon. Beginning in Portland, the Day 1 log traverses the Columbia River gorge eastward to Baker City, focusing on prominent outcrops that reveal a distal succession of laterally extensive, large-volume tholeiitic flood lavas of the Grande Ronde, Wanapum, and Saddle Mountains Basalt formations of the CRBG. These “great flows” are typical of the well-studied flood basalt-dominated Columbia Plateau, where interbedded silicic and calc-alkaline lavas are conspicuously absent. The latter part of Day 1 will highlight exposures of middle to late Miocene silicic ash-flow tuffs, rhyolite domes, and

  10. Vertical accretion sand proxies of gaged floods along the upper Little Tennessee River, Blue Ridge Mountains, USA

    Science.gov (United States)

    Leigh, David S.

    2018-02-01

    Understanding environmental hazards presented by river flooding has been enhanced by paleoflood analysis, which uses sedimentary records to document floods beyond historical records. Bottomland overbank deposits (e.g., natural levees, floodbasins, meander scars, low terraces) have the potential as continuous paleoflood archives of flood frequency and magnitude, but they have been under-utilized because of uncertainty about their ability to derive flood magnitude estimates. The purpose of this paper is to provide a case study that illuminates tremendous potential of bottomland overbank sediments as reliable proxies of both flood frequency and magnitude. Methods involve correlation of particle-size measurements of the coarse tail of overbank deposits (> 0.25 mm sand) from three separate sites with historical flood discharge records for the upper Little Tennessee River in the Blue Ridge Mountains of the southeastern United States. Results show that essentially all floods larger than a 20% probability event can be detected by the coarse tail of particle-size distributions, especially if the temporal resolution of sampling is annual or sub-annual. Coarser temporal resolution (1.0 to 2.5 year sample intervals) provides an adequate record of large floods, but is unable to discriminate individual floods separated by only one to three years. Measurements of > 0.25 mm sand that are normalized against a smoothed trend line through the down-column data produce highly significant correlations (R2 values of 0.50 to 0.60 with p-values of 0.004 to Time-series data of particle-size should be detrended to minimize variation from dynamic aspects of fluvial sedimentation that are not related to flood magnitude; and 5) Multiple sites should be chosen to allow for replication of findings.

  11. RAPID Assessment of Extreme Reservoir Sedimentation Resulting from the September 2013 Flood, North St. Vrain Creek, CO

    Science.gov (United States)

    Rathburn, S. L.; McElroy, B. J.; Wohl, E.; Sutfin, N. A.; Huson, K.

    2014-12-01

    During mid-September 2013, approximately 360 mm of precipitation fell in the headwaters of the North St. Vrain drainage basin, Front Range, CO. Debris flows on steep hillslopes and extensive flooding along North St. Vrain Creek resulted in extreme sedimentation within Ralph Price Reservoir, municipal water supply for the City of Longmont. The event allows comparison of historical sedimentation with that of an unusually large flood because 1) no reservoir flushing has been conducted since dam construction, 2) reservoir stratigraphy chronicles uninterrupted delta deposition, and 3) this is the only on-channel reservoir with unimpeded, natural sediment flux from the Continental Divide to the mountain front in a basin with no significant historic flow modifications and land use impacts. Assessing the flood-related sedimentation prior to any dredging activities included coring the reservoir delta, a bathymetric survey of the delta, resistivity and ground penetrating radar surveys of the subaerial inlet deposit, and surveying tributary deposits. Over the 44-year life of the reservoir, two-thirds of the delta sedimentation is attributed to extreme discharges from the September 2013 storm. Total storm-derived reservoir sedimentation is approximately 275,000 m3, with 81% of that within the gravel-dominated inlet and 17% in the delta. Volumes of deposition within reservoir tributary inlets is negatively correlated with contributing area, possibly due to a lack of storage in these small basins (1-5 km2). Flood-related reservoir sedimentation will be compared to other research quantifying volumes from slope failures evident on post-storm lidar. Analysis of delta core samples will quantify organic carbon flux associated with the extreme discharge and develop a chronology of flood and fire disturbances for North St. Vrain basin. Applications of similar techniques are planned for two older Front Range reservoirs affected by the September flooding to fill knowledge gaps about

  12. Flood management selections for the Yangtze River midstream after the Three Gorges Project operation

    Science.gov (United States)

    Fang, Hongwei; Han, Dong; He, Guojian; Chen, Minghong

    2012-04-01

    SummaryAfter the Yangtze River was closed by the Three Gorges Project (TGP) in 2003, erosion occurred from the dam site to the river mouth, especially in the middle and lower reaches of the Yangtze River. However, in some local areas of Chenglingji reach which holds the key position for flood management, there is actually deposition in contrast to the expected erosion. In this paper, a one dimensional mathematical model of the river network with sediment transport is used as the tool to simulate flow and fluvial processes. The calculation domain is from Yichang, which is downstream of the dam, to Hankou, the controlling node of flood management, 694 km long in total. The model is calibrated based on the field data of hydrology and sediment transport during the period from October 2003 to October 2008. Then the model is utilized to simulate the erosion and deposition of the middle and lower reaches of the Yangtze River in the next two decades, and produce the results of a new river channel after river bed deformation occurs. The typical flood processes of 1954 and 1998 in the Yangtze River basin are used to check the flood management scheme for the research area, and results show that water storage of Three Gorges Reservoir (TGR) and a flood diversion program downstream of the Yangtze River should be taken into consideration.

  13. Geology and uranium occurrences in the Forez tertiary plain (in the French 'Massif Central')

    International Nuclear Information System (INIS)

    Duclos, P.

    1967-01-01

    In the first part, the observations made during the geological survey of the Forez Tertiary plain (in the French 'Massif Central') are recalled. Then, using various methods, the author lists the formations according to chronology. Finally, a reconstitution of the geological history of this subsidence basin is attempted. In the second part, the occurrence of 17 uranium bearing geochemical anomalies is commented upon. Each of these various anomalies is given a place on the stratigraphic scale. This enables the author to put the successive phases of uranium deposition into their proper perspective in the history of the plain. In conclusion, the author points out the usefulness of these uraniferous geochemical anomalies. (author) [fr

  14. Coal depositional models in some tertiary and cretaceous coal fields in the US western interior

    Energy Technology Data Exchange (ETDEWEB)

    Flores, R M

    1979-12-01

    Detailed stratigraphic and sedimentological studies of the Tertiary Tongue River Member of the Fort Union Formation in the Powder River Basin, Wyoming, and the Cretaceous Blackhawk Formation and Star Point Sandstone in the Wasatch Plateau, Utah, indicate that the depositional environments of coal played a major role in controlling coal thickness, lateral continuity, potential minability, and type of floor and roof rocks. The potentially minable, thick coal beds of the Tongue River Member were primarily formed in long-lived floodbasin backswamps of upper alluvial plain environment. Avulsion of meandering fluvial channels contributed to the erratic lateral extent of coals in this environment. Laterally extensive coals formed in floodbasin backswamps of a lower alluvial plain environment; however, interruption by overbank and crevasse-splay sedimentation produced highly split and merging coal beds. Lacustrine sedimentation common to the lower alluvial plain, similar to the lake-covered lower alluvial valley of the Atchafalaya River Basin, is related to a high-constructive delta. In contrast to these alluvial coals are the deltaic coal deposits of the Blackhawk Formation. The formation consists of three coal populations: upper delta plain, lower delta plain, and back-barrier. Coals of the lower delta plain are thick and laterally extensive, in contrast to those of the upper delta plain and back-barrier, which contain abundant, very thin and laterally discontinuous carbonaceous shale partings. The reworking of the delta-front sediments of the Star Point Sandstone suggests that the Blackhawk-Star Point delta was a high-destructive system. 1 figure, 1 table.

  15. Facies sedimentology, mineralogy and genetic stratigraphy of the lower-Lias silici-clastic reservoirs of Cere-La-Ronde; Sedimentologie de facies, mineralogie et stratigraphie genetique des reservoirs silicoclastiques du Lias inferieur de Cere-La-Ronde

    Energy Technology Data Exchange (ETDEWEB)

    Geiller, M.

    1997-11-21

    Some sandstone reservoirs in the South West of the Parisian Basin (Sologne) are used for gas storage in the underground aquifer by GDF. The study aims to reconstruct the geometry of these reservoirs and to establish the factors controlling their deposition in the Sologne basin during Rhaetian and Hettangian times. This study combines palynological, sedimentological, mineralogical and sequential analyses. It is applied to channel deposits as well as to flood-plain and over-bank deposits which are rarely considered. The formations are deposited in a continental transgressive context associated to a decreasing subsidence. The different depositional environments varied from the alluvial fan to the coastal plain with different intermediate alluvial plains. They get organized in three depositional profiles which are emphasized by hydrodynamic discontinuities due to irreversible modifications in depositional conditions. The clayey associations change with each depositional profile according to detrital source modifications. They characterize discontinuities due to geodynamic events affecting the Sologne basin (depositional profile changes, pedogenesis). In this continental context, the genetic sequences record a cycle of variation of the river longitudinal profile slope. They determine the sediments geometry which results from the relative sea-level variations. Local tectonics creates an heterogenous subsidence and consequently controls the distribution of the sediments. During tectonic instability periods, the subsiding areas migrate while they do not during tectonic stability periods. The latter end with irreversible change in depositional profile. (author) 135 refs.

  16. Geology and uranium occurrences in the Forez tertiary plain (in the French 'Massif Central'); Geologie et mineralisations uraniferes de la plaine tertiaire du Forez (Massif Central francais)

    Energy Technology Data Exchange (ETDEWEB)

    Duclos, P. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses - 92 (France). Centre d' Etudes Nucleaires

    1967-01-01

    In the first part, the observations made during the geological survey of the Forez Tertiary plain (in the French 'Massif Central') are recalled. Then, using various methods, the author lists the formations according to chronology. Finally, a reconstitution of the geological history of this subsidence basin is attempted. In the second part, the occurrence of 17 uranium bearing geochemical anomalies is commented upon. Each of these various anomalies is given a place on the stratigraphic scale. This enables the author to put the successive phases of uranium deposition into their proper perspective in the history of the plain. In conclusion, the author points out the usefulness of these uraniferous geochemical anomalies. (author) [French] Dans la premiere partie, l'auteur rappelle les observations faites au cours de l'etude geologique de la plaine tertiaire du Forez (Massif Central francais). Puis se servant de differentes methodes, il etablit une chronologie des formations. Enfin, il termine par un essai de reconstitution de l'histoire geologique de ce bassin de subsidence. Dans la deuxieme partie, il commente la decouverte de 17 anomalies geochimiques uraniferes. Il situe ces differentes anomalies dans la serie stratigraphique. Ceci lui permet de replacer les depots successifs de l'uranium dans l'histoire de la plaine. Enfin, il indique l'interet de ces anomalies geochimiques uraniferes. (auteur)

  17. Potential geographic distribution of atmospheric nitrogen deposition from intensive livestock production in North Carolina, USA

    International Nuclear Information System (INIS)

    Costanza, Jennifer K.; Marcinko, Sarah E.; Goewert, Ann E.; Mitchell, Charles E.

    2008-01-01

    To examine the consequences of increased spatial aggregation of livestock production facilities, we estimated the annual production of nitrogen in livestock waste in North Carolina, USA, and analyzed the potential distribution of atmospheric nitrogen deposition from confined animal feeding operations ('CAFO') lagoons. North Carolina is a national center for industrial livestock production. Livestock is increasingly being raised in CAFOs, where waste is frequently held, essentially untreated, in open-air lagoons. Reduced nitrogen in lagoons is volatilized as ammonia (NH 3 ), transported atmospherically, and deposited to other ecosystems. The Albemarle-Pamlico Sound, NC, is representative of nitrogen-sensitive coastal waters, and is a major component of the second largest estuarine complex in the U.S. We used GIS to model the area of water in the Sound within deposition range of CAFOs. We also evaluated the number of lagoons within deposition range of each 1 km 2 grid cell of the state. We considered multiple scenarios of atmospheric transport by varying distance and directionality. Modeled nitrogen deposition rates were particularly elevated for the Coastal Plain. This pattern matches empirical data, suggesting that observed regional patterns of reduced nitrogen deposition can be largely explained by two factors: limited atmospheric transport distance, and spatial aggregation of CAFOs. Under our medium-distance scenario, a small portion (roughly 22%) of livestock production facilities contributes disproportionately to atmospheric deposition of nitrogen to the Albemarle-Pamlico Sound. Furthermore, we estimated that between 14-37% of the state receives 50% of the state's atmospheric nitrogen deposition from CAFO lagoons. The estimated total emission from livestock is 134,000 t NH 3 yr -1 , 73% of which originates from the Coastal Plain. Stronger waste management and emission standards for CAFOs, particularly those on the Coastal Plain nearest to sensitive water bodies

  18. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Cratering histories of the intercrater plains. Ph.D. Thesis

    Science.gov (United States)

    Leake, M. A.

    1982-01-01

    The intercrater plains of Mercury and the Moon are defined, in part, by their high densities of small craters. The crater size frequency statistics presented in this chapter may help constrain the relative ages and origins of these surfaces. To this end, the effects of common geologic processes on crater frequency statistics are compared with the diameter frequency distributions of the intercrater regions of the Moon and Mercury. Such analyses may determine whether secondary craters dominate the distribution at small diameters, and whether volcanic plains or ballistic deposits form the intercrater surface. Determining the mass frequency distribution and flux of the impacting population is a more difficult problem. The necessary information such as scaling relationships between projectile energy and crater diameter, the relative fluxes of solar system objects, and the absolute ages of surface units is model dependent and poorly constrained, especially for Mercury.

  19. Flood hazard assessment in areas prone to flash flooding

    Science.gov (United States)

    Kvočka, Davor; Falconer, Roger A.; Bray, Michaela

    2016-04-01

    Contemporary climate projections suggest that there will be an increase in the occurrence of high-intensity rainfall events in the future. These precipitation extremes are usually the main cause for the emergence of extreme flooding, such as flash flooding. Flash floods are among the most unpredictable, violent and fatal natural hazards in the world. Furthermore, it is expected that flash flooding will occur even more frequently in the future due to more frequent development of extreme weather events, which will greatly increase the danger to people caused by flash flooding. This being the case, there will be a need for high resolution flood hazard maps in areas susceptible to flash flooding. This study investigates what type of flood hazard assessment methods should be used for assessing the flood hazard to people caused by flash flooding. Two different types of flood hazard assessment methods were tested: (i) a widely used method based on an empirical analysis, and (ii) a new, physically based and experimentally calibrated method. Two flash flood events were considered herein, namely: the 2004 Boscastle flash flood and the 2007 Železniki flash flood. The results obtained in this study suggest that in the areas susceptible to extreme flooding, the flood hazard assessment should be conducted using methods based on a mechanics-based analysis. In comparison to standard flood hazard assessment methods, these physically based methods: (i) take into account all of the physical forces, which act on a human body in floodwater, (ii) successfully adapt to abrupt changes in the flow regime, which often occur for flash flood events, and (iii) rapidly assess a flood hazard index in a relatively short period of time.

  20. Spatial and temporal variability of sediment deposition on artificial-lawn traps in a floodplain of the River Elbe

    Energy Technology Data Exchange (ETDEWEB)

    Baborowski, M. [Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brueckstrasse 3a, 39114 Magdeburg (Germany)]. E-mail: martina.baborowski@ufz.de; Buettner, O. [Department of Lake Research, Helmholtz Centre for Environmental Research - UFZ, Brueckstrasse 3a, 39114 Magdeburg (Germany); Morgenstern, P. [Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig (Germany); Krueger, F. [ELANA Boden Wasser Monitoring, Dorfstrasse 55, 39615 Falkenberg (Germany); Lobe, I. [Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brueckstrasse 3a, 39114 Magdeburg (Germany); Rupp, H. [Department of Soil Physics, Helmholtz Centre for Environmental Research - UFZ, Dorfstrasse 55, 39615 Falkenberg (Germany); Tuempling, W. v. [Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brueckstrasse 3a, 39114 Magdeburg (Germany)

    2007-08-15

    Artificial-lawn mats were used as sediment traps in floodplains to measure sediment input and composition during flood events. To estimate the natural variability, 10 traps were installed during two flood waves at three different morphological units in a meander loop of the River Elbe. The geochemical composition of deposited and suspended matter was compared. The sediment input showed weak correlations with concentration and composition of river water. It also correlated poorly with flood duration and level as well as distance of trap position from the main river. This is due to the high variability of the inundation, different morphological conditions and the variability of sources. The composition of the deposits and the suspended matter in the river water was comparable. Hence, for the investigated river reach, the expected pollution of the floodplain sediments can be derived from the pollution of the suspended matter in the river during the flood wave. - The deposition of polluted sediments on floodplains is characterised by a high local variability.

  1. Spatial and temporal variability of sediment deposition on artificial-lawn traps in a floodplain of the River Elbe

    International Nuclear Information System (INIS)

    Baborowski, M.; Buettner, O.; Morgenstern, P.; Krueger, F.; Lobe, I.; Rupp, H.; Tuempling, W. v.

    2007-01-01

    Artificial-lawn mats were used as sediment traps in floodplains to measure sediment input and composition during flood events. To estimate the natural variability, 10 traps were installed during two flood waves at three different morphological units in a meander loop of the River Elbe. The geochemical composition of deposited and suspended matter was compared. The sediment input showed weak correlations with concentration and composition of river water. It also correlated poorly with flood duration and level as well as distance of trap position from the main river. This is due to the high variability of the inundation, different morphological conditions and the variability of sources. The composition of the deposits and the suspended matter in the river water was comparable. Hence, for the investigated river reach, the expected pollution of the floodplain sediments can be derived from the pollution of the suspended matter in the river during the flood wave. - The deposition of polluted sediments on floodplains is characterised by a high local variability

  2. Assessing the role of large wood entrained in the 2013 Colorado Front Range flood in ongoing channel response and reservoir management

    Science.gov (United States)

    Bennett, Georgina; Rathburn, Sara; Ryan, Sandra; Wohl, Ellen; Blair, Aaron

    2016-04-01

    Considerable quantities of large wood (LW) may be entrained during floods with long lasting impacts on channel morphology, sediment and LW export, and downstream reservoir management. Here we present an analysis of LW entrained by an extensive flood in Colorado, USA. Over a 5 day period commencing 9th September 2013, up to 450 mm of rain, or ~1000% of the monthly average, fell in catchments spanning a 100-km-wide swath of the Colorado Front Range resulting in major flooding. Catchment response was dramatic, with reports of 100s - 1000s of years of erosion, destruction of infrastructure and homes, and sediment and LW loading within reservoirs. One heavily impacted catchment is the North St Vrain, draining 250km2 of the South Platte drainage basin. In addition to widespread channel enlargement, remote imagery reveals hundreds of landslides that delivered sediment and LW to the channel and ultimately to Ralph Price Reservoir, which provides municipal water to Longmont. The City of Longmont facilitated the removal of ~1050 m3 of wood deposited at the reservoir inlet by the flood but the potential for continued movement of large wood in the catchment presents an on-going concern for reservoir management. In collaboration with the City of Longmont, our objectives are (1) to quantify the volume of wood entrained by the flood and still stored along the channel, (2) characterize the size and distribution of LW deposits and (3) determine their role in ongoing catchment flood response and recovery. We utilize freely available pre and post flood NAIP 4-band imagery to calculate a normalized differential vegetation index (NDVI) difference map with which we calculate the area of vegetation entrained by the flood. We combine this with field assessments and a map of vegetation type automatically classified from optical satellite imagery to estimate the total flood-entrained volume of wood. Preliminary testing of 'stream selfies' - structure from motion imaging of LW deposits using

  3. Quantifying local-scale dust emission from the Arabian Red Sea coastal plain

    KAUST Repository

    Anisimov, Anatolii

    2017-01-23

    Dust plumes emitted from the narrow Arabian Red Sea coastal plain are often observed on satellite images and felt in local population centers. Despite its relatively small area, the coastal plain could be a significant dust source; however, its effect is not well quantified as it is not well approximated in global or even regional models. In addition, because of close proximity to the Red Sea, a significant amount of dust from the coastal areas could be deposited into the Red Sea and serve as a vital component of the nutrient balance of marine ecosystems. In the current study, we apply the offline Community Land Model version 4 (CLM4) to better quantify dust emission from the coastal plain during the period of 2009-2011. We verify the spatial and temporal variability in model results using independent weather station reports. We also compare the results with the MERRA Aerosol Reanalysis (MERRAero). We show that the best results are obtained with 1 km model spatial resolution and dust source function based on Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (SEVIRI) measurements. We present the dust emission spatial pattern, as well as estimates of seasonal and diurnal variability in dust event frequency and intensity, and discuss the emission regime in the major dust generation hot spot areas. We demonstrate the contrasting seasonal dust cycles in the northern and southern parts of the coastal plain and discuss the physical mechanisms responsible for dust generation. This study provides the first estimates of the fine-scale spatial and temporal distribution of dust emissions from the Arabian Red Sea coastal plain constrained by MERRAero and short-term WRF-Chem simulations. The estimate of total dust emission from the coastal plain, tuned to fit emissions in MERRAero, is 7.5 ± 0.5 Mt a. Small interannual variability indicates that the study area is a stable dust source. The mineralogical composition analysis shows that the coastal plain

  4. Quantifying local-scale dust emission from the Arabian Red Sea coastal plain

    KAUST Repository

    Anisimov, Anatolii; Tao, Weichun; Stenchikov, Georgiy L.; Kalenderski, Stoitchko; Jish Prakash, P.; Yang, Zong Liang; Shi, Mingjie

    2017-01-01

    Dust plumes emitted from the narrow Arabian Red Sea coastal plain are often observed on satellite images and felt in local population centers. Despite its relatively small area, the coastal plain could be a significant dust source; however, its effect is not well quantified as it is not well approximated in global or even regional models. In addition, because of close proximity to the Red Sea, a significant amount of dust from the coastal areas could be deposited into the Red Sea and serve as a vital component of the nutrient balance of marine ecosystems. In the current study, we apply the offline Community Land Model version 4 (CLM4) to better quantify dust emission from the coastal plain during the period of 2009-2011. We verify the spatial and temporal variability in model results using independent weather station reports. We also compare the results with the MERRA Aerosol Reanalysis (MERRAero). We show that the best results are obtained with 1 km model spatial resolution and dust source function based on Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (SEVIRI) measurements. We present the dust emission spatial pattern, as well as estimates of seasonal and diurnal variability in dust event frequency and intensity, and discuss the emission regime in the major dust generation hot spot areas. We demonstrate the contrasting seasonal dust cycles in the northern and southern parts of the coastal plain and discuss the physical mechanisms responsible for dust generation. This study provides the first estimates of the fine-scale spatial and temporal distribution of dust emissions from the Arabian Red Sea coastal plain constrained by MERRAero and short-term WRF-Chem simulations. The estimate of total dust emission from the coastal plain, tuned to fit emissions in MERRAero, is 7.5 ± 0.5 Mt a. Small interannual variability indicates that the study area is a stable dust source. The mineralogical composition analysis shows that the coastal plain

  5. Frequent floods in the European Alps coincide with cooler periods of the past 2500 years.

    Science.gov (United States)

    Glur, Lukas; Wirth, Stefanie B; Büntgen, Ulf; Gilli, Adrian; Haug, Gerald H; Schär, Christoph; Beer, Jürg; Anselmetti, Flavio S

    2013-09-26

    Severe floods triggered by intense precipitation are among the most destructive natural hazards in Alpine environments, frequently causing large financial and societal damage. Potential enhanced flood occurrence due to global climate change would thus increase threat to settlements, infrastructure, and human lives in the affected regions. Yet, projections of intense precipitation exhibit major uncertainties and robust reconstructions of Alpine floods are limited to the instrumental and historical period. Here we present a 2500-year long flood reconstruction for the European Alps, based on dated sedimentary flood deposits from ten lakes in Switzerland. We show that periods with high flood frequency coincide with cool summer temperatures. This wet-cold synchronism suggests enhanced flood occurrence to be triggered by latitudinal shifts of Atlantic and Mediterranean storm tracks. This paleoclimatic perspective reveals natural analogues for varying climate conditions, and thus can contribute to a better understanding and improved projections of weather extremes under climate change.

  6. Thirty Years Later: Reflections of the Big Thompson Flood, Colorado, 1976 to 2006

    Science.gov (United States)

    Jarrett, R. D.; Costa, J. E.; Brunstein, F. C.; Quesenberry, C. A.; Vandas, S. J.; Capesius, J. P.; O'Neill, G. B.

    2006-12-01

    . When substantial flooding occurs, the USGS mobilizes personnel to collect streamflow data in affected areas. Streamflow data improve flood forecasting and provide data for flood-frequency analysis for floodplain management, design of structures located in floodplains, and related water studies. An important lesson learned is that nature provides environmental signs before and during floods that can help people avoid hazard areas. Important contributions to flood science as a result of the 1976 flood include development of paleoflood methods to interpret the preserved flood-plain stratigraphy to document the number, magnitude, and age of floods that occurred prior to streamflow monitoring. These methods and data on large floods can be used in many mountain-river systems to help us better understand flood hazards and plan for the future. For example, according to conventional flood-frequency analysis, the 1976 Big Thompson flood had a flood recurrence interval of about 100 years. However, paleoflood research indicated the 1976 flood was the largest in about the last 10,000 years in the basin and had a flood recurrence interval in excess of 1,000 years.

  7. The use of multi temporal LiDAR to assess basin-scale erosion and deposition following the catastrophic January 2011 Lockyer flood, SE Queensland, Australia

    Science.gov (United States)

    Croke, Jacky; Todd, Peter; Thompson, Chris; Watson, Fiona; Denham, Robert; Khanal, Giri

    2013-02-01

    Advances in remote sensing and digital terrain processing now allow for a sophisticated analysis of spatial and temporal changes in erosion and deposition. Digital elevation models (DEMs) can now be constructed and differenced to produce DEMs of Difference (DoD), which are used to assess net landscape change for morphological budgeting. To date this has been most effectively achieved in gravel-bed rivers over relatively small spatial scales. If the full potential of the technology is to be realised, additional studies are required at larger scales and across a wider range of geomorphic features. This study presents an assessment of the basin-scale spatial patterns of erosion, deposition, and net morphological change that resulted from a catastrophic flood event in the Lockyer Creek catchment of SE Queensland (SEQ) in January 2011. Multitemporal Light Detection and Ranging (LiDAR) DEMs were used to construct a DoD that was then combined with a one-dimensional flow hydraulic model HEC-RAS to delineate five major geomorphic landforms, including inner-channel area, within-channel benches, macrochannel banks, and floodplain. The LiDAR uncertainties were quantified and applied together with a probabilistic representation of uncertainty thresholded at a conservative 95% confidence interval. The elevation change distribution (ECD) for the 100-km2 study area indicates a magnitude of elevation change spanning almost 10 m but the mean elevation change of 0.04 m confirms that a large part of the landscape was characterised by relatively low magnitude changes over a large spatial area. Mean elevation changes varied by geomorphic feature and only two, the within-channel benches and macrochannel banks, were net erosional with an estimated combined loss of 1,815,149 m3 of sediment. The floodplain was the zone of major net deposition but mean elevation changes approached the defined critical limit of uncertainty. Areal and volumetric ECDs for this extreme event provide a

  8. Impact of Sulphur Content on Coal Quality at Delta Plain Depositional Environment: Case study in Geramat District, Lahat Regency, South Sumatra

    Directory of Open Access Journals (Sweden)

    Siska Linda Sari

    2017-09-01

    Full Text Available The research was conducted in Geramat District of Lahat Regency, South Sumatra. An evaluation of the geological condition of the research area shown that the coal deposits were found in Muara Enim Formation as a coal-bearing formation. The method used was literature study, field observation and the laboratory work includes proximate and petrography analysis. The aim of this research is to determine the environmental condition of coal based on the change of total sulphur content and to know the relation between ash content to calorific value.  As the result of proximate analysis conducted on five samples of coal, the research area obtained total sulphur (0,21-1,54% adb, ash content (3,16 - 71,11% adb and gross calorific value (953 - 5676 cal/g. adb. Based on the result of maceral analysis showed the maceral percentage of coal in research area composed by vitrinite (77,8-87,4 %, liptinite (0,6 %, inertinite (8,0 – 17,6 % and mineral matter concentration in the form of pyrite (1,6-4,6 %. The average reflectance value of vitrinite (Rv of coal in the research area (0.54%. the results analysis shows that the coal in Muara Enim Formation on the research area is in the transitional lower delta plain depositional environment phase. Any changes in the sedimentary environment affected by sea water will be followed by changes in total sulphur and the higher ash content, on the contrary, the lower calorific value of the coal.

  9. Development of flood index by characterisation of flood hydrographs

    Science.gov (United States)

    Bhattacharya, Biswa; Suman, Asadusjjaman

    2015-04-01

    In recent years the world has experienced deaths, large-scale displacement of people, billions of Euros of economic damage, mental stress and ecosystem impacts due to flooding. Global changes (climate change, population and economic growth, and urbanisation) are exacerbating the severity of flooding. The 2010 floods in Pakistan and the 2011 floods in Australia and Thailand demonstrate the need for concerted action in the face of global societal and environmental changes to strengthen resilience against flooding. Due to climatological characteristics there are catchments where flood forecasting may have a relatively limited role and flood event management may have to be trusted upon. For example, in flash flood catchments, which often may be tiny and un-gauged, flood event management often depends on approximate prediction tools such as flash flood guidance (FFG). There are catchments fed largely by flood waters coming from upstream catchments, which are un-gauged or due to data sharing issues in transboundary catchments the flow of information from upstream catchment is limited. Hydrological and hydraulic modelling of these downstream catchments will never be sufficient to provide any required forecasting lead time and alternative tools to support flood event management will be required. In FFG, or similar approaches, the primary motif is to provide guidance by synthesising the historical data. We follow a similar approach to characterise past flood hydrographs to determine a flood index (FI), which varies in space and time with flood magnitude and its propagation. By studying the variation of the index the pockets of high flood risk, requiring attention, can be earmarked beforehand. This approach can be very useful in flood risk management of catchments where information about hydro-meteorological variables is inadequate for any forecasting system. This paper presents the development of FI and its application to several catchments including in Kentucky in the USA

  10. General Reevaluation Report and Environmental Impact Statement for the Blanchard River, Ottawa, Ohio Flood Protection Project

    Science.gov (United States)

    1987-04-01

    Black locust Black willow Honey locust Mulberry Slippery elm Box elder Cottonwood Multiflora rose Green ash Hackberry The U.S. Fish and Wildlife Service...flows in the Blanchard River at Ottawa. The Perry Street bridge was removed in 1951 and replaced by a new bridge at Elm Street that is less restrictive...flood plain. The present tree growth commonly consists of a second growth of spe- cies of elm , maple, and oak. All of the Blanchard River basin lies

  11. Seismic Investigation of the Glacier de la Plaine Morte, Switzerland

    Science.gov (United States)

    Laske, Gabi; Lindner, Fabian; Walter, Fabian; Krage, Manuel

    2017-04-01

    Glacier de la Plaine Morte is a plateau glacier along the border between Valais and Berne cantons. It covers a narrow elevation range and is extremely vulnerable to climate change. During snow melt, it feeds three marginal lakes that have experienced sudden subglacial drainage in recent years, thereby causing flooding in the Simme Valley below. Of greatest concern is Lac des Faverges at the southeastern end of the glacier that has drained near the end of July in recent years, with flood levels reaching capacity of flood control systems downstream. The lake levels are carefully monitored but precise prediction has not yet been achieved. In the search for precursory ice fracturing to the lake drainage to improve forecast, four seismic arrays comprised of five short-period borehole seismometers provided by Eidgenössische Technische Hochschule (ETH), Zürich as well as fifteen 3-component geophones from the Geophysical Instrument Pool Potsdam (GIPP) collected continuous seismic data for about seven weeks during the summer of 2016. We present initial results on discharge dynamics as well as changing noise levels and seismicity before, during and after the drainage of Lac des Faverges. Compared to previous recent years, the 2016 drainage of Lac des Faverges occurred unusually late on August 28. With an aperture between 100 and 200 m, the small arrays recorded many hundred ice quakes per day. A majority of the events exhibits clearly dispersed, high-frequency Rayleigh waves at about 10 Hz and higher. A wide distribution of events allows us to study azimuthal anisotropy and its relationship with the orientation of glacial crevasses.

  12. Dam-breach analysis and flood-inundation mapping for Lakes Ellsworth and Lawtonka near Lawton, Oklahoma

    Science.gov (United States)

    Rendon, Samuel H.; Ashworth, Chad E.; Smith, S. Jerrod

    2012-01-01

    Dams provide beneficial functions such as flood control, recreation, and reliable water supplies, but they also entail risk: dam breaches and resultant floods can cause substantial property damage and loss of life. The State of Oklahoma requires each owner of a high-hazard dam, which the Federal Emergency Management Agency defines as dams for which failure or misoperation probably will cause loss of human life, to develop an emergency action plan specific to that dam. Components of an emergency action plan are to simulate a flood resulting from a possible dam breach and map the resulting downstream flood-inundation areas. The resulting flood-inundation maps can provide valuable information to city officials, emergency managers, and local residents for planning the emergency response if a dam breach occurs. Accurate topographic data are vital for developing flood-inundation maps. This report presents results of a cooperative study by the city of Lawton, Oklahoma, and the U.S. Geological Survey (USGS) to model dam-breach scenarios at Lakes Ellsworth and Lawtonka near Lawton and to map the potential flood-inundation areas of such dam breaches. To assist the city of Lawton with completion of the emergency action plans for Lakes Ellsworth and Lawtonka Dams, the USGS collected light detection and ranging (lidar) data that were used to develop a high-resolution digital elevation model and a 1-foot contour elevation map for the flood plains downstream from Lakes Ellsworth and Lawtonka. This digital elevation model and field measurements, streamflow-gaging station data (USGS streamflow-gaging station 07311000, East Cache Creek near Walters, Okla.), and hydraulic values were used as inputs for the dynamic (unsteady-flow) model, Hydrologic Engineering Center's River Analysis System (HEC-RAS). The modeled flood elevations were exported to a geographic information system to produce flood-inundation maps. Water-surface profiles were developed for a 75-percent probable maximum

  13. Temporal clustering of floods in Germany: Do flood-rich and flood-poor periods exist?

    Science.gov (United States)

    Merz, Bruno; Nguyen, Viet Dung; Vorogushyn, Sergiy

    2016-10-01

    The repeated occurrence of exceptional floods within a few years, such as the Rhine floods in 1993 and 1995 and the Elbe and Danube floods in 2002 and 2013, suggests that floods in Central Europe may be organized in flood-rich and flood-poor periods. This hypothesis is studied by testing the significance of temporal clustering in flood occurrence (peak-over-threshold) time series for 68 catchments across Germany for the period 1932-2005. To assess the robustness of the results, different methods are used: Firstly, the index of dispersion, which quantifies the departure from a homogeneous Poisson process, is investigated. Further, the time-variation of the flood occurrence rate is derived by non-parametric kernel implementation and the significance of clustering is evaluated via parametric and non-parametric tests. Although the methods give consistent overall results, the specific results differ considerably. Hence, we recommend applying different methods when investigating flood clustering. For flood estimation and risk management, it is of relevance to understand whether clustering changes with flood severity and time scale. To this end, clustering is assessed for different thresholds and time scales. It is found that the majority of catchments show temporal clustering at the 5% significance level for low thresholds and time scales of one to a few years. However, clustering decreases substantially with increasing threshold and time scale. We hypothesize that flood clustering in Germany is mainly caused by catchment memory effects along with intra- to inter-annual climate variability, and that decadal climate variability plays a minor role.

  14. Flood impact assessment on the development of Archaia Olympia riparian area in Greece.

    Science.gov (United States)

    Pasaporti, Christina; Podimata, Marianthi; Yannopoulos, Panayotis

    2013-04-01

    A long list of articles in the literature examines several issues of flood risk management and applications of flood scenarios, taking into consideration the climate changes, as well as decision making tools in flood planning. The present study tries to highlight the conversation concerning flood impacts on the development rate of a riparian area. More specifically, Archaia (Ancient) Olympia watershed was selected as a case study area, since it is considered as a region of special interest and international significance. In addition, Alfeios River, which is the longest river of Peloponnisos Peninsula, passes through the plain of Archaia Olympia. Flood risk scenarios allow scientists and practitioners to understand the adverse effects of flooding on development activities such as farming, tourism etc. and infrastructures in the area such as road and railway networks, Flokas dam and the hydroelectric power plant, bridges, settlements and other properties. Flood risks cause adverse consequences on the region of Archaia Olympia (Ancient Olympic stadium) and Natura 2000 site area. Furthermore, SWOT analysis was used in order to quantify multicriteria and socio-economic characteristics of the study area. SWOT analysis, as a planning method, indicates the development perspective by identifying the strengths, weaknesses, threads and opportunities. Subsequent steps in the process of intergraded River Management Plan of Archaia Olympia could be derived from SWOT analysis. The recognition and analysis of hydro-geomorphological influences on riparian development activities can lead to the definition of hazardous and vulnerability zones and special warning equipment. The former information combined with the use of the spatial database for the catchment area of the River Alfeios, which aims to gather multiple watershed data, could serve in preparing the Management Plan of River Basin District 01 where Alfeios R. belongs. Greece has to fulfill the obligation of implementing River

  15. Atmospheric deposition as an important nitrogen load to a typical agro-ecosystem in the Huang-Huai-Hai Plain. 2. Seasonal and inter-annual variations and their implications (2008-2012)

    Science.gov (United States)

    Huang, Ping; Zhang, Jiabao; Ma, Donghao; Wen, Zhaofei; Wu, Shengjun; Garland, Gina; Pereira, Engil Isadora Pujol; Zhu, Anning; Xin, Xiuli; Zhang, Congzhi

    2016-03-01

    Atmospheric nitrogen (N) deposition, an important N source to agro-ecosystems, has increased intensively in China during recent decades. However, knowledge on temporal variations of total N deposition and their influencing factors is limited due to lack of systematic monitoring data. In this study, total N deposition, including dry and wet components, was monitored using the water surrogate surface method for a typical agro-ecosystem with a winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system in the Huang-Huai-Hai Plain from May 2008 to April 2012. The results indicated that annual total N deposition ranged from 23.8 kg N ha-1 (2009-2010) to 40.3 kg N ha-1 (2008-2009) and averaged 31.8 kg N ha-1. Great inter-annual variations were observed during the sampling period, due to differences in annual rainfall and gaseous N losses from farmlands. Monthly total N deposition varied greatly, from less than 0.6 kg N ha-1 (January, 2010) to over 8.0 kg N ha-1 (August, 2008), with a mean value of 2.6 kg N ha-1. In contrast to wet deposition, dry portions generally contributed more to the total, except in the precipitation-intensive months, accounting for 65% in average. NH4+ -N was the dominant species in N deposition and its contribution to total deposition varied from 6% (December, 2009) to 79% (July, 2008), averaging 53%. The role of organic N (O-N) in both dry and wet deposition was equal to or even greater than that of NO3- -N. Influencing factors such as precipitation and its seasonal distribution, reactive N sources, vegetation status, field management practices, and weather conditions were responsible for the temporal variations of atmospheric N deposition and its components. These results are helpful for reducing the knowledge gaps in the temporal variations of atmospheric N deposition and their influencing factors in different ecosystems, to improve the understandings on N budget in the typical agro-ecosystem, and to provide references

  16. Flood Prediction for the Tam Nong District in Mekong Delta Using Hydrological Modelling and Hydrologic Remote Sensing Technique

    Science.gov (United States)

    Kappas, Martin; Nguyen Hong, Quang; Thanh, Nga Pham Thi; Thu, Hang Le Thi; Nguyen Vu, Giang; Degener, Jan; Rafiei Emam, Ammar

    2017-04-01

    There has been an increasing attention to the large trans-boundary Mekong river basin due to various problems related to water management and flood control, for instance. Vietnam Mekong delta is located at the downstream of the river basin where is affected most by this human-induced reduction in flows from the upstream. On the other hand, the flood plain of nine anastomosing channels is increasingly effected by the seawater intrusion due to sea level rising of climate change. This results in negative impacts of salinization, drought, and floods, while formerly flooding had frequently brought positive natural gain of irrigation water and alluvial aggradation. In this research, our aim is to predict flooding for the better water management adaptation and control. We applied the model HEC-SSP 2.1 to analyze flood flow frequency, two-dimensional unsteady flow calculations in HEC-RAS 5.0 for simulating a floodplain inundation. Remote sensing-based water level (Jason-2) and inundation map were used for validation and comparison with the model simulations. The results revealed a reduction of water level at all the monitoring stations, particularly in the last decade. In addition, a trend of the inundation extension gradually declined, but in some periods it remained severe due to water release from upstream reservoirs during the rainy season (October-November). We found an acceptable agreement between the HEC-RAS and remote sensing flooding maps (around 70%). Based on the flood routine analysis, we could conclude that the water level will continue lower and lead to a trend of drought and salinization harsher in the near future. Keywords: Mekong delta, flood control, inundation, water management, hydrological modelling, remote sensing

  17. Geomorphic effects, flood power, and channel competence of a catastrophic flood in confined and unconfined reaches of the upper Lockyer valley, southeast Queensland, Australia

    Science.gov (United States)

    Thompson, Chris; Croke, Jacky

    2013-09-01

    Flooding is a persistent natural hazard, and even modest changes in future climate are believed to lead to large increases in flood magnitude. Previous studies of extreme floods have reported a range of geomorphic responses from negligible change to catastrophic channel change. This paper provides an assessment of the geomorphic effects of a rare, high magnitude event that occurred in the Lockyer valley, southeast Queensland in January 2011. The average return interval of the resulting flood was ~ 2000 years in the upper catchment and decreased to ~ 30 years downstream. A multitemporal LiDAR-derived DEM of Difference (DoD) is used to quantify morphological change in two study reaches with contrasting valley settings (confined and unconfined). Differences in geomorphic response between reaches are examined in the context of changes in flood power, channel competence and degree of valley confinement using a combination of one-dimensional (1-D) and two-dimensional (2-D) hydraulic modelling. Flood power peaked at 9800 W m- 2 along the confined reach and was 2-3 times lower along the unconfined reach. Results from the DoD confirm that the confined reach was net erosional, exporting ~ 287,000 m3 of sediment whilst the unconfined reach was net depositional gaining ~ 209,000 m3 of sediment, 70% of the amount exported from the upstream, confined reach. The major sources of eroded sediment in the confined reach were within channel benches and macrochannel banks resulting in a significant increase of channel width. In the unconfined reach, the benches and floodplains were the major loci for deposition, whilst the inner channel exhibited minor width increases. The presence of high stream power values, and resultant high erosion rates, within the confined reach is a function of the higher energy gradient of the steeper channel that is associated with knickpoint development. Dramatic differences in geomorphic responses were observed between the two adjacent reaches of

  18. Plain formation on Mercury: tectonic implications

    International Nuclear Information System (INIS)

    Thomas, P.

    1980-01-01

    Four major plain units, plus intermediates, are distinguished on Mercury. The chronologic relationships between these plains indicate that plains formation was a permanent process on Mercury. Their location and morphology seem to indicate a possible volcanic origin for these plains. The relationships between tectonism and volcanism seems to indicate the global contraction is not the only tectonic process on Mercury. (Auth.)

  19. Limitations of patterning thin films by shadow mask high vacuum chemical vapor deposition

    International Nuclear Information System (INIS)

    Reinke, Michael; Kuzminykh, Yury; Hoffmann, Patrik

    2014-01-01

    A key factor in engineering integrated devices such as electro-optic switches or waveguides is the patterning of high quality crystalline thin films into specific geometries. In this contribution high vacuum chemical vapor deposition (HV-CVD) was employed to grow titanium dioxide (TiO 2 ) patterns onto silicon. The directed nature of precursor transport – which originates from the high vacuum environment during the process – allows shading certain regions on the substrate by shadow masks and thus depositing patterned thin films. While the use of such masks is an emerging field in stencil or shadow mask lithography, their use for structuring thin films within HV-CVD has not been reported so far. The advantage of the employed technique is the precise control of lateral spacing and of the distance between shading mask and substrate surface which is achieved by manufacturing them directly on the substrate. As precursor transport takes place in the molecular flow regime, the precursor impinging rates (and therefore the film growth rates) on the surface can be simulated as function of the reactor and shading mask geometry using a comparatively simple mathematical model. In the current contribution such a mathematical model, which predicts impinging rates on plain or shadow mask structured substrates, is presented. Its validity is confirmed by TiO 2 -deposition on plain silicon substrates (450 °C) using titanium tetra isopropoxide as precursor. Limitations of the patterning process are investigated by the deposition of TiO 2 on structured substrates and subsequent shadow mask lift-off. The geometry of the deposits is according to the mathematical model. Shading effects due to the growing film enables to fabricate deposits with predetermined variations in topography and non-flat top deposits which are complicated to obtain by classical clean room processes. As a result of the enhanced residual pressure of decomposition products and titanium precursors and the

  20. The relation of catastrophic flooding of Mangala Valles, Mars, to faulting of Memnonia Fossae and Tharsis volcanism

    International Nuclear Information System (INIS)

    Tanaka, K.L.; Chapman, M.G.

    1990-01-01

    Detailed stratigraphic relations indicate two coeval periods of catastrophic flooding and Tharsis-centered faulting (producing Memnonia Fossae) in the Mangala Valles region of Mars. Major sequences of lava flows of the Tharsis Montes Formation and local, lobate plains flows were erupted during and between these channeling and faulting episodes. First, Late Hesperian channel development overlapped in time the Tharsis-centered faulting that trends north 75 degree to 90 degree E. Next, Late Hesperian/Early Amazonian flooding was coeval with faulting that trends north 55 degree to 70 degree E. In some reaches, resistant lava flows filled the early channels, resulting in inverted channel topography after the later flooding swept through. Both floods likely originated from the same graben, which probably was activated during each episode of faulting. Faulting broke through groundwater barriers and tapped confined aquifers in higher regions west and east of the point of discharge. The minimum volume of water required to erode Mangala Valles (about 5 x 10 12 m 3 ) may have been released through two floods that drained a few percent pore volume from a relatively permeable aquifer. The peak discharges of the floods may have lasted from days to weeks. The perched water discharged from the aquifer may have been produced by hydrothermal groundwater circulation induced by Tharsis magmatism, tectonic uplift centered at Tharsis Montes, and compacting of saturated crater ejecta due to loading by lava flows

  1. The eolic fluvial succession and paleoclimatic evolution of Rio Conlara, San Luis, Argentina

    International Nuclear Information System (INIS)

    Chiesa, J.

    2004-01-01

    The outcroping deposits in the ravines of the Conlara River are dominated by silt with subordinated and variable percentages of sand and clays. In the section that is described, at the south of the town of Santa Rosa del Conlara, these materials have been deposited responding generally climatic changing conditions. The base of the profile, assigned to the late Pleistocene, contains extint fauna of the Lujanense and a datation of 8950 B.P., and it is represented by fluvial sandy gravels. The overlaying succession, assigned to the Holocene, shows an intercalation of horizons generated by eolic-loessic deposits and deposits with development of pedogenetic processes. The whole succession shows characteristic of corresponding to a vegetated plain, next to the river flood plain. The discriminated horizons are the result of a detailed sampling and the representation of range parameters of the same ones, in function of the depth, this last one oscillates between 6 and 8 meters. The quaternary deposits of the region, support indistinctly as on the crystalline basement of San Luis range, as on the calcretes assigned to the Neogene [es

  2. Paleoflood Data, Extreme Floods and Frequency: Data and Models for Dam Safety Risk Scenarios

    Science.gov (United States)

    England, J. F.; Godaire, J.; Klinger, R.

    2007-12-01

    Extreme floods and probability estimates are crucial components in dam safety risk analysis and scenarios for water-resources decision making. The field-based collection of paleoflood data provides needed information on the magnitude and probability of extreme floods at locations of interest in a watershed or region. The stratigraphic record present along streams in the form of terrace and floodplain deposits represent direct indicators of the magnitude of large floods on a river, and may provide 10 to 100 times longer records than conventional stream gaging records of large floods. Paleoflood data is combined with gage and historical streamflow estimates to gain insights to flood frequency scaling, model extrapolations and uncertainty, and provide input scenarios to risk analysis event trees. We illustrate current data collection and flood frequency modeling approaches via case studies in the western United States, including the American River in California and the Arkansas River in Colorado. These studies demonstrate the integration of applied field geology, hydraulics, and surface-water hydrology. Results from these studies illustrate the gains in information content on extreme floods, provide data- based means to separate flood generation processes, guide flood frequency model extrapolations, and reduce uncertainties. These data and scenarios strongly influence water resources management decisions.

  3. Structural Characteristics of Nocturnal Mesoscale Convective Systems in the U.S. Great Plains as Observed During the PECAN Field Campaign

    Science.gov (United States)

    Bodine, D. J.; Dougherty, E.; Rasmussen, K. L.; Torres, A. D.

    2015-12-01

    During the summer in the U.S. Great Plains, some of the heaviest precipitation falls from large thunderstorm complexes known as Mesoscale Convective Systems (MCSs). These frequently occurring MCSs are often nocturnal in nature, so the dynamics associated with these systems are more elusive than those in the daytime. The Plains Elevated Convection at Night (PECAN) field campaign was launched over a 7-week period as an endeavor to better understand nocturnal MCSs occurring in the Great Plains. PECAN featured a dense array of ground-based and airborne instruments to observe nocturnal MCS, including dual-polarization radars at multiple frequencies, mobile mesonets, and sounding units. Our role in PECAN involved deploying Ott Parsivel disdrometers to gain information on drop size distributions (DSDs) and fall speeds. Analysis of disdrometer data in conjunction with radar data presented using Contour Frequency by Altitude Diagrams (CFADs) and high-resolution radiosonde data allows for a structural comparison of PECAN MCS cases to previously identified MCS archetypes. Novel insights into the structural evolution of nocturnal MCSs in relation to their synoptic, mesoscale, and thermodynamic environments are presented, using data collected from dense and numerous observation platforms. Understanding the environmental conditions that result in different nocturnal MCS configurations is useful for gaining insight into precipitation distributions and potential severe weather and flooding hazards in the Great Plains.

  4. Changes in the composition of organic matter from prodeltaic sediments after a large flood event (Po River, Italy)

    Science.gov (United States)

    Tesi, T.; Langone, L.; Goñi, M. A.; Miserocchi, S.; Bertasi, F.

    2008-04-01

    The Po River (Italy) experienced a 100-year flood in October 2000. Surface sediments (0-1 cm) from cross-shelf transects were collected in the Po prodelta area (Adriatic Sea) in December 2000, in order to describe the distribution of organic matter (OM) along the main sediment dispersal system immediately after the flood event. Stations were subsequently reoccupied in October 2001 and April 2002. This sampling program provided a special opportunity to characterize the initial surficial flood deposit and the evolution of its associated OM over the course of 2 years. CuO oxidation, elemental, δ 13C, Δ 14C, and grain-size analyses were carried out to characterize the source, age, and spatial variability of sedimentary OM. Statistical analysis (PERMANOVA) was then applied to investigate temporal changes in different portions of the Po prodelta area. Isotopic and biomarker data suggest that the sedimentary OM in the flood deposit was initially dominated by aged (Δ 14C Dec-00 = -298.7 ± 56.3‰), lignin-poor OM (Λ Dec-00 = 1.96 ± 0.33 mg/100 mg OC), adsorbed on the fine material (clay Dec-00 = 72.1 ± 4.8%) delivered by the flood. In the 2 years following the flood, post-depositional processes significantly increased the content of lignin (Λ Oct-01 = 2.19 ± 0.51 mg/100 mg OC; Λ Apr-02 = 2.61 ± 0.63 mg/100 mg OC); and coarse material (silt and sand), while decreasing the contributions from aged OC (Δ 14C Oct-01 = -255.7 ± 32.8‰; Δ 14C Apr-02 = -213.2 ± 30.4‰) and fine fraction (clay Oct-01 = 54.8 ± 9.5%; clay Apr-02 = 44.6 ± 13.3%). The major changes were observed in the northern and central portions of the prodelta.

  5. A decade of investigations on groundwater arsenic contamination in Middle Ganga Plain, India.

    Science.gov (United States)

    Saha, Dipankar; Sahu, Sudarsan

    2016-04-01

    Groundwater arsenic (As) load in excess of drinking limit (50 µg L(-1)) in the Gangetic Plains was first detected in 2002. Though the menace was known since about two decades from the downstream part of the plains in the Bengal Basin, comprising of Lower Ganga Plain and deltaic plains of Ganga-Brahmaputra-Meghna River system, little thought was given to its possible threat in the upstream parts in the Gangetic Plains beyond Garo-Rajmahal Hills. The contamination in Bengal Basin has become one of the extensively studied issues in the world and regarded as the severest case of health hazard in the history of mankind. The researches and investigations in the Gangetic Plains during the last decade (2003-2013) revealed that the eastern half of the plains, also referred as Middle Ganga Plain (MGP), is particularly affected by contamination, jeopardising the shallow aquifer-based drinking water supply. The present paper reviews researches and investigations carried out so far in MGP by various research institutes and government departments on wide array of issues of groundwater As such as its spatio-temporal variation, mobilisation paths, water level behaviour and flow regime, configuration of contaminated and safe aquifers and their recharge mechanism. Elevated conc. of groundwater As has been observed in grey and dark grey sediments of Holocene age (Newer Alluvium) deposited in a fluvio-lacustrine environment in the floodplain of the Ganga and most of its northern tributaries from Himalayas. Older Alluvium, comprising Pleistocene brownish yellow sediment, extending as deeper aquifers in Newer Alluvium areas, is low in groundwater As. Similarities and differences on issues between the MGP and the Bengal Basin have been discussed. The researches point towards the mobilisation process as reductive dissolution of iron hydroxide coating, rich in adsorbed As, mediated by microbial processes. The area is marked with shallow water level (<8.0 m below ground) with ample

  6. LITHOLOGIC CONDITIONS OF THE WATER TABLE LOGGING IN THE AREA OF HAĆKI VILLAGE IN THE BIELSKA PLAIN

    Directory of Open Access Journals (Sweden)

    Krzysztof Micun

    2016-05-01

    Full Text Available The aim of the study was to examine lithological conditions of the water table in the area of Haćki village located in the Bielska Plain. The study involved the measurements of water level in dug wells, hand drill probing to a depth of 5 m, acquiring the samples of water-bearing deposits and analysing their granulation. The results of analyses allowed to calculate the permeability coefficient. The geological structure of the area is dominated by dusty deposits of various origins. Such deposits’ formation directly affects the conditions of filtration and depth of the water table. Groundwater logging near Haćki village in the Bielska Plain appears at a depth of several tens of centimeters to 2 meters in the depressions field and up a little over 5 meters in the case of higher ground surfaces. The presence of perched water was revealed on the hills, periodic leachates at the foot of the hills and scarps and one periodic spring. Water-bearing deposits are medium sands, fine sands and loamy fine sands or fine sands with silt. Consequently, the permeability coefficient is low or even very low. Its values range from 0,001 m·d-1 to 3,8 m·d-1 (d – 24 hours. The widespread presence of dusty deposits in the area affects the limited efficiency of the water table.

  7. Application of Flood Nomograph for Flood Forecasting in Urban Areas

    Directory of Open Access Journals (Sweden)

    Eui Hoon Lee

    2018-01-01

    Full Text Available Imperviousness has increased due to urbanization, as has the frequency of extreme rainfall events by climate change. Various countermeasures, such as structural and nonstructural measures, are required to prepare for these effects. Flood forecasting is a representative nonstructural measure. Flood forecasting techniques have been developed for the prevention of repetitive flood damage in urban areas. It is difficult to apply some flood forecasting techniques using training processes because training needs to be applied at every usage. The other flood forecasting techniques that use rainfall data predicted by radar are not appropriate for small areas, such as single drainage basins. In this study, a new flood forecasting technique is suggested to reduce flood damage in urban areas. The flood nomograph consists of the first flooding nodes in rainfall runoff simulations with synthetic rainfall data at each duration. When selecting the first flooding node, the initial amount of synthetic rainfall is 1 mm, which increases in 1 mm increments until flooding occurs. The advantage of this flood forecasting technique is its simple application using real-time rainfall data. This technique can be used to prepare a preemptive response in the process of urban flood management.

  8. Development of web-based services for an ensemble flood forecasting and risk assessment system

    Science.gov (United States)

    Yaw Manful, Desmond; He, Yi; Cloke, Hannah; Pappenberger, Florian; Li, Zhijia; Wetterhall, Fredrik; Huang, Yingchun; Hu, Yuzhong

    2010-05-01

    Flooding is a wide spread and devastating natural disaster worldwide. Floods that took place in the last decade in China were ranked the worst amongst recorded floods worldwide in terms of the number of human fatalities and economic losses (Munich Re-Insurance). Rapid economic development and population expansion into low lying flood plains has worsened the situation. Current conventional flood prediction systems in China are neither suited to the perceptible climate variability nor the rapid pace of urbanization sweeping the country. Flood prediction, from short-term (a few hours) to medium-term (a few days), needs to be revisited and adapted to changing socio-economic and hydro-climatic realities. The latest technology requires implementation of multiple numerical weather prediction systems. The availability of twelve global ensemble weather prediction systems through the ‘THORPEX Interactive Grand Global Ensemble' (TIGGE) offers a good opportunity for an effective state-of-the-art early forecasting system. A prototype of a Novel Flood Early Warning System (NEWS) using the TIGGE database is tested in the Huai River basin in east-central China. It is the first early flood warning system in China that uses the massive TIGGE database cascaded with river catchment models, the Xinanjiang hydrologic model and a 1-D hydraulic model, to predict river discharge and flood inundation. The NEWS algorithm is also designed to provide web-based services to a broad spectrum of end-users. The latter presents challenges as both databases and proprietary codes reside in different locations and converge at dissimilar times. NEWS will thus make use of a ready-to-run grid system that makes distributed computing and data resources available in a seamless and secure way. An ability to run or function on different operating systems and provide an interface or front that is accessible to broad spectrum of end-users is additional requirement. The aim is to achieve robust interoperability

  9. The analysis on the flood property of Weihe River in 2003

    International Nuclear Information System (INIS)

    Liu Longqing; Jiang Xinhui

    2004-01-01

    From the end of Aug to Oct in 2003, it occurred a serious rainfall in the Weihe River --the largest tributary of Yellow River. The rainfall is rare in the history with long duration in the Weihe River valley so that 5 successive floods have formed at the controlling hydrological station-Huaxian station. Those floods overflow the beach, broke the dykes and flood the big area of Lower Weihe River. The natural adversity made near 200.000 populations leave their homeland the serious economic losses. The durations of the floods are long, the water levels are high and the volume of floods is largeness, which is rare in the history to a large extent. The flood peak at Huaxian station is up to 3570 m 3 /s, which is the first biggest peak since 1992. In recent years, owing to the fact that probability of the big flood on Weihe River was rare, the main river was withered clearly, propagation time of flood is lengthened and the discharge flowing over the floodplain was only 800-1000 m 3 /s. The water producing areas of those floods were in the area with little sediment production and the sediment content of the river is lower. As a result, the main river is eroded, the discharge ability of the river course becomes big gradually and the discharge flowing over the floodplain recovers above 2000 m 3 /s. From the analyses of flood components and flood progress, the conclusion is: the sediment deposit and the rising of channel bed, the withering of the main river, the decreasing of the discharge flowing over the floodplain, the increasing of the large peak whittling rate and the prolonging of the propagation duration, all have become the universal appearance of the rivers in arid and half arid districts. The appearance is extremely easily to create the serious calamity in the big flood and the flood law in local area should be researched further.(Author)

  10. Remote sensing, planform, and facies analysis of the Plain of Tineh, Egypt for the remains of the defunct Pelusiac River

    Science.gov (United States)

    Quintanar, Jessica; Khan, Shuhab D.; Fathy, Mohamed S.; Zalat, Abdel-Fattah A.

    2013-11-01

    The Pelusiac Branch was a distributary river in the Nile Delta that splits off from the main trunk of the Nile River as it flowed toward the Mediterranean. At approximately 25 A.D., it was chocked by sand and silt deposits from prograding beach accretion processes. The lower course of the river and its bifurcation point from the trunk of the Nile have been hypothesized based on ancient texts and maps, as well as previous research, but results have been inconsistent. Previous studies partly mapped the lower course of the Pelusiac River in the Plain of Tineh, east of the Suez Canal, but rapid urbanization related to the inauguration of the Peace Canal mega-irrigation project has covered any trace of the linear feature reported by these previous studies. The present study used multispectral remote sensing data of GeoEYE-1 and Landsat-TM to locate and accurately map the course of the defunct Pelusiac River within the Plain of Tineh. Remote sensing analysis identified a linear feature that is 135 m wide at its maximum and approximately 13 km long. It extends from the Pelusium ruins to the Suez Canal, just north of the Peace Canal. This remotely located linear feature corresponds to the path of the Pelusiac River during Roman times. Planform geomorphology was applied to determine the hydrological regime and paleodischarge of the river prior to becoming defunct. Planform analysis derived a bankfull paleodischarge value of ~ 5700 m3 s- 1 and an average discharge of 650 m3 s- 1, using the reach average for the interpreted Pelusiac River. The derived values show a river distributary similar in discharge to the modern dammed Damietta river. Field work completed in April of 2012 derived four sedimentary lithofacies of the upper formation on the plain that included pro-delta, delta-front and delta-plain depositional environments. Diatom and fossil mollusk samples were also identified that support coastal beach and lagoonal environments of deposition. Measured section columns

  11. Ichnological evidence of jökulhlaup deposit recolonization from the Touchet Beds, Mabton, WA, USA

    Science.gov (United States)

    MacEachern, James A.; Roberts, Michael C.

    2013-01-01

    The late Wisconsinan Touchet Beds section at Mabton, Washington reveals at least seven stacked jökulhlaup deposits, five showing evidence of post-flood recolonization by vertebrates. Tracemakers are attributed to voles or pocket mice (1-3 cm diameter burrows) and pocket gophers or ground squirrels (3-6 cm diameter burrows). The Mount St. Helens S tephra deposited between flood beds contains the invertebrate-generated burrows Naktodemasis and Macanopsis. Estimates of times between floods are based on natal dispersal distances of the likely vertebrate tracemakers (30-50 m median distances; 127-525 m maximum distances) from upland areas containing surviving populations to the Mabton area, a distance of about 7.9 km. Tetrapods would have required at least two to three decades to recolonize these flood beds, based on maximum dispersal distances. Invertebrate recolonization was limited by secondary succession and estimated at only a few years to a decade. These ichnological data support multiple floods from failure of the ice dam at glacial Lake Missoula, separated by hiatal surfaces on the order of decades in duration. Ichnological recolonization times are consistent with published estimates of refill times for glacial Lake Missoula, and complement the other field evidence that points to repeated, autogenically induced flood discharge.

  12. Chemical and isotopic properties of groundwater along the coastal plain of the aqaba gulf, (EG)

    International Nuclear Information System (INIS)

    Awad, M.A.A

    1999-01-01

    Isotopic and hydrochemical studies were undertaken along the coastal plain of aqaba gulf in taba, dahab and sharm El-Sheikh to ascertain the role of precipitation (via floods), local water and sea water intrusion as replenishment sources for available groundwater resources in these areas. From the isotopic point of view, it can be concluded that groundwater in nuweiba wells appears to have been recharged from continental and mediterranean participation, while in dahab wells and sharm El-Sheikh Nubian well, recent precipitation via monsoonal air masses which comes from indian ocean plays a considerable role in recharging of these wells. In Taba wells, seepage of partly evaporated flood water represents the main source of their recharge. The fractured nature of the studied area has an effect on the occurrence of groundwater. The variation in chemical water type is due to leaching of terrestrial salts and impact of marine faces (i.e. evaporites and sea spray). Sea water intrusion via over pumping and/ or during tide and ebb duration shows an affect-to some extent-on the chemical composition of some localized wells. Construction of meteorological stations in scattered sites all over sinai is necessary to collect rainwater and floods samples periodically, to study the modification of the isotopic composition of rainwater by processes which occur before groundwater recharge using environmental isotopes

  13. Investigating flood susceptible areas in inaccessible regions using remote sensing and geographic information systems.

    Science.gov (United States)

    Lim, Joongbin; Lee, Kyoo-Seock

    2017-03-01

    Every summer, North Korea (NK) suffers from floods, resulting in decreased agricultural production and huge economic loss. Besides meteorological reasons, several factors can accelerate flood damage. Environmental studies about NK are difficult because NK is inaccessible due to the division of Korea. Remote sensing (RS) can be used to delineate flood inundated areas in inaccessible regions such as NK. The objective of this study was to investigate the spatial characteristics of flood susceptible areas (FSAs) using multi-temporal RS data and digital elevation model data. Such study will provide basic information to restore FSAs after reunification. Defining FSAs at the study site revealed that rice paddies with low elevation and low slope were the most susceptible areas to flood in NK. Numerous sediments from upper streams, especially streams through crop field areas on steeply sloped hills, might have been transported and deposited into stream channels, thus disturbing water flow. In conclusion, NK floods may have occurred not only due to meteorological factors but also due to inappropriate land use for flood management. In order to mitigate NK flood damage, reforestation is needed for terraced crop fields. In addition, drainage capacity for middle stream channel near rice paddies should be improved.

  14. Extreme Mississippi River Floods in the Late Holocene: Reconstructions and Simulations

    Science.gov (United States)

    Munoz, S. E.; Giosan, L.; Donnelly, J. P.; Dee, S.

    2016-12-01

    Extreme flooding of the Mississippi River is costly in both economic and social terms. Despite ambitious engineering projects conceived in the early 20th century to mitigate damage from extreme floods, economic losses due to flooding have increased over recent years. Forecasting extreme flood occurrence over seasonal or longer time-scales remains a major challenge - especially in light of shifts in hydroclimatic conditions expected in response to continued greenhouse forcing. Here, we present findings from a series of paleoflood records that span the late Holocene derived from laminated sediments deposited in abandoned channels of the Mississippi River. These sedimentary archives record individual overbank floods as unique events beds with upward fining that we identify using grain-size analysis, bulk geochemistry, and radiography. We use sedimentological characteristics to reconstruct flood magnitude by calibrating our records against instrumental streamflow data from nearby gauging stations. We also use the Last Millennium Experiments of the Community Earth System Model (CESM-LME) and historical reanalysis data to examine the state of climate system around river discharge extremes. Our paleo-flood records exhibit strong non-stationarities in flood frequency and magnitude that are associated with fluctuations in the frequency of the El Niño-Southern Oscillation (ENSO), because the warm ENSO phase is associated with increased surface water storage of the lower Mississippi basin that leads to enhanced runoff delivery to the main channel. We also show that the early 20th century was a period of anomalously high flood frequency and magnitude due to the combined effects of river engineering and natural climate variability. Our findings imply that flood risk along the lower Mississippi River is tightly coupled to the frequency of ENSO, highlighting the need for robust projections of ENSO variability under greenhouse warming.

  15. Depositional environment and sequence stratigraphy of the middle Jurassic deposits: case study of Navia section in the west Bojnurd, west of Kopet-Dagh

    Directory of Open Access Journals (Sweden)

    Neda Sarbaz

    2016-12-01

    Kashafrud Formation in this section is composed of two depositional sequence (DS1 and DS2. The lower boundary of the first sequence (DS1, based on angular unconformity (above Triassic limestone of Elika Formation and fluvial conglomerate deposits, is type I (SB1. The upper boundary of DS1 is SB2 and is located in proximal delta front deposits with no subaerial exposure evidences. The thickness of the first sequence is about 400 m and consists of LST, TST and HST. The LST is composed of continental sediments (137 m that is covered by transgressive surface. This surface reveals by massive shale (50 m of distal delta fronts and maximum flooding surface is located in the upper part of these deposits. HST (215 m is composed of 12 shallowing and coarsening parasequences. DS2 with thickness of about 349 m is separated from DS1with sequence boundary type 2. This depositional sequence is only composed of TST with Fm and Fl lithofacies that transitionally changes to deeper water black shale that follows by marl and fine grain carbonate sediments of the Chaman-Bid Formation. Therefore, the maximum flooding surface is probably located within the Chaman-Bid Formation. Interpreted sea level fluctuation curve of the study area can be related to regional geological history and sometimes can be relatively correlated with global sea level curve (Haq et al, 1987

  16. Mapping flood and flooding potential indices: a methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania)

    Science.gov (United States)

    Zaharia, Liliana; Costache, Romulus; Prăvălie, Remus; Ioana-Toroimac, Gabriela

    2017-04-01

    Given that floods continue to cause yearly significant worldwide human and material damages, flood risk mitigation is a key issue and a permanent challenge in developing policies and strategies at various spatial scales. Therefore, a basic phase is elaborating hazard and flood risk maps, documents which are an essential support for flood risk management. The aim of this paper is to develop an approach that allows for the identification of flash-flood and flood-prone susceptible areas based on computing and mapping of two indices: FFPI (Flash-Flood Potential Index) and FPI (Flooding Potential Index). These indices are obtained by integrating in a GIS environment several geographical variables which control runoff (in the case of the FFPI) and favour flooding (in the case of the FPI). The methodology was applied in the upper (mountainous) and middle (hilly) catchment of the Prahova River, a densely populated and socioeconomically well-developed area which has been affected repeatedly by water-related hazards over the past decades. The resulting maps showing the spatialization of the FFPI and FPI allow for the identification of areas with high susceptibility to flashfloods and flooding. This approach can provide useful mapped information, especially for areas (generally large) where there are no flood/hazard risk maps. Moreover, the FFPI and FPI maps can constitute a preliminary step for flood risk and vulnerability assessment.

  17. Historical sources of black carbon identified by PAHs and δ13C in Sanjiang Plain of Northeastern China

    Science.gov (United States)

    Gao, Chuanyu; Liu, Hanxiang; Cong, Jinxin; Han, Dongxue; Zhao, Winston; Lin, Qianxin; Wang, Guoping

    2018-05-01

    Black carbon (BC), the byproduct of incomplete combustion of fossil fuels and biomass can be stored in soil for a long time and potentially archive changes in natural and human activities. Increasing amounts of BC has been produced from human activities during the past 150 years and has influenced global climate change and carbon cycle. Identifying historical BC sources is important in knowing how historical human activities influenced BC and BC transportation processes in the atmosphere. In this study, PAH components and δ13C-BC in peatland in the Sanjiang Plain were used for identifying and verifying regional BC sources during the last 150 years. Results showed that environment-unfriendly industry developed at the end of the 1950s produced a great amount of BC and contributed the most BC in this period. In other periods, however, BC in the Sanjiang Plain was mainly produced from incomplete biomass burning before the 1990s; particularly, slash-and-burn of pastures and forests during regional reclamation periods between the 1960s and 1980s produced a huge amount of biomass burning BC, which then deposited into the surrounding ecosystems. With the regional reclamation decreasing and environment-friendly industry developing, the proportion of BC emitted and deposited from transportation sources increased and transportation source became an important BC source in the Sanjiang Plain after the 1990s.

  18. Natural decay series radionuclide studies at the Needle's Eye natural analogue site

    International Nuclear Information System (INIS)

    MacKenzie, A.B.; Scott, R.D.; Houston, C.M.; Hooker, P.J.

    1991-01-01

    This report covers work on a natural radioactive geochemical system and has been carried out with the aim of improving confidence in using predictive models of radionuclide migration in the geosphere. It is one of a series being produced and is concerned with the U/Th decay series characterization of the hydrothermal mineral veins and the movement of these radionuclides into post-glacial flood plain deposits

  19. A Bayesian-Based System to Assess Wave-Driven Flooding Hazards on Coral Reef-Lined Coasts

    Science.gov (United States)

    Pearson, S. G.; Storlazzi, C. D.; van Dongeren, A. R.; Tissier, M. F. S.; Reniers, A. J. H. M.

    2017-12-01

    Many low-elevation, coral reef-lined, tropical coasts are vulnerable to the effects of climate change, sea level rise, and wave-induced flooding. The considerable morphological diversity of these coasts and the variability of the hydrodynamic forcing that they are exposed to make predicting wave-induced flooding a challenge. A process-based wave-resolving hydrodynamic model (XBeach Non-Hydrostatic, "XBNH") was used to create a large synthetic database for use in a "Bayesian Estimator for Wave Attack in Reef Environments" (BEWARE), relating incident hydrodynamics and coral reef geomorphology to coastal flooding hazards on reef-lined coasts. Building on previous work, BEWARE improves system understanding of reef hydrodynamics by examining the intrinsic reef and extrinsic forcing factors controlling runup and flooding on reef-lined coasts. The Bayesian estimator has high predictive skill for the XBNH model outputs that are flooding indicators, and was validated for a number of available field cases. It was found that, in order to accurately predict flooding hazards, water depth over the reef flat, incident wave conditions, and reef flat width are the most essential factors, whereas other factors such as beach slope and bed friction due to the presence or absence of corals are less important. BEWARE is a potentially powerful tool for use in early warning systems or risk assessment studies, and can be used to make projections about how wave-induced flooding on coral reef-lined coasts may change due to climate change.Plain Language SummaryLow-lying tropical coasts fronted by coral reefs are threatened by the effects of climate change, sea level rise, and flooding caused by waves. However, the reefs on these coasts differ widely in their shape, size, and physical characteristics; the wave and water level conditions affecting these coastlines also vary in space and time. These factors make it difficult to predict flooding caused by waves along coral reef-lined coasts. We

  20. Influence of Flood Detention Capability in Flood Prevention for Flood Disaster of Depression Area

    OpenAIRE

    Chia Lin Chan; Yi Ju Yang; Chih Chin Yang

    2011-01-01

    Rainfall records of rainfall station including the rainfall potential per hour and rainfall mass of five heavy storms are explored, respectively from 2001 to 2010. The rationalization formula is to investigate the capability of flood peak duration of flood detention pond in different rainfall conditions. The stable flood detention model is also proposed by using system dynamic control theory to get the message of flood detention pond in this research. When rainfall freque...

  1. Effects of Flood Control Strategies on Flood Resilience Under Sociohydrological Disturbances

    Science.gov (United States)

    Sung, Kyungmin; Jeong, Hanseok; Sangwan, Nikhil; Yu, David J.

    2018-04-01

    A community capacity to cope with flood hazards, or community flood resilience, emerges from the interplay of hydrological and social processes. This interplay can be significantly influenced by the flood control strategy adopted by a society, i.e., how a society sets its desired flood protection level and strives to achieve this goal. And this interplay can be further complicated by rising land-sea level differences, seasonal water level fluctuations, and economic change. But not much research has been done on how various forms of flood control strategies affect human-flood interactions under these disturbances and therefore flood resilience in the long run. The current study is an effort to address these issues by developing a conceptual model of human-flood interaction mediated by flood control strategies. Our model extends the existing model of Yu et al. (2017), who investigated the flood resilience of a community-based flood protection system in coastal Bangladesh. The major extensions made in this study are inclusions of various forms of flood control strategies (both adaptive and nonadaptive ones), the challenge of rising land-sea level differences, and various high tide level scenarios generated from modifying the statistical variances and averages. Our results show that adaptive forms of flood control strategies tend to outperform nonadaptive ones for maintaining the model community's flood protection system. Adaptive strategies that dynamically adjust target flood protection levels through close monitoring of flood damages and social memories of flood risk can help the model community deal with various disturbances.

  2. 49 CFR 229.64 - Plain bearings.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to the...

  3. Public perception of flood risks, flood forecasting and mitigation

    Directory of Open Access Journals (Sweden)

    M. Brilly

    2005-01-01

    Full Text Available A multidisciplinary and integrated approach to the flood mitigation decision making process should provide the best response of society in a flood hazard situation including preparation works and post hazard mitigation. In Slovenia, there is a great lack of data on social aspects and public response to flood mitigation measures and information management. In this paper, two studies of flood perception in the Slovenian town Celje are represented. During its history, Celje was often exposed to floods, the most recent serious floods being in 1990 and in 1998, with a hundred and fifty return period and more than ten year return period, respectively. Two surveys were conducted in 1997 and 2003, with 157 participants from different areas of the town in the first, and 208 in the second study, aiming at finding the general attitude toward the floods. The surveys revealed that floods present a serious threat in the eyes of the inhabitants, and that the perception of threat depends, to a certain degree, on the place of residence. The surveys also highlighted, among the other measures, solidarity and the importance of insurance against floods.

  4. A 500-year history of floods in the semi arid basins of south-eastern Spain

    Science.gov (United States)

    Sánchez García, Carlos; Schulte, Lothar; Peña, Juan Carlos; Carvalho, Filpe; Brembilla, Carla

    2016-04-01

    Floods are one of the natural hazards with higher incidence in the south-eastern Spain, the driest region in Europe, causing fatalities, damage of infrastructure and economic losses. Flash-floods in semi arid environments are related to intensive rainfall which can last from few hours to days. These floods are violent and destructive because of their high discharges, sediment transport and aggradation processes in the flood plain. Also during historical times floods affected the population in the south-eastern Spain causing sever damage or in some cases the complete destruction of towns. Our studies focus on the flood reconstruction from historical sources of the Almanzora, Aguas and Antas river basins, which have a surface between 260-2600 km2. We have also compiled information from the Andarax river and compared the flood series with the Guadalentín and Segura basins from previous studies (Benito et. al., 2010 y Machado et al., 2011). Flood intensities have been classified in four levels according to the type of damage: 1) ordinary floods that only affect agriculture plots; 2) extraordinary floods which produce some damage to buildings and hydraulic infrastructure; 3) catastrophic floods which caused sever damage, fatalities and partial or complete destruction of towns. A higher damage intensity of +1 magnitude was assigned when the event is recorded from more than one major sub-basin (stretches and tributaries such as Huércal-Overa basin) or catchment (e.g. Antas River). In total 102 incidences of damages and 89 floods were reconstructed in the Almanzora (2.611 km2), Aguas (539 km2), Antas (261 km2) and Andarax (2.100 km2) catchments. The Almanzora River was affected by 36 floods (1550-2012). The highest events for the Almanzora River were in 1580, 1879, 1973 and 2012 producing many fatalities and destruction of several towns. In addition, we identified four flood-clusters 1750-1780, 1870-1900, 1960-1977 and 1989-2012 which coincides with the periods of

  5. Spectral gamma-ray signature of fluvial deposits: a case study from the Late Permian Rio do Rasto Formation, Parana Basin, Brazil; Assinatura gamaespectrometrica de depositos fluviais: estudo de caso na Formacao do Rio do Rasto, Permiano Superior da Bacia do Parana

    Energy Technology Data Exchange (ETDEWEB)

    Sowek, Guilherme Arruda, E-mail: arruda@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Programa de Pos-graduacao em Geologia; Ferreira, Francisco Jose Fonseca; Vesely, Fernando Farias, E-mail: francisco.ferreira@ufpr.br, E-mail: vesely@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Geologia. Setor de Ciencias da Terra; Berton, Fabio, E-mail: fabioberton1@yahoo.com.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil)

    2013-09-15

    Fluvial channel-fill deposits form highly heterogeneous hydrocarbon reservoirs. The study of outcrop analogs can help in the characterization of these heterogeneities, which are usually not detected by subsurface geophysical methods. The aim of this research is to compare outcrop log signatures with grain size trends and depositional elements of the fluvial deposits of the Late Permian Rio do Rasto Formation. A series of vertical gamma-ray logs were assembled in two outcrops in order to: 1) characterize log-facies in a succession composed of alternated flood plain, channel fill and eolian strata; 2) define within-channel spectral gamma-ray variability of a mixed-load composite point bar deposit and its relationship with grain size trends and lithofacies; 3) correlate log signatures observed in the outcrop sections with deep exploratory wells drilled several tens of kilometers from the study area. The results of this study show that gamma-ray logs have good correlation with grain size trends and that different depositional elements have distinct signatures. On the other hand, point bar deposits exhibit strong lateral changes in log signature due variations in grain size and mud content within lateral accretion strata. Although frequent, the classic bell-shaped log motif was not always detected, which means that the amount of fluvial channel-fill deposits recognized in subsurface can be underestimated. Similar log signatures were detected in the boreholes, at least in the closest ones, helping in paleoenvironmental interpretation in the subsurface. (author)

  6. Topographical change caused by moderate and small floods in a gravel bed ephemeral river - a depth-averaged morphodynamic simulation approach

    Science.gov (United States)

    Lotsari, Eliisa S.; Calle, Mikel; Benito, Gerardo; Kukko, Antero; Kaartinen, Harri; Hyyppä, Juha; Hyyppä, Hannu; Alho, Petteri

    2018-03-01

    In ephemeral rivers, channel morphology represents a snapshot at the end of a succession of geomorphic changes caused by floods. In most cases, the channel shape and bedform migration during different phases of a flood hydrograph cannot be identified from field evidence. This paper analyses the timing of riverbed erosion and deposition of a gravel bed ephemeral river channel (Rambla de la Viuda, Spain) during consecutive and moderate- (March 2013) and low-magnitude (May 2013) discharge events, by applying a morphodynamic model (Delft3D) calibrated with pre- and post-event surveys by RTK-GPS points and mobile laser scanning. The study reach is mainly depositional and all bedload sediment supplied from adjacent upstream areas is trapped in the study segment forming gravel lobes. Therefore, estimates of total bedload sediment mass balance can be obtained from pre- and post-field survey for each flood event. The spatially varying grain size data and transport equations were the most important factors for model calibration, in addition to flow discharge. The channel acted as a braided channel during the lower flows of the two discharge events, but when bars were submerged in the high discharges of May 2013, the high fluid forces followed a meandering river planform. The model results showed that erosion and deposition were in total greater during the long-lasting receding phase than during the rising phase of the flood hydrographs. In the case of the moderate-magnitude discharge event, deposition and erosion peaks were predicted to occur at the beginning of the hydrograph, whereas deposition dominated throughout the event. Conversely, the low-magnitude discharge event only experienced the peak of channel changes after the discharge peak. Thus, both type of discharge events highlight the importance of receding phase for this type of gravel bed ephemeral river channel.

  7. A fluvioglacial and gaciolacustrine deltaic depositional model for Permo-Carboniferous coals of the northeastern Karoo Basin, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Smith G, Le Blanc; Eriksson, K A

    1979-01-01

    With the northward retreat of the late Palaeozoic Gondwana ice sheet a series of glacial valleys, partially filled with diamictite, dominated the landscape along the northern edge of the Karoo basin in South Africa. Consequent outwash sediments accumulated as fluvioglacial and glaciolacustrine deltaic deposits. Density underflow generated turbidity currents from which bottomset sediments were deposited. These comprise distal varved siltstones and shales, stratified pebbly-mudstone with dropstones, and proximal ripple drift cross-laminated sandstones and siltstones. Overlying outwash plain conglomerates and sandstones constitute the topset deposits. Upon abandonment of the outwash plain, shallow-rooted Arctic vegetation developed. Resulting peats exceeded 10 m in thickness and constituted precursors to coal seams in which variations in ash content are attributed to overbank splaying from recognisable anastomosing channels within the coal swamps. This study has illustrated a characteristic paraglacial sedimentation sequence, maximum depositional rates occur immediately after glacial retreat followed by decelerating sedimentation rates through time, leading finally to the development of extensive peats. (29 refs.)

  8. Integrating Interdisciplinary Studies Across a Range of Spatiotemporal Scales for the Design of Effective Flood Mitigation and Habitat Restoration Strategies, Green Valley Creek, California

    Science.gov (United States)

    Kobor, J. S.; O'Connor, M. D.; Sherwood, M. N.

    2014-12-01

    Green Valley Creek provides some of the most critical habitat for endangered coho salmon in the Russian River Watershed. Extensive changes in land-use over the past century have resulted in a dynamic system characterized by ongoing incision in the upper watershed and deposition and increased flood risk in the lower watershed. Effective management requires a watershed-scale understanding of the underlying controls on sediment erosion and transport as well as site-specific studies to understand local habitat conditions and flood dynamics. Here we combine an evaluation of historical changes in watershed conditions with a regional sediment source assessment and detailed numerical hydraulic and sediment transport models to find a sustainable solution to a chronic flooding problem at the Green Valley Road bridge crossing. Ongoing bank erosion in the upper watershed has been identified as the primary source of coarse sediment being deposited in the rapidly aggrading flood-prone reach upstream of the bridge. Efforts at bank stabilization are part of the overall strategy, however elevated sediment loads can be expected to continue in the near-term. The cessation of historical vegetation removal and maintenance dredging has resulted in a substantial increase in channel roughness as riparian cover has expanded. A positive feedback loop has been developed whereby increased vegetation roughness reduces sediment transport capacity, inducing additional deposition, and providing fresh sediment for continued vegetation recruitment. Our analysis revealed that traditional engineering approaches are ineffective. Dredging is not viable owning to the habitat impacts and short timeframes over which the dredged channel would be maintained. Roadway elevation results in a strong backwater effect increasing flood risk upstream. Initial efforts at designing a bypass channel also proved ineffective due to backwater effects below the bridge. The only viable solution involved reducing the

  9. Environmental changes in the central Po Plain (northern Italy) due to fluvial modifications and anthropogenic activities

    Science.gov (United States)

    Marchetti, Mauro

    2002-05-01

    The fluvial environment of the central Po Plain, the largest plain in Italy, is discussed in this paper. Bounded by the mountain chains of the Alps and the Apennines, this plain is a link between the Mediterranean environment and the cultural and continental influences of both western and eastern Europe. In the past decades, economic development has been responsible for many changes in the fluvial environment of the area. This paper discusses the changes in fluvial dynamics that started from Late Pleistocene and Early Holocene due to distinct climatic changes. The discussion is based on geomorphological, pedological, and archaeological evidences and radiocarbon dating. In the northern foothills, Late Pleistocene palaeochannels indicate several cases of underfit streams among the northern tributaries of the River Po. On the other hand, on the southern side of the Po Plain, no geomorphological evidence of similar discharge reduction has been found. Here, stratigraphic sections, together with archaeological remains buried under the fluvial deposits, show a reduction in the size of fluvial sediments after the 10th millennium BC. During the Holocene, fluvial sedimentation became finer, and was characterised by minor fluctuations in the rate of deposition, probably related to short and less intense climatic fluctuations. Given the high rate of population growth and the development of human activities since the Neolithic Age, human influence on fluvial dynamics, especially since the Roman Age, prevailed over other factors (i.e., climate, tectonics, vegetation, etc.). During the Holocene, the most important changes in the Po Plain were not modifications in water discharge but in sediment. From the 1st to 3rd Century AD, land grants to war veterans caused almost complete deforestation, generalised soil erosion, and maximum progradation of the River Po delta. At present, land abandonment in the mountainous region has led to reafforestation. Artificial channel control in the

  10. Mapping flood hazards under uncertainty through probabilistic flood inundation maps

    Science.gov (United States)

    Stephens, T.; Bledsoe, B. P.; Miller, A. J.; Lee, G.

    2017-12-01

    Changing precipitation, rapid urbanization, and population growth interact to create unprecedented challenges for flood mitigation and management. Standard methods for estimating risk from flood inundation maps generally involve simulations of floodplain hydraulics for an established regulatory discharge of specified frequency. Hydraulic model results are then geospatially mapped and depicted as a discrete boundary of flood extents and a binary representation of the probability of inundation (in or out) that is assumed constant over a project's lifetime. Consequently, existing methods utilized to define flood hazards and assess risk management are hindered by deterministic approaches that assume stationarity in a nonstationary world, failing to account for spatio-temporal variability of climate and land use as they translate to hydraulic models. This presentation outlines novel techniques for portraying flood hazards and the results of multiple flood inundation maps spanning hydroclimatic regions. Flood inundation maps generated through modeling of floodplain hydraulics are probabilistic reflecting uncertainty quantified through Monte-Carlo analyses of model inputs and parameters under current and future scenarios. The likelihood of inundation and range of variability in flood extents resulting from Monte-Carlo simulations are then compared with deterministic evaluations of flood hazards from current regulatory flood hazard maps. By facilitating alternative approaches of portraying flood hazards, the novel techniques described in this presentation can contribute to a shifting paradigm in flood management that acknowledges the inherent uncertainty in model estimates and the nonstationary behavior of land use and climate.

  11. Climate variability and Great Plains agriculture

    International Nuclear Information System (INIS)

    Rosenberg, N.J.; Katz, L.A.

    1991-01-01

    The ways in which inhabitants of the Great Plains, including Indians, early settlers, and 20th century farmers, have adapted to climate changes on the Great Plains are explored. The climate of the Great Plains, because of its variability and extremes, can be very stressful to plants, animals and people. It is suggested that agriculture and society on the Great Plains have, during the last century, become less vulnerable to the stresses imposed by climate. Opinions as to the sustainability of agriculture on the Great Plains vary substantially. Lockeretz (1981) suggests that large scale, high cost technologies have stressed farmers by creating surpluses and by requiring large investments. Opie (1989) sees irrigation as a climate substitute, however he stresses that the Ogallala aquifer must inevitably become depleted. Deborah and Frank Popper (1987) believe that farming on the Plains is unsustainable, and destruction of shelterbelts, out-migration of the rural population and environmental problems will lead to total collapse. With global warming, water in the Great Plains is expected to become scarcer, and although improvements in irrigation efficiency may slow depletion of the Ogallala aquifer, ultimately the acreage under irrigation must decrease to levels that can be sustained by natural recharge and reliable surface flows. 23 refs., 2 figs

  12. Field-trip guide for exploring pyroclastic density current deposits from the May 18, 1980, eruption of Mount St. Helens, Washington

    Science.gov (United States)

    Brand, Brittany D.; Pollock, Nicholas; Sarocchi, Damiano; Dufek, Josef; Clynne, Michael A.

    2017-07-05

    Pyroclastic density currents (PDCs) are one of the most dangerous phenomena associated with explosive volcanism. To help constrain damage potential, a combination of field studies, laboratory experiments, and numerical modeling are used to establish conditions that influence PDC dynamics and depositional processes, including runout distance. The objective of this field trip is to explore field relations that may constrain PDCs at the time of emplacement.The PDC deposits from the May 18, 1980, eruption of Mount St. Helens are well exposed along the steep flanks (10–30° slopes) and across the pumice plain (5–12° slopes) as far as 8 km north of the volcano. The pumice plain deposits represent deposition from a series of concentrated PDCs and are primarily thick (3–12 m), massive, and poorly sorted. In contrast, the steep east-flank deposits are stratified to cross-stratified, suggesting deposition from PDCs where turbulence strongly influenced transport and depositional processes.The PDCs that descended the west flank were largely nondepositional; they maintained a higher flow energy and carrying capacity than PDCs funneled through the main breach, as evidenced by the higher concentration of large blocks in their deposits. The PDC from the west flank collided with PDCs funneled through the breach at various points along the pumice plain. Evidence for flow collision will be explored and debated throughout the field trip.Evidence for substrate erosion and entrainment is found (1) along the steep eastern flank of the volcano, which has a higher degree of rough, irregular topography relative to the west flanks where PDCs were likely nonerosive, (2) where PDCs encountered debris-avalanche hummocks across the pumice plain, and (3) where PDCs eroded and entrained material deposited by PDCs produced during earlier phases of the eruption. Two features interpreted as large-scale (tens of meters wide) levees and a large (~200 m wide) channel scour-and-fill feature

  13. Groundwater Discharge along a Channelized Coastal Plain Stream

    Energy Technology Data Exchange (ETDEWEB)

    LaSage, Danita M [Ky Dept for natural resources, Div of Mine Permits; Sexton, Joshua L [JL Sexton and Son; Mukherjee, Abhijit [Univ of Tx, Jackson School of Geosciences, Bur of Econ. Geology; Fryar, Alan E [Univ of KY, Dept of Earth and Geoligical Sciences; Greb, Stephen F [Univ of KY, KY Geological Survey

    2015-10-01

    In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffuse discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.

  14. Distal delta-plain successions : architecture and lithofacies of organics and lake fills in the Holocene Rhine-Meuse delta, The Netherlands

    NARCIS (Netherlands)

    Bos, I.J.

    2010-01-01

    The objective of this thesis is to analyze and explain the architecture, facies distribution, age and origin of coarse-grained overbank deposits, with special attention for organic-clastic lake fills, and organics in the distal Holocene Rhine-Meuse delta plain. In order to depict the influence of

  15. Sedimentological techniques applied to the hydrology of the Atlantic coastal plain in South Carolina and Georgia near the Savannah River Site

    International Nuclear Information System (INIS)

    Falls, F.W.; Baum, J.S.; Edwards, L.E.

    1994-01-01

    Potential for migration of contaminants in ground water under the Savannah River from South Carolina into Georgia near the US Department of Energy (DOE) Savannah River Site (SRS). The SRS is located in the inner Atlantic Coastal Plain of South Carolina and is underlain by 200 to more than 300 meters of permeable, unconsolidated to poorly consolidated sediments of Cretaceous and Tertiary age. The US Geological Survey, in cooperation with the US Department of Energy and the Georgia Department of Natural Resources, is evaluating ground-water flow through the Coastal Plain sediments in the area. Preliminary hydrologic studies conducted to provide the data needed for digital modeling of the ground-water flow system identified the need for more extensive investigation into the influence of the geologic complexities on that flow system. The Coastal Plain physiographic province in South Carolina and Georgia is comprised of a complex wedge of fluvial, deltaic, and marine sedimentary deposits locally modified by faulting. Several techniques commonly used in petroleum basin analysis (sequence stratigraphy, biostratigraphy, detailed core description, and geophysical well log analysis), were used together with water-level measurements, aquifer-test data, and geochemical data to identify six regional aquifers. Hydraulic conductivity distribution maps within each of these aquifers were constructed using textural analysis of core materials, aquifer test data, and depositional system reconstruction. Sedimentological techniques were used to improve understanding of the depositional system and the ground-water flow system dynamics, and to help focus research in areas where additional hydrologic, geologic, and aquifer-test data are needed

  16. Flood Risk Management In Europe: European flood regulation

    NARCIS (Netherlands)

    Hegger, D.L.T.; Bakker, M.H.; Green, C.; Driessen, Peter; Delvaux, B.; Rijswick, H.F.M.W. van; Suykens, C.; Beyers, J-C.; Deketelaere, K.; Doorn-Hoekveld, W. van; Dieperink, C.

    2013-01-01

    In Europe, water management is moving from flood defense to a risk management approach, which takes both the probability and the potential consequences of flooding into account. In this report, we will look at Directives and (non-)EU- initiatives in place to deal with flood risk in Europe indirectly

  17. Late Pleistocene dune activity in the central Great Plains, USA

    Science.gov (United States)

    Mason, J.A.; Swinehart, J.B.; Hanson, P.R.; Loope, D.B.; Goble, R.J.; Miao, X.; Schmeisser, R.L.

    2011-01-01

    Stabilized dunes of the central Great Plains, especially the megabarchans and large barchanoid ridges of the Nebraska Sand Hills, provide dramatic evidence of late Quaternary environmental change. Episodic Holocene dune activity in this region is now well-documented, but Late Pleistocene dune mobility has remained poorly documented, despite early interpretations of the Sand Hills dunes as Pleistocene relicts. New optically stimulated luminescence (OSL) ages from drill cores and outcrops provide evidence of Late Pleistocene dune activity at sites distributed across the central Great Plains. In addition, Late Pleistocene eolian sands deposited at 20-25 ka are interbedded with loess south of the Sand Hills. Several of the large dunes sampled in the Sand Hills clearly contain a substantial core of Late Pleistocene sand; thus, they had developed by the Late Pleistocene and were fully mobile at that time, although substantial sand deposition and extensive longitudinal dune construction occurred during the Holocene. Many of the Late Pleistocene OSL ages fall between 17 and 14 ka, but it is likely that these ages represent only the later part of a longer period of dune construction and migration. At several sites, significant Late Pleistocene or Holocene large-dune migration also probably occurred after the time represented by the Pleistocene OSL ages. Sedimentary structures in Late Pleistocene eolian sand and the forms of large dunes potentially constructed in the Late Pleistocene both indicate sand transport dominated by northerly to westerly winds, consistent with Late Pleistocene loess transport directions. Numerical modeling of the climate of the Last Glacial Maximum has often yielded mean monthly surface winds southwest of the Laurentide Ice Sheet that are consistent with this geologic evidence, despite strengthened anticyclonic circulation over the ice sheet. Mobility of large dunes during the Late Pleistocene on the central Great Plains may have been the result of

  18. Citizen involvement in flood risk governance: flood groups and networks

    Directory of Open Access Journals (Sweden)

    Twigger-Ross Clare

    2016-01-01

    Full Text Available Over the past decade has been a policy shift withinUK flood risk management towards localism with an emphasis on communities taking ownership of flood risk. There is also an increased focus on resilience and, more specifically, on community resilience to flooding. This paper draws on research carried out for UK Department for Environment Food and Rural Affairs to evaluate the Flood Resilience Community Pathfinder (FRCP scheme in England. Resilience is conceptualised as multidimensional and linked to exisiting capacities within a community. Creating resilience to flooding is an ongoing process of adaptation, learning from past events and preparing for future risks. This paper focusses on the development of formal and informal institutions to support improved flood risk management: institutional resilience capacity. It includes new institutions: e.g. flood groups, as well as activities that help to build inter- and intra- institutional resilience capacity e.g. community flood planning. The pathfinder scheme consisted of 13 projects across England led by local authorities aimed at developing community resilience to flood risk between 2013 – 2015. This paper discusses the nature and structure of flood groups, the process of their development, and the extent of their linkages with formal institutions, drawing out the barriers and facilitators to developing institutional resilience at the local level.

  19. Assessing the continuity of the upland sediment cascade, fluvial geomorphic response of an upland river to an extreme flood event: Storm Desmond, Cumbria, UK.

    Science.gov (United States)

    Joyce, Hannah; Hardy, Richard; Warburton, Jeff

    2017-04-01

    Hillslope erosion and accelerated lake sedimentation are often viewed as the source and main storage elements in the upland sediment cascade. However, the continuity of sediment transfer through intervening valley systems has rarely been evaluated during extreme events. Storm Desmond (4th - 6th December, 2015) produced record-breaking rainfall maximums in the UK: 341.4 mm rainfall was recorded in a 24 hour period at Honister Pass, Western Lake District, and 405 mm of rainfall was recorded in a 38 hour period at Thirlmere, central Lake District. The storm was the largest in a 150 year local rainfall series, and exceeded previous new records set in the 2005 and 2009 floods. During this exceptional event, rivers over topped flood defences, and caused damage to over 257 bridges, flooded over 5000 homes and businesses, and caused substantial geomorphic change along upland rivers. This research quantifies the geomorphic and sedimentary response to Storm Desmond along a regulated gravel-bed river: St John's Beck. St John's Beck (length 7.8 km) is a channelised low gradient river (0.005) downstream of Thirlmere Reservoir, which joins the River Greta, and flows through Keswick, where major flooding has occurred, before discharging into Bassenthwaite Lake. St John's Beck has a history of chronic sediment aggradation, erosion and reports of historic flooding date back to 1750. During Storm Desmond, riverbanks were eroded, coarse sediment was deposited across valuable farmland and access routes were destroyed, including a bridge and footpaths, disrupting local business. A sediment budget framework has been used to quantify geomorphic change and sedimentary characteristics of the event along St John's Beck. The volume and sediment size distribution of flood deposits, channel bars, tributary deposits, floodplain scour, riverbank erosion and in-channel bars were measured directly in the field and converted to mass using local estimates of coarse and fine sediment bulk densities

  20. Effects of irrigation on streamflow in the Central Sand Plain of Wisconsin

    Science.gov (United States)

    Weeks, E.P.; Stangland, H.G.

    1971-01-01

    Development of ground water for irrigation affects streamflow and water levels in the sand-plain area of central Wisconsin. Additional irrigation development may reduce opportunities for water-based recreation by degrading the streams as trout habitat and by lowering lake levels. This study was made to inventory present development of irrigation in the sand-plain area, assess potential future development, and estimate the effects of irrigation on streamflow and ground-water levels. The suitability of land and the availability of ground water for irrigation are dependent, to a large extent, upon the geology of the area. Rocks making up the ground-water reservoir include outwash, morainal deposits, and glacial lake deposits. These deposits are underlain by crystalline rocks and by sandstone, which act as the floor of the ground-water reservoir. Outwash, the main aquifer, supplies water to about 300 irrigation wells and maintains relatively stable flow in the streams draining the area. The saturated thickness of these deposits is more than 100 feet over much of the area and is as much as 180 feet in bedrock valleys. The saturated thickness of the outwash generally is great enough to provide sufficient water for large-scale irrigation in all but two areas --one near the town of Wisconsin Rapids and one near Dorro Couche Mound. Aquifer tests indicate that the permeability of the outwash is quite high, ranging from about 1,000 gpd per square foot to about 3,800 gpd per square foot, Specific capacities of irrigation wells in the area range from 14 to 157 gpm per foot of drawdown. Water use in the sand-plain area is mainly for irrigation and waterbased recreation. Irrigation development began in the area in the late 1940's, and by 1967 about 19,500 acre-feet of water were pumped to irrigate 34,000 acres of potatoes, snap beans, corn, cucumbers, and other crops. About 70 percent of the applied water was lost to evapotranspiration, and about 30 percent was returned to the

  1. Topographical change caused by moderate and small floods in a gravel bed ephemeral river – a depth-averaged morphodynamic simulation approach

    Directory of Open Access Journals (Sweden)

    E. S. Lotsari

    2018-03-01

    Full Text Available In ephemeral rivers, channel morphology represents a snapshot at the end of a succession of geomorphic changes caused by floods. In most cases, the channel shape and bedform migration during different phases of a flood hydrograph cannot be identified from field evidence. This paper analyses the timing of riverbed erosion and deposition of a gravel bed ephemeral river channel (Rambla de la Viuda, Spain during consecutive and moderate- (March 2013 and low-magnitude (May 2013 discharge events, by applying a morphodynamic model (Delft3D calibrated with pre- and post-event surveys by RTK-GPS points and mobile laser scanning. The study reach is mainly depositional and all bedload sediment supplied from adjacent upstream areas is trapped in the study segment forming gravel lobes. Therefore, estimates of total bedload sediment mass balance can be obtained from pre- and post-field survey for each flood event. The spatially varying grain size data and transport equations were the most important factors for model calibration, in addition to flow discharge. The channel acted as a braided channel during the lower flows of the two discharge events, but when bars were submerged in the high discharges of May 2013, the high fluid forces followed a meandering river planform. The model results showed that erosion and deposition were in total greater during the long-lasting receding phase than during the rising phase of the flood hydrographs. In the case of the moderate-magnitude discharge event, deposition and erosion peaks were predicted to occur at the beginning of the hydrograph, whereas deposition dominated throughout the event. Conversely, the low-magnitude discharge event only experienced the peak of channel changes after the discharge peak. Thus, both type of discharge events highlight the importance of receding phase for this type of gravel bed ephemeral river channel.

  2. Insights from socio-hydrology modelling on dealing with flood risk: roles of collective memory, risk-taking attitude and trust (Invited)

    Science.gov (United States)

    Viglione, A.; Di Baldassarre, G.; Brandimarte, L.; Kuil, L.; Carr, G.; Salinas, J.; Scolobig, A.

    2013-12-01

    The risk coping culture of a community plays a major role in decision making in urban flood plains. While flood awareness is not necessarily linked to being prepared to face flooding at an individual level, the connection at the community level seems to be stronger through creating policy and initiating protection works. In this work we analyse, in a conceptual way, the interplay of community risk coping culture, flooding damage and economic growth. We particularly focus on three aspects: (i) collective memory, i.e., the capacity of the community to keep the awareness of flooding high; (ii) risk-taking attitude, i.e., the amount of risk a community is collectively willing to expose themselves to; and (iii) trust of people in risk protection measures. We use a dynamic model that represents the feedbacks between the hydrological and social system components. The model results indicate that, on one hand, by under perceiving the risk of flooding (because of short collective memory and too much trust in flood protection structures) in combination with a high risk-attitude, community survival is severely limited because of destruction caused by flooding. On the other hand, high perceived risk (long memory and lack of trust in flood protection structures) relative to the actual risk leads to lost economic opportunities and recession. There are many optimal scenarios for survival and economic growth, but greater certainty of survival plus economic growth can be achieved by ensuring community has accurate risk perception (memory neither too long nor too short and trust in flood protection neither too great nor too low) combined with a low to moderate risk-taking attitude. Interestingly, the model gives rise to situations in which the development of the community in the floodplain is path dependent, i.e., the history of flooding may lead to its growth or recession. Schematic of human adjustments to flooding: (a) settling away from the river; (b) raising levees/dikes.

  3. The depositional and hydrogeologic environment of tertiary uranium deposits, South Texas uranium province

    International Nuclear Information System (INIS)

    Galloway, W.E.

    1985-01-01

    Uranium ore bodies of the South Texas Uranium Province occur within the most transmissive sand facies of coastal-plain fluvial and shore-zone depositional systems. Host strata range in age from Eocene through Miocene. Ore bodies formed at the fringes of epigenetic oxidation tongues near intrinsic organic debris or iron-disulfide mineral reductants. Mineralized Eocene units, which include the Carrizo and Whitsett Sandstones, subcropped beneath tuffaceous Oligocene through early Miocene coastal plain sediments. Roll-front mineralization occurred because of this direct hydrologic continuity between an aquifer and a uranium source. Most ore occurs within coarse, sand-rich, arid-region, bed-load fluvial systems of the Oligocene through Miocene Catahoula, Oakville, and Goliad Formations. Host sediments were syndepositionally oxidized and leached. Reductant consists predominantly of epigenetic pyrite precipitated from deep, sulfide-rich thermobaric waters introduced into the shallow aquifers along fault zones. Mineralization fronts are commonly entombed within reduced ground. Modern ground waters are locally oxidizing and redistributing some ore but appear incapable of forming new mineralization fronts. (author)

  4. Flood-hazard analysis of four headwater streams draining the Argonne National Laboratory property, DuPage County, Illinois

    Science.gov (United States)

    Soong, David T.; Murphy, Elizabeth A.; Straub, Timothy D.; Zeeb, Hannah L.

    2016-11-22

    Results of a flood-hazard analysis conducted by the U.S. Geological Survey, in cooperation with the Argonne National Laboratory, for four headwater streams within the Argonne National Laboratory property indicate that the 1-percent and 0.2-percent annual exceedance probability floods would cause multiple roads to be overtopped. Results indicate that most of the effects on the infrastructure would be from flooding of Freund Brook. Flooding on the Northeast and Southeast Drainage Ways would be limited to overtopping of one road crossing for each of those streams. The Northwest Drainage Way would be the least affected with flooding expected to occur in open grass or forested areas.The Argonne Site Sustainability Plan outlined the development of hydrologic and hydraulic models and the creation of flood-plain maps of the existing site conditions as a first step in addressing resiliency to possible climate change impacts as required by Executive Order 13653 “Preparing the United States for the Impacts of Climate Change.” The Hydrological Simulation Program-FORTRAN is the hydrologic model used in the study, and the Hydrologic Engineering Center‒River Analysis System (HEC–RAS) is the hydraulic model. The model results were verified by comparing simulated water-surface elevations to observed water-surface elevations measured at a network of five crest-stage gages on the four study streams. The comparison between crest-stage gage and simulated elevations resulted in an average absolute difference of 0.06 feet and a maximum difference of 0.19 feet.In addition to the flood-hazard model development and mapping, a qualitative stream assessment was conducted to evaluate stream channel and substrate conditions in the study reaches. This information can be used to evaluate erosion potential.

  5. Reconstructing the 2015 Flash Flood event of Salgar Colombia, The Case of a Poor Gauged Basin

    Science.gov (United States)

    Velasquez, N.; Zapata, E.; Hoyos Ortiz, C. D.; Velez, J. I.

    2017-12-01

    Flash floods events associated with severe precipitation events are highly destructive, often resulting in significant human and economic losses. Due to their nature, flash floods trend to occur in medium to small basins located within complex high mountainous regions. In the Colombian Andean region these basins are very common, with the aggravating factor that the vulnerability is considerably high as some important human settlements are located within these basins, frequently occupating flood plains and other flash-flood prone areas. During the dawn of May 18 of 2015 two severe rainfall events generated a flash flood event in the municipality ofSalgar, La Liboriana basin, locatedin the northwestern Colombian Andes, resulting in more than 100 human casualties and significant economic losses. The present work is a reconstruction of the hydrological processes that took place before and during the Liboriana flash flood event, analyzed as a case of poorly gauged basin.The event conditions where recreated based on radar retrievals and a hydrological distributed model, linked with a proposed 1D hydraulic model and simple shallow landslide model. Results suggest that the flash flood event was caused by the occurrence of two successive severe convective events over the same basin, with an important modulation associated with soil characteristics and water storage.Despite of its simplicity, the proposed hydraulic model achieves a good representation of the flooded area during the event, with limitations due to the adopted spatial scale (12.7 meters, from ALOS PALSAR images). Observed landslides were obtained from satellite images; for this case the model simulates skillfully the landslide occurrence regions with small differences in the exact locations.To understand this case, radar data shows to be key due to specific convective cores location and rainfall intensity estimation.In mountainous regions, there exists a significant number of settlements with similar

  6. Contribution to the hydrogeological, geochemical and isotopic study of Ain El Beidha and Merguellil (Kairouan plain) aquifers: Implication for the dam-aquifer relationship

    International Nuclear Information System (INIS)

    Ben Ammar, Safouan

    2007-01-01

    In the semiarid central part of Tunisia the water resources are becoming increasingly rare because of the scarcity and irregularity of the precipitation and a steadily growing need for fresh water. This study addresses the use of geochemical and isotopic data to analyze the relationship between the El Haouareb dam and the Ain El Beidha and the Kairouan alluvial plain aquifers systems for durable groundwater management. In the Ain El Beidha basin the hydrogeological and geochemical investigations showed that: - The general direction of the groundwater flow is mainly from the SW to the NE, i.e. towards the hydraulic sill of El Haouareb which allows the connection between the Ain El Beidha basin and the Kairouan plain, - The salinity distribution displays a zonation in apparent relationship with the lithological variation of the aquifer formation, - Mineral exchange between groundwater and the aquifer matrix is the dominant process in determining groundwater salinity. The isotopic data confirm the flow directions of groundwater and shows that the recharge of Ain El Beidha aquifers takes place from the floods of the Khechem and Ben Zitoun wadies and also by preferential infiltration of runoff at the front of hill slopes area. Close to preferential recharge areas, groundwater 3H contents reflect a recent input of surface water, whereas the radiocarbon data indicate a longer residence time downstream. The isotopic characteristics of Ain El Beidha groundwater (small space and temporal changes) authorize the use of averaged values for the dam-aquifer water exchange. Under natural conditions, groundwater recharge of the alluvial aquifer of Kairouan plain occurs by infiltration of the Merguellil floods and from the Ain el Beidha groundwater flow close the karstic hydraulic sills. Since the construction of the El Haouareb dam, these natural mechanisms have been strongly modified: the dam waters infiltrate into the karst, mix with the Ain el Beidha groundwater, and feed the

  7. Flood-rich and flood-poor periods in Spain in 1942-2009

    Science.gov (United States)

    Mediero, Luis; Santillán, David; Garrote, Luis

    2016-04-01

    Several studies to detect trends in flood series at either national or trans-national scales have been conducted. Mediero et al. (2015) studied flood trends by using the longest streamflow records available in Europe. They found a decreasing trend in the Atlantic, Continental and Scandinavian regions. More specifically, Mediero et al. (2014) found a general decreasing trend in flood series in Spain in the period 1959-2009. Trends in flood series are usually detected by the Mann-Kendall test applied to a given period. However, the result of the Mann-Kendall test can change in terms of the starting and ending year of the series. Flood oscillations can occur and flood-rich and flood-poor periods could condition the results, especially when they are located at the beginning or end of the series. A methodology to identify statistically significant flood-rich and flood-poor periods is developed, based on the comparison between the expected sampling variability of floods when stationarity is assumed and the observed variability of floods in a given series. The methodology is applied to the longest series of annual maximum floods, peaks over threshold and counts of annual occurrences in peaks over threshold series observed in Spain in the period 1942-2009. A flood-rich period in 1950-1970 and a flood-poor period in 1970-1990 are identified in most of the selected sites. The generalised decreasing trend in flood series found by Mediero et al. (2014) could be explained by a flood-rich period placed at the beginning of the series and a flood-poor period located at the end of the series. References: Mediero, L., Kjeldsen, T.R., Macdonald, N., Kohnova, S., Merz, B., Vorogushyn, S., Wilson, D., Alburquerque, T., Blöschl, G., Bogdanowicz, E., Castellarin, A., Hall, J., Kobold, M., Kriauciuniene, J., Lang, M., Madsen, H., Onuşluel Gül, G., Perdigão, R.A.P., Roald, L.A., Salinas, J.L., Toumazis, A.D., Veijalainen, N., Óðinn Þórarinsson. Identification of coherent flood

  8. Volcanic Flooding Experiments in Impact Basins and Heavily Cratered Terrain Using LOLA Data: Patterns of Resurfacing and Crater Loss

    Science.gov (United States)

    Whitten, Jennifer L.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.

    2012-01-01

    Terrestrial planetary bodies are characterized by extensive, largely volcanic deposits covering their surfaces. On Earth large igneous provinces (LIPs) abound, maria cover the nearside of the Moon, and volcanic plains cover large portions of Venus, Mars and Mercury.

  9. Evaluating the rate of migration of an uranium deposition front within the Uitenhage Aquifer

    CSIR Research Space (South Africa)

    Vogel

    1999-07-01

    Full Text Available of Geochemical Exploration 66 (1999) 269?276 www.elsevier.com/locate/jgeoexp Evaluating the rate of migration of an uranium deposition front within the Uitenhage Aquifer J.C. Vogel a,A.S.Talmaa, T.H.E. Heaton b, J. Kronfeld c,* a Quaternary Dating Research Unit... stream_source_info vogel_1999.pdf.txt stream_content_type text/plain stream_size 18078 Content-Encoding ISO-8859-1 stream_name vogel_1999.pdf.txt Content-Type text/plain; charset=ISO-8859-1 ELSEVIER Journal...

  10. Recent advances in flood forecasting and flood risk assessment

    Directory of Open Access Journals (Sweden)

    G. Arduino

    2005-01-01

    Full Text Available Recent large floods in Europe have led to increased interest in research and development of flood forecasting systems. Some of these events have been provoked by some of the wettest rainfall periods on record which has led to speculation that such extremes are attributable in some measure to anthropogenic global warming and represent the beginning of a period of higher flood frequency. Whilst current trends in extreme event statistics will be difficult to discern, conclusively, there has been a substantial increase in the frequency of high floods in the 20th century for basins greater than 2x105 km2. There is also increasing that anthropogenic forcing of climate change may lead to an increased probability of extreme precipitation and, hence, of flooding. There is, therefore, major emphasis on the improvement of operational flood forecasting systems in Europe, with significant European Community spending on research and development on prototype forecasting systems and flood risk management projects. This Special Issue synthesises the most relevant scientific and technological results presented at the International Conference on Flood Forecasting in Europe held in Rotterdam from 3-5 March 2003. During that meeting 150 scientists, forecasters and stakeholders from four continents assembled to present their work and current operational best practice and to discuss future directions of scientific and technological efforts in flood prediction and prevention. The papers presented at the conference fall into seven themes, as follows.

  11. 44 CFR 60.13 - Noncompliance.

    Science.gov (United States)

    2010-10-01

    ... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CRITERIA FOR LAND MANAGEMENT AND USE Requirements for State Flood Plain Management Regulations § 60.13 Noncompliance. If a State fails to submit adequate flood plain management regulations applicable to State-owned properties pursuant...

  12. The Impacts of Episodic Storm and Flood Events on Carbon and Sediment Delivery to Gulf of Mexico Sediments

    Science.gov (United States)

    Schreiner, K. M.; Carlin, J. A.; Sayers, L.; Swenson, J.

    2017-12-01

    Marine sediments are an important long-term reservoir for both recently fixed organic carbon (OC) and ancient rock derived OC, much of which is delivered by rivers. The ratio between these two sources of OC in turn regulates atmospheric levels of oxygen and carbon dioxide over geologic time, making this riverine delivery of OC, primarily carried by sediments, an important flux in the global carbon cycle. However, while the overall magnitude of these fluxes are relatively well known, it remains to be determined the importance of episodic events, like storms and floods, in the flux of OC from terrestrial to marine environments. Here, we present data from a 34 cm core collected from the Gulf of Mexico at a mid-shelf distal depocenter for the Brazos River in 2015, during a strong El Nino when that area of the country was experiencing 100-year flood events and anomalously high river flow. Based on analysis of the radioactive isotope 7Be, approximately the top 7-8 cm of the sediment in this core was deposited during this flood event. Both bulk elemental (C, N, and stable carbon isotopes) and chemical biomarker (lignin-phenol) data has been combined to provide information of the origin and chemistry of the OC in this core both before and during flooding. C:N and d13C indicate a mixture of marine-sourced and terrestrially-sourced OC throughout the length of the core with very little variation between the flood layer and deeper sediments. However, lignin-phenol concentrations are higher in flood-deposited sediment, indicating that this sediment is likely terrestrially-sourced. Lignin-phenol indicators of OC degradation state (Acid:Aldehyde ratios) indicate that flood sediment is fresher and less degraded than deeper sediments. Taken together, these results indicate that 1. Bulk analyses are not enough to determine OC source and the importance of flood events in OC cycling and 2. Episodic events like floods could have an oversized impact on OC storage in marine sediments.

  13. SEDIMENTARY LOW-MANGANESE HEMATITE DEPOSITS OF THE BUKOVICA AREA IN THE NORTHWESTERN MT. PETROVA GORA, CENTRAL CROATIA

    Directory of Open Access Journals (Sweden)

    Milivoj Čop

    1998-12-01

    Full Text Available Middle-Permian Gröden deposits crop out on the surface of 0.8 km in the Bukovica area and on the surface of 0.8 km2 in the Mt. Loskun-jska gora in the NW part of the Petrova gora Mountain. One half of the Bukovica Gröden deposits contains in its lowest parts 1 to 5 m (in average 2.5 m thick hematite bed cutted in blocks by NE-SW stretch¬ing vertical, normal and reverse faults. The hematite bed is unconfor-mably underlain by Lower Permian quartz-wackes (subgraywackes intercalated with shales intercalations. Ore deposit is explored by 308 boreholes (10509 m and by numerous adits, inclines and crosscuts on the underground surface of 0.4 km2 . From 1936 to 1941 and from 1953 to 1969 has been exploited 183000 t of ore with (in wt %: 34.0 Si02, 2.9 Al2O3; 59.0 Fe203; 0.15 MnO; 0.7 CaO; 0.4 MgO; 0.1 P, 0.37 S; 1.25 l.o. ign. Proven remaining ore reserves are 250.000 t. Paragenesis is investigated by microscopy of thin and polished sections, XRD, DTA, AAS analyses and by sedimentological analyses. Paragenesis major minerals are of hematite and quartz, with subordinate stable litho-clasts, muscovite (sericite and scarce kaolinite, calcite, dolomite, and barite. Accessories are zircon, rutile, tourmaline, amphibole, garnet, apatite. Epigenetic veinlets and small nests are built up of quartz or calcite as the main neominerals associated with siderite, barite, kaolinite, pyrite, gypsum. Iron from the Bukovica hematite ore origi¬nated by land weathering during hot climate and transported by rivers and underground waters deposited in river beds, in flood plains and in shallow sea. Precipitation of the Bukovica iron ores took place after the Saalic orogenetic phase. At Hrastno (SE Slovenia and at Rude nearby Samobor (Croatia, similar hematite deposits were found.

  14. Potential nitrogen critical loads for northern Great Plains grassland vegetation

    Science.gov (United States)

    Symstad, Amy J.; Smith, Anine T.; Newton, Wesley E.; Knapp, Alan K.

    2015-01-01

    The National Park Service is concerned that increasing atmospheric nitrogen deposition caused by fossil fuel combustion and agricultural activities could adversely affect the northern Great Plains (NGP) ecosystems in its trust. The critical load concept facilitates communication between scientists and policy makers or land managers by translating the complex effects of air pollution on ecosystems into concrete numbers that can be used to inform air quality targets. A critical load is the exposure level below which significant harmful effects on sensitive elements of the environment do not occur. A recent review of the literature suggested that the nitrogen critical load for Great Plains vegetation is 10-25 kg N/ha/yr. For comparison, current atmospheric nitrogen deposition in NGP National Park Service (NPS) units ranges from ~4 kg N/ha/yr in the west to ~13 kg N/ha/yr in the east. The suggested critical load, however, was derived from studies far outside of the NGP, and from experiments investigating nitrogen loads substantially higher than current atmospheric deposition in the region.Therefore, to better determine the nitrogen critical load for sensitive elements in NGP parks, we conducted a four-year field experiment in three northern Great Plains vegetation types at Badlands and Wind Cave National Parks. The vegetation types were chosen because of their importance in NGP parks, their expected sensitivity to nitrogen addition, and to span a range of natural fertility. In the experiment, we added nitrogen at rates ranging from below current atmospheric deposition (2.5 kg N/ha/yr) to far above those levels but commensurate with earlier experiments (100 kg N/ha/yr). We measured the response of a variety of vegetation and soil characteristics shown to be sensitive to nitrogen addition in other studies, including plant biomass production, plant tissue nitrogen concentration, plant species richness and composition, non-native species abundance, and soil inorganic

  15. Rethinking the relationship between flood risk perception and flood management.

    Science.gov (United States)

    Birkholz, S; Muro, M; Jeffrey, P; Smith, H M

    2014-04-15

    Although flood risk perceptions and their concomitant motivations for behaviour have long been recognised as significant features of community resilience in the face of flooding events, there has, for some time now, been a poorly appreciated fissure in the accompanying literature. Specifically, rationalist and constructivist paradigms in the broader domain of risk perception provide different (though not always conflicting) contexts for interpreting evidence and developing theory. This contribution reviews the major constructs that have been applied to understanding flood risk perceptions and contextualises these within broader conceptual developments around risk perception theory and contemporary thinking around flood risk management. We argue that there is a need to re-examine and re-invigorate flood risk perception research, in a manner that is comprehensively underpinned by more constructivist thinking around flood risk management as well as by developments in broader risk perception research. We draw attention to an historical over-emphasis on the cognitive perceptions of those at risk to the detriment of a richer understanding of a wider range of flood risk perceptions such as those of policy-makers or of tax-payers who live outside flood affected areas as well as the linkages between these perspectives and protective measures such as state-supported flood insurance schemes. Conclusions challenge existing understandings of the relationship between risk perception and flood management, particularly where the latter relates to communication strategies and the extent to which those at risk from flooding feel responsible for taking protective actions. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Flood Risk, Flood Mitigation, and Location Choice: Evaluating the National Flood Insurance Program's Community Rating System.

    Science.gov (United States)

    Fan, Qin; Davlasheridze, Meri

    2016-06-01

    Climate change is expected to worsen the negative effects of natural disasters like floods. The negative impacts, however, can be mitigated by individuals' adjustments through migration and relocation behaviors. Previous literature has identified flood risk as one significant driver in relocation decisions, but no prior study examines the effect of the National Flood Insurance Program's voluntary program-the Community Rating System (CRS)-on residential location choice. This article fills this gap and tests the hypothesis that flood risk and the CRS-creditable flood control activities affect residential location choices. We employ a two-stage sorting model to empirically estimate the effects. In the first stage, individuals' risk perception and preference heterogeneity for the CRS activities are considered, while mean effects of flood risk and the CRS activities are estimated in the second stage. We then estimate heterogeneous marginal willingness to pay (WTP) for the CRS activities by category. Results show that age, ethnicity and race, educational attainment, and prior exposure to risk explain risk perception. We find significant values for the CRS-creditable mitigation activities, which provides empirical evidence for the benefits associated with the program. The marginal WTP for an additional credit point earned for public information activities, including hazard disclosure, is found to be the highest. Results also suggest that water amenities dominate flood risk. Thus, high amenity values may increase exposure to flood risk, and flood mitigation projects should be strategized in coastal regions accordingly. © 2015 Society for Risk Analysis.

  17. LAND SUITABILITY SCENARIOS FOR ARID COASTAL PLAINS USING GIS MODELING: SOUTHWESTERN SINAI COASTAL PLAIN, EGYPT

    Directory of Open Access Journals (Sweden)

    Ahmed Mohamed Wahid

    2009-12-01

    Full Text Available Site selection analysis was carried out to find the best suitable lands for development activities in an example of promising coastal plains, southwestern Sinai, Egypt. Two GIS models were developed to represent two scenarios of land use suitability in the study area using GIS Multi Criteria Analysis Modeling. The factors contributed in the analysis are the Topography, Land cover, Existing Land use, Flash flood index, Drainage lines and Water points. The first scenario was to classify the area according to various gradual ranges of suitability. According to this scenario, the area is classified into five classes of suitability. The percentage of suitability values are 51.16, 6.13, 22.32, 18.49 and 1.89% for unsuitable, least suitable, low suitable, suitable and high suitable, respectively. The second scenario is developed for a particular kind of land use planning; tourism and recreation projects. The suitability map of this scenario was classified into five values. Unsuitable areas represent 51.18% of the study area, least suitable 16.67%, low suitable 22.85%, suitable 8.61%, and high suitable 0.68%. The best area for locating development projects is the area surrounding El-Tor City and close to the coast. This area could be an urban extension of El-Tor City with more economical and environmental management.

  18. The vulnerability of groundwater of the Crau plain in a context of change in land use

    Science.gov (United States)

    Beltrando, Gérard

    2016-04-01

    In the Crau plain (520 km², Western part of the region of Marseille), With the arrangement of canals which began at the end of the 17th century, the irrigation by flood in a part of the plain has allowed the production of an quality hay and the preservation of a performing traditional socio-ecological system named "Pastoralism - Foin de Crau" between the arid part (steppe) and the Green Car with a voluminous groundwater in the Green Crau. During the second part of the XXth century the traditional economical functions have quickly changed in a context of uncertainty about the future of climate and a strong pressure on this territory, characterized by an irrigated part (the Green Crau) and a dry part (the steppe named Coussoul) : (1) the surface used for the regular flood (irrigation) in hot season of meadows for hay has decreased, while this water allows the alimentation of an important groundwater in which 80 million of m³ of water are taken every year; (2) the arid steppe, used seasonally by the ovine pastoralism, allows the preservation of a unique biodiversity. These fast changes in the land use raise the question of the durability of this groundwater today which offers numerous ecosystem advantages to the populations but also, the preservation, even the reconstruction, a rare biophysics environment and the major ecological interest. The management of the groundwater of Crau just like the conservation of the agro-system of the dry steppe thus constitutes an inseparable territorial stake. The impact of Man on this old ecosystem modelled slowly by the man is very vulnerable in front of exogenous disturbances. What are today the threats generated by the evolution of the land uses for the groundwater but also on the preservation of the unique and ancestral agro-ecosystem of the steppe?

  19. May flood-poor periods be more dangerous than flood-rich periods?

    Science.gov (United States)

    Salinas, Jose Luis; Di Baldassarre, Giuliano; Viglione, Alberto; Kuil, Linda; Bloeschl, Guenter

    2014-05-01

    River floods are among the most devastating natural hazards experienced by populations that, since the earliest recorded civilisations, have settled in floodplains because they offer favourable conditions for trade, agriculture, and economic development. The occurrence of a flood may cause loss of lives and tremendous economic damages and, therefore, is rightly seen as a very negative event by the communities involved. Occurrence of many floods in a row is, of course, even more frustrating and is rightly considered a unbearable calamity. Unfortunately, the occurrence of many floods in a limited number of consecutive years is not unusual. In many places in the world, it has been observed that extreme floods do not arrive randomly but cluster in time into flood-poor and flood-rich periods consistent with the Hurst effect. If this is the case, when are the people more in danger? When should people be more scared? In flood-poor or flood-rich periods? In this work, a Socio-Hydrology model (Di Baldassarre et al., 2013; Viglione et al., 2014) is used to show that, maybe counter-intuitively, flood-poor periods may be more dangerous than flood-rich periods. The model is a conceptualisation of a hypothetical setting of a city at a river where a community evolves, making choices between flood management options on the floodplain. The most important feedbacks between the economic, political, technological and hydrological processes of the evolution of that community are represented in the model. In particular, the model also accounts in a dynamic way for the evolution of the the community awareness to flood risk. Occurrence of floods tends to increase peoples' recognition that their property is in an area that is potentially at risk of flooding, both at the scales of individuals and communities, which is one of the main reasons why flood coping actions are taken. It is shown through examples that frequent flood events may result in moderate damages because they ensure that the

  20. Paleo-Environment and C-14 Dating: The Key to the Depositional Age of the Tha Chang and Related Sand Pits, Northeastern Thailand

    Science.gov (United States)

    Putthapiban, P.; Zolensky, M.; Jull, T.; Demartino, M.; Salyapongse, S.

    2012-01-01

    Tha Chang sand pits, Nakhon Ratchasima Province and many other sand pits in the area adjacent to the Mun River are characterized by their fluviatile environment in association with mass wasting deposits, along the paleo-river channel and the flood plain of the Mun River. Sediments of these deposits are characterized by clasts of various rock types especially the resistant ones with frequent big tree trunks, logs and wood fragments in different sizes and various stages of transformation from moldering stage to lignification and petrification. Widespread pyritization of the lower horizon suggests strongly reducing environment during burial. The Tha Chang deposits have been received much attention from geoscientists especially paleontologist communities, as they contain fragments of some distinct vertebrate species such as Stegadon sp., hominoid primate, rhinoceros Aceratherium and others. Based on the associated mammal fauna and hominoid fossils, the late Miocene ( 9 - 6 Ma) was given for the time of deposition of this sand and gravel unit. Some other reports believed that sediments and materials of these sand and gravel quarries (pits) were deposited by high-energy flood pulses contemporaneous with the tektites forming event during mid-Pleistocene at c. 0.8 Ma. Interpretation from Palynostratigraphical study suggested that the lower horizon of Tha Chang sand pit was deposited during Pliocene/Pleistocene period and the upper horizons are Pleistoncene/Holocene. It is crystal clear that all the fluviatile sediments including tektites and almost all fossil fragments being deposited in these sand pits were, likely a multiple times reworked materials. Only some old bamboo trees, some old crowling trees and fossils grasses observed on the old river bank are considered in situ. C-14 dating of 5 old wood specimens from Tha Chang Sand Pits, 15 old wood specimens from Chumpuang Sand Pits and one sample of old pottery from a Chumpuang Sand Pit were carried out in the NSF

  1. Simulating the Evolution of Fluid Underpressures in the Great Plains, by Incorporation of Tectonic Uplift and Tilting, with a Groundwater Flow Model

    Directory of Open Access Journals (Sweden)

    Amjad M. J. Umari

    2018-01-01

    Full Text Available Underpressures (subhydrostatic heads in the Paleozoic units underlying the Great Plains of North America are a consequence of Cenozoic uplift of the area. Based on tectonostratigraphic data, we have developed a cumulative uplift history with superimposed periods of deposition and erosion for the Great Plains for the period from 40 Ma to the present. Uplift, deposition, and erosion on an 800 km geologic cross-section extending from northeast Colorado to eastern Kansas is represented in nine time-stepped geohydrologic models. Sequential solution of the two-dimensional diffusion equation reveals the evolution of hydraulic head and underpressure in a changing structural environment after 40 Ma, culminating in an approximate match with the measured present-day values. The modeled and measured hydraulic head values indicate that underpressures increase to the west. The 2 to 0 Ma model indicates that the present-day hydraulic head values of the Paleozoic units have not reached steady state. This result is significant because it indicates that present-day hydraulic heads are not at equilibrium, and underpressures will increase in the future. The pattern uncovered by the series of nine MODFLOW models is of increased underpressures with time. Overall, the models indicate that tectonic uplift explains the development of underpressures in the Great Plains.

  2. Toward Improving Predictability of Extreme Hydrometeorological Events: the Use of Multi-scale Climate Modeling in the Northern High Plains

    Science.gov (United States)

    Munoz-Arriola, F.; Torres-Alavez, J.; Mohamad Abadi, A.; Walko, R. L.

    2014-12-01

    Our goal is to investigate possible sources of predictability of hydrometeorological extreme events in the Northern High Plains. Hydrometeorological extreme events are considered the most costly natural phenomena. Water deficits and surpluses highlight how the water-climate interdependence becomes crucial in areas where single activities drive economies such as Agriculture in the NHP. Nonetheless we recognize the Water-Climate interdependence and the regulatory role that human activities play, we still grapple to identify what sources of predictability could be added to flood and drought forecasts. To identify the benefit of multi-scale climate modeling and the role of initial conditions on flood and drought predictability on the NHP, we use the Ocean Land Atmospheric Model (OLAM). OLAM is characterized by a dynamic core with a global geodesic grid with hexagonal (and variably refined) mesh cells and a finite volume discretization of the full compressible Navier Stokes equations, a cut-grid cell method for topography (that reduces error in computational gradient computation and anomalous vertical dispersion). Our hypothesis is that wet conditions will drive OLAM's simulations of precipitation to wetter conditions affecting both flood forecast and drought forecast. To test this hypothesis we simulate precipitation during identified historical flood events followed by drought events in the NHP (i.e. 2011-2012 years). We initialized OLAM with CFS-data 1-10 days previous to a flooding event (as initial conditions) to explore (1) short-term and high-resolution and (2) long-term and coarse-resolution simulations of flood and drought events, respectively. While floods are assessed during a maximum of 15-days refined-mesh simulations, drought is evaluated during the following 15 months. Simulated precipitation will be compared with the Sub-continental Observation Dataset, a gridded 1/16th degree resolution data obtained from climatological stations in Canada, US, and

  3. Field, Laboratory and Imaging spectroscopic Analysis of Landslide, Debris Flow and Flood Hazards in Lacustrine, Aeolian and Alluvial Fan Deposits Surrounding the Salton Sea, Southern California

    Science.gov (United States)

    Hubbard, B. E.; Hooper, D. M.; Mars, J. C.

    2015-12-01

    High resolution satellite imagery, field spectral measurements using a portable ASD spectrometer, and 2013 hyperspectral AVIRIS imagery were used to evaluate the age of the Martinez Mountain Landslide (MML) near the Salton Sea, in order to determine the relative ages of adjacent alluvial fan surfaces and the potential for additional landslides, debris flows, and floods. The Salton Sea (SS) occupies a pluvial lake basin, with ancient shorelines ranging from 81 meters to 113 meters above the modern lake level. The highest shoreline overlaps the toe of the 0.24 - 0.38 km3 MML deposit derived from hydrothermally altered granites exposed near the summit of Martinez Mountain. The MML was originally believed to be of early Holocene age. However, AVIRIS mineral maps show abundant desert varnish on the top and toe of the landslide. Desert varnish can provide a means of relative dating of alluvial fan (AF) or landslide surfaces, as it accumulates at determinable rates over time. Based on the 1) highest levels of desert varnish accumulation mapped within the basin, 2) abundant evaporite playa minerals on top of the toe of the landslide, and 3) the highest shoreline of the ancestral lake overtopping the toe of the landslide with gastropod and bivalve shells, we conclude that the MML predates the oldest alluvial fan terraces and lake sediments exposed in the Coachella and Imperial valleys and must be older than early Holocene (i.e. Late Pleistocene?). Thus, the MML landslide has the potential to be used as a spectral endmember for desert varnish thickness and thus proxy for age discrimination of active AF washes versus desert pavements. Given the older age of the MML landslide and low water levels in the modern SS, the risk from future rockslides of this size and related seiches is rather low. However, catastrophic floods and debris flows do occur along the most active AF channels; and the aftermath of such flows can be identified spectrally by montmorillonite crusts forming in

  4. Floods

    Science.gov (United States)

    Floods are common in the United States. Weather such as heavy rain, thunderstorms, hurricanes, or tsunamis can ... is breached, or when a dam breaks. Flash floods, which can develop quickly, often have a dangerous ...

  5. Development of Probabilistic Flood Inundation Mapping For Flooding Induced by Dam Failure

    Science.gov (United States)

    Tsai, C.; Yeh, J. J. J.

    2017-12-01

    A primary function of flood inundation mapping is to forecast flood hazards and assess potential losses. However, uncertainties limit the reliability of inundation hazard assessments. Major sources of uncertainty should be taken into consideration by an optimal flood management strategy. This study focuses on the 20km reach downstream of the Shihmen Reservoir in Taiwan. A dam failure induced flood herein provides the upstream boundary conditions of flood routing. The two major sources of uncertainty that are considered in the hydraulic model and the flood inundation mapping herein are uncertainties in the dam break model and uncertainty of the roughness coefficient. The perturbance moment method is applied to a dam break model and the hydro system model to develop probabilistic flood inundation mapping. Various numbers of uncertain variables can be considered in these models and the variability of outputs can be quantified. The probabilistic flood inundation mapping for dam break induced floods can be developed with consideration of the variability of output using a commonly used HEC-RAS model. Different probabilistic flood inundation mappings are discussed and compared. Probabilistic flood inundation mappings are hoped to provide new physical insights in support of the evaluation of concerning reservoir flooded areas.

  6. Sedimentary facies and depositional environments of early Mesozoic Newark Supergroup basins, eastern North America

    Science.gov (United States)

    Smoot, J.P.

    1991-01-01

    The early Mesozoic Newark Supergroup consists of continental sedimentary rocks and basalt flows that occupy a NE-trending belt of elongate basins exposed in eastern North America. The basins were filled over a period of 30-40 m.y. spanning the Late Triassic to Early Jurassic, prior to the opening of the north Atlantic Ocean. The sedimentary rocks are here divided into four principal lithofacies. The alluvial-fan facies includes deposits dominated by: (1) debris flows; (2) shallow braided streams; (3) deeper braided streams (with trough crossbeds); or (4) intense bioturbation or hyperconcentrated flows (tabular, unstratified muddy sandstone). The fluvial facies include deposits of: (1) shallow, ephemeral braided streams; (2) deeper, flashflooding, braided streams (with poor sorting and crossbeds); (3) perennial braided rivers; (4) meandering rivers; (5) meandering streams (with high suspended loads); (6) overbank areas or local flood-plain lakes; or (7) local streams and/or colluvium. The lacustrine facies includes deposits of: (1) deep perennial lakes; (2) shallow perennial lakes; (3) shallow ephemeral lakes; (4) playa dry mudflats; (5) salt-encrusted saline mudflats; or (6) vegetated mudflats. The lake margin clastic facies includes deposits of: (1) birdfoot deltas; (2) stacked Gilbert-type deltas; (3) sheet deltas; (4) wave-reworked alluvial fans; or (5) wave-sorted sand sheets. Coal deposits are present in the lake margin clastic and the lacustrine facies of Carnian age (Late Triassic) only in basins of south-central Virginia and North and South Carolina. Eolian deposits are known only from the basins in Nova Scotia and Connecticut. Evaporites (and their pseudomorphs) occur mainly in the northern basins as deposits of saline soils and less commonly of saline lakes, and some evaporite and alkaline minerals present in the Mesozoic rocks may be a result of later diagenesis. These relationships suggest climatic variations across paleolatitudes, more humid to the

  7. Hydrogeomorphic Investigation of the 2015 Atacama Floods, Northern Chile

    Science.gov (United States)

    Wilcox, A. C.; Escauriaza, C. R.; Agredano, R., Jr.; Mignot, E.; Gironas, J. A.; Cienfuegos, R.; Mao, L.

    2015-12-01

    In March 2015 unusual atmospheric conditions over the Atacama Desert of northern Chile, the driest area on Earth outside of Antarctica, produced many years worth of rainfall in a 24-hour period. The resulting sediment-rich floods caused dozens of deaths and/or disappearances, over $1 billion in estimated damage, and widespread geomorphic change. Here we describe the hydrologic and geomorphic drivers and responses to the 2015 Atacama floods, including characterization of the hydrologic forcing, water and sediment routing from source areas in the upper watershed to the outlet at the Pacific Ocean, and urban flooding impacts of this event. In a region where few direct measurements of precipitation and discharge during these events are available, we combined hydrologic and hydraulic modeling with field and aerial photograph interpretation of sediment sources and geomorphic change. A remarkable element of the flood, particularly with respect to its effects on urban areas, was its high sediment load. Despite widespread hillslope erosion in the form of rilling and gullying initiated by overland flow, sediment from these sources typically did not reach valley bottoms, and only limited, small-scale mass wasting was observed. Field observations indicated that the sediment load was primarily derived from dramatic erosion of channel bed, bank, and floodplain material (i.e., valley fill). In the coastal city of Chañaral, flooding of the Salado River produced maximum water depths over 6 m, meters-thick mud deposition in buildings and along city streets, flow velocities larger than 8 m/s, and coastal erosion. Broader implications of studying the Atacama flooding include hazard reduction, the history of copper mining and more than five decades of contamination in many of the affected watersheds, and the Atacama's status as a terrestrial analog for Mars.

  8. Probabilistic flood extent estimates from social media flood observations

    NARCIS (Netherlands)

    Brouwer, Tom; Eilander, Dirk; Van Loenen, Arnejan; Booij, Martijn J.; Wijnberg, Kathelijne M.; Verkade, Jan S.; Wagemaker, Jurjen

    2017-01-01

    The increasing number and severity of floods, driven by phenomena such as urbanization, deforestation, subsidence and climate change, create a growing need for accurate and timely flood maps. In this paper we present and evaluate a method to create deterministic and probabilistic flood maps from

  9. Probabilistic flood extent estimates from social media flood observations

    NARCIS (Netherlands)

    Brouwer, Tom; Eilander, Dirk; Van Loenen, Arnejan; Booij, Martijn J.; Wijnberg, Kathelijne M.; Verkade, Jan S.; Wagemaker, Jurjen

    2017-01-01

    The increasing number and severity of floods, driven by phenomena such as urbanization, deforestation, subsidence and climate change, creates a growing need for accurate and timely flood maps. This research focussed on creating flood maps using user generated content from Twitter. Twitter data has

  10. Improving Global Flood Forecasting using Satellite Detected Flood Extent

    NARCIS (Netherlands)

    Revilla Romero, B.

    2016-01-01

    Flooding is a natural global phenomenon but in many cases is exacerbated by human activity. Although flooding generally affects humans in a negative way, bringing death, suffering, and economic impacts, it also has potentially beneficial effects. Early flood warning and forecasting systems, as well

  11. Comparison of 2D numerical models for river flood hazard assessment: simulation of the Secchia River flood in January, 2014

    Science.gov (United States)

    Shustikova, Iuliia; Domeneghetti, Alessio; Neal, Jeffrey; Bates, Paul; Castellarin, Attilio

    2017-04-01

    Hydrodynamic modeling of inundation events still brings a large array of uncertainties. This effect is especially evident in the models run for geographically large areas. Recent studies suggest using fully two-dimensional (2D) models with high resolution in order to avoid uncertainties and limitations coming from the incorrect interpretation of flood dynamics and an unrealistic reproduction of the terrain topography. This, however, affects the computational efficiency increasing the running time and hardware demands. Concerning this point, our study evaluates and compares numerical models of different complexity by testing them on a flood event that occurred in the basin of the Secchia River, Northern Italy, on 19th January, 2014. The event was characterized by a levee breach and consequent flooding of over 75 km2 of the plain behind the dike within 48 hours causing population displacement, one death and economic losses in excess of 400 million Euro. We test the well-established TELEMAC 2D, and LISFLOOD-FP codes, together with the recently launched HEC-RAS 5.0.3 (2D model), all models are implemented using different grid size (2-200 m) based on the 1 m digital elevation model resolution. TELEMAC is a fully 2D hydrodynamic model which is based on the finite-element or finite-volume approach. Whereas HEC-RAS 5.0.3 and LISFLOOD-FP are both coupled 1D-2D models. All models are calibrated against observed inundation extent and maximum water depths, which are retrieved from remotely sensed data and field survey reports. Our study quantitatively compares the three modeling strategies highlighting differences in terms of the ease of implementation, accuracy of representation of hydraulic processes within floodplains and computational efficiency. Additionally, we look into the different grid resolutions in terms of the results accuracy and computation time. Our study is a preliminary assessment that focuses on smaller areas in order to identify potential modeling schemes

  12. High-Resolution Subsurface Imaging and Stratigraphy of Quaternary Deposits, Marapanim Estuary, Northern Brazil

    Science.gov (United States)

    Silva, C. A.; Souza Filho, P. M.; Gouvea Luiz, J.

    2007-05-01

    The Marapanim estuary is situated in the Para Coastal Plain, North Brazil. It is characterized by an embayed coastline developed on Neogene and Quaternary sediments of the Barreiras and Pos-Barreiras Group. This system is strongly influenced by macrotidal regimes with semidiurnal tides and by humid tropical climate conditions. The interpretation of GPR-reflections presented in this paper is based on correlation of the GPR signal with stratigraphic data acquired on the coastal plain through five cores that were taken along GPR survey lines from the recent deposits and outcrops observed along to the coastal area. The profiles were obtained using a Geophysical Survey Systems Inc., Model YR-2 GPR, with monostatic 700 MHz antenna that permitted to get records of subsurface deposits at 20m depth. Were collected 54 radar sections completing a total of 4.360m. The field data were analyzed using a RADAN software and applying different filters. The interpretation of radar facies following the principles of seismic stratigraphy that permitted analyze the sedimentary facies and facies architecture in order to understand the lithology, depositional environments and stratigraphic evolution of this sedimentary succession as well as to leading to a more precise stratigraphic framework for the Neogene to Quaternary deposits at Marapanim coastal plain. Facies characteristics and sedimentologic analysis (i.e., texture, composition and structure aspects) were investigated from five cores collected through a Rammkernsonde system. The locations were determined using a Global Positioning System. Remote sensing images (Landsat-7 ETM+ and RADARSAT-1 Wide) and SRTM elevation data were used to identify and define the distribution of the different morphologic units. The Coastal Plain extends west-east of the mouth of the Marapanim River, where were identified six morphologic units: paleodune, strand plain, recent coastal dune, macrotidal sandy beach, mangrove and salt marsh. The integration

  13. Defining 'plain language' in contemporary South Africa | Cornelius ...

    African Journals Online (AJOL)

    Defining the concept 'plain language' has been hugely problematic since the origins of the socalled Plain Language Movement in the 1970s in the United States and elsewhere in the world. Definitions of 'plain language' abound, yet James (2008: 6) warns, in relation to plain language practitioners, that “we can't yet call ...

  14. FLOOD RISK ASSESSMENT IN RIVER TIMIS BASIN - THE CARANSEBES - LUGOJ SECTOR- USING GIS TECHNIQUE

    Directory of Open Access Journals (Sweden)

    MIHAI VALENTIN HERBEI

    2012-11-01

    Full Text Available Flood risk assessment in Timis River basin - the Caransebes -Lugoj sector- using GIS technique. Over time freshets, thus floods constituted and constitute a particularly important issue that requires attention. In many cases, flood damages are extensive to the environment, to the economy and also socially. The purpose of this paper is to identify flood-prone areas between Caransebes and Lugoj, land that is part of the Timis river basin. This paper is based on a theoretical model in which we considered the building elements of the flood produced on the Timis river in April 2005 (levels and flows. to represent the zones flood – prone, we used the numerical model of the terrain, created for the abovementioned area. On this model , according to levels measured at hydrometric stations, were defined those flood prone areas. The Timis river hydrographic basin includes a varied terrain (mountains, hills and plains, with pronounced differences in altitude and massiveness, resulting from tectonic movements that have affected the region, this fact has affected water flow processes, both directly through fragmentation and slope, and indirectly, by creating the vertical climate, vegetation and soils zones. Using GIS technology to study hydrological phenomena and their impact on the geographic area are of particular importance due to the complexity of these techniques, which enables detailed analysis and analytical precision as well as an increased speed of the analysis. Creating theoretical models that give scale to the hydrological phenomena, in this case representing the flood areas, is of great practical importance because based on these models the areas can be defined and viewed, having the possibility of taking measures to prevent environmental effects on the natural and / or anthropogenic environment. In the studied area review of the flood of 2005, were represented flood areas, therefore, according with the researches, several villages, located in

  15. Magnitude of flood flows for selected annual exceedance probabilities in Rhode Island through 2010

    Science.gov (United States)

    Zarriello, Phillip J.; Ahearn, Elizabeth A.; Levin, Sara B.

    2012-01-01

    Heavy persistent rains from late February through March 2010 caused severe widespread flooding in Rhode Island that set or nearly set record flows and water levels at many long-term streamgages in the State. In response, the U.S. Geological Survey, in partnership with the Federal Emergency Management Agency, conducted a study to update estimates of flood magnitudes at streamgages and regional equations for estimating flood flows at ungaged locations. This report provides information needed for flood plain management, transportation infrastructure design, flood insurance studies, and other purposes that can help minimize future flood damages and risks. The magnitudes of floods were determined from the annual peak flows at 43 streamgages in Rhode Island (20 sites), Connecticut (14 sites), and Massachusetts (9 sites) using the standard Bulletin 17B log-Pearson type III method and a modification of this method called the expected moments algorithm (EMA) for 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probability (AEP) floods. Annual-peak flows were analyzed for the period of record through the 2010 water year; however, records were extended at 23 streamgages using the maintenance of variance extension (MOVE) procedure to best represent the longest period possible for determining the generalized skew and flood magnitudes. Generalized least square regression equations were developed from the flood quantiles computed at 41 streamgages (2 streamgages in Rhode Island with reported flood quantiles were not used in the regional regression because of regulation or redundancy) and their respective basin characteristics to estimate magnitude of floods at ungaged sites. Of 55 basin characteristics evaluated as potential explanatory variables, 3 were statistically significant—drainage area, stream density, and basin storage. The pseudo-coefficient of determination (pseudo-R2) indicates these three explanatory variables explain 95 to 96 percent of the variance

  16. Geomorphic effects and sedimentological record of flash floods in the Copiapó River salt marsh (Atacama coast, Northern Chile)

    Science.gov (United States)

    Abad, Manuel; Fernández, Rolando; Izquierdo, Tatiana

    2017-04-01

    The Copiapó River is located South of the Atacama Desert (northern Chile) that is considered one of the most arid areas of the planet. On March 25 2015 this fluvial valley experienced one the largest hydrometeorological events recorded in historical times. The rain, unusually high, favored the run off in fluvial channels and alluvial fans that were dry for decades and triggered the rise and overflow of the Copiapó River at different points along the valley causing severe damages. In this work, we realize a characterization of the geomorphic configuration of the Copiapó River before and after this event with the aim of analyzing the main changes produced in the river mouth, where and extent coastal wetland of high ecological value is developed. The geomorphological mapping show a drastic change in the river mouth with the development of forms related with the river overflow and the flooding of the coastal plain such as levees, activation of abandoned channels, flooding lagoons, widening and deepening of the main channel, foredune rupture and, more importantly, a large mud sheet that covers almost the 80% of the study area, including the wetland and the main coastal dune systems. Just a small area of the wetland, far from the main channel, was not affected by this process as it was protected by the levees formed during the first stages of the overflow. The mud flow facies are homogeneous and consist of a layer of massive silty sands with a maximum thickness of 10-75 cm overlied by 5-20 cm of clay with wavy top and carbonaceous rest. It also presents a wide development of mud cracks and salt crusts. At the same time, 4 stages have been differentiated along the event: 1) arrival to the wetland of the first surge that flows in the channel and flooding of the southern sector of the wetland; 2) flooding of the complete mouth area because of the peak discharge arrival and generalize overflow with and associate muddy facies deposition; 3) erosional stage of the channel

  17. Flood Label for buildings : a tool for more flood-resilient cities

    NARCIS (Netherlands)

    Hartmann, T.; Scheibel, Marc

    2016-01-01

    River floods are among the most expensive natural disasters in Europe. Traditional flood protection methods are not sufficient anymore. It is widely acknowledged in the scholarly debate and in practice of flood risk management that traditional flood protection measures such as dikes need to be

  18. Pleistocene glaciers, lakes, and floods in north-central Washington State

    Science.gov (United States)

    Waitt, Richard B.; Haugerud, Ralph A.; Kelsey, Harvey M.

    2017-01-01

    The Methow, Chelan, Wenatchee, and other terrane blocks accreted in late Mesozoic to Eocene times. Methow valley is excavated in an exotic terrane of folded Mesozoic sedimentary and volcanic rocks faulted between crystalline blocks. Repeated floods of Columbia River Basalt about 16 Ma drowned a backarc basin to the southeast. Cirques, aretes, and U-shaped hanging troughs brand the Methow, Skagit, and Chelan headwaters. The Late Wisconsin Cordilleran icesheet beveled the alpine topography and deposited drift. Cordilleran ice flowed into the heads of Methow tributaries and overflowed from Skagit tributaries to greatly augment Chelan trough's glacier. Joined Okanogan and Methow ice flowed down Columbia valley and up lower Chelan trough. This tongue met the icesheet tongue flowing southeast down Chelan valley. Successively lower ice-marginal channels and kame terraces show that the icesheet withered away largely by downwasting. Immense late Wisconsin floods from glacial Lake Missoula occasionally swept the Chelan-Vantage reach of Columbia valley by different routes. The earliest debacles, nearly 19,000 cal yr BP (by radiocarbon methods), raged 335 m deep down the Columbia and built high Pangborn bar at Wenatchee. As Cordilleran ice blocked the northwest of Columbia valley, several giant floods descended Moses Coulee and backflooded up the Columbia. As advancing ice then blocked Moses Coulee, Grand Coulee to Quincy basin became the westmost floodway. From Quincy basin many Missoula floods backflowed 50 km upvalley past Wenatchee 18,000 to 15,500 years ago. Receding ice dammed glacial Lake Columbia centuries more--till it burst about 15,000 years ago. After Glacier Peak ashfall about 13,600 years ago, smaller great flood(s) swept down the Columbia from glacial Lake Kootenay in British Columbia. A cache of huge fluted Clovis points had been laid atop Pangborn bar (East Wenatchee) after the Glacier Peak ashfall. Clovis people came two and a half millennia after the last

  19. A summary of the occurrence and development of ground water in the southern High Plains of Texas

    Science.gov (United States)

    Cronin, J.G.; Myers, B.N.

    1964-01-01

    quantities of water in many parts of the Southern High Pl'ains; however, in practically all places the water is rather saline and prPlains consist of several formati'Ons of the Trinity, Fredericksburg, and Washita groups. The rocks underlie 'a large part of the southern part Plains; they consist of sandstone, 'shale, and limestone, the sandstone and limestone being the principal water-bearing units. In a few pl'aces where the Cretaceous rocks appear to be in hydrauli'c coimection with the overlying Ogallala formation, moderate quantitie of water are obtained, particularly from the limestones. Locally the Cretaceous rocks may be important aquifers where other water is not available, but they generally do not constitute a large source of water for irrigation or municipal use. The Ogallala formation of Pliocene age is the principal aquifer in the Southern High Plains of Texas; it supplies practically all the water used for all purposes. The formation is continuous throughout most of the Texas part of the Southern High Plains and extends into New Mexico. The .formation consists chiefly of sediments deposited by streams that had their headwaters in the mountainous regions to the west and northwest. The Ogallala formation rests unconformably upon an erosional surface of the underlying Triassic and Cretaceous rocks. The Ogallala consists of beds and lenses of clay, silt, sand, and gravel; caliche occurs as a secondary deposit ,in many places in the formation. In general the Ogallala is thicker in the northern part of the area; the thickness ranges from 400 to 500 feet in central Parmer, west-central Castro, and southwestern Floyd Counties to a knife edge where the formation wedges out against outcrops of the older rocks. The Ogallala formation probably originally formed a continuous blanket of sedimen

  20. Flooding in imagination vs flooding in vivo: A comparison with agoraphobics

    NARCIS (Netherlands)

    Emmelkamp, Paul M.G.; Wessels, Hemmy

    In this investigation of agoraphobic patients, 3 different flooding procedures were compared: (1) prolonged exposure in vivo, (2) flooding in the imagination by a ‘live’ therapist and (3) a combination of flooding in the imagination and flooding in vivo. After an intermediate-test all clients were

  1. Environmental and geochemical assessment of surface sediments on irshansk ilmenite deposit area

    Directory of Open Access Journals (Sweden)

    Наталия Олеговна Крюченко

    2015-03-01

    Full Text Available It is revealed the problem of pollution of surface sediments of Irshansk ilmenite deposit area of various chemical elements hazard class (Mn, V, Ba, Ni, Co, Cr, Mo, Cu, Pb, Zn. It is determined its average content in surface sediments of various functional areas (forest and agricultural land, flood deposits, reclaimed land, calculated geochemical criteria, so given ecological and geochemical assessment of area

  2. Late Hesperian plains formation and degradation in a low sedimentation zone of the northern lowlands of Mars

    Science.gov (United States)

    Rodriguez, J.A.P.; Tanaka, K.L.; Berman, D.C.; Kargel, J.S.

    2010-01-01

    The plains materials that form the martian northern lowlands suggest large-scale sedimentation in this part of the planet. The general view is that these sedimentary materials were transported from zones of highland erosion via outflow channels and other fluvial systems. The study region, the northern circum-polar plains south of Gemini Scopuli on Planum Boreum, comprises the only extensive zone in the martian northern lowlands that does not include sub-basin floors nor is downstream from outflow channel systems. Therefore, within this zone, the ponding of fluids and fluidized sediments associated with outflow channel discharges is less likely to have taken place relative to sub-basin areas that form the other northern circum-polar plains surrounding Planum Boreum. Our findings indicate that during the Late Hesperian sedimentary deposits produced by the erosion of an ancient cratered landscape, as well as via sedimentary volcanism, were regionally emplaced to form extensive plains materials within the study region. The distribution and magnitude of surface degradation suggest that groundwater emergence from an aquifer that extended from the Arabia Terra cratered highlands to the northern lowlands took place non-catastrophically and regionally within the study region through faulted upper crustal materials. In our model the margin of the Utopia basin adjacent to the study region may have acted as a boundary to this aquifer. Partial destruction and dehydration of these Late Hesperian plains, perhaps induced by high thermal anomalies resulting from the low thermal conductivity of these materials, led to the formation of extensive knobby fields and pedestal craters. During the Early Amazonian, the rates of regional resurfacing within the study region decreased significantly; perhaps because the knobby ridges forming the eroded impact crater rims and contractional ridges consisted of thermally conductive indurated materials, thereby inducing freezing of the tectonically

  3. Turbidites as proxy for past flood events: Testing this approach in a large clastic system (Lake Geneva, France/Switzerland)

    Science.gov (United States)

    Kremer, Katrina; Girardclos, Stéphanie

    2017-04-01

    Turbidites recorded in lake sediments are often used to reconstruct the frequency of past flood and also seismological events. However, for such a reconstruction, the origin and causes of the recorded turbidites need to be clearly identified. In this study, we test if turbidites can be used as paleohydrological archive based on the the sedimentary record of Lake Geneva resulting from inputs by the Rhone and Dranse clastic river systems. Our approach is based on several methods combining high-resolution seismic reflection data with geophysical (magnetic susceptibility, grain size) and high-resolution XRF/XRD data measured on ca. 10-m-long sediment cores (dated by radiocarbon ages and 137Cs activity). This dataset allows distinguishing between the different sources (rivers or hemipelagic sediment) of the turbidites deposited in the deep basin of Lake Geneva. However, no clear distinction between the various trigger processes (mass failures or floods) could be made, thus flood deposits could not be clearly identified. From our results, we also conclude that the lack of turbidite deposits in the deep basin between the 15th and 18th century seems to be linked to a change in turbidite depocentre due to the Rhone River mouth shifting possibly triggered by human activity and not by any direct climate effect. This study demonstrates that a least two conditions are needed to perform an adequate paleohydrological interpretation based on turbidite records: (1) the holistic understanding of the basin sedimentary system and (2) the distinction of flood-induced turbidites from other types of turbidites (mass failures etc.).

  4. Flooding and Schools

    Science.gov (United States)

    National Clearinghouse for Educational Facilities, 2011

    2011-01-01

    According to the Federal Emergency Management Agency, flooding is the nation's most common natural disaster. Some floods develop slowly during an extended period of rain or in a warming trend following a heavy snow. Flash floods can occur quickly, without any visible sign of rain. Catastrophic floods are associated with burst dams and levees,…

  5. Effect of Urban Green Spaces and Flooded Area Type on Flooding Probability

    Directory of Open Access Journals (Sweden)

    Hyomin Kim

    2016-01-01

    Full Text Available Countermeasures to urban flooding should consider long-term perspectives, because climate change impacts are unpredictable and complex. Urban green spaces have emerged as a potential option to reduce urban flood risks, and their effectiveness has been highlighted in notable urban water management studies. In this study, flooded areas in Seoul, Korea, were divided into four flooded area types by cluster analysis based on topographic and physical characteristics and verified using discriminant analysis. After division by flooded area type, logistic regression analysis was performed to determine how the flooding probability changes with variations in green space area. Type 1 included regions where flooding occurred in a drainage basin that had a flood risk management infrastructure (FRMI. In Type 2, the slope was steep; the TWI (Topographic Wetness Index was relatively low; and soil drainage was favorable. Type 3 represented the gentlest sloping areas, and these were associated with the highest TWI values. In addition, these areas had the worst soil drainage. Type 4 had moderate slopes, imperfect soil drainage and lower than average TWI values. We found that green spaces exerted a considerable influence on urban flooding probabilities in Seoul, and flooding probabilities could be reduced by over 50% depending on the green space area and the locations where green spaces were introduced. Increasing the area of green spaces was the most effective method of decreasing flooding probability in Type 3 areas. In Type 2 areas, the maximum hourly precipitation affected the flooding probability significantly, and the flooding probability in these areas was high despite the extensive green space area. These findings can contribute towards establishing guidelines for urban spatial planning to respond to urban flooding.

  6. Enhanced Oil Recovery (EOR by Miscible CO2 and Water Flooding of Asphaltenic and Non-Asphaltenic Oils

    Directory of Open Access Journals (Sweden)

    Edwin A. Chukwudeme

    2009-09-01

    Full Text Available An EOR study has been performed applying miscible CO2 flooding and compared with that for water flooding. Three different oils are used, reference oil (n-decane, model oil (n-C10, SA, toluene and 0.35 wt % asphaltene and crude oil (10 wt % asphaltene obtained from the Middle East. Stearic acid (SA is added representing a natural surfactant in oil. For the non-asphaltenic oil, miscible CO2 flooding is shown to be more favourable than that by water. However, it is interesting to see that for first years after the start of the injection (< 3 years it is shown that there is almost no difference between the recovered oils by water and CO2, after which (> 3 years oil recovery by gas injection showed a significant increase. This may be due to the enhanced performance at the increased reservoir pressure during the first period. Maximum oil recovery is shown by miscible CO2 flooding of asphaltenic oil at combined temperatures and pressures of 50 °C/90 bar and 70 °C/120 bar (no significant difference between the two cases, about 1% compared to 80 °C/140 bar. This may support the positive influence of the high combined temperatures and pressures for the miscible CO2 flooding; however beyond a certain limit the oil recovery declined due to increased asphaltene deposition. Another interesting finding in this work is that for single phase oil, an almost linear relationship is observed between the pressure drop and the asphaltene deposition regardless of the flowing fluid pressure.

  7. Hydrologic interpretation of geophysical data from the southeastern Hueco Bolson, El Paso, and Hudspeth Counties, Texas

    Science.gov (United States)

    Gates, Joseph Spencer; Stanley, W.D.

    1976-01-01

    Airborne-electromagnetic and earth-resistivity surveys were used to explore for fresh ground water in the Hueco Bolson southeast of El Paso, Texas. Aerial surveys were made along about 500 miles (800 km) of flight line, and 67 resistivity soundings were made along 110 miles (180 km) of profile. The surveys did not indicate the presence of any large bodies of fresh ground water, but several areas may be underlain by small to moderate amounts of fresh to slightly saline water.The material underlying the flood plain of the Rio Grande is predominantly clay or sand of low resistivity. Along a band on the mesa next to and parallel to the flood plain, more resistive material composed partly of deposits of an ancient river channel extends to depths of about 400 to 1,700 feet (120 to 520 m). Locally, the lower part of this more resistive material is saturated with fresh to slightly saline water. The largest body of fresh to slightly saline ground water detected in this study is between Fabens and Tornillo, Texas, mostly in the sandhill area between the flood plain and the mesa. Under assumed conditions, the total amount of water in storage may be as much as 400,000 to 800,000 acre-feet (500 million to 1 billion m ).The resistivity data indicate that the deep artesian zone southwest of Fabens extends from a depth of about 1,200 feet (365 m) to about 2,800 feet (855 m).

  8. Causes of sinks near Tucson, Arizona, USA

    Science.gov (United States)

    Hoffmann, J.P.; Pool, D.R.; Konieczki, A.D.; Carpenter, M.C.

    1998-01-01

    Land subsidence in the form of sinks has occurred on and near farmlands near Tucson, Pima County, Arizona, USA. The sinks occur in alluvial deposits along the flood plain of the Santa Cruz River, and have made farmlands dangerous and unsuitable for farming. More than 1700 sinks are confined to the flood plain of the Santa Cruz River and are grouped along two north-northwestward-trending bands that are approximately parallel to the river and other flood-plain drainages. An estimated 17,000 m3 of sediment have been removed in the formation of the sinks. Thirteen trenches were dug to depths of 4-6 m to characterize near-surface sediments in sink and nonsink areas. Sediments below about 2 m included a large percentage of dispersive clays in sink areas. Sediments in nonsink areas contain a large component of medium- to coarse-grained, moderately to well sorted sand that probably fills a paleochannel. Electromagnetic surveys support the association of silts and clays in sink areas that are highly electrically conductive relative to sand in nonsink areas. Sinks probably are caused by the near-surface process of subsurface erosion of dispersive sediments along pre-existing cracks in predominantly silt and clay sediments. The pre-existing cracks probably result from desiccation or tension that developed during periods of water-table decline and channel incision during the past 100 years or in earlier periods.

  9. Sediment sources and storages in the urbanizing South Creek catchment, Lake Macquarie, NSW

    International Nuclear Information System (INIS)

    Curtis, S.J.

    1988-10-01

    An investigation of the sediment source areas and sediment storages has been undertaken in the South Creek catchment, Lake Macquarie, NSW. Source areas have been examined by analyzing suspended sediment concentrations, field measurements and observations, and caesium-137 values. The caesium-137 technique and field measurements were used to study the sediment storages on the South Creek flood plain. Particle size analysis of sediments on the slopes and flood plain were undertaken to provide information on the efficiency of the sediment transport system. The results of these investigations indicate that the developing urban areas are the main sources of poorest water quality (in terms of suspended sediment) in the South Creek catchment. The open woodland, rural and established urban areas were minor sediment source areas, although the open woodland had the potential to become a major sediment source if disturbed by human activities. The developing urban areas had efficient sediment transport systems, while the open woodland and rural areas tended to deposit sediment locally. The upstream section of the flood plain was found to be storing more sediment than the downstream section. The study revealed that when urban development occurs on the steeper gradients of the South Creek catchment erosion processes are greatly accelerated and thus the developing urban area becomes the major source of poorest water quality in the catchment. The importance of the developing urban area as a sediment source needs to be considered in any future land developments in urbanizing drainage basins

  10. Executive summary - Geologic assessment of coal in the Gulf of Mexico coastal plain, U.S.A.

    Science.gov (United States)

    Warwick, Peter D.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    The National Coal Resource Assessment (NCRA) project of the U.S. Geological Survey (USGS) has assessed the quantity and quality of the nation's coal deposits that potentially could be mined during the next few decades. For eight years, geologic, geochemical, and resource information was collected and compiled for the five major coal-producing regions of the United States: the Appalachian Basin, Illinois Basin, Northern Rocky Mountains and Great Plains, Colorado Plateau, and the western part of the Gulf of Mexico Coastal Plain (Gulf Coast) region (Figure 1). In particular, the NCRA assessed resource estimates, compiled coal-quality information, and characterized environmentally sensitive trace elements, such as arsenic and mercury, that are mentioned in the 1990 Clean Air Act Amendments (U.S. Environmental Protection Agency, 1990). The results of the USGS coal assessment efforts may be found at: http://energy.cr.usgs.gov/coal/coal-assessments/index.html and a summary of the results from all assessment areas can be found in Ruppert et al. (2002) and Dennen (2009).Detailed assessments of the major coal-producing areas for the Gulf Coast region along with reviews of the stratigraphy, coal quality, resources, and coalbed methane potential of the Cretaceous, Paleocene, and Eocene coal deposits are presented in this report (Chapters 5-10).

  11. Pleistocene lake outburst floods and fan formation along the eastern Sierra Nevada, California: implications for the interpretation of intermontane lacustrine records

    Science.gov (United States)

    Benn, Douglas I.; Owen, Lewis A.; Finkel, Robert C.; Clemmens, Samuel

    2006-11-01

    Variations in the rock flour fraction in intermontane lacustrine sediments have the potential to provide more complete records of glacier fluctuations than moraine sequences, which are subject to erosional censoring. Construction of glacial chronologies from such records relies on the assumption that rock flour concentration is a simple function of glacier extent. However, other factors may influence the delivery of glacigenic sediments to intermontane lakes, including paraglacial adjustment of slope and fluvial systems to deglaciation, variations in precipitation and snowmelt, and lake outburst floods. We have investigated the processes and chronology of sediment transport on the Tuttle and Lone Pine alluvial fans in the eastern Sierra Nevada, California, USA, to elucidate the links between former glacier systems located upstream and the long sedimentary record from Owens Lake located downstream. Aggradation of both fans reflects sedimentation by three contrasting process regimes: (1) high magnitude, catastrophic floods, (2) fluvial or glacifluvial river systems, and (3) debris flows and other slope processes. Flood deposits are represented by multiple boulder beds exposed in section, and extensive networks of large palaeochannels and boulder deposits on both fan surfaces. Palaeohydrological analysis implies peak discharges in the order of 10 3-10 4 m 3 s -1, most probably as the result of catastrophic drainage of ice-, moraine-, and landslide-dammed lakes. Cosmogenic radionuclide surface exposure dating shows that at least three flood events are represented on each fan, at 9-13, 16-18 and 32-44 ka (Tuttle Fan); and at ˜23-32, ˜80-86 ka, and a poorly constrained older event (Lone Pine Fan). Gravels and sands exposed in both fans represent fluvial and/or glacifluvial sediment transport from the Sierra Nevada into Owens Valley, and show that river systems incised and reworked older sediment stored in the fans. We argue that millennial-scale peaks in rock flour

  12. Experimental river delta size set by multiple floods and backwater hydrodynamics.

    Science.gov (United States)

    Ganti, Vamsi; Chadwick, Austin J; Hassenruck-Gudipati, Hima J; Fuller, Brian M; Lamb, Michael P

    2016-05-01

    River deltas worldwide are currently under threat of drowning and destruction by sea-level rise, subsidence, and oceanic storms, highlighting the need to quantify their growth processes. Deltas are built through construction of sediment lobes, and emerging theories suggest that the size of delta lobes scales with backwater hydrodynamics, but these ideas are difficult to test on natural deltas that evolve slowly. We show results of the first laboratory delta built through successive deposition of lobes that maintain a constant size. We show that the characteristic size of delta lobes emerges because of a preferential avulsion node-the location where the river course periodically and abruptly shifts-that remains fixed spatially relative to the prograding shoreline. The preferential avulsion node in our experiments is a consequence of multiple river floods and Froude-subcritical flows that produce persistent nonuniform flows and a peak in net channel deposition within the backwater zone of the coastal river. In contrast, experimental deltas without multiple floods produce flows with uniform velocities and delta lobes that lack a characteristic size. Results have broad applications to sustainable management of deltas and for decoding their stratigraphic record on Earth and Mars.

  13. 49 CFR 215.111 - Defective plain bearing.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective plain bearing. 215.111 Section 215.111... § 215.111 Defective plain bearing. A railroad may not place or continue in service a car, if the car has a plain bearing— (a) That is missing, cracked, or broken; (b) On which the bearing liner— (1) Is...

  14. Acoustic structure and echo character of surficial sediments of the northern Hatteras Abyssal Plain

    International Nuclear Information System (INIS)

    McCreery, C.J.; Laine, E.P.

    1986-05-01

    A study has been made of the high frequency acoustic response of abyssal plain depositional facies. Piston cores have been obtained at six stations and deep hydrophone recordings at three stations on the northern Hatteras Abyssal Plain. 3.5 kHz seismic profiles indicate acoustically transparent lobes of surficial sediment which thicken towards the Hatteral Transverse Canyon and Sohm Gap/Wilmington Fan. Physical property data from piston cores indicate a higher percentage of coarse sediment in the areas of transparent acoustic response. Many of the characteristics normally used in mapping of conventional 3.5 kHz profiler acoustic response varied only slightly in the study area. Regions of diffuse 3.5 kHz surface echoes, similar to prolonged echoes attributed to high percent sand beds, have been identified in the study area. High trace to trace variation in deep hydrophone/pinger recordings in these areas suggests that the diffuse echo returns are due to unresolved microtopography and are not necessarily associated with a sandy seafloor

  15. Flood Risk and Flood hazard maps - Visualisation of hydrological risks

    International Nuclear Information System (INIS)

    Spachinger, Karl; Dorner, Wolfgang; Metzka, Rudolf; Serrhini, Kamal; Fuchs, Sven

    2008-01-01

    Hydrological models are an important basis of flood forecasting and early warning systems. They provide significant data on hydrological risks. In combination with other modelling techniques, such as hydrodynamic models, they can be used to assess the extent and impact of hydrological events. The new European Flood Directive forces all member states to evaluate flood risk on a catchment scale, to compile maps of flood hazard and flood risk for prone areas, and to inform on a local level about these risks. Flood hazard and flood risk maps are important tools to communicate flood risk to different target groups. They provide compiled information to relevant public bodies such as water management authorities, municipalities, or civil protection agencies, but also to the broader public. For almost each section of a river basin, run-off and water levels can be defined based on the likelihood of annual recurrence, using a combination of hydrological and hydrodynamic models, supplemented by an analysis of historical records and mappings. In combination with data related to the vulnerability of a region risk maps can be derived. The project RISKCATCH addressed these issues of hydrological risk and vulnerability assessment focusing on the flood risk management process. Flood hazard maps and flood risk maps were compiled for Austrian and German test sites taking into account existing national and international guidelines. These maps were evaluated by eye-tracking using experimental graphic semiology. Sets of small-scale as well as large-scale risk maps were presented to test persons in order to (1) study reading behaviour as well as understanding and (2) deduce the most attractive components that are essential for target-oriented risk communication. A cognitive survey asking for negative and positive aspects and complexity of each single map complemented the experimental graphic semiology. The results indicate how risk maps can be improved to fit the needs of different user

  16. Geostatistical analysis of the flood risk perception queries in the village of Navaluenga (Central Spain)

    Science.gov (United States)

    Guardiola-Albert, Carolina; Díez-Herrero, Andrés; Amérigo, María; García, Juan Antonio; María Bodoque, José; Fernández-Naranjo, Nuria

    2017-04-01

    Flash floods provoke a high average mortality as they are usually unexpected events which evolve rapidly and affect relatively small areas. The short time available for minimizing risks requires preparedness and response actions to be put into practice. Therefore, it is necessary the development of emergency response plans to evacuate and rescue people in the context of a flash-flood hazard. In this framework, risk management has to integrate the social dimension of flash-flooding and its spatial distribution by understanding the characteristics of local communities in order to enhance community resilience during a flash-flood. In this regard, the flash-flood social risk perception of the village of Navaluenga (Central Spain) has been recently assessed, as well as the level of awareness of civil protection and emergency management strategies (Bodoque et al., 2016). This has been done interviewing 254 adults, representing roughly 12% of the population census. The present study wants to go further in the analysis of the resulting questionnaires, incorporating in the analysis the location of home spatial coordinates in order to characterize the spatial distribution and possible geographical interpretation of flood risk perception. We apply geostatistical methods to analyze spatial relations of social risk perception and level of awareness with distance to the rivers (Alberche and Chorrerón) or to the flood-prone areas (50-year, 100-year and 500-year flood plains). We want to discover spatial patterns, if any, using correlation functions (variograms). Geostatistical analyses results can help to either confirm the logical pattern (i.e., less awareness further to the rivers or high return period of flooding) or reveal departures from expected. It can also be possible to identify hot spots, cold spots, and spatial outliers. The interpretation of these spatial patterns can give valuable information to define strategies to improve the awareness regarding preparedness and

  17. Floods and climate: emerging perspectives for flood risk assessment and management

    DEFF Research Database (Denmark)

    Merz, B.; Aerts, J.; Arnbjerg-Nielsen, Karsten

    2014-01-01

    context of floods. We come to the following conclusions: (1) extending the traditional system boundaries (local catchment, recent decades, hydrological/hydraulic processes) opens up exciting possibilities for better understanding and improved tools for flood risk assessment and management. (2) Statistical......, and this variation may be partially quantifiable and predictable, with the perspective of dynamic, climate-informed flood risk management. (4) Efforts are needed to fully account for factors that contribute to changes in all three risk components (hazard, exposure, vulnerability) and to better understand......Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction...

  18. Chenier plain development: feedbacks between waves, mud and sand

    Science.gov (United States)

    Nardin, W.; Fagherazzi, S.

    2015-12-01

    Cheniers are sandy ridges parallel to the coast established by high energy waves. Here we discuss Chenier plains ontogeny through dimensional analysis and numerical results from the morphodynamic model Delft3D-SWAN. Our results show that wave energy and shelf slope play an important role in the formation of Chenier plains. In our numerical experiments waves affect Chenier plain development in three ways: by winnowing sediment from the mudflat, by eroding mud and accumulating sand over the beach during extreme wave events. We further show that different sediment characteristics and wave climates can lead to three alternative coastal landscapes: strand plains, mudflats, or the more complex Chenier plains. Low inner-shelf slopes are the most favorable for strand plain and Chenier plain formation, while high slopes decrease the likelihood of mudflat development and preservation.

  19. Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation

    Science.gov (United States)

    Falcini, Federico; Khan, Nicole S.; Macelloni, Leonardo; Horton, Benjamin P.; Lutken, Carol B.; McKee, Karen L.; Santoleri, Rosalia; Colella, Simone; Li, Chunyan; Volpe, Gianluca; D’Emidio, Marco; Salusti, Alessandro; Jerolmack, Douglas J.

    2012-01-01

    Wetlands in the Mississippi River deltaic plain are deteriorating in part because levees and control structures starve them of sediment. In Spring of 2011 a record-breaking flood brought discharge on the lower Mississippi River to dangerous levels, forcing managers to divert up to 3500 m3/s-1 of water to the Atchafalaya River Basin. Here we quantify differences between the Mississippi and Atchafalaya River inundation and sediment-plume patterns using field-calibrated satellite data, and assess the impact these outflows had on wetland sedimentation. We characterize hydrodynamics and suspended sediment patterns of the Mississippi River plume using in-situ data collected during the historic flood. We show that the focused, high-momentum jet from the leveed Mississippi delivered sediment far offshore. In contrast, the plume from the Atchafalaya was more diffuse; diverted water inundated a large area; and sediment was trapped within the coastal current. Maximum sedimentation (up to several centimetres) occurred in the Atchafalaya Basin despite the larger sediment load carried by the Mississippi. Minimum accumulation occurred along the shoreline between these river sources. Our findings provide a mechanistic link between river-mouth dynamics and wetland sedimentation patterns that is relevant for plans to restore deltaic wetlands using artificial diversions.

  20. Flood Foresight: A near-real time flood monitoring and forecasting tool for rapid and predictive flood impact assessment

    Science.gov (United States)

    Revilla-Romero, Beatriz; Shelton, Kay; Wood, Elizabeth; Berry, Robert; Bevington, John; Hankin, Barry; Lewis, Gavin; Gubbin, Andrew; Griffiths, Samuel; Barnard, Paul; Pinnell, Marc; Huyck, Charles

    2017-04-01

    The hours and days immediately after a major flood event are often chaotic and confusing, with first responders rushing to mobilise emergency responders, provide alleviation assistance and assess loss to assets of interest (e.g., population, buildings or utilities). Preparations in advance of a forthcoming event are becoming increasingly important; early warning systems have been demonstrated to be useful tools for decision markers. The extent of damage, human casualties and economic loss estimates can vary greatly during an event, and the timely availability of an accurate flood extent allows emergency response and resources to be optimised, reduces impacts, and helps prioritise recovery. In the insurance sector, for example, insurers are under pressure to respond in a proactive manner to claims rather than waiting for policyholders to report losses. Even though there is a great demand for flood inundation extents and severity information in different sectors, generating flood footprints for large areas from hydraulic models in real time remains a challenge. While such footprints can be produced in real time using remote sensing, weather conditions and sensor availability limit their ability to capture every single flood event across the globe. In this session, we will present Flood Foresight (www.floodforesight.com), an operational tool developed to meet the universal requirement for rapid geographic information, before, during and after major riverine flood events. The tool provides spatial data with which users can measure their current or predicted impact from an event - at building, basin, national or continental scales. Within Flood Foresight, the Screening component uses global rainfall predictions to provide a regional- to continental-scale view of heavy rainfall events up to a week in advance, alerting the user to potentially hazardous situations relevant to them. The Forecasting component enhances the predictive suite of tools by providing a local

  1. Population dynamics of the migratory fish Prochilodus lineatus in a neotropical river: the relationships with river discharge, flood pulse, El Niño and fluvial megafan behaviour

    Directory of Open Access Journals (Sweden)

    Marinke J. M. Stassen

    Full Text Available The relative importance of flood pulse dynamics and megafan behaviour for the Sábalo (Prochilodus lineatus catches in the neotropical Pilcomayo River is studied. The Sábalo catches can mainly be explained by decreased river discharges in the preceding years resulting in smaller inundated areas during rainy season floods and thereby in a decreased area of feeding grounds for the fishes. The decreased river discharges and the related decline of Sábalo catches in the 1990's can be linked to the 90-95 El Niño event. In 2007 the Sábalo catches were comparable to the catches before the "El Niño" event. The connectivity (continuity between the main river and flood plain areas, which is influenced by sedimentation processes, is also of great importance and very probably plays a more important role since the late 1990's.

  2. Flood Resilient Systems and their Application for Flood Resilient Planning

    Science.gov (United States)

    Manojlovic, N.; Gabalda, V.; Antanaskovic, D.; Gershovich, I.; Pasche, E.

    2012-04-01

    Following the paradigm shift in flood management from traditional to more integrated approaches, and considering the uncertainties of future development due to drivers such as climate change, one of the main emerging tasks of flood managers becomes the development of (flood) resilient cities. It can be achieved by application of non-structural - flood resilience measures, summarised in the 4As: assistance, alleviation, awareness and avoidance (FIAC, 2007). As a part of this strategy, the key aspect of development of resilient cities - resilient built environment can be reached by efficient application of Flood Resilience Technology (FReT) and its meaningful combination into flood resilient systems (FRS). FRS are given as [an interconnecting network of FReT which facilitates resilience (including both restorative and adaptive capacity) to flooding, addressing physical and social systems and considering different flood typologies] (SMARTeST, http://www.floodresilience.eu/). Applying the system approach (e.g. Zevenbergen, 2008), FRS can be developed at different scales from the building to the city level. Still, a matter of research is a method to define and systematise different FRS crossing those scales. Further, the decision on which resilient system is to be applied for the given conditions and given scale is a complex task, calling for utilisation of decision support tools. This process of decision-making should follow the steps of flood risk assessment (1) and development of a flood resilience plan (2) (Manojlovic et al, 2009). The key problem in (2) is how to match the input parameters that describe physical&social system and flood typology to the appropriate flood resilient system. Additionally, an open issue is how to integrate the advances in FReT and findings on its efficiency into decision support tools. This paper presents a way to define, systematise and make decisions on FRS at different scales of an urban system developed within the 7th FP Project

  3. Effectiveness of flood damage mitigation measures: Empirical evidence from French flood disasters

    NARCIS (Netherlands)

    Poussin, J.K.; Botzen, W.J.W.; Aerts, J.C.J.H.

    2015-01-01

    Recent destructive flood events and projected increases in flood risks as a result of climate change in many regions around the world demonstrate the importance of improving flood risk management. Flood-proofing of buildings is often advocated as an effective strategy for limiting damage caused by

  4. Dating the period when intensive anthropogenic activity began to influence the Sanjiang Plain, Northeast China

    Science.gov (United States)

    Cong, Jinxin; Gao, Chuanyu; Zhang, Yan; Zhang, Shaoqing; He, Jiabao; Wang, Guoping

    2016-01-01

    Dating the start of intensive anthropogenic influence on ecosystems is important for identifying the conditions necessary for ecosystem recovery. However, few studies have focused on determining when anthropogenic influences on wetland began through sedimentary archives. To fill this critical gap in our knowledge, combustion sources and emission intensities, reconstructed via black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) were analyzed in two wetlands in the Sanjiang Plain in Northeast China. 14C provided age control for the sedimentary records. By combining previous sedimentary and archaeological studies, we attempt to date the beginning of intensive anthropogenic influences on the Sanjiang Plain. Our results showed that BC deposition fluxes increased from 0.02 to 0.7 g C/m2.yr during the last 10,000 years. An upward trend was apparent during the last 500 years. Before 1200 cal yr BP, human activities were minor, such that the wetland ecosystem in the Sanjiang Plain before this period may represent the reference conditions that for the recovery of these wetlands. As the human population increased after 1200 cal yr BP, combustion sources changed and residential areas became a major source of BC and PAHs. In this way, the wetland ecosystem gradually became more heavily influenced by human activities. PMID:26907560

  5. Dating the period when intensive anthropogenic activity began to influence the Sanjiang Plain, Northeast China

    Science.gov (United States)

    Cong, Jinxin; Gao, Chuanyu; Zhang, Yan; Zhang, Shaoqing; He, Jiabao; Wang, Guoping

    2016-02-01

    Dating the start of intensive anthropogenic influence on ecosystems is important for identifying the conditions necessary for ecosystem recovery. However, few studies have focused on determining when anthropogenic influences on wetland began through sedimentary archives. To fill this critical gap in our knowledge, combustion sources and emission intensities, reconstructed via black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) were analyzed in two wetlands in the Sanjiang Plain in Northeast China. 14C provided age control for the sedimentary records. By combining previous sedimentary and archaeological studies, we attempt to date the beginning of intensive anthropogenic influences on the Sanjiang Plain. Our results showed that BC deposition fluxes increased from 0.02 to 0.7 g C/m2.yr during the last 10,000 years. An upward trend was apparent during the last 500 years. Before 1200 cal yr BP, human activities were minor, such that the wetland ecosystem in the Sanjiang Plain before this period may represent the reference conditions that for the recovery of these wetlands. As the human population increased after 1200 cal yr BP, combustion sources changed and residential areas became a major source of BC and PAHs. In this way, the wetland ecosystem gradually became more heavily influenced by human activities.

  6. The Jurassic of Denmark and Greenland: Sedimentology and sequence stratigraphy of the Bryne and Lulu Formations, Middle Jurassic, northern Danish Central Graben

    Directory of Open Access Journals (Sweden)

    Andsbjerg, Jan

    2003-10-01

    Full Text Available The Middle Jurassic Bryne and Lulu Formations of the Søgne Basin (northern part of the Danish Central Graben consist of fluvially-dominated coastal plain deposits, overlain by interfingering shoreface and back-barrier deposits. Laterally continuous, mainly fining-upwards fluvial channel sandstones that locally show evidence for tidal influence dominate the alluvial/coastal plain deposits of the lower Bryne Formation. The sandstones are separated by units of fine-grained floodplain sediments that show a fining-upwards - coarsening-upwards pattern and locally grade into lacustrine mudstones. A regional unconformity that separates the lower Bryne Formation from the mainly estuarine upper Bryne Formation is defined by the strongly erosional base of a succession of stacked channel sandstones, interpreted as the fill of a system of incised valleys. Most of the stacked channel sandstones show abundant mud laminae and flasers, and rare herringbone structures, suggesting that they were deposited in a tidal environment, probably an estuary. Several tens of metres of the lower Bryne Formation may have been removed by erosion at this unconformity. The estuarine channel sandstone succession is capped by coal beds that attain a thickness of several metres in the western part of the Søgne Basin, but are thin and poorly developed in the central part of the basin. Above the coal beds, the Lulu Formation is dominated by various types of tidally influenced paralic deposits in the western part of the basin and by coarsening-upwards shoreface and beach deposits in central parts. Westwards-thickening wedges of paralic deposits interfinger with eastwards-thickening wedges of shallow marine deposits. The Middle Jurassic succession is subdivided into nine sequences. In the lower Bryne Formation, sequence boundaries are situated at the base of laterally continuous fluvial channel sandstones whereas maximum flooding surfaces are placed in laterally extensive floodplain

  7. Estimation of flood environmental effects using flood zone mapping techniques in Halilrood Kerman, Iran.

    Science.gov (United States)

    Boudaghpour, Siamak; Bagheri, Majid; Bagheri, Zahra

    2014-01-01

    High flood occurrences with large environmental damages have a growing trend in Iran. Dynamic movements of water during a flood cause different environmental damages in geographical areas with different characteristics such as topographic conditions. In general, environmental effects and damages caused by a flood in an area can be investigated from different points of view. The current essay is aiming at detecting environmental effects of flood occurrences in Halilrood catchment area of Kerman province in Iran using flood zone mapping techniques. The intended flood zone map was introduced in four steps. Steps 1 to 3 pave the way to calculate and estimate flood zone map in the understudy area while step 4 determines the estimation of environmental effects of flood occurrence. Based on our studies, wide range of accuracy for estimating the environmental effects of flood occurrence was introduced by using of flood zone mapping techniques. Moreover, it was identified that the existence of Jiroft dam in the study area can decrease flood zone from 260 hectares to 225 hectares and also it can decrease 20% of flood peak intensity. As a result, 14% of flood zone in the study area can be saved environmentally.

  8. Flood Risk Management in Iowa through an Integrated Flood Information System

    Science.gov (United States)

    Demir, Ibrahim; Krajewski, Witold

    2013-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 1100 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert

  9. A Lower Rhine flood chronology based on the sedimentary record of an abandoned channel fill

    NARCIS (Netherlands)

    Toonen, W.H.J.; Winkels, T.G.; Prins, M.A.; de Groot, L.V.; Bunnik, F.P.; Cohen, K.M.

    2012-01-01

    The Bienener Altrhein is an abandoned channel of the Lower Rhine (Germany). Following a late 16th century abandonment event, the channel was disconnected from the main stream and the oxbow lake gradually filled with 8 meters of flood deposits. This process still continues today. During annual

  10. Survival of brown trout during spring flood in DOC-rich streams in northern Sweden: the effect of present acid deposition and modelled pre-industrial water quality

    International Nuclear Information System (INIS)

    Laudon, Hjalmar; Poleo, Antonio B.S.; Voellestad, Leif Asbjoern; Bishop, Kevin

    2005-01-01

    Mortality and physiological responses in brown trout (Salmo trutta) were studied during spring snow melt in six streams in northern Sweden that differed in concentrations of dissolved organic carbon (DOC) and pH declines. Data from these streams were used to create an empirical model for predicting fish responses (mortality and physiological disturbances) in DOC-rich streams using readily accessible water chemistry parameters. The results suggest that fish in these systems can tolerate higher acidity and inorganic aluminium levels than fish in low DOC streams. But even with the relatively low contemporary deposition load, anthropogenic deposition can cause fish mortality in the most acid-sensitive surface waters in northern Sweden during spring flood. However, the results suggests that it is only in streams with high levels of organically complexed aluminium in combination with a natural pH decline to below 5.0 during the spring where current sulphur deposition can cause irreversible damage to brown trout in the region. This study support earlier studies suggesting that DOC has an ameliorating effect on physiological disturbances in humic waters but the study also shows that surviving fish recover physiologically when the water quality returns to less toxic conditions following a toxic high flow period. The physiological response under natural, pre-industrial conditions was also estimated. - High levels of complexed aluminum, at pH levels below 5.0, predisposes brown trout to sulfur-caused damage in the spring

  11. Survival of brown trout during spring flood in DOC-rich streams in northern Sweden: the effect of present acid deposition and modelled pre-industrial water quality

    Energy Technology Data Exchange (ETDEWEB)

    Laudon, Hjalmar [Department of Forest Ecology, Swedish University of Agricultural Sciences, SE-901 83 Umeaa (Sweden)]. E-mail: hjalmar.laudon@sek.slu.se; Poleo, Antonio B.S. [Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo (Norway); Voellestad, Leif Asbjoern [Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo (Norway); Bishop, Kevin [Department of Environmental Assessment, Swedish University of Agricultural Sciences, SE-750 07 Uppsala (Sweden)

    2005-05-01

    Mortality and physiological responses in brown trout (Salmo trutta) were studied during spring snow melt in six streams in northern Sweden that differed in concentrations of dissolved organic carbon (DOC) and pH declines. Data from these streams were used to create an empirical model for predicting fish responses (mortality and physiological disturbances) in DOC-rich streams using readily accessible water chemistry parameters. The results suggest that fish in these systems can tolerate higher acidity and inorganic aluminium levels than fish in low DOC streams. But even with the relatively low contemporary deposition load, anthropogenic deposition can cause fish mortality in the most acid-sensitive surface waters in northern Sweden during spring flood. However, the results suggests that it is only in streams with high levels of organically complexed aluminium in combination with a natural pH decline to below 5.0 during the spring where current sulphur deposition can cause irreversible damage to brown trout in the region. This study support earlier studies suggesting that DOC has an ameliorating effect on physiological disturbances in humic waters but the study also shows that surviving fish recover physiologically when the water quality returns to less toxic conditions following a toxic high flow period. The physiological response under natural, pre-industrial conditions was also estimated. - High levels of complexed aluminum, at pH levels below 5.0, predisposes brown trout to sulfur-caused damage in the spring.

  12. Why the coastal plain of Paraiba do Sul river not be denominated the classical model of wave dominated delta

    International Nuclear Information System (INIS)

    Martin, L.

    1987-01-01

    Existing coastal sedimentation models have not properly incorporated the fundamental role of Holocene sea-level history in the development of modern coastal regions. For example the classical work by COLEMAN and WRIGHT (1975), although analyzing the influence of as many as 400 parameters on the geometry of deltaic sand bodies, did not address the effects of Holocene sea-level oscillations. Previous work on the central portion of the Brazilian coastline indicated that the relative construction of the coastal plains. Detailed mapping and radiocarbon dating have allowed us to establish the different phases involved in the depositional history of the plain situated at the Paraiba do Sul river mouth. This history is not in keeping with the classical model of wave dominated delta. (author)

  13. Development of Integrated Flood Analysis System for Improving Flood Mitigation Capabilities in Korea

    Science.gov (United States)

    Moon, Young-Il; Kim, Jong-suk

    2016-04-01

    Recently, the needs of people are growing for a more safety life and secure homeland from unexpected natural disasters. Flood damages have been recorded every year and those damages are greater than the annual average of 2 trillion won since 2000 in Korea. It has been increased in casualties and property damages due to flooding caused by hydrometeorlogical extremes according to climate change. Although the importance of flooding situation is emerging rapidly, studies related to development of integrated management system for reducing floods are insufficient in Korea. In addition, it is difficult to effectively reduce floods without developing integrated operation system taking into account of sewage pipe network configuration with the river level. Since the floods result in increasing damages to infrastructure, as well as life and property, structural and non-structural measures should be urgently established in order to effectively reduce the flood. Therefore, in this study, we developed an integrated flood analysis system that systematized technology to quantify flood risk and flood forecasting for supporting synthetic decision-making through real-time monitoring and prediction on flash rain or short-term rainfall by using radar and satellite information in Korea. Keywords: Flooding, Integrated flood analysis system, Rainfall forecasting, Korea Acknowledgments This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ011686022015)" Rural Development Administration, Republic of Korea

  14. Geomorphologically effective floods from moraine-dammed lakes in the Cordillera Blanca, Peru

    Science.gov (United States)

    Emmer, Adam

    2017-12-01

    Outburst floods originating in moraine-dammed lakes represent a significant geomorphological process as well as a specific type of threat for local communities in the Cordillera Blanca, Peru (8.5°-10° S; 77°-78° W). An exceptional concentration of catastrophic floods has been reported from the Cordillera Blanca in the first half of 20th Century (1930s-1950s), leading to thousands of fatalities. The main objective of this paper is to provide a revised and comprehensive overview of geomorphologically effective floods in the area of interest, using various documentary data sources, verified by analysis of remotely sensed images (1948-2013) and enhanced by original field data. Verified events (n = 28; 4 not mentioned before) are analysed from the perspective of spatiotemporal distribution, pre-flood conditions, causes, mechanisms and geomorphological impacts as well as socioeconomical consequences, revealing certain patterns and similar features. GLOFs are further classified according to their magnitude: 5 extreme events, 8 major events and 15 minor events are distinguished, referring to the quantified geomorphological and socioeconomical impacts. Selected moraine dams and flood deposits are dated using lichenometric dating. Special attention is given to moraine dam breaches - the most frequent type of water release with the most significant consequences. Selected major events and their consequences are studied in detail in a separate section. Finally, a general schematic model of lake formation, growth and post-flood evolution reflecting initial topographical setting and glacier retreat is introduced and the utilization of the obtained results is outlined.

  15. Monitoring of green infrastructure at The Grove in Bloomington, Illinois

    Science.gov (United States)

    Roseboom, Donald P.; Straub, Timothy D.

    2013-01-01

    The City of Bloomington, Illinois, restored Kickapoo Creek to a more natural state by incorporating green infrastructure—specifically flood-plain reconnection, riparian wetlands, meanders, and rock riffles—at a 90-acre park within The Grove residential development. A team of State and Federal agencies and contractors are collecting data to monitor the effectiveness of this stream restoration in improving water quality and stream habitat. The U.S. Geological Survey (USGS) is collecting and analyzing water resources data; Illinois Department of Natural Resources (IDNR) is collecting fish population data; Illinois Environmental Protection Agency (IEPA) is collecting macroinvertebrates and riparian habitat data; and Prairie Engineers of Illinois, P.C., is collecting vegetation data. The data collection includes conditions upstream, within, and downstream of the development and restoration. The 480-acre development was designed by the Farnsworth Group to reduce peak stormwater flows by capturing runoff in the reconnected flood plains with shallow wetland basins. Also, an undersized park bridge was built at the downstream end of the park to pass the 20-percent annual exceedance probability flows (historically referred to as the 5-year flood), but detain larger floods. This design also helps limit sediment deposition from sediments transported in the drainage ditches in the upper 9,000 acres of agricultural row crops. Maintaining sediment-transport capacity minimizes sediment deposition in the restored stream segments, which reduces the loss of riparian and wetland-plant communities and instream habitat. Two additional goals of the restoration were to reduce nutrient loads and maintain water quality to support a diverse community of biotic species. Overall, 2 miles of previously managed agricultural-drainage ditches of Kickapoo Creek were restored, and the park landscape maximizes the enhancement of native riparian, wetland, and aquatic species for the park’s trail

  16. Holocene evolution of the western Orinoco Delta, Venezuela

    Science.gov (United States)

    Aslan, A.; White, W.A.; Warne, A.G.; Guevara, E.H.

    2003-01-01

    The pristine nature of the Orinoco Delta of eastern Venezuela provides unique opportunities to study the geologic processes and environments of a major tropical delta. Remote-sensing images, shallow cores, and radiocarbon-dating of organic remains form the basis for describing deltaic environments and interpreting the Holocene history of the delta. The Orinoco Delta can be subdivided into two major sectors. The southeast sector is dominated by the Rio Grande-the principal distributary-and complex networks of anastomosing fluvial and tidal channels. The abundance of siliciclastic deposits suggests that fluvial processes such as over-bank flooding strongly influence this part of the delta. In contrast, the northwest sector is represented by few major distributaries, and overbank sedimentation is less widespread relative to the southeast sector. Peat is abundant and occurs in herbaceous and forested swamps that are individually up to 200 km2 in area. Northwest-directed littoral currents transport large volumes of suspended sediment and produce prominent mudcapes along the northwest coast. Mapping of surface sediments, vegetation, and major landforms identified four principal geomorphic systems within the western delta plain: (1) distributary channels, (2) interdistributary flood basins, (3) fluvial-marine transitional environments, and (4) marine-influenced coastal environments. Coring and radiocarbon dating of deltaic deposits show that the northern delta shoreline has prograded 20-30 km during the late Holocene sea-level highstand. Progradation has been accomplished by a combination of distributary avulsion and mudcape progradation. This style of deltaic progradation differs markedly from other deltas such as the Mississippi where distributary avulsion leads to coastal land loss, rather than shoreline progradation. The key difference is that the Orinoco Delta coastal zone receives prodigious amounts of sediment from northwest-moving littoral currents that transport

  17. Mapping paddy rice distribution using multi-temporal Landsat imagery in the Sanjiang Plain, northeast China

    Science.gov (United States)

    XIAO, Xiangming; DONG, Jinwei; QIN, Yuanwei; WANG, Zongming

    2016-01-01

    Information of paddy rice distribution is essential for food production and methane emission calculation. Phenology-based algorithms have been utilized in the mapping of paddy rice fields by identifying the unique flooding and seedling transplanting phases using multi-temporal moderate resolution (500 m to 1 km) images. In this study, we developed simple algorithms to identify paddy rice at a fine resolution at the regional scale using multi-temporal Landsat imagery. Sixteen Landsat images from 2010–2012 were used to generate the 30 m paddy rice map in the Sanjiang Plain, northeast China—one of the major paddy rice cultivation regions in China. Three vegetation indices, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI), were used to identify rice fields during the flooding/transplanting and ripening phases. The user and producer accuracies of paddy rice on the resultant Landsat-based paddy rice map were 90% and 94%, respectively. The Landsat-based paddy rice map was an improvement over the paddy rice layer on the National Land Cover Dataset, which was generated through visual interpretation and digitalization on the fine-resolution images. The agricultural census data substantially underreported paddy rice area, raising serious concern about its use for studies on food security. PMID:27695637

  18. Late Holocene environmental reconstructions and their implications on flood events, typhoon, and agricultural activities in NE Taiwan

    Science.gov (United States)

    Wang, L.-C.; Behling, H.; Lee, T.-Q.; Li, H.-C.; Huh, C.-A.; Shiau, L.-J.; Chang, Y.-P.

    2014-10-01

    We reconstructed paleoenvironmental changes from a sediment archive of a lake in the floodplain of the Ilan Plain of NE Taiwan on multi-decadal resolution for the last ca. 1900 years. On the basis of pollen and diatom records, we evaluated past floods, typhoons, and agricultural activities in this area which are sensitive to the hydrological conditions in the western Pacific. Considering the high sedimentation rates with low microfossil preservations in our sedimentary record, multiple flood events were. identified during the period AD 100-1400. During the Little Ice Age phase 1 (LIA 1 - AD 1400-1620), the abundant occurrences of wetland plant (Cyperaceae) and diatom frustules imply less flood events under stable climate conditions in this period. Between AD 500 and 700 and the Little Ice Age phase 2 (LIA 2 - AD 1630-1850), the frequent typhoons were inferred by coarse sediments and planktonic diatoms, which represented more dynamical climate conditions than in the LIA 1. By comparing our results with the reconstructed changes in tropical hydrological conditions, we suggested that the local hydrology in NE Taiwan is strongly influenced by typhoon-triggered heavy rainfalls, which could be influenced by the variation of global temperature, the expansion of the Pacific warm pool, and the intensification of El Niño-Southern Oscillation (ENSO) events.

  19. Hydraulic description of a flood event with optical remote sensors: a constructive constraint on modelling uncertainties

    Science.gov (United States)

    Battiston, Stéphanie; Allenbach, Bernard

    2010-05-01

    The exceptional characteristics of the December 2003 Rhône flood event (particularly high water flows, extent of the affected area, important damages especially in the region of Arles) make it be considered as a reference flood episode of this French river and a very well-known event. During the crisis, the International Charter "Space and Major Disasters" was triggered by the French Civil Protection for the rapid mapping of the flooding using Earth Observation imagery in order to facilitate crisis operations. As a result, more than 60 satellite images covering the flood were acquired over a 10 days period following the peak flow. Using the opportunity provided by this incomparable data coverage, the French Ministry of the Environment ordered a study on the evaluation of remote sensing's potential benefits for flood management. One of the questions asked by the risk managers was: what type of flood information can be provided by the different remote sensing platforms? Elements of response were delivered mainly in the form of a comprehensive compilation of maps and illustrations, displaying the main hydraulic elements (static ones as well as dynamic ones), initially listed and requested by hydrologists (more precisely, by a regional engineering society specialised in hydraulics and hydrology and in charge of a field campaign during the event), observed on different optical images of the flood event having affected the plain between Tarascon (upstream) and Arles (downstream). It is seen that a careful mapping of all flood traces visible on remote sensing event imagery - apparent water, moisture traces, breaches, overflows, stream directions, impermeable boundaries … - delivers a valuable vision of the flood's occurrence combining accuracy and comprehensiveness. In fact, optical imagery offers a detailed vision of the event : moisture traces complete flood traces extent; the observation of draw-off directions through waterproof barriers reveals hydraulic

  20. Reconstructing depositional processes and history from reservoir stratigraphy: Englebright Lake, Yuba River, northern California

    Science.gov (United States)

    Snyder, N.P.; Wright, S.A.; Alpers, Charles N.; Flint, L.E.; Holmes, C.W.; Rubin, D.M.

    2006-01-01

    Reservoirs provide the opportunity to link watershed history with its stratigraphic record. We analyze sediment cores from a northern California reservoir in the context of hydrologic history, watershed management, and depositional processes. Observations of recent depositional patterns, sediment-transport calculations, and 137CS geochronology support a conceptual model in which the reservoir delta progrades during floods of short duration (days) and is modified during prolonged (weeks to months) drawdowns that rework topset beds and transport sand from topsets to foresets. Sediment coarser than 0.25-0.5 mm. deposits in foresets and topsets, and finer material falls out of suspension as bottomset beds. Simple hydraulic calculations indicate that fine sand (0.063-0.5 mm) is transported into the distal bottomset area only during floods. The overall stratigraphy suggests that two phases of delta building occurred in the reservoir. The first, from dam construction in 1940 to 1970, was heavily influenced by annual, prolonged >20 m drawdowns of the water level. The second, built on top of the first, reflects sedimentation from 1970 to 2002 when the influence of drawdowns was less. Sedimentation rates in the central part of the reservoir have declined ???25% since 1970, likely reflecting a combination of fewer large floods, changes in watershed management, and winnowing of stored hydraulic mining sediment. Copyright 2006 by the American Geophysical Union.

  1. Going beyond the flood insurance rate map: insights from flood hazard map co-production

    Science.gov (United States)

    Luke, Adam; Sanders, Brett F.; Goodrich, Kristen A.; Feldman, David L.; Boudreau, Danielle; Eguiarte, Ana; Serrano, Kimberly; Reyes, Abigail; Schubert, Jochen E.; AghaKouchak, Amir; Basolo, Victoria; Matthew, Richard A.

    2018-04-01

    Flood hazard mapping in the United States (US) is deeply tied to the National Flood Insurance Program (NFIP). Consequently, publicly available flood maps provide essential information for insurance purposes, but they do not necessarily provide relevant information for non-insurance aspects of flood risk management (FRM) such as public education and emergency planning. Recent calls for flood hazard maps that support a wider variety of FRM tasks highlight the need to deepen our understanding about the factors that make flood maps useful and understandable for local end users. In this study, social scientists and engineers explore opportunities for improving the utility and relevance of flood hazard maps through the co-production of maps responsive to end users' FRM needs. Specifically, two-dimensional flood modeling produced a set of baseline hazard maps for stakeholders of the Tijuana River valley, US, and Los Laureles Canyon in Tijuana, Mexico. Focus groups with natural resource managers, city planners, emergency managers, academia, non-profit, and community leaders refined the baseline hazard maps by triggering additional modeling scenarios and map revisions. Several important end user preferences emerged, such as (1) legends that frame flood intensity both qualitatively and quantitatively, and (2) flood scenario descriptions that report flood magnitude in terms of rainfall, streamflow, and its relation to an historic event. Regarding desired hazard map content, end users' requests revealed general consistency with mapping needs reported in European studies and guidelines published in Australia. However, requested map content that is not commonly produced included (1) standing water depths following the flood, (2) the erosive potential of flowing water, and (3) pluvial flood hazards, or flooding caused directly by rainfall. We conclude that the relevance and utility of commonly produced flood hazard maps can be most improved by illustrating pluvial flood hazards

  2. Flood Risk Regional Flood Defences : Technical report

    NARCIS (Netherlands)

    Kok, M.; Jonkman, S.N.; Lendering, K.T.

    2015-01-01

    Historically the Netherlands have always had to deal with the threat of flooding, both from the rivers and the sea as well as from heavy rainfall. The country consists of a large amount of polders, which are low lying areas of land protected from flooding by embankments. These polders require an

  3. The index-flood and the GRADEX methods combination for flood frequency analysis.

    Science.gov (United States)

    Fuentes, Diana; Di Baldassarre, Giuliano; Quesada, Beatriz; Xu, Chong-Yu; Halldin, Sven; Beven, Keith

    2017-04-01

    Flood frequency analysis is used in many applications, including flood risk management, design of hydraulic structures, and urban planning. However, such analysis requires of long series of observed discharge data which are often not available in many basins around the world. In this study, we tested the usefulness of combining regional discharge and local precipitation data to estimate the event flood volume frequency curve for 63 catchments in Mexico, Central America and the Caribbean. This was achieved by combining two existing flood frequency analysis methods, the regionalization index-flood approach with the GRADEX method. For up to 10-years return period, similar shape of the scaled flood frequency curve for catchments with similar flood behaviour was assumed from the index-flood approach. For return periods larger than 10-years the probability distribution of rainfall and discharge volumes were assumed to be asymptotically and exponential-type functions with the same scale parameter from the GRADEX method. Results showed that if the mean annual flood (MAF), used as index-flood, is known, the index-flood approach performed well for up to 10 years return periods, resulting in 25% mean relative error in prediction. For larger return periods the prediction capability decreased but could be improved by the use of the GRADEX method. As the MAF is unknown at ungauged and short-period measured basins, we tested predicting the MAF using catchments climate-physical characteristics, and discharge statistics, the latter when observations were available for only 8 years. Only the use of discharge statistics resulted in acceptable predictions.

  4. Improving flood risk mapping in Italy: the FloodRisk open-source software

    Science.gov (United States)

    Albano, Raffaele; Mancusi, Leonardo; Craciun, Iulia; Sole, Aurelia; Ozunu, Alexandru

    2017-04-01

    Time and again, floods around the world illustrate the devastating impact they can have on societies. Furthermore, the expectation that the flood damages can increase over time with climate, land-use change and social growth in flood prone-areas has raised the public and other stakeholders' (governments, international organization, re-insurance companies and emergency responders) awareness for the need to manage risks in order to mitigate their causes and consequences. In this light, the choice of appropriate measures, the assessment of the costs and effects of such measures, and their prioritization are crucial for decision makers. As a result, a priori flood risk assessment has become a key part of flood management practices with the aim of minimizing the total costs related to the risk management cycle. In this context, The EU Flood Directive 2007/60 requires the delineation of flood risk maps on the bases of most appropriate and advanced tools, with particular attention on limiting required economic efforts. The main aim of these risk maps is to provide the required knowledge for the development of flood risk management plans (FRMPs) by considering both costs and benefits of alternatives and results from consultation with all interested parties. In this context, this research project developed a free and open-source (FOSS) GIS software, called FloodRisk, to operatively support stakeholders in their compliance with the FRMPs. FloodRisk aims to facilitate the development of risk maps and the evaluation and management of current and future flood risk for multi-purpose applications. This new approach overcomes the limits of the expert-drive qualitative (EDQ) approach currently adopted in several European countries, such as Italy, which does not permit a suitable evaluation of the effectiveness of risk mitigation strategies, because the vulnerability component cannot be properly assessed. Moreover, FloodRisk is also able to involve the citizens in the flood

  5. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Constuction of the paleogeologic maps. Ph.D. Thesis

    Science.gov (United States)

    Leake, M. A.

    1982-01-01

    The Post Caoris surface was derived from the geologic map by plotting all Class 1 and 2 features. To construct the Caloris surface, Class 3 craters were plotted onto the map, as well as all Class 3 plains. However, if P3 plains were adjacent to P2 units, and appeared continuous with other exposures of P3 material, the P2 unit was assumed to overlie the C3 and P3 material. The younger superposed craters were ignored with respect to the Class 3 surface. The boundaries of P3 materials were then continued under the superposed units, using a minimum of reasonable assumptions. For instance, if P2 and P4 plains were adjacent units, no P3 plains were presumed to lie under the P2 material. Similarly, all C3 craters were considered to have some deposits of impact melt after formation, even if they are mapped containing younger units. C3 craters which were superposed with younger units, C1 or C2 craters, and perhaps P2 plains, were redrawn as if later materials had not been emplaced, i.e., in their post impact, pre-degradation states.

  6. Flood frequency analysis of historical flood data under stationary and non-stationary modelling

    Science.gov (United States)

    Machado, M. J.; Botero, B. A.; López, J.; Francés, F.; Díez-Herrero, A.; Benito, G.

    2015-06-01

    Historical records are an important source of information on extreme and rare floods and fundamental to establish a reliable flood return frequency. The use of long historical records for flood frequency analysis brings in the question of flood stationarity, since climatic and land-use conditions can affect the relevance of past flooding as a predictor of future flooding. In this paper, a detailed 400 yr flood record from the Tagus River in Aranjuez (central Spain) was analysed under stationary and non-stationary flood frequency approaches, to assess their contribution within hazard studies. Historical flood records in Aranjuez were obtained from documents (Proceedings of the City Council, diaries, chronicles, memoirs, etc.), epigraphic marks, and indirect historical sources and reports. The water levels associated with different floods (derived from descriptions or epigraphic marks) were computed into discharge values using a one-dimensional hydraulic model. Secular variations in flood magnitude and frequency, found to respond to climate and environmental drivers, showed a good correlation between high values of historical flood discharges and a negative mode of the North Atlantic Oscillation (NAO) index. Over the systematic gauge record (1913-2008), an abrupt change on flood magnitude was produced in 1957 due to constructions of three major reservoirs in the Tagus headwaters (Bolarque, Entrepeñas and Buendia) controlling 80% of the watershed surface draining to Aranjuez. Two different models were used for the flood frequency analysis: (a) a stationary model estimating statistical distributions incorporating imprecise and categorical data based on maximum likelihood estimators, and (b) a time-varying model based on "generalized additive models for location, scale and shape" (GAMLSS) modelling, which incorporates external covariates related to climate variability (NAO index) and catchment hydrology factors (in this paper a reservoir index; RI). Flood frequency

  7. Geomorphology, facies architecture, and high-resolution, non-marine sequence stratigraphy in avulsion deposits, Cumberland Marshes, Saskatchewan

    Science.gov (United States)

    Farrell, K. M.

    2001-02-01

    This paper demonstrates field relationships between landforms, facies, and high-resolution sequences in avulsion deposits. It defines the building blocks of a prograding avulsion sequence from a high-resolution sequence stratigraphy perspective, proposes concepts in non-marine sequence stratigraphy and flood basin evolution, and defines the continental equivalent to a parasequence. The geomorphic features investigated include a distributary channel and its levee, the Stage I crevasse splay of Smith et al. (Sedimentology, vol. 36 (1989) 1), and the local backswamp. Levees and splays have been poorly studied in the past, and three-dimensional (3D) studies are rare. In this study, stratigraphy is defined from the finest scale upward and facies are mapped in 3D. Genetically related successions are identified by defining a hierarchy of bounding surfaces. The genesis, architecture, geometry, and connectivity of facies are explored in 3D. The approach used here reveals that avulsion deposits are comparable in process, landform, facies, bounding surfaces, and scale to interdistributary bayfill, i.e. delta lobe deposits. Even a simple Stage I splay is a complex landform, composed of several geomorphic components, several facies and many depositional events. As in bayfill, an alluvial ridge forms as the feeder crevasse and its levees advance basinward through their own distributary mouth bar deposits to form a Stage I splay. This produces a shoestring-shaped concentration of disconnected sandbodies that is flanked by wings of heterolithic strata, that join beneath the terminal mouth bar. The proposed results challenge current paradigms. Defining a crevasse splay as a discrete sandbody potentially ignores 70% of the landform's volume. An individual sandbody is likely only a small part of a crevasse splay complex. The thickest sandbody is a terminal, channel associated feature, not a sheet that thins in the direction of propagation. The three stage model of splay evolution

  8. Floods and climate: emerging perspectives for flood risk assessment and management

    NARCIS (Netherlands)

    Merz, B.; Aerts, J.C.J.H.; Arnbjerg-Nielsen, K.; Baldi, M.; Becker, A.; Bichet, A.; Blöschl, G.; Bouwer, L.M.; Brauer, A.; Cioffi, F.; Delgado, J.M.; Gocht, M.; Guzetti, F.; Harrigan, S.; Hirschboeck, K.; Kilsby, C.; Kron, W.; Kwon, H. -H.; Lall, U.; Merz, R.; Nissen, K.; Salvatti, P.; Swierczynski, T.; Ulbrich, U.; Viglione, A.; Ward, P.J.; Weiler, M.; Wilhelm, B.; Nied, M.

    2014-01-01

    Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction of

  9. Red River flooding, short-term measures : interim report to the International Red River Basin Task Force to the International Joint Commission

    International Nuclear Information System (INIS)

    1997-12-01

    The 1997 flood of the Red River Basin was one of the worst in recorded history. The basin covers 45,000 square miles and includes portions of South Dakota, North Dakota, Minnesota and Manitoba. This report of a special task force provides an overview of the environmental impacts of the 1997 flood and recommends a series of strategies to prevent or reduce future flood damage in the Basin. For example, within Manitoba, more than 550 containers that held hazardous materials were retrieved from the Red River. The contents of the containers which included propane, heating fuel, petroleum products, fire-fighting foam, tar, alcohol, solvents, corrosive liquids, polyester resin, paint, and pesticides, made their way into the floodwaters. Estimates of the amount of fuel oil that spilled in Manitoba are not available, but some 15,000 gallons of gasoline spilled from service stations in Breckenridge, Minnesota. The precursors that lead to the severe flooding in 1997 included heavy precipitation and higher than average temperatures that created less than ideal melt conditions. Since 1989, weekly maps of snow and water in the Canadian prairies have been produced because knowledge of the spatial distribution and amount of snow cover during the winter is important for forecasting spring water supply conditions. The Task Force made 40 recommendations that should be initiated within the short term. One of the recommendations was to remove or secure hazardous materials stored in the flood plain. 3 tabs., 4 figs

  10. Long-term changes to flood conditions due to varying management strategies, Rock River, WI

    Science.gov (United States)

    Fredrick, K. C.

    2015-12-01

    The Rock River is a 300-mile tributary of the Mississippi River in southern Wisconsin. Its source is a protected migratory bird habitat called the Horicon National Wildlife Refuge. Below the refuge, the Rock River flows through mostly rural, agricultural areas, with wide floodplain of mixed land use. Between the dam at Horicon and a hydroelectric dam in Watertown, WI, lie the townships of Lebanon, Ashippun, and Ixonia. These rural townships boast productive agricultural lands of mostly corn, soybeans, and alfalfa. Large portions of their land are within the floodplain, underlain by vast expanses of outwash sands and gravels, glaciolacustrine deposits, and tills. Throughout the region, spring floods are common from snowmelt and spring rain. These annual floods may be exacerbated by frozen ground and slow infiltration, making it an accepted part of life for residents. Over the last 8 years, and possibly as many as 20, this segment of the Rock River has seen an increase in flooding both in periodicity and retention of flood waters. Due to the delicate habitat of the wildlife refuge and the commissioned hydroelectric installation at the upper dam in Watertown, the residents and local governments of the Lebanon/Ashippun/Ixonia segment of the river have mostly been left to their own devices to monitor and manage flood events. Lebanon Township has been recording water levels for several years. Recent events at the hydroelectric plant seem to indicate that it may be playing a more important role in the flooding. High water events and flood retention do not correlate well with precipitation for the region. It appears that releases at the dam, or periods of water retention, are driving the long flooding periods upstream. Negative impacts to the region from the flooding include property damage, loss of arable land, and environmental effects.

  11. Tietkens Plain karst - Maralinga

    International Nuclear Information System (INIS)

    James, J.M.

    1988-09-01

    The Tietkens Plain karst is located to the north of Maralinga village which is on the crest of the Ooldea Range on the north and east margin of the Nullarbor Plain in western South Australia. The geology of the carbonate rocks in the Maralinga area is summarised. On Tietkens Plain from 1955 to 1963 nuclear weapons tests dispersed radioactive materials over the Maralinga area. Six nuclear devices were detonated in the air and one was exploded a few metres below the surface. The effect such explosions have on the karst and the possible rate of recovery of its surface are discussed. This report is the record of a visit to the Maralinga area from the 15th -21st November 1986 which involved an inspection of the karst surface together with collection of water, soil and rock samples. Results of the measurements made in order to assess water quality and water contamination by radioactive nuclides are presented. The implications arising from the presence of radioactive materials on the surface and the possibility of their entering and contaminating the groundwater in the area are discussed in the context of the chemistry of uranium and plutonium. The potential for transmission of contaminants through groundwater conduits and aquifers in the dolomite is discussed. Evidence is produced to show that the caves of the Nullabor Plain are not contaminated at present and are unlikely to be so in the future. 21 refs., 2 figs. 3 tabs., ills

  12. Reconstruction of Mid-Holocene sedimentary environments in the central part of the Thessaloniki Plain (Greece), based on microfaunal identification, magnetic susceptibility and grain-size analyses

    Science.gov (United States)

    Ghilardi, Matthieu; Kunesch, Stéphane; Styllas, Mixalis; Fouache, Eric

    2008-05-01

    The study aims to estimate the relative contributions of the two drainage basins of the Aliakmon and Axios rivers which, since the Mid-Holocene, have been responsible for building the largest deltaic area in Greece. Sediments from five cores located in the central part of the Thessaloniki Plain have been studied for their environmental changes using paleontological and sedimentological methods. Chronostratigraphical evidence was obtained from 14C AMS dating of marine shells, peat and organic sediment samples. During the Holocene marine transgression, this large coastal plain was a shallow marine bay reaching approx. 35 km inland circa the 4th millennium BC, from which the sea subsequently regressed to the east. Around the middle of the 3rd millennium BC, strong fluvial deposition of Aliakmon, to the east, and of Axios, to the north, occurred and was responsible of a gradual change to lagoonal and limnic environmental conditions. Around the 5th Century BC, a freshwater lake occupied the westernmost part of the plain. Microfaunal identification, together with magnetic susceptibility measurements, and grain-size analysis reveal three main environments of sediment deposition that reflect combinations of both concentrated and dispersed sources of magnetic/source minerals. Using remote sensing and a combination of spectral bands (LANDSAT TM imagery), we identify former fluvial levees and a freshwater lake, and give a spatial interpretation of the rivers' influences in building this deltaic complex. The mechanisms of edification of the plain as well as the roles played by Aliakmon and Axios sedimentation are described.

  13. Sediment dynamics in the restored reach of the Kissimmee River Basin, Florida: A vast subtropical riparian wetland

    Science.gov (United States)

    Schenk, E.R.; Hupp, C.R.; Gellis, A.

    2012-01-01

    Historically, the Kissimmee River Basin consisted of a broad nearly annually inundated riparian wetland similar in character to tropical Southern Hemisphere large rivers. The river was channelized in the 1960s and 1970s, draining the wetland. The river is currently being restored with over 10 000 hectares of wetlands being reconnected to 70 river km of naturalized channel. We monitored riparian wetland sediment dynamics between 2007 and 2010 at 87 sites in the restored reach and 14 sites in an unrestored reference reach. Discharge and sediment transport were measured at the downstream end of the restored reach. There were three flooding events during the study, two as annual flood events and a third as a greater than a 5-year flood event. Restoration has returned periodic flood flow to the riparian wetland and provides a mean sedimentation rate of 11.3 mm per year over the study period in the restored reach compared with 1.7 mm per year in an unrestored channelized reach. Sedimentation from the two annual floods was within the normal range for alluvial Coastal Plain rivers. Sediment deposits consisted of over 20% organics, similar to eastern blackwater rivers. The Kissimmee River is unique in North America for its hybrid alluvial/blackwater nature. Fluvial suspended-sediment measurements for the three flood events indicate that a majority of the sediment (70%) was sand, which is important for natural levee construction. Of the total suspended sediment load for the three flood events, 3%–16% was organic and important in floodplain deposition. Sediment yield is similar to low-gradient rivers draining to the Chesapeake Bay and alluvial rivers of the southeastern USA. Continued monitoring should determine whether observed sediment transport and floodplain deposition rates are normal for this river and determine the relationship between historic vegetation community restoration, hydroperiod restoration, and sedimentation.

  14. Flood-Ring Formation and Root Development in Response to Experimental Flooding of Young Quercus robur Trees

    Science.gov (United States)

    Copini, Paul; den Ouden, Jan; Robert, Elisabeth M. R.; Tardif, Jacques C.; Loesberg, Walter A.; Goudzwaard, Leo; Sass-Klaassen, Ute

    2016-01-01

    Spring flooding in riparian forests can cause significant reductions in earlywood-vessel size in submerged stem parts of ring-porous tree species, leading to the presence of ‘flood rings’ that can be used as a proxy to reconstruct past flooding events, potentially over millennia. The mechanism of flood-ring formation and the relation with timing and duration of flooding are still to be elucidated. In this study, we experimentally flooded 4-year-old Quercus robur trees at three spring phenophases (late bud dormancy, budswell, and internode expansion) and over different flooding durations (2, 4, and 6 weeks) to a stem height of 50 cm. The effect of flooding on root and vessel development was assessed immediately after the flooding treatment and at the end of the growing season. Ring width and earlywood-vessel size and density were measured at 25- and 75-cm stem height and collapsed vessels were recorded. Stem flooding inhibited earlywood-vessel development in flooded stem parts. In addition, flooding upon budswell and internode expansion led to collapsed earlywood vessels below the water level. At the end of the growing season, mean earlywood-vessel size in the flooded stem parts (upon budswell and internode expansion) was always reduced by approximately 50% compared to non-flooded stem parts and 55% compared to control trees. This reduction was already present 2 weeks after flooding and occurred independent of flooding duration. Stem and root flooding were associated with significant root dieback after 4 and 6 weeks and mean radial growth was always reduced with increasing flooding duration. By comparing stem and root flooding, we conclude that flood rings only occur after stem flooding. As earlywood-vessel development was hampered during flooding, a considerable number of narrow earlywood vessels present later in the season, must have been formed after the actual flooding events. Our study indicates that root dieback, together with strongly reduced hydraulic

  15. Ecosystem effects in the Lower Mississippi River Basin: Chapter L in 2011 Floods of the Central United States

    Science.gov (United States)

    Turnipseed, D. Phil; Allen, Yvonne C.; Couvillion, Brady R.; McKee, Karen L.; Vervaeke, William C.

    2014-01-01

    The 2011 Mississippi River flood in the Lower Mississippi River Basin was one of the largest flood events in recorded history, producing the largest or next to largest peak streamflow for the period of record at a number of streamgages on the lower Mississippi River. Ecosystem effects include changes to wetlands, nutrient transport, and land accretion and sediment deposition changes. Direct effects to the wetland ecosystems in the Lower Mississippi River Basin were minimized because of the expansive levee system built to pass floodwaters. Nutrients carried by the Mississippi River affect water quality in the Lower Mississippi River Basin. During 2011, nutrient fluxes in the lower Mississippi River were about average. Generally, nutrient delivery of the Mississippi and Atchafalaya Rivers contributes to the size of the hypoxic zone in the Gulf of Mexico. Based on available limited post-flood satellite imagery, some land expansion in both the Wax Lake and Atchafalaya River Deltas was observed. A wetland sediment survey completed in June 2011 indicated that recent sediment deposits were relatively thicker in the Atchafalaya and Mississippi River (Birdsfoot) Delta marshes compared to marshes farther from these rivers.

  16. Uraniferous gorceixite in the South Carolina coastal plain (U. S. A. )

    Energy Technology Data Exchange (ETDEWEB)

    Michel, J; Cole, K H; Moore, W S [South Carolina Univ., Columbia (USA). Dept. of Geology

    1982-04-01

    Gorceixite, a rare Ba-Al phosphate containing 200-2000 ppm U, occurs as thin seams or nodules in Upper Eocene deposits of the Coastal Plain province in Aiken County, South Carolina. At every locality gorceixite appears to be a post-depositional feature. Radiochemical results for various daughter-parent pairs in the /sup 238/U decay series show that uranium enrichment occurred at least 1 Ma ago and there has been little uranium migration since. There has been extensive redistribution of /sup 226/Ra relative to /sup 230/Th and /sup 210/Po, with /sup 226/Ra suddenly migrating from the gorceixite into the overlying sediments within the last one hundred years. The clay-mineral and elemental distributions through a gorceixite outcrop suggest that gorceixite formed as a result of intensive leaching by acidic groundwater during development of a paleo-soil horizon. The sources for the components of gorceixte may have been leached from local sedimentary deposits derived from the barite, monazite and granitic occurrences in the adjacent piedmont rocks. This model provides for: the predominance of gibbsite above and kaolinite below the gorceixite; mechanisms for phosphate fixation and uranium enrichment; depletion of the more soluble elements above the gorceixite; and the thinness and limited areal extent of known occurrences.

  17. After the flood is before the next flood - post event review of the Central European Floods of June 2013. Insights, recommendations and next steps for future flood prevention

    Science.gov (United States)

    Szoenyi, Michael; Mechler, Reinhard; McCallum, Ian

    2015-04-01

    In early June 2013, severe flooding hit Central and Eastern Europe, causing extensive damage, in particular along the Danube and Elbe main watersheds. The situation was particularly severe in Eastern Germany, Austria, Hungary and the Czech Republic. Based on the Post Event Review Capability (PERC) approach, developed by Zurich Insurance's Flood Resilience Program to provide independent review of large flood events, we examine what has worked well (best practice) and opportunities for further improvement. The PERC overall aims to thoroughly examine aspects of flood resilience, flood risk management and catastrophe intervention in order to help build back better after events and learn for future events. As our research from post event analyses shows a lot of losses are in fact avoidable by taking the right measures pre-event and these measures are economically - efficient with a return of 4 Euro on losses saved for every Euro invested in prevention on average (Wharton/IIASA flood resilience alliance paper on cost benefit analysis, Mechler et al. 2014) and up to 10 Euros for certain countries. For the 2013 flood events we provide analysis on the following aspects and in general identify a number of factors that worked in terms of reducing the loss and risk burden. 1. Understanding risk factors of the Central European Floods 2013 We review the precursors leading up to the floods in June, with an extremely wet May 2013 and an atypical V-b weather pattern that brought immense precipitation in a very short period to the watersheds of Elbe, Donau and partially the Rhine in the D-A-CH countries and researched what happened during the flood and why. Key questions we asked revolve around which protection and risk reduction approaches worked well and which did not, and why. 2. Insights and recommendations from the post event review The PERC identified a number of risk factors, which need attention if risk is to be reduced over time. • Yet another "100-year flood" - risk

  18. Urban flood return period assessment through rainfall-flood response modelling

    DEFF Research Database (Denmark)

    Murla, Damian; Thorndahl, Søren Liedtke

    Intense rainfall can often cause severe floods, especially in urbanized areas, where population density or large impermeable areas are found. In this context, floods can generate a direct impact in a social-environmental-economic viewpoint. Traditionally, in design of Urban Drainage Systems (UDS......), correlation between return period (RP) of a given rainfall and RP of its consequent flood has been assumed to be linear (e.g.DS/EN752 (2008)). However, this is not always the case. Complex UDS, where diverse hydraulic infrastructures are often found, increase the heterogeneity of system response, which may...... cause an alteration of the mentioned correlation. Consequently, reliability on future urban planning, design and resilience against floods may be also affected by this misassumption. In this study, an assessment of surface flood RP across rainfall RP has been carried out at Lystrup, a urbanized...

  19. Flood deposits characterization in Matraca community, Guainia Department in Colombia

    International Nuclear Information System (INIS)

    Cramer, T.; Molano, J.; Bonilla, A.; Amaya, Z.; Franco, J.; Iregui, I.

    2010-01-01

    The characterization of alluvial deposits found in the indigenous community of Matraca is a study that requires mineralogical, petrographic, sedimentological, geochemical and physical analyzes.The results obtained from these analyzes bring the certainty to be in the presence of economically exploitable mineral columbite-tantalite of the series field

  20. Going beyond the flood insurance rate map: insights from flood hazard map co-production

    Directory of Open Access Journals (Sweden)

    A. Luke

    2018-04-01

    Full Text Available Flood hazard mapping in the United States (US is deeply tied to the National Flood Insurance Program (NFIP. Consequently, publicly available flood maps provide essential information for insurance purposes, but they do not necessarily provide relevant information for non-insurance aspects of flood risk management (FRM such as public education and emergency planning. Recent calls for flood hazard maps that support a wider variety of FRM tasks highlight the need to deepen our understanding about the factors that make flood maps useful and understandable for local end users. In this study, social scientists and engineers explore opportunities for improving the utility and relevance of flood hazard maps through the co-production of maps responsive to end users' FRM needs. Specifically, two-dimensional flood modeling produced a set of baseline hazard maps for stakeholders of the Tijuana River valley, US, and Los Laureles Canyon in Tijuana, Mexico. Focus groups with natural resource managers, city planners, emergency managers, academia, non-profit, and community leaders refined the baseline hazard maps by triggering additional modeling scenarios and map revisions. Several important end user preferences emerged, such as (1 legends that frame flood intensity both qualitatively and quantitatively, and (2 flood scenario descriptions that report flood magnitude in terms of rainfall, streamflow, and its relation to an historic event. Regarding desired hazard map content, end users' requests revealed general consistency with mapping needs reported in European studies and guidelines published in Australia. However, requested map content that is not commonly produced included (1 standing water depths following the flood, (2 the erosive potential of flowing water, and (3 pluvial flood hazards, or flooding caused directly by rainfall. We conclude that the relevance and utility of commonly produced flood hazard maps can be most improved by illustrating

  1. Multivariate pluvial flood damage models

    International Nuclear Information System (INIS)

    Van Ootegem, Luc; Verhofstadt, Elsy; Van Herck, Kristine; Creten, Tom

    2015-01-01

    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks

  2. Multivariate pluvial flood damage models

    Energy Technology Data Exchange (ETDEWEB)

    Van Ootegem, Luc [HIVA — University of Louvain (Belgium); SHERPPA — Ghent University (Belgium); Verhofstadt, Elsy [SHERPPA — Ghent University (Belgium); Van Herck, Kristine; Creten, Tom [HIVA — University of Louvain (Belgium)

    2015-09-15

    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks.

  3. Impact of the Three-Gorges Dam and water transfer project on Changjiang floods

    Science.gov (United States)

    Nakayama, Tadanobu; Shankman, David

    2013-01-01

    Increasing frequency of severe floods on the middle and lower Changjiang (Yangtze) River during the past few decades can be attributed to both abnormal monsoon rainfall and landscape changes that include extensive deforestation affecting river sedimentation, and shrinking lakes and levee construction that reduced the areas available for floodwater storage. The Three-Gorges Dam (TGD) and the South-to-North Water Transfer Project (SNWTP) will also affect frequency and intensity of severe floods in the Poyang Lake region of the middle Changjiang. Process-based National Integrated Catchment-based Eco-hydrology (NICE) model predicts that the TGD will increase flood risk during the early summer monsoon against the original justifications for building the dam, relating to complex river-lake-groundwater interactions. Several scenarios predict that morphological change will increase flood risk around the lake. This indicates the importance of managing both flood discharge and sediment deposition for the entire basin. Further, the authors assessed the impact of sand mining in the lake after its prohibition on the Changjiang, and clarified that alternative scenario of sand mining in lakes currently disconnected from the mainstream would reduce the flood risk to a greater extent than intensive dredging along junction channel. Because dry biomasses simulated by the model were linearly related to the Time-Integrated Normalized Difference Vegetation Index (TINDVI) estimated from satellite images, its decadal gradient during 1982-1999 showed a spatially heterogeneous distribution and generally decreasing trends beside the lakes, indicating that the increases in lake reclamation and the resultant decrease in rice productivity are closely related to the hydrologic changes. This integrated approach could help to minimize flood damage and promote better decisions addressing sustainable development.

  4. A European Flood Database: facilitating comprehensive flood research beyond administrative boundaries

    Directory of Open Access Journals (Sweden)

    J. Hall

    2015-06-01

    Full Text Available The current work addresses one of the key building blocks towards an improved understanding of flood processes and associated changes in flood characteristics and regimes in Europe: the development of a comprehensive, extensive European flood database. The presented work results from ongoing cross-border research collaborations initiated with data collection and joint interpretation in mind. A detailed account of the current state, characteristics and spatial and temporal coverage of the European Flood Database, is presented. At this stage, the hydrological data collection is still growing and consists at this time of annual maximum and daily mean discharge series, from over 7000 hydrometric stations of various data series lengths. Moreover, the database currently comprises data from over 50 different data sources. The time series have been obtained from different national and regional data sources in a collaborative effort of a joint European flood research agreement based on the exchange of data, models and expertise, and from existing international data collections and open source websites. These ongoing efforts are contributing to advancing the understanding of regional flood processes beyond individual country boundaries and to a more coherent flood research in Europe.

  5. Sustainable flood memories, lay knowledges and the development of community resilience to future flood risk

    Directory of Open Access Journals (Sweden)

    McEwen Lindsey

    2016-01-01

    Full Text Available Shifts to devolved flood risk management in the UK pose questions about how the changing role of floodplain residents in community-led adaptation planning can be supported and strengthened. This paper shares insights from an interdisciplinary research project that has proposed the concept of ‘sustainable flood memory’ in the context of effective flood risk management. The research aimed to increase understanding of whether and how flood memories from the UK Summer 2007 extreme floods provide a platform for developing lay knowledges and flood resilience. The project investigated what factors link flood memory and lay knowledges of flooding, and how these connect and disconnect during and after flood events. In particular, and relation to flood governance directions, we sought to explore how such memories might play a part in individual and community resilience. The research presented here explores some key themes drawn from semi-structured interviews with floodplain residents with recent flood experiences in contrasting demographic and physical settings in the lower River Severn catchment. These include changing practices in making flood memories and materialising flood knowledge and the roles of active remembering and active forgetting.

  6. Atmospheric deposition, retention, and stream export of dioxins and PCBs in a pristine boreal catchment

    International Nuclear Information System (INIS)

    Bergknut, Magnus; Laudon, Hjalmar; Jansson, Stina; Larsson, Anna; Gocht, Tilman; Wiberg, Karin

    2011-01-01

    The mass-balance between diffuse atmospheric deposition of organic pollutants, amount of pollutants retained by the terrestrial environment, and levels of pollutants released to surface stream waters was studied in a pristine northern boreal catchment. This was done by comparing the input of atmospheric deposition of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and PCBs with the amounts exported to surface waters. Two types of deposition samplers were used, equipped with a glass fibre thimble and an Amberlite sampler respectively. The measured fluxes showed clear seasonality, with most of the input and export occurring during winter and spring flood, respectively. The mass balance calculations indicates that the boreal landscape is an effective sink for PCDD/Fs and PCBs, as 96.0-99.9 % of received bulk deposition was retained, suggesting that organic pollutants will continue to impact stream water in the region for an extended period of time. - Graphical abstract: Display Omitted Highlights: → The fluxes of organic pollutants in a pristine boreal catchment were measured. → Most of the input and export occurred during winter and spring flood. → 96.0-99.9% of received bulk deposition was retained by the landscape. → Organic pollutants will impact boreal stream waters for an extended period of time. - The boreal landscape is effective in retaining diffuse atmospheric deposition of dioxins and PCBs, slowly releasing these pollutants into nearby streams.

  7. Selective environmental stress from sulphur emitted by continental flood basalt eruptions

    Science.gov (United States)

    Schmidt, Anja; Skeffington, Richard; Thordarson, Thorvaldur; Self, Stephen; Forster, Piers; Rap, Alexandru; Ridgwell, Andy; Fowler, David; Wilson, Marjorie; Mann, Graham; Wignall, Paul; Carslaw, Ken

    2016-04-01

    Several biotic crises during the past 300 million years have been linked to episodes of continental flood basalt volcanism, and in particular to the release of massive quantities of magmatic sulphur gas species. Flood basalt provinces were typically formed by numerous individual eruptions, each lasting years to decades. However, the environmental impact of these eruptions may have been limited by the occurrence of quiescent periods that lasted hundreds to thousands of years. Here we use a global aerosol model to quantify the sulphur-induced environmental effects of individual, decade-long flood basalt eruptions representative of the Columbia River Basalt Group, 16.5-14.5 million years ago, and the Deccan Traps, 65 million years ago. For a decade-long eruption of Deccan scale, we calculate a decadal-mean reduction in global surface temperature of 4.5 K, which would recover within 50 years after an eruption ceased unless climate feedbacks were very different in deep-time climates. Acid mists and fogs could have caused immediate damage to vegetation in some regions, but acid-sensitive land and marine ecosystems were well-buffered against volcanic sulphur deposition effects even during century-long eruptions. We conclude that magmatic sulphur from flood basalt eruptions would have caused a biotic crisis only if eruption frequencies and lava discharge rates had been high and sustained for several centuries at a time.

  8. Geometric and frequency EMI sounding of estuarine earthen flood defence embankments in Ireland using 1D inversion models

    Science.gov (United States)

    Viganotti, Matteo; Jackson, Ruth; Krahn, Hartmut; Dyer, Mark

    2013-05-01

    Earthen flood defence embankments are linear structures, raised above the flood plain, that are commonly used as flood defences in rural settings; these are often relatively old structures constructed using locally garnered material and of which little is known in terms of design and construction. Alarmingly, it is generally reported that a number of urban developments have expanded to previously rural areas; hence, acquiring knowledge about the flood defences protecting these areas has risen significantly in the agendas of basin and asset managers. This paper focusses, by reporting two case studies, on electromagnetic induction (EMI) methods that would efficiently complement routine visual inspections and would represent a first step to more detailed investigations. Evaluation of the results is presented by comparison with ERT profiles and intrusive investigation data. The EM data, acquired using a GEM-2 apparatus for frequency sounding and an EM-31 apparatus for geometrical sounding, has been handled using the prototype eGMS software tool, being developed by the eGMS international research consortium; the depth sounding data interpretation was assisted by 1D inversions obtained with the EM1DFM software developed by the University of British Columbia. Although both sounding methods showed some limitations, the models obtained were consistent with ERT models and the techniques were useful screening methods for the identification of areas of interest, such as material interfaces or potential seepage areas, within the embankment structure: 1D modelling improved the rapid assessment of earthen flood defence embankments in an estuarine environment; evidence that EMI sounding could play an important role as a monitoring tool or as a first step towards more detailed investigations.

  9. Adaptation to flood risk: Results of international paired flood event studies

    NARCIS (Netherlands)

    Kreibich, Heidi; Di Baldassarre, G.; Vorogushyn, Sergiy; Aerts, J.C.J.H.; Apel, H.; Aronica, G.T.; Arnbjerg-Nielsen, K.; Bouwer, L.; Bubeck, P.; Caloiero, Tommaso; Chinh, Do. T.; Cortès, Maria; Gain, A.K.; Giampá, Vincenzo; Kuhlicke, C; Kundzewicz, Z.W.; Carmen Llasat, M; Mård, Johanna; Matczak, Piotr; Mazzoleni, Maurizio; Molinari, Daniela; Dung, N.V.; Petrucci, Olga; Schröter, Kai; Slager, Kymo; Thieken, A.H.; Ward, P.J.; Merz, B.

    2017-01-01

    As flood impacts are increasing in large parts of the world, understanding the primary drivers of changes in risk is essential for effective adaptation. To gain more knowledge on the basis of empirical case studies, we analyze eight paired floods, that is, consecutive flood events that occurred in

  10. Abrasion-set limits on Himalayan gravel flux.

    Science.gov (United States)

    Dingle, Elizabeth H; Attal, Mikaël; Sinclair, Hugh D

    2017-04-26

    Rivers sourced in the Himalayan mountain range carry some of the largest sediment loads on the planet, yet coarse gravel in these rivers vanishes within approximately 10-40 kilometres on entering the Ganga Plain (the part of the North Indian River Plain containing the Ganges River). Understanding the fate of gravel is important for forecasting the response of rivers to large influxes of sediment triggered by earthquakes or storms. Rapid increase in gravel flux and subsequent channel bed aggradation (that is, sediment deposition by a river) following the 1999 Chi-Chi and 2008 Wenchuan earthquakes reduced channel capacity and increased flood inundation. Here we present an analysis of fan geometry, sediment grain size and lithology in the Ganga Basin. We find that the gravel fluxes from rivers draining the central Himalayan mountains, with upstream catchment areas ranging from about 350 to 50,000 square kilometres, are comparable. Our results show that abrasion of gravel during fluvial transport can explain this observation; most of the gravel sourced more than 100 kilometres upstream is converted into sand by the time it reaches the Ganga Plain. These findings indicate that earthquake-induced sediment pulses sourced from the Greater Himalayas, such as that following the 2015 Gorkha earthquake, are unlikely to drive increased gravel aggradation at the mountain front. Instead, we suggest that the sediment influx should result in an elevated sand flux, leading to distinct patterns of aggradation and flood risk in the densely populated, low-relief Ganga Plain.

  11. Geomorphic Effects, Chronologies, and Archaeological Significance of El Nino Floods in Southern Peru

    Science.gov (United States)

    Magilligan, F. J.; Manners, R.; Goldstein, P.

    2003-12-01

    The catastrophic effects of large floods have been well documented, on both contemporary and paleo-timecales, especially for the conterminous U.S. Less is known, however, about extreme events in hyper-arid sub-tropical climates where synoptic scale meteorological causes, such as El Nino-Southern Oscillation events, are the driving atmospheric mechanism. This research documents the geomorphic effects of extreme floods in the Moquegua River valley of southern Peru, in the core of the Atacama Desert. Using a combination of geomorphic mapping, hydrolologic modeling, aerial photography, ASTER satellite imagery, and GIS, we document the geomorphic signature of large contemporary floods within the mid-valley section (1500 masl) of the Rio Moquegua. Stratigraphic evidence and paleostage indicators of paleofloods, such as slackwater deposits and preserved high level flood gravels, are used to evidence late Holocene paleoflood magnitude-frequency relationships. On contemporary timescales, channel belt expansion by lateral erosion during large floods, such as the recent '97 and '98 floods, correspond to as much as 30-40 hectares of floodplain loss along the 20 km study reach. Sixty years of repeat aerial photography indicates that channel belt expansion and floodplain erosion commonly occurs along the Rio Moquegua. The frequent resetting of floodplain alluvium conditioned by these large floods is supported by radiocarbon dating of floodplain exposures. These dates indicate that most of the contemporary floodplain alluvium is younger that 560 14C yrs BP. The highest terrace remnants date to 3250 14C yrs BP and record a series of overbank flood gravels. Evidence for the regionally extensive Miraflores ENSO flood, ca. 1300 AD, exists in tributary and along mainstem sections. This flood has been documented along the coasts of Northern Chile to northern Peru, and has been evoked to explain significant social collapse. Our field evidence indicates that it catastrophically affected

  12. Enhanced oil recovery (EOR) by miscible CO{sub 2} and water flooding of asphaltenic and non-asphaltenic oils

    Energy Technology Data Exchange (ETDEWEB)

    Chukwudeme, E. A.; Hamouda, A. A. [Department of Petroleum Engineering, University of Stavanger, 4036 Stavanger (Norway)

    2009-07-01

    An EOR study has been performed applying miscible CO{sub 2} flooding and compared with that for water flooding. Three different oils are used, reference oil (n-decane), model oil (n-C10, SA, toluene and 0.35 wt % asphaltene) and crude oil (10 wt % asphaltene) obtained from the Middle East. Stearic acid (SA) is added representing a natural surfactant in oil. For the non-asphaltenic oil, miscible CO{sub 2} flooding is shown to be more favourable than that by water. However, it is interesting to see that for first years after the start of the injection (< 3 years) it is shown that there is almost no difference between the recovered oils by water and CO{sub 2}, after which (> 3 years) oil recovery by gas injection showed a significant increase. This may be due to the enhanced performance at the increased reservoir pressure during the first period. Maximum oil recovery is shown by miscible CO{sub 2} flooding of asphaltenic oil at combined temperatures and pressures of 50 {sup o}C/90 bar and 70 {sup o}C/120 bar (no significant difference between the two cases, about 1%) compared to 80 {sup o}C/140 bar. This may support the positive influence of the high combined temperatures and pressures for the miscible CO{sub 2} flooding; however beyond a certain limit the oil recovery declined due to increased asphaltene deposition. Another interesting finding in this work is that for single phase oil, an almost linear relationship is observed between the pressure drop and the asphaltene deposition regardless of the flowing fluid pressure. (author)

  13. 49 CFR 215.113 - Defective plain bearing wedge.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective plain bearing wedge. 215.113 Section 215... Suspension System § 215.113 Defective plain bearing wedge. A railroad may not place or continue in service a car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not located...

  14. Aquifer recharge from infiltration basins in a highly urbanized area: the river Po Plain (Italy)

    Science.gov (United States)

    Masetti, M.; Nghiem, S. V.; Sorichetta, A.; Stevenazzi, S.; Santi, E. S.; Pettinato, S.; Bonfanti, M.; Pedretti, D.

    2015-12-01

    Due to the extensive urbanization in the Po Plain in northern Italy, rivers need to be managed to alleviate flooding problems while maintaining an appropriate aquifer recharge under an increasing percentage of impermeable surfaces. During the PO PLain Experiment field campaign in July 2015 (POPLEX 2015), both active and under-construction infiltration basins have been surveyed and analyzed to identify appropriate satellite observations that can be integrated to ground based monitoring techniques. A key strategy is to have continuous data time series on water presence and level within the basin, for which ground based monitoring can be costly and difficult to be obtained consistently.One of the major and old infiltration basin in the central Po Plain has been considered as pilot area. The basin is active from 2003 with ground based monitoring available since 2009 and supporting the development of a calibrated unsaturated-saturated two-dimensional numerical model simulating the infiltration dynamics through the basin.A procedure to use satellite data to detect surface water change is under development based on satellite radar backscatter data with an appropriate incidence angle and polarization combination. An advantage of satellite radar is that it can observe surface water regardless of cloud cover, which can be persistent during rainy seasons. Then, the surface water change is correlated to the reservoir water stage to determine water storage in the basin together with integrated ground data and to give quantitative estimates of variations in the local water cycle.We evaluated the evolution of the infiltration rate, to obtain useful insights about the general recharge behavior of basins that can be used for informed design and maintenance. Results clearly show when the basin becomes progressively clogged by biofilms that can reduce the infiltration capacity of the basin by as much as 50 times compared to when it properly works under clean conditions.

  15. Dendrogeochronologic and Anatomic Analysis of Excavated Plains Cottonwoods Determine Overbank Sedimentation Rates and Historical Channel Positions Along the Interior of a Migrating Meander Bend, Powder River, Montana

    Science.gov (United States)

    Metzger, T. L.; Pizzuto, J. E.; Schook, D. M.; Hasse, T. R.; Affinito, R. A.

    2017-12-01

    Dendrochronological dating of buried trees precisely determines the germination year and identifies the stratigraphic context of germination for the trees. This recently developed application of dendrochronology provides accurate time-averaged sedimentation rates of overbank deposition along floodplains and can be used to identify burial events. Previous studies have demonstrated that tamarisk (Tamarix ramosissima) and sandbar willow (Salix exigua) develop anatomical changes within the tree rings (increased vessel size and decreased ring widths) on burial, but observations of plains cottonwood (Populus deltoides ssp. monilifera) are lacking. In September 2016 and June 2017, five buried plains cottonwoods were excavated along a single transect of the interior of a meander bend of the Powder River, Montana. Sediment samples were obtained near each tree for 210Pb and 137Cs dating, which will allow for comparison between dendrochronological and isotopic dating methods. The plains cottonwood samples collected exhibit anatomical changes associated with burial events that are observed in other species. All trees germinated at the boundary between thinly bedded fine sand and mud and coarse sand underlain by sand and gravel, indicating plains cottonwoods germinate on top of point bars prior to overbank deposition. The precise germination age and depth provide elevations and minimum age constraints for the point bar deposits and maximum ages for the overlying sediment, helping constrain past channel positions and overbank deposition rates. Germination years of the excavated trees, estimated from cores taken 1.5 m above ground level, range from 2014 to 1862. Accurate establishment years determined by cross-dating the buried section of the tree can add an additional 10 years to the cored age. The sedimentation rate and accumulation thickness varied with tree age. The germination year, total sediment accumulation, and average sedimentation rate at the five sampled trees is

  16. Floods in Serbia in the 1999-2009 period: Hydrological analysis and flood protection measures

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2010-01-01

    Full Text Available The review on greatest floods recorded in Vojvodina and central Serbia within the period from 1999 to 2009 is given in this paper. For 13 hydrological stations, that recorded the greatest floods for the present period, probability of occurrence of these floods has been accomplished. Based on analysis of time series of discharge and water level maximum, performed by applying probability theory and mathematical statistics, and calculated theoretical probability distribution function of floods, probability of occurrence of flood has been obtained. Most often the best agreement with the empirical distribution function had a Log-Pearson III, Pearson III distribution. These results can be used for dimensioning of hydro-technical objects for flood protection. The most significant causes for floods recorded in this period were melting of snow and intensive rainfall. In this paper the current situation of flood protection and future development of flood protection measures were also presented. .

  17. Natural dam failure in the eastern slope of the Central Andes of Argentina. Numerical modelling of the 2005 Santa Cruz river outburst flood

    Science.gov (United States)

    Penna, I.; Daicz, S.; Zlotnik, S.; Derron, M.-H.; Jaboyedoff, M.

    2012-04-01

    In the Central Andes of Argentina, ephemeral river blockage due to landslides deposition are common phenomena. During the first fortnight of January 2005, 11.5 * 106m3 of rock collapsed from the east slope of the Santa Cruz valley (San Juan province, Argentina). The rock mass displaced from 4300 m a.s.l., down to the valley bottom, at 2900 m a.s.l., and ran up the opposite flank of the valley. This produced the blockage of the Santa Cruz river and generated the Los Erizos lake. The rapid snow melting during the spring season caused the increase of the water level of the reservoir, leading to a process of overtopping on November 12th of 2005. 30 * 106m3 of water were released from the reservoir and the consequent outburst flood displaced along 250 km. From local reports of arrival times, we estimated that the outburst flood reduced its velocity from around 40 km/h near the source area to 6 km/h in its distal section. A road, bridges, and a mining post where destroyed. 75 tourists had to be rescued from the mountains using helicopters, and people from two localities had to be evacuated. Near its distal part, the flood damaged the facilities of the Caracoles power dam, which was under construction, and its inauguration had to be delayed one year due to the damage. The outburst flood produced changes in the morphology of the valley floor along almost all its path (erosion of alluvial fans, talus and terraces, and deposition of boulders). The most significant changes occurred in the first 70 km, especially upstream narrow sections, showing the importance of the backwater effects due to hydraulic ponding. In this work we carried out numerical simulations to obtain the velocity patterns of the flood, and compared them with those obtained from local reports. Furthermore, we analyze the relationship between the dynamics of the flood with the patterns of erosion and deposition near the source area.

  18. Spatial coherence of flood-rich and flood-poor periods across Germany

    Science.gov (United States)

    Merz, Bruno; Dung, Nguyen Viet; Apel, Heiko; Gerlitz, Lars; Schröter, Kai; Steirou, Eva; Vorogushyn, Sergiy

    2018-04-01

    Despite its societal relevance, the question whether fluctuations in flood occurrence or magnitude are coherent in space has hardly been addressed in quantitative terms. We investigate this question for Germany by analysing fluctuations in annual maximum series (AMS) values at 68 discharge gauges for the common time period 1932-2005. We find remarkable spatial coherence across Germany given its different flood regimes. For example, there is a tendency that flood-rich/-poor years in sub-catchments of the Rhine basin, which are dominated by winter floods, coincide with flood-rich/-poor years in the southern sub-catchments of the Danube basin, which have their dominant flood season in summer. Our findings indicate that coherence is caused rather by persistence in catchment wetness than by persistent periods of higher/lower event precipitation. Further, we propose to differentiate between event-type and non-event-type coherence. There are quite a number of hydrological years with considerable non-event-type coherence, i.e. AMS values of the 68 gauges are spread out through the year but in the same magnitude range. Years with extreme flooding tend to be of event-type and non-coherent, i.e. there is at least one precipitation event that affects many catchments to various degree. Although spatial coherence is a remarkable phenomenon, and large-scale flooding across Germany can lead to severe situations, extreme magnitudes across the whole country within one event or within one year were not observed in the investigated period.

  19. Sex-specific responses to winter flooding, spring waterlogging and post-flooding recovery in Populus deltoides.

    Science.gov (United States)

    Miao, Ling-Feng; Yang, Fan; Han, Chun-Yu; Pu, Yu-Jin; Ding, Yang; Zhang, Li-Jia

    2017-05-31

    Winter flooding events are common in some rivers and streams due to dam constructions, and flooding and waterlogging inhibit the growth of trees in riparian zones. This study investigated sex-specific morphological, physiological and ultrastructural responses to various durations of winter flooding and spring waterlogging stresses, and post-flooding recovery characteristics in Populus deltoides. There were no significant differences in the morphological, ultrastructural and the majority of physiological traits in trees subjected to medium and severe winter flooding stresses, suggesting that males and females of P. deltoides were winter flooding tolerant, and insensitive to winter flooding duration. Males were more tolerant to winter flooding stress in terms of photosynthesis and chlorophyll fluorescence than females. Females displayed greater oxidative damage due to flooding stress than males. Males developed more efficient antioxidant enzymatic systems to control reactive oxygen species. Both sexes had similarly strong post-flooding recovery capabilities in terms of plant growth, and physiological and ultrastructural parameters. However, Males had better recovery capabilities in terms of pigment content. These results increase the understanding of poplars's adaptation to winter flooding stress. They also elucidate sex-specific differences in response to flooding stress during the dormant season, and during post-flooding recovery periods.

  20. SURFACE FLOODS IN COIMBRA: simple and dual-drainage studies

    Science.gov (United States)

    Leitão, J. P.; Simões, N. E.; Pina, R.; Marques, A. Sá; Maksimović, Č.; Gonçalves, Gil

    2009-09-01

    Surface water flooding occurs due to extreme rainfall and the inability of the sewer system to drain all runoff. As a consequence, a considerable volume of water is carried out over the surface through preferential flow paths and can eventually accumulate in natural (or man-made) ponds. This can cause minor material losses but also major incidents with obvious consequences in economic activities and the normal people's life. Unfortunately, due to predicted climate changes and increase of urbanisation levels, the urban flooding phenomenon has been reported more often. The Portuguese city of Coimbra is a medium size city that has suffered several river floods in the past. However, after the construction of hydraulic control structures, the number of fluvial flood events was greatly reduced. In the 1990s two new problems started. On one hand, houses started to be built on flood plain areas; on the other hand, some areas experienced a boom in the degree of urbanisation. This created flood problems of a different type dislocating the flood areas from the traditional flood areas along the river to new areas that did not reported flood in history. The catchment studied has a total area of approximately 1.5 km2 and discharges in the Coselhas brook The catchment can be divided in three regions with different characteristics: (i) the "Lower City" which is a low-lying area with 0.4 km2 and with a combined sewer system; (ii) the "Upper City" which is a considerably hilly area, highly urbanized and with an area of approximately 0.2 km2; and (iii) the remaining area which is also highly urbanized, with an area of 0.9 km2, where the main flood problems are generated. The sewer system is 34.8 km long; 29 km are of the combined type, and only 1.2 km is exclusive for storm water. The time of concentration of the catchment is estimated to be 45 min. On the 9 June 2006, an extreme rainfall event caused severe flooding in the city. After the rainfall had stopped, water continued to