Sample records for flood damage

  1. Multivariate pluvial flood damage models

    International Nuclear Information System (INIS)

    Van Ootegem, Luc; Verhofstadt, Elsy; Van Herck, Kristine; Creten, Tom


    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks

  2. Multivariate pluvial flood damage models

    Energy Technology Data Exchange (ETDEWEB)

    Van Ootegem, Luc [HIVA — University of Louvain (Belgium); SHERPPA — Ghent University (Belgium); Verhofstadt, Elsy [SHERPPA — Ghent University (Belgium); Van Herck, Kristine; Creten, Tom [HIVA — University of Louvain (Belgium)


    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks.

  3. Drivers of flood damage on event level

    DEFF Research Database (Denmark)

    Kreibich, H.; Aerts, J. C. J. H.; Apel, H.


    Flood risk is dynamic and influenced by many processes related to hazard, exposure and vulnerability. Flood damage increased significantly over the past decades, however, resulting overall economic loss per event is an aggregated indicator and it is difficult to attribute causes to this increasing...... trend. Much has been learned about damaging processes during floods at the micro-scale, e.g. building level. However, little is known about the main factors determining the amount of flood damage on event level. Thus, we analyse and compare paired flood events, i.e. consecutive, similar damaging floods...... example are the 2002 and 2013 floods in the Elbe and Danube catchments in Germany. The 2002 flood caused the highest economic damage (EUR 11600 million) due to a natural hazard event in Germany. Damage was so high due to extreme flood hazard triggered by extreme precipitation and a high number...

  4. Drivers of flood damage on event level

    DEFF Research Database (Denmark)

    Kreibich, H.; Aerts, J. C. J. H.; Apel, H.


    example are the 2002 and 2013 floods in the Elbe and Danube catchments in Germany. The 2002 flood caused the highest economic damage (EUR 11600 million) due to a natural hazard event in Germany. Damage was so high due to extreme flood hazard triggered by extreme precipitation and a high number......-level mitigation measures, 3) more effective early warning and improved coordination of disaster response and 4) a more targeted maintenance of flood defence systems and their deliberate relocation. Thus, despite higher hydrological severity damage due to the 2013 flood was significantly lower than in 2002. In our...

  5. Improving Flood Damage Assessment Models in Italy (United States)

    Amadio, M.; Mysiak, J.; Carrera, L.; Koks, E.


    The use of Stage-Damage Curve (SDC) models is prevalent in ex-ante assessments of flood risk. To assess the potential damage of a flood event, SDCs describe a relation between water depth and the associated potential economic damage over land use. This relation is normally developed and calibrated through site-specific analysis based on ex-post damage observations. In some cases (e.g. Italy) SDCs are transferred from other countries, undermining the accuracy and reliability of simulation results. Against this background, we developed a refined SDC model for Northern Italy, underpinned by damage compensation records from a recent flood event. Our analysis considers both damage to physical assets and production losses from business interruptions. While the first is calculated based on land use information, production losses are measured through the spatial distribution of Gross Value Added (GVA). An additional component of the model assesses crop-specific agricultural losses as a function of flood seasonality. Our results show an overestimation of asset damage from non-calibrated SDC values up to a factor of 4.5 for tested land use categories. Furthermore, we estimate that production losses amount to around 6 per cent of the annual GVA. Also, maximum yield losses are less than a half of the amount predicted by the standard SDC methods.

  6. Flood damage to historic buildings and structures

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš


    Roč. 24, č. 5 (2010), s. 439-445 ISSN 0887-3828 Grant - others:evropská komise(XE) FP6 Project cultural heritage protection against flood CHEF-SSPI-044251 Institutional research plan: CEZ:AV0Z20710524 Keywords : flood impact * historic structures * damage category Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 0.293, year: 2010

  7. Flood damage data gathering: procedures and use (United States)

    Molinari, D.; Aronica, G. T.; Ballio, F.; Berni, N.; Pandolfo, C.


    Damage data represents the basis on which flood risk models, re-founding schemes and mitigation activities are grounded on. Nevertheless damage data have been collected so far mainly at the national-regional scale; few databases exist at the local scale and, even if present, no standard exist for their development. On the contrary, risk analyses and mitigation strategies are usually carried out at local scale. This contribution describes the ongoing activity to collect and analyze local damage data coming from past events with recently hit Umbria an Sicily regions (central and south part of Italy respectively). Data from past events will be discussed from two different perspectives. In Italy, procedures to gather damage data after a flood are defined by law. According to this, authors will first question whether or not collected data are suitable to give an exhaustive representation of the total impact the events had on the affected territories. As regards, suggestions are provided about how gathering procedures can improve. On the other hand, collected data will be discussed with respect to their implementation in the definition of depth-damage curves for the Italian context; literature review highlights indeed that no curves are available for Italy. Starting from the knowledge of observed hazard intensity and damage data, available curves from other countries are validated, the objective being to reduce the uncertainty which currently characterise damage estimation. Indeed, a variety of curves can be found in literature and the choice of one curve in place of another can change damage assessment results of one order of magnitude. The validation procedure will allow, in its turn, to face a secondary but key question for the contribution, being the identification of those hazard and vulnerability features that should be recorded and kept updated in a local GIS database to support risk modelling, funding and management. The two areas under investigation are prone to

  8. Flood damage curves for consistent global risk assessments (United States)

    de Moel, Hans; Huizinga, Jan; Szewczyk, Wojtek


    Assessing potential damage of flood events is an important component in flood risk management. Determining direct flood damage is commonly done using depth-damage curves, which denote the flood damage that would occur at specific water depths per asset or land-use class. Many countries around the world have developed flood damage models using such curves which are based on analysis of past flood events and/or on expert judgement. However, such damage curves are not available for all regions, which hampers damage assessments in those regions. Moreover, due to different methodologies employed for various damage models in different countries, damage assessments cannot be directly compared with each other, obstructing also supra-national flood damage assessments. To address these problems, a globally consistent dataset of depth-damage curves has been developed. This dataset contains damage curves depicting percent of damage as a function of water depth as well as maximum damage values for a variety of assets and land use classes (i.e. residential, commercial, agriculture). Based on an extensive literature survey concave damage curves have been developed for each continent, while differentiation in flood damage between countries is established by determining maximum damage values at the country scale. These maximum damage values are based on construction cost surveys from multinational construction companies, which provide a coherent set of detailed building cost data across dozens of countries. A consistent set of maximum flood damage values for all countries was computed using statistical regressions with socio-economic World Development Indicators from the World Bank. Further, based on insights from the literature survey, guidance is also given on how the damage curves and maximum damage values can be adjusted for specific local circumstances, such as urban vs. rural locations, use of specific building material, etc. This dataset can be used for consistent supra

  9. Effectiveness of flood damage mitigation measures: Empirical evidence from French flood disasters

    NARCIS (Netherlands)

    Poussin, J.K.; Botzen, W.J.W.; Aerts, J.C.J.H.


    Recent destructive flood events and projected increases in flood risks as a result of climate change in many regions around the world demonstrate the importance of improving flood risk management. Flood-proofing of buildings is often advocated as an effective strategy for limiting damage caused by

  10. Flood damage: a model for consistent, complete and multipurpose scenarios (United States)

    Menoni, Scira; Molinari, Daniela; Ballio, Francesco; Minucci, Guido; Mejri, Ouejdane; Atun, Funda; Berni, Nicola; Pandolfo, Claudia


    Effective flood risk mitigation requires the impacts of flood events to be much better and more reliably known than is currently the case. Available post-flood damage assessments usually supply only a partial vision of the consequences of the floods as they typically respond to the specific needs of a particular stakeholder. Consequently, they generally focus (i) on particular items at risk, (ii) on a certain time window after the occurrence of the flood, (iii) on a specific scale of analysis or (iv) on the analysis of damage only, without an investigation of damage mechanisms and root causes. This paper responds to the necessity of a more integrated interpretation of flood events as the base to address the variety of needs arising after a disaster. In particular, a model is supplied to develop multipurpose complete event scenarios. The model organizes available information after the event according to five logical axes. This way post-flood damage assessments can be developed that (i) are multisectoral, (ii) consider physical as well as functional and systemic damage, (iii) address the spatial scales that are relevant for the event at stake depending on the type of damage that has to be analyzed, i.e., direct, functional and systemic, (iv) consider the temporal evolution of damage and finally (v) allow damage mechanisms and root causes to be understood. All the above features are key for the multi-usability of resulting flood scenarios. The model allows, on the one hand, the rationalization of efforts currently implemented in ex post damage assessments, also with the objective of better programming financial resources that will be needed for these types of events in the future. On the other hand, integrated interpretations of flood events are fundamental to adapting and optimizing flood mitigation strategies on the basis of thorough forensic investigation of each event, as corroborated by the implementation of the model in a case study.

  11. Extending flood damage assessment methodology to include ...

    African Journals Online (AJOL)

    Optimal and sustainable flood plain management, including flood control, can only be achieved when the impacts of flood control measures are considered for both the man-made and natural environments, and the sociological aspects are fully considered. Until now, methods/models developed to determine the influences ...

  12. Probabilistic flood damage modelling at the meso-scale (United States)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno


    Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.

  13. Damaging Rainfall and Flooding. The Other Sahel Hazards

    Energy Technology Data Exchange (ETDEWEB)

    Tarhule, A. [Department of Geography, University of Oklahoma, 100 East Boyd Street, Norman, OK, 73079 (United States)


    Damaging rainfall and rain-induced flooding occur from time to time in the drought-prone Sahel savannah zone of Niger in West Africa but official records of these events and their socioeconomic impacts do not exist. This paper utilized newspaper accounts between 1970 and 2000 to survey and illustrate the range of these flood hazards in the Sahel. During the study interval, 53 newspaper articles reported 79 damaging rainfall and flood events in 47 different communities in the Sahel of Niger. Collectively, these events destroyed 5,580 houses and rendered 27,289 people homeless. Cash losses and damage to infrastructure in only three events exceeded $4 million. Sahel residents attribute these floods to five major causes including both natural and anthropogenic, but they view the flood problem as driven primarily by land use patterns. Despite such awareness, traditional coping strategies appear inadequate for dealing with the problems in part because of significant climatic variability. Analysis of several rainfall measures indicates that the cumulative rainfall in the days prior to a heavy rain event is an important factor influencing whether or not heavy rainfall results in flooding. Thus, despite some limitations, newspaper accounts of historical flooding are largely consistent with measured climatic variables. The study demonstrates that concerted effort is needed to improve the status of knowledge concerning flood impacts and indeed other natural and human hazards in the Sahel.

  14. Pakistan flood damage mapped by UNOSAT at CERN

    CERN Multimedia

    Katarina Anthony


    As the waters recede, the Pakistan floods are attracting less attention in the world's media. But at the CERN-based headquarters of UNOSAT, the UN Institute for Training and Research Operational Satellite Application Programme, mapping the damage caused by the floods remains the top priority as the “emergency phase” is only now beginning to level off.   Flood analysis in Pakistan from 28 July to 16 September 2010. Credits: © UNOSAT UNOSAT uses impartial, objective data to assess the specifics of a disaster: What surface area has the flood covered? How many bridges and roads have been destroyed? How many areas are impenetrable? Although there are statistical answers to these questions, UNOSAT’s assessment of the damage caused by the Pakistan floods can be simply described in one word: catastrophic. The images used by UNOSAT are taken from a variety of different sources – commercial and scientific. Once a satellite takes an image, the owne...

  15. PoliRisposta: Overcoming present limits of flood damage data (United States)

    Molinari, Daniela; Mazuran, Mirjana; Arias, Carolina; Minucci, Guido; Atun, Funda; Ardagna, Danilo


    Already in the Fifties, US researchers identified the main weakness of flood records in the inadequacy of flood damage data. The recent seminar "Flood damage survey and assessment: which priorities for future research and practice?", held at Politecnico di Milano on 24-25 January 2012, highlighted that poor and insufficient flood loss data is still a matter of concern. In detail, participants concluded that the lack of damage data and of innovative approaches for their analysis (e.g. multivariate approaches, data mining) is one of the main causes of the shortcomings of present risk assessment tools; among them: the uncertainty of flood risk predictions and the limited capacity of estimating damages apart from the direct ones to residential sector (i.e. indirect/intangible damages). On the other hand, flood damage data collected in the aftermath of a disastrous event can support a variety of actions besides the validation/definition of damage models: the identification of priorities for intervention during emergencies, the creation of complete event scenarios on the bases of which understating the fragilities of the flooded areas as well as defining compensation schemes. However, few efforts have been addressed so far on the improvement of the way in which data are presently collected and stored. The aim of this presentation is to discuss first results of Poli-RISPOSTA (stRumentI per la protezione civile a Supporto delle POpolazioni nel poST Alluvione), a research project founded by Politecnico di Milano which is just intended to develop tools and procedures for the collection and storage of high quality, consistent and reliable flood damage data. In detail, specific objectives of Poli-RISPOSTA are: - Develop an operational procedure for collecting, storing and analyzing all damage data, in the aftermath of flood event, including: damage to infrastructures and public facilities, damage suffered by citizens and their dwellings and goods, and to economic activities

  16. Estimation of Damage Costs Associated with Flood Events (United States)

    Andrews, T. A.; Wauthier, C.; Zipp, K.


    This study investigates the possibility of creating a mathematical function that enables the estimation of flood-damage costs. We begin by examining the costs associated with past flood events in the United States. The data on these tropical storms and hurricanes are provided by the National Oceanic and Atmospheric Administration. With the location, extent of flooding, and damage reparation costs identified, we analyze variables such as: number of inches rained, land elevation, type of landscape, region development in regards to building density and infrastructure, and population concentration. We seek to identify the leading drivers of high flood-damage costs and understand which variables play a large role in the costliness of these weather events. Upon completion of our mathematical analysis, we turn out attention to the 2017 natural disaster of Texas. We divide the region, as we did above, by land elevation, type of landscape, region development in regards to building density and infrastructure, and population concentration. Then, we overlay the number of inches rained in those regions onto the divided landscape and apply our function. We hope to use these findings to estimate the potential flood-damage costs of Hurricane Harvey. This information is then transformed into a hazard map that could provide citizens and businesses of flood-stricken zones additional resources for their insurance selection process.

  17. Flood damage estimation of companies: A comparison of Stage-Damage-Functions and Random Forests (United States)

    Sieg, Tobias; Kreibich, Heidi; Vogel, Kristin; Merz, Bruno


    The development of appropriate flood damage models plays an important role not only for the damage assessment after an event but also to develop adaptation and risk mitigation strategies. So called Stage-Damage-Functions (SDFs) are often applied as a standard approach to estimate flood damage. These functions assign a certain damage to the water depth depending on the use or other characteristics of the exposed objects. Recent studies apply machine learning algorithms like Random Forests (RFs) to model flood damage. These algorithms usually consider more influencing variables and promise to depict a more detailed insight into the damage processes. In addition they provide an inherent validation scheme. Our study focuses on direct, tangible damage of single companies. The objective is to model and validate the flood damage suffered by single companies with SDFs and RFs. The data sets used are taken from two surveys conducted after the floods in the Elbe and Danube catchments in the years 2002 and 2013 in Germany. Damage to buildings (n = 430), equipment (n = 651) as well as goods and stock (n = 530) are taken into account. The model outputs are validated via a comparison with the actual flood damage acquired by the surveys and subsequently compared with each other. This study investigates the gain in model performance with the use of additional data and the advantages and disadvantages of the RFs compared to SDFs. RFs show an increase in model performance with an increasing amount of data records over a comparatively large range, while the model performance of the SDFs is already saturated for a small set of records. In addition, the RFs are able to identify damage influencing variables, which improves the understanding of damage processes. Hence, RFs can slightly improve flood damage predictions and provide additional insight into the underlying mechanisms compared to SDFs.

  18. Influence of spreading urbanization in flood areas on flood damage in Slovenia

    International Nuclear Information System (INIS)

    Komac, B; Zorn, M; Natek, K


    Damage caused by natural disasters in Slovenia is frequently linked to the ignoring of natural factors in spatial planning. Historically, the construction of buildings and settlements avoided dangerous flood areas, but later we see increasing construction in dangerous areas. During the floods in 1990, the most affected buildings were located on ill-considered locations, and the majority was built in more recent times. A similar situation occurred during the floods of September 2007. Comparing the effects of these floods, we determined that damage was always greater due to the urbanization of flood areas. This process furthermore increasingly limits the 'manoeuvring space' for water management authorities, who due to the torrential nature of Slovenia's rivers can not ensure the required level of safety from flooding for unsuitably located settlements and infrastructure. Every year, the Environmental Agency of the Republic of Slovenia issues more than one thousand permits for interventions in areas that affect the water regime, and through decrees the government allows construction in riparian zones, which is supposedly forbidden by the Law on Water. If we do not take measures with more suitable policies for spatial planning, we will no long have the possibility in future to reduce the negative consequences of floods. Given that torrential floods strike certain Slovene regions every three years on average and that larger floods occur at least once a decade, it is senseless to lay the blame on climate change.

  19. Human activity and damaging landslides and floods on Madeira Island (United States)

    Baioni, D.


    Over the last few decades, the island of Madeira has become an important offshore tourism and business center, with rapid economic and demographic development that has caused changes to the landscape due to human activity. In Madeira's recent history, there has been an increase over time in the frequency of occurrence of damaging landslide and flood events. As a result, the costs of restoration work due to damage caused by landslide and flood events have become a larger and larger component of Madeira's annual budget. Landslides and floods in Madeira deserve particular attention because they represent the most serious hazard to human life, to property, and to the natural environment and its important heritage value. The work reported on in this paper involved the analysis of historical data regarding damaging landslide and flood events on Madeira (in particular from 1941 to 1991) together with data on geological characteristics, topographic features, and climate, and from field observations. This analysis showed that the main factor triggering the occurrence of damaging landslide and flood events is rainfall, but that the increase in the number of damaging events recorded on Madeira Island, especially in recent times, seems to be related mostly to human activity, specifically to economic development and population growth, rather than to natural factors.

  20. Human activity and damaging landslides and floods on Madeira Island

    Directory of Open Access Journals (Sweden)

    D. Baioni


    Full Text Available Over the last few decades, the island of Madeira has become an important offshore tourism and business center, with rapid economic and demographic development that has caused changes to the landscape due to human activity. In Madeira's recent history, there has been an increase over time in the frequency of occurrence of damaging landslide and flood events. As a result, the costs of restoration work due to damage caused by landslide and flood events have become a larger and larger component of Madeira's annual budget. Landslides and floods in Madeira deserve particular attention because they represent the most serious hazard to human life, to property, and to the natural environment and its important heritage value.

    The work reported on in this paper involved the analysis of historical data regarding damaging landslide and flood events on Madeira (in particular from 1941 to 1991 together with data on geological characteristics, topographic features, and climate, and from field observations. This analysis showed that the main factor triggering the occurrence of damaging landslide and flood events is rainfall, but that the increase in the number of damaging events recorded on Madeira Island, especially in recent times, seems to be related mostly to human activity, specifically to economic development and population growth, rather than to natural factors.

  1. Automating the evaluation of flood damages: methodology and potential gains (United States)

    Eleutério, Julian; Martinez, Edgar Daniel


    The evaluation of flood damage potential consists of three main steps: assessing and processing data, combining data and calculating potential damages. The first step consists of modelling hazard and assessing vulnerability. In general, this step of the evaluation demands more time and investments than the others. The second step of the evaluation consists of combining spatial data on hazard with spatial data on vulnerability. Geographic Information System (GIS) is a fundamental tool in the realization of this step. GIS software allows the simultaneous analysis of spatial and matrix data. The third step of the evaluation consists of calculating potential damages by means of damage-functions or contingent analysis. All steps demand time and expertise. However, the last two steps must be realized several times when comparing different management scenarios. In addition, uncertainty analysis and sensitivity test are made during the second and third steps of the evaluation. The feasibility of these steps could be relevant in the choice of the extent of the evaluation. Low feasibility could lead to choosing not to evaluate uncertainty or to limit the number of scenario comparisons. Several computer models have been developed over time in order to evaluate the flood risk. GIS software is largely used to realise flood risk analysis. The software is used to combine and process different types of data, and to visualise the risk and the evaluation results. The main advantages of using a GIS in these analyses are: the possibility of "easily" realising the analyses several times, in order to compare different scenarios and study uncertainty; the generation of datasets which could be used any time in future to support territorial decision making; the possibility of adding information over time to update the dataset and make other analyses. However, these analyses require personnel specialisation and time. The use of GIS software to evaluate the flood risk requires personnel with

  2. Medium Range Flood Forecasting for Agriculture Damage Reduction (United States)

    Fakhruddin, S. H. M.


    Early warning is a key element for disaster risk reduction. In recent decades, major advancements have been made in medium range and seasonal flood forecasting. This progress provides a great opportunity to reduce agriculture damage and improve advisories for early action and planning for flood hazards. This approach can facilitate proactive rather than reactive management of the adverse consequences of floods. In the agricultural sector, for instance, farmers can take a diversity of options such as changing cropping patterns, applying fertilizer, irrigating and changing planting timing. An experimental medium range (1-10 day) flood forecasting model has been developed for Bangladesh and Thailand. It provides 51 sets of discharge ensemble forecasts of 1-10 days with significant persistence and high certainty. This type of forecast could assist farmers and other stakeholders for differential preparedness activities. These ensembles probabilistic flood forecasts have been customized based on user-needs for community-level application focused on agriculture system. The vulnerabilities of agriculture system were calculated based on exposure, sensitivity and adaptive capacity. Indicators for risk and vulnerability assessment were conducted through community consultations. The forecast lead time requirement, user-needs, impacts and management options for crops were identified through focus group discussions, informal interviews and community surveys. This paper illustrates potential applications of such ensembles for probabilistic medium range flood forecasts in a way that is not commonly practiced globally today.

  3. Interactive Web-based Floodplain Simulation System for Realistic Experiments of Flooding and Flood Damage (United States)

    Demir, I.


    Recent developments in web technologies make it easy to manage and visualize large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The floodplain simulation system is a web-based 3D interactive flood simulation environment to create real world flooding scenarios. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create and modify predefined scenarios, control environmental parameters, and evaluate flood mitigation techniques. The web-based simulation system provides an environment to children and adults learn about the flooding, flood damage, and effects of development and human activity in the floodplain. The system provides various scenarios customized to fit the age and education level of the users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various flooding and land use scenarios.

  4. Post-flood damage data: requirements for disaster forensic investigation

    Directory of Open Access Journals (Sweden)

    Dolan Martin


    Full Text Available Disaster forensic investigation analyses the unfolding of a disaster and attempts to identify its multiple causes of damage which can lead to (i improved disaster prevention and management from lessons learnt, and (ii more effective mitigation measures in the aftermath of a disaster. The way in which damage data are collected after a flood event as well as the types of collected data influences their usability within forensic investigations. In order to explore whether or not existing data can be used for disaster forensic analysis, the European Project IDEA (Improving Damage assessments to Enhance cost-benefit Analyses is investigating existing gaps in damage information so as to identify possible paths towards improving data quality. This paper focuses in detail on a forensic analysis of the interlinked damage to economic activities and infrastructure in the Severn floods of 2007 in the UK. Besides investigating the usability of existing data, this research investigated: (i the relative weight of direct and indirect costs to business and infrastructure companies; (ii to what extent damage to infrastructure has impacted on indirect damage to businesses. Finally recommendations for improving the data for use in forensic investigation are offered.

  5. Tree-based flood damage modeling of companies: Damage processes and model performance (United States)

    Sieg, Tobias; Vogel, Kristin; Merz, Bruno; Kreibich, Heidi


    Reliable flood risk analyses, including the estimation of damage, are an important prerequisite for efficient risk management. However, not much is known about flood damage processes affecting companies. Thus, we conduct a flood damage assessment of companies in Germany with regard to two aspects. First, we identify relevant damage-influencing variables. Second, we assess the prediction performance of the developed damage models with respect to the gain by using an increasing amount of training data and a sector-specific evaluation of the data. Random forests are trained with data from two postevent surveys after flood events occurring in the years 2002 and 2013. For a sector-specific consideration, the data set is split into four subsets corresponding to the manufacturing, commercial, financial, and service sectors. Further, separate models are derived for three different company assets: buildings, equipment, and goods and stock. Calculated variable importance values reveal different variable sets relevant for the damage estimation, indicating significant differences in the damage process for various company sectors and assets. With an increasing number of data used to build the models, prediction errors decrease. Yet the effect is rather small and seems to saturate for a data set size of several hundred observations. In contrast, the prediction improvement achieved by a sector-specific consideration is more distinct, especially for damage to equipment and goods and stock. Consequently, sector-specific data acquisition and a consideration of sector-specific company characteristics in future flood damage assessments is expected to improve the model performance more than a mere increase in data.

  6. National Economic Development Procedures Manual - Agricultural Flood Damage, (United States)


    based on the conceptual framework of the Economic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation...the planning process and the NED evaluacion ’- ". procedures for agriculture, as described in the P&G, are thei presented. Also identified are some...ood Ioss compu t at ion approach de ’(’ op4 t hie f I ond damage for hypothetical frequency flood events and weights the result to I V- II1. + . IV-11

  7. Recent changes in flood damage in the United States from observations and ACME model (United States)

    Leng, G.; Leung, L. R.


    Despite efforts to mitigate flood hazards in flood-prone areas, survey- and report-based flood databases show that flood damage has increased and emerged as one of the most costly disaster in the United States since the 1990s. Understanding the mechanism driving the changes in flood damage is therefore critical for reducing flood risk. In this study, we first conduct a comprehensive analysis of the changing characteristics of flood damage at local, state and country level. Results show a significant increasing trend in the number of flood hazards, causing economic losses of up to $7 billion per year. The ratio of flood events that caused tangible economical cost to the total flood events has exhibited a non-significant increasing trend before 2007 followed by a significant decrease, indicating a changing vulnerability to floods. Analysis also reveals distinct spatial and temporal patterns in the threshold intensity of flood hazards with tangible economical cost. To understand the mechanism behind the increasing flood damage, we develop a flood damage economic model coupled with the integrated hydrological modeling system of ACME that features a river routing model with an inundation parameterization and a water use and regulation model. The model is evaluated over the country against historical records. Several numerical experiments are then designed to explore the mechanisms behind the recent changes in flood damage from the perspective of flood hazard, exposure and vulnerability, which constitute flood damage. The role of human activities such as reservoir operations and water use in modifying regional floods are also explored using the new tool, with the goal of improving understanding and modeling of vulnerability to flood hazards.

  8. 76 FR 44985 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding (United States)


    .... PHMSA-2011-0177] Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding AGENCY... liquid pipelines to communicate the potential for damage to pipeline facilities caused by severe flooding... pipelines in case of flooding. ADDRESSES: This document can be viewed on the Office of Pipeline Safety home...

  9. Capturing changes in flood risk with Bayesian approaches for flood damage assessment (United States)

    Vogel, Kristin; Schröter, Kai; Kreibich, Heidi; Thieken, Annegret; Müller, Meike; Sieg, Tobias; Laudan, Jonas; Kienzler, Sarah; Weise, Laura; Merz, Bruno; Scherbaum, Frank


    Flood risk is a function of hazard as well as of exposure and vulnerability. All three components are under change over space and time and have to be considered for reliable damage estimations and risk analyses, since this is the basis for an efficient, adaptable risk management. Hitherto, models for estimating flood damage are comparatively simple and cannot sufficiently account for changing conditions. The Bayesian network approach allows for a multivariate modeling of complex systems without relying on expert knowledge about physical constraints. In a Bayesian network each model component is considered to be a random variable. The way of interactions between those variables can be learned from observations or be defined by expert knowledge. Even a combination of both is possible. Moreover, the probabilistic framework captures uncertainties related to the prediction and provides a probability distribution for the damage instead of a point estimate. The graphical representation of Bayesian networks helps to study the change of probabilities for changing circumstances and may thus simplify the communication between scientists and public authorities. In the framework of the DFG-Research Training Group "NatRiskChange" we aim to develop Bayesian networks for flood damage and vulnerability assessments of residential buildings and companies under changing conditions. A Bayesian network learned from data, collected over the last 15 years in flooded regions in the Elbe and Danube catchments (Germany), reveals the impact of many variables like building characteristics, precaution and warning situation on flood damage to residential buildings. While the handling of incomplete and hybrid (discrete mixed with continuous) data are the most challenging issues in the study on residential buildings, a similar study, that focuses on the vulnerability of small to medium sized companies, bears new challenges. Relying on a much smaller data set for the determination of the model

  10. A prediction and damage assessment model for snowmelt flood events in middle and high latitudes Region (United States)

    Qiao, C.; Huang, Q.; Chen, T.; Zhang, X.


    In the context of global warming, the snowmelt flood events in the mountainous area of the middle and high latitudes are increasingly frequent and create severe casualties and property damages. Carrying out the prediction and risk assessment of the snowmelt flood is of great importance in the water resources management, the flood warning and prevention. Based on the remote sensing and GIS techniques, the relationships of the variables influencing the snowmelt flood such as the snow area, the snow depth, the air temperature, the precipitation, the land topography and land covers are analyzed and a prediction and damage assessment model for snowmelt floods is developed. This model analyzes and predicts the flood submerging area, flood depth, flood grade, and the damages of different underlying surfaces in the study area in a given time period based on the estimation of snowmelt amount, the snowmelt runoff, the direction and velocity of the flood. Then it was used to predict a snowmelt flood event in the Ertis River Basin in northern Xinjiang, China, during March and June, 2005 and to assess its damages including the damages of roads, transmission lines, settlements caused by the floods and the possible landslides using the hydrological and meteorological data, snow parameter data, DEM data and land use data. A comparison was made between the prediction results from this model and observation data including the flood measurement and its disaster loss data, which suggests that this model performs well in predicting the strength and impact area of snowmelt flood and its damage assessment. This model will be helpful for the prediction and damage assessment of snowmelt flood events in the mountainous area in the middle and high latitudes in spring, which has great social and economic significance because it provides a relatively reliable method for snowmelt flood prediction and reduces the possible damages caused by snowmelt floods.

  11. The Effects of Mitigation Measures on Flood Damage Prevention in Korea

    Directory of Open Access Journals (Sweden)

    Cheol-Hee Son


    Full Text Available This study analyzed the characteristics of flood damages and the effects of structural and non-structural flood damage mitigation measures in Korea. First, a theoretical discussion of the structural and non-structural measures to mitigate flood damages was used to select the variables and devise the hypotheses. An analysis was conducted using the Auto-Regressive Integrated Moving-Average (ARIMA time series methodology, Korean socioeconomic data, and damage characteristics of major flood events. The effects of flood damage mitigation measures on the extent of flood damages were assessed using an intervention time series model. The major findings were that the intervention effects of structural and non-structural measures were statistically significant from 1958 to 2013 (a period of 55 years and that while the former were ineffective at mitigating flood damages, the latter were successful in doing so. Based on the above findings, policy suggestions for future flood damage mitigation measures in Korea were offered. For structural measures, the government should manage its existing facilities, recover ecosystems of damaged rivers, and devise mitigation measures for urban areas. For non-structural measures, the government should enhance its flood forecasting capacity, revise laws related to flood control and prevention, and update and rationalize land-use plans.

  12. An overview of road damages due to flooding: Case study in Kedah state, Malaysia (United States)

    Ismail, Muhd Shahril Nizam; Ghani, Abdul Naser Abdul


    Flooding occurs frequently in many countries including Malaysia. Floods in Malaysia are usually due to heavy and prolonged rainfall, uncontrolled development, and drainage systems that are not being monitored. Road damage due to flooding event can cause huge expenditures for the post-flooding rehabilitation and maintenance. The required maintenance and rehabilitation could upset the original life cycle cost estimations. Data on road statistics were obtained from the Highway Planning Division, Ministry of Works Malaysia and data on flooding was collected from the Department of Irrigation and Drainage Malaysia for events between 2012 and 2015. The pilot sites were selected based on its historical cases of floods that caused road damages in Kedah. The pilot site indicated that the impact of flooding on road infrastructures systems can be used to plan better road design and maintenances. It also revealed that it costs more than RM 1 million to reinstate roads damaged by flooding in a typical district annually.

  13. Uncertainty and Sensitivity of Direct Economic Flood Damages: the FloodRisk Free and Open-Source Software (United States)

    Albano, R.; Sole, A.; Mancusi, L.; Cantisani, A.; Perrone, A.


    The considerable increase of flood damages in the the past decades has shifted in Europe the attention from protection against floods to managing flood risks. In this context, the expected damages assessment represents a crucial information within the overall flood risk management process. The present paper proposes an open source software, called FloodRisk, that is able to operatively support stakeholders in the decision making processes with a what-if approach by carrying out the rapid assessment of the flood consequences, in terms of direct economic damage and loss of human lives. The evaluation of the damage scenarios, trough the use of the GIS software proposed here, is essential for cost-benefit or multi-criteria analysis of risk mitigation alternatives. However, considering that quantitative assessment of flood damages scenarios is characterized by intrinsic uncertainty, a scheme has been developed to identify and quantify the role of the input parameters in the total uncertainty of flood loss model application in urban areas with mild terrain and complex topography. By the concept of parallel models, the contribution of different module and input parameters to the total uncertainty is quantified. The results of the present case study have exhibited a high epistemic uncertainty on the damage estimation module and, in particular, on the type and form of the utilized damage functions, which have been adapted and transferred from different geographic and socio-economic contexts because there aren't depth-damage functions that are specifically developed for Italy. Considering that uncertainty and sensitivity depend considerably on local characteristics, the epistemic uncertainty associated with the risk estimate is reduced by introducing additional information into the risk analysis. In the light of the obtained results, it is evident the need to produce and disseminate (open) data to develop micro-scale vulnerability curves. Moreover, the urgent need to push

  14. Uncertainty in urban flood damage assessment due to urban drainage modelling and depth-damage curve estimation. (United States)

    Freni, G; La Loggia, G; Notaro, V


    Due to the increased occurrence of flooding events in urban areas, many procedures for flood damage quantification have been defined in recent decades. The lack of large databases in most cases is overcome by combining the output of urban drainage models and damage curves linking flooding to expected damage. The application of advanced hydraulic models as diagnostic, design and decision-making support tools has become a standard practice in hydraulic research and application. Flooding damage functions are usually evaluated by a priori estimation of potential damage (based on the value of exposed goods) or by interpolating real damage data (recorded during historical flooding events). Hydraulic models have undergone continuous advancements, pushed forward by increasing computer capacity. The details of the flooding propagation process on the surface and the details of the interconnections between underground and surface drainage systems have been studied extensively in recent years, resulting in progressively more reliable models. The same level of was advancement has not been reached with regard to damage curves, for which improvements are highly connected to data availability; this remains the main bottleneck in the expected flooding damage estimation. Such functions are usually affected by significant uncertainty intrinsically related to the collected data and to the simplified structure of the adopted functional relationships. The present paper aimed to evaluate this uncertainty by comparing the intrinsic uncertainty connected to the construction of the damage-depth function to the hydraulic model uncertainty. In this way, the paper sought to evaluate the role of hydraulic model detail level in the wider context of flood damage estimation. This paper demonstrated that the use of detailed hydraulic models might not be justified because of the higher computational cost and the significant uncertainty in damage estimation curves. This uncertainty occurs mainly

  15. Evaluation of urban flood damages in climate and land use changes: Case Studies from Southeast Asia (United States)

    Kefi, M.; Binaya, M. K.; Kumar, P.; Fukushi, K.


    Urbanization, changes in land use and global warming increase the threat of natural disasters such as flooding. In recent decades, it was observed a rise of intensity and frequency of flood events. The exposure both of people and the national economy to flood hazards is amplified and can induce serious economic and social damages. For this reason, local governments adopted several strategies to cope with flood risk in urban areas in particular, but a better comprehension of the flood hazard factors may enhance the efficiency of mitigating measures overall. For this research, a spatial analysis is applied to estimate future direct flood damage for 2030 in three Southeast Asian megacities: Jakarta (Indonesia), Metro-Manila (Philippines) and Hanoi (Vietnam). This comprehensive method combined flood characteristics (flood depth) obtained from flood simulation using FLO-2D, land use generated from supervised classification and remote sensing products, property value of affected buildings and flood damage rate derived from flood depth function. This function is established based on field surveys with local people affected by past flood events. Additionally, two scenarios were analyzed to simulate the future conditions. The first one is related to climate change and it is based on several General Circulation Models (GCMs). However, the second one is establish to point out the effect of adaptation strategies. The findings shows that the climate change combined with the expansion of built-up areas increase the vulnerability of urban areas to flooding and the economic damage. About 16%, 8% and 19% of flood inundation areas are expected to increase respectively in Metro-Manila, Jakarta and Hanoi. However, appropriate flood control measures can be helpful to reduce the impact of natural disaster. Furthermore, flood damage maps are generated at a large scale, which can be helpful to local stakeholders when prioritizing their mitigation strategies on urban disaster resilience.

  16. Damage assessment in Braunsbach 2016: data collection and analysis for an improved understanding of damaging processes during flash floods (United States)

    Laudan, Jonas; Rözer, Viktor; Sieg, Tobias; Vogel, Kristin; Thieken, Annegret H.


    Flash floods are caused by intense rainfall events and represent an insufficiently understood phenomenon in Germany. As a result of higher precipitation intensities, flash floods might occur more frequently in future. In combination with changing land use patterns and urbanisation, damage mitigation, insurance and risk management in flash-flood-prone regions are becoming increasingly important. However, a better understanding of damage caused by flash floods requires ex post collection of relevant but yet sparsely available information for research. At the end of May 2016, very high and concentrated rainfall intensities led to severe flash floods in several southern German municipalities. The small town of Braunsbach stood as a prime example of the devastating potential of such events. Eight to ten days after the flash flood event, damage assessment and data collection were conducted in Braunsbach by investigating all affected buildings and their surroundings. To record and store the data on site, the open-source software bundle KoBoCollect was used as an efficient and easy way to gather information. Since the damage driving factors of flash floods are expected to differ from those of riverine flooding, a post-hoc data analysis was performed, aiming to identify the influence of flood processes and building attributes on damage grades, which reflect the extent of structural damage. Data analyses include the application of random forest, a random general linear model and multinomial logistic regression as well as the construction of a local impact map to reveal influences on the damage grades. Further, a Spearman's Rho correlation matrix was calculated. The results reveal that the damage driving factors of flash floods differ from those of riverine floods to a certain extent. The exposition of a building in flow direction shows an especially strong correlation with the damage grade and has a high predictive power within the constructed damage models. Additionally

  17. Flood monitoring and damage assessment using water indices: A case study of Pakistan flood-2012

    Directory of Open Access Journals (Sweden)

    Akhtar Ali Memon


    Full Text Available This paper uses Normalized Difference Water Index (NDWI of McFeeters (1996, Water Index (WI introduced by Rogers and Kearney (2004, referred to as Red and Short Wave Infra-Red (RSWIR and WI suggested as the best by Ji et al. (2009, referred to as Green and Short Wave Infra-Red (GSWIR for delineating and mapping of surface water using MODIS (Terra near real time images during 2012 floods in Pakistan. The results from above indices have been compared with Landsat ETM+ classified images aiming to assess the accuracy of the indices. Accuracy assessment has been performed using spatial statistical techniques and found NDWI, RSWIR and GSWIR with kappa coefficient (κ of 46.66%, 70.80% and 60.61% respectively. It has been observed using statistical analysis and visual interpretation (expert knowledge gained by past experience that the NDWI and GSWIR have tendencies to underestimate and overestimate respectively the inundated area. Keeping in view the above facts, RSWIR has proved to be the best of the three indices. In addition, assessment of the damages has been carried out considering accumulated flood extent obtained from RSWIR. The information derived proved to be essential and valuable for disaster management plan and rehabilitation.

  18. Flood damage assessment – Literature review and recommended procedure

    DEFF Research Database (Denmark)

    Olesen, Lea; Löwe, Roland; Arnbjerg-Nielsen, Karsten

    The assessment of flood risk is an essential tool in evaluating the potential consequences of a flood. The analysis of the risk can be applied as part of the flood plain management, but can also be used in a cost-benefit analysis, when comparing different adaption strategies. This analysis is the...

  19. DamaGIS: a multisource geodatabase for collection of flood-related damage data (United States)

    Saint-Martin, Clotilde; Javelle, Pierre; Vinet, Freddy


    Every year in France, recurring flood events result in several million euros of damage, and reducing the heavy consequences of floods has become a high priority. However, actions to reduce the impact of floods are often hindered by the lack of damage data on past flood events. The present paper introduces a new database for collection and assessment of flood-related damage. The DamaGIS database offers an innovative bottom-up approach to gather and identify damage data from multiple sources, including new media. The study area has been defined as the south of France considering the high frequency of floods over the past years. This paper presents the structure and contents of the database. It also presents operating instructions in order to keep collecting damage data within the database. This paper also describes an easily reproducible method to assess the severity of flood damage regardless of the location or date of occurrence. A first analysis of the damage contents is also provided in order to assess data quality and the relevance of the database. According to this analysis, despite its lack of comprehensiveness, the DamaGIS database presents many advantages. Indeed, DamaGIS provides a high accuracy of data as well as simplicity of use. It also has the additional benefit of being accessible in multiple formats and is open access. The DamaGIS database is available at" target="_blank">

  20. Prompt Proxy Mapping of Flood Damaged Rice Fields Using MODIS-Derived Indices

    Directory of Open Access Journals (Sweden)

    Youngjoo Kwak


    Full Text Available Flood mapping, particularly hazard and risk mapping, is an imperative process and a fundamental part of emergency response and risk management. This paper aims to produce a flood risk proxy map of damaged rice fields over the whole of Bangladesh, where monsoon river floods are dominant and frequent, affecting over 80% of the total population. This proxy risk map was developed to meet the request of the government on a national level. This study represents a rapid, straightforward methodology for estimating rice-crop damage in flood areas of Bangladesh during the large flood from July to September 2007, despite the lack of primary data. We improved a water detection algorithm to achieve a better discrimination capacity to discern flood areas by using a modified land surface water index (MLSWI. Then, rice fields were estimated utilizing a hybrid rice field map from land-cover classification and MODIS-derived indices, such as the normalized difference vegetation index (NDVI and enhanced vegetation index (EVI. The results showed that the developed method is capable of providing instant, comprehensive, nationwide mapping of flood risks, such as rice field damage. The detected flood areas and damaged rice fields during the 2007 flood were verified by comparing them with the Advanced Land Observing Satellite (ALOS AVNIR-2 images (a 10 m spatial resolution and in situ field survey data with moderate agreement (K = 0.57.

  1. Damage-reducing measures to manage flood risks in a changing climate (United States)

    Kreibich, Heidi; Bubeck, Philip; Van Vliet, Mathijs; De Moel, Hans


    Damage due to floods has increased during the last few decades, and further increases are expected in several regions due to climate change and a growing vulnerability. To address the projected increase in flood risk, a combination of structural and non-structural flood risk mitigation measures is considered as a promising adaptation strategy. Such a combination takes into account that flood defence systems may fail, and prepare for unexpected crisis situations via land-use planning, building construction, evacuation and disaster response. Non-structural flood risk mitigation measures like shielding with water shutters or sand bags, building fortification or safeguarding of hazardous substances are often voluntary: they demand self-dependent action by the population at risk (Bubeck et al. 2012; 2013). It is believed that these measures are especially effective in areas with frequent flood events and low flood water levels, but some types of measures showed a significant damage-reducing effect also during extreme flood events, such as the Elbe River flood in August 2002 in Germany (Kreibich et al. 2005; 2011). Despite the growing importance of damage-reducing measures, information is still scarce about factors that motivate people to undertake such measures, the state of implementation of various non-structural measures in different countries and their damage reducing effects. Thus, we collected information and undertook an international review about this topic in the framework of the Dutch KfC project "Climate proof flood risk management". The contribution will present an overview about the available information on damage-reducing measures and draw conclusions for practical flood risk management in a changing climate. References: Bubeck, P., Botzen, W. J. W., Suu, L. T. T., Aerts, J. C. J. H. (2012): Do flood risk perceptions provide useful insights for flood risk management? Findings from central Vietnam. Journal of Flood Risk Management, 5, 4, 295-302 Bubeck, P

  2. Damage assessment methodology for vehicles exposed to flooding in urban areas

    Directory of Open Access Journals (Sweden)

    E. Martínez Gomariz


    Full Text Available Urban floods may provoke important damages to vehicles, usually not taken into account within most studies related to urban flood risks damage assessments. Herein a methodology to estimate damages to vehicles exposed to urban floods is presented. After a state-of-the-art review, the most recent damage curves for vehicles developed by the U.S. Army Corps of Engineers (USACE, 2009 are presented as the best adaptive and the most comprehensively performed so far. The proposed methodology is applied to the Spanish municipality of Badalona, framed in the H2020 European Project BINGO. In order to conduct this methodology some aspects such as the vehicular distribution are analyzed within the study area. Finally, Expected Annual Damage (EAD for flooded vehicles is calculated based on inundations related to design storms of different return periods (1, 10, 100 and 500 years.

  3. Evaluating the effectiveness of flood damage mitigation measures by the application of Propensity Score Matching

    NARCIS (Netherlands)

    Hudson, P.G.M.B.; Botzen, W.J.W.; Kreibich, H.; Bubeck, P.; Aerts, J.C.J.H.


    The employment of damage mitigation measures (DMMs) by individuals is an important component of integrated flood risk management. In order to promote efficient damage mitigation measures, accurate estimates of their damage mitigation potential are required. That is, for correctly assessing the

  4. Public Assistance Worksheets for Damage from 2010 Floods to the East Valley Water District (United States)

    East Valley Water District (EVWD) in San Bernardino, California had significant damage due to flooding in December 2010. There was a presidentially-declared disaster. EVWD applied to FEMA under the Public Assistance Grant Program.

  5. Field Testing of Energy-Efficient Flood-Damage-Resistant Residential Envelope Systems Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Aglan, H.


    The primary purpose of the project was to identify materials and methods that will make the envelope of a house flood damage resistant. Flood damage resistant materials and systems are intended to be used to repair houses subsequent to flooding. This project was also intended to develop methods of restoring the envelopes of houses that have been flooded but are repairable and may be subject to future flooding. Then if the house floods again, damage will not be as extensive as in previous flood events and restoration costs and efforts will be minimized. The purpose of the first pair of field tests was to establish a baseline for typical current residential construction practice. The first test modules used materials and systems that were commonly found in residential envelopes throughout the U.S. The purpose of the second pair of field tests was to begin evaluating potential residential envelope materials and systems that were projected to be more flood-damage resistant and restorable than the conventional materials and systems tested in the first pair of tests. The purpose of testing the third slab-on-grade module was to attempt to dry flood proof the module (no floodwater within the structure). If the module could be sealed well enough to prevent water from entering, then this would be an effective method of making the interior materials and systems flood damage resistant. The third crawl space module was tested in the same manner as the previous modules and provided an opportunity to do flood tests of additional residential materials and systems. Another purpose of the project was to develop the methodology to collect representative, measured, reproducible (i.e. scientific) data on how various residential materials and systems respond to flooding conditions so that future recommendations for repairing flood damaged houses could be based on scientific data. An additional benefit of collecting this data is that it will be used in the development of a standard test

  6. Flood Damage and Loss Estimation for Iowa on Web-based Systems using HAZUS (United States)

    Yildirim, E.; Sermet, M. Y.; Demir, I.


    Importance of decision support systems for flood emergency response and loss estimation increases with its social and economic impacts. To estimate the damage of the flood, there are several software systems available to researchers and decision makers. HAZUS-MH is one of the most widely used desktop program, developed by FEMA (Federal Emergency Management Agency), to estimate economic loss and social impacts of disasters such as earthquake, hurricane and flooding (riverine and coastal). HAZUS used loss estimation methodology and implements through geographic information system (GIS). HAZUS contains structural, demographic, and vehicle information across United States. Thus, it allows decision makers to understand and predict possible casualties and damage of the floods by running flood simulations through GIS application. However, it doesn't represent real time conditions because of using static data. To close this gap, an overview of a web-based infrastructure coupling HAZUS and real time data provided by IFIS (Iowa Flood Information System) is presented by this research. IFIS is developed by the Iowa Flood Center, and a one-stop web-platform to access community-based flood conditions, forecasts, visualizations, inundation maps and flood-related data, information, and applications. Large volume of real-time observational data from a variety of sensors and remote sensing resources (radars, rain gauges, stream sensors, etc.) and flood inundation models are staged on a user-friendly maps environment that is accessible to the general public. Providing cross sectional analyses between HAZUS-MH and IFIS datasets, emergency managers are able to evaluate flood damage during flood events easier and more accessible in real time conditions. With matching data from HAZUS-MH census tract layer and IFC gauges, economical effects of flooding can be observed and evaluated by decision makers. The system will also provide visualization of the data by using augmented reality for

  7. Probabilistic, multi-variate flood damage modelling using random forests and Bayesian networks (United States)

    Kreibich, Heidi; Schröter, Kai


    Decisions on flood risk management and adaptation are increasingly based on risk analyses. Such analyses are associated with considerable uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention recently, they are hardly applied in flood damage assessments. Most of the damage models usually applied in standard practice have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. This presentation will show approaches for probabilistic, multi-variate flood damage modelling on the micro- and meso-scale and discuss their potential and limitations. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Schröter, K., Kreibich, H., Vogel, K., Riggelsen, C., Scherbaum, F., Merz, B. (2014): How useful are complex flood damage models? - Water Resources Research, 50, 4, p. 3378-3395.

  8. Indirect Damage of Urban Flooding: Investigation of Flood-Induced Traffic Congestion Using Dynamic Modeling

    Directory of Open Access Journals (Sweden)

    Jingxuan Zhu


    Full Text Available In many countries, industrialization has led to rapid urbanization. Increased frequency of urban flooding is one consequence of the expansion of urban areas which can seriously affect the productivity and livelihoods of urban residents. Therefore, it is of vital importance to study the effects of rainfall and urban flooding on traffic congestion and driver behavior. In this study, a comprehensive method to analyze the influence of urban flooding on traffic congestion was developed. First, a flood simulation was conducted to predict the spatiotemporal distribution of flooding based on Storm Water Management Model (SWMM and TELAMAC-2D. Second, an agent-based model (ABM was used to simulate driver behavior during a period of urban flooding, and a car-following model was established. Finally, in order to study the mechanisms behind how urban flooding affects traffic congestion, the impact of flooding on urban traffic was investigated based on a case study of the urban area of Lishui, China, covering an area of 4.4 km2. It was found that for most events, two-hour rainfall has a certain impact on traffic congestion over a five-hour period, with the greatest impact during the hour following the cessation of the rain. Furthermore, the effects of rainfall with 10- and 20-year return periods were found to be similar and small, whereas the effects with a 50-year return period were obvious. Based on a combined analysis of hydrology and transportation, the proposed methods and conclusions could help to reduce traffic congestion during flood seasons, to facilitate early warning and risk management of urban flooding, and to assist users in making informed decisions regarding travel.

  9. Flood vulnerability assessment of residential buildings by explicit damage process modelling

    DEFF Research Database (Denmark)

    Custer, Rocco; Nishijima, Kazuyoshi


    The present paper introduces a vulnerability modelling approach for residential buildings in flood. The modelling approach explicitly considers relevant damage processes, i.e. water infiltration into the building, mechanical failure of components in the building envelope and damage from water...

  10. Climate change impacts on flood risk and asset damages within mapped 100-year floodplains of the contiguous United States (United States)

    Wobus, Cameron; Gutmann, Ethan; Jones, Russell; Rissing, Matthew; Mizukami, Naoki; Lorie, Mark; Mahoney, Hardee; Wood, Andrew W.; Mills, David; Martinich, Jeremy


    A growing body of work suggests that the extreme weather events that drive inland flooding are likely to increase in frequency and magnitude in a warming climate, thus potentially increasing flood damages in the future. We use hydrologic projections based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) to estimate changes in the frequency of modeled 1 % annual exceedance probability (1 % AEP, or 100-year) flood events at 57 116 stream reaches across the contiguous United States (CONUS). We link these flood projections to a database of assets within mapped flood hazard zones to model changes in inland flooding damages throughout the CONUS over the remainder of the 21st century. Our model generates early 21st century flood damages that reasonably approximate the range of historical observations and trajectories of future damages that vary substantially depending on the greenhouse gas (GHG) emissions pathway. The difference in modeled flood damages between higher and lower emissions pathways approaches USD 4 billion per year by 2100 (in undiscounted 2014 dollars), suggesting that aggressive GHG emissions reductions could generate significant monetary benefits over the long term in terms of reduced flood damages. Although the downscaled hydrologic data we used have been applied to flood impacts studies elsewhere, this research expands on earlier work to quantify changes in flood risk by linking future flood exposure to assets and damages on a national scale. Our approach relies on a series of simplifications that could ultimately affect damage estimates (e.g., use of statistical downscaling, reliance on a nationwide hydrologic model, and linking damage estimates only to 1 % AEP floods). Although future work is needed to test the sensitivity of our results to these methodological choices, our results indicate that monetary damages from inland flooding could be significantly reduced through substantial GHG mitigation.

  11. Climate change impacts on flood risk and asset damages within mapped 100-year floodplains of the contiguous United States

    Directory of Open Access Journals (Sweden)

    C. Wobus


    Full Text Available A growing body of work suggests that the extreme weather events that drive inland flooding are likely to increase in frequency and magnitude in a warming climate, thus potentially increasing flood damages in the future. We use hydrologic projections based on the Coupled Model Intercomparison Project Phase 5 (CMIP5 to estimate changes in the frequency of modeled 1 % annual exceedance probability (1 % AEP, or 100-year flood events at 57 116 stream reaches across the contiguous United States (CONUS. We link these flood projections to a database of assets within mapped flood hazard zones to model changes in inland flooding damages throughout the CONUS over the remainder of the 21st century. Our model generates early 21st century flood damages that reasonably approximate the range of historical observations and trajectories of future damages that vary substantially depending on the greenhouse gas (GHG emissions pathway. The difference in modeled flood damages between higher and lower emissions pathways approaches USD 4 billion per year by 2100 (in undiscounted 2014 dollars, suggesting that aggressive GHG emissions reductions could generate significant monetary benefits over the long term in terms of reduced flood damages. Although the downscaled hydrologic data we used have been applied to flood impacts studies elsewhere, this research expands on earlier work to quantify changes in flood risk by linking future flood exposure to assets and damages on a national scale. Our approach relies on a series of simplifications that could ultimately affect damage estimates (e.g., use of statistical downscaling, reliance on a nationwide hydrologic model, and linking damage estimates only to 1 % AEP floods. Although future work is needed to test the sensitivity of our results to these methodological choices, our results indicate that monetary damages from inland flooding could be significantly reduced through substantial GHG mitigation.

  12. Modeled changes in 100 year Flood Risk and Asset Damages within Mapped Floodplains of the Contiguous United States (United States)

    Wobus, C. W.; Gutmann, E. D.; Jones, R.; Rissing, M.; Mizukami, N.; Lorie, M.; Mahoney, H.; Wood, A.; Mills, D.; Martinich, J.


    A growing body of recent work suggests that the extreme weather events that drive inland flooding are likely to increase in frequency and magnitude in a warming climate, thus increasing monetary damages from flooding in the future. We use hydrologic projections based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) to estimate changes in the frequency of modeled 1% annual exceedance probability flood events at 57,116 locations across the contiguous United States (CONUS). We link these flood projections to a database of assets within mapped flood hazard zones to model changes in inland flooding damages throughout the CONUS over the remainder of the 21st century, under two greenhouse gas (GHG) emissions scenarios. Our model generates early 21st century flood damages that reasonably approximate the range of historical observations, and trajectories of future damages that vary substantially depending on the GHG emissions pathway. The difference in modeled flood damages between higher and lower emissions pathways approaches $4 billion per year by 2100 (in undiscounted 2014 dollars), suggesting that aggressive GHG emissions reductions could generate significant monetary benefits over the long-term in terms of reduced flood risk. Although the downscaled hydrologic data we used have been applied to flood impacts studies elsewhere, this research expands on earlier work to quantify changes in flood risk by linking future flood exposure to assets and damages at a national scale. Our approach relies on a series of simplifications that could ultimately affect damage estimates (e.g., use of statistical downscaling, reliance on a nationwide hydrologic model, and linking damage estimates only to 1% AEP floods). Although future work is needed to test the sensitivity of our results to these methodological choices, our results suggest that monetary damages from inland flooding could be substantially reduced through more aggressive GHG mitigation policies.

  13. Flood damage: a model for consistent, complete and multipurpose scenarios

    Directory of Open Access Journals (Sweden)

    S. Menoni


    implemented in ex post damage assessments, also with the objective of better programming financial resources that will be needed for these types of events in the future. On the other hand, integrated interpretations of flood events are fundamental to adapting and optimizing flood mitigation strategies on the basis of thorough forensic investigation of each event, as corroborated by the implementation of the model in a case study.

  14. Enhancement of global flood damage assessments using building material based vulnerability curves (United States)

    Englhardt, Johanna; de Ruiter, Marleen; de Moel, Hans; Aerts, Jeroen


    This study discusses the development of an enhanced approach for flood damage and risk assessments using vulnerability curves that are based on building material information. The approach draws upon common practices in earthquake vulnerability assessments, and is an alternative for land-use or building occupancy approach in flood risk assessment models. The approach is of particular importance for studies where there is a large variation in building material, such as large scale studies or studies in developing countries. A case study of Ethiopia is used to demonstrate the impact of the different methodological approaches on direct damage assessments due to flooding. Generally, flood damage assessments use damage curves for different land-use or occupancy types (i.e. urban or residential and commercial classes). However, these categories do not necessarily relate directly to vulnerability of damage by flood waters. For this, the construction type and building material may be more important, as is used in earthquake risk assessments. For this study, we use building material classification data of the PAGER1 project to define new building material based vulnerability classes for flood damage. This approach will be compared to the widely applied land-use based vulnerability curves such as used by De Moel et al. (2011). The case of Ethiopia demonstrates and compares the feasibility of this novel flood vulnerability method on a country level which holds the potential to be scaled up to a global level. The study shows that flood vulnerability based on building material also allows for better differentiation between flood damage in urban and rural settings, opening doors to better link to poverty studies when such exposure data is available. Furthermore, this new approach paves the road to the enhancement of multi-risk assessments as the method enables the comparison of vulnerability across different natural hazard types that also use material-based vulnerability curves

  15. Urban Flood Damage and Greenhouse Scenarios. The Implications for Policy. An Example from Australia

    International Nuclear Information System (INIS)

    Smith, D.I.


    Urban flooding is often used as an illustration of the potentially adverse effects of greenhouse-induced climate change on extreme events. There is however, a paucity of studies that convert climate scenarios into changes in flood damage. This account summarises the use of modelling techniques, for three flood prone urban catchments in south eastern Australia, to assess changes to urban flood losses for the 'most wet' and ,most dry' scenarios for the year 2070. The most wet scenario indicates that annual average flood damage could increase within the range of 2.5 to 10 times, under the most dry scenario flood regimes would be similar to those experienced at present. The socio-economic scenarios based on the changes to flood losses are used to consider policy responses. It is unlikely that many local government authorities will respond because of lack of interest and because of major changes to the climate scenarios proposed over the last decade. Any response is likely to be incremental and accord with the 'no regrets' and 'the precautionary principle'. 21 refs

  16. Flood damage in Italy: towards an assessment model of reconstruction costs (United States)

    Sterlacchini, Simone; Zazzeri, Marco; Genovese, Elisabetta; Modica, Marco; Zoboli, Roberto


    Recent decades in Italy have seen a very rapid expansion of urbanisation in terms of physical assets, while demographics have remained stable. Both the characteristics of Italian soil and anthropic development, along with repeated global climatic stress, have made the country vulnerable to floods, the intensity of which is increasingly alarming. The combination of these trends will contribute to large financial losses due to property damage in the absence of specific mitigation strategies. The present study focuses on the province of Sondrio in Northern Italy (area of about 3,200 km²), which is home to more than 180,000 inhabitants and the population is growing slightly. It is clearly a hot spot for flood exposure, as it is primarily a mountainous area where floods and flash floods hit frequently. The model we use for assessing potential flood damage determines risk scenarios by overlaying flood hazard maps and economic asset data. In Italy, hazard maps are provided by Regional Authorities through the Hydrogeological System Management Plan (PAI) based on EU Flood Directive guidelines. The PAI in the study area includes both the large plain and the secondary river system and considers three hazard scenarios of Low, Medium and High Frequency associated with return periods of 20, 200 and 500 years and related water levels. By an overlay of PAI maps and residential areas, visualized on a GIS, we determine which existing built-up areas are at risk for flood according to each scenario. Then we investigate the value of physical assets potentially affected by floods in terms of market values, using the database of the Italian Property Market Observatory (OMI), and in terms of reconstruction costs, by considering synthetic cost indexes of predominant building types (from census information) and PAI water height. This study illustrates a methodology to assess flood damage in urban settlements and aims to determine general guidelines that can be extended throughout Italy

  17. Multidisciplinary approach to evaluate flood damage for residential buildings: first results in Northern Italy (United States)

    Luino, Fabio


    Flooding is the most common natural instability process in Italy. Flood damage are the results of land-use planning policies which, starting chiefly from the late 1950s and early 1960s, did not take into account the geomorphologic-hydraulic characteristics of an area or the its historical data on past flood events. Historically, compared to other areas, riverside property has always been less valuable. Unfortunately, year after year, even areas of high recreational and environmental value were intensely urbanized despite their being exposed to the threat of flooding. As the number of residential dwellings, infrastructure and industrial buildings increased, what was originally a hazard became a risk. For each flood event, the damage depends on the specific land-use of the area and subsequently on the elements at risk in the area involved and its vulnerability, expressed as a percentage of the element that has actually been lost during the event. This is why a comprehensive knowledge of the area it is so important for conducting a detailed survey of an area's structures and infrastructure and to evaluate the degree of vulnerability. This paper presents first results in Italy of the European Project called DAMAGE, the first attempt by the civil protection agencies of several European Union member states to devise a common methodology for the assessment of damage caused by natural or anthropic disasters. The main objective was to create an initial tool for practical and immediate application by civil protection agencies and local governments, to assess damage in a multidimensional perspective that takes into account infrastructure, the economy, the environment and social problems. Within the framework of a broad-based project for the evaluation and collection of reports on damage caused by floods, the CNR-IRPI of Turin and Regione Lombardia have directed attention to the town of Cittiglio (province of Varese), which was struck by severe flash flood in May 2002. One of

  18. Hydro-Economic based Model of Damage and Loss Analysis of Winongo River Flood

    Directory of Open Access Journals (Sweden)

    Muhammad Rifki Hardika


    Full Text Available Winongo River experienced considerably high flow that caused overflows along the downstream part of the river and some inundation at the surrounding area. The inundation has reached up to 1 m spread over the Tegalrejo Sub-district of Yogyakarta City and swept two houses. This paper analyses the damage and loss due to the flood by taking into account the hydraulics phenomena and the economic impact at the inundation area. A hydraulics model has been developed to study the flow characteristics during the flood of Winongo River, especially in the river reach in Tegalrejo Sub-district. The hazard-induced damages in the flooded area were identified and the economic impacts were studied. Several related software have been utilized to analyse the damage and loss of the disaster, including the HEC-RAS 5.0, ArcGIS, HEC-GeoRAS and InaSAFE. Through the integration of the characteristics of both flood phenomena and the economic factor, the damage and loss were then analysed and the Average Annual Damage (AAD of approximately IDR 88,750,000,000 was obtained.

  19. Flooding and Flood Management (United States)

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim


    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  20. Verification of flood damage modelling using insurance data

    DEFF Research Database (Denmark)

    Zhou, Qianqian; Petersen, Toke E. P.; Thorsen, Bo J.


    This paper presents the results of an analysis using insurance data for damage description and risk model verification, based on data from a Danish case. The results show that simple, local statistics of rainfall are not able to describe the variation in individual cost per claim, but are, howeve...

  1. Verification of flood damage modelling using insurance data

    DEFF Research Database (Denmark)

    Zhou, Qianqian; Panduro, T. E.; Thorsen, B. J.


    This paper presents the results of an analysis using insurance data for damage description and risk model verification, based on data from a Danish case. The results show that simple, local statistics of rainfall are not able to describe the variation in individual cost per claim, but are, howeve...

  2. Quantifying the effect of sea level rise and flood defence - a point process perspective on coastal flood damage (United States)

    Boettle, M.; Rybski, D.; Kropp, J. P.


    In contrast to recent advances in projecting sea levels, estimations about the economic impact of sea level rise are vague. Nonetheless, they are of great importance for policy making with regard to adaptation and greenhouse-gas mitigation. Since the damage is mainly caused by extreme events, we propose a stochastic framework to estimate the monetary losses from coastal floods in a confined region. For this purpose, we follow a Peak-over-Threshold approach employing a Poisson point process and the Generalised Pareto Distribution. By considering the effect of sea level rise as well as potential adaptation scenarios on the involved parameters, we are able to study the development of the annual damage. An application to the city of Copenhagen shows that a doubling of losses can be expected from a mean sea level increase of only 11 cm. In general, we find that for varying parameters the expected losses can be well approximated by one of three analytical expressions depending on the extreme value parameters. These findings reveal the complex interplay of the involved parameters and allow conclusions of fundamental relevance. For instance, we show that the damage typically increases faster than the sea level rise itself. This in turn can be of great importance for the assessment of sea level rise impacts on the global scale. Our results are accompanied by an assessment of uncertainty, which reflects the stochastic nature of extreme events. While the absolute value of uncertainty about the flood damage increases with rising mean sea levels, we find that it decreases in relation to the expected damage.

  3. Assessment of mean annual flood damage using simple hydraulic modeling and Monte Carlo simulation (United States)

    Oubennaceur, K.; Agili, H.; Chokmani, K.; Poulin, J.; Marceau, P.


    Floods are the most frequent and the most damaging natural disaster in Canada. The issue of assessing and managing the risk related to this disaster has become increasingly crucial for both local and national authorities. Brigham, a municipality located in southern Quebec Province, is one of the heavily affected regions by this disaster because of frequent overflows of the Yamaska River reaching two to three times per year. Since Irene Hurricane which struck the region in 2011, causing considerable socio-economic damage, the implementation of mitigation measures has become a major priority for this municipality. To do this, a preliminary study to evaluate the risk to which this region is exposed is essential. Conventionally, approaches only based on the characterization of the hazard (e.g. floodplains extensive, flood depth) are generally adopted to study the risk of flooding. In order to improve the knowledge of this risk, a Monte Carlo simulation approach combining information on the hazard with vulnerability-related aspects has been developed. This approach integrates three main components: (1) hydrologic modelling aiming to establish a probability-discharge function which associate each measured discharge to its probability of occurrence (2) hydraulic modeling that aims to establish the relationship between the discharge and the water stage at each building (3) damage study that aims to assess the buildings damage using damage functions. The damage is estimated according to the water depth defined as the difference between the water level and the elevation of the building's first floor. The application of the proposed approach allows estimating the annual average cost of damage caused by floods on buildings. The obtained results will be useful for authorities to support their decisions on risk management and prevention against this disaster.

  4. Agricultural damages and losses from ARkStorm scenario flooding in California (United States)

    Wein, Anne; David Mitchell,; Peters, Jeff; John Rowden,; Johnny Tran,; Alessandra Corsi,; Dinitz, Laura B.


    Scientists designed the ARkStorm scenario to challenge the preparedness of California communities for widespread flooding with a historical precedence and increased likelihood under climate change. California is an important provider of vegetables, fruits, nuts, and other agricultural products to the nation. This study analyzes the agricultural damages and losses pertaining to annual crops, perennial crops, and livestock in California exposed to ARkStorm flooding. Statewide, flood damage is incurred on approximately 23% of annual crop acreage, 5% of perennial crop acreage, and 5% of livestock, e.g., dairy, feedlot, and poultry, acreage. The sum of field repair costs, forgone income, and product replacement costs span $3.7 and $7.1 billion (2009) for a range of inundation durations. Perennial crop loss estimates dominate, and the vulnerability of orchards and vineyards has likely increased with recent expansion. Crop reestablishment delays from levee repair and dewatering more than double annual crop losses in the delta islands, assuming the fragile system does not remain permanently flooded. The exposure of almost 200,000 dairy cows to ARkStorm flooding poses livestock evacuation challenges. Read More:

  5. U.S. Coastal Flood Damage Reduction Projects: Federal Authorization and Investment Trends (United States)

    Carter, N. T.


    The 2015 U.S. Environmental Protection Agency report Climate Change in the United States: Benefits of Global Action estimated the potential cumulative future economic impacts of storm surge and sea-level rise on U.S. coasts during this century at 5 trillion (2014 dollars) if no adaptation measures are implemented. These impacts drop to 0.8 trillion if investments are made in cost-effective adaptations and protections. Awareness of flood risk and its long-term fiscal impact historically has proven insufficient to motivate pre-disaster land use changes and investments in mitigation and protection. While many adaptations and protections fall largely under state and local authority, some stakeholders are interested in federal coastal flood protection projects, including projects by the U.S. Army Corps of Engineers. Since the 1950s, Congress has authorized the Corps to construct specific coastal projects. The broad vision, strategy, and priorities for the federal role in coastal flood damage reduction projects nonetheless remain ill-defined. This research analyzes (1) the authorization and appropriations trends for Corps coastal storm damage reduction projects, and (2) how Corps feasibility studies account for and address coastal flood hazards. Identified trends include: emergency appropriations for storm-damaged areas outstrip annual investments in coastal flood projects; the rate at which projects are congressionally approved for construction outpaces the rate at which construction is funded; and how coastal protection projects are evaluated in Corps feasibility studies shows variation and change in agency practices. These trends have consequences; they affect public and local expectations when projects begin providing protection benefits, and may influence investments in other adaptation measures. These trends also raise questions for policymakers at all levels and for scientists and practitioners interested in coastal flood resilience.

  6. Application of Medium and Seasonal Flood Forecasts for Agriculture Damage Assessment (United States)

    Fakhruddin, Shamsul; Ballio, Francesco; Menoni, Scira


    Early warning is a key element for disaster risk reduction. In recent decades, major advancements have been made in medium range and seasonal flood forecasting. This progress provides a great opportunity to reduce agriculture damage and improve advisories for early action and planning for flood hazards. This approach can facilitate proactive rather than reactive management of the adverse consequences of floods. In the agricultural sector, for instance, farmers can take a diversity of options such as changing cropping patterns, applying fertilizer, irrigating and changing planting timing. An experimental medium range (1-10 day) and seasonal (20-25 days) flood forecasting model has been developed for Thailand and Bangladesh. It provides 51 sets of discharge ensemble forecasts of 1-10 days with significant persistence and high certainty and qualitative outlooks for 20-25 days. This type of forecast could assist farmers and other stakeholders for differential preparedness activities. These ensembles probabilistic flood forecasts have been customized based on user-needs for community-level application focused on agriculture system. The vulnerabilities of agriculture system were calculated based on exposure, sensitivity and adaptive capacity. Indicators for risk and vulnerability assessment were conducted through community consultations. The forecast lead time requirement, user-needs, impacts and management options for crops were identified through focus group discussions, informal interviews and community surveys. This paper illustrates potential applications of such ensembles for probabilistic medium range and seasonal flood forecasts in a way that is not commonly practiced globally today.

  7. The protection of RIVERLIFE by mitigation of flood damages RIVERLIFE (United States)

    Adler, M. J.


    The long-term development objective of the RIVERLIFE project is to contribute to sustainable human end economic development in the Timis-Bega river basin area as part of the Danube River Basin (DRB), through reinforcing the capacities of Romanian central and local authorities to develop effective mechanisms and tools for integrated river basin management in the Timis-Bega basin. The overall objective of the project is to assist the country in the EU enlargement and accession process to meet the EU requirements of water related Directives with emphasis on the EU Water Framework Directive (WFD). The specific objective of the project is to support the WFD implementation process at the level of a sub-unit within the limits of the DRB, through the development of a River Basin Management Plan (RBMP). The project will also facilitate the implementation of the Danube River Protection Convention (DRPC) as an essential element in the implementation of the Directive in the transboundary river basins. Expected outcomes in the recipient country consist of (i) responding to a real hazard problem, which affects the quality of life of many citizens, and (ii) improvement in the environmental conditions in the targeted areas. Flooding is one of the major natural hazards to human society and an important influence on social and economic development for Romania causing financially greater losses per annum on average than any other natural hazard. One key concept of the WFD is the coordination, organization and regulation of water management at the level of river basins. Therefore, river basin districts are shaped in such a way as to include not only the surface run-off through streams and rivers to the sea, but the total area of land and sea together with the associated groundwater and coastal waters. The concept allows even for the small river basins directly discharging into the sea to be combined into one river basin district. As a principle, the complex decisions on the use or

  8. Comparing Methods of Calculating Expected Annual Damage in Urban Pluvial Flood Risk Assessments

    DEFF Research Database (Denmark)

    Skovgård Olsen, Anders; Zhou, Qianqian; Linde, Jens Jørgen


    Estimating the expected annual damage (EAD) due to flooding in an urban area is of great interest for urban water managers and other stakeholders. It is a strong indicator for a given area showing how vulnerable it is to flood risk and how much can be gained by implementing e.g., climate change...... adaptation measures. This study identifies and compares three different methods for estimating the EAD based on unit costs of flooding of urban assets. One of these methods was used in previous studies and calculates the EAD based on a few extreme events by assuming a log-linear relationship between cost...... of an event and the corresponding return period. This method is compared to methods that are either more complicated or require more calculations. The choice of method by which the EAD is calculated appears to be of minor importance. At all three case study areas it seems more important that there is a shift...

  9. Revisiting the 1993 historical extreme precipitation and damaging flood event in Central Nepal (United States)

    Marahatta, S.; Adhikari, L.; Pokharel, B.


    Nepal is ranked the fourth most climate-vulnerable country in the world and it is prone to different weather-related hazards including droughts, floods, and landslides [Wang et al., 2013; Gillies et al., 2013]. Although extremely vulnerable to extreme weather events, there are no extreme weather warning system established to inform public in Nepal. Nepal has witnessed frequent drought and flood events, however, the extreme precipitation that occurred on 19-20 July 1993 created a devastating flood and landslide making it the worst weather disaster in the history of Nepal. During the second week of July, Nepal and northern India experienced abnormal dry condition due to the shifting of the monsoon trough to central India. The dry weather changed to wet when monsoon trough moved northward towards foothills of the Himalayas. Around the same period, a low pressure center was located over the south-central Nepal. The surface low was supported by the mid-, upper-level shortwave and cyclonic vorticity. A meso-scale convective system created record breaking one day rainfall (540 mm) in the region. The torrential rain impacted the major hydropower reservoir, Bagmati barrage in Karmaiya and triggered many landslides and flash floods. The region had the largest hydropower (Kulekhani hydropower, 92 MW) of the country at that time and the storm event deposited extremely large amount of sediments that reduced one-fourth (4.8 million m3) of reservoir dead storage (12 million m3). The 1-in-1000 years flood damaged the newly constructed barrage and took more than 700 lives. Major highways were damaged cutting off supply of daily needed goods, including food and gas, in the capital city, Kathmandu, for more than a month. In this presentation, the meteorological conditions of the extreme event will be diagnosed and the impact of the sedimentation due to the flood on Kulekhani reservoir and hydropower generation will be discussed.

  10. Evaluation methodology for flood damage reduction by preliminary water release from hydroelectric dams (United States)

    Ando, T.; Kawasaki, A.; Koike, T.


    IPCC AR5 (2014) reported that rainfall in the middle latitudes of the Northern Hemisphere has been increasing since 1901, and it is claimed that warmer climate will increase the risk of floods. In contrast, world water demand is forecasted to exceed a sustainable supply by 40 percent by 2030. In order to avoid this expectable water shortage, securing new water resources has become an utmost challenge. However, flood risk prevention and the secure of water resources are contradictory. To solve this problem, we can use existing hydroelectric dams not only as energy resources but also for flood control. However, in case of Japan, hydroelectric dams take no responsibility for it, and benefits have not been discussed accrued by controlling flood by hydroelectric dams, namely by using preliminary water release from them. Therefore, our paper proposes methodology for assessing those benefits. This methodology has three stages as shown in Fig. 1. First, RRI model is used to model flood events, taking account of the probability of rainfall. Second, flood damage is calculated using assets in inundation areas multiplied by the inundation depths generated by that RRI model. Third, the losses stemming from preliminary water release are calculated, and adding them to flood damage, overall losses are calculated. We can evaluate the benefits by changing the volume of preliminary release. As a result, shown in Fig. 2, the use of hydroelectric dams to control flooding creates 20 billion Yen benefits, in the probability of three-day-ahead rainfall prediction of the assumed maximum rainfall in Oi River, in the Shizuoka Pref. of Japan. As the third priority in the Sendai Framework for Disaster Risk Reduction 2015-2030, `investing in disaster risk reduction for resilience - public and private investment in disaster risk prevention and reduction through structural and non-structural measures' was adopted. The accuracy of rainfall prediction is the key factor in maximizing the benefits

  11. A Risk-Based Approach to Shelter Resilience following Flood and Typhoon Damage in Rural Philippines

    Directory of Open Access Journals (Sweden)

    Victoria Stephenson


    Full Text Available The Philippines is exposed to numerous typhoons every year, each of which poses a potential threat to livelihoods, shelter, and in some cases life. Flooding caused by such events leads to extensive damage to land and buildings, and the impact on rural communities can be severe. The global community is calling for action to address and achieve disaster risk reduction for communities and people exposed to such events. Achieving this requires an understanding of the nature of the risks that flooding and typhoons pose to these communities and their homes. This paper presents the findings from a field based case study assessment of three rural settlements in the Philippines, where typhoons and associated flooding in recent years has caused significant damage to houses and livelihoods, leading to the reconstruction of homes that more often than not reproduce similar structural vulnerabilities as were there before these hazards occurred. This work presents a methodology for risk assessment of such structures profiling the flood and wind hazards and measuring physical vulnerability and the experience of communities affected. The aim of the work is to demonstrate a method for identifying risks in these communities, and seeks to address the challenge faced by practitioners of assisting communities in rebuilding their homes in more resilient ways. The work set out here contributes to the discussion about how best to enable practitioners and communities to achieve the sought for risk reduction and especially highlights the role that geoscience and engineering can have in achieving this ambition.

  12. Flood hazards and masonry constructions: a probabilistic framework for damage, risk and resilience at urban scale

    Directory of Open Access Journals (Sweden)

    A. Mebarki


    Full Text Available This paper deals with the failure risk of masonry constructions under the effect of floods. It is developed within a probabilistic framework, with loads and resistances considered as random variables. Two complementary approaches have been investigated for this purpose:

    – a global approach based on combined effects of several governing parameters with individual weighted contribution (material quality and geometry, presence and distance between columns, beams, openings, resistance of the soil and its slope. . .,
    – and a reliability method using the failure mechanism of masonry walls standing out-plane pressure.

    The evolution of the probability of failure of masonry constructions according to the flood water level is analysed.

    The analysis of different failure probability scenarios for masonry walls is conducted to calibrate the influence of each "vulnerability governing parameter" in the global approach that is widely used in risk assessment at the urban or regional scale.

    The global methodology is implemented in a GIS that provides the spatial distribution of damage risk for different flood scenarios. A real case is considered for the simulations, i.e. Cheffes sur Sarthe (France, for which the observed river discharge, the hydraulic load according to the Digital Terrain Model, and the structural resistance are considered as random variables. The damage probability values provided by both approaches are compared. Discussions are also developed about reduction and mitigation of the flood disaster at various scales (set of structures, city, region as well as resilience.

  13. Damage and protection cost curves for coastal floods within the 600 largest European cities (United States)

    Prahl, Boris F.; Boettle, Markus; Costa, Luís; Kropp, Jürgen P.; Rybski, Diego


    The economic assessment of the impacts of storm surges and sea-level rise in coastal cities requires high-level information on the damage and protection costs associated with varying flood heights. We provide a systematically and consistently calculated dataset of macroscale damage and protection cost curves for the 600 largest European coastal cities opening the perspective for a wide range of applications. Offering the first comprehensive dataset to include the costs of dike protection, we provide the underpinning information to run comparative assessments of costs and benefits of coastal adaptation. Aggregate cost curves for coastal flooding at the city-level are commonly regarded as by-products of impact assessments and are generally not published as a standalone dataset. Hence, our work also aims at initiating a more critical discussion on the availability and derivation of cost curves. PMID:29557944

  14. Damage and protection cost curves for coastal floods within the 600 largest European cities (United States)

    Prahl, Boris F.; Boettle, Markus; Costa, Luís; Kropp, Jürgen P.; Rybski, Diego


    The economic assessment of the impacts of storm surges and sea-level rise in coastal cities requires high-level information on the damage and protection costs associated with varying flood heights. We provide a systematically and consistently calculated dataset of macroscale damage and protection cost curves for the 600 largest European coastal cities opening the perspective for a wide range of applications. Offering the first comprehensive dataset to include the costs of dike protection, we provide the underpinning information to run comparative assessments of costs and benefits of coastal adaptation. Aggregate cost curves for coastal flooding at the city-level are commonly regarded as by-products of impact assessments and are generally not published as a standalone dataset. Hence, our work also aims at initiating a more critical discussion on the availability and derivation of cost curves.

  15. Floods (United States)

    Floods are common in the United States. Weather such as heavy rain, thunderstorms, hurricanes, or tsunamis can ... is breached, or when a dam breaks. Flash floods, which can develop quickly, often have a dangerous ...

  16. Correlations between reinfall data and insurance damage data related to sewer flooding for the case of Aarhus, Denmark

    NARCIS (Netherlands)

    Spekkers, M.H.; Zhou, Q.; Arnbjerg-Nielsen, K.; Clemens, F.H.L.R.; ten Veldhuis, J.A.E.


    Sewer flooding due to extreme rainfall may result in considerable damage. Damage data to quantify costs of cleaning, drying, and replacing materials and goods are rare in literature. In this study, insurance claim data related to property damages were analysed for the municipality of Aarhus,

  17. Blending satellite data and RADAR tool for rapid flood damage assessment in Agriculture: A case study in Sri Lanka (United States)

    Amarnath, Giriraj; Inada, Yoshiaki; Inoue, Ryosuke; Alahacoon, Niranga; Smakhtin, Vladimir


    During the catastrophic flooding it is critically important to estimate losses as it is essential for facilitating good decision making at the district, province and national levels of government and to appraise aid agencies for necessary assistance. Flood loss estimates can also be used to evaluate the cost effectiveness of alternative approaches to strengthening flood control measures. In the case of Sri Lanka there were limited knowledge and application system exist for carrying out rapid damage assessment for Agriculture in Sri Lanka. FAO has developed the tool "Rapid Agricultural Disaster Assessment Routine" (RADAR) based on theoretical approach that uses simple tools for assessing the impact on agriculture of a disastrous event. There are two knowledge bases that contain information needed for calculation of the value loss or damage. The procedure of rapid impact assessment implies the use of knowledge-bases, database and GIS. In this study, the user friendly application of RADAR system has been developed. Three components were considered including agriculture, livestock and farmers asset to estimate the losses. The application will allow estimating flood damage at various scales and this being tested at district level and specific example for the 2011 floods in Sri Lanka. In order to understand flood inundation cycle, time-series optical MODIS satellite data (2000-2011) and microwave ALOS PALSAR (2006-2011) were used to derive annual flood extent, flood duration and recurrent areas to identify flood risk and impact of seasonal flooding on agriculture. This study demonstrates how RADAR & satellite-based flood products can be effectively used for rapid damage assessment and managing the floods.

  18. Comprehensive flood economic losses: review of the potential damage and implementation of an agricultural impact model

    Directory of Open Access Journals (Sweden)

    Mao Gwladys


    Full Text Available With an annual loss averaging 580 M€ between 1990 and 2014, floods are the main natural catastrophe (Nat Cat risk for the French Nat Cat compensation scheme. As part of its role in this scheme, the Caisse Centrale de Réassurance (CCR offers state guaranteed reinsurance programs and has been modelling the risk of flooding since 2003. This model is based on the traditional valuation approach of direct tangible costs which pairs a physical model with exposure through damage curves. CCR wishes now to widen the studied damage scope to insured and noninsured economic costs and has been collaborating with the SAF research laboratory from the Institute of Financial and Insurance Sciences (ISFA since 2014. CCR’s model has been used to estimate the insured direct damage to residential and non-residential properties and it is now being developed to include damage to vehicles, agriculture and network infrastructures. Research is also being carried out to take into account business interruptions and indirect losses using an Input-Output model. This article describes the undergoing work on model development to estimate the damage to agriculture.

  19. An Assessment of the Effectiveness of Tree-Based Models for Multi-Variate Flood Damage Assessment in Australia

    Directory of Open Access Journals (Sweden)

    Roozbeh Hasanzadeh Nafari


    Full Text Available Flood is a frequent natural hazard that has significant financial consequences for Australia. In Australia, physical losses caused by floods are commonly estimated by stage-damage functions. These methods usually consider only the depth of the water and the type of buildings at risk. However, flood damage is a complicated process, and it is dependent on a variety of factors which are rarely taken into account. This study explores the interaction, importance, and influence of water depth, flow velocity, water contamination, precautionary measures, emergency measures, flood experience, floor area, building value, building quality, and socioeconomic status. The study uses tree-based models (regression trees and bagging decision trees and a dataset collected from 2012 to 2013 flood events in Queensland, which includes information on structural damages, impact parameters, and resistance variables. The tree-based approaches show water depth, floor area, precautionary measures, building value, and building quality to be important damage-influencing parameters. Furthermore, the performance of the tree-based models is validated and contrasted with the outcomes of a multi-parameter loss function (FLFArs from Australia. The tree-based models are shown to be more accurate than the stage-damage function. Consequently, considering more parameters and taking advantage of tree-based models is recommended. The outcome is important for improving established Australian flood loss models and assisting decision-makers and insurance companies dealing with flood risk assessment.

  20. Modelling the benefits of flood emergency management measures in reducing damages: a case study on Sondrio, Italy

    Directory of Open Access Journals (Sweden)

    D. Molinari


    Full Text Available The European "Floods Directive" 2007/60/EU has produced an important shift from a traditional approach to flood risk management centred only on hazard analysis and forecast to a newer one which encompasses other aspects relevant to decision-making and which reflect recent research advances in both hydraulic engineering and social studies on disaster risk. This paper accordingly proposes a way of modelling the benefits of flood emergency management interventions calculating the possible damages by taking into account exposure, vulnerability, and expected damage reduction. The results of this model can be used to inform decisions and choices for the implementation of flood emergency management measures. A central role is played by expected damages, which are the direct and indirect consequence of the occurrence of floods in exposed and vulnerable urban systems. How damages should be defined and measured is a key question that this paper tries to address. The Floods Directive suggests that mitigation measures taken to reduce flood impact need to be evaluated also by means of a cost–benefit analysis. The paper presents a methodology for assessing the effectiveness of early warning for flash floods, considering its potential impact in reducing direct physical damage, and it assesses the general benefit in regard to other types of damages and losses compared with the emergency management costs. The methodology is applied to the case study area of the city of Sondrio in the northern Alpine region of Italy. A critical discussion follows the application. Its purpose is to highlight the strengths and weaknesses of available models for quantifying direct physical damage and of the general model proposed, given the current state of the art in damage and loss assessment.

  1. Decision Making Methodology to Mitigate Damage From Glacial Lake Outburst Floods From Imja Lake in Nepal (United States)

    McKinney, D. C.; Cuellar, A. D.


    Climate change has accelerated glacial retreat in high altitude glaciated regions of Nepal leading to the growth and formation of glacier lakes. Glacial lake outburst floods (GLOF) are sudden events triggered by an earthquake, moraine failure or other shock that causes a sudden outflow of water. These floods are catastrophic because of their sudden onset, the difficulty predicting them, and enormous quantity of water and debris rapidly flooding downstream areas. Imja Lake in the Himalaya of Nepal has experienced accelerated growth since it first appeared in the 1960s. Communities threatened by a flood from Imja Lake have advocated for projects to adapt to the increasing threat of a GLOF. Nonetheless, discussions surrounding projects for Imja have not included a rigorous analysis of the potential consequences of a flood, probability of an event, or costs of mitigation projects in part because this information is unknown or uncertain. This work presents a demonstration of a decision making methodology developed to rationally analyze the risks posed by Imja Lake and the various adaptation projects proposed using available information. In this work the authors use decision analysis, data envelopement analysis (DEA), and sensitivity analysis to assess proposed adaptation measures that would mitigate damage in downstream communities from a GLOF. We use an existing hydrodynamic model of the at-risk area to determine how adaptation projects will affect downstream flooding and estimate fatalities using an empirical method developed for dam failures. The DEA methodology allows us to estimate the value of a statistical life implied by each project given the cost of the project and number of lives saved to determine which project is the most efficient. In contrast the decision analysis methodology requires fatalities to be assigned a cost but allows the inclusion of uncertainty in the decision making process. We compare the output of these two methodologies and determine the

  2. Quantification of flood risk mitigation benefits: A building-scale damage assessment through the RASOR platform. (United States)

    Arrighi, Chiara; Rossi, Lauro; Trasforini, Eva; Rudari, Roberto; Ferraris, Luca; Brugioni, Marcello; Franceschini, Serena; Castelli, Fabio


    Flood risk mitigation usually requires a significant investment of public resources and cost-effectiveness should be ensured. The assessment of the benefits of hydraulic works requires the quantification of (i) flood risk in absence of measures, (ii) risk in presence of mitigation works, (iii) investments to achieve acceptable residual risk. In this work a building-scale is adopted to estimate direct tangible flood losses to several building classes (e.g. residential, industrial, commercial, etc.) and respective contents, exploiting various sources of public open data in a GIS environment. The impact simulations for assigned flood hazard scenarios are computed through the RASOR platform which allows for an extensive characterization of the properties and their vulnerability through libraries of stage-damage curves. Recovery and replacement costs are estimated based on insurance data, market values and socio-economic proxies. The methodology is applied to the case study of Florence (Italy) where a system of retention basins upstream of the city is under construction to reduce flood risk. Current flood risk in the study area (70 km 2 ) is about 170 Mio euros per year without accounting for people, infrastructures, cultural heritage and vehicles at risk. The monetary investment in the retention basins is paid off in about 5 years. However, the results show that although hydraulic works are cost-effective, a significant residual risk has to be managed and the achievement of the desired level of acceptable risk would require about 1 billion euros of investments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Damage Valuation Arising From Flood in São Luiz do Paraitinga (SP

    Directory of Open Access Journals (Sweden)

    Alessandra Cristina Corsi


    Full Text Available The Sao Luiz de Paraitinga city staged between December 2009 and January 2010, intensity rainfall which resulted in flooding of the central area and several landslides in urban and rural areas. The occurrence of natural disasters like this gets a great media appeal, with reports showing strong images, the suffering of the people directly affected, their relatives loss, their homes and appliances and housewares. However a question that calls attention not counting the shock of the humanitarian tragedy are economic losses involved. There are some methods of valuation of damage to estimate economic losses. For this estimate we used an adaptation of the method Dala (Damage and Loss Assessment. This evaluation includes a set of effects and their impacts on different economic and social sectors, infrastructure and the environment; thereby allowing scale the amount needed for reconstruction, risk management and public policies aimed at the prevention of natural disaster risk. As a result the amount of damages in São Luiz de Paraitinga measure up to R$103.63 million. It should be noted that the housing sector and cultural heritage was the most impacted in the event, representing 35% of damages, showing the sector's vulnerability, ie, R$ 35 million. Followed by the transport sector that represents 24% of the flooding  total costs in the city.

  4. Integrating hydrodynamic models and COSMO-SkyMed derived products for flood damage assessment (United States)

    Giuffra, Flavio; Boni, Giorgio; Pulvirenti, Luca; Pierdicca, Nazzareno; Rudari, Roberto; Fiorini, Mattia


    Floods are the most frequent weather disasters in the world and probably the most costly in terms of social and economic losses. They may have a strong impact on infrastructures and health because the range of possible damages includes casualties, loss of housing and destruction of crops. Presently, the most common approach for remotely sensing floods is the use of synthetic aperture radar (SAR) images. Key features of SAR data for inundation mapping are the synoptic view, the capability to operate even in cloudy conditions and during both day and night time and the sensitivity of the microwave radiation to water. The launch of a new generation of instruments, such as TerraSAR-X and COSMO-SkyMed (CSK) allows producing near real time flood maps having a spatial resolution in the order of 1-5 m. Moreover, the present (CSK) and upcoming (Sentinel-1) constellations permit the acquisition of radar data characterized by a short revisit time (in the order of some hours for CSK), so that the production of frequent inundation maps can be envisaged. Nonetheless, gaps might be present in the SAR-derived flood maps because of the limited area imaged by SAR; moreover, the detection of floodwater may be complicated by the presence of very dense vegetation or urban settlements. Hence the need to complement SAR-derived flood maps with the outputs of physical models. Physical models allow delivering to end users very useful information for a complete flood damage assessment, such as data on water depths and flow directions, which cannot be directly derived from satellite remote sensing images. In addition, the flood extent predictions of hydraulic models can be compared to SAR-derived inundation maps to calibrate the models, or to fill the aforementioned gaps that can be present in the SAR-derived maps. Finally, physical models enable the construction of risk scenarios useful for emergency managers to take their decisions and for programming additional SAR acquisitions in order to

  5. Comparing Methods of Calculating Expected Annual Damage in Urban Pluvial Flood Risk Assessments

    Directory of Open Access Journals (Sweden)

    Anders Skovgård Olsen


    Full Text Available Estimating the expected annual damage (EAD due to flooding in an urban area is of great interest for urban water managers and other stakeholders. It is a strong indicator for a given area showing how vulnerable it is to flood risk and how much can be gained by implementing e.g., climate change adaptation measures. This study identifies and compares three different methods for estimating the EAD based on unit costs of flooding of urban assets. One of these methods was used in previous studies and calculates the EAD based on a few extreme events by assuming a log-linear relationship between cost of an event and the corresponding return period. This method is compared to methods that are either more complicated or require more calculations. The choice of method by which the EAD is calculated appears to be of minor importance. At all three case study areas it seems more important that there is a shift in the damage costs as a function of the return period. The shift occurs approximately at the 10 year return period and can perhaps be related to the design criteria for sewer systems. Further, it was tested if the EAD estimation could be simplified by assuming a single unit cost per flooded area. The results indicate that within each catchment this may be a feasible approach. However the unit costs varies substantially between different case study areas. Hence it is not feasible to develop unit costs that can be used to calculate EAD, most likely because the urban landscape is too heterogeneous.

  6. Post flood damage data collection and assessment in Albania based on DesInventar methodology (United States)

    Toto, Emanuela; Massabo, Marco; Deda, Miranda; Rossello, Laura


    In 2013 in Albania was implemented a collection of disaster losses based on Desinventar. The DesInventar system consists in a methodology and software tool that lead to the systematic collection, documentation and analysis of loss data on disasters. The main sources of information about disasters used for the Albanian database were the Albanian Ministry of Internal Affairs, the National Library and the State archive. Specifically for floods the database created contains nearly 900 datasets, for a period of 148 years (from 1865 to 2013). The data are georeferenced on the administrative units of Albania: Region, Provinces and Municipalities. The datasets describe the events by reporting the date of occurrence, the duration, the localization in administrative units and the cause. Additional information regards the effects and damage that the event caused on people (deaths, injured, missing, affected, relocated, evacuated, victims) and on houses (houses damaged or destroyed). Other quantitative indicators are the losses in local currency or US dollars, the damage on roads, the crops affected , the lost cattle and the involvement of social elements over the territory such as education and health centers. Qualitative indicators simply register the sectors (e.g. transportations, communications, relief, agriculture, water supply, sewerage, power and energy, industries, education, health sector, other sectors) that were affected. Through the queries and analysis of the data collected it was possible to identify the most affected areas, the economic loss, the damage in agriculture, the houses and people affected and many other variables. The most vulnerable Regions for the past floods in Albania were studied and individuated, as well as the rivers that cause more damage in the country. Other analysis help to estimate the damage and losses during the main flood events of the recent years, occurred in 2010 and 2011, and to recognize the most affected sectors. The database was

  7. Dealing with flood damages: will prevention, mitigation, and ex post compensation provide for a resilient triangle?

    Directory of Open Access Journals (Sweden)

    Cathy Suykens


    Full Text Available There is a wealth of literature on the design of ex post compensation mechanisms for natural disasters. However, more research needs to be done on the manner in which these mechanisms could steer citizens toward adopting individual-level preventive and protection measures in the face of flood risks. We have provided a comparative legal analysis of the financial compensation mechanisms following floods, be it through insurance, public funds, or a combination of both, with an empirical focus on Belgium, the Netherlands, England, and France. Similarities and differences between the methods in which these compensation mechanisms for flood damages enhance resilience were analyzed. The comparative analysis especially focused on the link between the recovery strategy on the one hand and prevention and mitigation strategies on the other. There is great potential within the recovery strategy for promoting preventive action, for example in terms of discouraging citizens from living in high-risk areas, or encouraging the uptake of mitigation measures, such as adaptive building. However, this large potential has yet to be realized, in part because of insufficient consideration and promotion of these connections within existing legal frameworks. We have made recommendations about how the linkages between strategies can be further improved. These recommendations relate to, among others, the promotion of resilient reinstatement through recovery mechanisms and the removal of legal barriers preventing the establishment of link-inducing measures.

  8. What if quality of damage data is poor: an Entity-Vulnerability approach for flood vulnerability assessment (United States)

    Naso, Susanna; Chen, Albert S.; Djordjević, Slobodan; Aronica, Giuseppe T.


    The classical approach to flood defence, aimed at reducing the probability of flooding through hard defences, has been substituted by flood risk management approach which accepts the idea of coping with floods and aims at reducing not only the probability of flooding, but also the consequences. In this view, the concept of vulnerability becomes central, such as the (non-structural) measures for its increment. On 22 November 2011, an exceptional rainstorm hit the Longano catchment (North-East part of Sicily, Italy) producing local heavy rainfall, mud-debris flow and flash flooding. The flash flood involved property, buildings, roads and more than 100 commercial estates have suffered severe damages. Some days after the event, the municipality provided people forms to describe the damages that occurred on their properties. Unfortunately, the lack of common guidelines in compiling them, their coarseness and the impossibility to have monetary information on them (such us damage data from previous events), did not allow the implementation of a detailed damage analysis. What we're developing in this work is a method for a qualitative evaluation of the consequences of floods, based on vulnerability curves for structures and classes of entities at risk. The difficulty in deriving the vulnerability curves for different building typologies, as function of the water depth, was due to the lack of quantitative information both on damages caused by previous events and on buildings' value. To solve the problem we submitted a questionnaire to a team of experts asking for an estimation of building damages to different hypothetical inundation depths. What we wanted to obtain was deriving the vulnerability data from technicians' experience, believing in the fundamental importance of the collaboration among research and professional engineers. Through the elaboration and the synthesis of the experts' estimations we derived the vulnerability curves for different building typologies and

  9. Damage assessment of bridge infrastructure subjected to flood-related hazards (United States)

    Michalis, Panagiotis; Cahill, Paul; Bekić, Damir; Kerin, Igor; Pakrashi, Vikram; Lapthorne, John; Morais, João Gonçalo Martins Paulo; McKeogh, Eamon


    Transportation assets represent a critical component of society's infrastructure systems. Flood-related hazards are considered one of the main climate change impacts on highway and railway infrastructure, threatening the security and functionality of transportation systems. Of such hazards, flood-induced scour is a primarily cause of bridge collapses worldwide and one of the most complex and challenging water flow and erosion phenomena, leading to structural instability and ultimately catastrophic failures. Evaluation of scour risk under severe flood events is a particularly challenging issue considering that depth of foundations is very difficult to evaluate in water environment. The continual inspection, assessment and maintenance of bridges and other hydraulic structures under extreme flood events requires a multidisciplinary approach, including knowledge and expertise of hydraulics, hydrology, structural engineering, geotechnics and infrastructure management. The large number of bridges under a single management unit also highlights the need for efficient management, information sharing and self-informing systems to provide reliable, cost-effective flood and scour risk management. The "Intelligent Bridge Assessment Maintenance and Management System" (BRIDGE SMS) is an EU/FP7 funded project which aims to couple state-of-the art scientific expertise in multidisciplinary engineering sectors with industrial knowledge in infrastructure management. This involves the application of integrated low-cost structural health monitoring systems to provide real-time information towards the development of an intelligent decision support tool and a web-based platform to assess and efficiently manage bridge assets. This study documents the technological experience and presents results obtained from the application of sensing systems focusing on the damage assessment of water-hazards at bridges over watercourses in Ireland. The applied instrumentation is interfaced with an open

  10. Integrated flood damage modelling in the Ebro river basin under hydrodynamic, socio-economic and environmental factors (United States)

    Foudi, S.; Galarraga, I.; Osés, N.


    This paper presents a model of flood damage measurement. It studies the socio-economic and environmental potential damage of floods in the Ebro river basin. We estimate the damage to the urban, rural and environmental sectors. In these sectors, we make distinctions between residential, non residential, cultural, agricultural, public facilities and utilities, environmental and human subsectors. We focus on both the direct, indirect, tangible and intangible impacts. The residential damages refer to the damages on housing, costs of repair and cleaning as direct effects and the re-housing costs as an indirect effect. The non residential and agricultural impacts concern the losses to the economic sectors (industry, business, agricultural): production, capital losses, costs of cleaning and repairs for the direct costs and the consequences of the suspension of activities for the indirect costs. For the human sector, we refer to the physical impacts (injuries and death) in the direct tangible effects and to the posttraumatic stress as indirect intangible impact. The environmental impacts focus on a site of Community Interests (pSCIs) in the case study area. The case study is located the Ebro river basin, Spain. The Ebro river basin is the larger river basin in term of surface and water discharge. The Ebro river system is subject to Atlantic and Mediterranean climatic influences. It gathers most of its water from the north of Spain (in the Pyrenees Mountains) and is the most important river basin of Spain in term of water resources. Most of the flooding occurs during the winter period. Between 1900- 2010, the National Catalogue of Historical Floods identifies 372 events: meanly 33 events every 10 years and up to 58 during the 1990-2000. Natural floods have two origins: (i) persistent rainfalls in large sub basins raised up by high temperature giving rise to a rapid thaw in the Pyrenees, (ii) local rainfalls of short duration and high intensity that gives rise to rapid and

  11. Flood Damage Assessment in Pearl River Delta Rural Area Application in Huashan Town, Huadu District,Guanghzou during the 2017 5.7 Heavy Rain Storm (United States)

    Wang, X.


    The Pearl River Delta (PRD) in China, the summer rain storm occurs frequently, the flood damage is very serious. Damage assessment is the basis of scientific decision-making in disaster mitigation. All approaches of flood damage analysis contain uncertainties due to the inaccuracies and generalisations used, the lack of data aggravates this problem, making methods very rough. This study presents a detailed flood damage assessment framework in Pearl River Delta rural area, using 2017 "5.7" heavy rain storm event to simulate the process and estimate the flood loss in resident building and property, agriculture production. The framework integrates four modules,1) utilize the remote sensing and statistical yearbook and so on to construct the disaster bearing bodies GIS database; 2) using hydraulics model to simulate the flood extent and depth spatial distribution;3)through field investigation to obtain the flood loss data for all kinds of hazard-affected body, using statistical analysis method to get the damage curves;4)Integrate flood scenarios, disaster bearing bodies GIS database and damage curves to calculate the flood loss estimation value. Using this methodology, in the 2017 "5.7" heavy rain storm event, Huashan Town flood damage loss is underestimate compared with the government report, because of not considering the damage of water conservancy facilities. But the disaster loss value on the spatial distribution is consistent with actual situation. In terms of aggregated values in the whole town, the model is capable of obtaining figures that are within the same order of magnitude. This study produce a flood damage assessment framework taking into account the regional characteristics of PRD rural area, provide a template for future practice. This study only considers the current impacts, the framework should be improved by taking into account socio-economic and climatic changes, as well as implementing adaptation measures to be applied to assess the potential

  12. Correlations between rainfall data and insurance damage data related to sewer flooding for the case of Aarhus, Denmark

    DEFF Research Database (Denmark)

    Spekkers, Matthieu; Zhou, Qianqian; Arnbjerg-Nielsen, Karsten

    Sewer flooding due to extreme rainfall may result in considerable damage. Damage data to quantify costs of cleaning, drying, and replacing materials and goods are rare in literature. In this study, insurance claim data related to property damages were analysed for the municipality of Aarhus...... to underestimations of correlations between rainfall and damage variables. Rainfall data from two rain gauges were used to extract rainfall characteristics. From cross correlations between time series of rainfall and claim data, it can be concluded that rainfall events induce claims mostly on the same day, but also...

  13. Determinants of property damage recovery time amongst households affected by an extreme flood event in Metro Manila, Philippines

    Directory of Open Access Journals (Sweden)

    Jamil Paolo Francisco


    Full Text Available This study identified the factors that influence household recovery following an extreme flood event, measured in terms of the length of time to repair, rebuild or replace damaged private property. Data was obtained through a survey of 400 households in Marikina City in Metro Manila, Philippines. Results from the empirical analysis indicated that household income, access to credit (borrowing, the use of a flood alarm system, access to safe shelter, membership in a community organisation, adoption of disaster-specific anticipatory measures and adoption of general preventive measures significantly reduced the time it took for affected households to recover from property damage. Evacuation, relief aid, type of housing, education, household size and frequency of flooding in the area did not have significant effects.

  14. Post flooding damage assessment of earth dams and historical reservoirs using non-invasive geophysical techniques (United States)

    Sentenac, Philippe; Benes, Vojtech; Budinsky, Vladimir; Keenan, Helen; Baron, Ron


    This paper describes the use of four geophysical techniques to map the structural integrity of historical earth reservoir embankments which are susceptible to natural decay with time. The four techniques that were used to assess the post flood damage were 1. A fast scanning technique using a dipole electromagnetic profile apparatus (GEM2), 2. Electrical Resistivity Tomography (ERT) in order to obtain a high resolution image of the shape of the damaged/seepage zone, 3. Self-Potential surveys were carried out to relate the detected seepage evolution and change of the water displacement inside the embankment, 4. The washed zone in the areas with piping was characterised with microgravimetry. The four geophysical techniques used were evaluated against the case studies of two reservoirs in South Bohemia, Czech Republic. A risk approach based on the Geophysical results was undertaken for the reservoir embankments. The four techniques together enabled a comprehensive non-invasive assessment whereby remedial action could be recommended where required. Conclusions were also drawn on the efficiency of the techniques to be applied for embankments with wood structures.

  15. Assessment of Tangible Direct Flood Damage Using a Spatial Analysis Approach under the Effects of Climate Change: Case Study in an Urban Watershed in Hanoi, Vietnam

    Directory of Open Access Journals (Sweden)

    Mohamed Kefi


    Full Text Available Due to climate change, the frequency and intensity of Hydro-Meteorological disasters, such as floods, are increasing. Therefore, the main purpose of this work is to assess tangible future flood damage in the urban watershed of the To Lich River in Hanoi, Vietnam. An approach based on spatial analysis, which requires the integration of several types of data related to flood characteristics that include depth, in particular, land-use classes, property values, and damage rates, is applied for the analysis. To simulate the future scenarios of flooding, the effects of climate change and land-use changes are estimated for 2030. Additionally, two scenarios based on the implementation of flood control measures are analyzed to demonstrate the effect of adaptation strategies. The findings show that climate change combined with the expansion of built-up areas increases the vulnerability of urban areas to flooding and economic damage. The results also reveal that the impacts of climate change will increase the total damage from floods by 26%. However, appropriate flood mitigation will be helpful in reducing the impacts of losses from floods by approximately 8% with the restoration of lakes and by approximately 29% with the implementation of water-sensitive urban design (WSUD. This study will be useful in helping to identify and map flood-prone areas at local and regional scales, which can lead to the detection and prioritization of exposed areas for appropriate countermeasures in a timely manner. In addition, the quantification of flood damage can be an important indicator to enhance the awareness of local decision-makers on improving the efficiency of regional flood risk reduction strategies.


    African Journals Online (AJOL)

    Dr A.B.Ahmed

    damage, causes of flooding, human response to flooding and severity of ... from moving out. Source of ... Man responds to flood hazards through adjustment, flood abatement ... action to minimize or ameliorate flood hazards; flood abatement.

  17. Pawtuxet River, Warwick, Rhode Island. Local Flood Damage Reduction Study. Detailed Project Report for Water Resources Development. (United States)


    Warwich (Belmont Park) Rhode Island. Cover Title Reads: Flood Damage Reduction IS. KEY WORDS (Ce൘.. asm towvee aide of mogoseem aid 1~110j IV MeMAw...cost of the premium paid by policy holders. The actual premium is less than the actuarial rate by the amount of the subsidy which represents one facet...coverage limits, therefore it was not necessary to calculate additional coverage premiums based on actuarial rates. The annual average subsidized

  18. Quantification of flash flood economic risk using ultra-detailed stage-damage functions and 2-D hydraulic models (United States)

    Garrote, J.; Alvarenga, F. M.; Díez-Herrero, A.


    The village of Pajares de Pedraza (Segovia, Spain) is located in the floodplain of the Cega River, a left bank tributary of the Douro River. Repeated flash flood events occur in this small village because of its upstream catchment area, mountainous character and impermeable lithology, which reduce concentration time to just a few hours. River overbank flow has frequently caused flooding and property damage to homes and rural properties, most notably in 1927, 1991, 1996, 2001, 2013 and 2014. Consequently, a detailed analysis was carried out to quantify the economic risk of flash floods in peri-urban and rural areas. Magnitudes and exceedance probabilities were obtained from a flood frequency analysis of maximum discharges. To determine the extent and characteristics of the flooded area, we performed 2D hydraulic modeling (Iber 2.0 software) based on LIDAR (1 m) topography and considering three different scenarios associated with the initial construction (1997) and subsequent extension (2013) of a linear defense structure (rockfill dike or levee) to protect the population. Specific stage-damage functions were expressly developed using in situ data collection for exposed elements, with special emphasis on urban-type categories. The average number of elements and their unit value were established. The relationship between water depth and the height at which electric outlets, furniture, household goods, etc. were located was analyzed; due to its effect on the form of the function. Other nonspecific magnitude-damage functions were used in order to compare both economic estimates. The results indicate that the use of non-specific magnitude-damage functions leads to a significant overestimation of economic losses, partly linked to the use of general economic cost data. Furthermore, a detailed classification and financial assessment of exposed assets is the most important step to ensure a correct estimate of financial losses. In both cases, this should include a

  19. On the Influence of Input Data Quality to Flood Damage Estimation: The Performance of the INSYDE Model

    Directory of Open Access Journals (Sweden)

    Daniela Molinari


    Full Text Available IN-depth SYnthetic Model for Flood Damage Estimation (INSYDE is a model for the estimation of flood damage to residential buildings at the micro-scale. This study investigates the sensitivity of INSYDE to the accuracy of input data. Starting from the knowledge of input parameters at the scale of individual buildings for a case study, the level of detail of input data is progressively downgraded until the condition in which a representative value is defined for all inputs at the census block scale. The analysis reveals that two conditions are required to limit the errors in damage estimation: the representativeness of representatives values with respect to micro-scale values and the local knowledge of the footprint area of the buildings, being the latter the main extensive variable adopted by INSYDE. Such a result allows for extending the usability of the model at the meso-scale, also in different countries, depending on the availability of aggregated building data.

  20. Regional models for distributed flash-flood nowcasting: towards an estimation of potential impacts and damages

    Directory of Open Access Journals (Sweden)

    Le Bihan Guillaume


    Full Text Available Flash floods monitoring systems developed up to now generally enable a real-time assessment of the potential flash-floods magnitudes based on highly distributed hydrological models and weather radar records. The approach presented here aims to go one step ahead by offering a direct assessment of the potential impacts of flash floods on inhabited areas. This approach is based on an a priori analysis of the considered area in order (1 to evaluate based on a semi-automatic hydraulic approach (Cartino method the potentially flooded areas for different discharge levels, and (2 to identify the associated buildings and/or population at risk based on geographic databases. This preliminary analysis enables to build a simplified impact model (discharge-impact curve for each river reach, which can be used to directly estimate the importance of potentially affected assets based on the outputs of a distributed rainfall-runoff model. This article presents a first case study conducted in the Gard region (south eastern France. The first validation results are presented in terms of (1 accuracy of the delineation of the flooded areas estimated based on the Cartino method and using a high resolution DTM, and (2 relevance and usefulness of the impact model obtained. The impacts estimated at the event scale will now be evaluated in a near future based on insurance claim data provided by CCR (Caisse Centrale de Réassurrance.

  1. Assessing damage cost estimation of urban pluvial flood risk as a mean of improving climate change adaptations investments

    DEFF Research Database (Denmark)

    Skovgård Olsen, Anders; Zhou, Qianqian; Linde, Jens Jørgen

    Estimating the expected annual damage (EAD) due to flooding in an urban area is of great interest for urban water managers and other stakeholders. It is a strong indicator for a given area showing how it will be affected by climate change and how much can be gained by implementing adaptation...... measures. This study investigates three different methods for estimating the EAD based on a loglinear relation between the damage costs and the return periods, one of which has been used in previous studies. The results show with the increased amount of data points there appears to be a shift in the log......-linear relation which could be contributed by the Danish design standards for drainage systems. Three different methods for estimating the EAD were tested and the choice of method is less important than accounting for the log-linear shift. This then also means that the statistical approximation of the EAD used...

  2. Risk-based damage potential and loss estimation of extreme flooding scenarios in the Austrian Federal Province of Tyrol

    Directory of Open Access Journals (Sweden)

    M. Huttenlau


    Full Text Available Within the last decades serious flooding events occurred in many parts of Europe and especially in 2005 the Austrian Federal Province of Tyrol was serious affected. These events in general and particularly the 2005 event have sensitised decision makers and the public. Beside discussions pertaining to protection goals and lessons learnt, the issue concerning potential consequences of extreme and severe flooding events has been raised. Additionally to the general interest of the public, decision makers of the insurance industry, public authorities, and responsible politicians are especially confronted with the question of possible consequences of extreme events. Answers thereof are necessary for the implementation of preventive appropriate risk management strategies. Thereby, property and liability losses reflect a large proportion of the direct tangible losses. These are of great interest for the insurance sector and can be understood as main indicators to interpret the severity of potential events. The natural scientific-technical risk analysis concept provides a predefined and structured framework to analyse the quantities of affected elements at risk, their corresponding damage potentials, and the potential losses. Generally, this risk concept framework follows the process steps hazard analysis, exposition analysis, and consequence analysis. Additionally to the conventional hazard analysis, the potential amount of endangered elements and their corresponding damage potentials were analysed and, thereupon, concrete losses were estimated. These took the specific vulnerability of the various individual elements at risk into consideration. The present flood risk analysis estimates firstly the general exposures of the risk indicators in the study area and secondly analyses the specific exposures and consequences of five extreme event scenarios. In order to precisely identify, localize, and characterize the relevant risk indicators of buildings

  3. Economic Assessment of Mitigating Damage of Flood Events : Cost–Benefit Analysis of Flood-Proofing Commercial Buildings in Umbria, Italy

    NARCIS (Netherlands)

    Botzen, W. J.Wouter; Monteiro, Érika; Estrada, Francisco; Pesaro, Giulia; Menoni, Scira


    Floods are among the costliest natural disasters worldwide. Integrated flood risk management approaches involving both public and private measures have been proposed to cope with trends in flood risk. These approaches are hampered by a lack of information about the cost-effectiveness of private

  4. 78 FR 41991 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding (United States)


    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. ACTION: Notice; Issuance of Advisory... Gas and Hazardous Liquid Pipeline Systems. Subject: Potential for Damage to Pipeline Facilities Caused...

  5. Brief communication: On-site data collection of damage caused by flash floods: Experiences from Braunsbach, Germany, in May/June 2016 (United States)

    Laudan, Jonas; Rözer, Viktor; Sieg, Tobias; Vogel, Kristin; Thieken, Annegret


    At the end of May and beginning of June 2016, several municipalities in Southern Germany suffered from severe flash floods and debris flows which have been triggered by intense rainfall in Central Europe. Overall, the insured losses of these events amounted to EUR 1.2 billion in Germany. Especially the strong and unexpected flash flood on May 29th in Braunsbach (Baden Wurttemberg) - a small village counting about 1,000 residents - attracted media and policymakers due to its devastating character. The understanding of damage caused by flash floods requires ex-post collection of relevant but yet sparsely available information, linking process intensities to damage by using adequate methods of data gathering. Thus, on-site data collection was carried out after the flash flood event in Braunsbach, using open source software as helpful and efficient tool for data acquisition and evaluation. A digital survey was designed and conducted by a team of five researchers who investigated all buildings affected by water and debris flows. The collected data includes an estimation of a particular damage class, the inundation depth, and other relevant information. A post - hoc data analysis was done with R 3.3.1 and QGIS 2.14.3, performing both, a Random Forest Model (RF) and Random Generalized Linear Model (RGLM) as well as preparing a Spearman's rank correlation matrix. For visual interpretation and better overview of the study area and analysis results, a "process intensity" map was created, revealing important links of damage driving factors. We find that not only the water depth, which is often considered as only damage driving factor in riverine flood loss modelling, but also the exposition of a building to the flow direction and susceptible building parts like e.g. shop windows seem to be risk factors in flash-flood prone regions. Although no significant correlations were found, the analyses indicate that also building material (i.e. half-timbered or masonry) and structural

  6. Flash flood warning in mountainaious areas: using damages reports to evaluate the method at small ungauged catchments (United States)

    Defrance, Dimitri; Javelle, Pierre; Ecrepont, Stéphane; Andreassian, Vazken


    In Europe, flash floods mainly occur in the Mediterranean area on small catchments with a short concentration time. Anticipating this kind of events is a major issue in order to reduce the resulting damages. But for many of the impacted catchments, no data are available to calibrate and evaluate hydrological models. In this context, the aims of this study is to develop and evaluate a warning method for the Southern French Alps. This area is of particular interest, because it regroups different hydrological regimes, from purely Mediterranean to purely Alpine influences. Two main issues should be addressed: - How to define the hydrological model and its parameterization for an application in an ungauged context? - How to evaluate the final results on 'real' ungauged catchments? The first issue is a classic one. Using a 'observed' data set (154 streamflow stations with catchment areas ranging from 5 to 1000 km² and distributed rainfall available on the 1997-2006 period), we developed a regional model specifically for the studied area. For this purpose, the AIGA method, initially developed for Mediterranean catchments was adapted, in order to take into account snowmelt and to produce baseflows. Then, different parameterizations were tested, derived from different simple regionalisation techniques: - the same parameters set for the whole area defined as the median of the local calibrated parameters; - the same technique as the previous case, but by considering different sub-areas, defined as "hydro-climatically" homogeneous by previous studies; - and finally the neighbour's method. The second issue is more original. Indeed, in most studies the final evaluation is done using gauged stations as they were 'ungauged', ie keeping the at-site discharge data only for validation ant not for calibration. The main disadvantage of this approach is that the evaluation is made at the scale of the gauged catchments, which are in general greater than the catchments impacted by flash

  7. Hispanic health disparities after a flood disaster: results of a population-based survey of individuals experiencing home site damage in El Paso (Texas, USA). (United States)

    Collins, Timothy W; Jimenez, Anthony M; Grineski, Sara E


    In 2006, El Paso County, a predominantly Hispanic urban area, was affected by a flood disaster; 1,500 homes were damaged. We assessed the health impacts of the disaster upon 475 individuals whose homes were flood-damaged using mail survey data and logistic regression. Substantial proportions of individuals had one or more physical (43 %) or mental (18 %) health problem in the four months following the floods; 28 % had one or more injury or acute effect related to post-flood cleanup. Adverse event experiences, older age, and lower socioeconomic status were significantly associated with negative post-flood health outcomes in all three logistic regression models. A lack of access to healthcare, non-US citizenship, and English proficiency were significant predictors of negative outcomes in both the physical and mental health models, while Hispanic ethnicity (physical), native-birth (mental), and more serious home damage (cleanup) were significant predictors in one model each. The disaster had disproportionate negative health impacts on those who were more exposed, poorer, older, and with constrained resource-access. While a lack of US citizenship and Hispanic ethnicity were associated with higher risks, being less acculturated (i.e., English-deficient, foreign-born) may have protected against health impacts.

  8. Application of optimization technique for flood damage modeling in river system (United States)

    Barman, Sangita Deb; Choudhury, Parthasarathi


    A river system is defined as a network of channels that drains different parts of a basin uniting downstream to form a common outflow. An application of various models found in literatures, to a river system having multiple upstream flows is not always straight forward, involves a lengthy procedure; and with non-availability of data sets model calibration and applications may become difficult. In the case of a river system the flow modeling can be simplified to a large extent if the channel network is replaced by an equivalent single channel. In the present work optimization model formulations based on equivalent flow and applications of the mixed integer programming based pre-emptive goal programming model in evaluating flood control alternatives for a real life river system in India are proposed to be covered in the study.

  9. Contribution of an exposure indicator to better anticipate damages with the AIGA flood warning method: a case study in the South of France (United States)

    Saint-Martin, Clotilde; Fouchier, Catherine; Douvinet, Johnny; Javelle, Pierre; Vinet, Freddy


    On the 3rd October 2015, heavy localized precipitations have occurred in South Eastern France leading to major flash floods on the Mediterranean coast. The severity of those floods has caused 20 fatalities and important damage in almost 50 municipalities in the French administrative area of Alpes-Maritimes. The local recording rain gauges have shown how fast the event has happened: 156 mm of rain were recorded in Mandelieu-la-Napoule and 145 mm in Cannes within 2 hours. As the affected rivers are not monitored, no anticipation was possible from the authorities in charge of risk management. In this case, forecasting floods is indeed complex because of the small size of the watersheds which implies a reduced catchment response time. In order to cope with the need of issuing flood warnings on un-monitored small catchments, Irstea and Météo-France have developed an alternative warning system for ungauged basins called the AIGA method. AIGA is a flood warning system based on a simple distributed hydrological model run at a 1 km² resolution using real time radar rainfall information (Javelle, Demargne, Defrance, Pansu, & Arnaud, 2014). The flood warnings, produced every 15 minutes, result of the comparison of the real time runoff data produced by the model with statistical runoff values. AIGA is running in real time in the South of France, within the RHYTMME project ( Work is on-going in order to offer a similar service for the whole French territory. More than 200 impacts of the 3rd October floods have been located using media, social networks and fieldwork. The first comparisons between these impacts and the AIGA warning levels computed for this event show several discrepancies. However, these latter discrepancies appear to be explained by the land-use. An indicator of the exposure of territories to flooding has thus been created to weight the levels of the AIGA hydrological warnings with the land-use of the area surrounding the streams

  10. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Analysis of core damage frequency from internally induced flooding events for Plant Operational State 5 during a refueling outage. Volume 4

    International Nuclear Information System (INIS)

    Dandini, V.; Staple, B.; Kirk, H.; Whitehead, D.; Forester, J.


    An estimate of the contribution of internal flooding to the mean core damage frequency at the Grand Gulf Nuclear Station was calculated for Plant Operational State 5 during a refueling outage. Pursuant to this objective, flood zones and sources were identified and flood volumes were calculated. Equipment necessary for the maintenance of plant safety was identified and its vulnerability to flooding was determined. Event trees and fault trees were modified or developed as required, and PRA quantification was performed using the IRRAS code. The mean core damage frequency estimate for GGNS during POS 5 was found to be 2.3 E-8 per year

  11. Temporal Variations of Citizens’ Demands on Flood Damage Mitigation, Streamflow Quantity and Quality in the Korean Urban Watershed

    Directory of Open Access Journals (Sweden)

    Chang-Yu Hong


    Full Text Available Sustainable watershed management (SWM can be achieved through recognition and reflection upon the values of citizens. Collaborative governance consisting of citizens is crucial for successful SWM. Collaborative governance definitely requires an active participatory decision-making process that reflects citizens’ preferences. Citizen preference also tends to substantially change with life pattern and life quality. These shifts can be caused by slight variations in both social priorities and personal preferences for SWM. Therefore, collaborative water governance must be frequently renewed in response to citizens’ values through the participatory framework. The An’yang Stream in South Korea is generally regarded as a representative urban stream restoration case that has been successfully led by collaborative governance. By conducting individual surveys with citizens on-site, this study addresses how citizens’ preferences of the stream’s management have changed between 2005 and 2015. In addition, this study used three quantitative hydrologic vulnerability indices: potential flood damage (PFD, potential streamflow depletion (PSD, and potential water quality deterioration (PWQD. They can spatially quantify citizen preference using the Analytic Hierarchy Process (AHP, which can systematically derive citizens’ subjective relative-weighted preferences. In the end, this study identified critical differences in priorities in regard to vulnerable areas between in 2005 and in 2015.

  12. Contribution of insurance data to cost assessment of coastal flood damage to residential buildings: insights gained from Johanna (2008 and Xynthia (2010 storm events

    Directory of Open Access Journals (Sweden)

    C. André


    Full Text Available There are a number of methodological issues involved in assessing damage caused by natural hazards. The first is the lack of data, due to the rarity of events and the widely different circumstances in which they occur. Thus, historical data, albeit scarce, should not be neglected when seeking to build ex-ante risk management models. This article analyses the input of insurance data for two recent severe coastal storm events, to examine what causal relationships may exist between hazard characteristics and the level of damage incurred by residential buildings. To do so, data was collected at two levels: from lists of about 4000 damage records, 358 loss adjustment reports were consulted, constituting a detailed damage database. The results show that for flooded residential buildings, over 75% of reconstruction costs are associated with interior elements, with damage to structural components remaining very localised and negligible. Further analysis revealed a high scatter between costs and water depth, suggesting that uncertainty remains high in drawing up damage functions with insurance data alone. Due to the paper format of the loss adjustment reports, and the lack of harmonisation between their contents, the collection stage called for a considerable amount of work. For future events, establishing a standardised process for archiving damage information could significantly contribute to the production of such empirical damage functions. Nevertheless, complementary sources of data on hazards and asset vulnerability parameters will definitely still be necessary for damage modelling; multivariate approaches, crossing insurance data with external material, should also be investigated more deeply.

  13. Contribution of insurance data to cost assessment of coastal flood damage to residential buildings: insights gained from Johanna (2008) and Xynthia (2010) storm events (United States)

    André, C.; Monfort, D.; Bouzit, M.; Vinchon, C.


    There are a number of methodological issues involved in assessing damage caused by natural hazards. The first is the lack of data, due to the rarity of events and the widely different circumstances in which they occur. Thus, historical data, albeit scarce, should not be neglected when seeking to build ex-ante risk management models. This article analyses the input of insurance data for two recent severe coastal storm events, to examine what causal relationships may exist between hazard characteristics and the level of damage incurred by residential buildings. To do so, data was collected at two levels: from lists of about 4000 damage records, 358 loss adjustment reports were consulted, constituting a detailed damage database. The results show that for flooded residential buildings, over 75% of reconstruction costs are associated with interior elements, with damage to structural components remaining very localised and negligible. Further analysis revealed a high scatter between costs and water depth, suggesting that uncertainty remains high in drawing up damage functions with insurance data alone. Due to the paper format of the loss adjustment reports, and the lack of harmonisation between their contents, the collection stage called for a considerable amount of work. For future events, establishing a standardised process for archiving damage information could significantly contribute to the production of such empirical damage functions. Nevertheless, complementary sources of data on hazards and asset vulnerability parameters will definitely still be necessary for damage modelling; multivariate approaches, crossing insurance data with external material, should also be investigated more deeply.

  14. Floods and Flash Flooding (United States)

    Floods and flash flooding Now is the time to determine your area’s flood risk. If you are not sure whether you ... If you are in a floodplain, consider buying flood insurance. Do not drive around barricades. If your ...

  15. Using an extended 2D hydrodynamic model for evaluating damage risk caused by extreme rain events: Flash-Flood-Risk-Map (FFRM) Upper Austria (United States)

    Humer, Günter; Reithofer, Andreas


    Using an extended 2D hydrodynamic model for evaluating damage risk caused by extreme rain events: Flash-Flood-Risk-Map (FFRM) Upper Austria Considering the increase in flash flood events causing massive damage during the last years in urban but also rural areas [1-4], the requirement for hydrodynamic calculation of flash flood prone areas and possible countermeasures has arisen to many municipalities and local governments. Besides the German based URBAS project [1], also the EU-funded FP7 research project "SWITCH-ON" [5] addresses the damage risk caused by flash floods in the sub-project "FFRM" (Flash Flood Risk Map Upper Austria) by calculating damage risk for buildings and vulnerable infrastructure like schools and hospitals caused by flash-flood driven inundation. While danger zones in riverine flooding are established as an integral part of spatial planning, flash floods caused by overland runoff from extreme rain events have been for long an underrated safety hazard not only for buildings and infrastructure, but man and animals as well. Based on the widespread 2D-model "hydro_as-2D", an extension was developed, which calculates the runoff formation from a spatially and temporally variable precipitation and determines two dimensionally the land surface area runoff and its concentration. The conception of the model is to preprocess the precipitation data and calculate the effective runoff-volume for a short time step of e.g. five minutes. This volume is applied to the nodes of the 2D-model and the calculation of the hydrodynamic model is started. At the end of each time step, the model run is stopped, the preprocessing step is repeated and the hydraulic model calculation is continued. In view of the later use for the whole of Upper Austria (12.000 km²) a model grid of 25x25 m² was established using digital elevation data. Model parameters could be estimated for the small catchment of river Ach, which was hit by an intense rain event with up to 109 mm per hour

  16. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal floods during mid-loop operations. Volume 4

    International Nuclear Information System (INIS)

    Kohut, P.


    The major objective of the Surry internal flood analysis was to provide an improved understanding of the core damage scenarios arising from internal flood-related events. The mean core damage frequency of the Surry plant due to internal flood events during mid-loop operations is 4.8E-06 per year, and the 5th and 95th percentiles are 2.2E-07 and 1.8E-05 per year, respectively. Some limited sensitivity calculations were performed on three plant improvement options. The most significant result involves modifications of intake-level structure on the canal, which reduced core damage frequency contribution from floods in mid-loop by about 75%

  17. Regional hydrological models for distributed flash-floods forecasting: towards an estimation of potential impacts and damages (United States)

    Le Bihan, Guillaume; Payrastre, Olivier; Gaume, Eric; Pons, Frederic; Moncoulon, David


    Hydrometeorological forecasting is an essential component of real-time flood management. The information it provides is of great help for crisis managers to anticipate the inundations and the associated risks. In the particular case of flash-floods, which may affect a large amount of small watersheds spread over the territory (up to 300 000 km of waterways considering a drained area of 5 km² minimum in France), appropriate flood forecasting systems are still under development. In France, highly distributed hydrological models have been implemented, enabling a real-time assessment of the potential intensity of flash-floods from the records of weather radars: AIGA-hydro system (Lavabre et al., 2005; Javelle et al., 2014), PreDiFlood project (Naulin et al., 2013). The approach presented here aims to go one step further by offering a direct assessment of the potential impacts of the simulated floods on inhabited areas. This approach is based on an a priori analysis of the study area in order (1) to evaluate with a simplified hydraulic approach (DTM treatment) the potentially flooded areas for different discharge levels, and (2) to identify the associated buildings and/or population at risk from geographic databases. This preliminary analysis enables to build an impact model (discharge-impact curve) on each river reach, which is then used to directly estimate the potentially affected assets based on a distributed rainfall runoff model. The overall principle of this approach was already presented at the 8th Hymex workshop. Therefore, the presentation will be here focused on the first validation results in terms of (1) accuracy of flooded areas simulated from DTM treatments, and (2) relevance of estimated impacts. The inundated areas simulated were compared to the European Directive cartography results (where available), showing an overall good correspondence in a large majority of cases, but also very significant errors for approximatively 10% of the river reaches

  18. Factors of influence on flood damage mitigation behaviour by households - Literature review and results from a French survey.

    NARCIS (Netherlands)

    Poussin, J.K.; Botzen, W.J.W.; Aerts, J.C.J.H.


    Based on a literature review, this paper proposes and empirically tests an extended version of the Protection Motivation Theory (PMT) of individual disaster preparedness. A survey was completed by 885 households in three flood-prone regions in France. Regression models provide insights into the

  19. Collecting data for quantitative research on pluvial flooding

    NARCIS (Netherlands)

    Spekkers, M.H.; Ten Veldhuis, J.A.E.; Clemens, F.H.L.R.


    Urban pluvial flood management requires detailed spatial and temporal information on flood characteristics and damaging consequences. There is lack of quantitative field data on pluvial flooding resulting in large uncertainties in urban flood model calculations and ensuing decisions for investments

  20. Increasing severity of damage caused by floods in the Spanish Mediterranean coast (1960-2014), climate change or vulnerability? (United States)

    Perez, Alfredo; Gil, Salvador; Lopez, Francisco; Barriendos, Mariano


    In recent decades, there has been an increase in physical and economic losses (WMO, CRED and UCL, 2014) that raises serious concerns in society. Climate change projections may explain the rise in flood losses; however, these shouldn't be considered yet (Bouwer, 2011). According to IPCC (2014), there is low confidence in anthropogenic climate change affecting the frequency and magnitude of fluvial floods on a global scale. In other words, this increase in flood events is not completely related to the higher frequency of heavy rainfall. To illustrate the aforementioned, a spatial example can be seen in the study area. In the Spanish Mediterranean coast, we see an increase in economic losses within the last 50 years due to flood events (Gil et al., 2014). It seems that the socio-economic growth and the rise of housing construction (Gaja, 2008) have led to an increase in vulnerability and exposure which are mainly responsible for those losses and the increase in severity of flood events (Pérez et al., 2015). Furthermore, this situation will probably become more precarious if some climate forecasts are met [IPCC, 2014; AEMET, 2015], and if the economic model fails to adopt efficient adaptive measures. Therefore, it is interesting to focus attention on social factors either within the present or future scenario in order to minimise the potential consequences and improve the adaptation. The main objective of this work focuses on the study of the evolution of the severity of the floods in the Spanish Mediterranean coast for the period (1960-2015). To do that, a statistical analysis of the data base [Gil et al., 2014; extended to the entire Spanish Mediterranean coast (MEDIFLOOD)] and a multiscale mapping (local, provincial and regional level) of the frequency of these events will take place in order to make comparisons and show spatiotemporal patterns according to the severity events evolution. Preliminary results show some interesting statistically significant

  1. Environment-friendly reduction of flood risk and infrastructure damage in a mountain river: Case study of the Czarny Dunajec (United States)

    Mikuś, Paweł; Wyżga, Bartłomiej; Radecki-Pawlik, Artur; Zawiejska, Joanna; Amirowicz, Antoni; Oglęcki, Paweł


    Migration of a mountain river channel may cause erosional risk to infrastructure or settlements on the valley floor. Following a flood of 2010, a cutbank in one of the bends of the main channel of the Czarny Dunajec, Polish Carpathians, approached a local road by 50 m. To arrest the erosion of the laterally migrating channel, water authorities planned construction of a ditch cutting the forested neck of the bend, reinforcement of the ditch banks, and damming the main channel with a boulder groyne. In order to avoid channelization of the highly valued, multithread river reach that would deteriorate its ecological status and cause increased flood risk to downstream reaches, an alternative approach to prevent bank erosion was proposed. The new scheme, applied in 2011, included opening of the inlets to inactive side braids located by the neck of the bend of the main channel. This solution reestablished the flow in the steeper low-flow channels, allowing us to expect a cutoff and abandonment of the main channel during subsequent floods. Gravelly deflectors were constructed directly below the inlets to the reactivated side channels to divert the flow into the channels and prevent the water from entering the main channel. Hydraulic measurements performed before and after the implementation of the scheme confirmed that it enabled shifting the main water current, with the highest average velocity and bed shear stress, from the braid closest to the road to the most distant braid. Similar surveys of fish and benthic macroinvertebrate communities indicated that flow reactivation in the side channels was beneficial for these groups of river biota, increasing their abundance and taxonomic richness in the reach. Not only was the implemented solution significantly less expensive, but it also enhanced ecological functions of the multithread channel and the variability of physical habitat conditions and maintained the role of the reach as a wood debris trap. However, avulsion of the

  2. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream (United States)

    Shabani, A.; Zhang, X.


    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is

  3. HANZE: a pan-European database of exposure to natural hazards and damaging historical floods since 1870 (United States)

    Paprotny, Dominik; Morales-Nápoles, Oswaldo; Jonkman, Sebastiaan N.


    The influence of social and economic change on the consequences of natural hazards has been a matter of much interest recently. However, there is a lack of comprehensive, high-resolution data on historical changes in land use, population, or assets available to study this topic. Here, we present the Historical Analysis of Natural Hazards in Europe (HANZE) database, which contains two parts: (1) HANZE-Exposure with maps for 37 countries and territories from 1870 to 2020 in 100 m resolution and (2) HANZE-Events, a compilation of past disasters with information on dates, locations, and losses, currently limited to floods only. The database was constructed using high-resolution maps of present land use and population, a large compilation of historical statistics, and relatively simple disaggregation techniques and rule-based land use reallocation schemes. Data encompassed in HANZE allow one to "normalize" information on losses due to natural hazards by taking into account inflation as well as changes in population, production, and wealth. This database of past events currently contains 1564 records (1870-2016) of flash, river, coastal, and compound floods. The HANZE database is freely available at" target="_blank">

  4. Amendment damages the function of continuous flooding in decreasing Cd and Pb uptake by rice in acid paddy soil. (United States)

    Ye, Xinxin; Li, Hongying; Zhang, Ligan; Chai, Rushan; Tu, Renfeng; Gao, Hongjian


    Combinations of remediation technologies are needed to solve the problem of soil contamination in paddy rice, due to multiple potential toxic elements (PTEs). Two potential mitigation methods, water management and in-situ remediation by soil amendment, have been widely used in treatment of PTE-polluted paddy soil. However, the interactive relationship between soil amendment and water management, and its influence on the accumulation of PTEs in rice are poorly understood. Greenhouse pot experiments were conducted to examine the effects of phosphate amendment on Cd and Pb availability in soil and their influence on Cd and Pb uptake into rice, on Fe and P availability in soil, and on the alteration of Fe amount and compartment on root surface among different water management strategies. Results indicated that Cd and Pb content in the shoot and grain were significantly affected by the different water management strategies in nonamended soils, and followed the order: wetting irrigation > conventional irrigation > continuous flooding. The application of phosphate amendment significantly decreased the variations of Cd and Pb absorption in shoot and grain of rice among different water treatments. The reasons may be attributed to the enhancement of P availability and the decrease of Fe availability in soil, and the decreased variations of Fe 2+ /Fe 3+ content in root coating after the application of phosphate amendment. These results suggested that the simultaneous use of phosphate amendment and continuous flooding to immobilize Cd and Pb, especially in acid paddy soils, should be avoided. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Urban sprawl and flooding in southern California (United States)

    Rantz, S.E.


    The floods of January 1969 in south-coastal California provide a timely example of the effect of urban sprawl on flood damage. Despite recordbreaking, or near recordbreaking, stream discharges, damage was minimal in the older developed areas that are protected against inundation and debris damage by carefully planned flood-control facilities, including debris basins and flood-conveyance channels. By contrast, heavy damage occurred in areas of more recent urban sprawl, where the hazards of inundation and debris or landslide damage have not been taken into consideration, and where the improvement and development of drainage or flood-control facilities have not kept pace with expanding urbanization.

  6. Integration of contributed data with HEC-RAS hydrodynamic model for flood inundation and damage assessment: 2015 Dallas Texas Case Study (United States)

    Sava, E.; Thornton, J. C.; Kalyanapu, A. J.; Cervone, G.


    Transportation infrastructure networks in urban areas are highly sensitive to natural disasters, yet are a very critical source for the success of rescue, recovery, and renovation operations. Therefore, prompt restoration of such networks is of high importance for disaster relief services. Satellite and aerial images provide data with high spatial and temporal resolution and are a powerful tool for monitoring the environment and mapping the spatio-temporal variability of the Earth's surface. They provide a synoptic overview and give useful environmental information for a wide range of scales, from entire continents to urban areas, with spatial pixel resolutions ranging from kilometers to centimeters. However, sensor limitations are often a serious drawback since no single sensor offers the optimal spectral, spatial, and temporal resolution at the same time. Specific data may not be collected in the time and space most urgently required and/or may it contain gaps as a result of the satellite revisit time, atmospheric opacity, or other obstructions. In this study, the feasibility of integrating multiple sources of contributed data including remotely sensed datasets and open-source geospatial datasets, into hydrodynamic models for flood inundation simulations is assessed. The 2015 Dallas floods that caused up to $61 million dollars in damage was selected for this study. A Hydraulic Engineering Center - River Analysis System (HEC-RAS) model was developed for the study area, using reservoir surcharge releases and geometry provided by the U.S. Army Corps of Engineers Fort Worth District. The simulated flood inundation is compared with the "contributed data" for the location (such as Civil Air Patrol data and WorldView 3 dataset) which indicated the model's lack of representing lateral inflows near the upstream section. An Artificial Neural Network (ANN) model is developed that used local precipitation and discharge values in the vicinity to estimate the lateral flows

  7. Flood and Coastal Storm Damage Reduction Program. Beach-fx User’s Manual: Version 1.0 (United States)


    to the seaward toe of the dune at which Lots in the Reach will be marked as condemned prohibiting the rebuilding of Damage Elements in that Lot...seaward toe of the dune to start of fore slope. Dune section is the distance from the seaward toe of the dune to the landward toe of the dune . Upland...width is the distance between the SBEACH cross-shore position and the landward toe of the dune . It can be used for offline calculations for land

  8. Application of Flood Nomograph for Flood Forecasting in Urban Areas

    Directory of Open Access Journals (Sweden)

    Eui Hoon Lee


    Full Text Available Imperviousness has increased due to urbanization, as has the frequency of extreme rainfall events by climate change. Various countermeasures, such as structural and nonstructural measures, are required to prepare for these effects. Flood forecasting is a representative nonstructural measure. Flood forecasting techniques have been developed for the prevention of repetitive flood damage in urban areas. It is difficult to apply some flood forecasting techniques using training processes because training needs to be applied at every usage. The other flood forecasting techniques that use rainfall data predicted by radar are not appropriate for small areas, such as single drainage basins. In this study, a new flood forecasting technique is suggested to reduce flood damage in urban areas. The flood nomograph consists of the first flooding nodes in rainfall runoff simulations with synthetic rainfall data at each duration. When selecting the first flooding node, the initial amount of synthetic rainfall is 1 mm, which increases in 1 mm increments until flooding occurs. The advantage of this flood forecasting technique is its simple application using real-time rainfall data. This technique can be used to prepare a preemptive response in the process of urban flood management.

  9. Development of flood index by characterisation of flood hydrographs (United States)

    Bhattacharya, Biswa; Suman, Asadusjjaman


    In recent years the world has experienced deaths, large-scale displacement of people, billions of Euros of economic damage, mental stress and ecosystem impacts due to flooding. Global changes (climate change, population and economic growth, and urbanisation) are exacerbating the severity of flooding. The 2010 floods in Pakistan and the 2011 floods in Australia and Thailand demonstrate the need for concerted action in the face of global societal and environmental changes to strengthen resilience against flooding. Due to climatological characteristics there are catchments where flood forecasting may have a relatively limited role and flood event management may have to be trusted upon. For example, in flash flood catchments, which often may be tiny and un-gauged, flood event management often depends on approximate prediction tools such as flash flood guidance (FFG). There are catchments fed largely by flood waters coming from upstream catchments, which are un-gauged or due to data sharing issues in transboundary catchments the flow of information from upstream catchment is limited. Hydrological and hydraulic modelling of these downstream catchments will never be sufficient to provide any required forecasting lead time and alternative tools to support flood event management will be required. In FFG, or similar approaches, the primary motif is to provide guidance by synthesising the historical data. We follow a similar approach to characterise past flood hydrographs to determine a flood index (FI), which varies in space and time with flood magnitude and its propagation. By studying the variation of the index the pockets of high flood risk, requiring attention, can be earmarked beforehand. This approach can be very useful in flood risk management of catchments where information about hydro-meteorological variables is inadequate for any forecasting system. This paper presents the development of FI and its application to several catchments including in Kentucky in the USA

  10. The development of flood map in Malaysia (United States)

    Zakaria, Siti Fairus; Zin, Rosli Mohamad; Mohamad, Ismail; Balubaid, Saeed; Mydin, Shaik Hussein; MDR, E. M. Roodienyanto


    In Malaysia, flash floods are common occurrences throughout the year in flood prone areas. In terms of flood extent, flash floods affect smaller areas but because of its tendency to occur in densely urbanized areas, the value of damaged property is high and disruption to traffic flow and businesses are substantial. However, in river floods especially the river floods of Kelantan and Pahang, the flood extent is widespread and can extend over 1,000 square kilometers. Although the value of property and density of affected population is lower, the damage inflicted by these floods can also be high because the area affected is large. In order to combat these floods, various flood mitigation measures have been carried out. Structural flood mitigation alone can only provide protection levels from 10 to 100 years Average Recurrence Intervals (ARI). One of the economically effective non-structural approaches in flood mitigation and flood management is using a geospatial technology which involves flood forecasting and warning services to the flood prone areas. This approach which involves the use of Geographical Information Flood Forecasting system also includes the generation of a series of flood maps. There are three types of flood maps namely Flood Hazard Map, Flood Risk Map and Flood Evacuation Map. Flood Hazard Map is used to determine areas susceptible to flooding when discharge from a stream exceeds the bank-full stage. Early warnings of incoming flood events will enable the flood victims to prepare themselves before flooding occurs. Properties and life's can be saved by keeping their movable properties above the flood levels and if necessary, an early evacuation from the area. With respect to flood fighting, an early warning with reference through a series of flood maps including flood hazard map, flood risk map and flood evacuation map of the approaching flood should be able to alert the organization in charge of the flood fighting actions and the authority to

  11. The flash flood event in the catchment of the river Weisseritz (eastern Erzgebirge, Saxony) from 12.-14. August 2002 - meteorological and hydrological reasons, damage assesment and disaster managment (United States)

    Goldberg, V.; Bernhofer, Ch.


    Between 12. and 14. August 2002 the region of eastern Erzgebirge (Saxony/Eastern Germany) was affected by the heaviest rainfall event recorded since beginning of the measuring period in 1883. The synoptic reason of this event was the advective precipitation due to the strong and very slowly shifting Vb-low "Ilse" combined with a noticeable topographic intensification by north-westerly winds. All stations in the catchment area of the river Weisseritz recorded new all-time records. E.g., at the meteorological station Zinnwald-Georgenfeld situated at the crest of eastern Erzgebirge a daily sum of 312 mm was measured for the 13. August. This value is close to the maximum physically possible rainfall. The intensive rainfall in the catchments of Rote Weisseritz and Wilde Weisseritz led to unexperienced heavy flash floods with large material transport and flow damages. The buffer effect of the existing dam systems was comparatively small because the reserved retaining capacity for flood protection was only about 20 percent of the total capacity. The reservoirs filled quickly due to the very high maximum inflow. So a long-time overflow of the dam system occurred with a maximum of about 300 cubic meters per second at the combined river Weisseritz through the cities of Freital and Dresden (This situation led, e.g., to the flooding of Central Railway Station in Dresden). This water flow is comparable with a medium flow rate of the river Elbe in Dresden, and it is about 300 times higher than the normal drain of the river Weisseritz in Freital! The material damages in the Weisseritz region account for several hundred millions EURO, and several causalties occurred. The damages of the University buildings in Tharandt (including one building of the Department of Meteorology) account for 15 millions EURO alone. The disaster management during the flood was not optimal. For many people, e.g. in Tharandt, there was neither an officially warning nor an organised rescue of movable goods

  12. Numerical simulation of flood barriers (United States)

    Srb, Pavel; Petrů, Michal; Kulhavý, Petr

    This paper deals with testing and numerical simulating of flood barriers. The Czech Republic has been hit by several very devastating floods in past years. These floods caused several dozens of causalities and property damage reached billions of Euros. The development of flood measures is very important, especially for the reduction the number of casualties and the amount of property damage. The aim of flood control measures is the detention of water outside populated areas and drainage of water from populated areas as soon as possible. For new flood barrier design it is very important to know its behaviour in case of a real flood. During the development of the barrier several standardized tests have to be carried out. Based on the results from these tests numerical simulation was compiled using Abaqus software and some analyses were carried out. Based on these numerical simulations it will be possible to predict the behaviour of barriers and thus improve their design.

  13. Smoky River coal flood risk mapping study

    Energy Technology Data Exchange (ETDEWEB)



    The Canada-Alberta Flood Damage Reduction Program (FDRP) is designed to reduce flood damage by identifying areas susceptible to flooding and by encouraging application of suitable land use planning, zoning, and flood preparedness and proofing. The purpose of this study is to define flood risk and floodway limits along the Smoky River near the former Smoky River Coal (SRC) plant. Alberta Energy has been responsible for the site since the mine and plant closed in 2000. The study describes flooding history, available data, features of the river and valley, calculation of flood levels, and floodway determination, and includes flood risk maps. The HEC-RAS program is used for the calculations. The flood risk area was calculated using the 1:100 year return period flood as the hydrological event. 7 refs., 11 figs., 7 tabs., 3 apps.

  14. Learning from and for rare floods in Dresden – how public officials interpret damage simulation results at the building type level

    Directory of Open Access Journals (Sweden)

    Hutter Gerard


    Full Text Available Public officials in Dresden are concerned about learning from and for rare flood events like the Elbe river flood in August 2002. This is interesting because research on individual as well as organizational learning from rare events indicates that this kind of learning faces significant difficulties (e.g., overestimation of rare events for decision-making based on “emotionalized event experience”. Up to now, only little is known what and how public officials in Dresden specifically learn from and for rare floods. Therefore, the paper follows an exploratory purpose in line with principles of qualitative social research. Firstly, the paper explores dealing with rare floods with reference to a conceptual framework that highlights relations between regulative, normative, and cognitive institutions on the one hand and learning of public officials on the other. Secondly, it adopts a single case study design in Dresden with embedded sub-cases that are defined with reference to organizations of FRM. The case study shows, among others, that regulations like the Floods Directive are important for justifying FRM with regard to rare flood events which is less obvious than it sounds. However, public officials display different interpretations of the term “rare flood event”, for instance, in the context of analysing the consequences of floods on the building stock. Furthermore, the case study findings indicate that public officials may follow alternative approaches to sustain commitment in the context of rare flood events (systematic versus pragmatic approach.

  15. 44 CFR 61.17 - Group Flood Insurance Policy. (United States)


    ... U.S.C. 5174) of an Individuals and Households Program (IHP) award for flood damage as a result of... flood-damage losses sustained by the insured property in the course of any subsequent flooding event..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE...

  16. Technical note Flood map development by coupling satellite maps ...

    African Journals Online (AJOL)

    Flood maps are important for local authorities in designing mitigation plans to minimise damage and loss due to flooding. In recent years, flood events in the Sarawak River Basin, Malaysia have caused damage to property, loss of life and disruption of productive activities. Currently, the available flood map for Sarawak River ...

  17. Flood loss assessment in the Kota Tinggi

    International Nuclear Information System (INIS)

    Tam, T H; Ibrahim, A L; Rahman, M Z A; Mazura, Z


    Malaysia is free from several destructive and widespread natural disasters but frequently affected by floods, which caused massive flood damage. In 2006 and 2007, an extreme rainfall occured in many parts of Peninsular Malaysia, which caused severe flooding in several major cities. Kota Tinggi was chosen as study area as it is one the seriously affected area in Johor state. The aim of this study is to estimate potential flood damage to physical elements in Kota Tinggi. The flood damage map contains both qualitative and quantitative information which corresponds to the consequences of flooding. This study only focuses on physical elements. Three different damage functions were adopted to calculate the potential flood damage and flood depth is considered as the main parameter. The adopted functions are United States, the Netherlands and Malaysia. The estimated flood damage for housing using United States, the Netherlands and Malaysia was RM 350/m 2 RM 200/m 2 and RM 100/m 2 respectively. These results successfully showed the average flood damage of physical element. Such important information needed by local authority and government for urban spatial planning and aiming to reduce flood risk

  18. Structural master plan of flood mitigation measures


    A. Heidari


    Flood protection is one of the practical methods in damage reduction. Although it not possible to be completely protected from flood disaster but major part of damages can be reduced by mitigation plans. In this paper, the optimum flood mitigation master plan is determined by economic evaluation in trading off between the construction costs and expected value of damage reduction as the benefits. Size of the certain mitigation alternative is also be obtained by risk analysis by accepting possi...

  19. Flood Hazards - A National Threat (United States)



    In the late summer of 2005, the remarkable flooding brought by Hurricane Katrina, which caused more than $200 billion in losses, constituted the costliest natural disaster in U.S. history. However, even in typical years, flooding causes billions of dollars in damage and threatens lives and property in every State. Natural processes, such as hurricanes, weather systems, and snowmelt, can cause floods. Failure of levees and dams and inadequate drainage in urban areas can also result in flooding. On average, floods kill about 140 people each year and cause $6 billion in property damage. Although loss of life to floods during the past half-century has declined, mostly because of improved warning systems, economic losses have continued to rise due to increased urbanization and coastal development.

  20. GIS Support for Flood Rescue

    DEFF Research Database (Denmark)

    Liang, Gengsheng; Mioc, Darka; Anton, François


    Under flood events, the ground traffic is blocked in and around the flooded area due to damages to roads and bridges. The traditional transportation network may not always help people to make a right decision for evacuation. In order to provide dynamic road information needed for flood rescue, we...... to retrieve the shortest and safest route in Fredericton road network during flood event. It enables users to make a timely decision for flood rescue. We are using Oracle Spatial to deal with emergency situations that can be applied to other constrained network applications as well....... developed an adaptive web-based transportation network application using Oracle technology. Moreover, the geographic relationships between the road network and flood areas are taken into account. The overlay between the road network and flood polygons is computed on the fly. This application allows users...

  1. Flood risk management in Italy

    DEFF Research Database (Denmark)

    Mysiak, J.; Testella, F.; Bonaiuto, M.


    Italy's recent history is punctuated with devastating flood disasters claiming high death toll and causing vast but underestimated economic, social and environmental damage. The responses to major flood and landslide disasters such as the Polesine (1951), Vajont (1963), Firenze (1966), Valtelina...

  2. 46 CFR 28.580 - Unintentional flooding. (United States)


    ... 46 Shipping 1 2010-10-01 2010-10-01 false Unintentional flooding. 28.580 Section 28.580 Shipping... INDUSTRY VESSELS Stability § 28.580 Unintentional flooding. (a) Applicability. Except for an open boat that... survive the assumed damage and unintentional flooding described in paragraphs (d) and (e) of this section...

  3. Coping with Pluvial Floods by Private Households

    Directory of Open Access Journals (Sweden)

    Viktor Rözer


    Full Text Available Pluvial floods have caused severe damage to urban areas in recent years. With a projected increase in extreme precipitation as well as an ongoing urbanization, pluvial flood damage is expected to increase in the future. Therefore, further insights, especially on the adverse consequences of pluvial floods and their mitigation, are needed. To gain more knowledge, empirical damage data from three different pluvial flood events in Germany were collected through computer-aided telephone interviews. Pluvial flood awareness as well as flood experience were found to be low before the respective flood events. The level of private precaution increased considerably after all events, but is mainly focused on measures that are easy to implement. Lower inundation depths, smaller potential losses as compared with fluvial floods, as well as the fact that pluvial flooding may occur everywhere, are expected to cause a shift in damage mitigation from precaution to emergency response. However, an effective implementation of emergency measures was constrained by a low dissemination of early warnings in the study areas. Further improvements of early warning systems including dissemination as well as a rise in pluvial flood preparedness are important to reduce future pluvial flood damage.

  4. Comparing flood loss models of different complexity (United States)

    Schröter, Kai; Kreibich, Heidi; Vogel, Kristin; Riggelsen, Carsten; Scherbaum, Frank; Merz, Bruno


    Any deliberation on flood risk requires the consideration of potential flood losses. In particular, reliable flood loss models are needed to evaluate cost-effectiveness of mitigation measures, to assess vulnerability, for comparative risk analysis and financial appraisal during and after floods. In recent years, considerable improvements have been made both concerning the data basis and the methodological approaches used for the development of flood loss models. Despite of that, flood loss models remain an important source of uncertainty. Likewise the temporal and spatial transferability of flood loss models is still limited. This contribution investigates the predictive capability of different flood loss models in a split sample cross regional validation approach. For this purpose, flood loss models of different complexity, i.e. based on different numbers of explaining variables, are learned from a set of damage records that was obtained from a survey after the Elbe flood in 2002. The validation of model predictions is carried out for different flood events in the Elbe and Danube river basins in 2002, 2005 and 2006 for which damage records are available from surveys after the flood events. The models investigated are a stage-damage model, the rule based model FLEMOps+r as well as novel model approaches which are derived using data mining techniques of regression trees and Bayesian networks. The Bayesian network approach to flood loss modelling provides attractive additional information concerning the probability distribution of both model predictions and explaining variables.

  5. Iowa Flood Information System (United States)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.


    in advance to help minimize damage of floods. This presentation provides an overview of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.

  6. The determinants of private flood mitigation measures in Germany - evidence from a nationwide survey


    Osberghaus, Daniel


    Public flood protection cannot totally eliminate the risk of flooding. Hence, private mitigation measures which proactively protect homes from being flooded or reduce flood damage are an essential part of modern flood risk management. This study analyses private flood mitigation measures among German households. The dataset covers more than 6000 households from all parts of the country, including flood plains as well as areas which are typically not at a high risk of riverine flooding. The re...

  7. Effectiveness and reliability of emergency measures for flood prevention

    NARCIS (Netherlands)

    Lendering, K.T.; Jonkman, S.N.; Kok, M.


    Floods in the summer of 2013 in Central Europe demonstrated once again that floods account for a large part of damage and loss of life caused by natural disasters. During flood threats emergency measures, such as sand bags and big bags, are often applied to strengthen the flood defences and attempt

  8. Effects of Flood Control Strategies on Flood Resilience Under Sociohydrological Disturbances (United States)

    Sung, Kyungmin; Jeong, Hanseok; Sangwan, Nikhil; Yu, David J.


    A community capacity to cope with flood hazards, or community flood resilience, emerges from the interplay of hydrological and social processes. This interplay can be significantly influenced by the flood control strategy adopted by a society, i.e., how a society sets its desired flood protection level and strives to achieve this goal. And this interplay can be further complicated by rising land-sea level differences, seasonal water level fluctuations, and economic change. But not much research has been done on how various forms of flood control strategies affect human-flood interactions under these disturbances and therefore flood resilience in the long run. The current study is an effort to address these issues by developing a conceptual model of human-flood interaction mediated by flood control strategies. Our model extends the existing model of Yu et al. (2017), who investigated the flood resilience of a community-based flood protection system in coastal Bangladesh. The major extensions made in this study are inclusions of various forms of flood control strategies (both adaptive and nonadaptive ones), the challenge of rising land-sea level differences, and various high tide level scenarios generated from modifying the statistical variances and averages. Our results show that adaptive forms of flood control strategies tend to outperform nonadaptive ones for maintaining the model community's flood protection system. Adaptive strategies that dynamically adjust target flood protection levels through close monitoring of flood damages and social memories of flood risk can help the model community deal with various disturbances.

  9. Development of Integrated Flood Analysis System for Improving Flood Mitigation Capabilities in Korea (United States)

    Moon, Young-Il; Kim, Jong-suk


    Recently, the needs of people are growing for a more safety life and secure homeland from unexpected natural disasters. Flood damages have been recorded every year and those damages are greater than the annual average of 2 trillion won since 2000 in Korea. It has been increased in casualties and property damages due to flooding caused by hydrometeorlogical extremes according to climate change. Although the importance of flooding situation is emerging rapidly, studies related to development of integrated management system for reducing floods are insufficient in Korea. In addition, it is difficult to effectively reduce floods without developing integrated operation system taking into account of sewage pipe network configuration with the river level. Since the floods result in increasing damages to infrastructure, as well as life and property, structural and non-structural measures should be urgently established in order to effectively reduce the flood. Therefore, in this study, we developed an integrated flood analysis system that systematized technology to quantify flood risk and flood forecasting for supporting synthetic decision-making through real-time monitoring and prediction on flash rain or short-term rainfall by using radar and satellite information in Korea. Keywords: Flooding, Integrated flood analysis system, Rainfall forecasting, Korea Acknowledgments This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ011686022015)" Rural Development Administration, Republic of Korea

  10. Estimation of flood environmental effects using flood zone mapping techniques in Halilrood Kerman, Iran. (United States)

    Boudaghpour, Siamak; Bagheri, Majid; Bagheri, Zahra


    High flood occurrences with large environmental damages have a growing trend in Iran. Dynamic movements of water during a flood cause different environmental damages in geographical areas with different characteristics such as topographic conditions. In general, environmental effects and damages caused by a flood in an area can be investigated from different points of view. The current essay is aiming at detecting environmental effects of flood occurrences in Halilrood catchment area of Kerman province in Iran using flood zone mapping techniques. The intended flood zone map was introduced in four steps. Steps 1 to 3 pave the way to calculate and estimate flood zone map in the understudy area while step 4 determines the estimation of environmental effects of flood occurrence. Based on our studies, wide range of accuracy for estimating the environmental effects of flood occurrence was introduced by using of flood zone mapping techniques. Moreover, it was identified that the existence of Jiroft dam in the study area can decrease flood zone from 260 hectares to 225 hectares and also it can decrease 20% of flood peak intensity. As a result, 14% of flood zone in the study area can be saved environmentally.

  11. Developing a Malaysia flood model (United States)

    Haseldine, Lucy; Baxter, Stephen; Wheeler, Phil; Thomson, Tina


    Faced with growing exposures in Malaysia, insurers have a need for models to help them assess their exposure to flood losses. The need for an improved management of flood risks has been further highlighted by the 2011 floods in Thailand and recent events in Malaysia. The increasing demand for loss accumulation tools in Malaysia has lead to the development of the first nationwide probabilistic Malaysia flood model, which we present here. The model is multi-peril, including river flooding for thousands of kilometres of river and rainfall-driven surface water flooding in major cities, which may cause losses equivalent to river flood in some high-density urban areas. The underlying hazard maps are based on a 30m digital surface model (DSM) and 1D/2D hydraulic modelling in JFlow and RFlow. Key mitigation schemes such as the SMART tunnel and drainage capacities are also considered in the model. The probabilistic element of the model is driven by a stochastic event set based on rainfall data, hence enabling per-event and annual figures to be calculated for a specific insurance portfolio and a range of return periods. Losses are estimated via depth-damage vulnerability functions which link the insured damage to water depths for different property types in Malaysia. The model provides a unique insight into Malaysian flood risk profiles and provides insurers with return period estimates of flood damage and loss to property portfolios through loss exceedance curve outputs. It has been successfully validated against historic flood events in Malaysia and is now being successfully used by insurance companies in the Malaysian market to obtain reinsurance cover.

  12. Structural master plan of flood mitigation measures

    Directory of Open Access Journals (Sweden)

    A. Heidari


    Full Text Available Flood protection is one of the practical methods in damage reduction. Although it not possible to be completely protected from flood disaster but major part of damages can be reduced by mitigation plans. In this paper, the optimum flood mitigation master plan is determined by economic evaluation in trading off between the construction costs and expected value of damage reduction as the benefits. Size of the certain mitigation alternative is also be obtained by risk analysis by accepting possibility of flood overtopping. Different flood mitigation alternatives are investigated from various aspects in the Dez and Karun river floodplain areas as a case study in south west of IRAN. The results show that detention dam and flood diversion are the best alternatives of flood mitigation methods as well as enforcing the flood control purpose of upstream multipurpose reservoirs. Dyke and levees are not mostly justifiable because of negative impact on down stream by enhancing routed flood peak discharge magnitude and flood damages as well.

  13. Swiss Re Global Flood Hazard Zones: Know your flood risk (United States)

    Vinukollu, R. K.; Castaldi, A.; Mehlhorn, J.


    Floods, among all natural disasters, have a great damage potential. On a global basis, there is strong evidence of increase in the number of people affected and economic losses due to floods. For example, global insured flood losses have increased by 12% every year since 1970 and this is expected to further increase with growing exposure in the high risk areas close to rivers and coastlines. Recently, the insurance industry has been surprised by the large extent of losses, because most countries lack reliable hazard information. One example has been the 2011 Thailand floods where millions of people were affected and the total economic losses were 30 billion USD. In order to assess the flood risk across different regions and countries, the flood team at Swiss Re based on a Geomorphologic Regression approach, developed in house and patented, produced global maps of flood zones. Input data for the study was obtained from NASA's Shuttle Radar Topographic Mission (SRTM) elevation data, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) and HydroSHEDS. The underlying assumptions of the approach are that naturally flowing rivers shape their channel and flood plain according to basin inherent forces and characteristics and that the flood water extent strongly depends on the shape of the flood plain. On the basis of the catchment characteristics, the model finally calculates the probability of a location to be flooded or not for a defined return period, which in the current study was set to 100 years. The data is produced at a 90-m resolution for latitudes 60S to 60N. This global product is now used in the insurance industry to inspect, inform and/or insure the flood risk across the world.

  14. Introduction to flood control science

    International Nuclear Information System (INIS)

    Lee, Dong U; Ha, Jin Uk; Kim, Dong Ha; Shin, Hong Ryeol; Song, Seok Hwan; Kim, Jin Gyu; Moon, Heon Cheol


    This book covers introduction, industrialization disaster such as Bhopal and Chernobyl disaster, earthquake disaster, volcano disaster, avalanche disaster including loss allocation and prevention measures, and natural fire by showing California, Yellowstone park and similarity between fire and flood. It also introduces climate change and disaster, Earth's greenhouse effect and disaster due to current sea level rise, flood damage, drought disaster, famine and drought, prediction of drought, population problems, outlook of world population, and disaster prevention administration system of Korea.

  15. Flood of April 1975 at Williamston, Michigan (United States)

    Knutilla, R.L.; Swallow, L.A.


    On April 18 between 5 p.m. and 12 p.m. the city of Williamston experienced an intense rain storm that caused the Red Cedar River and the many small streams in the area to overflow their banks and resulted in the most devastating flood since at least 1904. Local officials estimated a loss of \\$775,000 in property damage. Damage from flooding by the Red Cedar River was caused primarily by inundation, rather than by water moving at high velocity, as is common when many streams are flooded. During the flood of April 1975 many basements were flooded as well as the lower floors of some homes in the flood plain. Additional damage occurred in places when sewers backed up and flooded basements, and when ground water seeped through basement walls and floors—situations that affected many homes including those that were well outside of the flood plain.During the time of flooding the U.S. Geological Survey obtained aerial photography and data on a streamflow to document the disaster. This report shows on a photomosaic base map the extent of flooding along the Red Cedar River at Williamston, during the flood. It also presents data obtained at stream-gaging stations near Williamston, as well as the results of peak-flow discharge measurements made on the Red Cedar River at Michigan State Highway M-52 east of the city. Information on the magnitude of the flood can guide in making decisions pertaining to the use of flood-plains in the area. It is one of a series of reports on the April 1975 flood in the Lansing metropolitan area.

  16. Towards a Flood Severity Index (United States)

    Kettner, A.; Chong, A.; Prades, L.; Brakenridge, G. R.; Muir, S.; Amparore, A.; Slayback, D. A.; Poungprom, R.


    Flooding is the most common natural hazard worldwide, affecting 21 million people every year. In the immediate moments following a flood event, humanitarian actors like the World Food Program need to make rapid decisions ( 72 hrs) on how to prioritize affected areas impacted by such an event. For other natural disasters like hurricanes/cyclones and earthquakes, there are industry-recognized standards on how the impacted areas are to be classified. Shake maps, quantifying peak ground motion, from for example the US Geological Survey are widely used for assessing earthquakes. Similarly, cyclones are tracked by Joint Typhoon Warning Center (JTWC) and Global Disaster Alert and Coordination System (GDACS) who release storm nodes and tracks (forecasted and actual), with wind buffers and classify the event according to the Saffir-Simpson Hurricane Wind Scale. For floods, the community is usually able to acquire unclassified data of the flood extent as identified from satellite imagery. Most often no water discharge hydrograph is available to classify the event into recurrence intervals simply because there is no gauging station, or the gauging station was unable to record the maximum discharge due to overtopping or flood damage. So, the question remains: How do we methodically turn a flooded area into classified areas of different gradations of impact? Here, we present a first approach towards developing a global applicable flood severity index. The flood severity index is set up such that it considers relatively easily obtainable physical parameters in a short period of time like: flood frequency (relating the current flood to historical events) and magnitude, as well as land cover, slope, and where available pre-event simulated flood depth. The scale includes categories ranging from very minor flooding to catastrophic flooding. We test and evaluate the postulated classification scheme against a set of past flood events. Once a severity category is determined, socio

  17. Evaluation of internal flooding in a BWR

    International Nuclear Information System (INIS)

    Shiu, K.; Papazoglou, I.A.; Sun, Y.H.; Anavim, E.; Ilberg, D.


    Flooding inside a nuclear power station is capable of concurrently disabling redundant safety systems. This paper presents the results of a recent review study performed on internally-generated floods inside a boiling water reactor (BWR) reactor building. The study evaluated the flood initiator frequency due to either maintenance or ruptures using Markovian models. A time phased event tree approach was adopted to quantify the core damage frequency based on the flood initiator frequency. It is found in the study that the contribution to the total core damage due to internal flooding events is not insignificant and is comparable to other transient contributors. The findings also indicate that the operator plays an important role in the prevention as well as the mitigation of a flooding event

  18. Loss and damage affecting the public health sector and society resulting from flooding and flash floods in Brazil between 2010 and 2014 - based on data from national and global information systems. (United States)

    Minervino, Aline Costa; Duarte, Elisabeth Carmen


    This article outlines the results of a descriptive study that analyses loss and damage caused by hydrometeorological disasters in Brazil between 2010 and 2014 using the EM DAT (global) and S2iD (national) databases. The analysis shows major differences in the total number of disaster events included in the databases (EM-DAT = 36; S2iD = 4,070) and estimated costs of loss and damage (EM-DAT - R$ 9.2 billion; S2iD - R$331.4 billion). The analysis also shows that the five states most affected by these events are Santa Catarina, Rio Grande do Sul, Minas Gerais, São Paulo and Paraná in Brazil's South and Southeast regions and that these results are consistent with the findings of other studies. The costs of disasters were highest for housing, public infrastructure works, collectively used public facilities, other public service facilities, and state health and education facilities. The costs associated with public health facilities were also high. Despite their limitations, both databases demonstrated their usefulness for determining seasonal and long-term trends and patterns, and risk areas, and thus assist decision makers in identifying areas that are most affected by and vulnerable to natural disasters.

  19. Flood Response System—A Case Study


    Yogesh Kumar Singh; Upasana Dutta; T. S. Murugesh Prabhu; I. Prabu; Jitendra Mhatre; Manoj Khare; Sandeep Srivastava; Subasisha Dutta


    Flood Response System (FRS) is a network-enabled solution developed using open-source software. The system has query based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. FRS effectively facilitates the management of post-disaster activities caused due to flood, like displaying spatial maps of area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the critica...

  20. Statistical analysis of the uncertainty related to flood hazard appraisal (United States)

    Notaro, Vincenza; Freni, Gabriele


    The estimation of flood hazard frequency statistics for an urban catchment is of great interest in practice. It provides the evaluation of potential flood risk and related damage and supports decision making for flood risk management. Flood risk is usually defined as function of the probability, that a system deficiency can cause flooding (hazard), and the expected damage, due to the flooding magnitude (damage), taking into account both the exposure and the vulnerability of the goods at risk. The expected flood damage can be evaluated by an a priori estimation of potential damage caused by flooding or by interpolating real damage data. With regard to flood hazard appraisal several procedures propose to identify some hazard indicator (HI) such as flood depth or the combination of flood depth and velocity and to assess the flood hazard corresponding to the analyzed area comparing the HI variables with user-defined threshold values or curves (penalty curves or matrixes). However, flooding data are usually unavailable or piecemeal allowing for carrying out a reliable flood hazard analysis, therefore hazard analysis is often performed by means of mathematical simulations aimed at evaluating water levels and flow velocities over catchment surface. As results a great part of the uncertainties intrinsic to flood risk appraisal can be related to the hazard evaluation due to the uncertainty inherent to modeling results and to the subjectivity of the user defined hazard thresholds applied to link flood depth to a hazard level. In the present work, a statistical methodology was proposed for evaluating and reducing the uncertainties connected with hazard level estimation. The methodology has been applied to a real urban watershed as case study.

  1. Mapping flood and flooding potential indices: a methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania) (United States)

    Zaharia, Liliana; Costache, Romulus; Prăvălie, Remus; Ioana-Toroimac, Gabriela


    Given that floods continue to cause yearly significant worldwide human and material damages, flood risk mitigation is a key issue and a permanent challenge in developing policies and strategies at various spatial scales. Therefore, a basic phase is elaborating hazard and flood risk maps, documents which are an essential support for flood risk management. The aim of this paper is to develop an approach that allows for the identification of flash-flood and flood-prone susceptible areas based on computing and mapping of two indices: FFPI (Flash-Flood Potential Index) and FPI (Flooding Potential Index). These indices are obtained by integrating in a GIS environment several geographical variables which control runoff (in the case of the FFPI) and favour flooding (in the case of the FPI). The methodology was applied in the upper (mountainous) and middle (hilly) catchment of the Prahova River, a densely populated and socioeconomically well-developed area which has been affected repeatedly by water-related hazards over the past decades. The resulting maps showing the spatialization of the FFPI and FPI allow for the identification of areas with high susceptibility to flashfloods and flooding. This approach can provide useful mapped information, especially for areas (generally large) where there are no flood/hazard risk maps. Moreover, the FFPI and FPI maps can constitute a preliminary step for flood risk and vulnerability assessment.

  2. Contribution of insurance data to cost assessment of coastal flood damage to residential buildings: insights gained from Johanna (2008) and Xynthia (2010) storm events


    C. André; D. Monfort; M. Bouzit; C. Vinchon


    There are a number of methodological issues involved in assessing damage caused by natural hazards. The first is the lack of data, due to the rarity of events and the widely different circumstances in which they occur. Thus, historical data, albeit scarce, should not be neglected when seeking to build ex-ante risk management models. This article analyses the input of insurance data for two recent severe coastal storm events, to examine what causal relationships may exist bet...

  3. Flood loss reduction of private households due to building precautionary measures -- lessons learned from the Elbe flood in August 2002

    Directory of Open Access Journals (Sweden)

    H. Kreibich


    Full Text Available Building houses in inundation areas is always a risk, since absolute flood protection is impossible. Where settlements already exist, flood damage must be kept as small as possible. Suitable means are precautionary measures such as elevated building configuration or flood adapted use. However, data about the effects of such measures are rare, and consequently, the efficiency of different precautionary measures is unclear. To improve the knowledge about efficient precautionary measures, approximately 1200 private households, which were affected by the 2002 flood at the river Elbe and its tributaries, were interviewed about the flood damage of their buildings and contents as well as about their precautionary measures. The affected households had little flood experience, i.e. only 15% had experienced a flood before. 59% of the households stated that they did not know, that they live in a flood prone area. Thus, people were not well prepared, e.g. just 11% had used and furnished their house in a flood adapted way and only 6% had a flood adapted building structure. Building precautionary measures are mainly effective in areas with frequent small floods. But also during the extreme flood event in 2002 building measures reduced the flood loss. From the six different building precautionary measures under study, flood adapted use and adapted interior fitting were the most effective ones. They reduced the damage ratio for buildings by 46% and 53%, respectively. The damage ratio for contents was reduced by 48% due to flood adapted use and by 53% due to flood adapted interior fitting. The 2002 flood motivated a relatively large number of people to implement private precautionary measures, but still much more could be done. Hence, to further reduce flood losses, people's motivation to invest in precaution should be improved. More information campaigns and financial incentives should be issued to encourage precautionary measures.

  4. An operational procedure for rapid flood risk assessment in Europe (United States)

    Dottori, Francesco; Kalas, Milan; Salamon, Peter; Bianchi, Alessandra; Alfieri, Lorenzo; Feyen, Luc


    The development of methods for rapid flood mapping and risk assessment is a key step to increase the usefulness of flood early warning systems and is crucial for effective emergency response and flood impact mitigation. Currently, flood early warning systems rarely include real-time components to assess potential impacts generated by forecasted flood events. To overcome this limitation, this study describes the benchmarking of an operational procedure for rapid flood risk assessment based on predictions issued by the European Flood Awareness System (EFAS). Daily streamflow forecasts produced for major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in terms of flood-prone areas, economic damage and affected population, infrastructures and cities.An extensive testing of the operational procedure has been carried out by analysing the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-based and report-based flood extent data, while modelled estimates of economic damage and affected population are compared against ground-based estimations. Finally, we evaluate the skill of risk estimates derived from EFAS flood forecasts with different lead times and combinations of probabilistic forecasts. Results highlight the potential of the real-time operational procedure in helping emergency response and management.

  5. Flooding PSA with Plant Specific Operating Experiences of Korean PWRs

    International Nuclear Information System (INIS)

    Choi, Sun Yeong; Yang, Joon Yull


    The purpose of this paper is to update the flooding PSA with Korean plant specific operating experience data and the appropriate estimation method for the flooding frequency to improve the PSA quality. The existing flooding PSA used the NPE (Nuclear Power Experience) database up to 1985 for the flooding frequency. They are all USA plant operating experiences. So an upgraded flooding frequency with Korean specific plant operation experience is required. We also propose a method of only using the PWR (Pressurized Water Reactor) data for the flooding frequency estimation in the case of the flooding area in the primary building even though the existing flooding PSA used both PWR and BWR (Boiled Water Reactor) data for all kinds of plant areas. We evaluate the CDF (Core Damage Frequency) with the modified flooding frequency and compare the results with that of the existing flooding PSA method

  6. Floods in Colorado (United States)

    Follansbee, Robert; Sawyer, Leon R.


    The first records of floods in Colorado antedated the settlement of the State by about 30 years. These were records of floods on the Arkansas and Republican Rivers in 1826. Other floods noted by traders, hunters and emigrants, some of whom were on their way to the Far West, occurred in 1844 on the Arkansas River, and by inference on the South Platte River. Other early floods were those on the Purgatoire, the Lower Arkansas, and the San Juan Rivers about 1859. The most serious flood since settlement began was that on the Arkansas River during June 1921, which caused the loss of about 100 lives and an estimated property loss of $19,000,000. Many floods of lesser magnitude have occurred, and some of these have caused loss of life and very considerable property damage. Topography is the chief factor in determining the location of storms and resulting floods. These occur most frequently on the eastern slope of the Front Range. In the mountains farther west precipitation is insufficient to cause floods except during periods of melting snow, in June. In the southwestern part of the State, where precipitation during periods of melting snow is insufficient to cause floods, the severest floods yet experienced resulted from heavy rains in September 1909 and October 1911. In the eastern foothills region, usually below an altitude of about 7,500 feet and extending for a distance of about 50 miles east of the mountains, is a zone subject to rainfalls of great intensity known as cloudbursts. These cloudbursts are of short duration and are confined to very small areas. At times the intensity is so great as to make breathing difficult for those exposed to a storm. The areas of intense rainfall are so small that Weather Bureau precipitation stations have not been located in them. Local residents, being cloudburst conscious, frequently measure the rainfall in receptacles in their yards, and such records constitute the only source of information regarding the intensity. A flood

  7. Statistical approach to flood disaster management and risks ...

    African Journals Online (AJOL)

    In the past four decades, economic losses due to flood have increased tremendously and resulted in major loss of human lives and livelihoods, the destruction of economic and social infrastructure, as well as environmental damage. This study focuses on flood disaster management through the establishment of a flood ...

  8. Assessment of flood mitigation through riparian detention in ...

    Indian Academy of Sciences (India)


    changing climate – a case study. 2. 3. Kwan Tun ... expected to mitigate flood damage in downstream urban areas. In this study ... recognized as the most vulnerable region in respect of natural disasters. In the main ..... An integrated numerical model was developed in this study for flooding simulation to realize. 21 the flood ...

  9. Review of the flood risk management system in Germany after the major flood in 2013

    Directory of Open Access Journals (Sweden)

    Annegret H. Thieken


    Full Text Available Widespread flooding in June 2013 caused damage costs of €6 to 8 billion in Germany, and awoke many memories of the floods in August 2002, which resulted in total damage of €11.6 billion and hence was the most expensive natural hazard event in Germany up to now. The event of 2002 does, however, also mark a reorientation toward an integrated flood risk management system in Germany. Therefore, the flood of 2013 offered the opportunity to review how the measures that politics, administration, and civil society have implemented since 2002 helped to cope with the flood and what still needs to be done to achieve effective and more integrated flood risk management. The review highlights considerable improvements on many levels, in particular (1 an increased consideration of flood hazards in spatial planning and urban development, (2 comprehensive property-level mitigation and preparedness measures, (3 more effective flood warnings and improved coordination of disaster response, and (4 a more targeted maintenance of flood defense systems. In 2013, this led to more effective flood management and to a reduction of damage. Nevertheless, important aspects remain unclear and need to be clarified. This particularly holds for balanced and coordinated strategies for reducing and overcoming the impacts of flooding in large catchments, cross-border and interdisciplinary cooperation, the role of the general public in the different phases of flood risk management, as well as a transparent risk transfer system. Recurring flood events reveal that flood risk management is a continuous task. Hence, risk drivers, such as climate change, land-use changes, economic developments, or demographic change and the resultant risks must be investigated at regular intervals, and risk reduction strategies and processes must be reassessed as well as adapted and implemented in a dialogue with all stakeholders.

  10. Flood model for Brazil (United States)

    Palán, Ladislav; Punčochář, Petr


    Looking on the impact of flooding from the World-wide perspective, in last 50 years flooding has caused over 460,000 fatalities and caused serious material damage. Combining economic loss from ten costliest flood events (from the same period) returns a loss (in the present value) exceeding 300bn USD. Locally, in Brazil, flood is the most damaging natural peril with alarming increase of events frequencies as 5 out of the 10 biggest flood losses ever recorded have occurred after 2009. The amount of economic and insured losses particularly caused by various flood types was the key driver of the local probabilistic flood model development. Considering the area of Brazil (being 5th biggest country in the World) and the scattered distribution of insured exposure, a domain covered by the model was limited to the entire state of Sao Paolo and 53 additional regions. The model quantifies losses on approx. 90 % of exposure (for regular property lines) of key insurers. Based on detailed exposure analysis, Impact Forecasting has developed this tool using long term local hydrological data series (Agencia Nacional de Aguas) from riverine gauge stations and digital elevation model (Instituto Brasileiro de Geografia e Estatística). To provide most accurate representation of local hydrological behaviour needed for the nature of probabilistic simulation, a hydrological data processing focused on frequency analyses of seasonal peak flows - done by fitting appropriate extreme value statistical distribution and stochastic event set generation consisting of synthetically derived flood events respecting realistic spatial and frequency patterns visible in entire period of hydrological observation. Data were tested for homogeneity, consistency and for any significant breakpoint occurrence in time series so the entire observation or only its subparts were used for further analysis. The realistic spatial patterns of stochastic events are reproduced through the innovative use of d-vine copula

  11. Development of a SIMSMART Based, Progressive Flooding Design Tool

    National Research Council Canada - National Science Library

    Anderson, Thomas


    While the Navy addresses the effects of progressive flooding in its design requirements, its limits for damaged stability are the results of World War II damage analysis and are evaluated under static...

  12. Lessons Learned from Southeast Asian Floods (United States)

    Osti, R.; Tanaka, S.


    At certain scales, flood has always been the lifeline of many people from Southeast Asian countries. People are traditionally accustomed to living with such floods and their livelihood is adjusted accordingly to optimize the benefits from the floods. However, large scale flood occasionally turns into the disaster and causes massive destruction not only in terms of human causalities but also damage to economic, ecological and social harmonies in the region. Although economic growth is prevailing in a relative term, the capacity of people to cope with such extreme events is weakening therefore the flood disaster risk is increasing in time. Recent examples of flood disaster in the region clearly show the increasing severity of disaster impact. This study reveals that there are many factors, which directly or indirectly influence the change. This paper considers the most prominent natural and socio-economic factors and analyzes their trend with respect to flood disasters in each country's context. A regional scale comparative analysis further helps to exchange the know how and to determine what kind of strategy and policy are lacking to manage the floods in a long run. It is also helpful in identifying the critical sectors that should be addressed first to mitigate the potential damage from the floods.

  13. Flood Response System—A Case Study

    Directory of Open Access Journals (Sweden)

    Yogesh Kumar Singh


    Full Text Available Flood Response System (FRS is a network-enabled solution developed using open-source software. The system has query based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. FRS effectively facilitates the management of post-disaster activities caused due to flood, like displaying spatial maps of area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the criticality of the information. It is designed to facilitate users in managing information related to flooding during critical flood seasons and analyzing the extent of damage. The inputs to FRS are provided using two components: (1 a semi-automated application developed indigenously, to delineate inundated areas for Near-Real Time Flood Monitoring using Active Microwave Remote Sensing data and (2 a two-dimensional (2D hydrodynamic river model generated outputs for water depth and velocity in flooded areas for an embankment breach scenario. The 2D Hydrodynamic model, CCHE2D (Center for Computational Hydroscience and Engineering Two-Dimensional model, was used to simulate an area of 600 km2 in the flood-prone zone of the Brahmaputra basin. The resultant inundated area from the model was found to be 85% accurate when validated with post-flood optical satellite data.

  14. Assessment and Adaptation to Climate Change-Related Floods Risks

    NARCIS (Netherlands)

    Jongman, B.; Winsemius, H.C.; Fraser, S.; Muis, S.; Ward, P.J.


    The flooding of rivers and coastlines is the most frequent and damaging of all natural hazards. Between 1980 and 2016, total direct damages exceeded $1.6 trillion, and at least 225,000 people lost their lives. Recent events causing major economic losses include the 2011 river flooding in Thailand

  15. Return period assessment of urban pluvial floods through modelling of rainfall–flood response

    DEFF Research Database (Denmark)

    Tuyls, Damian Murla; Thorndahl, Søren Liedtke; Rasmussen, Michael Robdrup


    Intense rainfall in urban areas can often generate severe flood impacts. Consequently, it is crucial to design systems to minimize potential flood damages. Traditional, simple design of urban drainage systems assumes agreement between rainfall return period and its consequent flood return period......; however, this does not always apply. Hydraulic infrastructures found in urban drainage systems can increase system heterogeneity and perturb the impact of severe rainfall response. In this study, a surface flood return period assessment was carried out at Lystrup (Denmark), which has received the impact...... of flooding in recent years. A 35 years' rainfall dataset together with a coupled 1D/2D surface and network model was used to analyse and assess flood return period response. Results show an ambiguous relation between rainfall and flood return periods indicating that linear rainfall–runoff relationships will...

  16. [Climate changes, floods, and health consequences]. (United States)

    Michelozzi, Paola; de' Donato, Francesca


    In the European Region, floods are the most common natural disaster, causing extensive damage and disruption. In Italy, it has been estimated that over 68% of municipalities are at high hydrogeological risk and with the recent intense rainfall events local populations have been facing severe disruptions. The health consequences of floods are wide ranging and are dependent upon the vulnerability of the environment and the local population. Health effects can be a direct or indirect consequence of flooding. The immediate health impacts of floods include drowning, heart attacks, injuries and hypothermia. The indirect effects include, injuries and infections, water-borne infectious disease, mental health problems, respiratory disease and allergies in both the medium and long term after a flood. Future efforts should be addressed to integrate health preparedness and prevention measures into emergency flood plans and hydrological warning systems.

  17. Simulating floods : On the application of a 2D-hydraulic model for flood hazard and risk assessment

    NARCIS (Netherlands)

    Alkema, D.


    Over the last decades, river floods in Europe seem to occur more frequently and are causing more and more economic and emotional damage. Understanding the processes causing flooding and the development of simulation models to evaluate countermeasures to control that damage are important issues. This

  18. 33 CFR 203.42 - Inspection of non-Federal flood control works. (United States)


    ... PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.42 Inspection of non-Federal flood control works. (a) Required... will conduct an IEI to determine if the flood control work meets minimum engineering and maintenance...

  19. Comprehensive flood mitigation and management in the Chi River Basin, Thailand

    NARCIS (Netherlands)

    Kunitiyawichai, K.; Schultz, B.; Uhlenbrook, S.; Suryadi, F.X.; Corzo, G.A.


    Severe flooding of the flat downstream area of the Chi River Basin occurs frequently. This flooding is causing catastrophic loss of human lives, damage and economic loss. Effective flood management requires a broad and practical approach. Although flood disasters cannot completely be prevented,

  20. Interactions between land use and flood management in the Chi River Basin

    NARCIS (Netherlands)

    Kuntiyawichai, K.


    The damages and hardships caused by floods and flooding remain an issue and are continuously increasing in the Chi River Basin, Thailand. It is difficult to make an accurate assessment of the costs and consequences associated with floods. However, flood hazards can also be seen as an opportunity, a

  1. Analysis of the flood extent extraction model and the natural flood influencing factors: A GIS-based and remote sensing analysis

    International Nuclear Information System (INIS)

    Lawal, D U; Matori, A N; Yusuf, K W; Hashim, A M; Balogun, A L


    Serious floods have hit the State of Perlis in 2005, 2010, as well as 2011. Perlis is situated in the northern part of Peninsula Malaysia. The floods caused great damage to properties and human lives. There are various methods used in an attempt to provide the most reliable ways to reduce the flood risk and damage to the optimum level by identifying the flood vulnerable zones. The purpose of this paper is to develop a flood extent extraction model based on Minimum Distance Algorithm and to overlay with the natural flood influencing factors considered herein in order to examine the effect of each factor in flood generation. GIS spatial database was created from a geological map, SPOT satellite image, and the topographical map. An attribute database was equally created from field investigations and historical flood areas reports of the study area. The results show a great correlation between the flood extent extraction model and the flood factors

  2. Assessment of flood risk in Tokyo metropolitan area (United States)

    Hirano, J.; Dairaku, K.


    Flood is one of the most significant natural hazards in Japan. The Tokyo metropolitan area has been affected by several large flood disasters. Therefore, investigating potential flood risk in Tokyo metropolitan area is important for development of adaptation strategy for future climate change. We aim to develop a method for evaluating flood risk in Tokyo Metropolitan area by considering effect of historical land use and land cover change, socio-economic change, and climatic change. Ministry of land, infrastructure, transport and tourism in Japan published 'Statistics of flood', which contains data for flood causes, number of damaged houses, area of wetted surface, and total amount of damage for each flood at small municipal level. By using these flood data, we estimated damage by inundation inside a levee for each prefecture based on a statistical method. On the basis of estimated damage, we developed flood risk curves in the Tokyo metropolitan area, representing relationship between damage and exceedance probability of flood for the period 1976-2008 for each prefecture. Based on the flood risk curve, we attempted evaluate potential flood risk in the Tokyo metropolitan area and clarify the cause for regional difference of flood risk. By analyzing flood risk curves, we found out regional differences of flood risk. We identified high flood risk in Tokyo and Saitama prefecture. On the other hand, flood risk was relatively low in Ibaraki and Chiba prefecture. We found that these regional differences of flood risk can be attributed to spatial distribution of entire property value and ratio of damaged housing units in each prefecture.We also attempted to evaluate influence of climate change on potential flood risk by considering variation of precipitation amount and precipitation intensity in the Tokyo metropolitan area. Results shows that we can evaluate potential impact of precipitation change on flood risk with high accuracy by using our methodology. Acknowledgments

  3. The Emergence of Flood Insurance in Canada: Navigating Institutional Uncertainty. (United States)

    Thistlethwaite, Jason


    Flood insurance has remained unavailable in Canada based on an assessment that it lacks economic viability. In response to Canada's costliest flood event to date in 2013, the Canadian insurance industry has started to develop a framework to expand existing property insurance to cover flood damage. Research on flood insurance has overlooked why and how insurance systems transition to expand insurance coverage without evidence of economic viability. This article will address this gap through a case study on the emergence of flood insurance in Canada, and the approach to its expansion. Between 2013 and 2016, insurance industry officials representing over 60% of premiums collected in Canada were interviewed. These interviews revealed that flood insurance is being expanded in response to institutional pressure, specifically external stakeholder expectations that the insurance industry will adopt a stronger role in managing flood risk through coverage of flood damage. Further evidence of this finding is explored by assessing the emergence of a unique flood insurance model that involves a risk-adjusted and optional product along with an expansion of government policy supporting flood risk mitigation. This approach attempts to balance industry concerns about economic viability with institutional pressure to reduce flood risk through insurance. This analysis builds on existing research by providing the first scholarly analysis of flood insurance in Canada, important "empirical" teeth to existing conceptual analysis on the availability of flood insurance, and the influence of institutional factors on risk analysis within the insurance sector. © 2016 Society for Risk Analysis.

  4. Summary of floods in the United States during 1958 (United States)

    Hendricks, E.L.


    This report describes the most outstanding floods that occurred in the United States during 1958.A series of storms from January 23 to February 16 brought large amounts of precipitation to northern California and produced damaging floods, particularly in the Lower Sacramento Valley where losses totaled about \\$12 million.Major floods, notable because of the large area affected, occurred on many small streams in central and south Texas, following heavy general rains in late February. Extensive flooding occurred along the Gulf Coastal plain on the lower reaches of the major streams from the Brazos River to the Nueces River. Two lives were lost, and property damage exceeded \\$1 million.Damaging floods of April 1-7 followed one of the wettest winters in California history. Swollen streams overflowed their banks throughout the central part of the State, and discharge peaks on many streams exceeded those .of the floods of December 1955. Most severely flooded was the San Francisco Bay area. Total flood damage was estimated at \\$23 million.The storms and floods of April-May in Louisiana and adjacent States outranked all other floods in the United States during 1958 with respect to intensity of rain over a large area, number of streams having maximum discharge of record, rare occurrence of peaks, and great amount (\\$21 million) of resultant damage.Heavy rains on June 8-15 caused one of the greatest summer floods of record in central Indiana. Peak discharges were high and of rare occurrences. Failure of numerous levees along the Wabash River caused great damage. Crop damage alone was estimated at \\$48 million.Intense rains of July 1-2 caused record-breaking floods in southwestern Iowa. Rapid rises and the great magnitude of the floods on small streams resulted in 18 deaths and many injuries. Six towns and cities along the East Nishnabotna River and its tributaries were particularly hard hit; rural damage was also high. Total damage was estimated at \\$15 million

  5. Elk River Watershed - Flood Study (United States)

    Barnes, C. C.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.


    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. Potential flooding from just under 100 (2009 NPRI Reviewed Facility Data Release, Environment Canada) toxic tailings ponds located in Canada increase risk to human safety and the environment. One such geotechnical failure spilt billions of litres of toxic tailings into the Fraser River watershed, British Columbia, when a tailings pond dam breach occurred in August 2014. Damaged and washed out roadways cut access to essential services as seen by the extensive floods that occurred in Saskatchewan and Manitoba in July 2014, and in Southern Alberta in 2013. Recovery efforts from events such as these can be lengthy, and have substantial social and economic impacts both in loss of revenue and cost of repair. The objective of this study is to investigate existing conditions in the Elk River watershed and model potential future hydrological changes that can increase flood risk hazards. By analyzing existing hydrology, meteorology, land cover, land use, economic, and settlement patterns a baseline is established for existing conditions in the Elk River watershed. Coupling the Generate Earth Systems Science (GENESYS) high-resolution spatial hydrometeorological model with flood hazard analysis methodology, high-resolution flood vulnerability base line maps are created using historical climate conditions. Further work in 2015 will examine possible impacts for a range of climate change and land use change scenarios to define changes to future flood risk and vulnerability.

  6. Probabilistic, meso-scale flood loss modelling (United States)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno


    Flood risk analyses are an important basis for decisions on flood risk management and adaptation. However, such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments and even more for flood loss modelling. State of the art in flood loss modelling is still the use of simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood loss models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we demonstrate and evaluate the upscaling of the approach to the meso-scale, namely on the basis of land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany (Botto et al. submitted). The application of bagging decision tree based loss models provide a probability distribution of estimated loss per municipality. Validation is undertaken on the one hand via a comparison with eight deterministic loss models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official loss data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of loss estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation approach is that it inherently provides quantitative information about the uncertainty of the prediction. References: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Botto A, Kreibich H, Merz B, Schröter K (submitted) Probabilistic, multi-variable flood loss modelling on the meso-scale with BT-FLEMO. Risk Analysis.

  7. Flood impacts on a water distribution network (United States)

    Arrighi, Chiara; Tarani, Fabio; Vicario, Enrico; Castelli, Fabio


    Floods cause damage to people, buildings and infrastructures. Water distribution systems are particularly exposed, since water treatment plants are often located next to the rivers. Failure of the system leads to both direct losses, for instance damage to equipment and pipework contamination, and indirect impact, since it may lead to service disruption and thus affect populations far from the event through the functional dependencies of the network. In this work, we present an analysis of direct and indirect damages on a drinking water supply system, considering the hazard of riverine flooding as well as the exposure and vulnerability of active system components. The method is based on interweaving, through a semi-automated GIS procedure, a flood model and an EPANET-based pipe network model with a pressure-driven demand approach, which is needed when modelling water distribution networks in highly off-design conditions. Impact measures are defined and estimated so as to quantify service outage and potential pipe contamination. The method is applied to the water supply system of the city of Florence, Italy, serving approximately 380 000 inhabitants. The evaluation of flood impact on the water distribution network is carried out for different events with assigned recurrence intervals. Vulnerable elements exposed to the flood are identified and analysed in order to estimate their residual functionality and to simulate failure scenarios. Results show that in the worst failure scenario (no residual functionality of the lifting station and a 500-year flood), 420 km of pipework would require disinfection with an estimated cost of EUR 21 million, which is about 0.5 % of the direct flood losses evaluated for buildings and contents. Moreover, if flood impacts on the water distribution network are considered, the population affected by the flood is up to 3 times the population directly flooded.

  8. Flood of July 21, 1975 in Mercer County, New Jersey (United States)

    Stankowski, Stephen J.; Schopp, Robert D.; Velnich, Anthony J.


    Intense rainfall during the evening of July 20 and early morning hours of July 21, 1975 caused flooding of unprecedented magnitude in highly urbanized Mercer County, New Jersey. Over 6 inches (152 millimetres) of rainfall was recorded during a 10-hour period at Trenton, the capital of New Jersey. No lives were lost but damages to highways and bridges, to industrial, business, and residential buildings, to farmlands and crops, and to water supply systems were severe. This report illustrates the magnitude of the flood and provides hydrologic data needed for planning and design to control or lessen damages from future floods. It includes discussions of the antecedent conditions and meteorological aspects of the storm; a description of the flood and comparison to previous floods; a summary of flood stages and discharges; a discussion of flood frequency; and photomosaics which show inundated areas. More than 200 high-water marks are described as to location and elevation above mean sea level.

  9. Flood Risk Characterization for the Eastern United States (United States)

    Villarini, G.; Smith, J. A.; Ntelekos, A. A.


    Tropical cyclones landfalling in the eastern United States pose a major risk for insured property and can lead to extensive damage through storm surge flooding, inland flooding or extreme windspeeds. Current hurricane cat-models do not include calculations of inland flooding from the outer rainfall bands of tropical cyclones but the issue is becoming increasingly important for commercial insurance risk assessment. The results of this study could be used to feed into the next generation of hurricane cat-models and assist in the calculation of damages from inland hurricane flood damage. Annual maximum peak discharge records from more than 400 stations in the eastern United States with at least 75 years of record to examine the role of landfalling tropical cyclones in controlling the upper tail of inland flood risk for the eastern United States. In addition to examining tropical cyclone inland flood risk at specific locations, the spatial extent of extreme flooding from lanfalling tropical cyclones is analyzed. Analyses of temporal trends and abrupt changes in the mean and variance of annual flood peaks are performed. Change-point analysis is performed using the non-parametric Pettitt test. Two non-parametric (Mann-Kendall and Spearman) tests and one parametric (Pearson) test are applied to detect the presence of temporal trends. Flood risk characterization centers on assessments of the spatial variation in "upper tail" properties of annual flood peak distributions. The modeling framework for flood frequency analysis is provided by the Generalized Additive Models for Location Scale and Shape (GAMLSS).

  10. Flood mapping with multitemporal MODIS data (United States)

    Son, Nguyen-Thanh; Chen, Chi-Farn; Chen, Cheng-Ru


    Flood is one of the most devastating and frequent disasters resulting in loss of human life and serve damage to infrastructure and agricultural production. Flood is phenomenal in the Mekong River Delta (MRD), Vietnam. It annually lasts from July to November. Information on spatiotemporal flood dynamics is thus important for planners to devise successful strategies for flood monitoring and mitigation of its negative effects. The main objective of this study is to develop an approach for weekly mapping flood dynamics with the Moderate Resolution Imaging Spectroradiometer data in MRD using the water fraction model (WFM). The data processed for 2009 comprises three main steps: (1) data pre-processing to construct smooth time series of the difference in the values (DVLE) between land surface water index (LSWI) and enhanced vegetation index (EVI) using the empirical mode decomposition (EMD), (2) flood derivation using WFM, and (3) accuracy assessment. The mapping results were compared with the ground reference data, which were constructed from Envisat Advanced Synthetic Aperture Radar (ASAR) data. As several error sources, including mixed-pixel problems and low-resolution bias between the mapping results and ground reference data, could lower the level of classification accuracy, the comparisons indicated satisfactory results with the overall accuracy of 80.5% and Kappa coefficient of 0.61, respectively. These results were reaffirmed by a close correlation between the MODIS-derived flood area and that of the ground reference map at the provincial level, with the correlation coefficients (R2) of 0.93. Considering the importance of remote sensing for monitoring floods and mitigating the damage caused by floods to crops and infrastructure, this study eventually leads to the realization of the value of using time-series MODIS DVLE data for weekly flood monitoring in MRD with the aid of EMD and WFM. Such an approach that could provide quantitative information on

  11. Reconstruction of the 1945 Wieringermeer Flood (United States)

    Hoes, O. A. C.; Hut, R. W.; van de Giesen, N. C.; Boomgaard, M.


    The present state-of-the-art in flood risk assessment focuses on breach models, flood propagation models, and economic modelling of flood damage. However, models need to be validated with real data to avoid erroneous conclusions. Such reference data can either be historic data, or can be obtained from controlled experiments. The inundation of the Wieringermeer polder in the Netherlands in April 1945 is one of the few examples for which sufficient historical information is available. The objective of this article is to compare the flood simulation with flood data from 1945. The context, the breach growth process and the flood propagation are explained. Key findings for current flood risk management addresses the importance of the drainage canal network during the inundation of a polder, and the uncertainty that follows from not knowing the breach growth parameters. This case study shows that historical floods provide valuable data for the validation of models and reveal lessons that are applicable in current day flood risk management.

  12. Comprehensive flood mitigation and management in the Chi River Basin, Thailand


    Kunitiyawichai, K.; Schultz, B.; Uhlenbrook, S.; Suryadi, F.X.; Corzo, G.A.


    Severe flooding of the flat downstream area of the Chi River Basin occurs frequently. This flooding is causing catastrophic loss of human lives, damage and economic loss. Effective flood management requires a broad and practical approach. Although flood disasters cannot completely be prevented, major part of potential loss of lives and damages can be reduced by comprehensive mitigation measures. In this paper, the effects of river normalisation, reservoir operation, green river (bypass), and ...

  13. Exploring the potential of multivariate depth-damage and rainfall-damage models

    DEFF Research Database (Denmark)

    van Ootegem, Luc; van Herck, K.; Creten, T.


    In Europe, floods are among the natural catastrophes that cause the largest economic damage. This article explores the potential of two distinct types of multivariate flood damage models: ‘depth-damage’ models and ‘rainfall-damage’ models. We use survey data of 346 Flemish households that were...... victim of pluvial floods complemented with rainfall data from both rain gauges and weather radars. In the econometrical analysis, a Tobit estimation technique is used to deal with the issue of zero damage observations. The results show that in the ‘depth-damage’ models flood depth has a significant...... impact on the damage. In the ‘rainfall-damage’ models there is a significant impact of rainfall accumulation on the damage when using the gauge rainfall data as predictor, but not when using the radar rainfall data. Finally, non-hazard indicators are found to be important for explaining pluvial flood...

  14. Interpreting the impact of flood forecasts by combining policy analysis studies and flood defence

    Directory of Open Access Journals (Sweden)

    Slomp Robert


    Full Text Available Flood forecasting is necessary to save lives and reduce damages. Reducing damages is important to save livelihoods and to reduce the recovery time. Flood alerts should contain expected time of the event, location and extent of the event. A flood alert is not only one message but part of a rehearsed flow of information using multiple canals. First people have to accept the fact that there might be a threat and what the threat is about. People need a reference to understand the situation and be aware of possible measures they can take to assure their own safety and reduce damages. Information to the general public has to be consistent with the information used by emergency services and has to be very clear about consequences and context of possible measures (as shelter in place or preventive evacuation. Emergency services should monitor how the public is responding to adapt their communication en operation during a crisis. Flood warnings and emergency services are often coordinated by different government organisations. This is an extra handicap for having consistent information out on time for people to use. In an information based society, where everyone has twitter, email and a camera, public organisations may have to trust the public more and send out the correct information as it comes in. In the Netherlands Rijkswaterstaat, the National Water Authority and the National Public Works Department, is responsible for or involved in forecasting in case of floods, policy studies on flood risk, policy studies on maintenance, assessment and design of flood defences, elaborating rules and regulations for flood defences, advice on crisis management to the national government and for maintaining the main infrastructure in the Netherlands (high ways and water ways. The Water Management Center in the Netherlands (WMCN has developed a number of models to provide flood forecasts. WMCN is run for and by all managers of flood defences and is hosted by

  15. Coastal risk management: how to motivate individual economic decisions to lower flood risk?

    NARCIS (Netherlands)

    Filatova, Tatiana; Mulder, J.P.M. P.M.; van der Veen, A.


    Coastal flood risk is defined as a product of probability of event and its effect, measured in terms of damage. The paper is focused on coastal management strategies aimed to decrease risk by decreasing potential damage. We review socio-economic literature to show that total flood damage depends on

  16. A Socio-hydrological Flood Model for the Elbe (United States)

    Barendrecht, M.; Viglione, A.; Kreibich, H.; Vorogushyn, S.; Merz, B.; Bloeschl, G.


    Long-term feedbacks between humans and floods may lead to complex phenomena such as coping strategies, levee effects, call effects, adaptation effects, and poverty traps. Dynamic coupled human-flood models are a promising tool to represent such phenomena and the feedbacks leading to them. These socio-hydrological models may play an important role in integrated flood risk management when they are applied to real world case studies. They can help develop hypotheses about the phenomena that have been observed in the case study of interest, by describing the interactions between the social and hydrological variables as well as other relevant variables, such as economic, environmental, political or technical, that play a role in the system. We discuss the case of Dresden where the 2002 flood, which was preceded by a period without floods but was less severe, resulted in a higher damage than the 2013 flood, which was preceded by the 2002 flood and a couple of less severe floods. The lower damage in 2013 may be explained by the fact that society has become aware of the flood risk and has adapted to it. Developing and applying a socio-hydrological flood model to the case of Dresden can help discover whether it is possible that the lower damage is caused by an adaptation effect, or if there are other feedbacks that can explain the observed phenomenon.

  17. Proteomic analysis of the flooding tolerance mechanism in mutant soybean. (United States)

    Komatsu, Setsuko; Nanjo, Yohei; Nishimura, Minoru


    Flooding stress of soybean is a serious problem because it reduces growth; however, flooding-tolerant cultivars have not been identified. To analyze the flooding tolerance mechanism of soybean, the flooding-tolerant mutant was isolated and analyzed using a proteomic technique. Flooding-tolerance tests were repeated five times using gamma-ray irradiated soybeans, whose root growth (M6 stage) was not suppressed even under flooding stress. Two-day-old wild-type and mutant plants were subjected to flooding stress for 2days, and proteins were identified using a gel-based proteomic technique. In wild-type under flooding stress, levels of proteins related to development, protein synthesis/degradation, secondary metabolism, and the cell wall changed; however, these proteins did not markedly differ in the mutant. In contrast, an increased number of fermentation-related proteins were identified in the mutant under flooding stress. The root tips of mutant plants were not affected by flooding stress, even though the wild-type plants had damaged root. Alcohol dehydrogenase activity in the mutant increased at an early stage of flooding stress compared with that of the wild-type. Taken together, these results suggest that activation of the fermentation system in the early stages of flooding may be an important factor for the acquisition of flooding tolerance in soybean. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. FloodProBE: technologies for improved safety of the built environment in relation to flood events

    International Nuclear Information System (INIS)

    Ree, C.C.D.F. van; Van, M.A.; Heilemann, K.; Morris, M.W.; Royet, P.; Zevenbergen, C.


    The FloodProBE project started as a FP7 research project in November 2009. Floods, together with wind related storms, are considered the major natural hazard in the EU in terms of risk to people and assets. In order to adapt urban areas (in river and coastal zones) to prevent flooding or to be better prepared for floods, decision makers need to determine how to upgrade flood defences and increasing flood resilience of protected buildings and critical infrastructure (power supplies, communications, water, transport, etc.) and assess the expected risk reduction from these measures. The aim of the FloodProBE-project is to improve knowledge on flood resilience and flood protection performance for balancing investments in flood risk management in urban areas. To this end, technologies, methods and tools for assessment purposes and for the adaptation of new and existing buildings and critical infrastructure are developed, tested and disseminated. Three priority areas are addressed by FloodProBE. These are: (i) vulnerability of critical infrastructure and high-density value assets including direct and indirect damage, (ii) the assessment and reliability of urban flood defences including the use of geophysical methods and remote sensing techniques and (iii) concepts and technologies for upgrading weak links in flood defences as well as construction technologies for flood proofing buildings and infrastructure networks to increase the flood resilience of the urban system. The primary impact of FloodProBE in advancing knowledge in these areas is an increase in the cost-effectiveness (i.e. performance) of new and existing flood protection structures and flood resilience measures.

  19. Flood risk assessment and mapping for the Lebanese watersheds (United States)

    Abdallah, Chadi; Hdeib, Rouya


    Of all natural disasters, floods affect the greatest number of people worldwide and have the greatest potential to cause damage. Nowadays, with the emerging global warming phenomenon, this number is expected to increase. The Eastern Mediterranean area, including Lebanon (10452 Km2, 4.5 M habitant), has witnessed in the past few decades an increase frequency of flooding events. This study profoundly assess the flood risk over Lebanon covering all the 17 major watersheds and a number of small sub-catchments. It evaluate the physical direct tangible damages caused by floods. The risk assessment and evaluation process was carried out over three stages; i) Evaluating Assets at Risk, where the areas and assets vulnerable to flooding are identified, ii) Vulnerability Assessment, where the causes of vulnerability are assessed and the value of the assets are provided, iii) Risk Assessment, where damage functions are established and the consequent damages of flooding are estimated. A detailed Land CoverUse map was prepared at a scale of 1/ 1 000 using 0.4 m resolution satellite images within the flood hazard zones. The detailed field verification enabled to allocate and characterize all elements at risk, identify hotspots, interview local witnesses, and to correlate and calibrate previous flood damages with the utilized models. All filed gathered information was collected through Mobile Application and transformed to be standardized and classified under GIS environment. Consequently; the general damage evaluation and risk maps at different flood recurrence periods (10, 50, 100 years) were established. Major results showed that floods in a winter season (December, January, and February) of 10 year recurrence and of water retention ranging from 1 to 3 days can cause total damages (losses) that reach 1.14 M for crop lands and 2.30 M for green houses. Whereas, it may cause 0.2 M to losses in fruit trees for a flood retention ranging from 3 to 5 days. These numbers differs

  20. Measuring flood footprint of a regional economy - A case study for the UK flooding (United States)

    Guan, D.


    Analysis of the urban economy and society is central to understanding the broad impacts of flooding and to identify cost-effective adaptation and mitigation measures. Assessments of the flooding impacts on cities have traditionally focused on the initial impact on people and assets. These initial estimates (so-called ';direct damage') are useful both in understanding the immediate implications of damage, and in marshalling the pools of capital and supplies required for re-building after an event. Since different economies as well as societies are coupled, especially under the current economic crisis, any small-scale damage may be multiplied and cascaded throughout wider economic systems and social networks. The direct and indirect damage is currently not evaluated well and could be captured by quantification of what we call the flood footprint. Flooding in one location can impact the whole UK economy. Neglecting these knock-on costs (i.e. the true footprint of the flood) means we might be ignoring the economic benefits and beneficiaries of flood risk management interventions. In 2007, for example, floods cost the economy about £3.2 bn directly, but the wider effect might actually add another 50% to 250% to that. Flood footprint is a measure of the exclusive total socioeconomic impact that is directly and indirectly caused by a flood event to the flooding region and wider economic systems and social networks. We adopt the UK 2012 flooding. An input-output basic dynamic inequalities (BDI) model is used to assess the impact of the floodings on the level of a Yorkshire economy, accounting for interactions between industries through demand and supply of intermediate consumption goods with a circular flow. After the disaster the economy will be unbalanced. The recovery process finishes when the economy is completely balance, i.e., when labour production capacity equals demands and production and all the variables reach pre-disaster levels. The analysis is carried out

  1. Sex-specific responses to winter flooding, spring waterlogging and post-flooding recovery in Populus deltoides. (United States)

    Miao, Ling-Feng; Yang, Fan; Han, Chun-Yu; Pu, Yu-Jin; Ding, Yang; Zhang, Li-Jia


    Winter flooding events are common in some rivers and streams due to dam constructions, and flooding and waterlogging inhibit the growth of trees in riparian zones. This study investigated sex-specific morphological, physiological and ultrastructural responses to various durations of winter flooding and spring waterlogging stresses, and post-flooding recovery characteristics in Populus deltoides. There were no significant differences in the morphological, ultrastructural and the majority of physiological traits in trees subjected to medium and severe winter flooding stresses, suggesting that males and females of P. deltoides were winter flooding tolerant, and insensitive to winter flooding duration. Males were more tolerant to winter flooding stress in terms of photosynthesis and chlorophyll fluorescence than females. Females displayed greater oxidative damage due to flooding stress than males. Males developed more efficient antioxidant enzymatic systems to control reactive oxygen species. Both sexes had similarly strong post-flooding recovery capabilities in terms of plant growth, and physiological and ultrastructural parameters. However, Males had better recovery capabilities in terms of pigment content. These results increase the understanding of poplars's adaptation to winter flooding stress. They also elucidate sex-specific differences in response to flooding stress during the dormant season, and during post-flooding recovery periods.

  2. After the flood is before the next flood - post event review of the Central European Floods of June 2013. Insights, recommendations and next steps for future flood prevention (United States)

    Szoenyi, Michael; Mechler, Reinhard; McCallum, Ian


    In early June 2013, severe flooding hit Central and Eastern Europe, causing extensive damage, in particular along the Danube and Elbe main watersheds. The situation was particularly severe in Eastern Germany, Austria, Hungary and the Czech Republic. Based on the Post Event Review Capability (PERC) approach, developed by Zurich Insurance's Flood Resilience Program to provide independent review of large flood events, we examine what has worked well (best practice) and opportunities for further improvement. The PERC overall aims to thoroughly examine aspects of flood resilience, flood risk management and catastrophe intervention in order to help build back better after events and learn for future events. As our research from post event analyses shows a lot of losses are in fact avoidable by taking the right measures pre-event and these measures are economically - efficient with a return of 4 Euro on losses saved for every Euro invested in prevention on average (Wharton/IIASA flood resilience alliance paper on cost benefit analysis, Mechler et al. 2014) and up to 10 Euros for certain countries. For the 2013 flood events we provide analysis on the following aspects and in general identify a number of factors that worked in terms of reducing the loss and risk burden. 1. Understanding risk factors of the Central European Floods 2013 We review the precursors leading up to the floods in June, with an extremely wet May 2013 and an atypical V-b weather pattern that brought immense precipitation in a very short period to the watersheds of Elbe, Donau and partially the Rhine in the D-A-CH countries and researched what happened during the flood and why. Key questions we asked revolve around which protection and risk reduction approaches worked well and which did not, and why. 2. Insights and recommendations from the post event review The PERC identified a number of risk factors, which need attention if risk is to be reduced over time. • Yet another "100-year flood" - risk

  3. Integrated Urban Flood Analysis considering Optimal Operation of Flood Control Facilities in Urban Drainage Networks (United States)

    Moon, Y. I.; Kim, M. S.; Choi, J. H.; Yuk, G. M.


    eavy rainfall has become a recent major cause of urban area flooding due to the climate change and urbanization. To prevent property damage along with casualties, a system which can alert and forecast urban flooding must be developed. Optimal performance of reducing flood damage can be expected of urban drainage facilities when operated in smaller rainfall events over extreme ones. Thus, the purpose of this study is to execute: A) flood forecasting system using runoff analysis based on short term rainfall; and B) flood warning system which operates based on the data from pump stations and rainwater storage in urban basins. In result of the analysis, it is shown that urban drainage facilities using short term rainfall forecasting data by radar will be more effective to reduce urban flood damage than using only the inflow data of the facility. Keywords: Heavy Rainfall, Urban Flood, Short-term Rainfall Forecasting, Optimal operating of urban drainage facilities. AcknowledgmentsThis research was supported by a grant (17AWMP-B066744-05) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  4. Study on Public Flood Risk Cognition and Behavioral Response Based on IEC Strategy (United States)

    Shen, Xin; Xu, Xiaofeng; Zhou, Guilin; Pan, Shaolin; Mi, Tengfei


    In order to disseminate knowledge and information on flood risks in flood-prone areas, raise public awareness of flood risks and reduce possible damage to the public, a questionnaire survey was coducted among 260 residents of nine selected communities in Jiaozhou City to learn the public awareness and behavioral response to flood risks at different early warning levels. IEC key information of flood risk awareness was modified and formulated through group discussions, in-depth individual interviews and on-site observation. The awareness of residents in the project area was enhanced through the public participation, environmental management and flood management training, which plays a very important role in reducing flood losses.

  5. Assessing infrastructure vulnerability to major floods

    Energy Technology Data Exchange (ETDEWEB)

    Jenssen, Lars


    This thesis proposes a method for assessing the direct effects of serious floods on a physical infrastructure or utility. This method should be useful in contingency planning and in the design of structures likely to be damaged by flooding. A review is given of (1) methods of floodplain management and strategies for mitigating floods, (2) methods of risk analysis that will become increasingly important in flood management, (3) methods for hydraulic computations, (4) a variety of scour assessment methods and (5) applications of geographic information systems (GIS) to the analysis of flood vulnerability. Three computer codes were developed: CULVCAP computes the headwater level for circular and box culverts, SCOUR for assessing riprap stability and scour depths, and FASTFLOOD prepares input rainfall series and input files for the rainfall-runoff model used in the case study. A road system in central Norway was chosen to study how to analyse the flood vulnerability of an infrastructure. Finally, the thesis proposes a method for analysing the flood vulnerability of physical infrastructure. The method involves a general stage that will provide data on which parts of the infrastructure are potentially vulnerable to flooding and how to analyse them, and a specific stage which is concerned with analysing one particular kind of physical infrastructure in a study area. 123 refs., 59 figs., 17 tabs= .

  6. Flooding and Schools (United States)

    National Clearinghouse for Educational Facilities, 2011


    According to the Federal Emergency Management Agency, flooding is the nation's most common natural disaster. Some floods develop slowly during an extended period of rain or in a warming trend following a heavy snow. Flash floods can occur quickly, without any visible sign of rain. Catastrophic floods are associated with burst dams and levees,…

  7. Urban flood perceptions and mitigative behaviours: Peterborough, Edmonton, and Toronto

    International Nuclear Information System (INIS)

    Sandink, D.


    This abstract presents research from two studies investigating urban flood perceptions and mitigative behaviours of private individuals in Canada. The first study, completed in July, 2006, investigated perceptions of overland flooding and sewer backup resulting from extreme rainfall events in Peterborough, Ontario. The second, completed in November, 2007, investigated sewer backup perceptions of homeowners in Edmonton, Alberta and Toronto, Ontario. The research studies sought to explore: Hazard and risk perceptions of individuals affected by overland flooding and sewer backup; Knowledge of mitigative options, and mitigative actions taken by individual residents to reduce the risk of basement flood damage; Attributions of responsibility for urban flood damages; Awareness of municipal actions designed to reduce urban flood risk; Satisfaction with the cost sharing tools of insurance and government relief.

  8. Flood Foresight: A near-real time flood monitoring and forecasting tool for rapid and predictive flood impact assessment (United States)

    Revilla-Romero, Beatriz; Shelton, Kay; Wood, Elizabeth; Berry, Robert; Bevington, John; Hankin, Barry; Lewis, Gavin; Gubbin, Andrew; Griffiths, Samuel; Barnard, Paul; Pinnell, Marc; Huyck, Charles


    The hours and days immediately after a major flood event are often chaotic and confusing, with first responders rushing to mobilise emergency responders, provide alleviation assistance and assess loss to assets of interest (e.g., population, buildings or utilities). Preparations in advance of a forthcoming event are becoming increasingly important; early warning systems have been demonstrated to be useful tools for decision markers. The extent of damage, human casualties and economic loss estimates can vary greatly during an event, and the timely availability of an accurate flood extent allows emergency response and resources to be optimised, reduces impacts, and helps prioritise recovery. In the insurance sector, for example, insurers are under pressure to respond in a proactive manner to claims rather than waiting for policyholders to report losses. Even though there is a great demand for flood inundation extents and severity information in different sectors, generating flood footprints for large areas from hydraulic models in real time remains a challenge. While such footprints can be produced in real time using remote sensing, weather conditions and sensor availability limit their ability to capture every single flood event across the globe. In this session, we will present Flood Foresight (, an operational tool developed to meet the universal requirement for rapid geographic information, before, during and after major riverine flood events. The tool provides spatial data with which users can measure their current or predicted impact from an event - at building, basin, national or continental scales. Within Flood Foresight, the Screening component uses global rainfall predictions to provide a regional- to continental-scale view of heavy rainfall events up to a week in advance, alerting the user to potentially hazardous situations relevant to them. The Forecasting component enhances the predictive suite of tools by providing a local

  9. The relationship between precipitation and insurance data for floods in a Mediterranean region (northeast Spain) (United States)

    Cortès, Maria; Turco, Marco; Llasat-Botija, Montserrat; Llasat, Maria Carmen


    Floods in the Mediterranean region are often surface water floods, in which intense precipitation is usually the main driver. Determining the link between the causes and impacts of floods can make it easier to calculate the level of flood risk. However, up until now, the limitations in quantitative observations for flood-related damages have been a major obstacle when attempting to analyse flood risk in the Mediterranean. Flood-related insurance damage claims for the last 20 years could provide a proxy for flood impact, and this information is now available in the Mediterranean region of Catalonia, in northeast Spain. This means a comprehensive analysis of the links between flood drivers and impacts is now possible. The objective of this paper is to develop and evaluate a methodology to estimate flood damages from heavy precipitation in a Mediterranean region. Results show that our model is able to simulate the probability of a damaging event as a function of precipitation. The relationship between precipitation and damage provides insights into flood risk in the Mediterranean and is also promising for supporting flood management strategies.

  10. Assessment of big floods in the Eastern Black Sea Basin of Turkey. (United States)

    Yüksek, Ömer; Kankal, Murat; Üçüncü, Osman


    In this study, general knowledge and some details of the floods in Eastern Black Sea Basin of Turkey are presented. Brief hydro-meteorological analysis of selected nine floods and detailed analysis of the greatest flood are given. In the studied area, 51 big floods have taken place between 1955-2005 years, causing 258 deaths and nearly US $500,000,000 of damage. Most of the floods have occurred in June, July and August. It is concluded that especially for the rainstorms that have caused significantly damages, the return periods of the rainfall heights and resultant flood discharges have gone up to 250 and 500 years, respectively. A general agreement is observed between the return periods of rains and resultant floods. It is concluded that there has been no significant climate change to cause increases in flood harms. The most important human factors to increase the damage are determined as wrong and illegal land use, deforestation and wrong urbanization and settlement, psychological and technical factors. Some structural and non-structural measures to mitigate flood damages are also included in the paper. Structural measures include dykes and flood levees. Main non-structural measures include flood warning system, modification of land use, watershed management and improvement, flood insurance, organization of flood management studies, coordination between related institutions and education of the people and informing of the stakeholders.

  11. National flood risk mapping of the Danish coastline


    Jumppanen Andersen, Kaija; Earnshaw, Matthew; Sørensen, Carlo


    Ocean flooding related to extreme storm surges poses a large damage potential for society. With future climate changes such as sea level rise and increased storminess, ocean flooding becomes one of the largest challenges for Denmark, due to its many islands and long low-lying coastline. At The Danish Coastal Authority under the Ministry of the Environment we are carrying out a rapid screening of the areas vulnerable to ocean flooding throughout the whole of Denmark; today, in 2065 and in 2100...

  12. Effects of changes along the risk chain on flood risk (United States)

    Duha Metin, Ayse; Apel, Heiko; Viet Dung, Nguyen; Guse, Björn; Kreibich, Heidi; Schröter, Kai; Vorogushyn, Sergiy; Merz, Bruno


    Interactions of hydrological and socio-economic factors shape flood disaster risk. For this reason, assessment of flood risk ideally takes into account the whole flood risk chain from atmospheric processes, through the catchment and river system processes to the damage mechanisms in the affected areas. Since very different processes at various scales are interacting along the flood risk, the impact of the single components is rather unclear. However for flood risk management, it is required to know the controlling factor of flood damages. The present study, using the flood-prone Mulde catchment in Germany, discusses the sensitivity of flood risk to disturbances along the risk chain: How do disturbances propagate through the risk chain? How do different disturbances combine or conflict and affect flood risk? In this sensitivity analysis, the five components of the flood risk change are included. These are climate, catchment, river system, exposure and vulnerability. A model framework representing the complete risk chain is combined with observational data to understand how the sensitivities evolve along the risk chain by considering three plausible change scenarios for each of five components. The flood risk is calculated by using the Regional Flood Model (RFM) which is based on a continuous simulation approach, including rainfall-runoff, 1D river network, 2D hinterland inundation and damage estimation models. The sensitivity analysis covers more than 240 scenarios with different combinations of the five components. It is investigated how changes in different components affect risk indicators, such as the risk curve and expected annual damage (EAD). In conclusion, it seems that changes in exposure and vulnerability seem to outweigh changes in hazard.

  13. Assessment of vulnerability to extreme flash floods in design storms. (United States)

    Kim, Eung Seok; Choi, Hyun Il


    There has been an increase in the occurrence of sudden local flooding of great volume and short duration caused by heavy or excessive rainfall intensity over a small area, which presents the greatest potential danger threat to the natural environment, human life, public health and property, etc. Such flash floods have rapid runoff and debris flow that rises quickly with little or no advance warning to prevent flood damage. This study develops a flash flood index through the average of the same scale relative severity factors quantifying characteristics of hydrographs generated from a rainfall-runoff model for the long-term observed rainfall data in a small ungauged study basin, and presents regression equations between rainfall characteristics and the flash flood index. The aim of this study is to develop flash flood index-duration-frequency relation curves by combining the rainfall intensity-duration-frequency relation and the flash flood index from probability rainfall data in order to evaluate vulnerability to extreme flash floods in design storms. This study is an initial effort to quantify the flash flood severity of design storms for both existing and planned flood control facilities to cope with residual flood risks due to extreme flash floods that have ocurred frequently in recent years.

  14. Flood Map for the Winooski River in Waterbury, Vermont, 2014 (United States)

    Olson, Scott A.


    From August 28 to 29, 2011, Tropical Storm Irene delivered rainfall ranging from approximately 4 to more than 7 inches in the Winooski River Basin in Vermont. The rainfall resulted in severe flooding throughout the basin and significant damage along the Winooski River. In response to the flooding, the U.S. Geological Survey (USGS), in cooperation with the Federal Emergency Management Agency, conducted a new flood study to aid in flood recovery and restoration and to assist in flood forecasting. The study resulted in two sets of flood maps that depict the flooding for an 8.3-mile reach of the Winooski River from about 1,000 feet downstream of the Waterbury-Bolton, Vermont, town line upstream to about 2,000 feet upstream of the Waterbury-Middlesex, Vt., town line.

  15. Guidelines for the adaptation to floods in changing climate (United States)

    Doroszkiewicz, Joanna; Romanowicz, Renata J.


    A decrease of flood damages in the future requires not only adaptation to flood caused by present day climate, but also climate change effects on floods should be taken into account. The paper illustrates the need to take into account changing climate conditions in flood adaptation strategies and to apply in practice the concept of integrated water resource management (IWRM). IWRM is based on a number of policy instruments, economic instruments, political signals, and also, on the effects of climate change on floods and collaboration across national, regional and local administrative units. The guidelines for a country adaptation to floods in a changing climate are outlined. A comparison of the adaptive capacities in Poland and Norway is used to illustrate the need for the implementation of proposed guidelines to assure flood risk management under climate change in a sustainable way.

  16. Characterization of remarkable floods in France, a transdisciplinary approach applied on generalized floods of January 1910 (United States)

    Boudou, Martin; Lang, Michel; Vinet, Freddy; Coeur, Denis


    emphasize one flood typology or one flood dynamic (for example flash floods are often over-represented than slow dynamic floods in existing databases). Thus, the selected criteria have to introduce a general overview of flooding risk in France by integrating all typologies: storm surges, torrential floods, rising groundwater level and resulting to flood, etc. The methodology developed for the evaluation grid is inspired by several scientific works related to historical hydrology (Bradzil, 2006; Benito et al., 2004) or extreme floods classification (Kundzewics et al. 2013; Garnier E., 2005). The referenced information are mainly issued from investigations realized for the PFRA (archives, local data),from internet databases on flooding disasters, and from a complementary bibliography (some scientists such as Maurice Pardé a geographer who largely documented French floods during the 20th century). The proposed classification relies on three main axes. Each axis is associated to a set of criteria, each one related to a score (from 0.5 to 4 points), and pointing out a final remarkability score. • The flood intensity characterizing the flood's hazard level. It is composed of the submersion duration, important to valorize floods with slow dynamics as flooding from groundwater, the event peak discharge's return period, and the presence of factors increasing significantly the hazard level (dykes breaks, log jam, sediment transport…) • The flood severity focuses on economic damages, social and political repercussions, media coverage of the event, fatalities number or eventual flood warning failures. Analyzing the flood consequences is essential in order to evaluate the vulnerability of society at disaster date. • The spatial extension of the flood, which contributes complementary information to the two first axes. The evaluation grid was tested and applied on the sample of 176 remarkable events. Around twenty events (from 1856 to 2010) come out with a high remarkability rate

  17. Flood risk managment strategies across boundaries : a research approach

    NARCIS (Netherlands)

    Bakker, M.H.N.; Hegger, D.L.T.; Dieperink, C.; Driessen, P.P.J.; Raadgever, G.T.; Wiering, M.


    Floods are the most frequent and damaging of all types of natural disasters and annually affect the lives of millions all over the globe. Against this background, enhanced climate variability and climate change are expected to increase the frequency and intensity of floods. The situation is further

  18. After the Flood : Anger, Attribution, and the Seeking of Information

    NARCIS (Netherlands)

    Griffin, Robert J.; Yang, Zheng; ter Huurne, E.F.J.; Boerner, Francesca; Ortiz, Sherry; Dunwoody, Sharon


    In an effort to understand what motivates people to attend to information about flood risks, this study applies the Risk Information Seeking and Processing model to explore how local residents responded to damaging river flooding in the Milwaukee area. The results indicate that anger at managing

  19. Amplification of flood frequencies with local sea level rise and emerging flood regimes (United States)

    Buchanan, Maya K.; Oppenheimer, Michael; Kopp, Robert E.


    The amplification of flood frequencies by sea level rise (SLR) is expected to become one of the most economically damaging impacts of climate change for many coastal locations. Understanding the magnitude and pattern by which the frequency of current flood levels increase is important for developing more resilient coastal settlements, particularly since flood risk management (e.g. infrastructure, insurance, communications) is often tied to estimates of flood return periods. The Intergovernmental Panel on Climate Change’s Fifth Assessment Report characterized the multiplication factor by which the frequency of flooding of a given height increases (referred to here as an amplification factor; AF). However, this characterization neither rigorously considered uncertainty in SLR nor distinguished between the amplification of different flooding levels (such as the 10% versus 0.2% annual chance floods); therefore, it may be seriously misleading. Because both historical flood frequency and projected SLR are uncertain, we combine joint probability distributions of the two to calculate AFs and their uncertainties over time. Under probabilistic relative sea level projections, while maintaining storm frequency fixed, we estimate a median 40-fold increase (ranging from 1- to 1314-fold) in the expected annual number of local 100-year floods for tide-gauge locations along the contiguous US coastline by 2050. While some places can expect disproportionate amplification of higher frequency events and thus primarily a greater number of historically precedented floods, others face amplification of lower frequency events and thus a particularly fast growing risk of historically unprecedented flooding. For example, with 50 cm of SLR, the 10%, 1%, and 0.2% annual chance floods are expected respectively to recur 108, 335, and 814 times as often in Seattle, but 148, 16, and 4 times as often in Charleston, SC.

  20. A Global Geospatial Database of 5000+ Historic Flood Event Extents (United States)

    Tellman, B.; Sullivan, J.; Doyle, C.; Kettner, A.; Brakenridge, G. R.; Erickson, T.; Slayback, D. A.


    A key dataset that is missing for global flood model validation and understanding historic spatial flood vulnerability is a global historical geo-database of flood event extents. Decades of earth observing satellites and cloud computing now make it possible to not only detect floods in near real time, but to run these water detection algorithms back in time to capture the spatial extent of large numbers of specific events. This talk will show results from the largest global historical flood database developed to date. We use the Dartmouth Flood Observatory flood catalogue to map over 5000 floods (from 1985-2017) using MODIS, Landsat, and Sentinel-1 Satellites. All events are available for public download via the Earth Engine Catalogue and via a website that allows the user to query floods by area or date, assess population exposure trends over time, and download flood extents in geospatial format.In this talk, we will highlight major trends in global flood exposure per continent, land use type, and eco-region. We will also make suggestions how to use this dataset in conjunction with other global sets to i) validate global flood models, ii) assess the potential role of climatic change in flood exposure iii) understand how urbanization and other land change processes may influence spatial flood exposure iv) assess how innovative flood interventions (e.g. wetland restoration) influence flood patterns v) control for event magnitude to assess the role of social vulnerability and damage assessment vi) aid in rapid probabilistic risk assessment to enable microinsurance markets. Authors on this paper are already using the database for the later three applications and will show examples of wetland intervention analysis in Argentina, social vulnerability analysis in the USA, and micro insurance in India.

  1. Evaluation of Flooding Risk and Engineering Protection Against Floods for Ulan-Ude (United States)

    Borisova, T. A.


    The report presents the results of the study on analysis and risk assessment in relation to floods for Ulan-Ude and provides the developed recommendations of the activities for engineering protection of the population and economic installations. The current situation is reviewed and the results of the site survey are shown to identify the challenges and areas of negative water influence along with the existing security system. The report presents a summary of floods and index risk assessment. The articles describes the scope of eventual flooding, underflooding and enumerates the economic installations inside the urban areas’ research-based zones of flooding at the rated levels of water to identify the likeliness of exceedance. The assessment of damage from flood equal to 1% is shown.

  2. Flood forecasting and early warning system for Dungun River Basin

    International Nuclear Information System (INIS)

    Hafiz, I; Sidek, L M; Basri, H; Fukami, K; Hanapi, M N; Livia, L; Nor, M D


    Floods can bring such disasters to the affected dweller due to loss of properties, crops and even deaths. The damages to properties and crops by the severe flooding are occurred due to the increase in the economic value of the properties as well as the extent of the flood. Flood forecasting and warning system is one of the examples of the non-structural measures which can give early warning to the affected people. People who live near the flood-prone areas will be warned so that they can evacuate themselves and their belongings before the arrival of the flood. This can considerably reduce flood loss and damage and above all, the loss of human lives. Integrated Flood Analysis System (IFAS) model is a runoff analysis model converting rainfall into runoff for a given river basin. The simulation can be done using either ground or satellite-based rainfall to produce calculated discharge within the river. The calculated discharge is used to generate the flood inundation map within the catchment area for the selected flood event using Infowork RS.

  3. Dam-Break Flood Analysis Upper Hurricane Reservoir, Hartford, Vermont

    National Research Council Canada - National Science Library

    Acone, Scott


    .... Various dam break flood conditions were modeled and inundation maps developed. Based on this analysis the dam is rated a Class 2 or significant hazard category in terms of its potential to cause downstream damage...

  4. Texas floods of 1940 (United States)

    Breeding, Seth D.


    Floods occurred in Texas during, June, July, and November 1940 that exceeded known stages on many small streams and at a few places on the larger streams. Stages at several stream-gaging stations exceeded the maximum known at those places since the collection of daily records began. A storm, haying its axis generally on a north-south line from Cameron to Victoria and extending across the Brazos, Colorado, Lavaca, and Guadalupe River Basins, caused heavy rainfall over a large part of south-central Texas. The maximum recorded rain of 22.7 inches for the 2-day period June 29-30 occurred at Engle. Of this amount, 17.5 inches fell in the 12-hour period between 8 p.m. June 29, and 8 a.m. June 30. Light rains fell at a number of places on June 28, and additional light rains fell at many places within the area from July 1 to 4. During the period June 28 to July 4 more than 20 inches of rain fell over an area of 300 square miles, more than 15 inches over 1,920 square miles, and more than 10 inches over 5,100 square miles. The average annual rainfall for the area experiencing the heaviest rainfall during this storm is about 35 inches. Farming is largely confined to the fertile flood plains in much of the area subjected to the record-breaking floods in June and July. Therefore these floods, coming at the height of the growing season, caused severe losses to crops. Much damage was done also to highways and railways. The city of Hallettsville suffered the greatest damage of any urban area. The Lavaca River at that place reached a stage 8 feet higher than ever known before, drowned several people, destroyed many homes, and submerged almost the entire business district. The maximum discharge there was 93,100 second-feet from a drainage area of 101 square miles. Dry Creek near Smithville produced a maximum discharge of 1,879 second-feet from an area of 1.48 square miles and a runoff of 11.3 inches in a 2-day period from a rainfall of 19.5 inches. The area in the Colorado River

  5. Flood disaster and protection measures in Turkey Case Study: May 1998 flood disaster at North Western Black Sea Region of Turkey

    International Nuclear Information System (INIS)

    Gurer, Ibrahim; Ozguier, Hamza


    Due to geographical location, geology, and topography, Turkey undergoes three main types of natural disasters related to gravity flows; floods, landslides, and snow avalanches. Flooding is second important natural hazard after earthquakes with 18 floods and 23 deaths per year, on average. During 20-21 May 1998, the rainfall which was equal to about four times of long-term mean annual rainfall total of north western Black Sea geographical region of Turkey affected 35.000 m 2 , damaged 1300 km highway, 600 km roads to the villages, and 60 km railway. After the recession of the flood waters, the field survey done proved that 12 highway bridges, 91 small bridges on village roads and 6900 highway culverts, 13.800 m retaining wall and about 500 houses were severely damaged. During the last five years, with the loans and credits provided by World Bank, a series of flood protection structures were designed and built for the rehabilitation of the region. Mostly concentrating on non-structural flood protection studies, a work programme has been drafted in this framework to develop flood management and to reduce or eliminate long-term risk and damage to people and their property from natural hazards and their effects. In this case study, the factors causing the flood disaster are given, and the flood event is analyzed from hydrologic and morphologic points of view. Also the different types of the flood protection measures are exemplified and the experience gained in controlling the flood damages is presented.(Author)

  6. Multi-dimensional perspectives of flood risk - using a participatory framework to develop new approaches to flood risk communication (United States)

    Rollason, Edward; Bracken, Louise; Hardy, Richard; Large, Andy


    Flooding is a major hazard across Europe which, since, 1998 has caused over €52 million in damages and displaced over half a million people. Climate change is predicted to increase the risks posed by flooding in the future. The 2007 EU Flood Directive cemented the use of flood risk maps as a central tool in understanding and communicating flood risk. Following recent flooding in England, an urgent need to integrate people living at risk from flooding into flood management approaches, encouraging flood resilience and the up-take of resilient activities has been acknowledged. The effective communication of flood risk information plays a major role in allowing those at risk to make effective decisions about flood risk and increase their resilience, however, there are emerging concerns over the effectiveness of current approaches. The research presented explores current approaches to flood risk communication in England and the effectiveness of these methods in encouraging resilient actions before and during flooding events. The research also investigates how flood risk communications could be undertaken more effectively, using a novel participatory framework to integrate the perspectives of those living at risk. The research uses co-production between local communities and researchers in the environmental sciences, using a participatory framework to bring together local knowledge of flood risk and flood communications. Using a local competency group, the research explores what those living at risk from flooding want from flood communications in order to develop new approaches to help those at risk understand and respond to floods. Suggestions for practice are refined by the communities to co-produce recommendations. The research finds that current approaches to real-time flood risk communication fail to forecast the significance of predicted floods, whilst flood maps lack detailed information about how floods occur, or use scientific terminology which people at risk

  7. Flood Risk and Probabilistic Benefit Assessment to Support Management of Flood-Prone Lands: Evidence From Candaba Floodplains, Philippines (United States)

    Juarez, A. M.; Kibler, K. M.; Sayama, T.; Ohara, M.


    Flood management decision-making is often supported by risk assessment, which may overlook the role of coping capacity and the potential benefits derived from direct use of flood-prone land. Alternatively, risk-benefit analysis can support floodplain management to yield maximum socio-ecological benefits for the minimum flood risk. We evaluate flood risk-probabilistic benefit tradeoffs of livelihood practices compatible with direct human use of flood-prone land (agriculture/wild fisheries) and nature conservation (wild fisheries only) in Candaba, Philippines. Located north-west to Metro Manila, Candaba area is a multi-functional landscape that provides a temporally-variable mix of possible land uses, benefits and ecosystem services of local and regional value. To characterize inundation from 1.3- to 100-year recurrence intervals we couple frequency analysis with rainfall-runoff-inundation modelling and remotely-sensed data. By combining simulated probabilistic floods with both damage and benefit functions (e.g. fish capture and rice yield with flood intensity) we estimate potential damages and benefits over varying probabilistic flood hazards. We find that although direct human uses of flood-prone land are associated with damages, for all the investigated magnitudes of flood events with different frequencies, the probabilistic benefits ( 91 million) exceed risks by a large margin ( 33 million). Even considering risk, probabilistic livelihood benefits of direct human uses far exceed benefits provided by scenarios that exclude direct "risky" human uses (difference of 85 million). In addition, we find that individual coping strategies, such as adapting crop planting periods to the flood pulse or fishing rather than cultivating rice in the wet season, minimize flood losses ( 6 million) while allowing for valuable livelihood benefits ($ 125 million) in flood-prone land. Analysis of societal benefits and local capacities to cope with regular floods demonstrate the

  8. 33 CFR 203.50 - Nonstructural alternatives to rehabilitation of flood control works. (United States)


    ... rehabilitation of flood control works. 203.50 Section 203.50 Navigation and Navigable Waters CORPS OF ENGINEERS... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.50 Nonstructural alternatives to rehabilitation...

  9. Fusion of Remote Sensing and Non-Authoritative Data for Flood Disaster and Transportation Infrastructure Assessment (United States)

    Schnebele, Emily K.


    Flooding is the most frequently occurring natural hazard on Earth; with catastrophic, large scale floods causing immense damage to people, property, and the environment. Over the past 20 years, remote sensing has become the standard technique for flood identification because of its ability to offer synoptic coverage. Unfortunately, remote sensing…

  10. Act of despair or full-fledged experiment : Retrospective research on the 1945 Wieringermeer flood

    NARCIS (Netherlands)

    Hoes, O.A.C.; Hut, R.W.; Boomgaard, M.


    The present state-of-the-art in flood risk assessment focuses on breach models, flood propagation models, and economic modelling of flood damage. However, models need to be validated with real data to avoid erroneous conclusions. This reference data can either be historic data, or can be obtained

  11. An experimental system for flood risk forecasting at global scale (United States)

    Alfieri, L.; Dottori, F.; Kalas, M.; Lorini, V.; Bianchi, A.; Hirpa, F. A.; Feyen, L.; Salamon, P.


    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by an increasing range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasts, combining streamflow estimations with expected inundated areas and flood impacts. To this end, we have developed an experimental procedure for near-real time flood mapping and impact assessment based on the daily forecasts issued by the Global Flood Awareness System (GloFAS). The methodology translates GloFAS streamflow forecasts into event-based flood hazard maps based on the predicted flow magnitude and the forecast lead time and a database of flood hazard maps with global coverage. Flood hazard maps are then combined with exposure and vulnerability information to derive flood risk. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To further increase the reliability of the proposed methodology we integrated model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification of impact forecasts. The preliminary tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management. In particular, the link with social media is crucial for improving the accuracy of impact predictions.

  12. Flood loss modelling with FLF-IT: a new flood loss function for Italian residential structures (United States)

    Hasanzadeh Nafari, Roozbeh; Amadio, Mattia; Ngo, Tuan; Mysiak, Jaroslav


    The damage triggered by different flood events costs the Italian economy millions of euros each year. This cost is likely to increase in the future due to climate variability and economic development. In order to avoid or reduce such significant financial losses, risk management requires tools which can provide a reliable estimate of potential flood impacts across the country. Flood loss functions are an internationally accepted method for estimating physical flood damage in urban areas. In this study, we derived a new flood loss function for Italian residential structures (FLF-IT), on the basis of empirical damage data collected from a recent flood event in the region of Emilia-Romagna. The function was developed based on a new Australian approach (FLFA), which represents the confidence limits that exist around the parameterized functional depth-damage relationship. After model calibration, the performance of the model was validated for the prediction of loss ratios and absolute damage values. It was also contrasted with an uncalibrated relative model with frequent usage in Europe. In this regard, a three-fold cross-validation procedure was carried out over the empirical sample to measure the range of uncertainty from the actual damage data. The predictive capability has also been studied for some sub-classes of water depth. The validation procedure shows that the newly derived function performs well (no bias and only 10 % mean absolute error), especially when the water depth is high. Results of these validation tests illustrate the importance of model calibration. The advantages of the FLF-IT model over other Italian models include calibration with empirical data, consideration of the epistemic uncertainty of data, and the ability to change parameters based on building practices across Italy.

  13. Flood loss modelling with FLF-IT: a new flood loss function for Italian residential structures

    Directory of Open Access Journals (Sweden)

    R. Hasanzadeh Nafari


    Full Text Available The damage triggered by different flood events costs the Italian economy millions of euros each year. This cost is likely to increase in the future due to climate variability and economic development. In order to avoid or reduce such significant financial losses, risk management requires tools which can provide a reliable estimate of potential flood impacts across the country. Flood loss functions are an internationally accepted method for estimating physical flood damage in urban areas. In this study, we derived a new flood loss function for Italian residential structures (FLF-IT, on the basis of empirical damage data collected from a recent flood event in the region of Emilia-Romagna. The function was developed based on a new Australian approach (FLFA, which represents the confidence limits that exist around the parameterized functional depth–damage relationship. After model calibration, the performance of the model was validated for the prediction of loss ratios and absolute damage values. It was also contrasted with an uncalibrated relative model with frequent usage in Europe. In this regard, a three-fold cross-validation procedure was carried out over the empirical sample to measure the range of uncertainty from the actual damage data. The predictive capability has also been studied for some sub-classes of water depth. The validation procedure shows that the newly derived function performs well (no bias and only 10 % mean absolute error, especially when the water depth is high. Results of these validation tests illustrate the importance of model calibration. The advantages of the FLF-IT model over other Italian models include calibration with empirical data, consideration of the epistemic uncertainty of data, and the ability to change parameters based on building practices across Italy.

  14. Flood Hazard Area (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  15. Flood Hazard Boundaries (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  16. Base Flood Elevation (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  17. Flood Risk Regional Flood Defences : Technical report

    NARCIS (Netherlands)

    Kok, M.; Jonkman, S.N.; Lendering, K.T.


    Historically the Netherlands have always had to deal with the threat of flooding, both from the rivers and the sea as well as from heavy rainfall. The country consists of a large amount of polders, which are low lying areas of land protected from flooding by embankments. These polders require an

  18. Flash floods in Catalonia: a recurrent situation (United States)

    Llasat, M. C.; Lindbergh, S.; Llasat-Botija, M.; Rodríguez, A.; Zaragoza, A.


    A database with information about the social impact produced by all the flood events recorded in Catalonia between 1982 and 2007 has been built. Original information comes from the INUNGAMA database (1900-2000) presented by Barnolas and Llasat (2007), the PRESSGAMA database (1982-2007) (Llasat et al., in rev.) and information from different published works (Barriendos et al, 2003; Barriendos and Pomés, 1993). Social impact has been obtained systematically in basis to news press data and, occasionally, in basis to insurance data. Flood events have been classified in ordinary floods, extraordinary floods and catastrophic ones, following the proposal of Llasat et al (2005). However, having in mind the flash floods effects, some new categories concerning casualties and car damages have also been introduced. The spatial and temporal distribution of these flood events has been analysed. Results have been compared with those obtained for the period 1900-2000 (Barnolas and Llasat, 2007) and 1350-2000 (Barrera et al, 2006). In order to better estimate the social impact and vulnerability some indicators have been defined and analyzed for some specific cases and a specific region. Besides the indicators applied in the INUNCAT Plan to obtain a cartography of flood risk in Catalonia, other ones like the number of cars affected or the number of request received by the meteorological service, has been also taken into account. These indicators allow analyzing global and temporal trends as well as characterizing the events. The selected region has been the Maresme, which is a flood prone region with a great density of population and that experiences every year one or more flash floods. The annual number of floods shows a positive trend that cannot be justified by the rainfall trend. Both vulnerability and hazard components have been considered and a discussion about the flood prevention measures is presented. The third part of this work has been centred in the analysis and

  19. May flood-poor periods be more dangerous than flood-rich periods? (United States)

    Salinas, Jose Luis; Di Baldassarre, Giuliano; Viglione, Alberto; Kuil, Linda; Bloeschl, Guenter


    River floods are among the most devastating natural hazards experienced by populations that, since the earliest recorded civilisations, have settled in floodplains because they offer favourable conditions for trade, agriculture, and economic development. The occurrence of a flood may cause loss of lives and tremendous economic damages and, therefore, is rightly seen as a very negative event by the communities involved. Occurrence of many floods in a row is, of course, even more frustrating and is rightly considered a unbearable calamity. Unfortunately, the occurrence of many floods in a limited number of consecutive years is not unusual. In many places in the world, it has been observed that extreme floods do not arrive randomly but cluster in time into flood-poor and flood-rich periods consistent with the Hurst effect. If this is the case, when are the people more in danger? When should people be more scared? In flood-poor or flood-rich periods? In this work, a Socio-Hydrology model (Di Baldassarre et al., 2013; Viglione et al., 2014) is used to show that, maybe counter-intuitively, flood-poor periods may be more dangerous than flood-rich periods. The model is a conceptualisation of a hypothetical setting of a city at a river where a community evolves, making choices between flood management options on the floodplain. The most important feedbacks between the economic, political, technological and hydrological processes of the evolution of that community are represented in the model. In particular, the model also accounts in a dynamic way for the evolution of the the community awareness to flood risk. Occurrence of floods tends to increase peoples' recognition that their property is in an area that is potentially at risk of flooding, both at the scales of individuals and communities, which is one of the main reasons why flood coping actions are taken. It is shown through examples that frequent flood events may result in moderate damages because they ensure that the

  20. Optical and Physical Methods for Mapping Flooding with Satellite Imagery (United States)

    Fayne, Jessica Fayne; Bolten, John; Lakshmi, Venkat; Ahamed, Aakash


    Flood and surface water mapping is becoming increasingly necessary, as extreme flooding events worldwide can damage crop yields and contribute to billions of dollars economic damages as well as social effects including fatalities and destroyed communities (Xaio et al. 2004; Kwak et al. 2015; Mueller et al. 2016).Utilizing earth observing satellite data to map standing water from space is indispensable to flood mapping for disaster response, mitigation, prevention, and warning (McFeeters 1996; Brakenridge and Anderson 2006). Since the early 1970s(Landsat, USGS 2013), researchers have been able to remotely sense surface processes such as extreme flood events to help offset some of these problems. Researchers have demonstrated countless methods and modifications of those methods to help increase knowledge of areas at risk and areas that are flooded using remote sensing data from optical and radar systems, as well as free publically available and costly commercial datasets.

  1. How useful are Swiss flood insurance data for flood vulnerability assessments? (United States)

    Röthlisberger, Veronika; Bernet, Daniel; Zischg, Andreas; Keiler, Margreth


    The databases of Swiss flood insurance companies build a valuable but to date rarely used source of information on physical flood vulnerability. Detailed insights into the Swiss flood insurance system are crucial for using the full potential of the different databases for research on flood vulnerability. Insurance against floods in Switzerland is a federal system, the modalities are manly regulated on cantonal level. However there are some common principles that apply throughout Switzerland. First of all coverage against floods (and other particular natural hazards) is an integral part of every fire insurance policy for buildings or contents. This coupling of insurance as well as the statutory obligation to insure buildings in most of the cantons and movables in some of the cantons lead to a very high penetration. Second, in case of damage, the reinstatement costs (value as new) are compensated and third there are no (or little) deductible and co-pay. High penetration and the fact that the compensations represent a large share of the direct, tangible losses of the individual policy holders make the databases of the flood insurance companies a comprehensive and therefore valuable data source for flood vulnerability research. Insurance companies not only store electronically data about losses (typically date, amount of claims payment, cause of damage, identity of the insured object or policyholder) but also about insured objects. For insured objects the (insured) value and the details on the policy and its holder are the main feature to record. On buildings the insurance companies usually computerize additional information such as location, volume, year of construction or purpose of use. For the 19 (of total 26) cantons with a cantonal monopoly insurer the data of these insurance establishments have the additional value to represent (almost) the entire building stock of the respective canton. Spatial referenced insurance data can be used for many aspects of

  2. Future trends in flood risk in Indonesia - A probabilistic approach (United States)

    Muis, Sanne; Guneralp, Burak; Jongman, Brenden; Ward, Philip


    Indonesia is one of the 10 most populous countries in the world and is highly vulnerable to (river) flooding. Catastrophic floods occur on a regular basis; total estimated damages were US 0.8 bn in 2010 and US 3 bn in 2013. Large parts of Greater Jakarta, the capital city, are annually subject to flooding. Flood risks (i.e. the product of hazard, exposure and vulnerability) are increasing due to rapid increases in exposure, such as strong population growth and ongoing economic development. The increase in risk may also be amplified by increasing flood hazards, such as increasing flood frequency and intensity due to climate change and land subsidence. The implementation of adaptation measures, such as the construction of dykes and strategic urban planning, may counteract these increasing trends. However, despite its importance for adaptation planning, a comprehensive assessment of current and future flood risk in Indonesia is lacking. This contribution addresses this issue and aims to provide insight into how socio-economic trends and climate change projections may shape future flood risks in Indonesia. Flood risk were calculated using an adapted version of the GLOFRIS global flood risk assessment model. Using this approach, we produced probabilistic maps of flood risks (i.e. annual expected damage) at a resolution of 30"x30" (ca. 1km x 1km at the equator). To represent flood exposure, we produced probabilistic projections of urban growth in a Monte-Carlo fashion based on probability density functions of projected population and GDP values for 2030. To represent flood hazard, inundation maps were computed using the hydrological-hydraulic component of GLOFRIS. These maps show flood inundation extent and depth for several return periods and were produced for several combinations of GCMs and future socioeconomic scenarios. Finally, the implementation of different adaptation strategies was incorporated into the model to explore to what extent adaptation may be able to

  3. Conceptualization of a Collaborative Decision Making for Flood Disaster Management (United States)

    Nur Aishah Zubir, Siti; Thiruchelvam, Sivadass; Nasharuddin Mustapha, Kamal; Che Muda, Zakaria; Ghazali, Azrul; Hakimie, Hazlinda; Razak, Normy Norfiza Abdul; Aziz Mat Isa, Abdul; Hasini, Hasril; Sahari, Khairul Salleh Mohamed; Mat Husin, Norhayati; Ezanee Rusli, Mohd; Sabri Muda, Rahsidi; Mohd Sidek, Lariyah; Basri, Hidayah; Tukiman, Izawati


    Flooding is the utmost major natural hazard in Malaysia in terms of populations affected, frequency, area extent, flood duration and social economic damage. The recent flood devastation towards the end of 2014 witnessed almost 250,000 people being displaced from eight states in Peninsular Malaysia. The affected victims required evacuation within a short period of time to the designated evacuation centres. An effective and efficient flood disaster management would assure non-futile efforts for life-saving. Effective flood disaster management requires collective and cooperative emergency teamwork from various government agencies. Intergovernmental collaborations among government agencies at different levels have become part of flood disaster management due to the need for sharing resources and coordinating efforts. Collaborative decision making during disaster is an integral element in providing prompt and effective response for evacuating the victims.

  4. Real-time flood extent maps based on social media (United States)

    Eilander, Dirk; van Loenen, Arnejan; Roskam, Ruud; Wagemaker, Jurjen


    During a flood event it is often difficult to get accurate information about the flood extent and the people affected. This information is very important for disaster risk reduction management and crisis relief organizations. In the post flood phase, information about the flood extent is needed for damage estimation and calibrating hydrodynamic models. Currently, flood extent maps are derived from a few sources such as satellite images, areal images and post-flooding flood marks. However, getting accurate real-time or maximum flood extent maps remains difficult. With the rise of social media, we now have a new source of information with large numbers of observations. In the city of Jakarta, Indonesia, the intensity of unique flood related tweets during a flood event, peaked at 8 tweets per second during floods in early 2014. A fair amount of these tweets also contains observations of water depth and location. Our hypothesis is that based on the large numbers of tweets it is possible to generate real-time flood extent maps. In this study we use tweets from the city of Jakarta, Indonesia, to generate these flood extent maps. The data-mining procedure looks for tweets with a mention of 'banjir', the Bahasa Indonesia word for flood. It then removes modified and retweeted messages in order to keep unique tweets only. Since tweets are not always sent directly from the location of observation, the geotag in the tweets is unreliable. We therefore extract location information using mentions of names of neighborhoods and points of interest. Finally, where encountered, a mention of a length measure is extracted as water depth. These tweets containing a location reference and a water level are considered to be flood observations. The strength of this method is that it can easily be extended to other regions and languages. Based on the intensity of tweets in Jakarta during a flood event we can provide a rough estimate of the flood extent. To provide more accurate flood extend

  5. An Agent-Based Model of Evolving Community Flood Risk. (United States)

    Tonn, Gina L; Guikema, Seth D


    Although individual behavior plays a major role in community flood risk, traditional flood risk models generally do not capture information on how community policies and individual decisions impact the evolution of flood risk over time. The purpose of this study is to improve the understanding of the temporal aspects of flood risk through a combined analysis of the behavioral, engineering, and physical hazard aspects of flood risk. Additionally, the study aims to develop a new modeling approach for integrating behavior, policy, flood hazards, and engineering interventions. An agent-based model (ABM) is used to analyze the influence of flood protection measures, individual behavior, and the occurrence of floods and near-miss flood events on community flood risk. The ABM focuses on the following decisions and behaviors: dissemination of flood management information, installation of community flood protection, elevation of household mechanical equipment, and elevation of homes. The approach is place based, with a case study area in Fargo, North Dakota, but is focused on generalizable insights. Generally, community mitigation results in reduced future damage, and individual action, including mitigation and movement into and out of high-risk areas, can have a significant influence on community flood risk. The results of this study provide useful insights into the interplay between individual and community actions and how it affects the evolution of flood risk. This study lends insight into priorities for future work, including the development of more in-depth behavioral and decision rules at the individual and community level. © 2017 Society for Risk Analysis.

  6. Economic Assessment of Flood Control Facilities under Climate Uncertainty: A Case of Nakdong River, South Korea

    Directory of Open Access Journals (Sweden)

    Kyeongseok Kim


    Full Text Available Climate change contributes to enhanced flood damage that has been increasing for the last several decades. Understanding climate uncertainties improves adaptation strategies used for investment in flood control facilities. This paper proposes an investment decision framework for one flood zone to cope with future severe climate impacts. This framework can help policy-makers investigate the cost of future damage and conduct an economic assessment using real options under future climate change scenarios. The proposed methodology provides local municipalities with an adaptation strategy for flood control facilities in a flood zone. Using the proposed framework, the flood prevention facilities in the Nakdong River Basin of South Korea was selected as a case study site to analyze the economic assessment of the investments for flood control facilities. Using representative concentration pathway (RCP climate scenarios, the cost of future flood damage to 23 local municipalities was calculated, and investment strategies for adaptation were analyzed. The project option value was determined by executing an option to invest in an expansion that would adapt to floods under climate change. The results of the case study showed that the proposed flood facilities are economically feasible under both scenarios used. The framework is anticipated to present guidance for establishing investment strategies for flood control facilities of a flood zone in multiple municipalities’ settings.

  7. Urban pluvial flood prediction

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Nielsen, Jesper Ellerbæk; Jensen, David Getreuer


    Flooding produced by high-intensive local rainfall and drainage system capacity exceedance can have severe impacts in cities. In order to prepare cities for these types of flood events – especially in the future climate – it is valuable to be able to simulate these events numerically both...... historically and in real-time. There is a rather untested potential in real-time prediction of urban floods. In this paper radar data observations with different spatial and temporal resolution, radar nowcasts of 0–2 h lead time, and numerical weather models with lead times up to 24 h are used as inputs...... to an integrated flood and drainage systems model in order to investigate the relative difference between different inputs in predicting future floods. The system is tested on a small town Lystrup in Denmark, which has been flooded in 2012 and 2014. Results show it is possible to generate detailed flood maps...

  8. Determining tropical cyclone inland flooding loss on a large scale through a new flood peak ratio-based methodology

    International Nuclear Information System (INIS)

    Czajkowski, Jeffrey; Michel-Kerjan, Erwann; Villarini, Gabriele; Smith, James A


    In recent years, the United States has been severely affected by numerous tropical cyclones (TCs) which have caused massive damages. While media attention mainly focuses on coastal losses from storm surge, these TCs have inflicted significant devastation inland as well. Yet, little is known about the relationship between TC-related inland flooding and economic losses. Here we introduce a novel methodology that first successfully characterizes the spatial extent of inland flooding, and then quantifies its relationship with flood insurance claims. Hurricane Ivan in 2004 is used as illustration. We empirically demonstrate in a number of ways that our quantified inland flood magnitude produces a very good representation of the number of inland flood insurance claims experienced. These results highlight the new technological capabilities that can lead to a better risk assessment of inland TC flood. This new capacity will be of tremendous value to a number of public and private sector stakeholders dealing with disaster preparedness. (letter)

  9. Framework for probabilistic flood risk assessment in an Alpine region (United States)

    Schneeberger, Klaus; Huttenlau, Matthias; Steinberger, Thomas; Achleitner, Stefan; Stötter, Johann


    Flooding is among the natural hazards that regularly cause significant losses to property and human lives. The assessment of flood risk delivers crucial information for all participants involved in flood risk management and especially for local authorities and insurance companies in order to estimate the possible flood losses. Therefore a framework for assessing flood risk has been developed and is introduced with the presented contribution. Flood risk is thereby defined as combination of the probability of flood events and of potential flood damages. The probability of occurrence is described through the spatial and temporal characterisation of flood. The potential flood damages are determined in the course of vulnerability assessment, whereas, the exposure and the vulnerability of the elements at risks are considered. Direct costs caused by flooding with the focus on residential building are analysed. The innovative part of this contribution lies on the development of a framework which takes the probability of flood events and their spatio-temporal characteristic into account. Usually the probability of flooding will be determined by means of recurrence intervals for an entire catchment without any spatial variation. This may lead to a misinterpretation of the flood risk. Within the presented framework the probabilistic flood risk assessment is based on analysis of a large number of spatial correlated flood events. Since the number of historic flood events is relatively small additional events have to be generated synthetically. This temporal extrapolation is realised by means of the method proposed by Heffernan and Tawn (2004). It is used to generate a large number of possible spatial correlated flood events within a larger catchment. The approach is based on the modelling of multivariate extremes considering the spatial dependence structure of flood events. The input for this approach are time series derived from river gauging stations. In a next step the

  10. Linking events, science and media for flood and drought management (United States)

    Ding, M.; Wei, Y.; Zheng, H.; Zhao, Y.


    Throughout history, floods and droughts have been closely related to the development of human riparian civilization. The socio-economic damage caused by floods/droughts appears to be on the rise and the frequency of floods/droughts increases due to global climate change. In this paper, we take a fresh perspective to examine the (dis)connection between events (floods and droughts), research papers and media reports in globally 42 river basins between 1990 and 2012 for better solutions in floods and droughts management. We collected hydrological data from NOAA/ESPL Physical Sciences Division (PSD) and CPC Merged Analysis of Precipitation (CMAP), all relevant scientific papers from Web of Science (WOS) and media records from Emergency Events Database (EM-DAT) during the study period, presented the temporal variability at annual level of these three groups of data, and analysed the (connection) among these three groups of data in typical river basins. We found that 1) the number of flood related reports on both media and research is much more than those on droughts; 2) the concerns of media reports just focused on partial topics (death, severity and damage) and partial catchments (Mediterranean Sea and Nile River); 3) the scientific contribution on floods and droughts were limited within some river basins such as Nile River Basin, Parana River Basin, Savannah River Basin and Murray-Darling River Basin; 4) the scientific contribution on floods and droughts were limited within only a few of disciplines such as Geology, Environmental Sciences & Ecology, Agriculture, Engineering and Forestry. It is recommended that multiple disciplinary contribution and collaboration should be promoted to achieve comprehensive flood/drought management, and science and media should interactively play their valuable roles and in flood/drought issues. Keywords: Floods, droughts, events, science, media, flood and drought management

  11. A complete CFD tool for flooding forecasting

    International Nuclear Information System (INIS)

    Nguyen, V.T.; Eberl, H.


    Every year, flooding does not only cause property damage of billions of dollars, but also threats to millions of human life around the world. The ability to accurately predict the extreme flooding in urban areas is of obvious importance in order to reduce flooding risks and to improve public safety. In this paper, a complete computational tool is presented that includes pre-processing, meshing, calculating and post-processing modules. The pre-processing procedure is used to interpolate the geometry of the river and floodplains where the data can not be obtained directly from measurements. The meshing procedure is implemented by a triangle mesh generator. The computational procedure is based on a Finite Element Method to discretize the two-dimensional depth-averaged equations for shallow water flow. The post-processing procedure, finally, is interfaced with Geographic Information Systems (GIS), which can serve as a tool for monitoring and as an early warning system. The numerical model is verified and calibrated through many practical projects of flood protection for rivers in Germany. The numerical results show a very good agreement with data from the field survey, as well as data from past flood events. Thus the numerical model can be used as an important tool for flood prediction. (author)

  12. Flood risk analysis for flood control and sediment transportation in sandy regions: A case study in the Loess Plateau, China (United States)

    Guo, Aijun; Chang, Jianxia; Wang, Yimin; Huang, Qiang; Zhou, Shuai


    Traditional flood risk analysis focuses on the probability of flood events exceeding the design flood of downstream hydraulic structures while neglecting the influence of sedimentation in river channels on regional flood control systems. This work advances traditional flood risk analysis by proposing a univariate and copula-based bivariate hydrological risk framework which incorporates both flood control and sediment transport. In developing the framework, the conditional probabilities of different flood events under various extreme precipitation scenarios are estimated by exploiting the copula-based model. Moreover, a Monte Carlo-based algorithm is designed to quantify the sampling uncertainty associated with univariate and bivariate hydrological risk analyses. Two catchments located on the Loess plateau are selected as study regions: the upper catchments of the Xianyang and Huaxian stations (denoted as UCX and UCH, respectively). The univariate and bivariate return periods, risk and reliability in the context of uncertainty for the purposes of flood control and sediment transport are assessed for the study regions. The results indicate that sedimentation triggers higher risks of damaging the safety of local flood control systems compared with the event that AMF exceeds the design flood of downstream hydraulic structures in the UCX and UCH. Moreover, there is considerable sampling uncertainty affecting the univariate and bivariate hydrologic risk evaluation, which greatly challenges measures of future flood mitigation. In addition, results also confirm that the developed framework can estimate conditional probabilities associated with different flood events under various extreme precipitation scenarios aiming for flood control and sediment transport. The proposed hydrological risk framework offers a promising technical reference for flood risk analysis in sandy regions worldwide.

  13. Precipitation Thresholds for Triggering Floods in the Corgo Basin, Portugal

    Directory of Open Access Journals (Sweden)

    Mónica Santos


    Full Text Available Thresholds based on critical combinations of amount/duration of precipitation and flood events were estimated for the Corgo hydrographic basin, in northern Portugal. Thirty-one flood events in the Corgo basin were identified between 1865 and 2011 from a database of hydrometeorological disasters in Portugal. The minimum, maximum, and pre-warning thresholds that define the boundaries for flood occurrence were determined. The results show that the ratio between the total number of floods and precipitation events exceeding the minimum threshold denotes a relatively low probability of successful forecasting. This result may be due to the reduced number of flooding events in the floods database, which only include floods that caused damage as reported by the media. The estimated maximum threshold is not adequate for use in floods, since the majority of true positives are below this limit. However, and more interestingly, the retrospective verification of the estimated thresholds suggests that the minimum and pre-warning thresholds are well adjusted. Therefore, the application of these precipitation thresholds may contribute to minimize possible situations of pre-crisis or immediate crisis by reducing the flood consequences and the resources involved in emergency response to flood events.

  14. A Theory on Urban Resilience to Floods - A Basis for Alternative Planning Practices

    Directory of Open Access Journals (Sweden)

    Kuei-Hsien Liao


    Full Text Available River cities require a management approach based on resilience to floods rather than on resistance. Resisting floods by means of levees, dams, and channelization neglects inherent uncertainties arising from human-nature couplings and fails to address the extreme events that are expected to increase with climate change, and is thereby not a reliable approach to long-term flood safety. By applying resilience theory to address system persistence through changes, I develop a theory on "urban resilience to floods" as an alternative framework for urban flood hazard management. Urban resilience to floods is defined as a city's capacity to tolerate flooding and to reorganize should physical damage and socioeconomic disruption occur, so as to prevent deaths and injuries and maintain current socioeconomic identity. It derives from living with periodic floods as learning opportunities to prepare the city for extreme ones. The theory of urban resilience to floods challenges the conventional wisdom that cities cannot live without flood control, which in effect erodes resilience. To operationalize the theory for planning practice, a surrogate measure - the percent floodable area - is developed for assessing urban resilience to floods. To enable natural floodplain functions to build urban resilience to floods, flood adaptation is advocated in order to replace flood control for mitigating flood hazards.

  15. Loss of life in flood events (United States)

    Špitalar, Maruša


    Natural disasters per se give a negative connotation. They are destructive to material elements in a space, nature itself and represent a threat to peoples' lives and health. Floods, especially flash floods due to its power and happening suddenly cause extensive damage. Hence, they are hard to predict and are characterized with violent movement, lots of lives are lost. Floods are among natural hazards the one causing the highest number of fatalities. Having said that very important aspects are humans' vulnerability, risk perception, their behavior when confronted with hazardous situations and on the other hand issues related to adequate warning signs and canals of communication. It is very important to take into consideration this segments also and not mainly just structural measures. However the aim of this paper is to emphasis mainly the social aspects of floods. It consists of two main parts. First one refers to mans' vulnerability, risk perception when it comes to danger caused by rising waters and how does culture influences peoples' response and reaction to flood causalities. The second part consists of data about detailed information on circumstances of death that have been collected from several different sources from several EU countries. There has been also available information on the age and gender of people who lost lives in flood events. With gender males dominated among death people since tend to risk more in risky situations. There has been also defined a vulnerable age group among flood fatalities. Analysis of circumstance of death enabled us to define risky groups that are very important for flood managers. Further on this is very beneficial also for risk prevention, early warning systems and creating the best canals in order to information about upcoming danger would successfully reach people at hazardous areas and also for the others to avoid them.

  16. Valuing the reduction of floods: Public officials’ versus citizens’ preferences

    Directory of Open Access Journals (Sweden)

    Elin Spegel


    Full Text Available This paper analyses the preferences of public officials and citizens related to the impacts of floods in the Gothenburg region in Sweden. Citizens and public officials in the flood-prone region answered identical choice-experiment surveys characterized by the negative impacts of floods: property damage, traffic disturbances, and water supply security. By having citizens and public officials respond to identical surveys, it was possible to analyse whether and, if so, how priorities and monetary valuation differed in respect of the different negative effects of floods. The overall finding is that public officials’ and citizens’ preferences seem to converge, and that both citizens and public officials are willing to pay to reduce flood-related costs. Public officials have similar priorities to citizens, in that security of drinking water provision was given priority over property damage, while traffic disturbances were ranked lowest. In terms of their respective willingness to pay to avoid the negative impact of floods, public officials were willing to pay more than citizens to pay for securing the drinking water supply and for restoring damaged property, though these differences were not substantial. There are, however, some differences in preference between citizens and public officials: the latter preferred not to spend anything to reduce traffic disturbances caused by floods, whilst citizens were willing to do so. These results imply that decisions made within the public sector will not come to differ substantially from citizens’ preferences.

  17. Tracing the value of data for flood loss modelling

    Directory of Open Access Journals (Sweden)

    Schröter Kai


    Full Text Available Flood loss modelling is associated with considerable uncertainty. If prediction uncertainty of flood loss models is large, the reliability of model outcomes is questionable, and thus challenges the practical usefulness. A key problem in flood loss estimation is the transfer of models to geographical regions and to flood events that may differ from the ones used for model development. Variations in local characteristics and continuous system changes require regional adjustments and continuous updating with current evidence. However, acquiring data on damage influencing factors is usually very costly. Therefore, it is of relevance to assess the value of additional data in terms of model performance improvement. We use empirical flood loss data on direct damage to residential buildings available from computer aided telephone interviews that were compiled after major floods in Germany. This unique data base allows us to trace the changes in predictive model performance by incrementally extending the data base used to derive flood loss models. Two models are considered: a uni-variable stage damage function and RF-FLEMO, a multi-variable probabilistic model approach using Random Forests. Additional data are useful to improve model predictive performance and increase model reliability, however the gains also seem to depend on the model approach.

  18. Contribution of future urbanisation expansion to flood risk changes (United States)

    Bruwier, Martin; Mustafa, Ahmed; Archambeau, Pierre; Erpicum, Sébastien; Pirotton, Michel; Teller, Jacques; Dewals, Benjamin


    The flood risk is expected to increase in the future due to climate change and urban development. Climate change modifies flood hazard and urban development influences exposure and vulnerability to floods. While the influence of climate change on flood risk has been studied widely, the impact of urban development also needs to be considered in a sustainable flood risk management approach. The main goal of this study is the determination of the sensitivity of future flood risk to different urban development scenarios at a relatively short-time horizon in the River Meuse basin in Wallonia (Belgium). From the different scenarios, the expected impact of urban development on flood risk is assessed. Three urban expansion scenarios are developed up to 2030 based on a coupled cellular automata (CA) and agent-based (AB) urban expansion model: (i) business-as-usual, (ii) restrictive and (iii) extreme expansion scenarios. The main factor controlling these scenarios is the future urban land demand. Each urban expansion scenario is developed by considering or not high and/or medium flood hazard zones as a constraint for urban development. To assess the model's performance, it is calibrated for the Meuse River valley (Belgium) to simulate urban expansion between 1990 and 2000. Calibration results are then assessed by comparing the 2000 simulated land-use map and the actual 2000 land-use map. The flood damage estimation for each urban expansion scenario is determined for five flood discharges by overlaying the inundation map resulting from a hydraulic computation and the urban expansion map and by using damage curves and specific prices. The hydraulic model Wolf2D has been extensively validated by comparisons between observations and computational results during flood event .This study focuses only on mobile and immobile prices for urban lands, which are associated to the most severe damages caused by floods along the River Meuse. These findings of this study offers tools to

  19. Future flood risk estimates along the river Rhine

    Directory of Open Access Journals (Sweden)

    A. H. te Linde


    Full Text Available In Europe, water management is moving from flood defence to a risk management approach, which takes both the probability and the potential consequences of flooding into account. It is expected that climate change and socio-economic development will lead to an increase in flood risk in the Rhine basin. To optimize spatial planning and flood management measures, studies are needed that quantify future flood risks and estimate their uncertainties. In this paper, we estimated the current and future fluvial flood risk in 2030 for the entire Rhine basin in a scenario study. The change in value at risk is based on two land-use projections derived from a land-use model representing two different socio-economic scenarios. Potential damage was calculated by a damage model, and changes in flood probabilities were derived from two climate scenarios and hydrological modeling. We aggregated the results into seven sections along the Rhine. It was found that the annual expected damage in the Rhine basin may increase by between 54% and 230%, of which the major part (~ three-quarters can be accounted for by climate change. The highest current potential damage can be found in the Netherlands (110 billion €, compared with the second (80 billion € and third (62 billion € highest values in two areas in Germany. Results further show that the area with the highest fluvial flood risk is located in the Lower Rhine in Nordrhein-Westfalen in Germany, and not in the Netherlands, as is often perceived. This is mainly due to the higher flood protection standards in the Netherlands as compared to Germany.

  20. Estimation of the Relative Severity of Floods in Small Ungauged Catchments for Preliminary Observations on Flash Flood Preparedness: A Case Study in Korea (United States)

    Kim, Eung Seok; Choi, Hyun Il


    An increase in the occurrence of sudden local flooding of great volume and short duration has caused significant danger and loss of life and property in Korea as well as many other parts of the World. Since such floods usually accompanied by rapid runoff and debris flow rise quite quickly with little or no advance warning to prevent flood damage, this study presents a new flash flood indexing methodology to promptly provide preliminary observations regarding emergency preparedness and response to flash flood disasters in small ungauged catchments. Flood runoff hydrographs are generated from a rainfall-runoff model for the annual maximum rainfall series of long-term observed data in the two selected small ungauged catchments. The relative flood severity factors quantifying characteristics of flood runoff hydrographs are standardized by the highest recorded maximum value, and then averaged to obtain the flash flood index only for flash flood events in each study catchment. It is expected that the regression equations between the proposed flash flood index and rainfall characteristics can provide the basis database of the preliminary information for forecasting the local flood severity in order to facilitate flash flood preparedness in small ungauged catchments. PMID:22690208

  1. The 3D Elevation Program—Flood risk management (United States)

    Carswell, William J.; Lukas, Vicki


    Flood-damage reduction in the United States has been a longstanding but elusive societal goal. The national strategy for reducing flood damage has shifted over recent decades from a focus on construction of flood-control dams and levee systems to a three-pronged strategy to (1) improve the design and operation of such structures, (2) provide more accurate and accessible flood forecasting, and (3) shift the Federal Emergency Management Agency (FEMA) National Flood Insurance Program to a more balanced, less costly flood-insurance paradigm. Expanding the availability and use of high-quality, three-dimensional (3D) elevation information derived from modern light detection and ranging (lidar) technologies to provide essential terrain data poses a singular opportunity to dramatically enhance the effectiveness of all three components of this strategy. Additionally, FEMA, the National Weather Service, and the U.S. Geological Survey (USGS) have developed tools and joint program activities to support the national strategy.The USGS 3D Elevation Program (3DEP) has the programmatic infrastructure to produce and provide essential terrain data. This infrastructure includes (1) data acquisition partnerships that leverage funding and reduce duplicative efforts, (2) contracts with experienced private mapping firms that ensure acquisition of consistent, low-cost 3D elevation data, and (3) the technical expertise, standards, and specifications required for consistent, edge-to-edge utility across multiple collection platforms and public access unfettered by individual database designs and limitations.High-quality elevation data, like that collected through 3DEP, are invaluable for assessing and documenting flood risk and communicating detailed information to both responders and planners alike. Multiple flood-mapping programs make use of USGS streamflow and 3DEP data. Flood insurance rate maps, flood documentation studies, and flood-inundation map libraries are products of these

  2. Improving flood risk mapping in Italy: the FloodRisk open-source software (United States)

    Albano, Raffaele; Mancusi, Leonardo; Craciun, Iulia; Sole, Aurelia; Ozunu, Alexandru


    Time and again, floods around the world illustrate the devastating impact they can have on societies. Furthermore, the expectation that the flood damages can increase over time with climate, land-use change and social growth in flood prone-areas has raised the public and other stakeholders' (governments, international organization, re-insurance companies and emergency responders) awareness for the need to manage risks in order to mitigate their causes and consequences. In this light, the choice of appropriate measures, the assessment of the costs and effects of such measures, and their prioritization are crucial for decision makers. As a result, a priori flood risk assessment has become a key part of flood management practices with the aim of minimizing the total costs related to the risk management cycle. In this context, The EU Flood Directive 2007/60 requires the delineation of flood risk maps on the bases of most appropriate and advanced tools, with particular attention on limiting required economic efforts. The main aim of these risk maps is to provide the required knowledge for the development of flood risk management plans (FRMPs) by considering both costs and benefits of alternatives and results from consultation with all interested parties. In this context, this research project developed a free and open-source (FOSS) GIS software, called FloodRisk, to operatively support stakeholders in their compliance with the FRMPs. FloodRisk aims to facilitate the development of risk maps and the evaluation and management of current and future flood risk for multi-purpose applications. This new approach overcomes the limits of the expert-drive qualitative (EDQ) approach currently adopted in several European countries, such as Italy, which does not permit a suitable evaluation of the effectiveness of risk mitigation strategies, because the vulnerability component cannot be properly assessed. Moreover, FloodRisk is also able to involve the citizens in the flood

  3. Floods and droughts: friends or foes? (United States)

    Prudhomme, Christel


    Water hazards are some of the biggest threats to lives and livelihoods globally, causing serious damages to society and infrastructure. But floods and droughts are an essential part of the hydrological regime that ensures fundamental ecosystem functions, providing natural ways to bring in nutrients, flush out pollutants and enabling soils, rivers and lakes natural biodiversity to thrive. Traditionally, floods and droughts are too often considered separately, with scientific advance in process understanding, modelling, statistical characterisation and impact assessment are often done independently, possibly delaying the development of innovative methods that could be applied to both. This talk will review some of the key characteristics of floods and droughts, highlighting differences and commonalties, losses and benefits, with the aim of identifying future key research challenges faced by both current and next generation of hydrologists.

  4. Toward more flood resilience: Is a diversification of flood risk management strategies the way forward?

    Directory of Open Access Journals (Sweden)

    Dries L. T. Hegger


    Full Text Available European countries face increasing flood risks because of urbanization, increase of exposure and damage potential, and the effects of climate change. In literature and in practice, it is argued that a diversification of strategies for flood risk management (FRM, including flood risk prevention (through proactive spatial planning, flood defense, flood risk mitigation, flood preparation, and flood recovery, makes countries more flood resilient. Although this thesis is plausible, it should still be empirically scrutinized. We aim to do this. Drawing on existing literature we operationalize the notion of "flood resilience" into three capacities: capacity to resist; capacity to absorb and recover; and capacity to transform and adapt. Based on findings from the EU FP7 project STAR-FLOOD, we explore the degree of diversification of FRM strategies and related flood risk governance arrangements at the national level in Belgium, England, France, the Netherlands, Poland, and Sweden, as well as these countries' achievement in terms of the three capacities. We found that the Netherlands and to a lesser extent Belgium have a strong capacity to resist, France a strong capacity to absorb and recover, and especially England a high capacity to transform and adapt. Having a diverse portfolio of FRM strategies in place may be conducive to high achievements related to the capacities to absorb/recover and to transform and adapt. Hence, we conclude that diversification of FRM strategies contributes to resilience. However, the diversification thesis should be nuanced in the sense that there are different ways to be resilient. First, the three capacities imply different rationales and normative starting points for flood risk governance, the choice between which is inherently political. Second, we found trade-offs between the three capacities, e.g., being resistant seems to lower the possibility to be absorbent. Third, to explain countries' achievements in terms of

  5. Flood Risk Management in Iowa through an Integrated Flood Information System (United States)

    Demir, Ibrahim; Krajewski, Witold


    communities in advance to help minimize damage of floods. This presentation provides an overview and live demonstration of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.

  6. Quantification of uncertainty in flood risk assessment for flood protection planning: a Bayesian approach (United States)

    Dittes, Beatrice; Špačková, Olga; Ebrahimian, Negin; Kaiser, Maria; Rieger, Wolfgang; Disse, Markus; Straub, Daniel


    Flood risk estimates are subject to significant uncertainties, e.g. due to limited records of historic flood events, uncertainty in flood modeling, uncertain impact of climate change or uncertainty in the exposure and loss estimates. In traditional design of flood protection systems, these uncertainties are typically just accounted for implicitly, based on engineering judgment. In the AdaptRisk project, we develop a fully quantitative framework for planning of flood protection systems under current and future uncertainties using quantitative pre-posterior Bayesian decision analysis. In this contribution, we focus on the quantification of the uncertainties and study their relative influence on the flood risk estimate and on the planning of flood protection systems. The following uncertainty components are included using a Bayesian approach: 1) inherent and statistical (i.e. limited record length) uncertainty; 2) climate uncertainty that can be learned from an ensemble of GCM-RCM models; 3) estimates of climate uncertainty components not covered in 2), such as bias correction, incomplete ensemble, local specifics not captured by the GCM-RCM models; 4) uncertainty in the inundation modelling; 5) uncertainty in damage estimation. We also investigate how these uncertainties are possibly reduced in the future when new evidence - such as new climate models, observed extreme events, and socio-economic data - becomes available. Finally, we look into how this new evidence influences the risk assessment and effectivity of flood protection systems. We demonstrate our methodology for a pre-alpine catchment in southern Germany: the Mangfall catchment in Bavaria that includes the city of Rosenheim, which suffered significant losses during the 2013 flood event.

  7. A methodology for flood risk appraisal in Lithuania

    Directory of Open Access Journals (Sweden)

    Kriščiukaitienė Irena


    Full Text Available This paper presents a methodology for flood risk mapping as envisaged by the Directive on the Assessment and Management of Flood Risks [Directive 2007/60/EC]. Specifically, we aimed at identifying the types of flood damage that can be estimated given data availability in Lithuania. Furthermore, we present the main sources of data and the associated cost functions. The methodology covers the following main types of flood threats: risk to inhabitants, risk to economic activity, and social risk. A multi-criteria framework for aggregation of different risks is proposed to provide a comprehensive appraisal of flood risk. On the basis of the proposed research, flood risk maps have been prepared for Lithuania. These maps are available for each type of flood risk (i.e. inhabitants, economic losses, social risk as well as for aggregate risk. The results indicate that flood risk management is crucial for western and central Lithuania, whereas other parts of the country are not likely to suffer from significant losses due to flooding.



    文, 勇起; BUN, Yuki


    In recent years, many flood damage and drought attributed to urbanization has occurred. At present infiltration facility is suggested for the solution of these problems. Based on this background, the purpose of this study is investigation of quantification of flood control and water utilization effect of rainfall infiltration facility by using water balance analysis model. Key Words : flood control, water utilization , rainfall infiltration facility

  9. Dutch dikes, and risk hikes; a thematic policy evaluation of risks of flooding in the Netherlands. Extended summary

    NARCIS (Netherlands)

    MNP; MNP


    Dams in the Netherlands have never been stronger so the probability of encountering floods from rivers or on the coast similar to the great flood in the south-western part of the Netherlands in 1953 has declined. However, the risks of casualties and economic damage from flooding have become much

  10. Flood Losses Associated with Winter Storms in the U.S. Northeast (United States)

    Ting, M.; Shimkus, C.


    Winter storms pose a number of hazards to coastal communities in the U.S. Northeast including heavy rain, snow, strong wind, cold temperatures, and flooding. These hazards can cause millions in property damages from one storm alone. This study addresses the impacts of winter storms from 2001 - 2012 on coastal counties in the U.S. Northeast and underscores the significant economic consequences extreme winter storms have on property. The analysis on the types of hazards (floods, strong wind, snow, etc.) and associated damage from the National Climatic Data Center Storm Events Database indicates that floods were responsible for the highest damages. This finding suggests that winter storm vulnerability could grow in the future as precipitation intensity increases and sea level rise exacerbate flood losses. Flood loss maps are constructed based on damage amount, which can be compared to the flood exposure maps constructed by the NOAA Office of Coastal Management. Interesting agreements and discrepancies exist between the two methods, which warrant further examination. Furthermore, flood losses often came from storms characterized as heavy precipitation storms and strong surge storms, and sometimes both, illustrating the compounding effect of flood risks in the region. While New Jersey counties experienced the most damage per unit area, there is no discernable connection between population density and damage amount, which suggests that societal impacts may rely less on population characteristics and more on infrastructure types and property values, which vary throughout the region.

  11. Flood Risk Mapping Using Flow Energy Equation and Geographic Information System

    Directory of Open Access Journals (Sweden)

    pourya Javan


    Full Text Available Flooding and its damages are not only found uplift water level in a region. In other words, the depth and speed parameters together have determining the level of flood risk at each point. This subject is visible in flooded plain with low height and high speed of 2 meters per second, which damages are extensive. According to the criteria of having both velocity and flow depth in the governing equation to the flows energy, this equation seems appropriate to analysis in this study. Various methods have been proposed for increase accuracy in flood zoning with different return periods and risks associated with it in land border of river. For example, some of these methods are considered factors such as analysis of past flooding in the area affected by floods, hydrological factors and consideration of hydraulic elements affecting in flood zoning (such as flow velocity. This paper investigates the effect of flood zoning by the energy flow in the areas affected by floods. Also risk due to flood based on energy flow in each section of the river is compared by the proposed graphs of hazard interval and other done flood zoning in this field. In this study, the FORDO river has been selected as the case study. This river is part of the rivers located in the city of QOM KAHAK. The characteristics of river in upstream and downstream are mountain, young and stable and adult, respectively. Also this river in different seasons is exposed the flood damage. The proposed method in this study can be improving recognition accuracy of flood risk in areas affected by flood. Also, this method facilitate the identify parts of the river bed, that is affected by severe flooding, for decision making to improve rivers organizing.

  12. Urban flood risk warning under rapid urbanization. (United States)

    Chen, Yangbo; Zhou, Haolan; Zhang, Hui; Du, Guoming; Zhou, Jinhui


    In the past decades, China has observed rapid urbanization, the nation's urban population reached 50% in 2000, and is still in steady increase. Rapid urbanization in China has an adverse impact on urban hydrological processes, particularly in increasing the urban flood risks and causing serious urban flooding losses. Urban flooding also increases health risks such as causing epidemic disease break out, polluting drinking water and damaging the living environment. In the highly urbanized area, non-engineering measurement is the main way for managing urban flood risk, such as flood risk warning. There is no mature method and pilot study for urban flood risk warning, the purpose of this study is to propose the urban flood risk warning method for the rapidly urbanized Chinese cities. This paper first presented an urban flood forecasting model, which produces urban flood inundation index for urban flood risk warning. The model has 5 modules. The drainage system and grid dividing module divides the whole city terrain into drainage systems according to its first-order river system, and delineates the drainage system into grids based on the spatial structure with irregular gridding technique; the precipitation assimilation module assimilates precipitation for every grids which is used as the model input, which could either be the radar based precipitation estimation or interpolated one from rain gauges; runoff production module classifies the surface into pervious and impervious surface, and employs different methods to calculate the runoff respectively; surface runoff routing module routes the surface runoff and determines the inundation index. The routing on surface grid is calculated according to the two dimensional shallow water unsteady flow algorithm, the routing on land channel and special channel is calculated according to the one dimensional unsteady flow algorithm. This paper then proposed the urban flood risk warning method that is called DPSIR model based

  13. Socio-economic Impact Analysis for Near Real-Time Flood Detection in the Lower Mekong River Basin (United States)

    Oddo, P.; Ahamed, A.; Bolten, J. D.


    Flood events pose a severe threat to communities in the Lower Mekong River Basin. The combination of population growth, urbanization, and economic development exacerbate the impacts of these flood events. Flood damage assessments are frequently used to quantify the economic losses in the wake of storms. These assessments are critical for understanding the effects of flooding on the local population, and for informing decision-makers about future risks. Remote sensing systems provide a valuable tool for monitoring flood conditions and assessing their severity more rapidly than traditional post-event evaluations. The frequency and severity of extreme flood events are projected to increase, further illustrating the need for improved flood monitoring and impact analysis. In this study we implement a socio-economic damage model into a decision support tool with near real-time flood detection capabilities (NASA's Project Mekong). Surface water extent for current and historical floods is found using multispectral Moderate-resolution Imaging Spectroradiometer (MODIS) 250-meter imagery and the spectral Normalized Difference Vegetation Index (NDVI) signatures of permanent water bodies (MOD44W). Direct and indirect damages to populations, infrastructure, and agriculture are assessed using the 2011 Southeast Asian flood as a case study. Improved land cover and flood depth assessments result in a more refined understanding of losses throughout the Mekong River Basin. Results suggest that rapid initial estimates of flood impacts can provide valuable information to governments, international agencies, and disaster responders in the wake of extreme flood events.

  14. Seed Priming Improves Agronomic Trait Performance under Flooding and Non-flooding Conditions in Rice with QTL SUB1

    Directory of Open Access Journals (Sweden)

    Ramni Kumar SARKAR


    Full Text Available Farmers in South East Asia are adopting rice crop establishment methods from transplanting to direct wet or dry seeding as it requires less labour and time and comparatively less energy than transplanting. In contrast to irrigated condition, in rainfed lowland, direct seeding is a common practice. Early flooding controls weeds but decreases seedling establishment in direct seeded rice. Anaerobic germination is an important trait to counteract damages caused by early flooding. Management options which can help in crop establishment and improve crop growth under flooding might remove the constraints related to direct seeding. The investigation was carried out with two near isogenic lines Swarna and Swarna-Sub1. Swarna-Sub1 is tolerant to submergence whereas Swarna is susceptible. Seed priming was done with water and 2% Jamun (Syzygium cumini leaf extract, and it improved seedling establishment under flooding. Acceleration of growth occurred due to seed pretreatment, which resulted longer seedling and greater accumulation of biomass. Seed priming greatly hastened the activities of total amylase and alcohol dehydrogenase in Swarna-Sub1 than in Swarna. Swarna-Sub1 outperformed Swarna when the plants were cultivated under flooding. Weed biomass decreased significantly under flooding compared to non-flooding conditions. Seed priming had positive effects on yield and yield attributing parameters both under non-flooding and early flooding conditions.

  15. Discover Floods Educators Guide (United States)

    Project WET Foundation, 2009


    Now available as a Download! This valuable resource helps educators teach students about both the risks and benefits of flooding through a series of engaging, hands-on activities. Acknowledging the different roles that floods play in both natural and urban communities, the book helps young people gain a global understanding of this common--and…

  16. Floods in a changing climate: a review. (United States)

    Hunt, J C R


    This paper begins with an analysis of flooding as a natural disaster for which the solutions to the environmental, social and economic problems are essentially those of identifying and overcoming hazards and vulnerability, reducing risk and damaging consequences. Long-term solutions to flooding problems, especially in a changing climate, should be sought in the wider context of developing more sustainable social organization, economics and technology. Then, developments are described of how scientific understanding, supported by practical modelling, is leading to predictions of how human-induced changes to climatic and geological conditions are likely to influence flooding over at least the next 300 years, through their influences on evaporation, precipitation, run-off, wind storm and sea-level rise. Some of the outstanding scientific questions raised by these problems are highlighted, such as the statistical and deterministic prediction of extreme events, the understanding and modelling of mechanisms that operate on varying length- and time-scales, and the complex interactions between biological, ecological and physical problems. Some options for reducing the impact of flooding by new technology include both improved prediction and monitoring with computer models, and remote sensing, flexible and focused warning systems, and permanent and temporary flood-reduction systems.

  17. Global drivers of future river flood risk (United States)

    Winsemius, Hessel C.; Aerts, Jeroen C. J. H.; van Beek, Ludovicus P. H.; Bierkens, Marc F. P.; Bouwman, Arno; Jongman, Brenden; Kwadijk, Jaap C. J.; Ligtvoet, Willem; Lucas, Paul L.; van Vuuren, Detlef P.; Ward, Philip J.


    Understanding global future river flood risk is a prerequisite for the quantification of climate change impacts and planning effective adaptation strategies. Existing global flood risk projections fail to integrate the combined dynamics of expected socio-economic development and climate change. We present the first global future river flood risk projections that separate the impacts of climate change and socio-economic development. The projections are based on an ensemble of climate model outputs, socio-economic scenarios, and a state-of-the-art hydrologic river flood model combined with socio-economic impact models. Globally, absolute damage may increase by up to a factor of 20 by the end of the century without action. Countries in Southeast Asia face a severe increase in flood risk. Although climate change contributes significantly to the increase in risk in Southeast Asia, we show that it is dwarfed by the effect of socio-economic growth, even after normalization for gross domestic product (GDP) growth. African countries face a strong increase in risk mainly due to socio-economic change. However, when normalized to GDP, climate change becomes by far the strongest driver. Both high- and low-income countries may benefit greatly from investing in adaptation measures, for which our analysis provides a basis.

  18. Water mobility key to improved floods

    Energy Technology Data Exchange (ETDEWEB)

    Pamenter, C B


    The use of polymer floods in the U.S. and Canada is discussed. A 2-yr laboratory study conducted by Dow Chemical Co. early in the life of polymer flooding showed that polymers improved the mobility ratio without damage to porosity or permeability of reservoir rock. A pilot test was made in the Niagara Field, Ky., and the results of this pilot compared to the performance of a waterflood that had been operating in this field for about 4 yr. The results showed that polymer flooding was superior to conventional waterflooding and had a distinct behavior. Another pilot flood conducted by Dow in the Albrecht Field, Starr County, Tex., showed similar results. Union Oil Co. of California also conducted pilot tests in 4 of their California reservoirs. Additional recoverable reserves resulting from polymer flooding for 2 of these reservoirs were estimated at 95,000 and 70,000 bbl. The other 2 tests were not as satisfactory, but this behavior is thought to be the result of not using enough polymer. Two other projects discussed are the NE. Hallsville Field unit in East Texas and the Squirrel sand reservoir in Woodson County, Kans., which were conducted by Hunt Oil Co. and Brazos Oil and Gas Co., respectively.

  19. National flood risk mapping of the Danish coastline

    DEFF Research Database (Denmark)

    Jumppanen Andersen, Kaija; Earnshaw, Matthew; Sørensen, Carlo


    Ocean flooding related to extreme storm surges poses a large damage potential for society. With future climate changes such as sea level rise and increased storminess, ocean flooding becomes one of the largest challenges for Denmark, due to its many islands and long low-lying coastline....... At The Danish Coastal Authority under the Ministry of the Environment we are carrying out a rapid screening of the areas vulnerable to ocean flooding throughout the whole of Denmark; today, in 2065 and in 2100, respectively, to determine hazard areas and vulnerabilities towards floods. With this information we...... can estimate the future requirement for sea defences along the Danish coastline now and into the future. While carrying out this screening we have to assess the factors influencing the flood level. This includes changes in the topography from glacial isostasy and subsidence along with future mean sea...

  20. An integrated analysis of the March 2015 Atacama floods (United States)

    Wilcox, Andrew C.; Escauriaza, Cristian; Agredano, Roberto; Mignot, Emmanuel; Zuazo, Vicente; Otárola, Sebastián.; Castro, Lina; Gironás, Jorge; Cienfuegos, Rodrigo; Mao, Luca


    In March 2015 unusual ocean and atmospheric conditions produced many years' worth of rainfall in a 48 h period over northern Chile's Atacama Desert, one of Earth's driest regions, resulting in catastrophic flooding. Here we describe the hydrologic and geomorphic drivers of and responses to the 2015 Atacama floods. In the Salado River, we estimated a flood peak discharge of approximately 1000 m3/s, which caused widespread damage and high sediment loads that were primarily derived from valley-fill erosion; hillslopes remained surprisingly intact despite their lack of vegetation. In the coastal city of Chañaral, flooding of the Salado River produced maximum water depths over 4.5 m, meters thick mud deposition in buildings and along city streets, and coastal erosion. The Atacama flooding has broad implications in the context of hazard reduction, erosion of contaminated legacy mine tailings, and the Atacama's status as a terrestrial analog for Mars.

  1. Flood Hazard Mapping by Using Geographic Information System and Hydraulic Model: Mert River, Samsun, Turkey

    Directory of Open Access Journals (Sweden)

    Vahdettin Demir


    Full Text Available In this study, flood hazard maps were prepared for the Mert River Basin, Samsun, Turkey, by using GIS and Hydrologic Engineering Centers River Analysis System (HEC-RAS. In this river basin, human life losses and a significant amount of property damages were experienced in 2012 flood. The preparation of flood risk maps employed in the study includes the following steps: (1 digitization of topographical data and preparation of digital elevation model using ArcGIS, (2 simulation of flood lows of different return periods using a hydraulic model (HEC-RAS, and (3 preparation of flood risk maps by integrating the results of (1 and (2.

  2. Flood action plans

    International Nuclear Information System (INIS)

    Slopek, R.J.


    Safe operating procedures developed by TransAlta Utilities for dealing with flooding, resulting from upstream dam failures or extreme rainfalls, were presented. Several operating curves developed by Monenco AGRA were described, among them the No Overtopping Curve (NOC), the Safe Filling Curve (SFC), the No Spill Curve (NSC) and the Guaranteed Fill Curve (GFC). The concept of an operational comfort zone was developed and defined. A flood action plan for all operating staff was created as a guide in case of a flooding incident. Staging of a flood action plan workshop was described. Dam break scenarios pertinent to the Bow River were developed for subsequent incorporation into a Flood Action Plan Manual. Evaluation of the technical presentations made during workshops were found them to have been effective in providing operating staff with a better understanding of the procedures that they would perform in an emergency. 8 figs

  3. September 2013 Storm and Flood Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    Walterscheid, J. C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Between September 10 and 17, 2013, New Mexico and Colorado received a historically large amount of precipitation (Figure 1). This report assesses the damage caused by flooding along with estimated costs to repair the damage at Los Alamos National Laboratory (the Laboratory) on the Pajarito Plateau. Los Alamos County, New Mexico, received between 200% and 600% of the normal precipitation for this time period (Figure 2), and the Laboratory received approximately 450% percent of its average precipitation for September (Figure 3). As a result, the Laboratory was inundated with rain, including the extremely large, greater-than-1000-yr return period event that occurred between September 12 and 13 (Table 1). With saturated antecedent soil conditions from the September 10 storm, when the September 12 to September 13 storm hit, the flooding was disastrous to the Laboratory’s environmental infrastructure, including access roads, gage stations, watershed controls, control measures installed under the National Pollutant Discharge Elimination System Permit (hereafter, the Individual Permit), and groundwater monitoring wells (Figures 4 through 21). From September 16 to October 1, 2013, the Laboratory completed field assessments of environmental infrastructure and generated descriptions and estimates of the damage, which are presented in spreadsheets in Attachments 1 to 4 of this report. Section 2 of this report contains damage assessments by watershed, including access roads, gage stations, watershed controls, and control measures installed under the Individual Permit. Section 3 contains damage assessments of monitoring wells by the groundwater monitoring groups as established in the Interim Facility-Wide Groundwater Monitoring Plan for Monitoring Year 2014. Section 4 addresses damage and loss of automated samplers. Section 5 addresses sediment sampling needs, and Section 6 is the summary of estimated recovery costs from the significant rain and flooding during September 2013.

  4. Susquehanna River Basin Flood Control Review Study (United States)


    and made recommendations for an intergrated water plan for the Basin and included a specific Early Action Plan. Concerning flood damage reduction, the...transportation and by agriculture as a source of income and occupation. The river served as a source of transportation for trade and commerce and also as a... trade patterns, and labor market areas. The Susquehanna River Basin is largely comprised of BEA economic areas 011, 012, 013, and 016. Figure II shows the

  5. Floods of the Lower Tisza from the late 17th century onwards: frequency, magnitude, seasonality and great flood events (United States)

    Kiss, Andrea


    The present paper is based on a recently developed database including contemporary original, administrative, legal and private source materials (published and archival) as well as media reports related to the floods occurred on the lower sections of the Tisza river in Hungary, with special emphasis on the area of Szeged town. The study area is well-represented by contemporary source evidence from the late 17th century onwards, when the town and its broader area was reoccupied from the Ottoman Turkish Empire. Concerning the applied source materials, the main bases of investigation are the administrative (archival) sources such as town council protocols of Szeged and county meeting protocols of Csanád and Csongrád Counties. In these (legal-)administrative documents damaging events (natural/environmental hazards) were systematically recorded. Moreover, other source types such as taxation-related damage accounts as well as private and official reports, letters and correspondence (published, unpublished) were also included. Concerning published evidence, a most important source is flood reports in contemporary newspapers as well as town chronicles and other contemporary narratives. In the presentation the main focus is on the analysis of flood-rich flood-poor periods of the last ca. 330 years; moreover, the seasonality distribution as well as the magnitude of Tisza flood events are also discussed. Another important aim of the poster is to provide a short overview, in the form of case studies, on the greatest flood events (e.g. duration, magnitude, damages, multi-annual consequences), and their further impacts on the urban and countryside development as well as on (changes in) flood defence strategies. In this respect, especially two flood events, the great (1815-)1816 and the catastrophic 1879 flood (shortly with causes and consequences) - that practically erased Szeged town from the ground - are presented in more detail.

  6. Coastal Flooding Hazards due to storm surges and subsidence

    DEFF Research Database (Denmark)

    Sørensen, Carlo; Knudsen, Per; Andersen, Ole B.

    Flooding hazard and risk mapping are major topics in low-lying coastal areas before even considering the adverse effects of sea level rise (SLR) due to climate change. While permanent inundation may be a prevalent issue, more often floods related to extreme events (storm surges) have the largest...... damage potential.Challenges are amplified in some areas due to subsidence from natural and/or anthropogenic causes. Subsidence of even a few mm/y may over time greatly impair the safety against flooding of coastal communities and must be accounted for in order to accomplish the economically most viable...

  7. Distillation Column Flooding Predictor

    Energy Technology Data Exchange (ETDEWEB)

    George E. Dzyacky


    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  8. The Financial Benefit of Early Flood Warnings in Europe (United States)

    Pappenberger, Florian; Cloke, Hannah L.; Wetterhall, Fredrik; Parker, Dennis J.; Richardson, David; Thielen, Jutta


    Effective disaster risk management relies on science based solutions to close the gap between prevention and preparedness measures. The outcome of consultations on the UNIDSR post-2015 framework for disaster risk reduction highlight the need for cross-border early warning systems to strengthen the preparedness phases of disaster risk management in order to save people's lives and property and reduce the overall impact of severe events. In particular, continental and global scale flood forecasting systems provide vital information to various decision makers with which early warnings of floods can be made. Here the potential monetary benefits of early flood warnings using the example of the European Flood Awareness System (EFAS) are calculated based on pan-European Flood damage data and calculations of potential flood damage reductions. The benefits are of the order of 400 Euro for every 1 Euro invested. Because of the uncertainties which accompany the calculation, a large sensitivity analysis is performed in order to develop an envelope of possible financial benefits. Current EFAS system skill is compared against perfect forecasts to demonstrate the importance of further improving the skill of the forecasts. Improving the response to warnings is also essential in reaping the benefits of flood early warnings.

  9. Floods in the United States: Magnitude and frequency (United States)

    Jarvis, Clarence S.; ,


    From time immemorial floods have transformed beneficent river waters into a menace to humanity. Man's progress toward economic stability has been repeatedly halted or even thrown backward by the interruption of his efforts to make effective use of rivers and of valley lands. This handicap is not imposed by the destructiveness of large rivers alone, or of rivers in widely separated areas, for there are few if any streams, brooks, or rivulets that are not subject to flows beyond their channel capacities. Yet, though man for ages has suffered seriously from recurring floods, he has not been deterred from continuing to extend his activities in areas that are virtually foredoomed to flood damage.Today in the United States serious floods may occur in any section in any year, and even, in some regions, several times a year. Many of these floods leave behind them the tragedy of death and disease and of property irreparably damaged. The aggregate direct property damage caused by floods in this country has been estimated roughly to average $35,000,000 a year. In addition there are serious indirect and intangible losses of great but not precisely calculable magnitude.

  10. Prospects for development of unified global flood observation and prediction systems (Invited) (United States)

    Lettenmaier, D. P.


    Floods are among the most damaging of natural hazards, with global flood losses in 2011 alone estimated to have exceeded $100B. Historically, flood economic damages have been highest in the developed world (due in part to encroachment on historical flood plains), but loss of life, and human impacts have been greatest in the developing world. However, as the 2011 Thailand floods show, industrializing countries, many of which do not have well developed flood protection systems, are increasingly vulnerable to economic damages as they become more industrialized. At present, unified global flood observation and prediction systems are in their infancy; notwithstanding that global weather forecasting is a mature field. The summary for this session identifies two evolving capabilities that hold promise for development of more sophisticated global flood forecast systems: global hydrologic models and satellite remote sensing (primarily of precipitation, but also of flood inundation). To this I would add the increasing sophistication and accuracy of global precipitation analysis (and forecast) fields from numerical weather prediction models. In this brief overview, I will review progress in all three areas, and especially the evolution of hydrologic data assimilation which integrates modeling and data sources. I will also comment on inter-governmental and inter-agency cooperation, and related issues that have impeded progress in the development and utilization of global flood observation and prediction systems.

  11. The Importance of Studying Past Extreme Floods to Prepare for Uncertain Future Extremes (United States)

    Burges, S. J.


    Hoyt and Langbein, 1955 in their book `Floods' wrote: " ..meteorologic and hydrologic conditions will combine to produce superfloods of unprecedented magnitude. We have every reason to believe that in most rivers past floods may not be an accurate measure of ultimate flood potentialities. It is this superflood with which we are always most concerned". I provide several examples to offer some historical perspective on assessing extreme floods. In one example, flooding in the Miami Valley, OH in 1913 claimed 350 lives. The engineering and socio-economic challenges facing the Morgan Engineering Co in how to mitigate against future flood damage and loss of life when limited information was available provide guidance about ways to face an uncertain hydroclimate future, particularly one of a changed climate. A second example forces us to examine mixed flood populations and illustrates the huge uncertainty in assigning flood magnitude and exceedance probability to extreme floods in such cases. There is large uncertainty in flood frequency estimates; knowledge of the total flood hydrograph, not the peak flood flow rate alone, is what is needed for hazard mitigation assessment or design. Some challenges in estimating the complete flood hydrograph in an uncertain future climate, including demands on hydrologic models and their inputs, are addressed.

  12. Effects of climate variability on global scale flood risk (United States)

    Ward, P.; Dettinger, M. D.; Kummu, M.; Jongman, B.; Sperna Weiland, F.; Winsemius, H.


    In this contribution we demonstrate the influence of climate variability on flood risk. Globally, flooding is one of the worst natural hazards in terms of economic damages; Munich Re estimates global losses in the last decade to be in excess of $240 billion. As a result, scientifically sound estimates of flood risk at the largest scales are increasingly needed by industry (including multinational companies and the insurance industry) and policy communities. Several assessments of global scale flood risk under current and conditions have recently become available, and this year has seen the first studies assessing how flood risk may change in the future due to global change. However, the influence of climate variability on flood risk has as yet hardly been studied, despite the fact that: (a) in other fields (drought, hurricane damage, food production) this variability is as important for policy and practice as long term change; and (b) climate variability has a strong influence in peak riverflows around the world. To address this issue, this contribution illustrates the influence of ENSO-driven climate variability on flood risk, at both the globally aggregated scale and the scale of countries and large river basins. Although it exerts significant and widespread influences on flood peak discharges in many parts of the world, we show that ENSO does not have a statistically significant influence on flood risk once aggregated to global totals. At the scale of individual countries, though, strong relationships exist over large parts of the Earth's surface. For example, we find particularly strong anomalies of flood risk in El Niño or La Niña years (compared to all years) in southern Africa, parts of western Africa, Australia, parts of Central Eurasia (especially for El Niño), the western USA (especially for La Niña), and parts of South America. These findings have large implications for both decadal climate-risk projections and long-term future climate change

  13. Current and future flood risk to railway infrastructure in Europe (United States)

    Bubeck, Philip; Kellermann, Patric; Alfieri, Lorenzo; Feyen, Luc; Dillenardt, Lisa; Thieken, Annegret H.


    Railway infrastructure plays an important role in the transportation of freight and passengers across the European Union. According to Eurostat, more than four billion passenger-kilometres were travelled on national and international railway lines of the EU28 in 2014. To further strengthen transport infrastructure in Europe, the European Commission will invest another € 24.05 billion in the transnational transport network until 2020 as part of its new transport infrastructure policy (TEN-T), including railway infrastructure. Floods pose a significant risk to infrastructure elements. Damage data of recent flood events in Europe show that infrastructure losses can make up a considerable share of overall losses. For example, damage to state and municipal infrastructure in the federal state of Saxony (Germany) accounted for nearly 60% of overall losses during the large-scale event in June 2013. Especially in mountainous areas with little usable space available, roads and railway lines often follow floodplains or are located along steep and unsteady slopes. In Austria, for instance, the flood of 2013 caused € 75 million of direct damage to railway infrastructure. Despite the importance of railway infrastructure and its exposure to flooding, assessments of potential damage and risk (i.e. probability * damage) are still in its infancy compared with other sectors, such as the residential or industrial sector. Infrastructure-specific assessments at the regional scale are largely lacking. Regional assessment of potential damage to railway infrastructure has been hampered by a lack of infrastructure-specific damage models and data availability. The few available regional approaches have used damage models that assess damage to various infrastructure elements (e.g. roads, railway, airports and harbours) using one aggregated damage function and cost estimate. Moreover, infrastructure elements are often considerably underrepresented in regional land cover data, such as

  14. Flood risk in a changing world - a coupled transdisciplinary modelling framework for flood risk assessment in an Alpine study area (United States)

    Huttenlau, Matthias; Schneeberger, Klaus; Winter, Benjamin; Pazur, Robert; Förster, Kristian; Achleitner, Stefan; Bolliger, Janine


    Devastating flood events have caused substantial economic damage across Europe during past decades. Flood risk management has therefore become a topic of crucial interest across state agencies, research communities and the public sector including insurances. There is consensus that mitigating flood risk relies on impact assessments which quantitatively account for a broad range of aspects in a (changing) environment. Flood risk assessments which take into account the interaction between the drivers climate change, land-use change and socio-economic change might bring new insights to the understanding of the magnitude and spatial characteristic of flood risks. Furthermore, the comparative assessment of different adaptation measures can give valuable information for decision-making. With this contribution we present an inter- and transdisciplinary research project aiming at developing and applying such an impact assessment relying on a coupled modelling framework for the Province of Vorarlberg in Austria. Stakeholder engagement ensures that the final outcomes of our study are accepted and successfully implemented in flood management practice. The study addresses three key questions: (i) What are scenarios of land- use and climate change for the study area? (ii) How will the magnitude and spatial characteristic of future flood risk change as a result of changes in climate and land use? (iii) Are there spatial planning and building-protection measures which effectively reduce future flood risk? The modelling framework has a modular structure comprising modules (i) climate change, (ii) land-use change, (iii) hydrologic modelling, (iv) flood risk analysis, and (v) adaptation measures. Meteorological time series are coupled with spatially explicit scenarios of land-use change to model runoff time series. The runoff time series are combined with impact indicators such as building damages and results are statistically assessed to analyse flood risk scenarios. Thus, the

  15. Palaeoflood hydrology in Europe: towards a better understanding of extreme floods (United States)

    Benito, G.; Thorndycraft, V. R.; Rico, M.; Sheffer, N.; Enzel, Y.


    Floods are the most common natural disasters in Europe and, in terms of economic damage, costs are increasing spectacularly with time. Flood risk assessment associated with extreme floods is difficult due to the scarcity of hydrological measurements, that rarely go beyond 1000 years, which is clearly not sufficient for flood management in urban and industrial areas. Besides the use of conventional hydrologic data, the pre-instrumental record can be completed from palaeoflood hydrology or from documentary flood information, or through the combined use of both these tools. Recent developments of palaeoflood hydrology in Europe provide (1) major improvements in flood risk assessment, and (2) a better understanding of long-term flood-climate relationships. Palaeoflood hydrology has been successfully applied in large, medium rivers as well as small ungauged mountain drainage basins. Long-term palaeoflood records from Spain and France show that recent extraordinary flooding (causing huge economic damages) are not the largest ones, but that similar or even greater floods occurred several times in the past. In addition, clusters of floods coinciding in time at several European rivers point out to climatic factors as responsible mechanisms, although in recent time flood magnitude can be magnified by increasing human activity.

  16. Health impacts of floods. (United States)

    Du, Weiwei; FitzGerald, Gerard Joseph; Clark, Michele; Hou, Xiang-Yu


    Floods are the most common hazard to cause disasters and have led to extensive morbidity and mortality throughout the world. The impact of floods on the human community is related directly to the location and topography of the area, as well as human demographics and characteristics of the built environment. The aim of this study is to identify the health impacts of disasters and the underlying causes of health impacts associated with floods. A conceptual framework is developed that may assist with the development of a rational and comprehensive approach to prevention, mitigation, and management. This study involved an extensive literature review that located >500 references, which were analyzed to identify common themes, findings, and expert views. The findings then were distilled into common themes. The health impacts of floods are wide ranging, and depend on a number of factors. However, the health impacts of a particular flood are specific to the particular context. The immediate health impacts of floods include drowning, injuries, hypothermia, and animal bites. Health risks also are associated with the evacuation of patients, loss of health workers, and loss of health infrastructure including essential drugs and supplies. In the medium-term, infected wounds, complications of injury, poisoning, poor mental health, communicable diseases, and starvation are indirect effects of flooding. In the long-term, chronic disease, disability, poor mental health, and poverty-related diseases including malnutrition are the potential legacy. This article proposes a structured approach to the classification of the health impacts of floods and a conceptual framework that demonstrates the relationships between floods and the direct and indirect health consequences.

  17. Nogales flood detention study (United States)

    Norman, Laura M.; Levick, Lainie; Guertin, D. Phillip; Callegary, James; Guadarrama, Jesus Quintanar; Anaya, Claudia Zulema Gil; Prichard, Andrea; Gray, Floyd; Castellanos, Edgar; Tepezano, Edgar; Huth, Hans; Vandervoet, Prescott; Rodriguez, Saul; Nunez, Jose; Atwood, Donald; Granillo, Gilberto Patricio Olivero; Ceballos, Francisco Octavio Gastellum


    Flooding in Ambos Nogales often exceeds the capacity of the channel and adjacent land areas, endangering many people. The Nogales Wash is being studied to prevent future flood disasters and detention features are being installed in tributaries of the wash. This paper describes the application of the KINEROS2 model and efforts to understand the capacity of these detention features under various flood and urbanization scenarios. Results depict a reduction in peak flow for the 10-year, 1-hour event based on current land use in tributaries with detention features. However, model results also demonstrate that larger storm events and increasing urbanization will put a strain on the features and limit their effectiveness.

  18. Impact of social preparedness on flood early warning systems (United States)

    Girons Lopez, M.; Di Baldassarre, G.; Seibert, J.


    Flood early warning systems play a major role in the disaster risk reduction paradigm as cost-effective methods to mitigate flood disaster damage. The connections and feedbacks between the hydrological and social spheres of early warning systems are increasingly being considered as key aspects for successful flood mitigation. The behavior of the public and first responders during flood situations, determined by their preparedness, is heavily influenced by many behavioral traits such as perceived benefits, risk awareness, or even denial. In this study, we use the recency of flood experiences as a proxy for social preparedness to assess its impact on the efficiency of flood early warning systems through a simple stylized model and implemented this model using a simple mathematical description. The main findings, which are based on synthetic data, point to the importance of social preparedness for flood loss mitigation, especially in circumstances where the technical forecasting and warning capabilities are limited. Furthermore, we found that efforts to promote and preserve social preparedness may help to reduce disaster-induced losses by almost one half. The findings provide important insights into the role of social preparedness that may help guide decision-making in the field of flood early warning systems.

  19. Flash flood characterisation of the Haor area of Bangladesh (United States)

    Bhattacharya, B.; Suman, A.


    Haors are large bowl-shaped flood plain depressions located mostly in north-eastern part of Bangladesh covering about 25% of the entire region. During dry season haors are used for agriculture and during rainy season it is used as fisheries. Haors have profound ecological importance. About 8000 migratory wild birds visit the area annually. Some of the haors are declared at Ramsar sites. Haors are frequently affected by the flash floods due to hilly topography and steep slope of the rivers draining the area. These flash floods spill onto low-lying flood plain lands in the region, inundating crops, damaging infrastructure by erosion and often causing loss of lives and properties. Climate change is exacerbating the situation. For appropriate risk mitigation mechanism it is necessary to explore flood characteristics of that region. The area is not at all studied well. Under a current project a numerical 1D2D model based on MIKE Flood is developed to study the flooding characteristics and estimate the climate change impacts on the haor region. Under this study the progression of flood levels at some key haors in relation to the water level data at specified gauges in the region is analysed. As the region is at the border with India so comparing with the gauges at the border with India is carried out. The flooding in the Haor area is associated with the rainfall in the upstream catchment in India (Meghalaya, Barak and Tripura basins in India). The flood propagation in some of the identified haors in relation to meteorological forcing in the three basins in India is analysed as well. Subsequently, a ranking of haors is done based on individual risks. Based on the IPCC recommendation the precipitation scenario in the upstream catchments under climate change is considered. The study provides the fundamental inputs for preparing a flood risk management plan of the region.

  20. Policy Implications and Suggestions on Administrative Measures of Urban Flood (United States)

    Lee, S. V.; Lee, M. J.; Lee, C.; Yoon, J. H.; Chae, S. H.


    The frequency and intensity of floods are increasing worldwide as recent climate change progresses gradually. Flood management should be policy-oriented in urban municipalities due to the characteristics of urban areas with a lot of damage. Therefore, the purpose of this study is to prepare a flood susceptibility map by using data mining model and make a policy suggestion on administrative measures of urban flood. Therefore, we constructed a spatial database by collecting relevant factors including the topography, geology, soil and land use data of the representative city, Seoul, the capital city of Korea. Flood susceptibility map was constructed by applying the data mining models of random forest and boosted tree model to input data and existing flooded area data in 2010. The susceptibility map has been validated using the 2011 flood area data which was not used for training. The predictor importance value of each factor to the results was calculated in this process. The distance from the water, DEM and geology showed a high predictor importance value which means to be a high priority for flood preparation policy. As a result of receiver operating characteristic (ROC), random forest model showed 78.78% and 79.18% accuracy of regression and classification and boosted tree model showed 77.55% and 77.26% accuracy of regression and classification, respectively. The results show that the flood susceptibility maps can be applied to flood prevention and management, and it also can help determine the priority areas for flood mitigation policy by providing useful information to policy makers.

  1. Legitimizing differentiated flood protection levels

    NARCIS (Netherlands)

    Thomas, Hartmann; Spit, Tejo


    The European flood risk management plan is a new instrument introduced by the Floods Directive. It introduces a spatial turn and a scenario approach in flood risk management, ultimately leading to differentiated flood protection levels on a catchment basis. This challenges the traditional sources of

  2. A statistical approach to evaluate flood risk at the regional level: an application to Italy (United States)

    Rossi, Mauro; Marchesini, Ivan; Salvati, Paola; Donnini, Marco; Guzzetti, Fausto; Sterlacchini, Simone; Zazzeri, Marco; Bonazzi, Alessandro; Carlesi, Andrea


    Floods are frequent and widespread in Italy, causing every year multiple fatalities and extensive damages to public and private structures. A pre-requisite for the development of mitigation schemes, including financial instruments such as insurance, is the ability to quantify their costs starting from the estimation of the underlying flood hazard. However, comprehensive and coherent information on flood prone areas, and estimates on the frequency and intensity of flood events, are not often available at scales appropriate for risk pooling and diversification. In Italy, River Basins Hydrogeological Plans (PAI), prepared by basin administrations, are the basic descriptive, regulatory, technical and operational tools for environmental planning in flood prone areas. Nevertheless, such plans do not cover the entire Italian territory, having significant gaps along the minor hydrographic network and in ungauged basins. Several process-based modelling approaches have been used by different basin administrations for the flood hazard assessment, resulting in an inhomogeneous hazard zonation of the territory. As a result, flood hazard assessments expected and damage estimations across the different Italian basin administrations are not always coherent. To overcome these limitations, we propose a simplified multivariate statistical approach for the regional flood hazard zonation coupled with a flood impact model. This modelling approach has been applied in different Italian basin administrations, allowing a preliminary but coherent and comparable estimation of the flood hazard and the relative impact. Model performances are evaluated comparing the predicted flood prone areas with the corresponding PAI zonation. The proposed approach will provide standardized information (following the EU Floods Directive specifications) on flood risk at a regional level which can in turn be more readily applied to assess flood economic impacts. Furthermore, in the assumption of an appropriate

  3. Evaluation of levee setbacks for flood-loss reduction, Middle Mississippi River, USA (United States)

    Dierauer, Jennifer; Pinter, Nicholas; Remo, Jonathan W. F.


    SummaryOne-dimensional hydraulic modeling and flood-loss modeling were used to test the effectiveness of levee setbacks for flood-loss reduction along the Middle Mississippi River (MMR). Four levee scenarios were assessed: (1) the present-day levee configuration, (2) a 1000 m levee setback, (3) a 1500 m levee setback, and (4) an optimized setback configuration. Flood losses were estimated using FEMA's Hazus-MH (Hazards US Multi-Hazard) loss-estimation software on a structure-by-structure basis for a range of floods from the 2- to the 500-year events. These flood-loss estimates were combined with a levee-reliability model to calculate probability-weighted damage estimates. In the simplest case, the levee setback scenarios tested here reduced flood losses compared to current conditions for large, infrequent flooding events but increased flood losses for smaller, more frequent flood events. These increases occurred because levee protection was removed for some of the existing structures. When combined with buyouts of unprotected structures, levee setbacks reduced flood losses for all recurrence intervals. The "optimized" levee setback scenario, involving a levee configuration manually planned to protect existing high-value infrastructure, reduced damages with or without buyouts. This research shows that levee setbacks in combination with buyouts are an economically viable approach for flood-risk reduction along the study reach and likely elsewhere where levees are widely employed for flood control. Designing a levee setback around existing high-value infrastructure can maximize the benefit of the setback while simultaneously minimizing the costs. The optimized levee setback scenario analyzed here produced payback periods (costs divided by benefits) of less than 12 years. With many aging levees failing current inspections across the US, and flood losses spiraling up over time, levee setbacks are a viable solution for reducing flood exposure and flood levels.

  4. Self-Reported and FEMA Flood Exposure Assessment after Hurricane Sandy: Association with Mental Health Outcomes.

    Directory of Open Access Journals (Sweden)

    Wil Lieberman-Cribbin

    Full Text Available Hurricane Sandy caused extensive physical and economic damage; the long-term mental health consequences are unknown. Flooding is a central component of hurricane exposure, influencing mental health through multiple pathways that unfold over months after flooding recedes. Here we assess the concordance in self-reported and Federal Emergency Management (FEMA flood exposure after Hurricane Sandy and determine the associations between flooding and anxiety, depression, and post-traumatic stress disorder (PTSD. Self-reported flood data and mental health symptoms were obtained through validated questionnaires from New York City and Long Island residents (N = 1231 following Sandy. Self-reported flood data was compared to FEMA data obtained from the FEMA Modeling Task Force Hurricane Sandy Impact Analysis. Multivariable logistic regressions were performed to determine the relationship between flooding exposure and mental health outcomes. There were significant discrepancies between self-reported and FEMA flood exposure data. Self-reported dichotomous flooding was positively associated with anxiety (ORadj: 1.5 [95% CI: 1.1-1.9], depression (ORadj: 1.7 [1.3-2.2], and PTSD (ORadj: 2.5 [1.8-3.4], while self-reported continuous flooding was associated with depression (ORadj: 1.1 [1.01-1.12] and PTSD (ORadj: 1.2 [1.1-1.2]. Models with FEMA dichotomous flooding (ORadj: 2.1 [1.5-2.8] or FEMA continuous flooding (ORadj: 1.1 [1.1-1.2] were only significantly associated with PTSD. Associations between mental health and flooding vary according to type of flood exposure measure utilized. Future hurricane preparedness and recovery efforts must integrate micro and macro-level flood exposures in order to accurately determine flood exposure risk during storms and realize the long-term importance of flooding on these three mental health symptoms.

  5. A Dynamic Model for Roll Motion of Ships Due to Flooding

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Jensen, Jørgen Juncher; Pedersen, Preben Terndrup


    A dynamic model is presented of the roll motion of damaged RoRo vessels which couples the internal cross-flooding flow and the air action in the equalizing compartment. The cross flooding flow and the air motion are modelled by a modified Bernoulli equation, where artificial damping is introduced...... to avoid modal instability based on the original Bernoulli equation. The fluid action of the flooded water on the ship is expressed by its influence on the moment of inertia of the ship and the heeling moment, which is a couple created by the gravitational force of the flooded water and the change...... of buoyancy of the ship.Two limiting flooding cases are examined in the present analysis: The sudden ingress of a certain amount of water to the damaged compartment with no further water exchange between the sea and the flooded compartment during the roll motion, and the continuous ingress of water through...

  6. iFLOOD: A Real Time Flood Forecast System for Total Water Modeling in the National Capital Region (United States)

    Sumi, S. J.; Ferreira, C.


    Extreme flood events are the costliest natural hazards impacting the US and frequently cause extensive damages to infrastructure, disruption to economy and loss of lives. In 2016, Hurricane Matthew brought severe damage to South Carolina and demonstrated the importance of accurate flood hazard predictions that requires the integration of riverine and coastal model forecasts for total water prediction in coastal and tidal areas. The National Weather Service (NWS) and the National Ocean Service (NOS) provide flood forecasts for almost the entire US, still there are service-gap areas in tidal regions where no official flood forecast is available. The National capital region is vulnerable to multi-flood hazards including high flows from annual inland precipitation events and surge driven coastal inundation along the tidal Potomac River. Predicting flood levels on such tidal areas in river-estuarine zone is extremely challenging. The main objective of this study is to develop the next generation of flood forecast systems capable of providing accurate and timely information to support emergency management and response in areas impacted by multi-flood hazards. This forecast system is capable of simulating flood levels in the Potomac and Anacostia River incorporating the effects of riverine flooding from the upstream basins, urban storm water and tidal oscillations from the Chesapeake Bay. Flood forecast models developed so far have been using riverine data to simulate water levels for Potomac River. Therefore, the idea is to use forecasted storm surge data from a coastal model as boundary condition of this system. Final output of this validated model will capture the water behavior in river-estuary transition zone far better than the one with riverine data only. The challenge for this iFLOOD forecast system is to understand the complex dynamics of multi-flood hazards caused by storm surges, riverine flow, tidal oscillation and urban storm water. Automated system

  7. A framework for global river flood risk assessments (United States)

    Winsemius, H. C.; Van Beek, L. P. H.; Jongman, B.; Ward, P. J.; Bouwman, A.


    There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework's goal is to establish flood hazard and impact estimates at a high enough resolution to allow for their combination into a risk estimate, which can be used for strategic global flood risk assessments. The framework estimates hazard at a resolution of ~ 1 km2 using global forcing datasets of the current (or in scenario mode, future) climate, a global hydrological model, a global flood-routing model, and more importantly, an inundation downscaling routine. The second component of the framework combines hazard with flood impact models at the same resolution (e.g. damage, affected GDP, and affected population) to establish indicators for flood risk (e.g. annual expected damage, affected GDP, and affected population). The framework has been applied using the global hydrological model PCR-GLOBWB, which includes an optional global flood routing model DynRout, combined with scenarios from the Integrated Model to Assess the Global Environment (IMAGE). We performed downscaling of the hazard probability distributions to 1 km2 resolution with a new downscaling algorithm, applied on Bangladesh as a first case study application area. We demonstrate the risk assessment approach in Bangladesh based on GDP per capita data, population, and land use maps for 2010 and 2050. Validation of the hazard estimates has been performed using the Dartmouth Flood Observatory database. This was done by comparing a high return period flood with the maximum observed extent, as well as by comparing a time series of a single event with Dartmouth imagery of the event. Validation of modelled damage estimates was performed using observed damage estimates from the EM

  8. Assessment of the effectiveness of flood adaptation strategies for HCMC (United States)

    Lasage, R.; Veldkamp, T. I. E.; de Moel, H.; Van, T. C.; Phi, H. L.; Vellinga, P.; Aerts, J. C. J. H.


    Coastal cities are vulnerable to flooding, and flood risk to coastal cities will increase due to sea-level rise. Moreover, Asian cities in particular are subject to considerable population growth and associated urban developments, increasing this risk even more. Empirical data on vulnerability and the cost and benefits of flood risk reduction measures are therefore paramount for sustainable development of these cities. This paper presents an approach to explore the impacts of sea-level rise and socio-economic developments on flood risk for the flood-prone District 4 in Ho Chi Minh City, Vietnam, and to develop and evaluate the effects of different adaptation strategies (new levees, dry- and wet proofing of buildings and elevating roads and buildings). A flood damage model was developed to simulate current and future flood risk using the results from a household survey to establish stage-damage curves for residential buildings. The model has been used to assess the effects of several participatory developed adaptation strategies to reduce flood risk, expressed in expected annual damage (EAD). Adaptation strategies were evaluated assuming combinations of both sea-level scenarios and land-use scenarios. Together with information on costs of these strategies, we calculated the benefit-cost ratio and net present value for the adaptation strategies until 2100, taking into account depreciation rates of 2.5% and 5%. The results of this modelling study indicate that the current flood risk in District 4 is USD 0.31 million per year, increasing up to USD 0.78 million per year in 2100. The net present value and benefit-cost ratios using a discount rate of 5 % range from USD -107 to -1.5 million, and from 0.086 to 0.796 for the different strategies. Using a discount rate of 2.5% leads to an increase in both net present value and benefit-cost ratio. The adaptation strategies wet-proofing and dry-proofing generate the best results using these economic indicators. The information

  9. A framework for global river flood risk assessments

    Directory of Open Access Journals (Sweden)

    H. C. Winsemius


    Full Text Available There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework's goal is to establish flood hazard and impact estimates at a high enough resolution to allow for their combination into a risk estimate, which can be used for strategic global flood risk assessments. The framework estimates hazard at a resolution of ~ 1 km2 using global forcing datasets of the current (or in scenario mode, future climate, a global hydrological model, a global flood-routing model, and more importantly, an inundation downscaling routine. The second component of the framework combines hazard with flood impact models at the same resolution (e.g. damage, affected GDP, and affected population to establish indicators for flood risk (e.g. annual expected damage, affected GDP, and affected population. The framework has been applied using the global hydrological model PCR-GLOBWB, which includes an optional global flood routing model DynRout, combined with scenarios from the Integrated Model to Assess the Global Environment (IMAGE. We performed downscaling of the hazard probability distributions to 1 km2 resolution with a new downscaling algorithm, applied on Bangladesh as a first case study application area. We demonstrate the risk assessment approach in Bangladesh based on GDP per capita data, population, and land use maps for 2010 and 2050. Validation of the hazard estimates has been performed using the Dartmouth Flood Observatory database. This was done by comparing a high return period flood with the maximum observed extent, as well as by comparing a time series of a single event with Dartmouth imagery of the event. Validation of modelled damage estimates was performed using observed damage estimates from

  10. Health Care Access and Utilization after the 2010 Pakistan Floods. (United States)

    Jacquet, Gabrielle A; Kirsch, Thomas; Durrani, Aqsa; Sauer, Lauren; Doocy, Shannon


    Introduction The 2010 floods submerged more than one-fifth of Pakistan's land area and affected more than 20 million people. Over 1.6 million homes were damaged or destroyed and 2,946 direct injuries and 1,985 deaths were reported. Infrastructure damage was widespread, including critical disruptions to the power and transportation networks. Hypothesis Damage and loss of critical infrastructure will affect the population's ability to seek and access adequate health care for years to come. This study sought to evaluate factors associated with access to health care in the aftermath of the 2010 Pakistan floods. A population-proportional, randomized cluster-sampling survey method with 80 clusters of 20 (1,600) households of the flood-affected population was used. Heads of households were surveyed approximately six months after flood onset. Multivariate analysis was used to determine significance. A total of 77.8% of households reported needing health services within the first month after the floods. Household characteristics, including rural residence location, large household size, and lower pre- and post-flood income, were significantly associated (Pfloods was associated with urban residence location, suggesting that locating health care providers in rural areas may be difficult. Access to health services also was associated with post-flood income level, suggesting health resources are not readily available to households suffering great income losses. Jacquet GA , Kirsch T , Durrani A , Sauer L , Doocy S . Health care access and utilization after the 2010 Pakistan floods. Prehosp Disaster Med. 2016;31(5):485-491.

  11. Modelling the interaction between flooding events and economic growth (United States)

    Grames, Johanna; Fürnkranz-Prskawetz, Alexia; Grass, Dieter; Viglione, Alberto; Blöschl, Günter


    Recently socio-hydrology models have been proposed to analyze the interplay of community risk-coping culture, flooding damage and economic growth. These models descriptively explain the feedbacks between socio-economic development and natural disasters such as floods. Complementary to these descriptive models, we develop a dynamic optimization model, where the inter-temporal decision of an economic agent interacts with the hydrological system. This interdisciplinary approach matches with the goals of Panta Rhei i.e. to understand feedbacks between hydrology and society. It enables new perspectives but also shows limitations of each discipline. Young scientists need mentors from various scientific backgrounds to learn their different research approaches and how to best combine them such that interdisciplinary scientific work is also accepted by different science communities. In our socio-hydrology model we apply a macro-economic decision framework to a long-term flood-scenario. We assume a standard macro-economic growth model where agents derive utility from consumption and output depends on physical capital that can be accumulated through investment. To this framework we add the occurrence of flooding events which will destroy part of the capital. We identify two specific periodic long term solutions and denote them rich and poor economies. Whereas rich economies can afford to invest in flood defense and therefore avoid flood damage and develop high living standards, poor economies prefer consumption instead of investing in flood defense capital and end up facing flood damages every time the water level rises. Nevertheless, they manage to sustain at least a low level of physical capital. We identify optimal investment strategies and compare simulations with more frequent and more intense high water level events.

  12. Flood-proof motors

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Marcus [AREVA NP GmbH, Erlangen (Germany)


    Even before the Fukushima event occurred some German nuclear power plants (NPP) have considered flooding scenarios. As a result of one of these studies, AREVA performed an upgrade project in NPP Isar 1 with flood-proof motors as a replacement of existing air-cooled low-voltage and high-voltage motors of the emergency cooling chain. After the Fukushima event, in which the cooling chains failed, the topic flood-proof equipment gets more and more into focus. This compact will introduce different kinds of flood-proof electrical motors which are currently installed or planned for installation into NPPs over the world. Moreover the process of qualification, as it was performed during the project in NPP Isar 1, will be shown. (orig.)

  13. Floods and Mold Growth (United States)

    Mold growth may be a problem after flooding. Excess moisture in the home is cause for concern about indoor air quality primarily because it provides breeding conditions for pests, molds and other microorganisms.


    Federal Emergency Management Agency, Department of Homeland Security — The Floodplain Mapping/Redelineation study deliverables depict and quantify the flood risks for the study area. The primary risk classifications used are the...

  15. Flood-proof motors

    International Nuclear Information System (INIS)

    Schmitt, Marcus


    Even before the Fukushima event occurred some German nuclear power plants (NPP) have considered flooding scenarios. As a result of one of these studies, AREVA performed an upgrade project in NPP Isar 1 with flood-proof motors as a replacement of existing air-cooled low-voltage and high-voltage motors of the emergency cooling chain. After the Fukushima event, in which the cooling chains failed, the topic flood-proof equipment gets more and more into focus. This compact will introduce different kinds of flood-proof electrical motors which are currently installed or planned for installation into NPPs over the world. Moreover the process of qualification, as it was performed during the project in NPP Isar 1, will be shown. (orig.)

  16. Flood risk management in the Souss watershed (United States)

    Bouaakkaz, Brahim; El Abidine El Morjani, Zine; Bouchaou, Lhoussaine; Elhimri, Hamza


    Flooding is the most devasting natural hazards that causes more damage throughout the world. In 2016, for the fourth year in a row, it was the most costly natural disaster, in terms of global economic losses: 62 billion, according to a Benfield's 2016 annual report on climate and natural disasters [1]. The semi-arid to arid Souss watershed is vulnerable to floods, whose the intensity is becoming increasingly alarming and this area does not escape to the effects of this extreme event.. Indeed, the susceptibility of this region to this type of hazard is accentuated by its rapid evolution in terms of demography, uncontrolled land use, anthropogenic actions (uncontrolled urbanization, encroachment of the hydraulic public domain, overgrazing, clearing and deforestation).), and physical behavior of the environment (higher slope, impermeable rocks, etc.). It is in this context, that we have developed a strategic plan of action to manage this risk in the Souss basin in order to reduce the human, economic and environmental losses, after the modeling of the flood hazard in the study area, using georeferenced information systems (GIS), satellite remote sensing space and multi-criteria analysis techniques, as well as the history of major floods. This study, which generated the high resolution 30m flood hazard spatial distribution map of with accuracy of 85%, represents a decision tool to identify and prioririze area with high probability of hazard occurrence. It can also serve as a basis for urban evacuation plans for anticipating and preventing flood risk in the region, in order to ovoid any dramatic disaster.

  17. Flood hazard assessment in areas prone to flash flooding (United States)

    Kvočka, Davor; Falconer, Roger A.; Bray, Michaela


    Contemporary climate projections suggest that there will be an increase in the occurrence of high-intensity rainfall events in the future. These precipitation extremes are usually the main cause for the emergence of extreme flooding, such as flash flooding. Flash floods are among the most unpredictable, violent and fatal natural hazards in the world. Furthermore, it is expected that flash flooding will occur even more frequently in the future due to more frequent development of extreme weather events, which will greatly increase the danger to people caused by flash flooding. This being the case, there will be a need for high resolution flood hazard maps in areas susceptible to flash flooding. This study investigates what type of flood hazard assessment methods should be used for assessing the flood hazard to people caused by flash flooding. Two different types of flood hazard assessment methods were tested: (i) a widely used method based on an empirical analysis, and (ii) a new, physically based and experimentally calibrated method. Two flash flood events were considered herein, namely: the 2004 Boscastle flash flood and the 2007 Železniki flash flood. The results obtained in this study suggest that in the areas susceptible to extreme flooding, the flood hazard assessment should be conducted using methods based on a mechanics-based analysis. In comparison to standard flood hazard assessment methods, these physically based methods: (i) take into account all of the physical forces, which act on a human body in floodwater, (ii) successfully adapt to abrupt changes in the flow regime, which often occur for flash flood events, and (iii) rapidly assess a flood hazard index in a relatively short period of time.

  18. The influence of climate change on flood risks in France ­- first estimates and uncertainty analysis


    Dumas , Patrice; Hallegatte , Sréphane; Quintana-Seguí , Pere; Martin , Eric


    International audience; Abstract. This paper proposes a methodology to project the possible evolution of river flood damages due to climate change, and applies it to mainland France. Its main contributions are (i) to demonstrate a methodology to investigate the full causal chain from global climate change to local economic flood losses; (ii) to show that future flood losses may change in a very significant manner over France; (iii) to show that a very large uncertainty arises from the climate...

  19. Advancing Flood Risk Communication and Management through Collaboration and Public Participation


    Cheung, Wing


    Flooding has been a pressing problem for communities around the world. The problem is expected to worsen due to climate change and sea level rise. Despite decades of research on risk communication and management, the toll of flooding continues to mount. In order to advance flood management to minimize future damages, there is a need to foster collaboration among research communities, promote the genuine engagement of local stakeholders, and co-develop targeted risk communication and mitigatio...

  20. 2d river flood modelling using Hec-ras 5.0


    Flotats Palau, Joan


    Flooding may occur as an overflow of water from water bodies, such as a river, lake or ocean, in which the water overtops or breaks levees, resulting in some of that water escaping its usual boundaries. Floods also occur in rivers when the flow rate exceeds the capacity of the river channel. Floods represent the deadliest natural hazard in Europe, resulting in loss of life, damage to buildings, homes, business and structures such as bridges and roads. Since such consequences ar...

  1. 46 CFR 42.20-6 - Flooding standard: Type “A” vessels. (United States)


    ... 46 Shipping 2 2010-10-01 2010-10-01 false Flooding standard: Type âAâ vessels. 42.20-6 Section 42... FOREIGN VOYAGES BY SEA Freeboards § 42.20-6 Flooding standard: Type “A” vessels. (a) Design calculations... specified in § 42.20-12 assuming the damage specified in § 42.20-11 as applied to the following flooding...

  2. Flood characteristics of the Haor area in Bangladesh (United States)

    Suman, Asadusjjaman; Bhattacharya, Biswa


    In recent years the world has experienced deaths, large-scale displacement of people, billions of Euros of economic damage, mental stress and ecosystem impacts due to flooding. Global changes (climate change, population and economic growth, and urbanisation) are exacerbating the severity of flooding. The 2010 floods in Pakistan and the 2011 floods in Australia and Thailand demonstrate the need for concerted action in the face of global societal and environmental changes to strengthen resilience against flooding. Bangladesh is a country, which is frequently suffering from flooding. The current research is conducted in the framework of a project, which focuses on the flooding issues in the Haor region in the north-east of Bangladesh. A haor is a saucer-shaped depression, which is used during the dry period (December to mid-May) for agriculture and as a fishery during the wet period (June-November), and thereby presents a very interesting socio-economic perspective of flood risk management. Pre-monsoon flooding till mid-May causes agricultural loss and lot of distress whereas monsoon flooding brings benefits. The area is bordering India, thereby presenting trans-boundary issues as well, and is fed by some flashy Indian catchments. The area is drained mainly through the Surma-Kushiyara river system. The terrain generally is flat and the flashy characteristics die out within a short distance from the border. Limited studies on the region, particularly with the help of numerical models, have been carried out in the past. Therefore, an objective of the current research was to set up numerical models capable of reasonably emulating the physical system. Such models could, for example, associate different gauges to the spatio-temporal variation of hydrodynamic variables and help in carrying out a systemic study on the impact of climate changes. A 1D2D model, with one-dimensional model for the rivers (based on MIKE 11 modelling tool from Danish Hydraulic Institute) and a two

  3. Aligning Natural Resource Conservation and Flood Hazard Mitigation in California. (United States)

    Calil, Juliano; Beck, Michael W; Gleason, Mary; Merrifield, Matthew; Klausmeyer, Kirk; Newkirk, Sarah


    Flooding is the most common and damaging of all natural disasters in the United States, and was a factor in almost all declared disasters in U.S. Direct flood losses in the U.S. in 2011 totaled $8.41 billion and flood damage has also been on the rise globally over the past century. The National Flood Insurance Program paid out more than $38 billion in claims since its inception in 1968, more than a third of which has gone to the one percent of policies that experienced multiple losses and are classified as "repetitive loss." During the same period, the loss of coastal wetlands and other natural habitat has continued, and funds for conservation and restoration of these habitats are very limited. This study demonstrates that flood losses could be mitigated through action that meets both flood risk reduction and conservation objectives. We found that there are at least 11,243km2 of land in coastal California, which is both flood-prone and has natural resource conservation value, and where a property/structure buyout and habitat restoration project could meet multiple objectives. For example, our results show that in Sonoma County, the extent of land that meets these criteria is 564km2. Further, we explore flood mitigation grant programs that can be a significant source of funds to such projects. We demonstrate that government funded buyouts followed by restoration of targeted lands can support social, environmental, and economic objectives: reduction of flood exposure, restoration of natural resources, and efficient use of limited governmental funds.

  4. Aligning Natural Resource Conservation and Flood Hazard Mitigation in California.

    Directory of Open Access Journals (Sweden)

    Juliano Calil

    Full Text Available Flooding is the most common and damaging of all natural disasters in the United States, and was a factor in almost all declared disasters in U.S.Direct flood losses in the U.S. in 2011 totaled $8.41 billion and flood damage has also been on the rise globally over the past century. The National Flood Insurance Program paid out more than $38 billion in claims since its inception in 1968, more than a third of which has gone to the one percent of policies that experienced multiple losses and are classified as "repetitive loss." During the same period, the loss of coastal wetlands and other natural habitat has continued, and funds for conservation and restoration of these habitats are very limited. This study demonstrates that flood losses could be mitigated through action that meets both flood risk reduction and conservation objectives. We found that there are at least 11,243km2 of land in coastal California, which is both flood-prone and has natural resource conservation value, and where a property/structure buyout and habitat restoration project could meet multiple objectives. For example, our results show that in Sonoma County, the extent of land that meets these criteria is 564km2. Further, we explore flood mitigation grant programs that can be a significant source of funds to such projects. We demonstrate that government funded buyouts followed by restoration of targeted lands can support social, environmental, and economic objectives: reduction of flood exposure, restoration of natural resources, and efficient use of limited governmental funds.

  5. Lessons Learned from Missing Flooding Barriers Operating Experience

    International Nuclear Information System (INIS)

    Simic, Z.; Veira, M. P.


    Flooding hazard is highly significant for nuclear power plant safety because of its potential for common cause impact on safety related systems, and because operating experience reviews regularly identify flooding as a cause of concern. Source of the flooding could be external (location) or internal (plant design). The amount of flooding water could vary but even small amount might suffice to affect redundant trains of safety related systems for power supply and cooling. The protection from the flooding is related to the design-basis flood level (DBFL) and it consists of three elements: structural, organizational and accessibility. Determination of the DBFL is critical, as Fukushima Daiichi accident terribly proved. However, as the topic of flooding is very broad, the scope of this paper is focused only on the issues related to the missing flood barriers. Structural measures are physically preventing flooding water to reach or damage safety related system, and they could be permanent or temporary. For temporary measures it is important to have necessary material, equipment and organizational capacity for the timely implementation. Maintenance is important for permanent protection and periodical review is important for assuring readiness and feasibility of temporary flooding protection. Final flooding protection element is assured accessibility to safety related systems during the flooding. Appropriate flooding protection is based on the right implementation of design requirements, proper maintenance and periodic reviews. Operating experience is constantly proving how numerous water sources and systems interactions make flooding protection challenging. This paper is presenting recent related operating experience feedback involving equipment, procedures and analysis. Most frequent deficiencies are: inadequate, degraded or missing seals that would allow floodwaters into safety related spaces. Procedures are inadequate typically because they underestimate necessary


    Directory of Open Access Journals (Sweden)

    K. McDougall


    Full Text Available Floods are one of the most destructive natural disasters that threaten communities and properties. In recent decades, flooding has claimed more lives, destroyed more houses and ruined more agricultural land than any other natural hazard. The accurate prediction of the areas of inundation from flooding is critical to saving lives and property, but relies heavily on accurate digital elevation and hydrologic models. The 2011 Brisbane floods provided a unique opportunity to capture high resolution digital aerial imagery as the floods neared their peak, allowing the capture of areas of inundation over the various city suburbs. This high quality imagery, together with accurate LiDAR data over the area and publically available volunteered geographic imagery through repositories such as Flickr, enabled the reconstruction of flood extents and the assessment of both area and depth of inundation for the assessment of damage. In this study, approximately 20 images of flood damaged properties were utilised to identify the peak of the flood. Accurate position and height values were determined through the use of RTK GPS and conventional survey methods. This information was then utilised in conjunction with river gauge information to generate a digital flood surface. The LiDAR generated DEM was then intersected with the flood surface to reconstruct the area of inundation. The model determined areas of inundation were then compared to the mapped flood extent from the high resolution digital imagery to assess the accuracy of the process. The paper concludes that accurate flood extent prediction or mapping is possible through this method, although its accuracy is dependent on the number and location of sampled points. The utilisation of LiDAR generated DEMs and DSMs can also provide an excellent mechanism to estimate depths of inundation and hence flood damage

  7. The Use of LIDAR and Volunteered Geographic Information to Map Flood Extents and Inundation (United States)

    McDougall, K.; Temple-Watts, P.


    Floods are one of the most destructive natural disasters that threaten communities and properties. In recent decades, flooding has claimed more lives, destroyed more houses and ruined more agricultural land than any other natural hazard. The accurate prediction of the areas of inundation from flooding is critical to saving lives and property, but relies heavily on accurate digital elevation and hydrologic models. The 2011 Brisbane floods provided a unique opportunity to capture high resolution digital aerial imagery as the floods neared their peak, allowing the capture of areas of inundation over the various city suburbs. This high quality imagery, together with accurate LiDAR data over the area and publically available volunteered geographic imagery through repositories such as Flickr, enabled the reconstruction of flood extents and the assessment of both area and depth of inundation for the assessment of damage. In this study, approximately 20 images of flood damaged properties were utilised to identify the peak of the flood. Accurate position and height values were determined through the use of RTK GPS and conventional survey methods. This information was then utilised in conjunction with river gauge information to generate a digital flood surface. The LiDAR generated DEM was then intersected with the flood surface to reconstruct the area of inundation. The model determined areas of inundation were then compared to the mapped flood extent from the high resolution digital imagery to assess the accuracy of the process. The paper concludes that accurate flood extent prediction or mapping is possible through this method, although its accuracy is dependent on the number and location of sampled points. The utilisation of LiDAR generated DEMs and DSMs can also provide an excellent mechanism to estimate depths of inundation and hence flood damage

  8. Near Real Time Flood Warning System for National Capital Territory of Delhi (United States)

    Goyal, A.; Yadav, H.; Tyagi, H.; Gosain, A. K.


    Extreme floods are common phenomena during Indian Monsoons. The National Capital Territory area of India, Delhi, frequently experiences fluvial as well as pluvial inundation due to its proximity to river Yamuna and poor functioning of its stormwater drainage system. The urban floods result in severe waterlogging and heavy traffic snarls, bringing life in this megapolis to a halt. The city has witnessed six major floods since 1900 and thus its residents are well conscious of potential flood risks but the city still lacks a flood warning system. The flood related risks can be considerably reduced, if not eliminated, by issuing timely warnings and implementing adaptive measures. Therefore, the present study attempts to develop a web based platform that integrates Web-GIS technology and mathematical simulation modelling to provide an effective and reliable early flood warning service for Delhi. The study makes use of India Metorological Department's Doppler radar-derived near real time rainfall estimates of 15 minutes time step. The developed SWMM model has been validated using information from gauges, monitoring sensors and crowd sourcing techniques and utilises capabilities of cloud computing on server side for fast processing. This study also recommends safe evacuation policy and remedial measures for flooding hotspots as part of flood risk management plan. With heightened risk of floods in fast urbanizing areas, this work becomes highly pertinent as flood warning system with adequate lead time can not only save precious lives but can also substantially reduce flood damages.

  9. Analysis of flood inundation in ungauged basins based on multi-source remote sensing data. (United States)

    Gao, Wei; Shen, Qiu; Zhou, Yuehua; Li, Xin


    Floods are among the most expensive natural hazards experienced in many places of the world and can result in heavy losses of life and economic damages. The objective of this study is to analyze flood inundation in ungauged basins by performing near-real-time detection with flood extent and depth based on multi-source remote sensing data. Via spatial distribution analysis of flood extent and depth in a time series, the inundation condition and the characteristics of flood disaster can be reflected. The results show that the multi-source remote sensing data can make up the lack of hydrological data in ungauged basins, which is helpful to reconstruct hydrological sequence; the combination of MODIS (moderate-resolution imaging spectroradiometer) surface reflectance productions and the DFO (Dartmouth Flood Observatory) flood database can achieve the macro-dynamic monitoring of the flood inundation in ungauged basins, and then the differential technique of high-resolution optical and microwave images before and after floods can be used to calculate flood extent to reflect spatial changes of inundation; the monitoring algorithm for the flood depth combining RS and GIS is simple and easy and can quickly calculate the depth with a known flood extent that is obtained from remote sensing images in ungauged basins. Relevant results can provide effective help for the disaster relief work performed by government departments.

  10. Analysis of regional natural flow for evaluation of flood risk according to RCP climate change scenarios (United States)

    Lee, J. Y.; Chae, B. S.; Wi, S.; KIm, T. W.


    Various climate change scenarios expect the rainfall in South Korea to increase by 3-10% in the future. The future increased rainfall has significant effect on the frequency of flood in future as well. This study analyzed the probability of future flood to investigate the stability of existing and new installed hydraulic structures and the possibility of increasing flood damage in mid-sized watersheds in South Korea. To achieve this goal, we first clarified the relationship between flood quantiles acquired from the flood-frequency analysis (FFA) and design rainfall-runoff analysis (DRRA) in gauged watersheds. Then, after synthetically generating the regional natural flow data according to RCP climate change scenarios, we developed mathematical formulas to estimate future flood quantiles based on the regression between DRRA and FFA incorporated with regional natural flows in unguaged watersheds. Finally, we developed a flood risk map to investigate the change of flood risk in terms of the return period for the past, present, and future. The results identified that the future flood quantiles and risks would increase in accordance with the RCP climate change scenarios. Because the regional flood risk was identified to increase in future comparing with the present status, comprehensive flood control will be needed to cope with extreme floods in future.

  11. Commonalities and Differences in Flood-Generating Processes across the US (United States)

    Li, X.; Troy, T. J.


    There is significant damage caused by flood, and the flood risk is increasing in the future, but there is large uncertainty in future decadal projections of flooding. In order to improve these projections, we must first turn to the past to understand the physical mechanisms that lead to flooding in basins across spatial scales and elevation ranges. To do this, we calculated the seasonality of annual maximum flows and other climatic factors to identify the flood-generating process in 2566 basins across the continental US. For most regions, the seasonality of heavy precipitation is not in phase with the seasonality of flooding, pointing to the importance of antecedent soil moisture and snow in determining flooding over much of the US. To determine the characteristic conditions leading to a flood, we classified all floods into those with different rainfall durations and with/without snow presence. Analyzing the influence of elevation, slope and drainage area, we identified patterns: the probability of flooding due to long duration precipitation increases as drainage area increases and snow present during a flood becomes increasingly likely as average basin elevation increases. To better understand the relationship between heavy rainfall and high streamflow, we calculated conditioned probability of occurrence. The southeastern US has a higher probability of occurrence for extreme Q with the same level of extreme precipitation in winter and spring than the northern US. This work is the first to look at how flood mechanisms vary across the continental US with drainage area, climate, and elevation.

  12. An Integrated Modelling Framework to Assess Flood Risk under Urban Development and Changing Climate

    DEFF Research Database (Denmark)

    that combines a model for the socio-economic development of cities (DANCE4WATER) with an urban flood model. The urban flood model is a 1D-2D spatially distributed hydrologic and hydraulic model that, for a given urban layout, simulates flow in the sewer system and the surface flow in the catchment (MIKE FLOOD......). The socio-economic model computes urban layouts that are transferred to the hydraulic model in the form of changes of impervious area and potential flow paths on the surface. Estimates of flood prone areas, as well as the expected annual damage due to flooding, are returned to the socio-economic model...... as an input for further refinement of the scenarios for the urban development. Our results in an Australian case study suggest that urban development is a major driver for flood risk and vice versa that flood risk can be significantly reduced if it is accounted for in the development of the cities...

  13. Frequent floods in the European Alps coincide with cooler periods of the past 2500 years. (United States)

    Glur, Lukas; Wirth, Stefanie B; Büntgen, Ulf; Gilli, Adrian; Haug, Gerald H; Schär, Christoph; Beer, Jürg; Anselmetti, Flavio S


    Severe floods triggered by intense precipitation are among the most destructive natural hazards in Alpine environments, frequently causing large financial and societal damage. Potential enhanced flood occurrence due to global climate change would thus increase threat to settlements, infrastructure, and human lives in the affected regions. Yet, projections of intense precipitation exhibit major uncertainties and robust reconstructions of Alpine floods are limited to the instrumental and historical period. Here we present a 2500-year long flood reconstruction for the European Alps, based on dated sedimentary flood deposits from ten lakes in Switzerland. We show that periods with high flood frequency coincide with cool summer temperatures. This wet-cold synchronism suggests enhanced flood occurrence to be triggered by latitudinal shifts of Atlantic and Mediterranean storm tracks. This paleoclimatic perspective reveals natural analogues for varying climate conditions, and thus can contribute to a better understanding and improved projections of weather extremes under climate change.

  14. Flood prediction, its risk and mitigation for the Babura River with GIS (United States)

    Tarigan, A. P. M.; Hanie, M. Z.; Khair, H.; Iskandar, R.


    This paper describes the flood prediction along the Babura River, the catchment of which is within the comparatively larger watershed of the Deli River which crosses the centre part of Medan City. The flood plain and ensuing inundation area were simulated using HECRAS based on the available data of rainfall, catchment, and river cross-sections. The results were shown in a GIS format in which the city map of Medan and other infrastructure layers were stacked for spatial analysis. From the resulting GIS, it can be seen that 13 sub-districts were likely affected by the flood, and then the risk calculation of the flood damage could be estimated. In the spirit of flood mitigation thoughts, 6 locations of evacuation centres were identified and 15 evacuation routes were recommended to reach the centres. It is hoped that the flood prediction and its risk estimation in this study will inspire the preparedness of the stakeholders for the probable threat of flood disaster.

  15. ENSO impacts on flood risk at the global scale (United States)

    Ward, Philip; Dettinger, Michael; Jongman, Brenden; Kummu, Matti; Winsemius, Hessel


    We present the impacts of El Niño Southern Oscillation (ENSO) on society and the economy, via relationships between ENSO and the hydrological cycle. We also discuss ways in which this knowledge can be used in disaster risk management and risk reduction. This contribution provides the most recent results of an ongoing 4-year collaborative research initiative to assess and map the impacts of large scale interannual climate variability on flood hazard and risk at the global scale. We have examined anomalies in flood risk between ENSO phases, whereby flood risk is expressed in terms of indicators such as: annual expected damage; annual expected affected population; annual expected affected Gross Domestic Product (GDP). We show that large anomalies in flood risk occur during El Niño or La Niña years in basins covering large parts of the Earth's surface. These anomalies reach statistical significance river basins covering almost two-thirds of the Earth's surface. Particularly strong anomalies exist in southern Africa, parts of western Africa, Australia, parts of Central Eurasia (especially for El Niño), the western USA (especially La Niña anomalies), and parts of South America. We relate these anomalies to possible causal relationships between ENSO and flood hazard, using both modelled and observed data on flood occurrence and extremity. The implications for flood risk management are many-fold. In those regions where disaster risk is strongly influenced by ENSO, the potential predictably of ENSO could be used to develop probabilistic flood risk projections with lead times up to several seasons. Such data could be used by the insurance industry in managing risk portfolios and by multinational companies for assessing the robustness of their supply chains to potential flood-related interruptions. Seasonal forecasts of ENSO influence of peak flows could also allow for improved flood early warning and regulation by dam operators, which could also reduce overall risks

  16. Understanding flood risk sensitivity and uncertainty in a subcatchment of the Thames River (United Kingdom) (United States)

    Theofanidi, Sofia; Cloke, Hannah Louise; Clark, Joanna


    Floods are a global threat to social, economic and environmental development and there is a likelihood, that they could occur more frequently in the future due to climatic change. The severity of their impacts, which can last for years, has led to the urgent need for local communities and national authorities to develop flood warning systems for a better flood preparedness and emergency response. The flood warning systems often rely on hydrological forecasting tools to predict the hydrological response of a watershed before or during a flood event. Hydrological models have been substantially upgraded since the first use of hydrographs and the use of simple conceptual models. Hydrodynamic and hydraulic routing enables the spatial and temporal prediction of flow rates (peak discharges) and water levels. Moreover, the hydrodynamic modeling in 2D permits the estimation of the flood inundation area. This can be particularly useful because the flood zones can provide essential information about the flood risk and the flood damage. In this study, we use a hydrodynamic model which can simulate water levels and river flows in open channel conditions. The model can incorporate the effect of several river structures in the flood modeling process, such as the existence of bridges and weirs. The flood routing method is based on the solution of continuity and energy momentum equations. In addition, the floodplain inundation modeling which is based on the solution of shallow water equations along the channel's banks, will be used for the mapping of flood extent. A GIS interface will serve as a database, including high resolution topography, vector layers of river network, gauging stations, land use and land cover, geology and soil information. The flood frequency analysis, together with historical records on flood warnings, will enable the understanding on the flow regimes and the selection of particular flood events for modeling. One dimensional and two dimensional simulations

  17. Combining hazard, exposure and social vulnerability to provide lessons for flood risk management

    NARCIS (Netherlands)

    Koks, E.E.; Jongman, B.; Husby, T.G.; Botzen, W.J.W.


    Flood risk assessments provide inputs for the evaluation of flood risk management (FRM) strategies. Traditionally, such risk assessments provide estimates of loss of life and economic damage. However, the effect of policy measures aimed at reducing risk also depends on the capacity of households to

  18. Controlling flooding and water pollution with upland and streamside vegetation systems (United States)

    Michael Dosskey


    Substantial research and development effort in the U.S. is being spent on developing strategies that address flooding and water pollution problems in agricultural areas. Concerns have been raised about the costs of flood damage, degradation of productive farm land, and declining water quality that are now recognized as unintended consequences of intensive, high-yield...

  19. A Review of Risk Perceptions and Other Factors that Influence Flood Mitigation Behavior

    NARCIS (Netherlands)

    Bubeck, P.; Botzen, W.J.W.; Aerts, J.C.J.H.


    In flood risk management, a shift can be observed toward more integrated approaches that increasingly address the role of private households in implementing flood damage mitigation measures. This has resulted in a growing number of studies into the supposed positive relationship between individual

  20. A GIS based flood risk mapping along the Niger-Benue river basin in ...

    African Journals Online (AJOL)

    Floods are water induced disasters that lead to temporary inundation of dry land and cause serious damages in the affected location such as loss of lives and properties and destruction of infrastructures. They have become common occurrences in every part Nigeria and the recorded impacts of flooding on the inhabitants ...

  1. Urban flash flood vulnerability : spatial assessment and adaptation : a case study in Istanbul, Turkey

    NARCIS (Netherlands)

    Reyes-Acevedo, Martin Alejandro; Flacke, J.; Brussel, M.J.G.


    The Ayamama River basin in Istanbul is a densely populated urban area that is frequently impacted by flash floods causing damage to people and infrastructure. The IPCC expects that under climate change conditions, more intense precipitation will occur, leading to a higher risk of flash floods.

  2. Internal flood analysis at Fermi 2 using a component-based frequency calculation approach

    International Nuclear Information System (INIS)

    Lin, J.C.; Hou, Y.M.; Ramirez, J.V.; Page, E.M.


    An analysis to identify potential accident sequences involving internal floods at Fermi Unit 2 was completed to fulfill the individual plant examination requirements. Floods can be significant core damage scenarios if they cause an initiating event and a common mode failure of critical systems. (author)

  3. Combining Satellite Measurements and Numerical Flood Prediction Models to Save Lives and Property from Flooding (United States)

    Saleh, F.; Garambois, P. A.; Biancamaria, S.


    Floods are considered the major natural threats to human societies across all continents. Consequences of floods in highly populated areas are more dramatic with losses of human lives and substantial property damage. This risk is projected to increase with the effects of climate change, particularly sea-level rise, increasing storm frequencies and intensities and increasing population and economic assets in such urban watersheds. Despite the advances in computational resources and modeling techniques, significant gaps exist in predicting complex processes and accurately representing the initial state of the system. Improving flood prediction models and data assimilation chains through satellite has become an absolute priority to produce accurate flood forecasts with sufficient lead times. The overarching goal of this work is to assess the benefits of the Surface Water Ocean Topography SWOT satellite data from a flood prediction perspective. The near real time methodology is based on combining satellite data from a simulator that mimics the future SWOT data, numerical models, high resolution elevation data and real-time local measurement in the New York/New Jersey area.

  4. Automatic domain updating technique for improving computational efficiency of 2-D flood-inundation simulation (United States)

    Tanaka, T.; Tachikawa, Y.; Ichikawa, Y.; Yorozu, K.


    Flood is one of the most hazardous disasters and causes serious damage to people and property around the world. To prevent/mitigate flood damage through early warning system and/or river management planning, numerical modelling of flood-inundation processes is essential. In a literature, flood-inundation models have been extensively developed and improved to achieve flood flow simulation with complex topography at high resolution. With increasing demands on flood-inundation modelling, its computational burden is now one of the key issues. Improvements of computational efficiency of full shallow water equations are made from various perspectives such as approximations of the momentum equations, parallelization technique, and coarsening approaches. To support these techniques and more improve the computational efficiency of flood-inundation simulations, this study proposes an Automatic Domain Updating (ADU) method of 2-D flood-inundation simulation. The ADU method traces the wet and dry interface and automatically updates the simulation domain in response to the progress and recession of flood propagation. The updating algorithm is as follow: first, to register the simulation cells potentially flooded at initial stage (such as floodplains nearby river channels), and then if a registered cell is flooded, to register its surrounding cells. The time for this additional process is saved by checking only cells at wet and dry interface. The computation time is reduced by skipping the processing time of non-flooded area. This algorithm is easily applied to any types of 2-D flood inundation models. The proposed ADU method is implemented to 2-D local inertial equations for the Yodo River basin, Japan. Case studies for two flood events show that the simulation is finished within two to 10 times smaller time showing the same result as that without the ADU method.

  5. Numerical Simulation of Flood Levels for Tropical Rivers

    International Nuclear Information System (INIS)

    Mohammed, Thamer Ahmed; Said, Salim; Bardaie, Mohd Zohadie; Basri, Shah Nor


    Flood forecasting is important for flood damage reduction. As a result of advances in the numerical methods and computer technologies, many mathematical models have been developed and used for hydraulic simulation of the flood. These simulations usually include the prediction of the flood width and depth along a watercourse. Results obtained from the application of hydraulic models will help engineers to take precautionary measures to minimize flood damage. Hydraulic models were used to simulate the flood can be classified into dynamic hydraulic models and static hydraulic models. The HEC-2 static hydraulic model was used to predict water surface profiles for Linggi river and Langat river in Malaysia. The model is based on the numerical solution of the one dimensional energy equation of the steady gradually varied flow using the iteration technique. Calibration and verification of the HEC-2 model were conducted using the recorded data for both rivers. After calibration, the model was applied to predict the water surface profiles for Q10, Q30, and Q100 along the watercourse of the Linggi river. The water surface profile for Q200 for Langat river was predicted. The predicted water surface profiles were found in agreement with the recorded water surface profiles. The value of the maximum computed absolute error in the predicted water surface profile was found to be 500 mm while the minimum absolute error was 20 mm only.

  6. Usefulness and limitations of global flood risk models (United States)

    Ward, Philip; Jongman, Brenden; Salamon, Peter; Simpson, Alanna; Bates, Paul; De Groeve, Tom; Muis, Sanne; Coughlan de Perez, Erin; Rudari, Roberto; Mark, Trigg; Winsemius, Hessel


    Global flood risk models are now a reality. Initially, their development was driven by a demand from users for first-order global assessments to identify risk hotspots. Relentless upward trends in flood damage over the last decade have enhanced interest in such assessments. The adoption of the Sendai Framework for Disaster Risk Reduction and the Warsaw International Mechanism for Loss and Damage Associated with Climate Change Impacts have made these efforts even more essential. As a result, global flood risk models are being used more and more in practice, by an increasingly large number of practitioners and decision-makers. However, they clearly have their limits compared to local models. To address these issues, a team of scientists and practitioners recently came together at the Global Flood Partnership meeting to critically assess the question 'What can('t) we do with global flood risk models?'. The results of this dialogue (Ward et al., 2013) will be presented, opening a discussion on similar broader initiatives at the science-policy interface in other natural hazards. In this contribution, examples are provided of successful applications of global flood risk models in practice (for example together with the World Bank, Red Cross, and UNISDR), and limitations and gaps between user 'wish-lists' and model capabilities are discussed. Finally, a research agenda is presented for addressing these limitations and reducing the gaps. Ward et al., 2015. Nature Climate Change, doi:10.1038/nclimate2742

  7. Floods in the Niger basin - analysis and attribution (United States)

    Aich, V.; Koné, B.; Hattermann, F. F.; Müller, E. N.


    This study addresses the increasing flood risk in the Niger basin and assesses the damages that arise from flooding. Statistics from three different sources (EM-DAT, Darthmouth Flood Observatory, NatCat Munich RE) on people affected by floods show positive trends for the entire basin beginning in the 1980s. An assessment of four subregions across the Niger basin indicates even exponential trends for the Sahelian and Sudanian regions. These positive trends for flooding damage match up to a time series of annual maximum discharge (AMAX): the strongest trends in AMAX are detected in the Sahelian and Sudanian regions, where the population is also increasing the fastest and vulnerability generally appears to be very high. The joint effect of these three factors can possibly explain the exponential increase in people affected by floods in these subregions. In a second step, the changes in AMAX are attributed to changes in precipitation and land use via a data-based approach within a hypothesis-testing framework. Analysis of rainfall, heavy precipitation and the runoff coefficient shows a coherent picture of a return to wet conditions in the basin, which we identify as the main driver of the increase in AMAX in the Niger basin. The analysis of flashiness (using the Richards-Baker Index) and the focus on the "Sahel Paradox" of the Sahelian region reveal an additional influence of land-use change, but it seems minor compared to the increase in precipitation.

  8. Demand analysis of flood insurance by using logistic regression model and genetic algorithm (United States)

    Sidi, P.; Mamat, M. B.; Sukono; Supian, S.; Putra, A. S.


    Citarum River floods in the area of South Bandung Indonesia, often resulting damage to some buildings belonging to the people living in the vicinity. One effort to alleviate the risk of building damage is to have flood insurance. The main obstacle is not all people in the Citarum basin decide to buy flood insurance. In this paper, we intend to analyse the decision to buy flood insurance. It is assumed that there are eight variables that influence the decision of purchasing flood assurance, include: income level, education level, house distance with river, building election with road, flood frequency experience, flood prediction, perception on insurance company, and perception towards government effort in handling flood. The analysis was done by using logistic regression model, and to estimate model parameters, it is done with genetic algorithm. The results of the analysis shows that eight variables analysed significantly influence the demand of flood insurance. These results are expected to be considered for insurance companies, to influence the decision of the community to be willing to buy flood insurance.

  9. Empirical Studies of the Effect of Flood Risk on Housing Prices

    National Research Council Canada - National Science Library

    Chao, Philip


    ...) provide that the reduction of flood damages should not be claimed as a benefit of evacuation or relocation because they are already accounted for in the fair market value of floodplain properties...

  10. Mitigating flood exposure (United States)

    Shultz, James M; McLean, Andrew; Herberman Mash, Holly B; Rosen, Alexa; Kelly, Fiona; Solo-Gabriele, Helena M; Youngs Jr, Georgia A; Jensen, Jessica; Bernal, Oscar; Neria, Yuval


    Introduction. In 2011, following heavy winter snowfall, two cities bordering two rivers in North Dakota, USA faced major flood threats. Flooding was foreseeable and predictable although the extent of risk was uncertain. One community, Fargo, situated in a shallow river basin, successfully mitigated and prevented flooding. For the other community, Minot, located in a deep river valley, prevention was not possible and downtown businesses and one-quarter of the homes were inundated, in the city’s worst flood on record. We aimed at contrasting the respective hazards, vulnerabilities, stressors, psychological risk factors, psychosocial consequences, and disaster risk reduction strategies under conditions where flood prevention was, and was not, possible. Methods. We applied the “trauma signature analysis” (TSIG) approach to compare the hazard profiles, identify salient disaster stressors, document the key components of disaster risk reduction response, and examine indicators of community resilience. Results. Two demographically-comparable communities, Fargo and Minot, faced challenging river flood threats and exhibited effective coordination across community sectors. We examined the implementation of disaster risk reduction strategies in situations where coordinated citizen action was able to prevent disaster impact (hazard avoidance) compared to the more common scenario when unpreventable disaster strikes, causing destruction, harm, and distress. Across a range of indicators, it is clear that successful mitigation diminishes both physical and psychological impact, thereby reducing the trauma signature of the event. Conclusion. In contrast to experience of historic flooding in Minot, the city of Fargo succeeded in reducing the trauma signature by way of reducing risk through mitigation. PMID:28228985

  11. River flooding due to intense precipitation

    International Nuclear Information System (INIS)

    Lin, James C.


    River stage can rise and cause site flooding due to local intense precipitation (LIP), dam failures, snow melt in conjunction with precipitation or dam failures, etc. As part of the re-evaluation of the design basis as well as the PRA analysis of other external events, the likelihood and consequence of river flooding leading to the site flooding need to be examined more rigorously. To evaluate the effects of intense precipitation on site structures, the site watershed hydrology and pond storage are calculated. To determine if river flooding can cause damage to risk-significant systems, structures, and components (SSC), water surface elevations are analyzed. Typically, the amount and rate of the input water is determined first. For intense precipitation, the fraction of the rainfall in the watershed drainage area not infiltrated into the ground is collected in the river and contributes to the rise of river water elevation. For design basis analysis, the Probable Maximum Flood (PMF) is evaluated using the Probable Maximum Precipitation (PMP) based on the site topography/configuration. The peak runoff flow rate and water surface elevations resulting from the precipitation induced flooding can then be estimated. The runoff flow hydrograph and peak discharge flows can be developed using the synthetic hydrograph method. The standard step method can then be used to determine the water surface elevations along the river channel. Thus, the flood water from the local intense precipitation storm and excess runoff from the nearby river can be evaluated to calculate the water surface elevations, which can be compared with the station grade floor elevation to determine the effects of site flooding on risk-significant SSCs. The analysis needs to consider any possible diversion flow and the effects of changes to the site configurations. Typically, the analysis is performed based on conservative peak rainfall intensity and the assumptions of failure of the site drainage facilities

  12. Human Costs of Flooding the 1979 ’Easter’ Flood at Jackson, Mississippi. (United States)


    in psschiatr-: the psichological aftermath of disaster. JOURNAL OF CLINICAL PSYCHIATRY, 4(7):238-244, 1980. Previous research on phisical and...mone for psichological damages i, a court action suit, it was r,ecessar5 to learn what the flood Meant to survivors and how it affected the course of...Laurence C. F’s-chological aspects of disaster. AMERICAN JOURNAL OF PUBLIC HEALTH, 54(4):638-643, 1964. The psichological aspects of disaster are presented

  13. How do we best estimate fluvial flood risk in urban environments? : The case of the city of Eilenburg, Germany (United States)

    Longo, Elisa; Tito Aronica, Giuseppe; Di Baldassarre, Giuliano; Mukolwe, Micah


    Flooding is one of the most impactful natural hazards. In particular, by looking at the data of damages from natural hazards in Europe collected in the International Disaster Database (EM-DAT) one can see a significant increase over the past four decades of both frequency of floods and associated economic damages. Similarly, dramatic trends are also found by analyzing other types of flood losses, such as the number of people affected by floods, homeless, injured or killed. To deal with the aforementioned increase of flood risk, more and more efforts are being made to promote integrated flood risk management, for instance, at the end of 2007, the European Community (EC) issued the Flood Directive (F.D.) 2007/60/EC. One of the major innovations was that the F.D. 2007/60/C requires Member State to carry out risk maps and then take appropriate measures to reduce the evaluated risk. The main goal of this research was to estimate flood damaging using a computer code based on a recently developed method (KULTURisk, and to compare the estimated damage with the observed one. The study area was the municipality of Eilenburg, which in 2002 was subjected to a destructive flood event. Were produced flood damage maps with new procedures (e.g. KULTURisk) and compared the estimates with observed data. This study showed the possibility to extend the lesson learned with the Eilenburg case study in other similar contexts. The outcomes of this test provided interesting insights about the flood risk mapping, which are expected to contribute to raise awareness to the flooding issues,to plan (structural and/or non-structural) measures of flood risk reduction and to support better land-use and urban planning.

  14. Crowdsourcing detailed flood data (United States)

    Walliman, Nicholas; Ogden, Ray; Amouzad*, Shahrzhad


    Over the last decade the average annual loss across the European Union due to flooding has been 4.5bn Euros, but increasingly intense rainfall, as well as population growth, urbanisation and the rising costs of asset replacements, may see this rise to 23bn Euros a year by 2050. Equally disturbing are the profound social costs to individuals, families and communities which in addition to loss of lives include: loss of livelihoods, decreased purchasing and production power, relocation and migration, adverse psychosocial effects, and hindrance of economic growth and development. Flood prediction, management and defence strategies rely on the availability of accurate information and flood modelling. Whilst automated data gathering (by measurement and satellite) of the extent of flooding is already advanced it is least reliable in urban and physically complex geographies where often the need for precise estimation is most acute. Crowdsourced data of actual flood events is a potentially critical component of this allowing improved accuracy in situations and identifying the effects of local landscape and topography where the height of a simple kerb, or discontinuity in a boundary wall can have profound importance. Mobile 'App' based data acquisition using crowdsourcing in critical areas can combine camera records with GPS positional data and time, as well as descriptive data relating to the event. This will automatically produce a dataset, managed in ArcView GIS, with the potential for follow up calls to get more information through structured scripts for each strand. Through this local residents can provide highly detailed information that can be reflected in sophisticated flood protection models and be core to framing urban resilience strategies and optimising the effectiveness of investment. This paper will describe this pioneering approach that will develop flood event data in support of systems that will advance existing approaches such as developed in the in the UK

  15. Guidelines for determining flood flow frequency—Bulletin 17C (United States)

    England, John F.; Cohn, Timothy A.; Faber, Beth A.; Stedinger, Jery R.; Thomas, Wilbert O.; Veilleux, Andrea G.; Kiang, Julie E.; Mason, Robert R.


    Accurate estimates of flood frequency and magnitude are a key component of any effective nationwide flood risk management and flood damage abatement program. In addition to accuracy, methods for estimating flood risk must be uniformly and consistently applied because management of the Nation’s water and related land resources is a collaborative effort involving multiple actors including most levels of government and the private sector.Flood frequency guidelines have been published in the United States since 1967, and have undergone periodic revisions. In 1967, the U.S. Water Resources Council presented a coherent approach to flood frequency with Bulletin 15, “A Uniform Technique for Determining Flood Flow Frequencies.” The method it recommended involved fitting the log-Pearson Type III distribution to annual peak flow data by the method of moments.The first extension and update of Bulletin 15 was published in 1976 as Bulletin 17, “Guidelines for Determining Flood Flow Frequency” (Guidelines). It extended the Bulletin 15 procedures by introducing methods for dealing with outliers, historical flood information, and regional skew. Bulletin 17A was published the following year to clarify the computation of weighted skew. The next revision of the Bulletin, the Bulletin 17B, provided a host of improvements and new techniques designed to address situations that often arise in practice, including better methods for estimating and using regional skew, weighting station and regional skew, detection of outliers, and use of the conditional probability adjustment.The current version of these Guidelines are presented in this document, denoted Bulletin 17C. It incorporates changes motivated by four of the items listed as “Future Work” in Bulletin 17B and 30 years of post-17B research on flood processes and statistical methods. The updates include: adoption of a generalized representation of flood data that allows for interval and censored data types; a new method

  16. Flood risk on the Black sea coast of Russia (United States)

    Alekseevsky, Nikolay; Magritsky, Dmitry; Koltermann, Peter; Krylenko, Inna; Umina, Natalya; Aybulatov, Denis; Efremova, Natalya; Lebedeva, Seraphima


    The data of unique database "Floods in the coastal zones of Europeans part of Russia", developed by authors, are shown, that frequency of floods and damage in the coastal zones are growing. There is most dangerous situation on the Black sea coast of Russia. Here the main part of settlements, resorts and industry is situated in the river valleys and mouths. All main roads and pipelines cross the river channels. The Black sea rivers have flood regime with high intensity of flood formations and huge destructive flood power. Despite prevalence of floods during the cold period of year the most part of high floods in 100 years of supervision was noted here in the summer-fall (65% in July-October). Usually they were induced by the showers connected with passing of powerful cyclones, atmospheric fronts, and water tornadoes. The insignificant part of floods was connected with snow melting, backwater phenomena, showers in the cities and dam breaks. Thus shower induced floods here are the most widespread and destructive. Usually they arise within two-three watersheds simultaneously. Formation catastrophic heavy rain flood is possible on any site of a river valley of the Black Sea coast. The wave of a high water moves with very high speed, carrying a large number of deposits and garbage. To the mouth the flood can be transformed into debris flow. The water levels during a high water period rise on 3-6 m in the channels, and up to 11-12 m in the river canyons; the maximum depths of flow on the floodplains are 3 m and more. Flooding depths, induced by slope streams, can be to 0,5 m and higher. Flooding proceeds only some hours. After that water rather quickly flows down from a floodplains to the bed of the rivers and into the sea, leaving traces of destructions, a powerful layer of deposits (to 10-20 cm and more) and garbage. In the mouth river deposits quite often form the river mouth bar which is washed away during next storms. The damage from river floods on the Black Sea

  17. Analysis of coastal protection under rising flood risk

    Directory of Open Access Journals (Sweden)

    Megan J. Lickley


    Full Text Available Infrastructure located along the U.S. Atlantic and Gulf coasts is exposed to rising risk of flooding from sea level rise, increasing storm surge, and subsidence. In these circumstances coastal management commonly based on 100-year flood maps assuming current climatology is no longer adequate. A dynamic programming cost–benefit analysis is applied to the adaptation decision, illustrated by application to an energy facility in Galveston Bay. Projections of several global climate models provide inputs to estimates of the change in hurricane and storm surge activity as well as the increase in sea level. The projected rise in physical flood risk is combined with estimates of flood damage and protection costs in an analysis of the multi-period nature of adaptation choice. The result is a planning method, using dynamic programming, which is appropriate for investment and abandonment decisions under rising coastal risk.


    Directory of Open Access Journals (Sweden)

    Dorin COSMA


    Full Text Available Danube River Basin has been frequently affected by floods in the last decades which often gained historical meanings, the latest being recorded in 2006 and 2013. The material losses were very high and on the Cetate-Dabuleni sector of the Danube river, after the floods of 2006 the dikes have been damaged and partially destroyed. In the end the Rast locality was almost total relocated. Following these events, we need to rebuild the flood defense infrastructure in the Lower Danube, but after the first assessment the costs are very high. With this paper we propose the ways of funding the flood protection works on the Lower Danube, research being done on the Cetate-Dabuleni Danube's sector.

  19. Urbanism, climate change and floods: Case of Tlemcen city

    Directory of Open Access Journals (Sweden)

    Hayat Adjim


    Full Text Available After a drought during the 1990s, Tlemcen has experienced heavy rainfall in recent years which caused several floods. They have become frequent and usually cause large damage. We then asked ourselves questions about the reasons for this deregulation of rainfall and floods. We have assumed that climate change has led to deregulation of precipitation and that the urbanization and morphology of the site are the causes of the floods. For this, we analyzed the rainfall data and study the configuration of the town of Tlemcen. We noticed then that Tlemcen town undergoes the climate changes effects per a diminution of the multi-annual mean of rainfall between 1974 and 2008, and a slight displacement of the rainfall from April to November after 2008. Finally, the principal reason of floods is the thoughtless urban sprawl on the water courses also favored by an unfavourable topography.

  20. Realistic modelling of external flooding scenarios - A multi-disciplinary approach

    International Nuclear Information System (INIS)

    Brinkman, J.L.


    Extreme phenomena, such as storm surges or high river water levels, may endanger the safety of nuclear power plants (NPPs) by inundation of the plant site with subsequent damage on safety-related buildings. Flooding may result in simultaneous failures of safety-related components, such as service water pumps and electrical equipment. In addition, the accessibility of the plant may be impeded due to flooding of the plant environment. These consequences are so severe that, (re)assessments of flood risk and flood protection measures should be based on accurate state-of-the-art methods. Dutch nuclear regulations require that a nuclear power plant shall withstand all external initiating events with a return period lower than one million years. For external flooding, this requirement is the basis of the so-called nuclear design level (nucleair ontwerp peil, NOP) of the buildings for external flooding, i.e. the water level at which a system - among others, the nuclear island and the ultimate heat sink - should still function properly. In determining the NOP, the mean water level, wave height and wave behaviour during storm surges are taken into account. This concept could also be used to implement external flooding in a PSA, by assuming that floods exceeding NOP levels directly lead to core damage. However, this straightforward modelling ignores some important aspects: the first is the mitigating effect of the external flood protection as dikes or dunes; the second aspect is that although water levels lower than NOP will not directly lead to core damage, they could do so indirectly as a result of combinations of system loss by flooding and random failure of required safety systems that have to bring the plant in a safe, stable state. Time is a third aspect: failure mechanisms need time to develop and time (via duration of the flood) determines the amount of water on site. This paper describes a PSA approach that takes the (structural) reliability of the external defences

  1. A Probabilistic Analysis of Surface Water Flood Risk in London. (United States)

    Jenkins, Katie; Hall, Jim; Glenis, Vassilis; Kilsby, Chris


    Flooding in urban areas during heavy rainfall, often characterized by short duration and high-intensity events, is known as "surface water flooding." Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively. © 2017 Society for Risk Analysis.

  2. Flash floods warning technique based on wireless communication networks data (United States)

    David, Noam; Alpert, Pinhas; Messer, Hagit


    Flash floods can occur throughout or subsequent to rainfall events, particularly in cases where the precipitation is of high-intensity. Unfortunately, each year these floods cause severe property damage and heavy casualties. At present, there are no sufficient real time flash flood warning facilities found to cope with this phenomenon. Here we show the tremendous potential of flash floods advanced warning based on precipitation measurements of commercial microwave links. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. We present the flash flood warning potential of the wireless communication system for two different cases when floods occurred at the Judean desert and at the northern Negev in Israel. In both cases, an advanced warning regarding the hazard could have been announced based on this system. • This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 173/08). This work was also supported by a grant from the Yeshaya Horowitz Association, Jerusalem. Additional support was given by the PROCEMA-BMBF project and by the GLOWA-JR BMBF project.

  3. Flood Impacts on People: from Hazard to Risk Maps (United States)

    Arrighi, C.; Castelli, F.


    The mitigation of adverse consequences of floods on people is crucial for civil protection and public authorities. According to several studies, in the developed countries the majority of flood-related fatalities occurs due to inappropriate high risk behaviours such as driving and walking in floodwaters. In this work both the loss of stability of vehicles and pedestrians in floodwaters are analysed. Flood hazard is evaluated, based on (i) a 2D inundation model of an urban area, (ii) 3D hydrodynamic simulations of water flows around vehicles and human body and (iii) a dimensional analysis of experimental activity. Exposure and vulnerability of vehicles and population are assessed exploiting several sources of open GIS data in order to produce risk maps for a testing case study. The results show that a significant hazard to vehicles and pedestrians exists in the study area. Particularly high is the hazard to vehicles, which are likely to be swept away by flood flow, possibly aggravate damages to structures and infrastructures and locally alter the flood propagation. Exposure and vulnerability analysis identifies some structures such as schools and public facilities, which may attract several people. Moreover, some shopping facilities in the area, which attract both vehicular and pedestrians' circulation are located in the highest flood hazard zone.The application of the method demonstrates that, at municipal level, such risk maps can support civil defence strategies and education to active citizenship, thus contributing to flood impact reduction to population.

  4. Estimating floodwater depths from flood inundation maps and topography (United States)

    Cohen, Sagy; Brakenridge, G. Robert; Kettner, Albert; Bates, Bradford; Nelson, Jonathan M.; McDonald, Richard R.; Huang, Yu-Fen; Munasinghe, Dinuke; Zhang, Jiaqi


    Information on flood inundation extent is important for understanding societal exposure, water storage volumes, flood wave attenuation, future flood hazard, and other variables. A number of organizations now provide flood inundation maps based on satellite remote sensing. These data products can efficiently and accurately provide the areal extent of a flood event, but do not provide floodwater depth, an important attribute for first responders and damage assessment. Here we present a new methodology and a GIS-based tool, the Floodwater Depth Estimation Tool (FwDET), for estimating floodwater depth based solely on an inundation map and a digital elevation model (DEM). We compare the FwDET results against water depth maps derived from hydraulic simulation of two flood events, a large-scale event for which we use medium resolution input layer (10 m) and a small-scale event for which we use a high-resolution (LiDAR; 1 m) input. Further testing is performed for two inundation maps with a number of challenging features that include a narrow valley, a large reservoir, and an urban setting. The results show FwDET can accurately calculate floodwater depth for diverse flooding scenarios but also leads to considerable bias in locations where the inundation extent does not align well with the DEM. In these locations, manual adjustment or higher spatial resolution input is required.

  5. Flooding and schools: experiences in Hull in 2007. (United States)

    Convery, Ian; Carroll, Bob; Balogh, Ruth


    Hull, a city in the East Riding of Yorkshire, United Kingdom, suffered severe flooding in June 2007, affecting some 8,600 households and most schools. Despite the potential for damage in such disasters, no studies of the effects of floods on teachers and schools in the UK appear to have been published previously. This study analysed the impacts of the floods on teachers in Hull in two stages: first through correspondence with Hull City Council and a mailed questionnaire to 91 head teachers of primary, secondary, and special schools; and second, through in-depth interviews with head teachers from six flooded schools, representing different degrees of flood experience, and a questionnaire completed by eight teachers from the same schools. The findings reveal the importance and the complexity of the role of the school in the wider community in a time of crisis. The study highlights issues concerning preparedness for floods, support for schools, and flood protection for schools. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.

  6. Assessing surface water flood risk and management strategies under future climate change: Insights from an Agent-Based Model. (United States)

    Jenkins, K; Surminski, S; Hall, J; Crick, F


    Climate change and increasing urbanization are projected to result in an increase in surface water flooding and consequential damages in the future. In this paper, we present insights from a novel Agent Based Model (ABM), applied to a London case study of surface water flood risk, designed to assess the interplay between different adaptation options; how risk reduction could be achieved by homeowners and government; and the role of flood insurance and the new flood insurance pool, Flood Re, in the context of climate change. The analysis highlights that while combined investment in property-level flood protection and sustainable urban drainage systems reduce surface water flood risk, the benefits can be outweighed by continued development in high risk areas and the effects of climate change. In our simulations, Flood Re is beneficial in its function to provide affordable insurance, even under climate change. However, the scheme does face increasing financial pressure due to rising surface water flood damages. If the intended transition to risk-based pricing is to take place then a determined and coordinated strategy will be needed to manage flood risk, which utilises insurance incentives, limits new development, and supports resilience measures. Our modelling approach and findings are highly relevant for the ongoing regulatory and political approval process for Flood Re as well as for wider discussions on the potential of insurance schemes to incentivise flood risk management and climate adaptation in the UK and internationally. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Long-term development and effectiveness of private flood mitigation measures: an analysis for the German part of the river Rhine

    NARCIS (Netherlands)

    Bubeck, P.; Botzen, W.J.W.; Kreibich, H.; Aerts, J.C.J.H.


    Flood mitigation measures implemented by private households have become an important component of contemporary integrated flood risk management in Germany and many other countries. Despite the growing responsibility of private households to contribute to flood damage reduction by means of private

  8. Thirty Years Later: Reflections of the Big Thompson Flood, Colorado, 1976 to 2006 (United States)

    Jarrett, R. D.; Costa, J. E.; Brunstein, F. C.; Quesenberry, C. A.; Vandas, S. J.; Capesius, J. P.; O'Neill, G. B.


    Thirty years ago, over 300 mm of rain fell in about 4 to 6 hours in the middle reaches of the Big Thompson River Basin during the devastating flash flood on July 31, 1976. The rainstorm produced flood discharges that exceeded 40 m3/s/km2. A peak discharge of 883 m3/s was estimated at the Big Thompson River near Drake streamflow-gaging station. The raging waters left 144 people dead, 250 injured, and over 800 people were evacuated by helicopter. Four-hundred eighteen homes and businesses were destroyed, as well as 438 automobiles, and damage to infrastructure left the canyon reachable only via helicopter. Total damage was estimated in excess of $116 million (2006 dollars). Natural hazards similar to the Big Thompson flood are rare, but the probability of a similar event hitting the Front Range, other parts of Colorado, or other parts of the Nation is real. Although much smaller in scale than the Big Thompson flood, several flash floods have happened during the monsoon in early July 2006 in the Colorado foothills that reemphasized the hazards associated with flash flooding. The U.S. Geological Survey (USGS) conducts flood research to help understand and predict the magnitude and likelihood of large streamflow events such as the Big Thompson flood. A summary of hydrologic conditions of the 1976 flood, what the 1976 flood can teach us about flash floods, a description of some of the advances in USGS flood science as a consequence of this disaster, and lessons that we learned to help reduce loss of life from this extraordinary flash flood are discussed. In the 30 years since the Big Thompson flood, there have been important advances in streamflow monitoring and flood warning. The National Weather Service (NWS) NEXRAD radar allows real-time monitoring of precipitation in most places in the United States. The USGS currently (2006) operates about 7,250 real-time streamflow-gaging stations in the United States that are monitored by the USGS, the NWS, and emergency managers

  9. Flood Hazards: Communicating Hydrology and Complexity to the Public (United States)

    Holmes, R. R.; Blanchard, S. F.; Mason, R. R.


    Floods have a major impact on society and the environment. Since 1952, approximately 1,233 of 1,931 (64%) Federal disaster declarations were due directly to flooding, with an additional 297 due to hurricanes which had associated flooding. Although the overall average annual number of deaths due to flooding has decreased in the United States, the average annual flood damage is rising. According to the Munich Reinsurance Company in their publication “Schadenspiegel 3/2005”, during 1990s the world experienced as much as $500 billion in economic losses due to floods, highlighting the serious need for continued emphasis on flood-loss prevention measures. Flood-loss prevention has two major elements: mitigation (including structural flood-control measures and land-use planning and regulation) and risk awareness. Of the two, increasing risk awareness likely offers the most potential for protecting lives over the near-term and long-term sustainability in the coming years. Flood-risk awareness and risk-aware behavior is dependent on communication, involving both prescriptive and educational measures. Prescriptive measures (for example, flood warnings and stormwater ordinances) are and have been effective, but there is room for improvement. New communications technologies, particularly social media utilizing mobile, smart phones and text devices, for example, could play a significant role in increasing public awareness of long-term risk and near-term flood conditions. The U.S. Geological Survey (USGS), for example, the Federal agency that monitors the Nation’s rivers, recently released a new service that can better connect the to the public to information about flood hazards. The new service, WaterAlert (URL:, allows users to set flood notification thresholds of their own choosing for any USGS real-time streamgage. The system then sends emails or text messages to subscribers whenever the threshold conditions are met, as often as the

  10. Hurricane Agnes rainfall and floods, June-July 1972 (United States)

    Bailey, James F.; Patterson, James Lee; Paulhus, Joseph Louis Hornore


    Hurricane Agnes originated in the Caribbean Sea region in mid-June. Circulation barely reached hurricane intensity for a brief period in the Gulf of Mexico. The storm crossed the Florida Panhandle coastline on June 19, 1972, and followed an unusually extended overland trajectory combining with an extratropical system to bring very heavy rain from the Carolinas northward to New York. This torrential rain followed the abnormally wet May weather in the Middle Atlantic States and set the stage for the subsequent major flooding. The record-breaking floods occurred in the Middle Atlantic States in late June and early July 1972. Many streams in the affected area experienced peak discharges several times the previous maxima of record. Estimated recurrence intervals of peak flows at many gaging stations on major rivers and their tributaries exceeded 100 years. The suspended-sediment concentration and load of most flooded streams were also unusually high. The widespread flooding from this storm caused Agnes to be called the most destructive hurricane in United States history, claiming 117 lives and causing damage estimated at $3.1 billion in 12 States. Damage was particularly high in New York, Pennsylvania, Maryland, and Virginia. The detailed life history of Hurricane Agnes, including the tropical depression and tropical storm stages, is traced. Associated rainfalls are analyzed and compared with climatologic recurrence values. These are followed by a detailed description of the flood and streamflows of each affected basin. A summary of peak stages and discharges and comparison data for previous floods at 989 stations are presented. Deaths and flood damage estimates are compiled.

  11. Probable maximum flood control

    International Nuclear Information System (INIS)

    DeGabriele, C.E.; Wu, C.L.


    This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility

  12. Hurricane Harvey Riverine Flooding: Part 1 - Reconstruction of Hurricane Harvey Flooding for Harris County, TX using a GPU-accelerated 2D flood model for post-flood hazard analysis (United States)

    Kalyanapu, A. J.; Dullo, T. T.; Gangrade, S.; Kao, S. C.; Marshall, R.; Islam, S. R.; Ghafoor, S. K.


    Hurricane Harvey that made landfall in the southern Texas this August is one of the most destructive hurricanes during the 2017 hurricane season. During its active period, many areas in coastal Texas region received more than 40 inches of rain. This downpour caused significant flooding resulting in about 77 casualties, displacing more than 30,000 people, inundating hundreds of thousands homes and is currently estimated to have caused more than $70 billion in direct damage. One of the significantly affected areas is Harris County where the city of Houston, TX is located. Covering over two HUC-8 drainage basins ( 2702 mi2), this county experienced more than 80% of its annual average rainfall during this event. This study presents an effort to reconstruct flooding caused by extreme rainfall due to Hurricane Harvey in Harris County, Texas. This computationally intensive task was performed at a 30-m spatial resolution using a rapid flood model called Flood2D-GPU, a graphics processing unit (GPU) accelerated model, on Oak Ridge National Laboratory's (ORNL) Titan Supercomputer. For this task, the hourly rainfall estimates from the National Center for Environmental Prediction Stage IV Quantitative Precipitation Estimate were fed into the Variable Infiltration Capacity (VIC) hydrologic model and Routing Application for Parallel computation of Discharge (RAPID) routing model to estimate flow hydrographs at 69 locations for Flood2D-GPU simulation. Preliminary results of the simulation including flood inundation extents, maps of flood depths and inundation duration will be presented. Future efforts will focus on calibrating and validating the simulation results and assessing the flood damage for better understanding the impacts made by Hurricane Harvey.

  13. Near Real-Time Flood Monitoring and Impact Assessment Systems. Chapter 6; [Case Study: 2011 Flooding in Southeast Asia (United States)

    Ahamed, Aakash; Bolten, John; Doyle, C.; Fayne, Jessica


    Floods are the costliest natural disaster (United Nations 2004), causing approximately6.8 million deaths in the twentieth century alone (Doocy et al. 2013).Worldwide economic flood damage estimates in 2012 exceed $19 Billion USD(Munich Re 2013). Extended duration floods also pose longer term threats to food security, water, sanitation, hygiene, and community livelihoods, particularly in developing countries (Davies et al. 2014).Projections by the Intergovernmental Panel on Climate Change (IPCC) suggest that precipitation extremes, rainfall intensity, storm intensity, and variability are increasing due to climate change (IPCC 2007). Increasing hydrologic uncertainty will likely lead to unprecedented extreme flood events. As such, there is a vital need to enhance and further develop traditional techniques used to rapidly assessflooding and extend analytical methods to estimate impacted population and infrastructure.

  14. A knowledge integration approach to flood vulnerability (United States)

    Mazzorana, Bruno; Fuchs, Sven


    Understanding, qualifying and quantifying vulnerability is an essential need for implementing effective and efficient flood risk mitigation strategies; in particular if possible synergies between different mitigation alternatives, such as active and passive measures, should be achieved. In order to combine different risk management options it is necessary to take an interdisciplinary approach to vulnerability reduction, and as a result the affected society may be willing to accept a certain degree of self-responsibility. However, due to differing mono-disciplinary approaches and regional foci undertaken until now, different aspects of vulnerability to natural hazards in general and to floods in particular remain uncovered and as a result the developed management options remain sub-optimal. Taking an even more fundamental viewpoint, the empirical vulnerability functions used in risk assessment specifically fail to capture physical principles of the damage-generating mechanisms to the build environment. The aim of this paper is to partially close this gap by discussing a balanced knowledge integration approach which can be used to resolve the multidisciplinary disorder in flood vulnerability research. Modelling techniques such as mathematical-physical modelling of the flood hazard impact to and response from the building envelope affected, and formative scenario analyses of possible consequences in terms of damage and loss are used in synergy to provide an enhanced understanding of vulnerability and to render the derived knowledge into interdisciplinary mitigation strategies. The outlined formal procedure allows for a convincing knowledge alignment of quantified, but partial, information about vulnerability as a result of the application of physical and engineering notions and valuable, but often underspecified, qualitative argumentation strings emerging from the adopted socio-economic viewpoint.

  15. A review of effective flood forecasting, warning and response system ...

    African Journals Online (AJOL)

    . It has been estimated that the total amount lost was approximately R3 000 million. South African farmers lost more than 50% of their export products. Flood damages and disruptions to humans and animal species were even bigger in ...

  16. A hydrological perspective of the February 2000 floods : a case ...

    African Journals Online (AJOL)

    The exceptionally heavy rains which fell over the north-eastern parts of South Africa, Mozambique and Zimbabwe during February 2000 resulted in disastrous flooding, loss of hundreds of lives and severe damage to infrastructure. The objective of the study reported in this paper is to assess the severity, from a probabilistic ...

  17. Appropriate modelling of climate change impacts on river flooding

    NARCIS (Netherlands)

    Booij, Martijn J.


    Global climate change is likely to increase temperatures, change precipitation patterns and probably raise the frequency of extreme events. Impacts of climate change on river flooding may be considerable and may cause enormous economical, social and environmental damage and even loss of lives. This

  18. Probabilistic flood extent estimates from social media flood observations

    NARCIS (Netherlands)

    Brouwer, Tom; Eilander, Dirk; Van Loenen, Arnejan; Booij, Martijn J.; Wijnberg, Kathelijne M.; Verkade, Jan S.; Wagemaker, Jurjen


    The increasing number and severity of floods, driven by phenomena such as urbanization, deforestation, subsidence and climate change, create a growing need for accurate and timely flood maps. In this paper we present and evaluate a method to create deterministic and probabilistic flood maps from

  19. Probabilistic flood extent estimates from social media flood observations

    NARCIS (Netherlands)

    Brouwer, Tom; Eilander, Dirk; Van Loenen, Arnejan; Booij, Martijn J.; Wijnberg, Kathelijne M.; Verkade, Jan S.; Wagemaker, Jurjen


    The increasing number and severity of floods, driven by phenomena such as urbanization, deforestation, subsidence and climate change, creates a growing need for accurate and timely flood maps. This research focussed on creating flood maps using user generated content from Twitter. Twitter data has

  20. Mapping flood hazards under uncertainty through probabilistic flood inundation maps (United States)

    Stephens, T.; Bledsoe, B. P.; Miller, A. J.; Lee, G.


    Changing precipitation, rapid urbanization, and population growth interact to create unprecedented challenges for flood mitigation and management. Standard methods for estimating risk from flood inundation maps generally involve simulations of floodplain hydraulics for an established regulatory discharge of specified frequency. Hydraulic model results are then geospatially mapped and depicted as a discrete boundary of flood extents and a binary representation of the probability of inundation (in or out) that is assumed constant over a project's lifetime. Consequently, existing methods utilized to define flood hazards and assess risk management are hindered by deterministic approaches that assume stationarity in a nonstationary world, failing to account for spatio-temporal variability of climate and land use as they translate to hydraulic models. This presentation outlines novel techniques for portraying flood hazards and the results of multiple flood inundation maps spanning hydroclimatic regions. Flood inundation maps generated through modeling of floodplain hydraulics are probabilistic reflecting uncertainty quantified through Monte-Carlo analyses of model inputs and parameters under current and future scenarios. The likelihood of inundation and range of variability in flood extents resulting from Monte-Carlo simulations are then compared with deterministic evaluations of flood hazards from current regulatory flood hazard maps. By facilitating alternative approaches of portraying flood hazards, the novel techniques described in this presentation can contribute to a shifting paradigm in flood management that acknowledges the inherent uncertainty in model estimates and the nonstationary behavior of land use and climate.

  1. Flood Risk Management In Europe: European flood regulation

    NARCIS (Netherlands)

    Hegger, D.L.T.; Bakker, M.H.; Green, C.; Driessen, Peter; Delvaux, B.; Rijswick, H.F.M.W. van; Suykens, C.; Beyers, J-C.; Deketelaere, K.; Doorn-Hoekveld, W. van; Dieperink, C.


    In Europe, water management is moving from flood defense to a risk management approach, which takes both the probability and the potential consequences of flooding into account. In this report, we will look at Directives and (non-)EU- initiatives in place to deal with flood risk in Europe indirectly

  2. Exploitation of Documented Historical Floods for Achieving Better Flood Defense

    Directory of Open Access Journals (Sweden)

    Slobodan Kolaković


    Full Text Available Establishing Base Flood Elevation for a stream network corresponding to a big catchment is feasible by interdisciplinary approach, involving stochastic hydrology, river hydraulics, and computer aided simulations. A numerical model calibrated by historical floods has been exploited in this study. The short presentation of the catchment of the Tisza River in this paper is followed by the overview of historical floods which hit the region in the documented period of 130 years. Several well documented historical floods provided opportunity for the calibration of the chosen numerical model. Once established, the model could be used for investigation of different extreme flood scenarios and to establish the Base Flood Elevation. The calibration has shown that the coefficient of friction in case of the Tisza River is dependent both on the actual water level and on the preceding flood events. The effect of flood plain maintenance as well as the activation of six potential detention ponds on flood mitigation has been examined. Furthermore, the expected maximum water levels have also been determined for the case if the ever observed biggest 1888 flood hit the region again. The investigated cases of flood superposition highlighted the impact of tributary Maros on flood mitigation along the Tisza River.

  3. Improving Global Flood Forecasting using Satellite Detected Flood Extent

    NARCIS (Netherlands)

    Revilla Romero, B.


    Flooding is a natural global phenomenon but in many cases is exacerbated by human activity. Although flooding generally affects humans in a negative way, bringing death, suffering, and economic impacts, it also has potentially beneficial effects. Early flood warning and forecasting systems, as well

  4. A coupled weather generator - rainfall-runoff approach on hourly time steps for flood risk analysis (United States)

    Winter, Benjamin; Schneeberger, Klaus; Dung Nguyen, Viet; Vorogushyn, Sergiy; Huttenlau, Matthias; Merz, Bruno; Stötter, Johann


    The evaluation of potential monetary damage of flooding is an essential part of flood risk management. One possibility to estimate the monetary risk is to analyze long time series of observed flood events and their corresponding damages. In reality, however, only few flood events are documented. This limitation can be overcome by the generation of a set of synthetic, physically and spatial plausible flood events and subsequently the estimation of the resulting monetary damages. In the present work, a set of synthetic flood events is generated by a continuous rainfall-runoff simulation in combination with a coupled weather generator and temporal disaggregation procedure for the study area of Vorarlberg (Austria). Most flood risk studies focus on daily time steps, however, the mesoscale alpine study area is characterized by short concentration times, leading to large differences between daily mean and daily maximum discharge. Accordingly, an hourly time step is needed for the simulations. The hourly metrological input for the rainfall-runoff model is generated in a two-step approach. A synthetic daily dataset is generated by a multivariate and multisite weather generator and subsequently disaggregated to hourly time steps with a k-Nearest-Neighbor model. Following the event generation procedure, the negative consequences of flooding are analyzed. The corresponding flood damage for each synthetic event is estimated by combining the synthetic discharge at representative points of the river network with a loss probability relation for each community in the study area. The loss probability relation is based on exposure and susceptibility analyses on a single object basis (residential buildings) for certain return periods. For these impact analyses official inundation maps of the study area are used. Finally, by analyzing the total event time series of damages, the expected annual damage or losses associated with a certain probability of occurrence can be estimated for

  5. Study of flood defense structural measures priorities using Compromise Programming technique (United States)

    Lim, D.; Jeong, S.


    Recent climate change of global warming has led to the frequent occurrence of heavy regional rainfalls. As such, inundation vulnerability increases in urban areas with high population density due to the low runoff carrying capacity. This study selects a sample area (Janghang-eup, the Republic of Korea), which is one of the most vulnerable areas to flooding, analyzing the urban flood runoff model (XP-SWMM) and using the MCDM (Multi-Criteria Decision Making) technique to establish flood protection structural measures. To this end, we compare the alternatives and choose the optimal flood defense measure: our model is utilized with three flood prevention structural measures; (i) drainage pipe construction; (ii) water detention; and (iii) flood pumping station. Dividing the target area into three small basins, we propose flood evaluations for an inundation decrease by studying the flooded area, the maximum inundation depth, the damaged residential area, and the construction cost. In addition, Compromise Programming determines the priority of the alternatives. As a consequent, this study suggests flood pumping station for Zone 1 and drainage pipe construction for Zone 2 and Zone 3, respectively, as the optimal flood defense alternative. Keywords : MCDM; Compromise Programming; Urban Flood Prevention; This research was supported by a grant [MPSS-DP-2013-62] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  6. The 100-year flood seems to be changing. Can we really tell? (United States)

    Ceres, R. L., Jr.; Forest, C. E.; Keller, K.


    Widespread flooding from Hurricane Harvey greatly exceeded the Federal Emergency Management Agency's 100-year flood levels. In the US, this flood level is often used as an important line of demarcation where areas above this level are considered safe, while areas below the line are at risk and require additional flood risk mitigation. In the wake of Harvey's damage, the US media has highlighted at least two important questions. First, has the 100-year flood level changed? Second, is the 100-year flood level a good metric for determining flood risk? To address the first question, we use an Observation System Simulation Experiment of storm surge flood levels and find that gradual changes to the 100-year storm surge level may not be reliably detected over the long lifespans expected of major flood risk mitigation strategies. Additionally, we find that common extreme value analysis models lead to biased results and additional uncertainty when incorrect assumptions are used for the underlying statistical model. These incorrect assumptions can lead to examples of negative learning. Addressing the second question, these findings further challenge the validity of using simple return levels such as the 100-year flood as a decision tool for assessing flood risk. These results indicate risk management strategies must account for such uncertainties to build resilient and robust planning tools that stakeholders desperately need.

  7. A Multimethod Approach towards Assessing Urban Flood Patterns and Its Associated Vulnerabilities in Singapore

    Directory of Open Access Journals (Sweden)

    Winston T. L. Chow


    Full Text Available We investigated flooding patterns in the urbanised city-state of Singapore through a multimethod approach combining station precipitation data with archival newspaper and governmental records; changes in flash floods frequencies or reported impacts of floods towards Singapore society were documented. We subsequently discussed potential flooding impacts in the context of urban vulnerability, based on future urbanisation and forecasted precipitation projections for Singapore. We find that, despite effective flood management, (i significant increases in reported flash flood frequency occurred in contemporary (post-2000 relative to preceding (1984–1999 periods, (ii these flash floods coincide with more localised, “patchy” storm events, (iii storms in recent years are also more intense and frequent, and (iv floods result in low human casualties but have high economic costs via insurance damage claims. We assess that Singapore presently has low vulnerability to floods vis-à-vis other regional cities largely due to holistic flood management via consistent and successful infrastructural development, widespread flood monitoring, and effective advisory platforms. We conclude, however, that future vulnerabilities may increase from stresses arising from physical exposure to climate change and from demographic sensitivity via rapid population growth. Anticipating these changes is potentially useful in maintaining the high resilience of Singapore towards this hydrometeorological hazard.

  8. The Global Flood Model (United States)

    Williams, P.; Huddelston, M.; Michel, G.; Thompson, S.; Heynert, K.; Pickering, C.; Abbott Donnelly, I.; Fewtrell, T.; Galy, H.; Sperna Weiland, F.; Winsemius, H.; Weerts, A.; Nixon, S.; Davies, P.; Schiferli, D.


    Recently, a Global Flood Model (GFM) initiative has been proposed by Willis, UK Met Office, Esri, Deltares and IBM. The idea is to create a global community platform that enables better understanding of the complexities of flood risk assessment to better support the decisions, education and communication needed to mitigate flood risk. The GFM will provide tools for assessing the risk of floods, for devising mitigation strategies such as land-use changes and infrastructure improvements, and for enabling effective pre- and post-flood event response. The GFM combines humanitarian and commercial motives. It will benefit: - The public, seeking to preserve personal safety and property; - State and local governments, seeking to safeguard economic activity, and improve resilience; - NGOs, similarly seeking to respond proactively to flood events; - The insurance sector, seeking to understand and price flood risk; - Large corporations, seeking to protect global operations and supply chains. The GFM is an integrated and transparent set of modules, each composed of models and data. For each module, there are two core elements: a live "reference version" (a worked example) and a framework of specifications, which will allow development of alternative versions. In the future, users will be able to work with the reference version or substitute their own models and data. If these meet the specification for the relevant module, they will interoperate with the rest of the GFM. Some "crowd-sourced" modules could even be accredited and published to the wider GFM community. Our intent is to build on existing public, private and academic work, improve local adoption, and stimulate the development of multiple - but compatible - alternatives, so strengthening mankind's ability to manage flood impacts. The GFM is being developed and managed by a non-profit organization created for the purpose. The business model will be inspired from open source software (eg Linux): - for non-profit usage

  9. Camp Marmal Flood Study (United States)


    was simulated by means of a broad - crested weir built into the topography of the mesh. There is 0.5 m of freeboard and the width of the weir is 30 m...ER D C/ CH L TR -1 2- 5 Camp Marmal Flood Study Co as ta l a nd H yd ra ul ic s La bo ra to ry Jeremy A. Sharp , Steve H. Scott...Camp Marmal Flood Study Jeremy A. Sharp , Steve H. Scott, Mark R. Jourdan, and Gaurav Savant Coastal and Hydraulics Laboratory U.S. Army Engineer

  10. Flood forecasting and uncertainty of precipitation forecasts

    International Nuclear Information System (INIS)

    Kobold, Mira; Suselj, Kay


    The timely and accurate flood forecasting is essential for the reliable flood warning. The effectiveness of flood warning is dependent on the forecast accuracy of certain physical parameters, such as the peak magnitude of the flood, its timing, location and duration. The conceptual rainfall - runoff models enable the estimation of these parameters and lead to useful operational forecasts. The accurate rainfall is the most important input into hydrological models. The input for the rainfall can be real time rain-gauges data, or weather radar data, or meteorological forecasted precipitation. The torrential nature of streams and fast runoff are characteristic for the most of the Slovenian rivers. Extensive damage is caused almost every year- by rainstorms affecting different regions of Slovenia' The lag time between rainfall and runoff is very short for Slovenian territory and on-line data are used only for now casting. Forecasted precipitations are necessary for hydrological forecast for some days ahead. ECMWF (European Centre for Medium-Range Weather Forecasts) gives general forecast for several days ahead while more detailed precipitation data with limited area ALADIN/Sl model are available for two days ahead. There is a certain degree of uncertainty using such precipitation forecasts based on meteorological models. The variability of precipitation is very high in Slovenia and the uncertainty of ECMWF predicted precipitation is very large for Slovenian territory. ECMWF model can predict precipitation events correctly, but underestimates amount of precipitation in general The average underestimation is about 60% for Slovenian region. The predictions of limited area ALADIN/Si model up to; 48 hours ahead show greater applicability in hydrological forecasting. The hydrological models are sensitive to precipitation input. The deviation of runoff is much bigger than the rainfall deviation. Runoff to rainfall error fraction is about 1.6. If spatial and time distribution

  11. FEMA DFIRM Base Flood Elevations (United States)

    Minnesota Department of Natural Resources — The Base Flood Elevation (BFE) table is required for any digital data where BFE lines will be shown on the corresponding Flood Insurance Rate Map (FIRM). Normally,...

  12. 2013 FEMA Flood Hazard Boundaries (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  13. FEMA DFIRM Flood Hazard Areas (United States)

    Minnesota Department of Natural Resources — FEMA flood hazard delineations are used by the Federal Emergency Management Agency (FEMA) to designate the Special Flood Hazard Area (SFHA) and for insurance rating...

  14. Base Flood Elevation (BFE) Lines (United States)

    Department of Homeland Security — The Base Flood Elevation (BFE) table is required for any digital data where BFE lines will be shown on the corresponding Flood Insurance Rate Map (FIRM). Normally if...

  15. National Flood Hazard Layer (NFHL) (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The National Flood Hazard Layer (NFHL) is a compilation of GIS data that comprises a nationwide digital Flood Insurance Rate Map. The GIS data and services are...

  16. FEMA 100 year Flood Data (United States)

    California Natural Resource Agency — The Q3 Flood Data product is a digital representation of certain features of FEMA's Flood Insurance Rate Map (FIRM) product, intended for use with desktop mapping...

  17. 2013 FEMA Flood Control Structures (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  18. FEMA Q3 Flood Data (United States)

    Kansas Data Access and Support Center — The Q3 Flood Data are derived from the Flood Insurance Rate Maps (FIRMS) published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to...

  19. Development of an anti-flood board to protect the interiors and exteriors of the infrastructure (United States)

    Petru, Michal; Srb, Pavel; Sevcik, Ladislav; Martinec, Tomas; Kulhavy, Petr


    This article deals with the development of an anti-flood board to protect the interior and exterior of various infrastructures, such a houses, cottages or industrial buildings. It was designed prototypes and assembled numerical simulations. In Central Europe and in particular in the Czech Republic, floods are an integral part of the natural water cycle and cause great loss of life and great property damage. The development of new types of mobile anti-flood boards is very important as the design solution is developed for flood protection with regard to minimizing weight, cost of production, easy manipulation, simplicity and speed of installation.

  20. Hydrological forecast of maximal water level in Lepenica river basin and flood control measures

    Directory of Open Access Journals (Sweden)

    Milanović Ana


    Full Text Available Lepenica river basin territory has became axis of economic and urban development of Šumadija district. However, considering Lepenica River with its tributaries, and their disordered river regime, there is insufficient of water for water supply and irrigation, while on the other hand, this area is suffering big flood and torrent damages (especially Kragujevac basin. The paper presents flood problems in the river basin, maximum water level forecasts, and flood control measures carried out until now. Some of the potential solutions, aiming to achieve the effective flood control, are suggested as well.

  1. A free and open source QGIS plugin for flood risk analysis: FloodRisk (United States)

    Albano, Raffaele; Sole, Aurelia; Mancusi, Leonardo


    An analysis of global statistics shows a substantial increase in flood damage over the past few decades. Moreover, it is expected that flood risk will continue to rise due to the combined effect of increasing numbers of people and economic assets in risk-prone areas and the effects of climate change. In order to increase the resilience of European economies and societies, the improvement of risk assessment and management has been pursued in the last years. This results in a wide range of flood analysis models of different complexities with substantial differences in underlying components needed for its implementation, as geographical, hydrological and social differences demand specific approaches in the different countries. At present, it is emerging the need of promote the creation of open, transparent, reliable and extensible tools for a comprehensive, context-specific and applicable flood risk analysis. In this context, the free and open-source Quantum GIS (QGIS) plugin "FloodRisk" is a good starting point to address this objective. The vision of the developers of this free and open source software (FOSS) is to combine the main features of state-of-the-art science, collaboration, transparency and interoperability in an initiative to assess and communicate flood risk worldwide and to assist authorities to facilitate the quality and fairness of flood risk management at multiple scales. Among the scientific community, this type of activity can be labelled as "participatory research", intended as adopting a set of techniques that "are interactive and collaborative" and reproducible, "providing a meaningful research experience that both promotes learning and generates knowledge and research data through a process of guided discovery"' (Albano et al., 2015). Moreover, this FOSS geospatial approach can lowering the financial barriers to understanding risks at national and sub-national levels through a spatio-temporal domain and can provide better and more complete

  2. Floods of December 1966 in southwestern Utah (United States)

    Butler, Elmer; Mundorff, J.C.


    Severe floods occurred in parts of southwestern Utah on December 5-6, 1966, as a result of precipitation of about 1 inch to more than 12 inches during December 3-6. The flood on the Virgin River was the greatest since the first settlers arrived in 1860.The peak discharge of the Virgin River at Virgin, Utah, was 22,830 cubic feet per second on December 6; this exceeded the previous maximum discharge of 13,500 cubic feet per second on March 3, 1938, and September 17, 1961, and probably has a recurrence interval of 100 years. At eight other gage sites in the flood area, the peak discharge in December 1966 was the highest of record; the recurrence intervals of some of the peak discharges may be 100 years. The flood peaks were generally of short duration and most streams receded to near base flow within 24 hours.The dissolved-solids content was significantly lower in the Virgin River at Virgin than at St. George, about 25 miles downstream; the water was of the calcium sulfate type at both sites. Data for the Santa Clara River above Winsor Dam and the Santa Clara River near Santa Clara show a significant increase in dissolved solids between the two sites. The water above Winsor Dam was of the calcium bicarbonate type, and the water near Santa Clara was of the calcium bicarbonate sulfate type.The suspended-sediment discharge, during the period December 5-8, 1966, at Santa Clara River above Winsor Dam, near Santa Clara was about foyer times greater than all the suspended-sediment discharge during the preceding 3 years ; the suspended-sediment discharge of the Virgin River at Virgin was greater during the 4-day period than during any one of the preceding 3 years.Nearly all the flood damage in the area occurred in the Virgin River basin. According to the Soil Conservation Service, total damage in the Dixie Soil Conservation District in Washington County was about $835,000; 60 percent of the damage was caused by floodwater and 40 percent by deposited sediment.

  3. High-resolution urban flood modelling - a joint probability approach (United States)

    Hartnett, Michael; Olbert, Agnieszka; Nash, Stephen


    (Divoky et al., 2005). Nevertheless, such events occur and in Ireland alone there are several cases of serious damage due to flooding resulting from a combination of high sea water levels and river flows driven by the same meteorological conditions (e.g. Olbert et al. 2015). A November 2009 fluvial-coastal flooding of Cork City bringing €100m loss was one such incident. This event was used by Olbert et al. (2015) to determine processes controlling urban flooding and is further explored in this study to elaborate on coastal and fluvial flood mechanisms and their roles in controlling water levels. The objective of this research is to develop a methodology to assess combined effect of multiple source flooding on flood probability and severity in urban areas and to establish a set of conditions that dictate urban flooding due to extreme climatic events. These conditions broadly combine physical flood drivers (such as coastal and fluvial processes), their mechanisms and thresholds defining flood severity. The two main physical processes controlling urban flooding: high sea water levels (coastal flooding) and high river flows (fluvial flooding), and their threshold values for which flood is likely to occur, are considered in this study. Contribution of coastal and fluvial drivers to flooding and their impacts are assessed in a two-step process. The first step involves frequency analysis and extreme value statistical modelling of storm surges, tides and river flows and ultimately the application of joint probability method to estimate joint exceedence return periods for combination of surges, tide and river flows. In the second step, a numerical model of Cork Harbour MSN_Flood comprising a cascade of four nested high-resolution models is used to perform simulation of flood inundation under numerous hypothetical coastal and fluvial flood scenarios. The risk of flooding is quantified based on a range of physical aspects such as the extent and depth of inundation (Apel et al

  4. Floods in a changing climate (United States)

    Theresa K. Andersen; Marshall J. Shepherd


    Atmospheric warming and associated hydrological changes have implications for regional flood intensity and frequency. Climate models and hydrological models have the ability to integrate various contributing factors and assess potential changes to hydrology at global to local scales through the century. This survey of floods in a changing climate reviews flood...

  5. Flood Risk Assessment Based On Security Deficit Analysis (United States)

    Beck, J.; Metzger, R.; Hingray, B.; Musy, A.

    Risk is a human perception: a given risk may be considered as acceptable or unac- ceptable depending on the group that has to face that risk. Flood risk analysis of- ten estimates economic losses from damages, but neglects the question of accept- able/unacceptable risk. With input from land use managers, politicians and other stakeholders, risk assessment based on security deficit analysis determines objects with unacceptable risk and their degree of security deficit. Such a risk assessment methodology, initially developed by the Swiss federal authorities, is illustrated by its application on a reach of the Alzette River (Luxembourg) in the framework of the IRMA-SPONGE FRHYMAP project. Flood risk assessment always involves a flood hazard analysis, an exposed object vulnerability analysis, and an analysis combing the results of these two previous analyses. The flood hazard analysis was done with the quasi-2D hydraulic model FldPln to produce flood intensity maps. Flood intensity was determined by the water height and velocity. Object data for the vulnerability analysis, provided by the Luxembourg government, were classified according to their potential damage. Potential damage is expressed in terms of direct, human life and secondary losses. A thematic map was produced to show the object classification. Protection goals were then attributed to the object classes. Protection goals are assigned in terms of an acceptable flood intensity for a certain flood frequency. This is where input from land use managers and politicians comes into play. The perception of risk in the re- gion or country influences the protection goal assignment. Protection goals as used in Switzerland were used in this project. Thematic maps showing the protection goals of each object in the case study area for a given flood frequency were produced. Com- parison between an object's protection goal and the intensity of the flood that touched the object determine the acceptability of the risk and the

  6. Flood early warning system in I.R. of Iran

    International Nuclear Information System (INIS)

    Samadi, Slina; Jamali, Javad B.; Javanmard, Soheila


    At the close of the twentieth century, natural hazards and disasters are one of the most common forms of disasters around the world. Natural disasters cause in significant loss of life and serious economic, environmental and social impacts that greatly retard the development process. Careful hazard assessment and planning, and a range of social, economic and political measures, can significantly contain these threats. Risk is defined as the potential for loss or damage as the result of a particular action or decision and Risk Management is a process consisting of well-defined steps which, when taken in sequence, support better decision making by contributing to a greater insight into risks and their impacts. Most commonly, there are three components in a natural disaster plan: monitoring and early warning; risk assessment; and mitigation and response. Given the improved tools and technologies available today, it is possible to provide disaster information and minimize the potential damage of disasters. In the following parts of the report, the national early warning systems for flood would be discussed, as one of the important component of natural disaster risk management. In 1. R. of Iran, also, different types of natural disasters occur, such as drought, flood, earthquake, sea-level rise, dust storm, hail, freezing and etc, but Flood hazard and disaster is one of the most frequent and damaging types of natural disasters. They have been the most common type of geophysical disaster in the latter half of the twentieth century in Iran, generating an estimated more than 20 percent of all disasters from 1950 to 2003. One of the hazardous floods of Iran occurred in Golestan and north of Khorasan provinces, located in north-east of the country, on August 2001 and 2002. In this regard, according to the responsibility of I. R. of Iran Meteorological Organization (IRIMO) on the flood forecasting, the early warning issue of the mentioned flood, issued within 48 hour's in

  7. River flood risk in Jakarta under scenarios of future change (United States)

    Budiyono, Yus; Aerts, Jeroen C. J. H.; Tollenaar, Daniel; Ward, Philip J.


    Given the increasing impacts of flooding in Jakarta, methods for assessing current and future flood risk are required. In this paper, we use the Damagescanner-Jakarta risk model to project changes in future river flood risk under scenarios of climate change, land subsidence, and land use change. Damagescanner-Jakarta is a simple flood risk model that estimates flood risk in terms of annual expected damage, based on input maps of flood hazard, exposure, and vulnerability. We estimate baseline flood risk at USD 186 million p.a. Combining all future scenarios, we simulate a median increase in risk of +180 % by 2030. The single driver with the largest contribution to that increase is land subsidence (+126 %). We simulated the impacts of climate change by combining two scenarios of sea level rise with simulations of changes in 1-day extreme precipitation totals from five global climate models (GCMs) forced by the four Representative Concentration Pathways (RCPs). The results are highly uncertain; the median change in risk due to climate change alone by 2030 is a decrease by -46 %, but we simulate an increase in risk under 12 of the 40 GCM-RCP-sea level rise combinations. Hence, we developed probabilistic risk scenarios to account for this uncertainty. If land use change by 2030 takes places according to the official Jakarta Spatial Plan 2030, risk could be reduced by 12 %. However, if land use change in the future continues at the same rate as the last 30 years, large increases in flood risk will take place. Finally, we discuss the relevance of the results for flood risk management in Jakarta.

  8. Hydrologic and hydraulic flood forecasting constrained by remote sensing data (United States)

    Li, Y.; Grimaldi, S.; Pauwels, V. R. N.; Walker, J. P.; Wright, A. J.


    Flooding is one of the most destructive natural disasters, resulting in many deaths and billions of dollars of damages each year. An indispensable tool to mitigate the effect of floods is to provide accurate and timely forecasts. An operational flood forecasting system typically consists of a hydrologic model, converting rainfall data into flood volumes entering the river system, and a hydraulic model, converting these flood volumes into water levels and flood extents. Such a system is prone to various sources of uncertainties from the initial conditions, meteorological forcing, topographic data, model parameters and model structure. To reduce those uncertainties, current forecasting systems are typically calibrated and/or updated using ground-based streamflow measurements, and such applications are limited to well-gauged areas. The recent increasing availability of spatially distributed remote sensing (RS) data offers new opportunities to improve flood forecasting skill. Based on an Australian case study, this presentation will discuss the use of 1) RS soil moisture to constrain a hydrologic model, and 2) RS flood extent and level to constrain a hydraulic model.The GRKAL hydrological model is calibrated through a joint calibration scheme using both ground-based streamflow and RS soil moisture observations. A lag-aware data assimilation approach is tested through a set of synthetic experiments to integrate RS soil moisture to constrain the streamflow forecasting in real-time.The hydraulic model is LISFLOOD-FP which solves the 2-dimensional inertial approximation of the Shallow Water Equations. Gauged water level time series and RS-derived flood extent and levels are used to apply a multi-objective calibration protocol. The effectiveness with which each data source or combination of data sources constrained the parameter space will be discussed.

  9. Determining the Financial Impact of Flood Hazards in Ungaged Basins (United States)

    Cotterman, K. A.; Gutenson, J. L.; Pradhan, N. R.; Byrd, A.


    Many portions of the Earth lack adequate authoritative or in situ data that is of great value in determining natural hazard vulnerability from both anthropogenic and physical perspective. Such locations include the majority of developing nations, which do not possess adequate warning systems and protective infrastructure. The lack of warning and protection from natural hazards make these nations vulnerable to the destructive power of events such as floods. The goal of this research is to demonstrate an initial workflow with which to characterize flood financial hazards with global datasets and crowd-sourced, non-authoritative data in ungagged river basins. This workflow includes the hydrologic and hydraulic response of the watershed to precipitation, characterized by the physics-based modeling application Gridded Surface-Subsurface Hydrologic Analysis (GSSHA) model. In addition, data infrastructure and resources are available to approximate the human impact of flooding. Open source, volunteer geographic information (VGI) data can provide global coverage of elements at risk of flooding. Additional valuation mechanisms can then translate flood exposure into percentage and financial damage to each building. The combinations of these tools allow the authors to remotely assess flood hazards with minimal computational, temporal, and financial overhead. This combination of deterministic and stochastic modeling provides the means to quickly characterize watershed flood vulnerability and will allow emergency responders and planners to better understand the implications of flooding, both spatially and financially. In either a planning, real-time, or forecasting scenario, the system will assist the user in understanding basin flood vulnerability and increasing community resiliency and preparedness.

  10. Use of Space Technology in Flood Mitigation (Western Province, Zambia) (United States)

    Mulando, A.


    Disasters, by definition are events that appear suddenly and with little warning. They are usually short lived, with extreme events bringing death, injury and destruction of buildings and communications. Their aftermath can be as damaging as their physical effects through destruction of sanitation and water supplies, destruction of housing and breakdown of transport for food, temporary shelter and emergency services. Since floods are one of the natural disasters which endanger both life and property, it becomes vital to know its extents and where the hazards exists. Flood disasters manifest natural processes on a larger scale and information provided by Remote Sensing is a most appropriate input to analysis of actual events and investigations of potential risks. An analytical and qualitative image processing and interpretation of Remotely Sensed data as well as other data such as rainfall, population, settlements not to mention but a few should be used to derive good mitigation strategies. Since mitigation is the cornerstone of emergency management, it therefore becomes a sustained action that will reduce or eliminate long term risks to people and property from natural hazards such as floods and their effects. This will definitely involve keeping of homes and other sensitive structures away from flood plains. Promotion of sound land use planning based on this known hazard, "FLOODS" is one such form of mitigation that can be applied in flood affected areas within flood plain. Therefore future mitigation technologies and procedures should increasingly be based on the use of flood extent information provided by Remote Sensing Satellites like the NOAA AVHRR as well as information on the designated flood hazard and risk areas.

  11. EU Floods Directive implementation in Austria

    Directory of Open Access Journals (Sweden)

    Neuhold Clemens


    Full Text Available Floods have the potential to cause fatalities, displacement of people and damage to the environment, to severely compromise economic development and to undermine the economic activities of the Community. The EU Directive on the assessment and management of flood risks [2007/60/EC] was adopted on 23 October 2007. Its aim is to reduce and manage the risks that floods pose to human health, the environment, cultural heritage and economic activity. The paper reflects on how the requirements of the FD had been achieved in Austria and how the nationwide comparability and transferability of results as well as the international coordination had been obtained. Austria as a federal state has its competences structured in different departments as well as administrational levels. Besides administrational characteristics there is also a high diversity in topographical boundary conditions from Alpine areas to lowland areas emphasising different approaches and foci of flood risk management. To harmonise the related interests a discussion and decision committee had been established. The resolutions of this committee then defined the basis for a national coordination procedure where the Federal Ministry provided a “federal blueprint” to the federal provinces. The federal provinces then incorporated their regional and local information and data. Based on this response the coordinated and nationwide comparable FRMP had been set up and had been forwarded to public information and consultation. Complementary stakeholder involvement has been ensured by information and discussion workshops throughout the entire process. The administrational and topographical characteristics to be considered in the frame of FD implementation strengthened the coordination and harmonisation across all sectors and stakeholders related to flood risk management. The FD implementation, therefore, is a holistic attempt to outline the needs for action for all sectors related to risk

  12. Impacts of Floods Events on Food Security (United States)

    Caporali, E.; Pacetti, T.; Rulli, M. C.


    The analysis of the interactions among natural disasters and food security is particularly significant for developing countries where food availability (one of the four pillars of food security together with access, utilization and stability) can be highly jeopardize by extreme events that damage the primary access to food, i.e. the agriculture. The main objective of this study is to analyze the impact of flood events on food security for two disastrous flood events in Bangladesh on 2007 and in Pakistan on 2010, selected here as case studies based on the existing literature related to extreme floods.The adopted methodology integrates remote sensing data, agricultural statistics, and water footprint values in order to (i) evaluating the potentially affected agricultural areas; (ii) converting the affected areas into crop loss; (iii) estimating the associated calories and water footprint losses. In Bangladesh, the estimated lost rice is around 12.5% of the total potential production, which implies a 5.3% calories loss with respect to the total potential energy provided by rice and 4.4% of total WF associated to national food supply. In Pakistan, the results show a crops loss of 19% for sugarcane and 40% for rice, with a related calories loss of 8.5% and a WF loss of 13.5%.The results highlight the countries vulnerability to flood, being both countries strongly dependent on local agricultural production. The 2007 flood event reflected critically upon Bangladeshi food security, almost doubling the existing food deficit. The same happened in Pakistan where an already scarce food supply has been worsened by the 2010 flood.Method results are fully repeatable; whereas, for remote sensed data the sources of data are valid worldwide and the data regarding land use and crops characteristics are strongly site specific, which need to be carefully evaluated.These case studies stress the importance of integrating different analysis approaches to carry out an assessment of the

  13. A 500-year history of floods in the semi arid basins of south-eastern Spain (United States)

    Sánchez García, Carlos; Schulte, Lothar; Peña, Juan Carlos; Carvalho, Filpe; Brembilla, Carla


    Floods are one of the natural hazards with higher incidence in the south-eastern Spain, the driest region in Europe, causing fatalities, damage of infrastructure and economic losses. Flash-floods in semi arid environments are related to intensive rainfall which can last from few hours to days. These floods are violent and destructive because of their high discharges, sediment transport and aggradation processes in the flood plain. Also during historical times floods affected the population in the south-eastern Spain causing sever damage or in some cases the complete destruction of towns. Our studies focus on the flood reconstruction from historical sources of the Almanzora, Aguas and Antas river basins, which have a surface between 260-2600 km2. We have also compiled information from the Andarax river and compared the flood series with the Guadalentín and Segura basins from previous studies (Benito et. al., 2010 y Machado et al., 2011). Flood intensities have been classified in four levels according to the type of damage: 1) ordinary floods that only affect agriculture plots; 2) extraordinary floods which produce some damage to buildings and hydraulic infrastructure; 3) catastrophic floods which caused sever damage, fatalities and partial or complete destruction of towns. A higher damage intensity of +1 magnitude was assigned when the event is recorded from more than one major sub-basin (stretches and tributaries such as Huércal-Overa basin) or catchment (e.g. Antas River). In total 102 incidences of damages and 89 floods were reconstructed in the Almanzora (2.611 km2), Aguas (539 km2), Antas (261 km2) and Andarax (2.100 km2) catchments. The Almanzora River was affected by 36 floods (1550-2012). The highest events for the Almanzora River were in 1580, 1879, 1973 and 2012 producing many fatalities and destruction of several towns. In addition, we identified four flood-clusters 1750-1780, 1870-1900, 1960-1977 and 1989-2012 which coincides with the periods of

  14. Analysing the Effects of Flood-Resilience Technologies in Urban Areas Using a Synthetic Model Approach

    Directory of Open Access Journals (Sweden)

    Reinhard Schinke


    Full Text Available Flood protection systems with their spatial effects play an important role in managing and reducing flood risks. The planning and decision process as well as the technical implementation are well organized and often exercised. However, building-related flood-resilience technologies (FReT are often neglected due to the absence of suitable approaches to analyse and to integrate such measures in large-scale flood damage mitigation concepts. Against this backdrop, a synthetic model-approach was extended by few complementary methodical steps in order to calculate flood damage to buildings considering the effects of building-related FReT and to analyse the area-related reduction of flood risks by geo-information systems (GIS with high spatial resolution. It includes a civil engineering based investigation of characteristic properties with its building construction including a selection and combination of appropriate FReT as a basis for derivation of synthetic depth-damage functions. Depending on the real exposition and the implementation level of FReT, the functions can be used and allocated in spatial damage and risk analyses. The application of the extended approach is shown at a case study in Valencia (Spain. In this way, the overall research findings improve the integration of FReT in flood risk management. They provide also some useful information for advising of individuals at risk supporting the selection and implementation of FReT.

  15. A Study on Integrated Community Based Flood Mitigation with Remote Sensing Technique in Kota Bharu, Kelantan

    International Nuclear Information System (INIS)

    Ainullotfi, A A; Ibrahim, A L; Masron, T


    This study is conducted to establish a community based flood management system that is integrated with remote sensing technique. To understand local knowledge, the demographic of the local society is obtained by using the survey approach. The local authorities are approached first to obtain information regarding the society in the study areas such as the population, the gender and the tabulation of settlement. The information about age, religion, ethnic, occupation, years of experience facing flood in the area, are recorded to understand more on how the local knowledge emerges. Then geographic data is obtained such as rainfall data, land use, land elevation, river discharge data. This information is used to establish a hydrological model of flood in the study area. Analysis were made from the survey approach to understand the pattern of society and how they react to floods while the analysis of geographic data is used to analyse the water extent and damage done by the flood. The final result of this research is to produce a flood mitigation method with a community based framework in the state of Kelantan. With the flood mitigation that involves the community's understanding towards flood also the techniques to forecast heavy rainfall and flood occurrence using remote sensing, it is hope that it could reduce the casualties and damage that might cause to the society and infrastructures in the study area

  16. Investment in flood protection measures under climate change uncertainty. An investment decision

    Energy Technology Data Exchange (ETDEWEB)

    Bruin, Karianne de


    Recent river flooding in Europe has triggered debates among scientists and policymakers on future projections of flood frequency and the need for adaptive investments, such as flood protection measures. Because there exists uncertainty about the impact of climate change of flood risk, such investments require a careful analysis of expected benefits and costs. The objective of this paper is to show how climate change uncertainty affects the decision to invest in flood protection measures. We develop a model that simulates optimal decision making in flood protection, it incorporates flexible timing of investment decisions and scientific uncertainty on the extent of climate change impacts. This model allows decision-makers to cope with the uncertain impacts of climate change on the frequency and damage of river flood events and minimises the risk of under- or over-investment. One of the innovative elements is that we explicitly distinguish between structural and non-structural flood protection measures. Our results show that the optimal investment decision today depends strongly on the cost structure of the adaptation measures and the discount rate, especially the ratio of fixed and weighted annual costs of the measures. A higher level of annual flood damage and later resolution of uncertainty in time increases the optimal investment. Furthermore, the optimal investment decision today is influenced by the possibility of the decision-maker to adjust his decision at a future moment in time.(auth)

  17. Math Fights Flooding

    NARCIS (Netherlands)

    Besseling, Niels; Bokhove, Onno; Kolechkina, Alla; Molenaar, Jaap; van Nooyen, Ronald; Rottschäfer, Vivi; Stein, Alfred; Stoorvogel, Anton


    Due to climate changes that are expected in the coming years, the characteristics of the rainfall will change. This can potentially cause flooding or have negative influences on agriculture and nature. In this research, we study the effects of this change in rainfall and investigate what can be done

  18. The August 2002 flood in Salzburg / Austria experience gained and lessons learned from the ``Flood of the century''? (United States)

    Wiesenegger, H.


    On the {12th} of August 2002 a low pressure system moved slowly from northern Italy towards Slovakia. It continuously carried moist air from the Mediterranean towards the northern rim of the Alps with the effect of wide-spread heavy rainfall in Salzburg and other parts of Austria. Daily precipitation amounts of 100 - 160 mm, in some parts even more, as well as rainfall intensities of 5 - 10 mm/h , combined with well saturated soils lead to a rare flood with a return period of 100 years and more. This rare hydrological event not only caused a national catastrophe with damages of several Billion Euro, but also endangered more than 200,000 people, and even killed some. As floods are dangerous, life-threatening, destructive, and certainly amongst the most frequent and costly natural disasters in terms of human hardship as well as economic loss, a great effort, therefore, has to be made to protect people against negative impacts of floods. In order to achieve this objective, various regulations in land use planning (flood maps), constructive measurements (river regulations and technical constructions) as well as flood warning systems, which are not suitable to prevent big floods, but offer in-time-warnings to minimize the loss of human lives, are used in Austria. HYDRIS (Hydrological Information System for flood forecasting in Salzburg), a modular river basin model, developed at Technical University Vienna and operated by the Hydrological Service of Salzburg, was used during the August 2002 flood providing accurate 3 to 4 hour forecasts within 3 % of the real peak discharge of the fast flowing River Salzach. The August {12^th}} flood was in many ways an exceptional, very fast happening event which took many people by surprise. At the gauging station Salzburg / Salzach (catchment area 4425 {km^2}) it took only eighteen hours from mean annual discharge (178 {m3/s}) to the hundred years flood (2300 {m3/s}). The August flood made clear, that there is a strong need for

  19. Influence of Flood Detention Capability in Flood Prevention for Flood Disaster of Depression Area


    Chia Lin Chan; Yi Ju Yang; Chih Chin Yang


    Rainfall records of rainfall station including the rainfall potential per hour and rainfall mass of five heavy storms are explored, respectively from 2001 to 2010. The rationalization formula is to investigate the capability of flood peak duration of flood detention pond in different rainfall conditions. The stable flood detention model is also proposed by using system dynamic control theory to get the message of flood detention pond in this research. When rainfall freque...

  20. Upstream Structural Management Measures for an Urban Area Flooding in Turkey and their Consequences on Flood Risk Management (United States)

    Akyurek, Z.; Bozoglu, B.; Girayhan, T.


    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. In this study the flood modelling in an urbanized area, namely Samsun-Terme in Blacksea region of Turkey is done. MIKE21 with flexible grid is used in 2- dimensional shallow water flow modelling. 1/1000 scaled maps with the buildings for the urbanized area and 1/5000 scaled maps for the rural parts are used to obtain DTM needed in the flood modelling. The bathymetry of the river is obtained from additional surveys. The main river passing through the urbanized area has a capacity of Q5 according to the design discharge obtained by simple ungauged discharge estimation depending on catchment area only. The effects of the available structures like bridges across the river on the flooding are presented. The upstream structural measures are studied on scenario basis. Four sub-catchments of Terme River are considered as contributing the downstream flooding. The existing circumstance of the Terme River states that the meanders of the river have a major effect on the flood situation and lead to approximately 35% reduction in the peak discharge between upstream and downstream of the river. It is observed that if the flow from the upstream catchments can be retarded through a detention pond constructed in at least two of the upstream catchments, estimated Q100 flood can be conveyed by the river without overtopping from the river channel. The operation of the upstream detention ponds and the scenarios to convey Q500 without causing flooding are also presented. Structural management measures to address changes in flood characteristics in water management planning are discussed. Flood risk is obtained by using the flood hazard maps and water depth-damage functions plotted for a variety of building types and occupancies

  1. LiDAR and IFSAR-Based Flood Inundation Model Estimates for Flood-Prone Areas of Afghanistan (United States)

    Johnson, W. C.; Goldade, M. M.; Kastens, J.; Dobbs, K. E.; Macpherson, G. L.


    Extreme flood events are not unusual in semi-arid to hyper-arid regions of the world, and Afghanistan is no exception. Recent flashfloods and flashflood-induced landslides took nearly 100 lives and destroyed or damaged nearly 2000 homes in 12 villages within Guzargah-e-Nur district of Baghlan province in northeastern Afghanistan. With available satellite imagery, flood-water inundation estimation can be accomplished remotely, thereby providing a means to reduce the impact of such flood events by improving shared situational awareness during major flood events. Satellite orbital considerations, weather, cost, data licensing restrictions, and other issues can often complicate the acquisition of appropriately timed imagery. Given the need for tools to supplement imagery where not available, complement imagery when it is available, and bridge the gap between imagery based flood mapping and traditional hydrodynamic modeling approaches, we have developed a topographic floodplain model (FLDPLN), which has been used to identify and map river valley floodplains with elevation data ranging from 90-m SRTM to 1-m LiDAR. Floodplain "depth to flood" (DTF) databases generated by FLDPLN are completely seamless and modular. FLDPLN has been applied in Afghanistan to flood-prone areas along the northern and southern flanks of the Hindu Kush mountain range to generate a continuum of 1-m increment flood-event models up to 10 m in depth. Elevation data used in this application of FLDPLN included high-resolution, drone-acquired LiDAR (~1 m) and IFSAR (5 m; INTERMAP). Validation of the model has been accomplished using the best available satellite-derived flood inundation maps, such as those issued by Unitar's Operational Satellite Applications Programme (UNOSAT). Results provide a quantitative approach to evaluating the potential risk to urban/village infrastructure as well as to irrigation systems, agricultural fields and archaeological sites.

  2. Quantifying the effect of autonomous adaptation to global river flood projections: application to future flood risk assessments (United States)

    Kinoshita, Youhei; Tanoue, Masahiro; Watanabe, Satoshi; Hirabayashi, Yukiko


    This study represents the first attempt to quantify the effects of autonomous adaptation on the projection of global flood hazards and to assess future flood risk by including this effect. A vulnerability scenario, which varies according to the autonomous adaptation effect for conventional disaster mitigation efforts, was developed based on historical vulnerability values derived from flood damage records and a river inundation simulation. Coupled with general circulation model outputs and future socioeconomic scenarios, potential future flood fatalities and economic loss were estimated. By including the effect of autonomous adaptation, our multimodel ensemble estimates projected a 2.0% decrease in potential flood fatalities and an 821% increase in potential economic losses by 2100 under the highest emission scenario together with a large population increase. Vulnerability changes reduced potential flood consequences by 64%-72% in terms of potential fatalities and 28%-42% in terms of potential economic losses by 2100. Although socioeconomic changes made the greatest contribution to the potential increased consequences of future floods, about a half of the increase of potential economic losses was mitigated by autonomous adaptation. There is a clear and positive relationship between the global temperature increase from the pre-industrial level and the estimated mean potential flood economic loss, while there is a negative relationship with potential fatalities due to the autonomous adaptation effect. A bootstrapping analysis suggests a significant increase in potential flood fatalities (+5.7%) without any adaptation if the temperature increases by 1.5 °C-2.0 °C, whereas the increase in potential economic loss (+0.9%) was not significant. Our method enables the effects of autonomous adaptation and additional adaptation efforts on climate-induced hazards to be distinguished, which would be essential for the accurate estimation of the cost of adaptation to

  3. Near Real-Time Flood Monitoring and Impact Assessment Systems. Chapter 6; [Case Study: 2011 Flooding in Southeast Asia (United States)

    Ahamed, Aakash; Bolten, John; Doyle, Colin; Fayne, Jessica


    Floods are the costliest natural disaster, causing approximately 6.8 million deaths in the twentieth century alone. Worldwide economic flood damage estimates in 2012 exceed $19 Billion USD. Extended duration floods also pose longer term threats to food security, water, sanitation, hygiene, and community livelihoods, particularly in developing countries. Projections by the Intergovernmental Panel on Climate Change (IPCC) suggest that precipitation extremes, rainfall intensity, storm intensity, and variability are increasing due to climate change. Increasing hydrologic uncertainty will likely lead to unprecedented extreme flood events. As such, there is a vital need to enhance and further develop traditional techniques used to rapidly assess flooding and extend analytical methods to estimate impacted population and infrastructure. Measuring flood extent in situ is generally impractical, time consuming, and can be inaccurate. Remotely sensed imagery acquired from space-borne and airborne sensors provides a viable platform for consistent and rapid wall-to-wall monitoring of large flood events through time. Terabytes of freely available satellite imagery are made available online each day by NASA, ESA, and other international space research institutions. Advances in cloud computing and data storage technologies allow researchers to leverage these satellite data and apply analytical methods at scale. Repeat-survey earth observations help provide insight about how natural phenomena change through time, including the progression and recession of floodwaters. In recent years, cloud-penetrating radar remote sensing techniques (e.g., Synthetic Aperture Radar) and high temporal resolution imagery platforms (e.g., MODIS and its 1-day return period), along with high performance computing infrastructure, have enabled significant advances in software systems that provide flood warning, assessments, and hazard reduction potential. By incorporating social and economic data

  4. Well-being, life satisfaction and capabilities of flood disaster victims

    Energy Technology Data Exchange (ETDEWEB)

    Van Ootegem, Luc, E-mail: [HIVA–University of Louvain (Belgium); SHERPPA–Ghent University (Belgium); Verhofstadt, Elsy [SHERPPA–Ghent University (Belgium)


    The individual well-being of flood disaster victims is examined making use of two concepts: life satisfaction and perceived capabilities in life. These concepts are compared in two samples: a representative sample of Flemish respondents and a specific sample of people that have been the victim of a pluvial flood. Well-being as life satisfaction is found not to be related to past or expected future flooding, whereas well-being as capabilities in life is negatively related to both past and expected future flooding. - Highlights: • Well-being as life satisfaction is not related to past or expected future flooding. • Well-being as capabilities in life is negatively related to flooding. • A disaster can scare people for the future because of the scars that it provokes. • Assess the impact of a disaster not only by monetary damage and life satisfaction.

  5. Well-being, life satisfaction and capabilities of flood disaster victims

    International Nuclear Information System (INIS)

    Van Ootegem, Luc; Verhofstadt, Elsy


    The individual well-being of flood disaster victims is examined making use of two concepts: life satisfaction and perceived capabilities in life. These concepts are compared in two samples: a representative sample of Flemish respondents and a specific sample of people that have been the victim of a pluvial flood. Well-being as life satisfaction is found not to be related to past or expected future flooding, whereas well-being as capabilities in life is negatively related to both past and expected future flooding. - Highlights: • Well-being as life satisfaction is not related to past or expected future flooding. • Well-being as capabilities in life is negatively related to flooding. • A disaster can scare people for the future because of the scars that it provokes. • Assess the impact of a disaster not only by monetary damage and life satisfaction.

  6. 2D Modeling of Flood Propagation due to the Failure of Way Ela Natural Dam

    Directory of Open Access Journals (Sweden)

    Yakti Bagus Pramono


    Full Text Available A dam break induced-flood propagation modeling is needed to reduce the losses of any potential dam failure. On the 25 July 2013, there was a dam break generated flood due to the failure of Way Ela Natural Dam that severely damaged houses and various public facilities. This study simulated the flooding induced by the failure of Way Ela Natural Dam. A two-dimensional (2D numerical model, HEC-RAS v.5, is used to simulate the overland flow. The dam failure itself is simulated using HECHMSv.4. The results of this study, the flood inundation, flood depth, and flood arrival time are verified by using available secondary data. These informations are very important to propose mitigation plans with respect to possible dam break in the future.

  7. Open Source Web-Based Solutions for Disseminating and Analyzing Flood Hazard Information at the Community Level (United States)

    Santillan, M. M.-M.; Santillan, J. R.; Morales, E. M. O.


    We discuss in this paper the development, including the features and functionalities, of an open source web-based flood hazard information dissemination and analytical system called "Flood EViDEns". Flood EViDEns is short for "Flood Event Visualization and Damage Estimations", an application that was developed by the Caraga State University to address the needs of local disaster managers in the Caraga Region in Mindanao, Philippines in accessing timely and relevant flood hazard information before, during and after the occurrence of flood disasters at the community (i.e., barangay and household) level. The web application made use of various free/open source web mapping and visualization technologies (GeoServer, GeoDjango, OpenLayers, Bootstrap), various geospatial datasets including LiDAR-derived elevation and information products, hydro-meteorological data, and flood simulation models to visualize various scenarios of flooding and its associated damages to infrastructures. The Flood EViDEns application facilitates the release and utilization of this flood-related information through a user-friendly front end interface consisting of web map and tables. A public version of the application can be accessed at The application is currently expanded to cover additional sites in Mindanao, Philippines through the "Geo-informatics for the Systematic Assessment of Flood Effects and Risks for a Resilient Mindanao" or the "Geo-SAFER Mindanao" Program.

  8. Flooding PSA by considering the operating experience data of Korean PWRs

    International Nuclear Information System (INIS)

    Choi, Sun Yeong; Yang, Joon Eon


    The existing flooding Probabilistic Safety Analysis (PSA) was updated to reflect the Korean plant specific operating experience data into the flooding frequency to improve the PSA quality. Both the Nuclear Power Experience (NPE) database and the Korea Nuclear PIPE Failure Database (NuPIPE) databases were used in this study, and from these databases, only the Pressurized Water Reactor (PWR) data were used for the flooding frequencies of the flooding areas in the primary auxiliary building. With these databases and a Bayesian method, the flooding frequencies for the flooding areas were estimated. Subsequently, the Core Damage Frequency (CDF) for the flooding PSA of the UlChiN (UCN) unit 3 and 4 plants based on the Korean Standard Nuclear power Plant (KSNP) internal full-power PSA model was recalculated. The evaluation results showed that sixteen flooding events are potentially significant according to the screening criterion, while there were two flooding events exceeding the screening criterion of the existing UCN 3 and 4 flooding PSA. The result was compared with two kinds of cases: 1) the flooding frequency and CDF from the method of the existing flooding PSA with the PWR and Boiled Water Reactor (BWR) data of the NPE database and the Maximum Likelihood Estimate (MLE) method and 2) the flooding frequency and CDF with the NPE database (PWR and BWR data), NuPIPE database, and a Bayesian method. From the comparison, a difference in CDF results was revealed more clearly between the CDF from this study and case 2) than between case 1) and case 2). That is, the number of flooding events exceeding the screen criterion further increased when only the PWR data were used for the primary auxiliary building than when the Korean specific data were used

  9. Evaluation of TRMM satellite-based precipitation indexes for flood forecasting over Riyadh City, Saudi Arabia (United States)

    Tekeli, Ahmet Emre; Fouli, Hesham


    Floods are among the most common disasters harming humanity. In particular, flash floods cause hazards to life, property and any type of structures. Arid and semi-arid regions are equally prone to flash floods like regions with abundant rainfall. Despite rareness of intensive and frequent rainfall events over Kingdom of Saudi Arabia (KSA); an arid/semi-arid region, occasional flash floods occur and result in large amounts of damaging surface runoff. The flooding of 16 November, 2013 in Riyadh; the capital city of KSA, resulted in killing some people and led to much property damage. The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) Real Time (RT) data (3B42RT) are used herein for flash flood forecasting. 3B42RT detected high-intensity rainfall events matching with the distribution of observed floods over KSA. A flood early warning system based on exceedance of threshold limits on 3B42RT data is proposed for Riyadh. Three different indexes: Constant Threshold (CT), Cumulative Distribution Functions (CDF) and Riyadh Flood Precipitation Index (RFPI) are developed using 14-year 3B42RT data from 2000 to 2013. RFPI and CDF with 90% captured the three major flooding events that occurred in February 2005, May 2010 and November 2013 in Riyadh. CT with 3 mm/h intensity indicated the 2013 flooding, but missed those of 2005 and 2010. The methodology implemented herein is a first-step simple and accurate way for flash flood forecasting over Riyadh. The simplicity of the methodology enables its applicability for the TRMM follow-on missions like Global Precipitation Measurement (GPM) mission.

  10. Integrating adaptive behaviour in large-scale flood risk assessments: an Agent-Based Modelling approach (United States)

    Haer, Toon; Aerts, Jeroen


    Between 1998 and 2009, Europe suffered over 213 major damaging floods, causing 1126 deaths, displacing around half a million people. In this period, floods caused at least 52 billion euro in insured economic losses making floods the most costly natural hazard faced in Europe. In many low-lying areas, the main strategy to cope with floods is to reduce the risk of the hazard through flood defence structures, like dikes and levees. However, it is suggested that part of the responsibility for flood protection needs to shift to households and businesses in areas at risk, and that governments and insurers can effectively stimulate the implementation of individual protective measures. However, adaptive behaviour towards flood risk reduction and the interaction between the government, insurers, and individuals has hardly been studied in large-scale flood risk assessments. In this study, an European Agent-Based Model is developed including agent representatives for the administrative stakeholders of European Member states, insurers and reinsurers markets, and individuals following complex behaviour models. The Agent-Based Modelling approach allows for an in-depth analysis of the interaction between heterogeneous autonomous agents and the resulting (non-)adaptive behaviour. Existing flood damage models are part of the European Agent-Based Model to allow for a dynamic response of both the agents and the environment to changing flood risk and protective efforts. By following an Agent-Based Modelling approach this study is a first contribution to overcome the limitations of traditional large-scale flood risk models in which the influence of individual adaptive behaviour towards flood risk reduction is often lacking.

  11. Citizen involvement in flood risk governance: flood groups and networks

    Directory of Open Access Journals (Sweden)

    Twigger-Ross Clare


    Full Text Available Over the past decade has been a policy shift withinUK flood risk management towards localism with an emphasis on communities taking ownership of flood risk. There is also an increased focus on resilience and, more specifically, on community resilience to flooding. This paper draws on research carried out for UK Department for Environment Food and Rural Affairs to evaluate the Flood Resilience Community Pathfinder (FRCP scheme in England. Resilience is conceptualised as multidimensional and linked to exisiting capacities within a community. Creating resilience to flooding is an ongoing process of adaptation, learning from past events and preparing for future risks. This paper focusses on the development of formal and informal institutions to support improved flood risk management: institutional resilience capacity. It includes new institutions: e.g. flood groups, as well as activities that help to build inter- and intra- institutional resilience capacity e.g. community flood planning. The pathfinder scheme consisted of 13 projects across England led by local authorities aimed at developing community resilience to flood risk between 2013 – 2015. This paper discusses the nature and structure of flood groups, the process of their development, and the extent of their linkages with formal institutions, drawing out the barriers and facilitators to developing institutional resilience at the local level.

  12. Strengthening flood warning systems: the benefits of encouraging social preparedness (United States)

    Girons Lopez, Marc; Di Baldassarre, Giuliano; Seibert, Jan


    Flood warning and response have normally been focused on the technical aspects and disregarded the connections and feedbacks between the hydrological and social dimensions. An increasing body of research, however, points at the importance of considering socio-hydrological aspects to improve flood damage mitigation. One of the key factors is the preparedness of the public and first responders during flood situations, which is influenced by many behavioural traits such as perceived benefits, risk awareness, or denial. In this study, we investigate the impact of social preparedness on the efficiency of flood early warning systems by using the recency of flood experience as a proxy for social preparedness. To this end, we developed a stylised model and a synthetic data-set to perform a hypothetical analysis. The main findings point to the importance of social preparedness for flood loss mitigation, especially when the technical forecasting and warning capabilities are limited. More specifically, efforts to promote and preserve social preparedness may help to reduce disaster-induced losses by almost one half. The findings from this study provide insights into the importance of considering social preparedness in decision-making for disaster risk reduction.

  13. Opportunities for corruption across Flood Disaster Management (FDM) (United States)

    Nordin, R. Mohd; Latip, E.; Zawawi, E. M. Ahmad; Ismail, Z.


    Flood is one of the major disasters in the world. Despite flood resulted in loss of life and damaged properties, it naturally imparts people to assist the victims that affected by the disaster. Malaysia has experienced many serious flooding events and proper flood disaster management need to be developed and adopted occasionally. Flood Disaster Management (FDM) seemed to be not working effectively especially during the Kelantan prodigious flood in December 2014. There were negative perceptions among victims and Malaysian citizens regarding the disaster management and government authorities in relation to corrupt practices. The FDM can be divided into four phases (i.e., prevention, preparedness, response and recovery) which undoubtedly corruption is perceived to exists in every phase. The aim of this study is to identify opportunities of corruption across FDM phases. The study presents a case study of Kelantan using the quantitative research approach which utilises questionnaire with government and private agencies. Further to that, this paper proved that opportunities for corruption may occur at every phase, undoubtedly response and recovery phase especially activities involving fund and donation are riskier. The findings are hoped to assist in developing an improved FDM in term of increased transparency.

  14. How Flood Experience and Risk Perception Influences Protective Actions and Behaviours among Canadian Homeowners (United States)

    Thistlethwaite, Jason; Henstra, Daniel; Brown, Craig; Scott, Daniel


    Canada is a country in the midst of a flood management policy transition that is shifting part of the flood damage burden from the state to homeowners. This transition—as well as the large financial losses resulting from flooding—have created a window of opportunity for Canada to implement strategies that increase property owners' capacity to avoid and absorb the financial and physical risks associated with flooding. This work presents foundational research into the extent to which Canadians' flood experience, perceptions of flood risks and socio-demographics shape their intentions and adoption of property level flood protection (PLFP). A bilingual, national survey was deployed in Spring 2016 and was completed by 2300 respondents across all 10 Canadian provinces. The survey was developed using assumptions in existing literature on flood risk behaviours and the determinants of flood risk management in similar jurisdictions. The paper argues that property owners are not willing to accept greater responsibility for flood risk as envisioned by recent policy changes. This finding is consistent with other OECD jurisdictions, where flood risk engagement strategies have been developed that could be replicated in Canada to encourage risk-sharing behaviour.

  15. Analyses of flooding tolerance of soybean varieties at emergence and varietal differences in their proteomes. (United States)

    Nanjo, Yohei; Jang, Hee-Young; Kim, Hong-Sig; Hiraga, Susumu; Woo, Sun-Hee; Komatsu, Setsuko


    Flooding of fields due to heavy and/or continuous rainfall influences soybean production. To identify soybean varieties with flooding tolerance at the seedling emergence stage, 128 soybean varieties were evaluated using a flooding tolerance index, which is based on plant survival rates, the lack of apparent damage and lateral root development, and post-flooding radicle elongation rate. The soybean varieties were ranked according to their flooding tolerance index, and it was found that the tolerance levels of soybean varieties exhibit a continuum of differences between varieties. Subsequently, tolerant, moderately tolerant and sensitive varieties were selected and subjected to comparative proteomic analysis to clarify the tolerance mechanism. Proteomic analysis of the radicles, combined with correlation analysis, showed that the ratios of RNA binding/processing related proteins and flooding stress indicator proteins were significantly correlated with flooding tolerance index. The RNA binding/processing related proteins were positively correlated in untreated soybeans, whereas flooding stress indicator proteins were negatively correlated in flooded soybeans. These results suggest that flooding tolerance is regulated by mechanisms through multiple factors and is associated with abundance levels of the identified proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Probabilistic Flood Maps to support decision-making: Mapping the Value of Information (United States)

    Alfonso, L.; Mukolwe, M. M.; Di Baldassarre, G.


    Floods are one of the most frequent and disruptive natural hazards that affect man. Annually, significant flood damage is documented worldwide. Flood mapping is a common preimpact flood hazard mitigation measure, for which advanced methods and tools (such as flood inundation models) are used to estimate potential flood extent maps that are used in spatial planning. However, these tools are affected, largely to an unknown degree, by both epistemic and aleatory uncertainty. Over the past few years, advances in uncertainty analysis with respect to flood inundation modeling show that it is appropriate to adopt Probabilistic Flood Maps (PFM) to account for uncertainty. However, the following question arises; how can probabilistic flood hazard information be incorporated into spatial planning? Thus, a consistent framework to incorporate PFMs into the decision-making is required. In this paper, a novel methodology based on Decision-Making under Uncertainty theories, in particular Value of Information (VOI) is proposed. Specifically, the methodology entails the use of a PFM to generate a VOI map, which highlights floodplain locations where additional information is valuable with respect to available floodplain management actions and their potential consequences. The methodology is illustrated with a simplified example and also applied to a real case study in the South of France, where a VOI map is analyzed on the basis of historical land use change decisions over a period of 26 years. Results show that uncertain flood hazard information encapsulated in PFMs can aid decision-making in floodplain planning.

  17. Societal impacts and vulnerability to floods in Bangladesh and Nepal

    Directory of Open Access Journals (Sweden)

    Tanvir H. Dewan


    Full Text Available Bangladesh and Nepal lie between the Himalayas and low-lying coasts of the Bay of Bengal and are traversed by hundreds of rivers and tributaries. Historical data shows that, since 1970, the scale, intensity and duration of floods have increased in Bangladesh and Nepal, causing grave human suffering; disruptions in normal life and activity, damages of infrastructure, crops and agricultural land with severe impacts on the economy. Bangladesh is affected by torrential rain, glacier melt, upstream water flow and tidal surges. In 1988, Bangladesh experienced one of the most severe floods of the twentieth century which aroused significant concern internationally and triggered the Bangladesh Action Plan for Flood Control. The Government of Bangladesh (GOB has so far constructed a number of flood shelters and carried out 482 water and flood control projects involving flood protection embankments, drainage channels, sluice gates and regulators on different rivers and canals. These also provided safety measures against inundation by tidal waves, storm-surges and flooding. The Terai region of Nepal is highly prone to hydrological risks including torrential rain, floods, glaciers resulting in erosion and landslides. The Government of Nepal (GON has implemented different mitigation measures mainly early warning awareness, rescue measure, relief, and post-flood rehabilitation programs etc. Disaster Management Bureaus of both the countries have already conducted many trainings, workshops and seminars to disseminate scientific knowledge and coping up practices to disaster managers and to create public awareness. Besides the contemporary approaches to mitigating flood effects, people of these countries have coped with floods through generations relying on traditional/indigenous knowledge and other local adaptation practices. It is crucial that along with scientific process, indigenous, traditional and conventional practices are to be integrated for a national

  18. Global Rapid Flood Mapping System with Spaceborne SAR Data (United States)

    Yun, S. H.; Owen, S. E.; Hua, H.; Agram, P. S.; Fattahi, H.; Liang, C.; Manipon, G.; Fielding, E. J.; Rosen, P. A.; Webb, F.; Simons, M.


    As part of the Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards, at NASA's Jet Propulsion Laboratory and California Institute of Technology, we have developed an automated system that produces derived products for flood extent map generation using spaceborne SAR data. The system takes user's input of area of interest polygons and time window for SAR data search (pre- and post-event). Then the system automatically searches and downloads SAR data, processes them to produce coregistered SAR image pairs, and generates log amplitude ratio images from each pair. Currently the system is automated to support SAR data from the European Space Agency's Sentinel-1A/B satellites. We have used the system to produce flood extent maps from Sentinel-1 SAR data for the May 2017 Sri Lanka floods, which killed more than 200 people and displaced about 600,000 people. Our flood extent maps were delivered to the Red Cross to support response efforts. Earlier we also responded to the historic August 2016 Louisiana floods in the United States, which claimed 13 people's lives and caused over $10 billion property damage. For this event, we made synchronized observations from space, air, and ground in close collaboration with USGS and NOAA. The USGS field crews acquired ground observation data, and NOAA acquired high-resolution airborne optical imagery within the time window of +/-2 hours of the SAR data acquisition by JAXA's ALOS-2 satellite. The USGS coordinates of flood water boundaries were used to calibrate our flood extent map derived from the ALOS-2 SAR data, and the map was delivered to FEMA for estimating the number of households affected. Based on the lessons learned from this response effort, we customized the ARIA system automation for rapid flood mapping and developed a mobile friendly web app that can easily be used in the field for data collection. Rapid automatic generation of SAR-based global flood maps calibrated with independent observations from

  19. Flood risk management in Italy: challenges and opportunities for the implementation of the EU Floods Directive (2007/60/EC) (United States)

    Mysiak, J.; Testella, F.; Bonaiuto, M.; Carrus, G.; De Dominicis, S.; Ganucci Cancellieri, U.; Firus, K.; Grifoni, P.


    Italy's recent history is punctuated with devastating flood disasters claiming high death toll and causing vast but underestimated economic, social and environmental damage. The responses to major flood and landslide disasters such as the Polesine (1951), Vajont (1963), Firenze (1966), Valtelina (1987), Piedmont (1994), Crotone (1996), Sarno (1998), Soverato (2000), and Piedmont (2000) events have contributed to shaping the country's flood risk governance. Insufficient resources and capacity, slow implementation of the (at that time) novel risk prevention and protection framework, embodied in the law 183/89 of 18 May 1989, increased the reliance on the response and recovery operations of the civil protection. As a result, the importance of the Civil Protection Mechanism and the relative body of norms and regulation developed rapidly in the 1990s. In the aftermath of the Sarno (1998) and Soverato (2000) disasters, the Department for Civil Protection (DCP) installed a network of advanced early warning and alerting centres, the cornerstones of Italy's preparedness for natural hazards and a best practice worth following. However, deep convective clouds, not uncommon in Italy, producing intense rainfall and rapidly developing localised floods still lead to considerable damage and loss of life that can only be reduced by stepping up the risk prevention efforts. The implementation of the EU Floods Directive (2007/60/EC) provides an opportunity to revise the model of flood risk governance and confront the shortcomings encountered during more than 20 yr of organised flood risk management. This brief communication offers joint recommendations towards this end from three projects funded by the 2nd CRUE ERA-NET ( Funding Initiative: FREEMAN, IMRA and URFlood.

  20. Spatial analysis of landfills in respect to flood events and sea-level rise using ArcGIS Pro


    Taylor, Benjamin S; Fei, Songlin


    "Recently in the news, media coverage of flood events has garnered attention due to tropical storms like Hurricane Harvey and the costly damages that resulted. Under climate change, events like sea-level rise (SLR) and flooding are projected to increase which threaten infrastructure, making it necessary for proper planning before, during, and after installation of landfills to mitigate risk. Studies in Austria and the UK have revealed that many landfills are located in flood zones in addition...

  1. The Historical Flood Of July 2008 From Vaser River Basin, Romania. Causes, Effects And Flood Control Actions

    Directory of Open Access Journals (Sweden)

    Sima Andrei


    Full Text Available Floods is an experience perceived by society as unexpected, unexplainable and traumatizing and nowadays a threat to humanity more than ever. Among the natural phenomena which negatively affect human activities, floods are the ones which usually have the most significant consequences. The research, evaluations and statistics related to these phenomena do not reveal the drama and serious consequences that come with floods. It was proven that the increase of these extreme hydrological phenomena it is closely related to the anthropic activities from the area. Vaser basin is the most significant sub-basin of Vișeu river basin, contributing with 28% from the total flow of Vișeu river. Having a strong touristic and economic potential, the basin is often threatened by flash floods which usually have devastating effects. During July 2008 there was recorded the most significant flood from the history of hydrometric activity that led to substantial damage and death among locals. The present paper aims to analyze this historical flood, identifying the causes, effects, as well as the methods to control this extreme hydric phenomenon.

  2. Floods and tsunamis. (United States)

    Llewellyn, Mark


    Floods and tsunamis cause few severe injuries, but those injuries can overwhelm local areas, depending on the magnitude of the disaster. Most injuries are extremity fractures, lacerations, and sprains. Because of the mechanism of soft tissue and bone injuries, infection is a significant risk. Aspiration pneumonias are also associated with tsunamis. Appropriate precautionary interventions prevent communicable dis-ease outbreaks. Psychosocial health issues must be considered.

  3. Understanding the Unusual 2017 Monsoon and Floods in South Asia (United States)

    Akanda, A. S.; Palash, W.; Hasan, M. A.; Nusrat, F.


    Driven primarily by the South Asian Monsoon, the Ganges-Brahmaputra-Meghna (GBM) river basin system collectively drains intense precipitation for an area of more than 1.5 million square kilometers during the wet summer season. Bangladesh, being the lowest riparian country in the system, experiences recurrent floods and immense suffering to its population. The 2017 monsoon season was quite unusual in terms of the characteristics of the precipitation received in the basin. The monsoon was spread out over a much larger time span (April-October) compared to the average monsoon season (June-September). Although the monsoon does not typically start until June in Bangladesh, the 2017 season started much earlier in April with unusually heavy precipitation in the Meghna basin region and caused major damage to agriculture in northeastern Bangladesh. The rainfall continued in several record-breaking pulses, compared to the typical one or two large waves. One of the largest pulses occurred in early August with very high in intensity and volume, causing ECMWF to issue a major warning about widespread flooding in Bangladesh, Northern India, and Eastern Nepal. This record flood event impacted over 40 million people in the above regions, causing major damage to life and infrastructure. Although the Brahmaputra rose above the danger level several times this season, the Ganges was unusually low, thus sparing downstream areas from disastrous floods. However, heavy precipitation continued until October, causing urban flooding in Dhaka and Chittagong - and worsening sanitation and public health conditions in southern Bangladesh - currently undergoing a terrible humanitarian crisis involving Rohingya refugees from the Myanmar. Despite marked improvement in flood forecasting systems in recent years, the 2017 floods identified critical gaps in our understanding of the flooding phenomena and limitations of dissemination in these regions. In this study, we investigate 1) the unusual

  4. Identification of flood-rich and flood-poor periods in flood series (United States)

    Mediero, Luis; Santillán, David; Garrote, Luis


    Recently, a general concern about non-stationarity of flood series has arisen, as changes in catchment response can be driven by several factors, such as climatic and land-use changes. Several studies to detect trends in flood series at either national or trans-national scales have been conducted. Trends are usually detected by the Mann-Kendall test. However, the results of this test depend on the starting and ending year of the series, which can lead to different results in terms of the period considered. The results can be conditioned to flood-poor and flood-rich periods located at the beginning or end of the series. A methodology to identify statistically significant flood-rich and flood-poor periods is developed, based on the comparison between the expected sampling variability of floods when stationarity is assumed and the observed variability of floods in a given series. The methodology is applied to a set of long series of annual maximum floods, peaks over threshold and counts of annual occurrences in peaks over threshold series observed in Spain in the period 1942-2009. Mediero et al. (2014) found a general decreasing trend in flood series in some parts of Spain that could be caused by a flood-rich period observed in 1950-1970, placed at the beginning of the flood series. The results of this study support the findings of Mediero et al. (2014), as a flood-rich period in 1950-1970 was identified in most of the selected sites. References: Mediero, L., Santillán, D., Garrote, L., Granados, A. Detection and attribution of trends in magnitude, frequency and timing of floods in Spain, Journal of Hydrology, 517, 1072-1088, 2014.

  5. Estimated flood-inundation maps for Cowskin Creek in western Wichita, Kansas (United States)

    Studley, Seth E.


    The October 31, 1998, flood on Cowskin Creek in western Wichita, Kansas, caused millions of dollars in damages. Emergency management personnel and flood mitigation teams had difficulty in efficiently identifying areas affected by the flooding, and no warning was given to residents because flood-inundation information was not available. To provide detailed information about future flooding on Cowskin Creek, high-resolution estimated flood-inundation maps were developed using geographic information system technology and advanced hydraulic analysis. Two-foot-interval land-surface elevation data from a 1996 flood insurance study were used to create a three-dimensional topographic representation of the study area for hydraulic analysis. The data computed from the hydraulic analyses were converted into geographic information system format with software from the U.S. Army Corps of Engineers' Hydrologic Engineering Center. The results were overlaid on the three-dimensional topographic representation of the study area to produce maps of estimated flood-inundation areas and estimated depths of water in the inundated areas for 1-foot increments on the basis of stream stage at an index streamflow-gaging station. A Web site ( was developed to provide the public with information pertaining to flooding in the study area. The Web site shows graphs of the real-time streamflow data for U.S. Geological Survey gaging stations in the area and monitors the National Weather Service Arkansas-Red Basin River Forecast Center for Cowskin Creek flood-forecast information. When a flood is forecast for the Cowskin Creek Basin, an estimated flood-inundation map is displayed for the stream stage closest to the National Weather Service's forecasted peak stage. Users of the Web site are able to view the estimated flood-inundation maps for selected stages at any time and to access information about this report and about flooding in general. Flood

  6. Extent and frequency of floods on Delaware River in vicinity of Belvidere, New Jersey (United States)

    Farlekas, George M.


    A stream overflowing its banks is a natural phenomenon. This natural phenomenon of flooding has occurred on the Delaware River in the past and will occur in the future. T' o resulting inundation of large areas can cause property damage, business losses and possible loss of life, and may result in emergency costs for protection, rescue, and salvage work. For optimum development of the river valley consistent with the flood risk, an evaluation of flood conditions is necessary. Basic data and the interpretation of the data on the regimen of the streams, particularly the magnitude of floods to be expected, the frequency of their occurrence, and the areas inundated, are essential for planning and development of flood-prone areas.This report presents information relative to the extent, depth, and frequency of floods on the Delaware River and its tributaries in the vicinity of Belvidere, N.J. Flooding on the tributaries detailed in the report pertains only to the effect of backwater from the Delaware River. Data are presented for several past floods with emphasis given to the floods of August 19, 1955 and May 24, 1942. In addition, information is given for a hypothetical flood based on the flood of August 19, 1955 modified by completed (since 1955) and planned flood-control works.By use of relations presented in this report the extent, depth, and frequency of flooding can be estimated for any site along the reach of the Delaware River under study. Flood data and the evaluation of the data are presented so that local and regional agencies, organizations, and individuals may have a technical basis for making decisions on the use of flood-prone areas. The Delaware River Basin Commission and the U.S. Geological Survey regard this program of flood-plain inundation studies as a positive step toward flood-damage prevention. Flood-plain inundation studies, when followed by appropriate land-use regulations, are a valuable and economical supplement to physical works for flood

  7. Economic valuation of flood mitigation services: A case study from the Otter Creek, VT. (United States)

    Galford, G. L.; Ricketts, T.; Bryan, K. L.; ONeil-Dunne, J.; Polasky, S.


    The ecosystem services provided by wetlands are widely recognized but difficult to quantify. In particular, estimating the effect of landcover and land use on downstream flood outcomes remains challenging, but is increasingly important in light of climate change predictions of increased precipitation in many areas. Economic valuation can help incorporate ecosystem services into decisions and enable communities to plan for climate and flood resiliency. Here we estimate the economic value of Otter Creek wetlands for Middlebury, VT in mitigating the flood that followed Tropical Storm Irene, as well as for ten historic floods. Observationally, hydrographs above and below the wetlands in the case of each storm indicated the wetlands functioned as a temporary reservoir, slowing the delivery of water to Middlebury. We compare observed floods, based on Middlebury's hydrograph, with simulated floods for scenarios without wetlands. To simulate these "without wetlands" scenarios, we assume the same volume of water was delivered to Middlebury, but in a shorter time pulse similar to a hydrograph upstream of the wetlands. For scenarios with and without wetlands, we map the spatial extent of flooding using LiDAR digital elevation data. We then estimate flood depth at each affected building, and calculate monetary losses as a function of the flood depth and house value using established depth damage relationships. For example, we expect damages equal to 20% of the houses value for a flood depth of two feet in a two-story home with a basement. We define the value of flood mitigation services as the difference in damages between the with and without wetlands scenario, and find that the Otter Creek wetlands reduced flood damage in Middlebury by 88% following Hurricane Irene. Using the 10 additional historic floods, we estimate an ongoing mean value of $400,000 in avoided damages per year. Economic impacts of this magnitude stress the importance of wetland conservation and warrant the

  8. Potential of 3D City Models to assess flood vulnerability (United States)

    Schröter, Kai; Bochow, Mathias; Schüttig, Martin; Nagel, Claus; Ross, Lutz; Kreibich, Heidi


    Vulnerability, as the product of exposure and susceptibility, is a key factor of the flood risk equation. Furthermore, the estimation of flood loss is very sensitive to the choice of the vulnerability model. Still, in contrast to elaborate hazard simulations, vulnerability is often considered in a simplified manner concerning the spatial resolution and geo-location of exposed objects as well as the susceptibility of these objects at risk. Usually, area specific potential flood loss is quantified on the level of aggregated land-use classes, and both hazard intensity and resistance characteristics of affected objects are represented in highly simplified terms. We investigate the potential of 3D City Models and spatial features derived from remote sensing data to improve the differentiation of vulnerability in flood risk assessment. 3D City Models are based on CityGML, an application scheme of the Geography Markup Language (GML), which represents the 3D geometry, 3D topology, semantics and appearance of objects on different levels of detail. As such, 3D City Models offer detailed spatial information which is useful to describe the exposure and to characterize the susceptibility of residential buildings at risk. This information is further consolidated with spatial features of the building stock derived from remote sensing data. Using this database a spatially detailed flood vulnerability model is developed by means of data-mining. Empirical flood damage data are used to derive and to validate flood susceptibility models for individual objects. We present first results from a prototype application in the city of Dresden, Germany. The vulnerability modeling based on 3D City Models and remote sensing data is compared i) to the generally accepted good engineering practice based on area specific loss potential and ii) to a highly detailed representation of flood vulnerability based on a building typology using urban structure types. Comparisons are drawn in terms of

  9. A Methodology to Support Decision Making in Flood Plan Mitigation (United States)

    Biscarini, C.; di Francesco, S.; Manciola, P.


    The focus of the present document is on specific decision-making aspects of flood risk analysis. A flood is the result of runoff from rainfall in quantities too great to be confined in the low-water channels of streams. Little can be done to prevent a major flood, but we may be able to minimize damage within the flood plain of the river. This broad definition encompasses many possible mitigation measures. Floodplain management considers the integrated view of all engineering, nonstructural, and administrative measures for managing (minimizing) losses due to flooding on a comprehensive scale. The structural measures are the flood-control facilities designed according to flood characteristics and they include reservoirs, diversions, levees or dikes, and channel modifications. Flood-control measures that modify the damage susceptibility of floodplains are usually referred to as nonstructural measures and may require minor engineering works. On the other hand, those measures designed to modify the damage potential of permanent facilities are called non-structural and allow reducing potential damage during a flood event. Technical information is required to support the tasks of problem definition, plan formulation, and plan evaluation. The specific information needed and the related level of detail are dependent on the nature of the problem, the potential solutions, and the sensitivity of the findings to the basic information. Actions performed to set up and lay out the study are preliminary to the detailed analysis. They include: defining the study scope and detail, the field data collection, a review of previous studies and reports, and the assembly of needed maps and surveys. Risk analysis can be viewed as having many components: risk assessment, risk communication and risk management. Risk assessment comprises an analysis of the technical aspects of the problem, risk communication deals with conveying the information and risk management involves the decision process

  10. The environmental impact of flooding of the Dutch "Delta-metropole"

    NARCIS (Netherlands)

    Stuyt, L.C.P.M.; Reinders, J.E.A.; Hoek, van der E.E.; Hermans, E.G.M.; Muinck Keizer, de M.; Icke, J.


    Model studies into the consequences of flooding events usually focus on damage to buildings, infrastructure, economic losses and casualties yet ignore the risk of environmental damage. In this project, a model study was made to assess the environmental consequences of the release of pollutants

  11. Coupling flood forecasting and social media crowdsourcing (United States)

    Kalas, Milan; Kliment, Tomas; Salamon, Peter


    Social and mainstream media monitoring is being more and more recognized as valuable source of information in disaster management and response. The information on ongoing disasters could be detected in very short time and the social media can bring additional information to traditional data feeds (ground, remote observation schemes). Probably the biggest attempt to use the social media in the crisis management was the activation of the Digital Humanitarian Network by the United Na