WorldWideScience

Sample records for flexible polyurethane surfaces

  1. Flexible polyurethane foams

    NARCIS (Netherlands)

    2012-01-01

    Embodiments of the invention provide for a method of preparing a polyurethane foam, including reacting least one initiator comprising at least two hydroxyl groups with at least one 12-hydroxystearic acid to form at least one polyester polyol, reacting the at least one polyester polyol with at least

  2. Flexible high-loading particle-reinforced polyurethane magnetic nanocomposite fabrication through particle-surface-initiated polymerization

    International Nuclear Information System (INIS)

    Guo Zhanhu; Park, Sung; Wei Suying; Pereira, Tony; Moldovan, Monica; Karki, Amar B; Young, David P; Hahn, H Thomas

    2007-01-01

    Flexible high-loading nanoparticle-reinforced polyurethane magnetic nanocomposites fabricated by the surface-initiated polymerization (SIP) method are reported. Extensive field emission scanning electron microscopic (SEM) and atomic force microscopic (AFM) observations revealed a uniform particle distribution within the polymer matrix. X-ray photoelectron spectrometry (XPS) and differential thermal analysis (DTA) revealed a strong chemical bonding between the nanoparticles and the polymer matrix. The elongation of the SIP nanocomposite under tensile test was about four times greater than that of the composite fabricated by a conventional direct mixing fabrication method. The nanocomposite shows particle-loading-dependent magnetic properties, with an increase of coercive force after the magnetic nanoparticles were embedded into the polymer matrix, arising from the increased interparticle distance and the introduced polymer-particle interactions

  3. Flexible optical fiber sensor based on polyurethane

    DEFF Research Database (Denmark)

    Kaysir, Md Rejvi; Stefani, Alessio; Lwin, Richard

    Polyurethane (PU) based hollow core fibers are investigated as optical sensors. The flexibility of PU fibers makes it suitable for sensing mechanical perturbations. We fabricated a PU fiber using the fiber drawing method, characterized the fiber and experimentally demonstrated a simple way...... to measure deformation, in the form of applied pressure....

  4. Flame Retardants Used in Flexible Polyurethane Foam

    Science.gov (United States)

    The partnership project on flame retardants in furniture seeks to update the health and environmental profiles of flame-retardant chemicals that meet fire safety standards for upholstered consumer products with polyurethane foam

  5. 40 CFR 63.1293 - Standards for slabstock flexible polyurethane foam production.

    Science.gov (United States)

    2010-07-01

    ... polyurethane foam production. 63.1293 Section 63.1293 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1293 Standards for slabstock flexible polyurethane foam production. Each owner or operator of a...

  6. 40 CFR 63.1300 - Standards for molded flexible polyurethane foam production.

    Science.gov (United States)

    2010-07-01

    ... polyurethane foam production. 63.1300 Section 63.1300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1300 Standards for molded flexible polyurethane foam production. Each owner or operator of a new...

  7. Aluminum phosphate microcapsule flame retardants for flexible polyurethane foams

    Science.gov (United States)

    Zhang, Bin; Liu, Hong; Han, Jian

    2018-04-01

    In this study, highly efficient flame-retardant aluminum phosphate (ALP) microcapsules were synthesized from ALP and ammonium phosphomolybdate trihydrate. The chemical structure of the ALP microcapsules was characterized by scanning electron microscopy and elemental analysis, and the thermal degradation behavior was investigated by thermogravimetric analysis (TGA). Subsequently, flexible polyurethane (PU) foams were prepared with the ALP microcapsules. Limiting oxygen index (LOI) tests, vertical burning tests, smoke density rating (SDR), and cone calorimetric tests were employed to investigate the combustion of the materials. The results showed that the flexible PU foams with 15 parts per hundred polyol by weight (pphp) ALP microcapsules passed the vertical burning test and they had an increased LOI value of 28.5%. The SDR value for PU/20 pphp ALP microcapsule composites was about 16.0% and the SDR value for the pure PU was about 29.0%. The corresponding flame-retardant mechanism was investigated by Fourier transform infrared spectroscopy, TGA, Pyrolysis Gas Chromatography Mass Spectrometry (Py-GC/MS) tests, and energy-dispersive X-ray spectrometry.

  8. Preparation and characterization of polyurethane plasticizer for flexible packaging applications: Natural oils affirmed access

    Directory of Open Access Journals (Sweden)

    Mohammed A. Mekewi

    2017-03-01

    Full Text Available Developing bio-renewable feedstock for polyurethane (PU manufacturing and polymer industry as a whole has become highly desirable for both economic and environmental reasons. In this work castor oil (CO and palm olein (PO polyols were synthesized and partially used as renewable feedstock for the manufacturing of polyurethane plasticizing resin for printing ink applications. The chemical structure of the prepared polyols and polyurethanes were characterized using IR spectra and GPC and their solubility in common solvents was tested. As well, properties such as flexibility, mechanical properties, optical properties, heat seal and freeze resistance of these prepared printing inks were determined. The results indicated that the prepared printing inks from 50% synthesized polyurethane have high thermal stability, adhesion and excellent freeze resistance. The net technical properties of the new ink formulations are relatively comparable to the printing ink prepared from standard polyurethane plasticizer.

  9. The effect of radiosterilization on surface properties of polyurethane film

    International Nuclear Information System (INIS)

    Sheikh, N.

    2003-01-01

    In this paper the effect of sterilization method by gamma-ray on structure and cytotoxicity of polyurethane film surface has been investigated. For this purpose reactive urethan prepolymer was synthesized by the reaction between Tdi with a mixture of Peg and castro oil (50/50, w/w). The cured prepolymer films were prepared due to the reaction of reactive prepolymer with air moister under ambient conditions. The polyurethane films were sterilized by gamma-ray (25 kGy). The surface of sterilized polyurethane film was observed by Sem and compared to that of the unsterilized film. Also, the in vitro interaction of fibroblast L 929 cells and sterilized polyurethane film was evaluated. Results showed no signs of cell toxicity

  10. Preparation of smooth, flexible and stable silver nanowires- polyurethane composite transparent conductive films by transfer method

    Science.gov (United States)

    Bai, Shengchi; Wang, Haifeng; Yang, Hui; Zhang, He; Guo, Xingzhong

    2018-02-01

    Silver nanowires (AgNWs)-polyurethane (PU) composite transparent conductive films were fabricated via transfer method using AgNWs conductive inks and polyurethane as starting materials, and the effects of post-treatments including heat treatment, NaCl solution bath and HCl solution bath for AgNWs film on the sheet resistance and transmittance of the composite films were respectively investigated in detail. AgNWs networks are uniformly embedded in the PU layer to improve the adhesion and reduce the surface roughness of AgNWs-PU composite films. Heat treatment can melt and weld the nanowires, and NaCl and HCl solution baths promote the dissolution and re-deposition of silver and the dissolving of the polymer, both which form conduction pathways and improve contact of AgNWs for reducing the sheet resistance. Smooth and flexible AgNWs-PU composite film with a transmittance of 85% and a sheet resistance of 15 Ω · sq‑1 is obtained after treated in 0.5 wt% HCl solution bath for 60 s, and the optoelectronic properties of the resultant composite film can maintain after 1000 cycles of bending and 100 days.

  11. Flexible camphor diamond-like carbon coating on polyurethane to prevent Candida albicans biofilm growth.

    Science.gov (United States)

    Santos, Thaisa B; Vieira, Angela A; Paula, Luciana O; Santos, Everton D; Radi, Polyana A; Khouri, Sônia; Maciel, Homero S; Pessoa, Rodrigo S; Vieira, Lucia

    2017-04-01

    Camphor was incorporated in diamond-like carbon (DLC) films to prevent the Candida albicans yeasts fouling on polyurethane substrates, which is a material commonly used for catheter manufacturing. The camphor:DLC and DLC film for this investigation was produced by plasma enhanced chemical vapor deposition (PECVD), using an apparatus based on the flash evaporation of organic liquid (hexane) containing diluted camphor for camphor:DLC and hexane/methane, mixture for DLC films. The film was deposited at a low temperature of less than 25°C. We obtained very adherent camphor:DLC and DLC films that accompanied the substrate flexibility without delamination. The adherence of camphor:DLC and DLC films on polyurethane segments were evaluated by scratching test and bending polyurethane segments at 180°. The polyurethane samples, with and without camphor:DLC and DLC films were characterized by Raman spectroscopy, scanning electron microscopy, atomic force microscopy, and optical profilometry. Candida albicans biofilm formation on polyurethane, with and without camphor:DLC and DLC, was assessed. The camphor:DLC and DLC films reduced the biofilm growth by 99.0% and 91.0% of Candida albicans, respectively, compared to bare polyurethane. These results open the doors to studies of functionalized DLC coatings with biofilm inhibition properties used in the production of catheters or other biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Glycolysis of flexible polyurethane foam in recycling of car seats

    Czech Academy of Sciences Publication Activity Database

    Beneš, Hynek; Rösner, J.; Holler, Petr; Synková, Hana; Kotek, Jiří; Horák, Zdeněk

    2007-01-01

    Roč. 18, č. 2 (2007), s. 149-156 ISSN 1042-7147. [International Conference on Polymeric Materials in Automotive , Slovak Rubber Conference /17./. Bratislava, 10.5.2005-12.5.2005] R&D Projects: GA MŽP SL/7/26/05 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyurethanes * foams * recycling Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.504, year: 2007

  13. MANUAL: BEST MANAGEMENT PRACTICES FOR POLLUTION PREVENTION IN THE SLABSTOCK AND MOLDED FLEXIBLE POLYURETHANE FOAM INDUSTRY

    Science.gov (United States)

    The 1990 Clean Air Act Amendments require EPA to develop standards for major emission sources of 189 hazardous air pollutants (HAPs). EPA has identified the flexible polyurethane foam industry as a large emitter of HAPs and has slated the industry for regulation under Title III, ...

  14. Biological Evaluation of Flexible Polyurethane/Poly l-Lactic Acid Composite Scaffold as a Potential Filler for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Yuk Fai Lui

    2017-09-01

    Full Text Available Degradable bone graft substitute for large-volume bone defects is a continuously developing field in orthopedics. With the advance in biomaterial in past decades, a wide range of new materials has been investigated for their potential in this application. When compared to common biopolymers within the field such as PLA or PCL, elastomers such as polyurethane offer some unique advantages in terms of flexibility. In cases of bone defect treatments, a flexible soft filler can help to establish an intimate contact with surrounding bones to provide a stable bone-material interface for cell proliferation and ingrowth of tissue. In this study, a porous filler based on segmented polyurethane incorporated with poly l-lactic acid was synthesized by a phase inverse salt leaching method. The filler was put through in vitro and in vivo tests to evaluate its potential in acting as a bone graft substitute for critical-sized bone defects. In vitro results indicated there was a major improvement in biological response, including cell attachment, proliferation and alkaline phosphatase expression for osteoblast-like cells when seeded on the composite material compared to unmodified polyurethane. In vivo evaluation on a critical-sized defect model of New Zealand White (NZW rabbit indicated there was bone ingrowth along the defect area with the introduction of the new filler. A tight interface formed between bone and filler, with osteogenic cells proliferating on the surface. The result suggested polyurethane/poly l-lactic acid composite is a material with the potential to act as a bone graft substitute for orthopedics application.

  15. Studies on polyurethane adhesives and surface modification of hydrophobic substrates

    Science.gov (United States)

    Krishnamoorthy, Jayaraman

    This thesis work deals with (a) Curing of reactive, hot-melt polyurethane adhesives and (b) Adsorption studies using different interactions. Research on polyurethanes involves characterization of polyurethane prepolymers and a novel mechanism to cure isocyanate-terminated polyurethane prepolymer by a "trigger" mechanism. Curing of isocyanate-terminated polyurethane prepolymers has been shown to be influenced by morphology and environmental conditions such as temperature and relative humidity. Although the initial composition, final morphology and curing kinetics are known, information regarding the intermediate prepolymer mixture is yet to be established. Polyurethane prepolymers prepared by the reaction of diisocyanates with the primary hydroxyls of polyester diol (PHMA) and secondary hydroxyls of polyether diol (PPG) were characterized. The morphology and crystallization kinetics of a polyurethane prepolymer was compared with a blend of PPG prepolymer (the product obtained by the reaction of PPG with diisocyanate) and a PHMA prepolymer (the product obtained by the reaction of PHMA with diisocyanate) to study the effect of copolymer formed in the polyurethane prepolymer on the above-mentioned properties. Although the morphology of the polyurethane prepolymer is determined in the first few minutes of application, the chemical curing of isocyanate-terminated prepolymer occurs over hours to days. In the literature, different techniques are described to follow the curing kinetics. But there is no established technique to control the curing of polyurethane prepolymer. To make the curing process independent of environmental factors, a novel approach using a trigger mechanism was designed and implemented by using ammonium salts as curing agents. Ammonium salts that are stable at room temperature but decompose on heating to yield active hydrogen-containing compounds, NH3 and H2O, were used as 'Trojan horses' to cure the prepolymer chemically. Research on adsorption

  16. Modeling of Flexible Polyurethane Foam Shrinkage for Bra Cup Moulding Process Control

    Directory of Open Access Journals (Sweden)

    Long Wu

    2018-04-01

    Full Text Available Nowadays, moulding technology has become a remarkable manufacturing process in the intimate apparel industry. Polyurethane (PU foam sheets are used to mould three-dimensional (3D seamless bra cups of various softness and shapes, which eliminate bulky seams and reduce production costs. However, it has been challenging to accurately and effectively control the moulding process and bra cup thickness. In this study, the theoretical mechanism of heat transfer and the thermal conductivity of PU foams are first examined. Experimental studies are carried out to investigate the changes in foam materials at various moulding conditions (viz., temperatures, and lengths of dwell time in terms of surface morphology and thickness by using electron and optical microscopy. Based on the theoretical and experimental investigations of the thermal conductivity of the foam materials, empirical equations of shrinkage ratio and thermal conduction of foam materials were established. A regression model to predict flexible PU foam shrinkage during the bra cup moulding process was formulated by using the Levenberg-Marquardt method of nonlinear least squares algorithm and verified for accuracy. This study therefore provides an effective approach that optimizes control of the bra cup moulding process and assures the ultimate quality and thickness of moulded foam cups.

  17. Stem cell responses to plasma surface modified electrospun polyurethane scaffolds.

    Science.gov (United States)

    Zandén, Carl; Hellström Erkenstam, Nina; Padel, Thomas; Wittgenstein, Julia; Liu, Johan; Kuhn, H Georg

    2014-07-01

    The topographical effects from functional materials on stem cell behavior are currently of interest in tissue engineering and regenerative medicine. Here we investigate the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell (hESC) and rat postnatal neural stem cell (NSC) responses. The plasma gases were found to induce three combinations of fiber surface functionalities and roughness textures. On randomly oriented fibers, plasma treatments lead to substantially increased hESC attachment and proliferation as compared to native fibers. Argon plasma was found to induce the most optimal combination of surface functionality and roughness for cell expansion. Contact guided migration of cells and alignment of cell processes were observed on aligned fibers. Neuronal differentiation around 5% was found for all samples and was not significantly affected by the induced variations of surface functional group distribution or individual fiber topography. In this study the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell and rat postnatal neural stem cell (NSC) responses is studied with the goal of clarifying the potential effects of functional materials on stem cell behavior, a topic of substantial interest in tissue engineering and regenerative medicine. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Microphase separated structure and surface properties of fluorinated polyurethane resin

    International Nuclear Information System (INIS)

    Sudaryanto; Nishino, T.; Hori, Y.; Nakamae, K.

    2000-01-01

    The effect of fluorination on microphase separation and surface properties of segmented polyurethane (PU) resin were investigated. A series of fluorinated polyurethane resin (FPU) was synthesized by reacting a fluorinated diol with aromatic diisocyanate. The microphase separated structure of FPU was studied by thermal analysis, and small angle X-ray scattering (SAXS) as well as wide angle X-ray diffraction (WAXD). The surface structure and properties were characterized by X-ray photoelectron spectroscopy (XPS) and dynamic contact angle measurement. The incorporation of fluorine into hard segment brings the FPU to have a higher hard domain cohesion and increase the phase separation, however localization of fluorine on the surface could not be observed. On the other hands, localization of fluorine on the surface could be achieved for soft segment fluorinated PU without any significant change in microphase separated structure. The result from this study give an important basic information for designing PU coating material with a low surface energy and strong adhesion as well as for development of release film on pressure sensitive adhesive tape. (author)

  19. The effect of polyether functional polydimethylsiloxane on surface and thermal properties of waterborne polyurethane

    Science.gov (United States)

    Zheng, Guikai; Lu, Ming; Rui, Xiaoping

    2017-03-01

    Waterborne polyurethanes (WPU) modified with polyether functional polydimethylsiloxane (PDMS) were synthesized by pre-polymerization method using isophorone diisocyanate (IPDI) and 1,4-butanediol (BDO) as hard segments and polybutylene adipate glycol (PBA) and polyether functional PDMS as soft segments. The effect of polyether functional PDMS on phase separation, thermal properties, surface properties including surface composition, morphology and wettability were investigated by FTIR, contact angle measurements, ARXPS, SEM-EDS, AFM, TG and DSC. The results showed that the compatibility between urethane hard segment and PDMS modified with polyether was good, and there was no distinct phase separation in both bulk and surface of WPU films. The degradation temperature and low temperature flexibility increased with increasing amounts of polyether functional PDMS. The enrichment of polyether functional PDMS with low surface energy on the surface imparted excellent hydrophobicity to WPU films.

  20. Enhanced printability of thermoplastic polyurethane substrates by silica particles surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, S., E-mail: s.cruz@dep.uminho.pt [IPC/I3N – Institute of Polymers and Composites/Inst. of Nanostructures, Nanomodelling and Nanofabrication, Department Polymer Engineering, University of Minho, 4804-533 Guimarães (Portugal); Rocha, L.A. [CMEMS, University of Minho, 4804-533 Guimarães (Portugal); Viana, J.C. [IPC/I3N – Institute of Polymers and Composites/Inst. of Nanostructures, Nanomodelling and Nanofabrication, Department Polymer Engineering, University of Minho, 4804-533 Guimarães (Portugal)

    2016-01-01

    Graphical abstract: - Highlights: • A new method development for surface treatment of thermoplastic polyurethane (TPU) substrates. • The proposed method increases TPU surface energy (by 45%) and consequently the TPU wettability. • Great increase of the TPU surface roughness (by 621%). • Inkjet printed conductive ink was applied to the surface treated TPU substrate and significant improvements on the printability were obtained. - Abstract: A new method developed for the surface treatment of thermoplastic polymer substrates that increases their surface energies is introduced in this paper. The method is environmental friendly and low cost. In the proposed surface treatment method, nanoparticles are spread over the thermoplastic polyurethane (TPU) flexible substrate surface and then thermally fixed. This latter step allows the nanoparticles sinking-in on the polymer surface, resulting in a higher polymer–particle interaction at their interfacial region. The addition of nanoparticles onto the polymer surface increases surface roughness. The extent of the nanoparticles dispersion and sink-in in the substrate was evaluated through microscopy analysis (SEM). The roughness of the surface treated polymeric substrate was evaluated by AFM analysis. Substrate critical surface tension (ST) was measured by contact angle. In general, a homogeneous roughness form is achieved to a certain level. Great increase of the TPU surface roughness (by 621%) was induced by the propose method. The proposed surface treatment method increased significantly the substrate ST (by 45%) and consequently the TPU wettability. This novel surface treatment of thermoplastic polymers was applied to the inkjet printing of TPU substrates with conductive inks, and significant improvements on the printability were obtained.

  1. Effects of surface modification with hydroxyl terminated polydimethylsiloxane on the corrosion protection of polyurethane coating

    International Nuclear Information System (INIS)

    Jeon, Jae Hong; Shon, Min Young

    2014-01-01

    Polyurethane coating was designed to give a hydrophobic property on its surface by modifying it with hydroxyl terminated polydimethylsiloxane and then effects of surface hydrophobic tendency, water transport behavior and hence corrosion protectiveness of the modified polyurethane coating were examined using FT-IR/ATR spectroscopy, contact angle measurement and electrochemical impedance test. As results, the surface of polyurethane coating was changed from hydrophilic to hydrophobic property due primarily to a phase separation tendency between polyurethane and modifier by the modification. The phase separation tendency is more appreciable when modified by polydimethylsiloxane with higher content. Water transport behavior of the modified polyurethane coating decreased more in that with higher hydrophobic surface property. The decrease in the impedance modulus ⅠZⅠ at low frequency region in immersion test for polyurethane coatings was associated with the water transport behavior and surface hydrophobic properties of modified polyurethane coatings. The corrosion protectiveness of the modified polyurethane coated carbon steel generally increased with an increase in the modifier content, confirming that corrosion protectiveness of the modified polyurethane coating is well agreed with its water transport behavior

  2. Platelet adhesion studies on dipyridamole coated polyurethane surfaces

    Directory of Open Access Journals (Sweden)

    Aldenhoff Y. B.J.

    2003-06-01

    Full Text Available Surface modification of polyurethanes (PUs by covalent attachment of dipyridamole (Persantinregistered is known to reduce adherence of blood platelets upon exposure to human platelet rich plasma (PRP. This effect was investigated in further detail. First platelet adhesion under static conditions was studied with four different biomaterial surfaces: untreated PU, PU immobilised with conjugate molecule 1, PU immobilised with conjugate molecule 2, and PU immobilised with conjugate molecule 3. In PU immobilised with 1 dipyridamole is directly linked to the surface, in PU immobilised with 2 there is a short hydrophilic spacer chain in between the surface and the dipyridamole, while conjugate molecule 3 is merely the spacer chain. Scanning electron microscopy (SEM was used to characterise platelet adhesion from human PRP under static conditions, and fluorescence imaging microscopy was used to study platelet adhesion from whole blood under flow. SEM experiments encompassed both density measurements and analysis of the morphology of adherent platelets. In the static experiments the surface immobilised with 2 showed the lowest platelet adherence. No difference between the three modified surfaces emerged from the flow experiments. The surfaces were also incubated with washed blood platelets and labeled with Oregon-Green Annexin V. No capture of Oregon-Green Annexin V was seen, implying that the adhered platelets did not expose any phosphatidyl serine at their exteriour surface.

  3. Fabrication of antibacterial water filter by coating silver nanoparticles on flexible polyurethane foams

    International Nuclear Information System (INIS)

    Nguyen Thi Phuong Phong; Ngo Vo Ke Thanh; Phan Hue Phuong

    2009-01-01

    In this paper, we fabricated silver-coated polyurethane foams and used it as a bacterial filter for contaminated drinking water. Flexible PU foams were soaked in silver colloidal solutions for 10 h, then washed and air-dried at room temperature. The prepared silver colloidal solutions and silver-coated PU materials were characterized by several techniques including TEM, FESEM/EDS, UV-VIS, ICP-AAS, and Raman spectroscopy. The TEM images showed that the size of silver nanoparticles in colloidal solutions varies from 6 to 12nm. The Raman, FE-SEM/EDS and ICP-AAS data illustrated that silver nanoparticles were stable on the PU foam and were not washed away by water. Furthermore, the microbiological tests (tube tests and flow test) were carried out on silver-coated PU materials with the Coliforms, E. coli, and B. subtilis. The obtained results showed that the bacteria was killed completely with antibacterial efficiency of 100% being observed. Our research suggests that silver-coated polyurethane foams can be used as excellent antibacterial water filters and would have several applications in other sectors.

  4. Molecular simulation of fibronectin adsorption onto polyurethane surfaces

    Science.gov (United States)

    Polyethylene glycol-based polyurethanes have been widely used in biomedical applications, however are prone to swelling. A natural polyol, castor oil can be incorporated into these polyurethanes to control the degree of the swelling, which alters mechanical properties and protein adsorption characte...

  5. Surface coated polyurethane with improved bioactivity and cytocompatability

    CSIR Research Space (South Africa)

    Chetty, AS

    2006-02-01

    Full Text Available Polyurethane (PU) may be suitable for various implant applications; however, it lacks bioactivity. Bioactivity allows for direct tissue attachment at the bio- interface, enabling implant fixation while preventing fibrous encapsulation. To impart...

  6. SORPTION OF Ga (III ON FLEXIBLE OPEN CELL POLYURETHANE FOAM OF POLYETHER TYPE IMPREGNATED WITH TRI-N-BUTHYL PHOSPATE

    Directory of Open Access Journals (Sweden)

    Lavinia Tofan

    2007-06-01

    Full Text Available The obtained results concerning the Ga (III ion retention on flexible open cell polyurethane foam of polyether type pretreated with tri-n-butyl phosphate are presented. The influence of solution acidity, phases contact time, Ga (III concentration and solution temperature have been investigated. The parameters of Ga (III batch sorption have been optimized. On the basis of Langmuir isotherms, the sorption constants and the thermodynamic parameters, ∆G, ∆Η and ∆S have been calculated.

  7. UV and gamma irradiation effects on surface properties of polyurethane derivative from castor oil

    International Nuclear Information System (INIS)

    Azevedo, Elaine C.; Nascimento, Eduardo M.; Chierice, Gilberto O.; Claro Neto, Salvador

    2013-01-01

    Gamma and ultraviolet radiation effects on hardness, elastic modulus and viscoelastic properties of polyurethane derived from castor oil (PU) were investigated by nanoindentation tests. Modifications on surface morphology, induce by radiation, were observed by atomic force microscopy. The polyurethane derivative from castor oil shows good resistance to gamma radiation, with only small changes in hardness, elastic modulus, viscoelastic properties and contact angle. The hardness of PY increases at the near surface region due to UVA radiation and decreases after UVC radiation. The contact angle for water drop decreases after UVC radiation, by not after gamma radiation, despite a significant increase in roughness. Such results are attributed to different responses from polyurethane to radiation energy. Increase in hardness due to UVA is attributed to a higher crosslinking at shallow depths, while a decrease in mechanical properties may be attributed to chain scission. These results are consistent with the modifications on viscoelastic properties. Shore D hardness did not show the same trend as observed by nanoindentation results. Hardness, viscoelastic properties and contact angle of castor oil polyurethane are more severely influenced by UVC radiation, while gamma radiation does not have a significant effect. (author)

  8. UV and gamma irradiation effects on surface properties of polyurethane derivative from castor oil

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Elaine C.; Nascimento, Eduardo M., E-mail: helunica@yahoo.com.br [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Chierice, Gilberto O.; Claro Neto, Salvador [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil). Instituto de Quimica; Lepienski, Carlos M. [Universidade Federal do Parana (UFPR), Curitiba (Brazil)

    2013-07-01

    Gamma and ultraviolet radiation effects on hardness, elastic modulus and viscoelastic properties of polyurethane derived from castor oil (PU) were investigated by nanoindentation tests. Modifications on surface morphology, induce by radiation, were observed by atomic force microscopy. The polyurethane derivative from castor oil shows good resistance to gamma radiation, with only small changes in hardness, elastic modulus, viscoelastic properties and contact angle. The hardness of PY increases at the near surface region due to UVA radiation and decreases after UVC radiation. The contact angle for water drop decreases after UVC radiation, by not after gamma radiation, despite a significant increase in roughness. Such results are attributed to different responses from polyurethane to radiation energy. Increase in hardness due to UVA is attributed to a higher crosslinking at shallow depths, while a decrease in mechanical properties may be attributed to chain scission. These results are consistent with the modifications on viscoelastic properties. Shore D hardness did not show the same trend as observed by nanoindentation results. Hardness, viscoelastic properties and contact angle of castor oil polyurethane are more severely influenced by UVC radiation, while gamma radiation does not have a significant effect. (author)

  9. UV Direct Laser Interference Patterning of polyurethane substrates as tool for tuning its surface wettability

    Energy Technology Data Exchange (ETDEWEB)

    Estevam-Alves, Regina [Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos (Brazil); Günther, Denise; Dani, Sophie; Eckhardt, Sebastian; Roch, Teja [Fraunhofer Institute for Material and Beam Technology IWS, Winterbergstr. 28, Dresden 01277 (Germany); Chair for Large Area Laser Based Surface Micro/Nano-Structuring, Institute for Manufacturing Technology, Technische Universität Dresden, George-Bähr-Str. 3c, 01069 Dresden (Germany); Mendonca, Cleber R., E-mail: crmendon@ifsc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos (Brazil); Cestari, Ismar N. [Heart Institute (InCOr), University of São Paulo Medical School, São Paulo 05403-000 (Brazil); Lasagni, Andrés F., E-mail: andres_fabian.lasagni@tu-dresden.de [Fraunhofer Institute for Material and Beam Technology IWS, Winterbergstr. 28, Dresden 01277 (Germany); Chair for Large Area Laser Based Surface Micro/Nano-Structuring, Institute for Manufacturing Technology, Technische Universität Dresden, George-Bähr-Str. 3c, 01069 Dresden (Germany)

    2016-06-30

    Highlights: • First reported experiments on Direct Laser Interference Patterning of polyurethane. • First reported sub-micrometer structures (feature size ∼250 nm) fabricated in polyurethane materials using laser processing technologies. • Anisotropic wetting behavior of structured surfaces and possibility to tune the contact angle as function of surface structure parameters. - Abstract: Direct Laser Interference Patterning (DLIP) is a versatile tool for the fabrication of micro and sub-micropatterns on different materials. In this work, DLIP was used to produce periodic surface structures on polyurethane (PU) substrates with spatial periods ranging from 0.5 to 5.0 μm. The influence of the laser energy density on the quality and topographical characteristics of the produced micropatterns was investigated. To characterize the surface topography of the produced structures, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Confocal Microscopy (CFM) were utilized. It was found that high quality and defect free periodic line-like patterns with spatial periods down to 500 nm could be fabricated, with structure depths between 0.88 up to 1.25 μm for spatial periods larger than 2.0 μm and up to 270 nm for spatial periods between 500 nm and 1.0 μm. Measurements of the contact angle of water on the treated surface allowed to identify an anisotropic wetting behavior depending mainly on the spatial period and filling factor of the structured surfaces.

  10. The influence of low air pressure on horizontal flame spread over flexible polyurethane foam and correlative smoke productions

    International Nuclear Information System (INIS)

    Tu, Ran; Zeng, Yi; Fang, Jun; Zhang, Yongming

    2016-01-01

    Highlights: • Quasi two-dimensional flame spreading behavior of flexible polyurethane (FPU) foam was investigated. • Theoretical correlation of pressure effects on global burning rate was proposed. • The influence of pressure on plume and ceiling jet temperatures was studied theoretically. • Pressure effects on soot formation and CO concentration were analyzed. - Abstract: Pressure effects on quasi two-dimensional flexible polyurethane (FPU) foam flame spreading behavior, typical product concentrations, and smoke detector responses were investigated by comparative experiments under different ambient pressures of 99.8 kPa (in Hefei) and 66.5 kPa (in Lhasa), respectively. First, significant decreases of flame spreading velocity and burning rate were observed under low pressure condition. Averaged global burning rate was found to be dependent on pressure, with an exponential factor of 4/3 theoretically based on pressure modeling. Second, the maximum temperature at a given position in axial thermal plume showed insensitivity to pressure, yet the maximum temperature in ceiling jet was obviously higher. Third, the low pressure was shown to have no effect on soot particles size distribution by scan electron microscopy (SEM) imaging. However, the soot number concentration decreased with reduced pressure attributed to the much slower soot formation rate under low pressure. This result would further have an interesting influence on the response signals of photoelectric detector and ionization detector. Finally, the pressure effects on variation of CO and O_2 volume concentration were discussed. Considering the relatively small heat release rate for FPU foam selected, the CO concentration in the far-field ceiling jet low under low pressure was found to be lower for the enhanced diffusive effect.

  11. Formation of layer-by-layer assembled titanate nanotubes filled coating on flexible polyurethane foam with improved flame retardant and smoke suppression properties.

    Science.gov (United States)

    Pan, Haifeng; Wang, Wei; Pan, Ying; Song, Lei; Hu, Yuan; Liew, Kim Meow

    2015-01-14

    A fire blocking coating made from chitosan, titanate nanotubes and alginate was deposited on a flexible polyurethane (FPU) foam surface by a layer-by-layer assembly technique in an effort to reduce its flammability. First, titanate nanotubes were prepared by a hydrothermal method. And then the coating growth was carried out by alternately submerging FPU foams into chitosan solution, titanate nanotubes suspension and alginate solution. The mass gain of coating on the surface of FPU foams showed dependency on the concentration of titanate nanotubes suspension and the trilayers's number. Scanning electron microscopy indicated that titanate nanotubes were distributed well on the entire surface of FPU foam and showed a randomly oriented and entangled network structure. The cone calorimeter result indicated that the coated FPU foams showed reduction in the peak heat release rate (peak HRR), peak smoke production rate (peak SPR), total smoke release (TSR) and peak carbon monoxide (CO) production compared with those of the control FPU foam. Especially for the FPU foam with only 5.65 wt % mass gain, great reduction in peak HRR (70.2%), peak SPR (62.8%), TSR (40.9%) and peak CO production (63.5%) could be observed. Such a significant improvement in flame retardancy and the smoke suppression property for FPU foam could be attributed to the protective effect of titanate nanotubes network structure formed, including insulating barrier effect and adsorption effect.

  12. Flexible magnetic polyurethane/Fe{sub 2}O{sub 3} nanoparticles as organic-inorganic nanocomposites for biomedical applications: Properties and cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Shahrousvand, Mohsen [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875/4413, Tehran (Iran, Islamic Republic of); Hoseinian, Monireh Sadat [Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran (Iran, Islamic Republic of); Ghollasi, Marzieh [Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran (Iran, Islamic Republic of); Karbalaeimahdi, Ali [Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran (Iran, Islamic Republic of); Salimi, Ali, E-mail: salimiali@bmsu.ac.ir [Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran (Iran, Islamic Republic of); Tabar, Fatemeh Ahmadi [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875/4413, Tehran (Iran, Islamic Republic of)

    2017-05-01

    Nowadays, the discovery of cell behaviors and their responses in communication with the stem cell niches and/or microenvironments are one of the major topics in tissue engineering and regenerative medicine. In this study, incorporated organic-inorganic polyurethane (PU) nanocomposites were prepared for better understanding of cell signaling and the effect of magnetite nanoparticles on cell proliferation and cell responses. The properties of PU-IONs were evaluated by fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic-force microscopy (AFM), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS). The presence of the iron oxide nanoparticles (IONs) affects on the properties of polyurethane nanocomposites such as bulk morphology, mechanical, electrochemical, and biological properties. The electrical conductivity and hydrophilicity of PU-IONs were improved by increasing the magnetite nanoparticles; therefore water absorption, biodegradation and cell viability were changed. The biocompatibility of PU-IONs was investigated by MTT assay, cell attachment and cell staining. According to the results, the magnetite polyurethane nanocomposites could be a potential choice for cell therapy and tissue engineering, especially nerve repair. - Highlights: • Biodegradable and biocompatible incorporated organic-inorganic polyurethane (PU) nanocomposites were prepared. • The hydrophilicity of polyurethane/iron oxide nanocomposites (PU-IONs) was improved by increasing of magnetite nanoparticles. • The magnetite nanocomposites showed greater electrical conductivity and surface roughness in contrast to neat polyurethane. • The PU-IONs nanocomposites had suitable cell viability and hold promising potential for tissue engineering applications.

  13. Flexible Polyhedral Surfaces with Two Flat Poses

    Directory of Open Access Journals (Sweden)

    Hellmuth Stachel

    2015-05-01

    Full Text Available We present three types of polyhedral surfaces, which are continuously flexible and have not only an initial pose, where all faces are coplanar, but pass during their self-motion through another pose with coplanar faces (“flat pose”. These surfaces are examples of so-called rigid origami, since we only admit exact flexions, i.e., each face remains rigid during the motion; only the dihedral angles vary. We analyze the geometry behind Miura-ori and address Kokotsakis’ example of a flexible tessellation with the particular case of a cyclic quadrangle. Finally, we recall Bricard’s octahedra of Type 3 and their relation to strophoids.

  14. Flexible thermoplastic composite of Polyvinyl Butyral (PVB and waste of rigid Polyurethane foam

    Directory of Open Access Journals (Sweden)

    Marilia Sônego

    2015-04-01

    Full Text Available This study reports the preparation and characterization of composites with recycled poly(vinyl butyral (PVB and residue of rigid polyurethane foam (PUr, with PUr contents of 20, 35 and 50 wt %, using an extruder equipped with a Maillefer single screw and injection molding. The components of the composites were thermally characterized using differential scanning calorimetry (DSC and thermogravimetry. The composites were evaluated by melt flow index (MFI, tensile and hardness mechanical tests and scanning electron microscopy (SEM. Tg determined by DSC of PVB sample (53 °C indicated the presence of plasticizer (Tg of pure PVB is 70 °C. MFI of the composites indicated a viscosity increase with the PUr content and, as the shear rate was held constant during injection molding, higher viscosities promoted higher shear stresses in the composites, thereby causing breaking or tearing of the PUr particles. The SEM micrographs showed low adhesion between PVB and PUr and the presence of voids, both inherent in the rigid foam and in the interphase PVB-PUr. The SEM micrographs also showed that PVB/PUr (50/50 composite exhibited the smallest particle size and a more homogeneous and compact structure with fewer voids in the interface. The stiffness of the composites increases with addition of the PUr particles, as evidenced in the mechanical tests.

  15. The Fracture of Plasma-Treated Polyurethane Surface under Fatigue Loading

    Directory of Open Access Journals (Sweden)

    Ilya A. Morozov

    2018-02-01

    Full Text Available Plasma treatment of soft polymers is a promising technique to improve biomedical properties of the materials. The response to the deformation of such materials is not yet clear. Soft elastic polyurethane treated with plasma immersion ion implantation is subjected to fatigue uniaxial loading. The influence of the strain amplitude and the plasma treatment regime on damage character is discussed. Surface defects are studied in unloaded and stretched states of the material. As a result of fatigue loading, transverse cracks (with closed overlapping edges as well as with open edges deeply propagating into the polymer and longitudinal folds which are break and bend inward, appear on the surface. Hard edges of cracks cut the soft polymer which is squeezed from the bulk to the surface. The observed damages are related to the high stiffness of the modified surface and its transition to the polymer substrate.

  16. 40 CFR 63.1297 - Standards for slabstock flexible polyurethane foam production-HAP ABA emissions from the...

    Science.gov (United States)

    2010-07-01

    ... polyurethane foam production-HAP ABA emissions from the production line. 63.1297 Section 63.1297 Protection of... foam production—HAP ABA emissions from the production line. (a) Each owner or operator of a new or... § 63.1293(a)(1) shall control HAP ABA emissions from the slabstock polyurethane foam production line in...

  17. Surface grafting of carboxylic groups onto thermoplastic polyurethanes to reduce cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Alves, P., E-mail: palves@eq.uc.pt [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal); Ferreira, P. [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal); Kaiser, Jean-Pierre [EMPA, St. Gallen, Lerchenfeldstrasse 5, CH-9014 St. Gallen (Switzerland); Salk, Natalie [Mikrofertigung – Micro Engineering, Fraunhofer IFAM, Wiener Strasse 12, D-288359 Bremen (Germany); Bruinink, Arie [EMPA, St. Gallen, Lerchenfeldstrasse 5, CH-9014 St. Gallen (Switzerland); Sousa, Hermínio C. de; Gil, M.H. [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal)

    2013-10-15

    The interaction of polymers with other materials is an important issue, being their surface properties clearly crucial. For some important polymer applications, their surfaces have to be modified. Surface modification aims to tailor the surface characteristics of a material for a specific application without affecting its bulk properties. Materials can be surface modified by using biological, chemical or physical methods. The aim of this work was to improve the reactivity of the thermoplastic polyurethane (TPU) material (Elastollan{sup ®}) surface and to make its surface cell repellent by grafting carboxylic groups onto its surface. Two TPU materials were studied: a polyether-based TPU and a polyester-based TPU. The grafting efficiency was evaluated by contact angle measurements and by analytical determination of the COOH groups. Scanning electron microscopy (SEM) of the membranes surface was performed as well as cell adhesion tests. It was proved that the surfaces of the TPUs membranes were successfully modified and that cell adhesion was remarkably reduced.

  18. The relationship between cellular adhesion and surface roughness for polyurethane modified by microwave plasma radiation

    Directory of Open Access Journals (Sweden)

    Heidari S

    2011-04-01

    Full Text Available Saeed Heidari Keshel1, S Neda Kh Azhdadi2, Azadeh Asefnezhad2, Mohammad Sadraeian3, Mohamad Montazeri4, Esmaeil Biazar51Stem Cell Preparation Unit, Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences; 2Department of Biomaterial Engineering, Faculty of Biomedical Engineering, Science and Research Branch - Islamic Azad University; 3Young Researchers Club, Islamic Azad University, North Tehran Branch, Tehran; 4Faculty of Medical Sciences, Babol University of Medical Sciences, Babol; 5Department of Chemistry, Islamic Azad University, Tonekabon, IranAbstract: Surface modification of medical polymers is carried out to improve biocompatibility. In this study, conventional polyurethane was exposed to microwave plasma treatment with oxygen and argon gases for 30 seconds and 60 seconds. Attenuated total reflection Fourier transform infrared spectra investigations of irradiated samples indicated the presence of functional groups. Atomic force microscope images of samples irradiated with inert and active gases indicated the nanometric topography of the sample surfaces. Samples irradiated by oxygen plasma indicated high roughness compared with those irradiated by inert plasma for the different lengths of time. In addition, surface roughness increased with time, which can be due to a reduction of contact angle of samples irradiated by oxygen plasma. Contact angle analysis indicated a reduction in samples irradiated with both types of plasma. However, samples irradiated with oxygen plasma indicated lower contact angle compared with those irradiated by argon plasma. Cellular investigations with unrestricted somatic stem cells showed better adhesion, cell growth, and proliferation among samples radiated by oxygen plasma for longer than for normal samples.Keywords: surface topography, polyurethane, plasma treatment, cellular investigation

  19. Fabrication of highly hydrophobic two-component thermosetting polyurethane surfaces with silica nanoparticles

    Science.gov (United States)

    Yang, Guang; Song, Jialu; Hou, Xianghui

    2018-05-01

    Highly hydrophobic thermosetting polyurethane (TSU) surfaces with micro-nano hierarchical structures were developed by a simple process combined with sandpaper templates and nano-silica embellishment. Sandpapers with grit sizes varying from 240 to 7000 grit were used to obtain micro-scale roughness on an intrinsic hydrophilic TSU surface. The surface wettability was investigated by contact angle measurement. It was found that the largest contact angle of the TSU surface without nanoparticles at 102 ± 3° was obtained when the template was 240-grit sandpaper and the molding progress started after 45 min curing of TSU. Silica nanoparticles modified with polydimethylsiloxane were scattered onto the surfaces of both the polymer and the template to construct the desirable nanostructures. The influences of the morphology, surface composition and the silica content on the TSU surface wettability were studied by scanning electron microscopy (SEM), attenuated total reflection (ATR) infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The surface of the TSU/SiO2 nanocomposites containing 4 wt% silica nanoparticles exhibited a distinctive dual-scale structure and excellent hydrophobicity with the contact angle above 150°. The mechanism of wettability was also discussed by Wenzel model and Cassie-Baxter model.

  20. Nanowire surface fastener fabrication on flexible substrate

    Science.gov (United States)

    Toku, Yuhki; Uchida, Keita; Morita, Yasuyuki; Ju, Yang

    2018-07-01

    The market for wearable devices has increased considerably in recent years. In response to this demand, flexible electronic circuit technology has become more important. The conventional bonding technology in electronic assembly depends on high-temperature processes such as reflow soldering, which result in undesired thermal damages and residual stress at a bonding interface. In addition, it exhibits poor compatibility with bendable or stretchable device applications. Therefore, there is an urgent requirement to attach electronic parts on printed circuit boards with good mechanical and electrical properties at room temperature. Nanowire surface fasteners (NSFs) are candidates for resolving these problems. This paper describes the fabrication of an NSF on a flexible substrate, which can be used for room temperature conductive bonding. The template method is used for preparing high-density nanowire arrays. A Cu thin film is layered on the template as the flexible substrate. After etching the template, a Cu NSF is obtained on the Cu film substrate. In addition, the electrical and mechanical properties of the Cu NSF are studied under various fabrication conditions. The Cu NSF exhibits high shear adhesion strength (∼234 N cm‑2) and low contact resistivity (2.2 × 10‑4 Ω cm2).

  1. Plasma immersion ion implantation of polyurethane shape memory polymer: Surface properties and protein immobilization

    Science.gov (United States)

    Cheng, Xinying; Kondyurin, Alexey; Bao, Shisan; Bilek, Marcela M. M.; Ye, Lin

    2017-09-01

    Polyurethane-type shape memory polymers (SMPU) are promising biomedical implant materials due to their ability to recover to a predetermined shape from a temporary shape induced by thermal activation close to human body temperature and their advantageous mechanical properties including large recovery strains and low recovery stresses. Plasma Immersion Ion Implantation (PIII) is a surface modification process using energetic ions that generates radicals in polymer surfaces leading to carbonisation and oxidation and the ability to covalently immobilise proteins without the need for wet chemistry. Here we show that PIII treatment of SMPU significantly enhances its bioactivity making SMPU suitable for applications in permanent implantable biomedical devices. Scanning Electron Microscopy (SEM), contact angle measurements, surface energy measurements, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterise the PIII modified surface, including its after treatment aging kinetics and its capability to covalently immobilise protein directly from solution. The results show a substantial improvement in wettability and dramatic changes of surface chemical composition dependent on treatment duration, due to the generation of radicals and subsequent oxidation. The SMPU surface, PIII treated for 200s, achieved a saturated level of covalently immobilized protein indicating that a full monolayer coverage was achieved. We conclude that PIII is a promising and efficient surface modification method to enhance the biocompatibility of SMPU for use in medical applications that demand bioactivity for tissue integration and stability in vivo.

  2. In vivo modulation of foreign body response on polyurethane by surface entrapment technique.

    Science.gov (United States)

    Khandwekar, Anand P; Patil, Deepak P; Hardikar, Anand A; Shouche, Yogesh S; Doble, Mukesh

    2010-11-01

    Implanted polymeric materials, such as medical devices, provoke the body to initiate an inflammatory reaction, known as the foreign body response (FBR), which causes several complications. In this study, polyurethane (Tecoflex®, PU) surface modified with the nonionic surfactant Tween80® (PU/T80) and the cell adhesive PLL-RGD peptide (PU/PLL-RGD) by a previously described entrapment technique were implanted in the peritoneal cavity of Wistar rats for 30 days. Implants were retrieved and examined for tissue reactivity and cellular adherence by various microscopic and analytical techniques. Surface-induced inflammatory response was assessed by real-time PCR based quantification of proinflammatory cytokine transcripts, namely, TNF-α and IL-1β, normalized to housekeeping gene GAPDH. Cellular adherence and their distribution profile were assessed by microscopic examination of H&E stained implant sections. It was observed that PU/PLL-RGD followed by the bare PU surface exhibited severe inflammatory and fibrotic response with an average mean thickness of 19 and 12 μm, respectively, in 30 days. In contrast, PU/T80 surface showed only a cellular monolayer of 2-3 μm in thickness, with a mild inflammatory response and no fibrotic encapsulation. The PU/PLL-RGD peptide-modified substrate promoted an enhanced rate of macrophage cell fusion to form foreign body giant cell (FBGCs), whereas FBGCs were rarely observed on Tween80®-modified substrate. The expression levels of proinflammatory cytokines (TNF-α and IL-1β) were upregulated on PU/PLL-RGD surface followed by bare PU, whereas the cytokine expressions were significantly suppressed on PU/T80 surface. Thus, our study highlights modulation of foreign body response on polyurethane surfaces through surface entrapment technique in the form of differential responses observed on PLL-RGD and Tween80® modified surfaces with the former effective in triggering tissue cell adhesion thereby fibrous encapsulation, while the later

  3. Chitin based polyurethanes using hydroxyl terminated polybutadiene, part III: surface characteristics.

    Science.gov (United States)

    Zia, Khalid Mahmood; Zuber, Mohammad; Saif, Muhammad Jawwad; Jawaid, Mohammad; Mahmood, Kashif; Shahid, Muhammad; Anjum, Muhammad Naveed; Ahmad, Mirza Nadeem

    2013-11-01

    Hydroxy terminated polybutadiene (HTPB)-chitin based polyurethanes (PUs) with controlled hydrophobicity were synthesized using HTPB and toluene diisocyanate (TDI). The prepolymer was extended with different mass ratios of chitin and 1,4-butane diol (BDO). The effect of chitin contents in chain extender (CE) proportions on surface properties was studied and investigated. Incorporation of chitin contents into the final PU showed decrease in contact angle value of water drop, water absorption (%) and swelling behavior. The antibacterial activity of the prepared samples was affected by varying the chitin contents in the chemical composition of the final PU. The results demonstrated that the use of prepared material can be suggested as non-absorbable suture. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. 21 CFR 177.1680 - Polyurethane resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyurethane resins. 177.1680 Section 177.1680 Food... of Single and Repeated Use Food Contact Surfaces § 177.1680 Polyurethane resins. The polyurethane...) For the purpose of this section, polyurethane resins are those produced when one or more of the...

  5. Evaluation of protein adsorption onto a polyurethane nanofiber surface having different segment distributions

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yuko; Koizumi, Gaku [Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui (Japan); Sakamoto, Hiroaki, E-mail: hi-saka@u-fukui.ac.jp [Tenure-Track Program for Innovative Research, University of Fukui (Japan); Suye, Shin-ichiro [Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui (Japan)

    2017-02-01

    Electrospinning is well known to be an effective method for fabricating polymeric nanofibers with a diameter of several hundred nanometers. Recently, the molecular-level orientation within nanofibers has attracted particular attention. Previously, we used atomic force microscopy to visualize the phase separation between soft and hard segments of a polyurethane (PU) nanofiber surface prepared by electrospinning. The unstretched PU nanofibers exhibited irregularly distributed hard segments, whereas hard segments of stretched nanofibers prepared with a high-speed collector exhibited periodic structures along the long-axis direction. PU was originally used to inhibit protein adsorption, but because the surface segment distribution was changed in the stretched nanofiber, here, we hypothesized that the protein adsorption property on the stretched nanofiber might be affected. We investigated protein adsorption onto PU nanofibers to elucidate the effects of segment distribution on the surface properties of PU nanofibers. The amount of adsorbed protein on stretched PU nanofibers was increased compared with that of unstretched nanofibers. These results indicate that the hard segment alignment on stretched PU nanofibers mediated protein adsorption. It is therefore expected that the amount of protein adsorption can be controlled by rotation of the collector. - Highlights: • The hard segments of stretched PU nanofibers exhibit periodic structures. • The adsorbed protein on stretched PU nanofibers was increased compared with PU film. • The hard segment alignment on stretched PU nanofibers mediated protein adsorption.

  6. Reduced chemical warfare agent sorption in polyurethane-painted surfaces via plasma-enhanced chemical vapor deposition of perfluoroalkanes.

    Science.gov (United States)

    Gordon, Wesley O; Peterson, Gregory W; Durke, Erin M

    2015-04-01

    Perfluoralkalation via plasma chemical vapor deposition has been used to improve hydrophobicity of surfaces. We have investigated this technique to improve the resistance of commercial polyurethane coatings to chemicals, such as chemical warfare agents. The reported results indicate the surface treatment minimizes the spread of agent droplets and the sorption of agent into the coating. The improvement in resistance is likely due to reduction of the coating's surface free energy via fluorine incorporation, but may also have contributing effects from surface morphology changes. The data indicates that plasma-based surface modifications may have utility in improving chemical resistance of commercial coatings.

  7. 40 CFR 63.1298 - Standards for slabstock flexible polyurethane foam production-HAP emissions from equipment cleaning.

    Science.gov (United States)

    2010-07-01

    ... polyurethane foam production-HAP emissions from equipment cleaning. 63.1298 Section 63.1298 Protection of... foam production—HAP emissions from equipment cleaning. Each owner or operator of a new or existing...(a)(1) shall not use a HAP or a HAP-based material as an equipment cleaner. ...

  8. 40 CFR 63.1296 - Standards for slabstock flexible polyurethane foam production-HAP ABA equipment leaks.

    Science.gov (United States)

    2010-07-01

    ... polyurethane foam production-HAP ABA equipment leaks. 63.1296 Section 63.1296 Protection of Environment... production—HAP ABA equipment leaks. Each owner or operator of a new or existing slabstock affected source complying with the emission point specific limitation option provided in § 63.1293(a) shall control HAP ABA...

  9. 40 CFR 63.1295 - Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels.

    Science.gov (United States)

    2010-07-01

    ... polyurethane foam production-HAP ABA storage vessels. 63.1295 Section 63.1295 Protection of Environment... production—HAP ABA storage vessels. Each owner or operator of a new or existing slabstock affected source complying with the emission point specific limitation option provided in § 63.1293(a) shall control HAP ABA...

  10. UV-Surface Treatment of Fungal Resistant Polyether Polyurethane Film-Induced Growth of Entomopathogenic Fungi.

    Science.gov (United States)

    Lando, Gabriela Albara; Marconatto, Letícia; Kessler, Felipe; Lopes, William; Schrank, Augusto; Vainstein, Marilene Henning; Weibel, Daniel Eduardo

    2017-07-18

    Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU) are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae , when the films were pre-treated with Ultraviolet (UV) irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), scanning electron microscopy (SEM), and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management.

  11. UV-Surface Treatment of Fungal Resistant Polyether Polyurethane Film-Induced Growth of Entomopathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Gabriela Albara Lando

    2017-07-01

    Full Text Available Synthetic polymers are the cause of some major environmental impacts due to their low degradation rates. Polyurethanes (PU are widely used synthetic polymers, and their growing use in industry has produced an increase in plastic waste. A commercial polyether-based thermoplastic PU with hydrolytic stability and fungus resistance was only attacked by an entomopathogenic fungus, Metarhiziumanisopliae, when the films were pre-treated with Ultraviolet (UV irradiation in the presence of reactive atmospheres. Water contact angle, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR, scanning electron microscopy (SEM, and profilometer measurements were mainly used for analysis. Permanent hydrophilic PU films were produced by the UV-assisted treatments. Pristine polyether PU films incubated for 10, 30, and 60 days did not show any indication of fungal growth. On the contrary, when using oxygen in the UV pre-treatment a layer of fungi spores covered the sample, indicating a great adherence of the microorganisms to the polymer. However, if acrylic acid vapors were used during the UV pre-treatment, a visible attack by the entomopathogenic fungi was observed. SEM and FTIR-ATR data showed clear evidence of fungal development: growth and ramifications of hyphae on the polymer surface with the increase in UV pre-treatment time and fungus incubation time. The results indicated that the simple UV surface activation process has proven to be a promising alternative for polyether PU waste management.

  12. Surface characterization, hemo- and cytocompatibility of segmented poly(dimethylsiloxane-based polyurethanes

    Directory of Open Access Journals (Sweden)

    Pergal Marija V.

    2014-01-01

    Full Text Available Segmented polyurethanes based on poly(dimethylsiloxane, currently used for biomedical applications, have sub-optimal biocompatibility which reduces their efficacy. Improving the endothelial cell attachment and blood-contacting properties of PDMS-based copolymers would substantially improve their clinical applications. We have studied the surface properties and in vitro biocompatibility of two series of segmented poly(urethane-dimethylsiloxanes (SPU-PDMS based on hydroxypropyl- and hydroxyethoxypropyl- terminated PDMS with potential applications in blood-contacting medical devices. SPU-PDMS copolymers were characterized by contact angle measurements, surface free energy determination (calculated using the van Oss-Chaudhury-Good and Owens-Wendt methods, and atomic force microscopy. The biocompatibility of copolymers was evaluated using an endothelial EA.hy926 cell line by direct contact assay, before and after pre-treatment of copolymers with multicomponent protein mixture, as well as by a competitive blood-protein adsorption assay. The obtained results suggested good blood compatibility of synthesized copolymers. All copolymers exhibited good resistance to fibrinogen adsorption and all favored albumin adsorption. Copolymers based on hydroxyethoxypropyl-PDMS had lower hydrophobicity, higher surface free energy, and better microphase separation in comparison with hydroxypropyl-PDMS-based copolymers, which promoted better endothelial cell attachment and growth on the surface of these polymers as compared to hydroxypropyl-PDMS-based copolymers. The results showed that SPU-PDMS copolymers display good surface properties, depending on the type of soft PDMS segments, which can be tailored for biomedical application requirements such as biomedical devices for short- and long-term uses. [Projekat Ministarstva nauke Republike Srbije, br. 172062

  13. Tunnel flexibility effect on the ground surface acceleration response

    Science.gov (United States)

    Baziar, Mohammad Hassan; Moghadam, Masoud Rabeti; Choo, Yun Wook; Kim, Dong-Soo

    2016-09-01

    Flexibility of underground structures relative to the surrounding medium, referred to as the flexibility ratio, is an important factor that influences their dynamic interaction. This study investigates the flexibility effect of a box-shaped subway tunnel, resting directly on bedrock, on the ground surface acceleration response using a numerical model verified against dynamic centrifuge test results. A comparison of the ground surface acceleration response for tunnel models with different flexibility ratios revealed that the tunnels with different flexibility ratios influence the acceleration response at the ground surface in different ways. Tunnels with lower flexibility ratios have higher acceleration responses at short periods, whereas tunnels with higher flexibility ratios have higher acceleration responses at longer periods. The effect of the flexibility ratio on ground surface acceleration is more prominent in the high range of frequencies. Furthermore, as the flexibility ratio of the tunnel system increases, the acceleration response moves away from the free field response and shifts towards the longer periods. Therefore, the flexibility ratio of the underground tunnels influences the peak ground acceleration (PGA) at the ground surface, and may need to be considered in the seismic zonation of urban areas.

  14. Flexible and Lightweight Pressure Sensor Based on Carbon Nanotube/Thermoplastic Polyurethane-Aligned Conductive Foam with Superior Compressibility and Stability.

    Science.gov (United States)

    Huang, Wenju; Dai, Kun; Zhai, Yue; Liu, Hu; Zhan, Pengfei; Gao, Jiachen; Zheng, Guoqiang; Liu, Chuntai; Shen, Changyu

    2017-12-06

    Flexible and lightweight carbon nanotube (CNT)/thermoplastic polyurethane (TPU) conductive foam with a novel aligned porous structure was fabricated. The density of the aligned porous material was as low as 0.123 g·cm -3 . Homogeneous dispersion of CNTs was achieved through the skeleton of the foam, and an ultralow percolation threshold of 0.0023 vol % was obtained. Compared with the disordered foam, mechanical properties of the aligned foam were enhanced and the piezoresistive stability of the flexible foam was improved significantly. The compression strength of the aligned TPU foam increases by 30.7% at the strain of 50%, and the stress of the aligned foam is 22 times that of the disordered foam at the strain of 90%. Importantly, the resistance variation of the aligned foam shows a fascinating linear characteristic under the applied strain until 77%, which would benefit the application of the foam as a desired pressure sensor. During multiple cyclic compression-release measurements, the aligned conductive CNT/TPU foam represents excellent reversibility and reproducibility in terms of resistance. This nice capability benefits from the aligned porous structure composed of ladderlike cells along the orientation direction. Simultaneously, the human motion detections, such as walk, jump, squat, etc. were demonstrated by using our flexible pressure sensor. Because of the lightweight, flexibility, high compressibility, excellent reversibility, and reproducibility of the conductive aligned foam, the present study is capable of providing new insights into the fabrication of a high-performance pressure sensor.

  15. Sub-Surface and Bulk Creep Behaviour of Polyurethane/Clay Nanocomposites.

    Science.gov (United States)

    Jin, J; Yusoh, K; Zhang, H X; Song, M

    2016-03-01

    A series of exfoliated and intercalated polyurethane organoclay nanocomposites were prepared by in situ polymerization of polyol/organoclay mixture, chain extender and diisocyanate. The creep behaviour of subsurface and bulk of the polyurethane coatings was investigated by nanoindentation technique and uniaxial conventional creep testing method, respectively. The results showed that the creep resistance of the nanocomposites was significantly improved by incorporation of organoclay. The enhancement of creep resistance was dependent on clay content as well as organoclay structure (exfoliation or intercalation) in the polymer matrix. With 1 wt% organoclay, the creep resistance increased by about 50% for the intercalated organoclay and 6% for the exfoliated organoclay systems, respectively, compared to the pristine polyurethane. Viscoelastic model was employed to investigate the effect of organoclay loadings on the creep performance of the polyurethane. Results showed the model was in good agreement with the experimental data. Incorporation of clay leads to an increase in elastic deformation especially in exfoliated polyurethane nanocomposites and induces a higher initial displacement at the early stage of creep.

  16. The use of abrasive polishing and laser processing for developing polyurethane surfaces for controlling fibroblast cell behaviour

    International Nuclear Information System (INIS)

    Irving, Michael; Murphy, Mark F; Lilley, Francis; French, Paul W; Burton, David R; Dixon, Simon; Sharp, Martin C

    2017-01-01

    Studies have shown that surfaces having micro and nano-scale features can be used to control cell behaviours including; cell proliferation, migration and adhesion. The aim of this work was to compare the use of laser processing and abrasive polishing to develop micro/nano-patterned polyurethane substrates for controlling fibroblast cell adhesion, migration and proliferation. Laser processing in a directional manner resulted in polyurethane surfaces having a ploughed field effect with micron-scale features. In contrast, abrasive polishing in a directional and random manner resulted in polyurethane surfaces having sub-micron scale features orientated in a linear or random manner. Results show that when compared with flat (non-patterned) polymer, both the laser processed and abrasive polished surface having randomly organised features, promoted significantly greater cell adhesion, while also enhancing cell proliferation after 72 h. In contrast, the abrasive polished surface having linear features did not enhance cell adhesion or proliferation when compared to the flat surface. For cell migration, the cells growing on the laser processed and abrasively polished random surface showed decreased levels of migration when compared to the flat surface. This study shows that both abrasive polishing and laser processing can be used to produce surfaces having features on the nano-scale and micron-scale, respectively. Surfaces produced using both techniques can be used to promote fibroblast cell adhesion and proliferation. Thus both methods offer a viable alternative to using lithographic techniques for developing patterned surfaces. In particular, abrasive polishing is an attractive method due to it being a simple, rapid and inexpensive method that can be used to produce surfaces having features on a comparable scale to more expensive, multi-step methods. - Highlights: • Abrasive polishing can generate nano-scratches on stainless steel to cast polymer films for cell

  17. The use of abrasive polishing and laser processing for developing polyurethane surfaces for controlling fibroblast cell behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Irving, Michael; Murphy, Mark F; Lilley, Francis; French, Paul W; Burton, David R [General Engineering Research Institute, Liverpool John Moores University, Liverpool, L3 3AF (United Kingdom); Dixon, Simon [Biomer Technology LTD, 10 Seymour Court, Tudor Road, Manor Park, Runcorn, Cheshire, WA7 1SY (United Kingdom); Sharp, Martin C [General Engineering Research Institute, Liverpool John Moores University, Liverpool, L3 3AF (United Kingdom)

    2017-02-01

    Studies have shown that surfaces having micro and nano-scale features can be used to control cell behaviours including; cell proliferation, migration and adhesion. The aim of this work was to compare the use of laser processing and abrasive polishing to develop micro/nano-patterned polyurethane substrates for controlling fibroblast cell adhesion, migration and proliferation. Laser processing in a directional manner resulted in polyurethane surfaces having a ploughed field effect with micron-scale features. In contrast, abrasive polishing in a directional and random manner resulted in polyurethane surfaces having sub-micron scale features orientated in a linear or random manner. Results show that when compared with flat (non-patterned) polymer, both the laser processed and abrasive polished surface having randomly organised features, promoted significantly greater cell adhesion, while also enhancing cell proliferation after 72 h. In contrast, the abrasive polished surface having linear features did not enhance cell adhesion or proliferation when compared to the flat surface. For cell migration, the cells growing on the laser processed and abrasively polished random surface showed decreased levels of migration when compared to the flat surface. This study shows that both abrasive polishing and laser processing can be used to produce surfaces having features on the nano-scale and micron-scale, respectively. Surfaces produced using both techniques can be used to promote fibroblast cell adhesion and proliferation. Thus both methods offer a viable alternative to using lithographic techniques for developing patterned surfaces. In particular, abrasive polishing is an attractive method due to it being a simple, rapid and inexpensive method that can be used to produce surfaces having features on a comparable scale to more expensive, multi-step methods. - Highlights: • Abrasive polishing can generate nano-scratches on stainless steel to cast polymer films for cell

  18. Tissue reactions to bacteria-inoculated rat lead samples .2. Effect of local gentamicin release through surface-modified polyurethane tubing

    NARCIS (Netherlands)

    vanWachem, PB; vanLuyn, MJA; deWit, AW; Raatjes, D; Hendriks, M; Verhoeven, MLPM; Cahalan, PT

    A surface modification technique was developed to achieve controlled release of gentamicin from implanted polyurethane (PU) rat lead samples. PU tubing first was provided with an acrylic acid/acrylamide copolymer surface graft and then loaded with gentamicin. This surface modification technique

  19. Flexible Slippery Surface to Manipulate Droplet Coalescence and Sliding, and Its Practicability in Wind-Resistant Water Collection.

    Science.gov (United States)

    Wang, Yuanfeng; Qian, Baitai; Lai, Chuilin; Wang, Xiaowen; Ma, Kaikai; Guo, Yujuan; Zhu, Xingli; Fei, Bin; Xin, John H

    2017-07-26

    A flexible slippery membrane (FSM) with tunable morphology and high elastic deformability has been developed by infusing perfluoropolyether (PFPE) into a fluorinated-copolymer-modified thermoplastic polyurethane (TPU) nanofiberous membrane. To immobilize PFPE in TPU matrix, we synthesized a fluorinated-copolymer poly(DFMA-co-IBOA-co-LMA) with low surface energy, high chemical affinity to PFPE, adequate flexibility, and strong physical adhesion on TPU. Upon external tensile stress, the as-prepared FSM can realize a real-time manipulation of water sliding and coalescence on it. Furthermore, it exhibits the ability to preserve the captured water from being blown away by strong wind, which ensures the water collection efficiency in windy regions.

  20. Flexible and Safe Control of Mobile Surface Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary innovation of this work is a novel approach for flexible and safe control of highly capable mobile surface systems, such as long-duration science rovers,...

  1. Flexible and Safe Control of Mobile Surface Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary innovation of this work is a novel Petri net based approach for safe and flexible control of highly capable mobile surface systems, such as long-duration...

  2. Polyurethane Functional Coatings for Protection of Different Surfaces from Aggressive Environmental Factors

    Directory of Open Access Journals (Sweden)

    Savelyev, U.V., Markovska, L.A., Robota, L.P., Parkhomenko, N.I., and Savelyeva, O.O.

    2014-05-01

    Full Text Available New polyurethane compositions (PC as multifunctional protective materials that can serve as coatings or binders or impregnating materials have been created. PC have high adhesion values and the PC-based materials are waterproof and resistant to aggressive biotic (abiotic and technogenic factors (biocorrosion, UV radiation, chemical agents. Putting active compounds into the polymer macrochain prolongs the protection functions of the materials. This is their advantage to existing materials.

  3. Surface modification of Fe2O3 nanoparticles with 3-aminopropyltrimethoxysilane (APTMS): An attempt to investigate surface treatment on surface chemistry and mechanical properties of polyurethane/Fe2O3 nanocomposites

    International Nuclear Information System (INIS)

    Palimi, M.J.; Rostami, M.; Mahdavian, M.; Ramezanzadeh, B.

    2014-01-01

    Highlights: • Surface treatment of Fe 2 O 3 with amino propyl tri methoxy silane. • The surface chemistry pigments were affected by the chemical treatment. • Surface treatment of the nanoparticles by silane resulted in the significant improvement of the mechanical properties of the polyurethane coating. • The improvement was most pronounced when the nanoparticles were modified with 3 gr silane/5 g nanoparticles. - Abstract: Fe 2 O 3 nanoparticles were modified with various amounts of 3-amino propyl trimethoxy silane (APTMS). Modified and unmodified nanoparticles were introduced into the polyurethane matrix at different concentrations. Fourier transform infrared radiation (FT-IR) and X-ray photoelectron spectrophotometer (XPS) were employed in order to investigate the APTMS grafting on the nanoparticles field emission-scanning electron microscope (FE-SEM) was utilized in order to investigate nanoparticles dispersion in the polyurethane coating matrix as well as the fracture behavior of the nanocomposites. The mechanical properties of the nanocomposites were investigated by dynamic mechanical thermal analysis (DMTA) and tensile test. The FTIR spectra and XPS analysis clearly showed that APTMS was grafted on the surface of nanoparticles successfully and formed chemical bonds with the surface. Also, surface treatment of the nanoparticles by silane resulted in the significant improvement of the mechanical properties of the polyurethane coating. The improvement was most pronounced when the nanoparticles were modified with 3 gr silane/5 g nanoparticles

  4. Synthesis and surface characterization of electroactive conducting polymers and polyurethane coatings

    Science.gov (United States)

    Vang, Chur Kalec

    The direct electrodeposition of electroactive conducting polymers (ECPs) on active metals such as iron, steel, and aluminum is complicated by the concomitant metal oxidation that occurs at the positive potentials required for polymer formation. In the case of aluminum and its alloys, the oxide layer that forms is an insulator that blocks electron transfer and impedes polymer formation and deposition. As a result, only patchy, nonuniform polymer films are obtained. Electron transfer mediation is a well-known technique for overcoming kinetic limitations of electron transfer at metal electrodes. In this dissertation, we report the use of electron transfer mediation for the direct electrodeposition of polypyrrole onto aluminum and onto Al 2024-T3 alloy. The first few chapters focus on the electrochemistry and use of Tiron RTM (4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt) as the mediator. Electroactive conductive polymers (ECPs) were also being investigated for corrosion protection of Al alloys, with a view toward replacement of chromate-based coating systems. The use of electrochemical methods clearly indicated that the electrodeposited Ppy coatings had altered the corrosion behavior of the Al alloy. Degradation mechanisms for self-priming (unicoat), high-gloss, and fluorinated polyurethane aircraft coatings exposed to QUV/H2O radiation were carried out using linear and step-scan photoacoustic (S2-PA) FTIR spectroscopy (Chapters 7--9). FTIR spectroscopic analysis indicated that, as the depth of sampling increased from film-air to film-substrate, an increase of free carbonyl components was observed. These free carbonyl groups are indicative of polyurethane components. Exposure of the polyurethane coating to prolonged periods of extreme weathering conditions indicated a loss of both polyurethane/polyurea components at the air interface, which has lead to an increase of disordered hydrogen-bonding formations. Contact angle measurement further indicated that as

  5. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    International Nuclear Information System (INIS)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar; Grunwald, Ingo

    2013-01-01

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  6. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar [Fraunhofer Institute for Manufacturing Technology and Advanced Materials - IFAM, Wiener Strasse 12, 28359 Bremen (Germany); Grunwald, Ingo, E-mail: ingo.grunwald@ifam.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials - IFAM, Wiener Strasse 12, 28359 Bremen (Germany)

    2013-05-15

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  7. Construction of organic–inorganic hybrid nano-coatings containing α-zirconium phosphate with high efficiency for reducing fire hazards of flexible polyurethane foam

    International Nuclear Information System (INIS)

    Pan, Ying; Pan, Haifeng; Yuan, Bihe; Hong, Ningning; Zhan, Jing; Wang, Bibo; Song, Lei; Hu, Yuan

    2015-01-01

    Nano-architecture on the flexible polyurethane foam (FPUF) was built by layer by layer (LbL) self-assembling of α-zirconium phosphate (α-ZrP) and two biopolymers. Through electrostatic attraction and hydrogen bonding between α-ZrP, chitosan and alginate, the nano-coatings were successfully deposited on the substrate. The LbL self-assembly coatings were characterized by X-ray diffraction, UV–vis absorption spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy and scanning electron microscopy. This loaded nano-coating endowed FPUF with excellent flame retardancy. Compared with pure FPUF, the reduction in the peak heat release rate of the modified foam with 12.3 wt% weight gain was achieved 71%, and the melt-dripping during combustion disappeared. Meanwhile, the thermal degradation of coated FPUF under nitrogen atmosphere was obviously retarded compared with pure FPUF. Additionally, the mechanical properties of the treated FPUFs were investigated. After loaded with 12.3 wt% nano-coating, the tensile and tear strength were enhanced by 13% and 54%, respectively. These investigations indicated that the study has great potential to add new dimensions in the fire retardancy modification of FPUF. - Highlights: • The nano-coatings containing α-ZrP and two biopolymers were successfully loaded on the FPUF by LbL self-assembly method. • The hybrid nano-coatings exhibited marked reduction in the peak heat release rate of the foam. • The coating resulted in enhanced tensile and tear strength of the foam

  8. Construction of organic–inorganic hybrid nano-coatings containing α-zirconium phosphate with high efficiency for reducing fire hazards of flexible polyurethane foam

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ying [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Pan, Haifeng; Yuan, Bihe [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, Jiangsu 215123 (China); Hong, Ningning; Zhan, Jing; Wang, Bibo [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Song, Lei, E-mail: leisong@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, Jiangsu 215123 (China)

    2015-08-01

    Nano-architecture on the flexible polyurethane foam (FPUF) was built by layer by layer (LbL) self-assembling of α-zirconium phosphate (α-ZrP) and two biopolymers. Through electrostatic attraction and hydrogen bonding between α-ZrP, chitosan and alginate, the nano-coatings were successfully deposited on the substrate. The LbL self-assembly coatings were characterized by X-ray diffraction, UV–vis absorption spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy and scanning electron microscopy. This loaded nano-coating endowed FPUF with excellent flame retardancy. Compared with pure FPUF, the reduction in the peak heat release rate of the modified foam with 12.3 wt% weight gain was achieved 71%, and the melt-dripping during combustion disappeared. Meanwhile, the thermal degradation of coated FPUF under nitrogen atmosphere was obviously retarded compared with pure FPUF. Additionally, the mechanical properties of the treated FPUFs were investigated. After loaded with 12.3 wt% nano-coating, the tensile and tear strength were enhanced by 13% and 54%, respectively. These investigations indicated that the study has great potential to add new dimensions in the fire retardancy modification of FPUF. - Highlights: • The nano-coatings containing α-ZrP and two biopolymers were successfully loaded on the FPUF by LbL self-assembly method. • The hybrid nano-coatings exhibited marked reduction in the peak heat release rate of the foam. • The coating resulted in enhanced tensile and tear strength of the foam.

  9. A single α-cobalt hydroxide/sodium alginate bilayer layer-by-layer assembly for conferring flame retardancy to flexible polyurethane foams

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Xiaowei [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026 (China); Yuan, Bihe [School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070 (China); Pan, Ying; Feng, Xiaming; Duan, Lijin [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026 (China); Zong, Ruowen, E-mail: zongrw@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026 (China); National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China)

    2017-04-15

    A layer-by-layer (LBL) assembly coating composed of α-cobalt hydroxide (α-Co(OH){sub 2}) and sodium alginate (SA) is deposited on flexible polyurethane (FPU) foam to reduce its flammability. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) are employed to prove the LBL assembly process. It is obvious from SEM results that a uniform and rough coating is deposited on FPU foam compared with that of untreated one. The peak intensity of methylene of SA in FITR spectra and typical (003) diffraction peak of α-Co(OH){sub 2} nanosheets at 11.0° in XRD patterns increases gradually with increment of bilayer number. Combustion behavior and toxicity suppression property of samples are characterized by cone calorimeter (under an irradiance of 35 kW m{sup −2}) and Thermogravimetry/Fourier transform infrared spectroscopy. The one and two bilayers (BL) coating on FPU foam can achieve excellent flame retardancy. Compared with untreated sample, the peak heat release rate of the coated FPU foam containing only one BL coating is reduced by 58.7%. The content of gaseous toxic substances during pyrolysis of FPU foam deposited with a single bilayer coating, such as CO and NCO-containing compounds, are reduced by 20.0% and 9.2%, respectively. Besides, the flame retardant mechanism of the coated FPU foam is also revealed. - Highlights: • The α-Co(OH){sub 2} nanosheets are firstly employed in LBL assembly. • A single α-cobalt hydroxide/sodium alginate bilayer LBL assembly for conferring excellent flame retardancy to FPU foam. • The flame retardant mechanism of LBL assembly FPU foam is displayed.

  10. Síntesis y caracterización de espumas flexibles de poliuretano obtenidas a partir de aceite de castor maleinizado Flexible polyurethane foam synthesis and characterization obtained from maleinizated castor oil

    Directory of Open Access Journals (Sweden)

    Paula Mazo

    2009-06-01

    Full Text Available En este trabajo se realiza la síntesis de espumas flexibles de poliuretano empleando un diseño experimental Taguchi, utilizando aceite de castor con y sin maleinización, se estudia la cinética de la reacción de esterificación del aceite por cuantificación de los grupos ácido (ASTM D4662 - 03 y se evalúan las propiedades mecánicas de las espumas (densidad, resistencia tensil, % elongación, resiliencia y dureza. Norma NTC 2019 Icontec obtenidas en función de las variables de síntesis (cantidad y tipo de catalizador, relación molar aceite castor (CO - aceite maleinizado (MACO, cantidad de agua y surfactante empleado. Se realizan análisis de FTIR y SEM para las espumas. Los resultados mostraron una cinética de primer orden con respecto al anhídrido. El aceite maleinizado (MACO incrementa la resistencia mecánica de las espumas, debido al mayor entrecruzamiento por la incorporación de grupos ácido.In this work, the synthesis of polyurethane flexible foam is realized with the experimental design Taguchi, using castor oil with and without maleinization. The kinetic reaction of oil esterification was monitored by estimating the number of acid groups (ASTM D4662 - 03, and the mechanical properties of the foam were studied, including density, tensile resistance, % elongation, resilience and hardness (Norm NTC 2019 Icontec. The influence of various synthesis parameters was investigated, namely amount and type of catalyst, molar ratio of castor oil (CO - maleinizated castor oil (MACO, amount of water and surfactant used. The foams were analyzed using FTIR and scanning electron microscopy (SEM. The results showed first order kinetics with respect to the anhydride. The maleinizated castor oil (MACO increased the mechanical resistance of the foam due to the greater interweaving by the incorporation of acid groups.

  11. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Huihui; Qian, Bin; Zhang, Wei [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); Lan, Minbo, E-mail: minbolan@ecust.edu.cn [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-02-15

    Highlights: • Antifouling PVP brushes were successfully grafted on PU films by SI-ATRP. • The effect of polymerization time on surface property and topography was studied. • Hydrophilicity and protein fouling resistance of PVP–PU films were greatly promoted. • Competitive adsorption of three proteins on PVP–PU films was evaluated. - Abstract: An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU–PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU–PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU–PVP (6.0 h) film reduced greatly to 0.08 μg/cm{sup 2}, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  12. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Yuan, Huihui; Qian, Bin; Zhang, Wei; Lan, Minbo

    2016-01-01

    Highlights: • Antifouling PVP brushes were successfully grafted on PU films by SI-ATRP. • The effect of polymerization time on surface property and topography was studied. • Hydrophilicity and protein fouling resistance of PVP–PU films were greatly promoted. • Competitive adsorption of three proteins on PVP–PU films was evaluated. - Abstract: An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU–PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU–PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU–PVP (6.0 h) film reduced greatly to 0.08 μg/cm"2, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  13. Maskless Surface Modification of Polyurethane Films by an Atmospheric Pressure He/O2 Plasma Microjet for Gelatin Immobilization

    Directory of Open Access Journals (Sweden)

    Man Zhang

    2018-04-01

    Full Text Available A localized maskless modification method of polyurethane (PU films through an atmospheric pressure He/O2 plasma microjet (APPμJ was proposed. The APPμJ system combines an atmospheric pressure plasma jet (APPJ with a microfabricated silicon micronozzle with dimension of 30 μm, which has advantages of simple structure and low cost. The possibility of APPμJ in functionalizing PU films with hydroxyl (–OH groups and covalent grafting of gelatin for improving its biocompatibility was demonstrated. The morphologies and chemical compositions of the modified surface were analyzed by scanning electronic microscopy (SEM, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS. The fluorescent images show the modified surface can be divided into four areas with different fluorescence intensity from the center to the outside domain. The distribution of the rings could be controlled by plasma process parameters, such as the treatment time and the flow rate of O2. When the treatment time is 4 to 5 min with the oxygen percentage of 0.6%, the PU film can be effectively local functionalized with the diameter of 170 μm. In addition, the modification mechanism of PU films by the APPμJ is investigated. The localized polymer modified by APPμJ has potential applications in the field of tissue engineering.

  14. Structural–mechanical and antibacterial properties of a soft elastic polyurethane surface after plasma immersion N{sub 2}{sup +} implantation

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Ilya A., E-mail: ilya.morozov@gmail.com [Institute of Continuous Media Mechanics UB RAS, Academika Koroleva st. 1, 614013 Perm (Russian Federation); Perm State University, Bukireva st. 15, 614990 Perm (Russian Federation); Mamaev, Alexander S. [Institute of Electrophysics UD RAS, Amundsen st. 106, 620016 Ekaterinburg (Russian Federation); Osorgina, Irina V. [Perm State University, Bukireva st. 15, 614990 Perm (Russian Federation); Lemkina, Larisa M. [Institute of Ecology and Genetics of Microorganisms UB RAS, Golev st. 13, 614081 Perm (Russian Federation); Korobov, Vladimir P. [Institute of Ecology and Genetics of Microorganisms UB RAS, Golev st. 13, 614081 Perm (Russian Federation); Perm National Research Polytechnic University, Komsomolsky av. 29, 614990 Perm (Russian Federation); Belyaev, Anton Yu [Institute of Continuous Media Mechanics UB RAS, Academika Koroleva st. 1, 614013 Perm (Russian Federation); Porozova, Svetlana E. [Perm National Research Polytechnic University, Komsomolsky av. 29, 614990 Perm (Russian Federation); Sherban, Marina G. [Perm State University, Bukireva st. 15, 614990 Perm (Russian Federation)

    2016-05-01

    The surface of elastic polyurethane treated by plasma immersion N{sub 2}{sup +} ion implantation at different fluences has been investigated. A folded surface structure is observed in all cases. Analysis has been performed to study the structural (roughness, steepness and fraction of folds, fractal characteristics), mechanical (stiffness, adhesion force between the AFM probe and the material) and wetting properties of surfaces. Under uniaxial stretching the cracks orthogonal to the axis of deformation and longitudinal folds are formed on the examined surfaces. After unloading the initial structure of the surface of deformed materials exposed to low fluences becomes smoother and does not recover, i.e. it has plastic properties. By contrast, the structure of the surfaces of materials subjected to high-fluence treatment recovers without visible changes and the cracks are fully closed. The study of Staphylococcus colonies grown on these materials has demonstrated significant reduction (from 3 to 5 times) in the vitality of bacteria on treated surfaces. This result was repeated on samples after 11 months of storage. Such antibacterial properties are primarily related to the structural changes of the surfaces accompanied by the increased hydrophilicity. - Highlights: • Surface of soft polyurethane after plasma immersion ion implantation was studied. • Treated surfaces have fluence dependent plicated fractal structure. • Surface properties were investigated both in undeformed and stretched states. • Vitality of bacteria on treated surfaces demonstrated significant reduction.

  15. Sound Scattering by a Flexible Plate Embedded on Free Surface

    Directory of Open Access Journals (Sweden)

    Eldad J. Avital

    2012-01-01

    Full Text Available Sound wave scattering by a flexible plate embedded on water surface is considered. Linear acoustics and plate elasticity are assumed. The aim is to assess the effect of the plate’s flexibility on sound scattering and the potential in using that flexibility for this purpose. A combined sound-structure solution is used, which is based on a Fourier transform of the sound field and a finite-difference numerical-solution of the plate’s dynamics. The solution is implemented for a circular plate subject to a perpendicular incoming monochromatic sound wave. A very good agreement is achieved with a finite-difference solution of the sound field. It is shown that the flexibility of the plate dampens its scattered sound wave regardless of the type of the plate’s edge support. A hole in the plate is shown to further scatter the sound wave to form maxima in the near sound field. It is suggested that applying an external oscillatory pressure on the plate can reduce significantly and even eliminate its scattered wave, thus making the plate close to acoustically invisible. A uniformly distributed external pressure is found capable of achieving that aim as long as the plate is free edged or is not highly acoustically noncompact.

  16. Flexibility.

    Science.gov (United States)

    Humphrey, L. Dennis

    1981-01-01

    Flexibility is an important aspect of all sports and recreational activities. Flexibility can be developed and maintained by stretching exercises. Exercises designed to develop flexibility in ankle joints, knees, hips, and the lower back are presented. (JN)

  17. Optically transparent frequency selective surfaces on flexible thin plastic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Dewani, Aliya A., E-mail: a.ashraf@griffith.edu.au; O’Keefe, Steven G.; Thiel, David V.; Galehdar, Amir [School Of Electrical Engineering, Griffith University, Brisbane, 4111 (Australia)

    2015-02-15

    A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.

  18. Optically transparent frequency selective surfaces on flexible thin plastic substrates

    Science.gov (United States)

    Dewani, Aliya A.; O'Keefe, Steven G.; Thiel, David V.; Galehdar, Amir

    2015-02-01

    A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.

  19. Biobased composites from thermoplastic polyurethane elastomer and cross-linked acrylated-epoxidized soybean oil

    Science.gov (United States)

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle without flexibility and the incorporation of thermoplastic polyurethane improves its toughness for industrial applications. The hydrophilic functional groups from both oil and polyurethan...

  20. Fully Printed, Flexible, Phased Array Antenna for Lunar Surface Communication

    Science.gov (United States)

    Subbaraman, Harish; Hen, Ray T.; Lu, Xuejun; Chen, Maggie Yihong

    2013-01-01

    NASAs future exploration missions focus on the manned exploration of the Moon, Mars, and beyond, which will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit, and back to Earth. Flexible antennas are highly desired in many scenarios. Active phased array antennas (active PAAs) with distributed control and processing electronics at the surface of an antenna aperture offer numerous advantages for radar communications. Large-area active PAAs on flexible substrates are of particular interest in NASA s space radars due to their efficient inflatable package that can be rolled up during transportation and deployed in space. Such an inflatable package significantly reduces stowage volume and mass. Because of these performance and packaging advantages, large-area inflatable active PAAs are highly desired in NASA s surface-to-orbit and surface-to-relay communications. To address the issues of flexible electronics, a room-temperature printing process of active phased-array antennas on a flexible Kapton substrate was developed. Field effect transistors (FETs) based on carbon nanotubes (CNTs), with many unique physical properties, were successfully proved feasible for the PAA system. This innovation is a new type of fully inkjet-printable, two-dimensional, high-frequency PAA on a flexible substrate at room temperature. The designed electronic circuit components, such as the FET switches in the phase shifter, metal interconnection lines, microstrip transmission lines, etc., are all printed using a special inkjet printer. Using the developed technology, entire 1x4, 2x2, and 4x4 PAA systems were developed, packaged, and demonstrated at 5.3 GHz. Several key solutions are addressed in this work to solve the fabrication issues. The source/drain contact is developed using droplets of silver ink printed on the source/drain areas prior to applying CNT thin-film. The wet silver ink droplets allow the silver to

  1. High-Performance Stretchable Conductive Composite Fibers from Surface-Modified Silver Nanowires and Thermoplastic Polyurethane by Wet Spinning.

    Science.gov (United States)

    Lu, Ying; Jiang, Jianwei; Yoon, Sungho; Kim, Kyung-Shik; Kim, Jae-Hyun; Park, Sanghyuk; Kim, Sang-Ho; Piao, Longhai

    2018-01-17

    Highly stretchable and conductive fibers have attracted great interest as a fundamental building block for the next generation of textile-based electronics. Because of its high conductivity and high aspect ratio, the Ag nanowire (AgNW) has been considered one of the most promising conducting materials for the percolation network-based conductive films and composites. However, the poor dispersibility of AgNWs in hydrophobic polymers has hindered their application to stretchable conductive composite fibers. In this paper, we present a highly stretchable and conductive composite fiber from the co-spinning of surface-modified AgNWs and thermoplastic polyurethane (PU). The surface modification of AgNWs with a polyethylene glycol derivative improved the compatibility of PU and AgNWs, which allowed the NWs to disperse homogeneously in the elastomeric matrix, forming effective percolation networks and causing the composite fiber to show enhanced electrical and mechanical performance. The maximum AgNW mass fraction in the composite fiber was 75.9 wt %, and its initial electrical conductivity was as high as 14 205 S/cm. The composite fibers also exhibited superior stretchability: the maximum rupture strain of the composite fiber with 14.6 wt % AgNW was 786%, and the composite fiber was also conductive even when it was stretched up to 200%. In addition, 2-dimensional (2-D) Ag nanoplates were added to the AgNW/PU composite fibers to increase the stability of the conductive network under repeated stretching and releasing. The Ag nanoplates acted as a bridge to effectively prevent the AgNWs from slippage and greatly improved the stability of the conductive network.

  2. Effect of surface tension and coefficient of thermal expansion in 30 nm scale nanoimprinting with two flexible polymer molds

    International Nuclear Information System (INIS)

    Kim, Jae Kwan; Cho, Hye Sung; Jung, Ho-Sup; Suh, Kahp-Yang; Lim, Kipil; Kim, Ki-Bum; Choi, Dae-Geun; Jeong, Jun-Ho

    2012-01-01

    We report on nanoimprinting of polymer thin films at 30 nm scale resolution using two types of ultraviolet (UV)-curable, flexible polymer molds: perfluoropolyether (PFPE) and polyurethane acrylate (PUA). It was found that the quality of nanopatterning at the 30 nm scale is largely determined by the combined effects of surface tension and the coefficient of thermal expansion of the polymer mold. In particular, the polar component of surface tension may play a critical role in clean release of the mold, as evidenced by much reduced delamination or broken structures for the less polarized PFPE mold when patterning a relatively hydrophilic PMMA film. In contrast, such problems were not notably observed with a relatively hydrophobic PS film for both polymer molds. In addition, the demolding characteristic was also influenced by the coefficient of thermal expansion so that no delamination or uniformity problems were observed when patterning a UV-curable polymer film at room temperature. These results suggest that a proper polymeric mold material needs to be chosen for patterning polymer films under different surface properties and processing conditions, providing insights into how a clean demolding characteristic can be obtained at 30 nm scale nanopatterning. (paper)

  3. Deposition of mannose-binding lectin and ficolins and activation of the lectin pathway of complement on the surface of polyurethane tubing used for cardiopulmonary bypass.

    Science.gov (United States)

    Eppa, Łukasz; Pągowska-Klimek, Izabela; Świerzko, Anna S; Moll, Maciej; Krajewski, Wojciech R; Cedzyński, Maciej

    2018-04-01

    The artificial surface used for cardiopulmonary bypass (CPB) is a crucial factor activating the complement system and thus contributing to the generation of a systemic inflammatory response. The activation of classical and alternative pathways on this artificial surface is well known. In contrast, lectin pathway (LP) activation has not been fully investigated, although noted during CPB in several studies. Moreover, we have recently proved the contribution of the LP to the generation of the systemic inflammatory response syndrome after pediatric cardiac surgery. The aim of this study was to assess LP-mediated complement activation on the surface of polyurethane CPB circuit tubing (noncoated Chalice ® ), used for CPB procedures in children with congenital heart disease. We found deposition of mannose-binding lectin, ficolin-1, -2, and -3 on the surface of unused tubing and on tubing used for CPB from a small minority of patients. Furthermore, we observed deposition of complement C4 activation products on tubing used for CPB and previously unused tubing after incubation with normal serum. The latter finding indicates LP activation in vitro on the polyurethane surface. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1202-1208, 2018. © 2017 Wiley Periodicals, Inc.

  4. Optically transparent frequency selective surfaces on flexible thin plastic substrates

    Directory of Open Access Journals (Sweden)

    Aliya A. Dewani

    2015-02-01

    Full Text Available A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm, flexible transparent plastic substrate (relative permittivity 3.2. It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.

  5. Flexible magnetic polyurethane/Fe2O3 nanoparticles as organic-inorganic nanocomposites for biomedical applications: Properties and cell behavior.

    Science.gov (United States)

    Shahrousvand, Mohsen; Hoseinian, Monireh Sadat; Ghollasi, Marzieh; Karbalaeimahdi, Ali; Salimi, Ali; Tabar, Fatemeh Ahmadi

    2017-05-01

    Nowadays, the discovery of cell behaviors and their responses in communication with the stem cell niches and/or microenvironments are one of the major topics in tissue engineering and regenerative medicine. In this study, incorporated organic-inorganic polyurethane (PU) nanocomposites were prepared for better understanding of cell signaling and the effect of magnetite nanoparticles on cell proliferation and cell responses. The properties of PU-IONs were evaluated by fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic-force microscopy (AFM), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS). The presence of the iron oxide nanoparticles (IONs) affects on the properties of polyurethane nanocomposites such as bulk morphology, mechanical, electrochemical, and biological properties. The electrical conductivity and hydrophilicity of PU-IONs were improved by increasing the magnetite nanoparticles; therefore water absorption, biodegradation and cell viability were changed. The biocompatibility of PU-IONs was investigated by MTT assay, cell attachment and cell staining. According to the results, the magnetite polyurethane nanocomposites could be a potential choice for cell therapy and tissue engineering, especially nerve repair. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Polyurethane membranes for surgical gown applications

    Science.gov (United States)

    Ukpabi, Pauline Ozoemena

    The Occupational Safety and Health Administration (OSHA) recently issued a directive requiring all employers to supply personnel protective equipment to employees who are at risk of exposure to blood or other potentially infectious body fluids. For the healthcare worker, a wide variety of surgical gowns is available commercially but there are concerns over their barrier effectiveness and/or wearer comfort. To successfully create a barrier fabric which combines resistance to fluid penetration with comfort, a complete understanding of the relationship between membrane structure and functional properties is required. In this study, we investigated the surface properties of hydrophilicity and hydrophobicity in polyurethane membranes intended for use in surgical gowns. The polyurethane membranes were grafted with side chains of varying lengths, polyethylene glycol (PEG) being used for the hydrophilic modifications and perfluoroalkyl compounds (a monofunctional acid and a difunctional amino alcohol) for the hydrophobic modifications. The hydrophilic treatment was intended to improve the comfort properties of monolithic membranes without adversely affecting their barrier properties. The hydrophobic treatment, on the other hand, was intended to improve the fluid repellency and hence barrier properties of microporous membranes without adversely affecting their comfort properties. Reflection infrared spectroscopy showed that fluorine was successfully grafted onto the polyurethane backbone during the hydrophobic modification, but was not sensitive enough to detect PEG grafting in leached polyethylene glycol-treated polyurethanes. X-ray photoelectron spectroscopy showed that the perfluoroalkylated polyurethanes contained up to 40% fluorine on their surfaces and the PEG-treated polyurethanes showed an increase in their C-O content over the unmodified polyurethane. Scanning electron microscopy not only showed that perfluoroalkylation yielded polyurethane membranes with very

  7. Urinary catheter with polyurethane coating modified by ion implantation

    International Nuclear Information System (INIS)

    Kondyurina, I.; Nechitailo, G.S.; Svistkov, A.L.; Kondyurin, A.; Bilek, M.

    2015-01-01

    A low friction urinary catheter that could be used without a lubricant is proposed in this work. A polyurethane coating was synthesised on the surface of a metal guide wire catheter. Ion implantation was applied to surface modify the polyurethane coating. FTIR ATR, wetting angle, AFM and friction tests were used for analysis. Low friction was found to be provided by the formation of a hard carbonised layer on the polyurethane surface

  8. Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes.

    Science.gov (United States)

    Nakajima-Kambe, T; Shigeno-Akutsu, Y; Nomura, N; Onuma, F; Nakahara, T

    1999-02-01

    Polyurethane (PUR) is a polymer derived from the condensation of polyisocyanate and polyol and it is widely used as a base material in various industries. PUR, in particular, polyester PUR, is known to be vulnerable to microbial attack. Recently, environmental pollution by plastic wastes has become a serious issue and polyester PUR had attracted attention because of its biodegradability. There are many reports on the degradation of polyester PUR by microorganisms, especially by fungi. Microbial degradation of polyester PUR is thought to be mainly due to the hydrolysis of ester bonds by esterases. Recently, polyester-PUR-degrading enzymes have been purified and their characteristics reported. Among them, a solid-polyester-PUR-degrading enzyme (PUR esterase) derived from Comamonas acidovorans TB-35 had unique characteristics. This enzyme has a hydrophobic PUR-surface-binding domain and a catalytic domain, and the surface-binding domain was considered as being essential for PUR degradation. This hydrophobic surface-binding domain is also observed in other solid-polyester-degrading enzymes such as poly(hydroxyalkanoate) (PHA) depolymerases. There was no significant homology between the amino acid sequence of PUR esterase and that of PHA depolymerases, except in the hydrophobic surface-binding region. Thus, PUR esterase and PHA depolymerase are probably different in terms of their evolutionary origin and it is possible that PUR esterases come to be classified as a new solid-polyester-degrading enzyme family.

  9. Development of segmented polyurethane elastomers with low iodine content exhibiting radiopacity and blood compatibility.

    Science.gov (United States)

    Dawlee, S; Jayabalan, Muthu

    2011-10-01

    Biofunctionally active and inherently radiopaque polymers are the emerging need for biomedical applications. Novel segmented polyurethane elastomer with inherent radiopacity was prepared using aliphatic chain extender 2,3-diiodo-2-butene-1,4-diol, polyol polytetramethylene glycol and 4,4'-methylenebis(phenyl isocyanate) (MDI) for blood compatible applications. Aliphatic polyurethane was also prepared using hexamethylene diisocyanate for comparison. X-ray analysis of the polyurethanes revealed good radiopacity even at a relatively low concentration of 3% iodine in aromatic polyurethane and 10% in aliphatic polyurethane. The polyurethanes also possessed excellent thermal stability. MDI-based polyurethane showed considerably higher tensile strength than the analogous HDI-based polyurethane. MDI-based aromatic polyurethane exhibited a dynamic surface morphology in aqueous medium, resulting in the segregation of hydrophilic domains which was more conducive to anti-thrombogenic properties. The polyurethane was cytocompatible with L929 fibroblast cells, non-hemolytic, and possessed good blood compatibility.

  10. Development of segmented polyurethane elastomers with low iodine content exhibiting radiopacity and blood compatibility

    International Nuclear Information System (INIS)

    Dawlee, S; Jayabalan, Muthu

    2011-01-01

    Biofunctionally active and inherently radiopaque polymers are the emerging need for biomedical applications. Novel segmented polyurethane elastomer with inherent radiopacity was prepared using aliphatic chain extender 2,3-diiodo-2-butene-1,4-diol, polyol polytetramethylene glycol and 4,4'-methylenebis(phenyl isocyanate) (MDI) for blood compatible applications. Aliphatic polyurethane was also prepared using hexamethylene diisocyanate for comparison. X-ray analysis of the polyurethanes revealed good radiopacity even at a relatively low concentration of 3% iodine in aromatic polyurethane and 10% in aliphatic polyurethane. The polyurethanes also possessed excellent thermal stability. MDI-based polyurethane showed considerably higher tensile strength than the analogous HDI-based polyurethane. MDI-based aromatic polyurethane exhibited a dynamic surface morphology in aqueous medium, resulting in the segregation of hydrophilic domains which was more conducive to anti-thrombogenic properties. The polyurethane was cytocompatible with L929 fibroblast cells, non-hemolytic, and possessed good blood compatibility.

  11. Development of segmented polyurethane elastomers with low iodine content exhibiting radiopacity and blood compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Dawlee, S; Jayabalan, Muthu, E-mail: muthujayabalan@rediffmail.com [Polymer Science Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695 012 (India)

    2011-10-15

    Biofunctionally active and inherently radiopaque polymers are the emerging need for biomedical applications. Novel segmented polyurethane elastomer with inherent radiopacity was prepared using aliphatic chain extender 2,3-diiodo-2-butene-1,4-diol, polyol polytetramethylene glycol and 4,4'-methylenebis(phenyl isocyanate) (MDI) for blood compatible applications. Aliphatic polyurethane was also prepared using hexamethylene diisocyanate for comparison. X-ray analysis of the polyurethanes revealed good radiopacity even at a relatively low concentration of 3% iodine in aromatic polyurethane and 10% in aliphatic polyurethane. The polyurethanes also possessed excellent thermal stability. MDI-based polyurethane showed considerably higher tensile strength than the analogous HDI-based polyurethane. MDI-based aromatic polyurethane exhibited a dynamic surface morphology in aqueous medium, resulting in the segregation of hydrophilic domains which was more conducive to anti-thrombogenic properties. The polyurethane was cytocompatible with L929 fibroblast cells, non-hemolytic, and possessed good blood compatibility.

  12. Design and milling manufacture of polyurethane custom contoured cushions for wheelchair users.

    Science.gov (United States)

    da Silva, Fabio Pinto; Beretta, Elisa Marangon; Prestes, Rafael Cavalli; Kindlein Junior, Wilson

    2011-01-01

    The design of custom contoured cushions manufactured in flexible polyurethane foams is an option to improve positioning and comfort for people with disabilities that spend most of the day seated in the same position. These surfaces increase the contact area between the seat and the user. This fact contributes to minimise the local pressures that can generate problems like decubitus ulcers. The present research aims at establishing development routes for custom cushion production to wheelchair users. This study also contributes to the investigation of Computer Numerical Control (CNC) machining of flexible polyurethane foams. The proposed route to obtain the customised seat began with acquiring the user's contour in adequate posture through plaster cast. To collect the surface geometry, the cast was three-dimensionally scanned and manipulated in CAD/CAM software. CNC milling parameters such as tools, spindle speeds and feed rates to machine flexible polyurethane foams were tested. These parameters were analysed regarding the surface quality. The best parameters were then tested in a customised seat. The possible dimensional changes generated during foam cutting were analysed through 3D scanning. Also, the customised seat pressure and temperature distribution was tested. The best parameters found for foams with a density of 50kg/cm(3) were high spindle speeds (24000 rpm) and feed rates between 2400-4000mm/min. Those parameters did not generate significant deformities in the machined cushions. The custom contoured cushion satisfactorily increased the contact area between wheelchair and user, as it distributed pressure and heat evenly. Through this study it was possible to define routes for the development and manufacturing of customised seats using direct CNC milling in flexible polyurethane foams. It also showed that custom contoured cushions efficiently distribute pressure and temperature, which is believed to minimise tissue lesions such as pressure ulcers.

  13. The important parameters of polyurethane's properties and preparation

    International Nuclear Information System (INIS)

    Rad, A.S.

    2009-01-01

    Polyurethane (PU) is a type of plastic rind is formed by reacting a polyol (a polymeric alcohol with more than. two reactive hydroxyl groups per molecule) with diisocyanates or polymeric isocyanate in the presence of suitable catalysts and additives. Variations in the number of substitutions and the spacing between and within branch chains produce PUs ranging from linear to branched and flexible to rigid. Linear PUs are used for the manufacture of fibers and molding. The structure of polyurethane can be medley containing 'hard' and 'soft' sect, which contribute to the harmony between rigid and elastomeric properties. The chemical composition and molecular weight distribution (MWD)- of the incorporated soft block influence the macroscopic properties of the resulting coating. In modifying the backbone structure of PU coatings it is necessary to consider the end use for the coating and the cost of modification: The properties of the modified PU coating, The resistance of the coating towards mechanical and The compatibility of the coating and the substrate over the temperature range of expected application and The between the benefits to be gained and the additional cost are the parameters that must be A surface functionalization of a synthetic polyurethane was carried out by using biofunctional moieties to obtain a material with the appropriate mechanical properties and processing conditions. (author)

  14. Finite element method analysis of surface roughness transfer in micro flexible rolling

    OpenAIRE

    Qu Feijun; Xie Haibo; Jiang Zhengyi

    2016-01-01

    Micro flexible rolling aims to fabricate submillimeter thick strips with varying thickness profile, where the surface quality of products is mainly determined by initial workpiece surface roughness and subsequent surface asperity flattening process, which is affected by process parameters during rolling. This paper shows a 3D finite element model for flexible rolling of a 250 μm thick workpiece with reduction of 20 to 50%, and rolling phase with thinner thickness indicates a better ability to...

  15. Flexible pressure and proximity sensor surfaces manufactured with organic materials

    NARCIS (Netherlands)

    Fattori, M.; Cantatore, E.; Pauer, G.; Agostinelli, T.; Stadlober, B.; Gold, H.

    2017-01-01

    This paper presents the design of two large-Area active matrixes on foil for pressure and proximity sensing applications. Frontend circuits based on organic thin-film transistors on foil are laminated with screen-printed PDVF-TrFE piezo and pyro sensors to create the complete flexible sensing

  16. Marine biofouling resistance of polyurethane with biodegradation and hydrolyzation.

    Science.gov (United States)

    Xu, Wentao; Ma, Chunfeng; Ma, Jielin; Gan, Tiansheng; Zhang, Guangzhao

    2014-03-26

    We have prepared polyurethane with poly(ε-caprolactone) (PCL) as the segments of the main chain and poly(triisopropylsilyl acrylate) (PTIPSA) as the side chains by a combination of radical polymerization and a condensation reaction. Quartz crystal microbalance with dissipation studies show that polyurethane can degrade in the presence of enzyme and the degradation rate decreases with the PTIPSA content. Our studies also demonstrate that polyurethane is able to hydrolyze in artificial seawater and the hydrolysis rate increases as the PTIPSA content increases. Moreover, hydrolysis leads to a hydrophilic surface that is favorable to reduction of the frictional drag under dynamic conditions. Marine field tests reveal that polyurethane has good antifouling ability because polyurethane with a biodegradable PCL main chain and hydrolyzable PTIPSA side chains can form a self-renewal surface. Polyurethane was also used to carry and release a relatively environmentally friendly antifoulant, and the combined system exhibits a much higher antifouling performance even in a static marine environment.

  17. Simple method to transfer graphene from metallic catalytic substrates to flexible surfaces without chemical etching

    International Nuclear Information System (INIS)

    Ko, P J; Takahashi, H; Sakai, H; Thu, T V; Okada, H; Sandhu, A; Koide, S

    2013-01-01

    Graphene shows promise for applications in flexible electronics. Here, we describe our procedure to transfer graphene grown on copper substrates by chemical vapor deposition to polydimethylsiloxane (PDMS) and SiO 2 /Si surfaces. The transfer of graphene was achieved by a simple, etching-free method onto flexible PDMS substrates.

  18. Szycher's handbook of polyurethanes

    National Research Council Canada - National Science Library

    Szycher, M

    2013-01-01

    .... Filled with tables, charts, and photographs, it includes new data on green polyurethanes, automotive applications, new coatings, new manufacturing equipment, new health-care uses, and other topics...

  19. Combinatorial and high-throughput screening of the effect of siloxane composition on the surface properties of crosslinked siloxane-polyurethane coatings.

    Science.gov (United States)

    Ekin, Abdullah; Webster, Dean C

    2007-01-01

    Libraries of siloxane-polyurethane coatings were designed, formulated, and screened using high-throughput experimentation. Four independent variables that were analyzed were the molecular weight of poly(dimethylsiloxane) (PDMS), presence or absence of poly(epsilon-caprolactone) (PCL) blocks attached to the PDMS backbone, the length of the PCL blocks, and the siloxane polymer level in the coating formulations. In addition to the siloxane libraries (3-aminopropyl-terminated PDMS and poly(epsilon-caprolactone)-poly(dimethylsiloxane)-poly(epsilon-caprolactone) (PCL-PDMS-PCL) triblock copolymers), the coating formulation included a trifunctional isocyanate crosslinker, trifunctional poly(epsilon-caprolactone) polyol, 2,4-pentanedione (pot-life extender), dibutyltin diacetate (catalyst), and a blend of solvents. The resulting coatings were analyzed for their surface energy and pseudobarnacle adhesion both before and after aging the coatings for 30 days in water. The water and methylene iodide contact angle averages increase with increasing molecular weight of PDMS. Coatings prepared from PCL-PDMS-PCL triblock copolymers have lower surface energies than coatings prepared from 3-aminopropyl-terminated PDMS; however, lower pseudobarnacle adhesion results were obtained for the coatings prepared from 3-aminopropyl-terminated PDMS than coatings prepared from PCL-PDMS-PCL triblock copolymers. The siloxane polymer level in the coating formulations does not have a significant effect on the surface energy of the coatings, but it resulted in higher pseudobarnacle adhesion.

  20. In situ immobilization of proteins and RGD peptide on polyurethane surfaces via poly(ethylene oxide) coupling polymers for human endothelial cell growth.

    Science.gov (United States)

    Wang, Dong-an; Ji, Jian; Sun, Yong-hong; Shen, Jia-cong; Feng, Lin-xian; Elisseeff, Jennifer H

    2002-01-01

    A "CBABC"-type pentablock coupling polymer, mesylMPEO, was designed and synthesized to promote human endothelial cell growth on the surfaces of polyurethane biomaterials. The polymer was composed of a central 4,4'-methylenediphenyl diisocyanate (MDI) coupling unit and poly(ethylene oxide) (PEO) spacer arms with methanesulfonyl (mesyl) end groups pendent on both ends. As the presurface modifying additive (pre-SMA), the mesylMPEO was noncovalently introduced onto the poly(ether urethane) (PEU) surfaces by dip coating, upon which the protein/peptide factors (gelatin, albumin, and arginine-glycine-aspartic acid tripeptide [RGD]) were covalently immobilized in situ by cleavage of the original mesyl end groups. The pre-SMA synthesis and PEU surface modification were characterized using nuclear magnetic resonance spectroscopy ((1)H NMR), attenuated total reflection infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS). Human umbilical vein endothelial cells (HUVEC) were harvested manually by collagenase digestion and seeded on the modified PEU surfaces. Cell adhesion ratios (CAR) and cell proliferation ratios (CPR) were measured using flow cytometry, and the individual cell viability (ICV) was determined by MTT assay. The cell morphologies were investigated by optical inverted microscopy (OIM) and scanning electrical microscopy (SEM). The gelatin- and RGD-modified surfaces were HUVEC-compatible and promoted HUVEC growth. The albumin-modified surfaces were compatible but inhibited cell adhesion. The results also indicated that, for HUVEC in vitro cultivation, the cell adhesion stage was of particular importance and had a significant impact on the cell responses to the modified surfaces.

  1. Polyurethane Filler for Electroplating

    Science.gov (United States)

    Beasley, J. L.

    1984-01-01

    Polyurethane foam proves suitable as filler for slots in parts electroplated with copper or nickel. Polyurethane causes less contamination of plating bath and of cleaning and filtering tanks than wax fillers used previously. Direct cost of maintenance and indirect cost of reduced operating time during tank cleaning also reduced.

  2. Finite element method analysis of surface roughness transfer in micro flexible rolling

    Directory of Open Access Journals (Sweden)

    Qu Feijun

    2016-01-01

    Full Text Available Micro flexible rolling aims to fabricate submillimeter thick strips with varying thickness profile, where the surface quality of products is mainly determined by initial workpiece surface roughness and subsequent surface asperity flattening process, which is affected by process parameters during rolling. This paper shows a 3D finite element model for flexible rolling of a 250 μm thick workpiece with reduction of 20 to 50%, and rolling phase with thinner thickness indicates a better ability to decrease the surface roughness. Four types of initial workpiece surface roughness are studied in the simulation, and the influences of process parameters, such as friction coefficient, rolling speed and roll gap adjusting speed, on surface asperity flattening of workpieces with different initial surface roughness have been numerically investigated and analysed.

  3. Interaction of flexible surface hairs with near-wall turbulence.

    Science.gov (United States)

    Brücker, Ch

    2011-05-11

    The interaction of near-wall turbulence with hairy surfaces is investigated in a turbulent boundary layer flow along a flat plate in an oil channel at Re = 1.2 × 10⁶. The plate is covered locally with a dense carpet of elastomeric micro-hairs (length L = 1 mm, length in viscous units L( + ) = 30) which are arranged in a regular grid (60 × 30 hairs with a streamwise spacing Δx( + )≈15 and a spanwise spacing Δy( + )≈30). Instead of the micro-structures used in previous studies for sensory applications, the surface hairs are considerably larger and much more densely distributed with a spacing of S/D wall-normal directions. Near-wall high-frequency disturbances excited by the passage of turbulent sweeps are dampened over their course along the carpet. The cooperative action of the hairs leads to an energy transfer from small-scale motion to larger scales, thus increasing the coherence of the motion pattern in streamwise and spanwise directions. As a consequence of the specific arrangement of the micro-hairs in streamwise columns a reduced spanwise meandering and stabilization of the streamwise velocity streaks is achieved by promoting varicose waves and inhibiting sinusoidal waves. Streak stabilization is known to be a major contributor to turbulent drag reduction. Thus it is concluded that hairy surfaces may be of benefit for turbulent drag reduction as hypothesized by Bartenwerfer and Bechert (1991 Z. Flugwiss. Weltraumforsch. 15 19-26).

  4. Interaction of flexible surface hairs with near-wall turbulence

    International Nuclear Information System (INIS)

    Bruecker, Ch

    2011-01-01

    The interaction of near-wall turbulence with hairy surfaces is investigated in a turbulent boundary layer flow along a flat plate in an oil channel at Re = 1.2 x 10 6 . The plate is covered locally with a dense carpet of elastomeric micro-hairs (length L = 1 mm, length in viscous units L + = 30) which are arranged in a regular grid (60 x 30 hairs with a streamwise spacing Δx + ∼15 and a spanwise spacing Δy + ∼30). Instead of the micro-structures used in previous studies for sensory applications, the surface hairs are considerably larger and much more densely distributed with a spacing of S/D < 5 such that they interact with each other by flow coupling. The non-fluctuating mean part of the flow forces a substantial pre-bending in the streamwise direction (reconfiguration). As a consequence, the hairs align with the streamwise direction, thus imposing anisotropic damping characteristics with regard to flow fluctuations in streamwise and spanwise or wall-normal directions. Near-wall high-frequency disturbances excited by the passage of turbulent sweeps are dampened over their course along the carpet. The cooperative action of the hairs leads to an energy transfer from small-scale motion to larger scales, thus increasing the coherence of the motion pattern in streamwise and spanwise directions. As a consequence of the specific arrangement of the micro-hairs in streamwise columns a reduced spanwise meandering and stabilization of the streamwise velocity streaks is achieved by promoting varicose waves and inhibiting sinusoidal waves. Streak stabilization is known to be a major contributor to turbulent drag reduction. Thus it is concluded that hairy surfaces may be of benefit for turbulent drag reduction as hypothesized by Bartenwerfer and Bechert (1991 Z. Flugwiss. Weltraumforsch. 15 19-26).

  5. Robust Anti-Icing Performance of a Flexible Superhydrophobic Surface.

    Science.gov (United States)

    Wang, Lei; Gong, Qihua; Zhan, Shihui; Jiang, Lei; Zheng, Yongmei

    2016-09-01

    A material with superhydrophobic and anti-ice/de-icing properties, which has a micro-/nanostructured surface, is produced by a straightforward method. This material comprises a poly(dimethylsiloxane) (PDMS) microstructure with ZnO nanohairs and shows excellent water and ice repellency even at low temperatures (-20 °C) and relatively high humidity (90%) for over three months. These results are expected to be helpful for designing smart, non-wetting materials that can be adapted to low-temperature environments for the development of anti-icing systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Water condensation on ultrahydrophobic flexible micro pillar surface

    Science.gov (United States)

    Narhe, Ramchandra

    2016-05-01

    We investigated the growth dynamics of water drops in controlled condensation on ultrahydrophobic geometrically patterned polydimethylsiloxane (PDMS) cylindrical micro pillars. At the beginning, the condensed drops size is comparable to the pattern dimensions. The interesting phenomenon we observe is that, as the condensation progresses, water drops between the pillars become unstable and enforced to grow in the upward direction along the pillars surface. The capillary force of these drops is of the order of μ\\text{N} and acts on neighboring pillars. That results into bending of the pillars. Pillars bending enhances the condensation and favors the most energetically stable Wenzel state.

  7. Polyurethane-Foam Maskant

    Science.gov (United States)

    Bodemeijer, R.

    1985-01-01

    Brown wax previously used to mask hardware replaced with polyurethane foam in electroplating and electroforming operations. Foam easier to apply and remove than wax and does not contaminate electrolytes.

  8. Szycher's handbook of polyurethanes

    National Research Council Canada - National Science Library

    Szycher, M

    2013-01-01

    "Written as a reference for polyurethane technologists and end users, raw materials suppliers, and students in the field, this second edition covers the technical advances in the field over the past 10 years...

  9. Chemical formation of palladium-free surface-nickelized polyimide film for flexible electronics

    International Nuclear Information System (INIS)

    Hsiao, Y.-S.; Whang, W.-T.; Wu, S.-C.; Chuang, Kuen-Ru

    2008-01-01

    Flexible polyimide (PI) films for flexible electronics were surface-nickelized using a fully solution-based process and excellent adhesion between the nickel and polyimide phases was observed. Polyimide substrates were modified by alkaline hydrolysis, ion exchange, reduction and nickel electroless deposition without palladium. Atomic force microscopy and field emission scanning electron microscopy were used to follow the growth of nickel nanoparticles (Ni-NPs) and nickel layers on the polyimide surface. The surface resistances of the Ni-NPs/PI films and Ni/PI films, measured using a four-point probe, were 1.6 x 10 7 and 0.83 Ω/cm 2 , respectively. The thicknesses of Ni-NPs and the Ni layer on the polyimide surface were 82 nm and 382 nm, respectively, as determined by transmission electron microscopy, and the Ni layer adhered well to PI, as determined by the adhesive tape testing method

  10. Feasibility study of flexible phased array ultrasonic technology using irregular surface specimen

    International Nuclear Information System (INIS)

    Lee, Seung Pyo; Moon, Yong Sik; Jung, Nam Du

    2015-01-01

    Nuclear power plant contain many dissimilar metal welds that connect carbon steel components with stainless steel pipes using alloy 600 welding materials. Primary water stress corrosion cracks at dissimilar metal welds have been continuously reported around the world. In periodic integrity evaluations, dissimilar metal welds are examined using a generic ultrasonic testing procedure, KPD-UT-10. In this procedure, the gap between the probe and examination surface is limited to 1/32 inch (0.8 mm). It is not easy to test some dissimilar metal welds in Korean plants applying ordinary technology because of their tapered shapes and irregular surface conditions. This paper introduces a method for applying a flexible phased array technology to improve the reliability of ultrasonic testing results for various shapes and surface conditions. The artificial flaws in specimens with irregular surfaces were completely detected using the flexible phased array ultrasonic technology. Therefore, it can be said that the technology is applicable to field examination.

  11. Feasibility study of flexible phased array ultrasonic technology using irregular surface specimen

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Pyo; Moon, Yong Sik; Jung, Nam Du [NDE Performance Demonstration Team, Korea Hydro and Nuclear Power, Central Research Institute, Daejeon (Korea, Republic of)

    2015-02-15

    Nuclear power plant contain many dissimilar metal welds that connect carbon steel components with stainless steel pipes using alloy 600 welding materials. Primary water stress corrosion cracks at dissimilar metal welds have been continuously reported around the world. In periodic integrity evaluations, dissimilar metal welds are examined using a generic ultrasonic testing procedure, KPD-UT-10. In this procedure, the gap between the probe and examination surface is limited to 1/32 inch (0.8 mm). It is not easy to test some dissimilar metal welds in Korean plants applying ordinary technology because of their tapered shapes and irregular surface conditions. This paper introduces a method for applying a flexible phased array technology to improve the reliability of ultrasonic testing results for various shapes and surface conditions. The artificial flaws in specimens with irregular surfaces were completely detected using the flexible phased array ultrasonic technology. Therefore, it can be said that the technology is applicable to field examination.

  12. Flexible long-range surface plasmon polariton single-mode waveguide for optical interconnects

    DEFF Research Database (Denmark)

    Vernoux, Christian; Chen, Yiting; Markey, Laurent

    2018-01-01

    We present the design, fabrication and characterization of long-range surface plasmon polariton waveguide arrays with materials, mainly silicones, carefully selected with the aim to be used as mechanically flexible single-mode optical interconnections, the socalled "plasmonic arc" working at 1.55μm...

  13. Rigid polyurethane and kenaf core composite foams

    Science.gov (United States)

    Rigid polyurethane foams are valuable in many construction applications. Kenaf is a bast fiber plant where the surface stem skin provides bast fibers whose strength-to-weight ratio competes with glass fiber. The higher volume product of the kenaf core is an under-investigated area in composite appli...

  14. Atmospheric pressure plasmas for surface modification of flexible and printed electronic devices: A review

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyong Nam; Lee, Seung Min; Mishra, Anurag [Department of Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Yeom, Geun Young, E-mail: gyyeom@skku.edu [Department of Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2016-01-01

    Recently, non-equilibrium atmospheric pressure plasma, especially those operated at low gas temperatures, have become a topic of great interest for the processing of flexible and printed electronic devices due to several benefits such as the reduction of process and reactor costs, the employment of easy-to-handle apparatuses and the easier integration into continuous production lines. In this review, several types of typical atmospheric pressure plasma sources have been addressed, and the processes including surface treatment, texturing and sintering for application to flexible and printed electronic devices have been discussed.

  15. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold

    International Nuclear Information System (INIS)

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-01-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO 3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. - Highlights: • The hydroxyapatite and silver nanoparticles were grown on the polyurethane scaffold • The hydroxyapatite/polyurethane acts as reducing agent, stabilizer and matrix for Ag • The samples were well characterized by SEM-EDX, XRD, XPS, UV-visible spectroscopy • The hydroxyapatite/silver polyurethane scaffold shows antibacterial property

  16. Antimicrobial polyurethane thermosets based on undecylenic acid: synthesis and evaluation

    OpenAIRE

    Cádiz, V.; Galià, M.; Ronda, J.C.; Lligadas, G.; Bordons, A.; Esteve-Zarzoso, B.; Lluch, C.

    2014-01-01

    10.1002/mabi.201400017 In the present study, plant oil-derived surface-modifiable polyurethane thermosets are presented. Polyol synthesis is carried out taking advantage of thiol-yne photopolymerization of undecylenic acid derivatives containing methyl ester or hydroxyl moieties. The prepared methyl ester-containing polyurethanes allow surface modification treatment to enhance their hydrophilicity and impart antimicrobial activity through the following two steps: i) grafting poly(propylen...

  17. Flexible Foam Model.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K.; Lu, Wei-Yang; Werner, Brian T.; Scherzinger, William M.; Lo, Chi S.

    2018-03-01

    Experiments were performed to characterize the mechanical response of a 15 pcf flexible polyurethane foam to large deformation at different strain rates and temperatures. Results from these experiments indicated that at room temperature, flexible polyurethane foams exhibit significant nonlinear elastic deformation and nearly return to their original undeformed shape when unloaded. However, when these foams are cooled to temperatures below their glass transition temperature of approximately -35 o C, they behave like rigid polyurethane foams and exhibit significant permanent deformation when compressed. Thus, a new model which captures this dramatic change in behavior with temperature was developed and implemented into SIERRA with the name Flex_Foam to describe the mechanical response of both flexible and rigid foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments. Next, development of the Flex Foam model for flexible polyurethane and other flexible foams is described. Selection of material parameters are discussed and finite element simulations with the new Flex Foam model are compared with experimental results to show behavior that can be captured with this new model.

  18. Polyurethane compounds having carbon nanotubes

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to semi-crystalline polyurethane (PUR) compositions filled with carbon nanotubes (CNT) and having improved electrical properties, which can be obtained on the basis of water-based polyurethane/CNT mixtures. The invention further relates to a method for producing polyurethane

  19. Impact of the poly(propylene oxide)-b-poly(dimethylsiloxane)-b-poly(propylene oxide) macrodiols on the surface-related properties of polyurethane copolymers

    Czech Academy of Sciences Publication Activity Database

    Stefanović, I. S.; Godevac, D.; Špírková, Milena; Jovančić, P.; Tešević, V.; Milačić, V.; Pergal, M. V.

    2016-01-01

    Roč. 70, č. 6 (2016), s. 725-738 ISSN 0367-598X R&D Projects: GA ČR(CZ) GA13-06700S Institutional support: RVO:61389013 Keywords : segmented polyurethanes * poly(dimethylsiloxane) * 2D NMR spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.459, year: 2016

  20. Influence of the organoclay content on the structure, morphology, and surface related properties of novel poly(dimethylsiloxane)-based polyurethane/organoclay nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Pergal, M. V.; Stefanović, I. S.; Poreba, Rafal; Steinhart, M.; Jovančić, P.; Ostojić, S.; Špírková, Milena

    2017-01-01

    Roč. 56, č. 17 (2017), s. 4970-4983 ISSN 0888-5885 R&D Projects: GA ČR(CZ) GA13-06700S Institutional support: RVO:61389013 Keywords : polyurethanes * elasticity * biodegradability Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.843, year: 2016

  1. Polyurethane as a base for a family of tissue equivalent materials

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1980-01-01

    Polyurethane was used as a base material for a wide variety of tissue simulating applications. The technique in fabrication is similar to that of epoxy, however, the end products are generally more flexible for use in applications where flexibility is valuable. The material can be fabricated with relatively small laboratory equipment. The use of polyurethane provides the dosimetrist with the capability of making specific, accurate, on-the-spot tissue equivalent formulations to meet situations which require immediate calibration and response

  2. Simple and cost-effective fabrication of highly flexible, transparent superhydrophobic films with hierarchical surface design.

    Science.gov (United States)

    Kim, Tae-Hyun; Ha, Sung-Hun; Jang, Nam-Su; Kim, Jeonghyo; Kim, Ji Hoon; Park, Jong-Kweon; Lee, Deug-Woo; Lee, Jaebeom; Kim, Soo-Hyung; Kim, Jong-Man

    2015-03-11

    Optical transparency and mechanical flexibility are both of great importance for significantly expanding the applicability of superhydrophobic surfaces. Such features make it possible for functional surfaces to be applied to various glass-based products with different curvatures. In this work, we report on the simple and potentially cost-effective fabrication of highly flexible and transparent superhydrophobic films based on hierarchical surface design. The hierarchical surface morphology was easily fabricated by the simple transfer of a porous alumina membrane to the top surface of UV-imprinted polymeric micropillar arrays and subsequent chemical treatments. Through optimization of the hierarchical surface design, the resultant superhydrophobic films showed superior surface wetting properties (with a static contact angle of >170° and contact angle hysteresis of 82% at 550 nm wavelength). The superhydrophobic films were also experimentally found to be robust without significant degradation in the superhydrophobicity, even under repetitive bending and pressing for up to 2000 cycles. Finally, the practical usability of the proposed superhydorphobic films was clearly demonstrated by examining the antiwetting performance in real time while pouring water on the film and submerging the film in water.

  3. Biodegradation of polyurethanes; Polyurethane no biseibutsu bunkai

    Energy Technology Data Exchange (ETDEWEB)

    Kinpara, N; Ando, M; Ohira, Z [Suzuki Motor Corp., Shizuoka (Japan); Nakajima, T; Nakahara, T [University of Tsukuba, Tsukuba (Japan)

    1997-10-01

    Different types of Polyurethane (PUR) are used for various industrial products and are used in increasing quantities every year. We experimented with biodegradation of PURs to dispose of industrial wastes. 2 strains of fungi and 1 strain of bacteria which were seemed to have the ability to degrade PURs well were isolated from various soils and waste water. These strains could degrade ester-type PUR and PUR made from a mixture of ester and ether. However, these strains could not degrade ether-type PUR. From Scanning Electron Microscopy observation, it is suggested that the microbial degradation proceeded in at least 2 patterns. 4 refs., 8 figs., 2 tabs.

  4. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.

    Science.gov (United States)

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-02-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. © 2013.

  5. The effect of radiosterilization on cytotoxicity of polyurethane film

    International Nuclear Information System (INIS)

    Sheikh, N.

    2003-01-01

    Nowadays a sequence of tests for evaluation of sterilized biomaterial includes an initial set of tests in vitro, both biological (cell culture) and non-biological (mechanical tests). In this paper the cytotoxicity of a sterilized polyurethane film, in order to use as biomaterial, has been investigated. For this purpose NCO-terminated urethane prepolymer in medical quality was synthesized without ingredients beside monomers (polyethylene glycol/castor oil and toluene diisocyanate). The cured prepolymer films were prepared under ambient conditions due to the reaction of free NCO-groups of prepolymer with air moisture. The polyurethane films were sterilized by gamma-ray (25 kGy). The surface structure of sterilized polyurethane film was observed by SEM and compared to that of the unsterilized film. Also, the in vitro interaction of fibroblast cells and sterilized polyurethane film in culture medium containing serum was evaluated in comparison with control samples. Results showed no signs of cell toxicity

  6. Interferometry with flexible point source array for measuring complex freeform surface and its design algorithm

    Science.gov (United States)

    Li, Jia; Shen, Hua; Zhu, Rihong; Gao, Jinming; Sun, Yue; Wang, Jinsong; Li, Bo

    2018-06-01

    The precision of the measurements of aspheric and freeform surfaces remains the primary factor restrict their manufacture and application. One effective means of measuring such surfaces involves using reference or probe beams with angle modulation, such as tilted-wave-interferometer (TWI). It is necessary to improve the measurement efficiency by obtaining the optimum point source array for different pieces before TWI measurements. For purpose of forming a point source array based on the gradients of different surfaces under test, we established a mathematical model describing the relationship between the point source array and the test surface. However, the optimal point sources are irregularly distributed. In order to achieve a flexible point source array according to the gradient of test surface, a novel interference setup using fiber array is proposed in which every point source can be independently controlled on and off. Simulations and the actual measurement examples of two different surfaces are given in this paper to verify the mathematical model. Finally, we performed an experiment of testing an off-axis ellipsoidal surface that proved the validity of the proposed interference system.

  7. The role of side chain conformational flexibility in surface recognition by Tenebrio molitor antifreeze protein

    Science.gov (United States)

    Daley, Margaret E.; Sykes, Brian D.

    2003-01-01

    Two-dimensional nuclear magnetic resonance spectroscopy was used to investigate the flexibility of the threonine side chains in the β-helical Tenebrio molitor antifreeze protein (TmAFP) at low temperatures. From measurement of the 3Jαβ 1H-1H scalar coupling constants, the χ1 angles and preferred rotamer populations can be calculated. It was determined that the threonines on the ice-binding face of the protein adopt a preferred rotameric conformation at near freezing temperatures, whereas the threonines not on the ice-binding face sample many rotameric states. This suggests that TmAFP maintains a preformed ice-binding conformation in solution, wherein the rigid array of threonines that form the AFP-ice interface matches the ice crystal lattice. A key factor in binding to the ice surface and inhibition of ice crystal growth appears to be the close surface-to-surface complementarity between the AFP and crystalline ice, and the lack of an entropic penalty associated with freezing out motions in a flexible ligand. PMID:12824479

  8. Flexible surface acoustic wave respiration sensor for monitoring obstructive sleep apnea syndrome

    Science.gov (United States)

    Jin, Hao; Tao, Xiang; Dong, Shurong; Qin, Yiheng; Yu, Liyang; Luo, Jikui; Deen, M. Jamal

    2017-11-01

    Obstructive sleep apnea syndrome (OSAS) has received much attention in recent years due to its significant harm to human health and high morbidity rate. A respiration monitoring system is needed to detect OSAS, so that the patient can receive treatment in a timely manner. Wired and wireless OSAS monitoring systems have been developed, but they require a wire connection and batteries to operate, and they are bulky, heavy and not user-friendly. In this paper, we propose the use of a flexible surface acoustic wave (SAW) microsensor to detect and monitor OSAS by measuring the humidity change associated with the respiration of a person. SAW sensors on rigid 128° YX LiNbO3 substrate are also characterized for this application. Results show both types of SAW sensors are suitable for OSAS monitoring with good sensitivity, repeatability and reliability, and the response time and recovery time for the flexible SAW sensors are 1.125 and 0.75 s, respectively. Our work demonstrates the potential for an innovative flexible microsensor for the detection and monitoring of OSAS.

  9. Nanoclay Dispersion and its Effect on Properties of Waterborne Polyurethanes

    Directory of Open Access Journals (Sweden)

    H. Honarkar

    2014-01-01

    Full Text Available In recent years, waterborne polyurethanes as in coatings and adhesives formulations have attracted considerable attention because they are non-toxic, non-flammable and friendly to environment. Besides environmental management, the flexibility, low temperature property, high tensile strength, good adhesion and improved rheological property are specific properties of waterborne polyurethanes. Also low production cost of water borne polyurethanes over solvent-borne polyurethanes is also a reason for their applications. However, these materials have some defects such as weak water resistance and low adhesion in the moisture environment due to sensitivity of their hydrophilic ionic bonds, ether groups, urethane and ester groups to hydrolysis which need to be improved. Also, low heat resistance of these materials is due to a relatively low crystalline melting point or glass transition temperature of hard segments. One of the ways to solve this problem and improve its properties for different applications is the addition of inorganic fillers especially nano-sized layered silicates within polyurethane matrix. In this way water resistance, heat resistance, mechanical properties and modulus increase simultaneously. In this research, waterborne polyurethane nanocomposites with PTMG polyol, IPDI, DMPA (internal emulsifier, TEA (neutralizer and 1, 3 and 5weight % of Cloisite 30B as reinforcement were synthesized and characterized. Polarity of the samples was investigated by contact angle test and dispersion of nano particles in the samples was characterized by X-Ray and TEM, Thermal properties and dynamic mechanical properties were measured by TGA and DMTA, respectively. The results showed that incorporation of clay into polyurethanes did reduce water absorption and increased heat resistance, modulus, particle size and contact angle.In recent years, waterborne polyurethanes including coatings and adhesives have attracted considerable attention because they

  10. Effect of silica nanoparticles on polyurethane foaming process and foam properties

    International Nuclear Information System (INIS)

    Francés, A B; Bañón, M V Navarro

    2014-01-01

    Flexible polyurethane foams (FPUF) are commonly used as cushioning material in upholstered products made on several industrial sectors: furniture, automotive seating, bedding, etc. Polyurethane is a high molecular weight polymer based on the reaction between a hydroxyl group (polyol) and isocyanate. The density, flowability, compressive, tensile or shearing strength, the thermal and dimensional stability, combustibility, and other properties can be adjusted by the addition of several additives. Nanomaterials offer a wide range of possibilities to obtain nanocomposites with specific properties. The combination of FPUF with silica nanoparticles could develop nanocomposite materials with unique properties: improved mechanical and thermal properties, gas permeability, and fire retardancy. However, as silica particles are at least partially surface-terminated with Si-OH groups, it was suspected that the silica could interfere in the reaction of poyurethane formation.The objective of this study was to investigate the enhancement of thermal and mechanical properties of FPUF by the incorporation of different types of silica and determining the influence thereof during the foaming process. Flexible polyurethane foams with different loading mass fraction of silica nanoparticles (0-1% wt) and different types of silica (non treated and modified silica) were synthesized. PU/SiO 2 nanocomposites were characterized by FTIR spectroscopy, TGA, and measurements of apparent density, resilience and determination of compression set. Addition of silica nanoparticles influences negatively in the density and compression set of the foams. However, resilience and thermal stability of the foams are improved. Silica nanoparticles do not affect to the chemical structure of the foams although they interfere in the blowing reaction

  11. Structures and Properties of Polyurethanes. Part II,

    Science.gov (United States)

    1979-03-23

    effect was observed for polymethyl methacrylate (222, 2721. The polyol, which contain fluorine , decrease adhesion, in spite DOC = 79011112 PAGE S4% of...small differences in the hardness of films on the basis of the fluorine -bearing polyol and generally accepted polyol. Is investigated the etfect ot...polyurethane, to rigid surface. DOC 79011112 P A * S The effect of the solvent, utilized for obtaining the varnish , on adhesion is investigated in

  12. Improvement of organic solar cells by flexible substrate and ITO surface treatments

    International Nuclear Information System (INIS)

    Cheng, Yuang-Tung; Ho, Jyh-Jier; Wang, Chien-Kun; Lee, William; Lu, Chih-Chiang; Yau, Bao-Shun; Nain, Jhen-Liang; Chang, Shun-Hsyung; Chang, Chiu-Cheng; Wang, Kang L.

    2010-01-01

    In this paper, surface treatments on polyethylene terephthalate with polymeric hard coating (PET-HC) substrates are described. The effect of the contact angle on the treatment is first investigated. It has been observed that detergent is quite effective in removing organic contamination on the flexible PET-HC substrates. Next, using a DC-reactive magnetron sputter, indium tin oxide (ITO) thin films of 90 nm are grown on a substrate treated by detergent. Then, various ITO surface treatments are made for improving the performance of the finally developed organic solar cells with structure Al/P3HT:PCBM/PEDOT:PSS/ITO/PET. It is found that the parameters of the ITO including resistivity, carrier concentration, transmittance, surface morphology, and work function depended on the surface treatments and significantly influence the solar cell performance. With the optimal conditions for detergent treatment on flexible PET substrates, the ITO film with a resistivity of 5.6 x 10 -4 Ω cm and average optical transmittance of 84.1% in the visible region are obtained. The optimal ITO surface treated by detergent for 5 min and then by UV ozone for 20 min exhibits the best WF value of 5.22 eV. This improves about 8.30% in the WF compared with that of the untreated ITO film. In the case of optimal treatment with the organic photovoltaic device, meanwhile, 36.6% enhancement in short circuit current density (J sc ) and 92.7% enhancement in conversion efficiency (η) over the untreated solar cell are obtained.

  13. Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.

    Science.gov (United States)

    Karnan, M; Subramani, K; Sudhan, N; Ilayaraja, N; Sathish, M

    2016-12-28

    Materials which possess high specific capacitance in device configuration with low cost are essential for viable application in supercapacitors. Herein, a flexible high-energy supercapacitor device was fabricated using porous activated high-surface-area carbon derived from aloe leaf (Aloe vera) as a precursor. The A. vera derived activated carbon showed mesoporous nature with high specific surface area of ∼1890 m 2 /g. A high specific capacitance of 410 and 306 F/g was achieved in three-electrode and symmetric two-electrode system configurations in aqueous electrolyte, respectively. The fabricated all-solid-state device showed a high specific capacitance of 244 F/g with an energy density of 8.6 Wh/kg. In an ionic liquid electrolyte, the fabricated device showed a high specific capacitance of 126 F/g and a wide potential window up to 3 V, which results in a high energy density of 40 Wh/kg. Furthermore, it was observed that the activation temperature has significant role in the electrochemical performance, as the activated sample at 700 °C showed best activity than the samples activated at 600 and 800 °C. The electron microscopic images (FE-SEM and HR-TEM) confirmed the formation of pores by the chemical activation. A fabricated supercapacitor device in ionic liquid with 3 V could power up a red LED for 30 min upon charging for 20s. Also, it is shown that the operation voltage and capacitance of flexible all-solid-state symmetric supercapacitors fabricated using aloe-derived activated carbon could be easily tuned by series and parallel combinations. The performance of fabricated supercapacitor devices using A. vera derived activated carbon in all-solid-state and ionic liquid indicates their viable applications in flexible devices and energy storage.

  14. Ultrasmooth, Polydopamine Modified Surfaces for Block Copolymer Nanopatterning on Inert and Flexible Substrates

    Science.gov (United States)

    Katsumata, Reika; Cho, Joon Hee; Zhou, Sunshine; Kim, Chae Bin; Dulaney, Austin; Janes, Dustin; Ellison, Christopher

    Nature has engineered universal, catechol-containing adhesives that can be synthetically mimicked in the form of polydopamine (PDA). We exploited PDA to enable block copolymer (BCP) nanopatterning on a variety of soft material surfaces in a way that can potentially be applied to flexible electrical devices. Applying BCP nanopatterning to soft substrates is challenging because soft substrates are often chemically inert and possess incompatible low surface energies. In this study, we exploited PDA to enable the formation of BCP nanopatterns on a variety of surfaces such as Teflon, poly(ethylene terephthalate) (PET), and Kapton. While previous studies produced a PDA coating layer too rough for BCP nanopatterning, we succeeded in fabricating conformal and ultra-smooth surfaces of PDA by engineering the PDA coating process and post-sonication procedure. This chemically functionalized, biomimetic thin film (3 nm thick) served as a reactive platform for subsequently grafting a surface treatment to perpendicularly orient a lamellae-forming BCP layer. Furthermore, we demonstrated that a perfectly nanopatterned PDA-PET substrate can be bent without distorting or damaging the nanopattern in conditions that far exceeds typical bending curvatures in roll-to-roll manufacturing.

  15. MORPHOLOGICAL CHANGES IN POLYURETHANE COATINGS ON EXPOSURE TO WATER. (R828081E01)

    Science.gov (United States)

    When a polyurethane self-priming coating on a sol-gel treated aluminum panel was immersed in dilute Harrison's solution, subsequent change of the polyurethane coating surface was inspected with atomic force microscopy (AFM) and scanning electron microscopy (SEM). After immersi...

  16. Reflectance spectroscopy from TiO2 particles embedded in polyurethane

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Canulescu, Stela; Johansen, Villads Egede

    2013-01-01

    This paper presents the results of a physical simulation carried out using TiO2-Polyurethane composite coating on bright aluminium surface to understand the light scattering effect for designing white surfaces. Polyurethane matrix is selected due to the matching refractive index (1.7) with Al2O3...... layer on anodized aluminium surfaces. Three different TiO2 particle distributions were dispersed in polyurethane and spin coated onto high gloss and caustic etched aluminium substrates. Reflectance spectra of TiO2-polyurethane films of various concentrations were analysed using an integrating sphere....... The results show that the TiO2-polyurethane coatings have a high diffuse reflectance as a result of multiple scattering from TiO2 particles. Diffuse reflectance spectra of TiO2 containing films vary weakly with particle concentration and reach a steady state value at a concentration of 0.75 wt.%. Using...

  17. Study of polyurethanes ageing offshore

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Fabio G.; Sheldrake, Terry; Clevelario, Judimar; Pires, Fabio [Wellstream International, Panama City, FL (United States); Coutinho, Fernanda M.B. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2008-07-01

    The oil industry is one of the sectors with the highest number of production systems employing high technology. Brazil is worldwide renowned as a leader in oil and gas extraction in deep and ultra deep water. Inside the production chain, a great part the oil and gas produced is conveyed through flexible pipelines that connect the production wells to the platforms. There are two segments of these lines that receive different names according to their application characteristics. When the pipes are laid on the seabed in a static service condition, are called Flow lines and when they raise from the seabed to the platform in a dynamic service condition, are called Risers. The pipes designed for dynamic applications are equipped with Bend Stiffeners, components with conical form and in general with urethane basis, which has the function of providing a smooth stiffness transition between the flexible structure of the pipes and an extremely rigid structure, the platform, not allowing that this component infringes their minimum operation Bend Radius. According to Caire, the proper compression of curvature stiffeners and the material used in its manufacture is becoming increasingly important in industry due to its growing use and the occurrence of failures that have been recorded in recent years. This paper discusses the changes in the mechanical properties of polyurethanes by the hydrolysis during accelerated ageing, reaction of water with functional groups of the polymer chain, as well as mass variation, considering that these materials are designed for a service life exceeding twenty years for operation in water. (author)

  18. High-power, format-flexible, 885-nm vertical-cavity surface-emitting laser arrays

    Science.gov (United States)

    Wang, Chad; Talantov, Fedor; Garrett, Henry; Berdin, Glen; Cardellino, Terri; Millenheft, David; Geske, Jonathan

    2013-03-01

    High-power, format flexible, 885 nm vertical-cavity surface-emitting laser (VCSEL) arrays have been developed for solid-state pumping and illumination applications. In this approach, a common VCSEL size format was designed to enable tiling into flexible formats and operating configurations. The fabrication of a common chip size on ceramic submount enables low-cost volume manufacturing of high-power VCSEL arrays. This base VCSEL chip was designed to be 5x3.33 mm2, and produced up to 50 Watts of peak continuous wave (CW) power. To scale to higher powers, multiple chips can be tiled into a combination of series or parallel configurations tailored to the application driver conditions. In actively cooled CW operation, the VCSEL array chips were packaged onto a single water channel cooler, and we have demonstrated 0.5x1, 1x1, and 1x3 cm2 formats, producing 150, 250, and 500 Watts of peak power, respectively, in under 130 A operating current. In QCW operation, the 1x3 cm2 VCSEL module, which contains 18 VCSEL array chips packaged on a single water cooler, produced over 1.3 kW of peak power. In passively cooled packages, multiple chip configurations have been developed for illumination applications, producing over 300 Watts of peak power in QCW operating conditions. These VCSEL chips use a substrate-removed structure to allow for efficient thermal heatsinking to enable high-power operation. This scalable, format flexible VCSEL architecture can be applied to wavelengths ranging from 800 to 1100 nm, and can be used to tailor emission spectral widths and build high-power hyperspectral sources.

  19. Total luminous flux measurement for flexible surface sources with an integrating sphere photometer

    International Nuclear Information System (INIS)

    Yu, Hsueh-Ling; Liu, Wen-Chun

    2014-01-01

    Applying an integrating sphere photometer for total luminous flux measurement is a widely used method. However, the measurement accuracy depends on the spatial uniformity of the integrating sphere, especially when the test sample has a different light distribution from that of the standard source. Therefore, spatial correction is needed to eliminate the effect caused by non-uniformity. To reduce the inconvenience of spatial correction but retain the measurement accuracy, a new type of working standard is designed for flexible and curved surface sources. Applying this new type standard source, the measurement deviation due to different orientations is reduced by an order of magnitude compared with using a naked incandescent lamp as the standard source. (paper)

  20. Fingerprint-Inspired Flexible Tactile Sensor for Accurately Discerning Surface Texture.

    Science.gov (United States)

    Cao, Yudong; Li, Tie; Gu, Yang; Luo, Hui; Wang, Shuqi; Zhang, Ting

    2018-04-01

    Inspired by the epidermal-dermal and outer microstructures of the human fingerprint, a novel flexible sensor device is designed to improve haptic perception and surface texture recognition, which is consisted of single-walled carbon nanotubes, polyethylene, and polydimethylsiloxane with interlocked and outer micropyramid arrays. The sensor shows high pressure sensitivity (-3.26 kPa -1 in the pressure range of 0-300 Pa), and it can detect the shear force changes induced by the dynamic interaction between the outer micropyramid structure on the sensor and the tested material surface, and the minimum dimension of the microstripe that can be discerned is as low as 15 µm × 15 µm (interval × width). To demonstrate the texture discrimination capability, the sensors are tested for accurately discerning various surface textures, such as the textures of different fabrics, Braille characters, the inverted pyramid patterns, which will have great potential in robot skins and haptic perception, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Flexible Graphene Composites for Human Space Flight Applications

    Science.gov (United States)

    Sosa, Edward D.

    2013-01-01

    Graphene oxide allows for better dispersion stability in aqueous and organic solvents. Stabilizers provide dispersion of pristine graphene. Roll coating provide the best coverage of polyurethane sheets. Graphene and GO coated polyurethane used to fabricate flexible laminate composite. Permeation testing indicates that pristine graphene acts as a better gas barrier material. Continuous graphene films are expected to provide even better gas barrier properties.

  2. Antimicrobial polyurethane thermosets based on undecylenic acid: synthesis and evaluation.

    Science.gov (United States)

    Lluch, Cristina; Esteve-Zarzoso, Braulio; Bordons, Albert; Lligadas, Gerard; Ronda, Juan C; Galià, Marina; Cádiz, Virginia

    2014-08-01

    In the present study, plant oil-derived surface-modifiable polyurethane thermosets are presented. Polyol synthesis is carried out taking advantage of thiol-yne photopolymerization of undecylenic acid derivatives containing methyl ester or hydroxyl moieties. The prepared methyl ester-containing polyurethanes allow surface modification treatment to enhance their hydrophilicity and impart antimicrobial activity through the following two steps: i) grafting poly(propylene glycol) monoamine (Jeffamine M-600) via aminolysis and ii) Jeffamine M-600 layer complexation with iodine. The antimicrobial activity of the iodine-containing polyurethanes is demonstrated by its capacity to inhibit the growth of Staphylococcus aureus, and Candida albicans in agar media. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Flexible microelectrode array for interfacing with the surface of neural ganglia

    Science.gov (United States)

    Sperry, Zachariah J.; Na, Kyounghwan; Parizi, Saman S.; Chiel, Hillel J.; Seymour, John; Yoon, Euisik; Bruns, Tim M.

    2018-06-01

    Objective. The dorsal root ganglia (DRG) are promising nerve structures for sensory neural interfaces because they provide centralized access to primary afferent cell bodies and spinal reflex circuitry. In order to harness this potential, new electrode technologies are needed which take advantage of the unique properties of DRG, specifically the high density of neural cell bodies at the dorsal surface. Here we report initial in vivo results from the development of a flexible non-penetrating polyimide electrode array interfacing with the surface of ganglia. Approach. Multiple layouts of a 64-channel iridium electrode (420 µm2) array were tested, with pitch as small as 25 µm. The buccal ganglia of invertebrate sea slug Aplysia californica were used to develop handling and recording techniques with ganglionic surface electrode arrays (GSEAs). We also demonstrated the GSEA’s capability to record single- and multi-unit activity from feline lumbosacral DRG related to a variety of sensory inputs, including cutaneous brushing, joint flexion, and bladder pressure. Main results. We recorded action potentials from a variety of Aplysia neurons activated by nerve stimulation, and units were observed firing simultaneously on closely spaced electrode sites. We also recorded single- and multi-unit activity associated with sensory inputs from feline DRG. We utilized spatial oversampling of action potentials on closely-spaced electrode sites to estimate the location of neural sources at between 25 µm and 107 µm below the DRG surface. We also used the high spatial sampling to demonstrate a possible spatial sensory map of one feline’s DRG. We obtained activation of sensory fibers with low-amplitude stimulation through individual or groups of GSEA electrode sites. Significance. Overall, the GSEA has been shown to provide a variety of information types from ganglia neurons and to have significant potential as a tool for neural mapping and interfacing.

  4. Developement of Spherical Polyurethane Beads

    Institute of Scientific and Technical Information of China (English)

    K. Maeda; H. Ohmori; H. Gyotoku

    2005-01-01

    @@ 1Results and Discussion We established a new method to produce the spherical polyurethane beads which have narrower distribution of particle size. This narrower distribution was achieved by the polyurethane prepolymer which contains ketimine as a blocked chain-extending agent. Firstly, the prepolymer is dispersed into the aqueous solution containing surfactant. Secondaly, water comes into the inside of prepolymer as oil phase. Thirdly, ketimine is hydrolyzed to amine, and amine reacts with prepolymer immediately to be polyurethane.Our spherical polyurethane beads are very suitable for automotive interior parts especially for instrument panel cover sheet producing under the slush molding method, because of good process ability, excellent durability to the sunlight and mechanical properties at low temperature. See Fig. 1 ,Fig. 2 and Fig. 3 (Page 820).

  5. Poly(Lactic Acid) Based Flexible Films

    OpenAIRE

    Fathilah binti Ali; Jamarosliza Jamaluddin; Arun Kumar Upadhyay

    2014-01-01

    Poly(lactic acid) (PLA) is a biodegradable polymer which has good mechanical properties, however, its brittleness limits its usage especially in packaging materials. Therefore, in this work, PLA based polyurethane films were prepared by synthesizing with different types of isocyanates; methylene diisocyanate (MDI) and hexamethylene diisocyanates (HDI). For this purpose, PLA based polyurethane must have good strength and flexibility. Therefore, polycaprolactone which has b...

  6. A review: fabrication of porous polyurethane scaffolds.

    Science.gov (United States)

    Janik, H; Marzec, M

    2015-03-01

    The aim of tissue engineering is the fabrication of three-dimensional scaffolds that can be used for the reconstruction and regeneration of damaged or deformed tissues and organs. A wide variety of techniques have been developed to create either fibrous or porous scaffolds from polymers, metals, composite materials and ceramics. However, the most promising materials are biodegradable polymers due to their comprehensive mechanical properties, ability to control the rate of degradation and similarities to natural tissue structures. Polyurethanes (PUs) are attractive candidates for scaffold fabrication, since they are biocompatible, and have excellent mechanical properties and mechanical flexibility. PU can be applied to various methods of porous scaffold fabrication, among which are solvent casting/particulate leaching, thermally induced phase separation, gas foaming, emulsion freeze-drying and melt moulding. Scaffold properties obtained by these techniques, including pore size, interconnectivity and total porosity, all depend on the thermal processing parameters, and the porogen agent and solvents used. In this review, various polyurethane systems for scaffolds are discussed, as well as methods of fabrication, including the latest developments, and their advantages and disadvantages. Copyright © 2014. Published by Elsevier B.V.

  7. Mechanical and thermal properties of sisal fiber-reinforced rubber seed oil-based polyurethane composites

    International Nuclear Information System (INIS)

    Bakare, I.O.; Okieimen, F.E.; Pavithran, C.; Abdul Khalil, H.P.S.; Brahmakumar, M.

    2010-01-01

    The development of high-performance composite materials from locally sourced and renewable materials was investigated. Rubber seed oil polyurethane resin synthesized using rubber seed monoglyceride derived from glycerolysis of the oil was used as matrix in the composite samples. Rubber seed oil-based polyurethane composite reinforced with unidirectional sisal fibers were prepared and characterized. Results showed that the properties of unidirectional fiber-reinforced rubber seed oil-based polyurethane composites gave good thermal and mechanical properties. Also, the values of tensile strengths and flexural moduli of the polyurethane composites were more than tenfold and about twofold higher than un-reinforced rubber seed oil-based polyurethane. The improved thermal stability and the scanning electron micrographs of the fracture surface of the composites were attributed to good fiber-matrix interaction. These results indicate that high-performance 'all natural products' composite materials can be developed from resources that are readily available locally.

  8. Synthesis and optical properties of polyurethane foam modified with silver nanoparticles

    International Nuclear Information System (INIS)

    Apyari, V V; Volkov, P A; Dmitrienko, S G

    2012-01-01

    This paper for the first time describes peculiarities of synthesis of polyurethane foam modified with silver nanoparticles as a potential material for optical sensors in analytical chemistry. We found that the unique sorptional properties of polyurethane foam gave an opportunity to perform such a synthesis by two different approaches. The first one was based on sorption of previously synthesized in-solution nanoparticles by polyurethane foam, the second one consisted in preparation of nanoparticles directly in polyurethane foam matrix. This possibility is novel and interesting for practical use because the nanoparticles in polyurethane foam are capable of surface plasmon resonance. The influence of different factors during the synthesis was investigated and the optimal conditions were found. The samples prepared were characterized by diffuse reflectance spectroscopy and scanning electron microscopy. On the basis of the results obtained we first suggested that this material is attractive from the viewpoint of analytical chemistry as a convenient analytical form for determination of oxidants and reductants

  9. Preparation of novel magnetic polyurethane foam nanocomposites by using core-shell nanoparticles

    Directory of Open Access Journals (Sweden)

    Mir Mohammad Alavi Nikje

    Full Text Available Abstract Iron oxide magnetic nanoparticles (NP's converted to the core- shell structres by reacting with by n-(2-aminoethyl-3-aminopropyl trimethoxysilane (AEAP incorporated in polyurethane flexible (PUF foam formulations. Fourier transform spectra, thermal gravimetric analysis, scanning electron images, thermo-mechanical analysis and magnetic properties of the prepared nanocomposites were studied. Obtained data shown that by the increasing of the amine modified magnetic iron oxide NP's up to 3% in the polymer matrix, thermal and magnetic properties improved in comparison with pristine foams. In addition, due to the presence of functional groups on the magnetic NP's surface, hard phases formation decrease in the bulk polymer and cause decreasing of glass transition temperature.

  10. Double-chain phospholipid end-capped polyurethanes: Synthesis, characterization and platelet adhesion study

    International Nuclear Information System (INIS)

    Tan Dongsheng; Zhang Xiaoqing; Li Jiehua; Tan Hong; Fu Qiang

    2012-01-01

    A novel phospholipid containing double chains and phosphotidylcholine polar head groups, 2-(10-(2-aminoethylamino)-10-oxodecanamido)-3-(decyloxy)-3-oxopropyl phosphorylcholine (ADDPC), was synthesized and characterized. Two kinds of double-chain phospholipid end-capped polyurethanes with different soft segments were prepared. The structure of prepared polyurethanes was characterized by X-ray photoelectron spectroscopic (XPS), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectrometry and atomic force microscope (AFM), which indicated that the double-chain phospholipids enriched onto the top surface of the prepared polyurethane films. The preliminary evaluation of blood compatibility showed that these novel phospholipid end-capped polyurethanes could suppress platelet adhesion and activation effectively. This property did not depend on the chemical structure of polyurethanes. In addition, according to tensile test results, the phospholipid polyurethanes kept good mechanical properties in comparison with original polyurethanes. It is suggested that double-chain phospholipid end-caption has good potential for achieving both hemocompatibility and good mechanical properties simultaneously for polyurethanes.

  11. Mechanical Characterization of Rigid Polyurethane Foams

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Mechanics of Materials

    2014-12-01

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  12. Standard test method for determination of surface lubrication on flexible webs

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This test method has been used since 1988 as an ANSI/ISO standard test for determination of lubrication on processed photographic films. Its purpose was to determine the presence of process-surviving lubricants on photographic films. It is the purpose of this test method to expand the applicability of this test method to other flexible webs that may need lubrication for suitable performance. This test measures the breakaway (static) coefficient of friction of a metal rider on the web by the inclined plane method. The objectives of the test is to determine if a web surface has a lubricant present or not. It is not intended to assign a friction coefficient to a material. It is not intended to rank lubricants. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish ...

  13. Design and milling manufacture of polyurethane custom contoured cushions for wheelchair users

    Directory of Open Access Journals (Sweden)

    Wilson Kindlein Junior

    2011-09-01

    Full Text Available BackgroundThe design of custom contoured cushions manufactured inflexible polyurethane foams is an option to improvepositioning and comfort for people with disabilities thatspend most of the day seated in the same position. Thesesurfaces increase the contact area between the seat and theuser. This fact contributes to minimise the local pressuresthat can generate problems like decubitus ulcers. Thepresent research aims at establishing development routesfor custom cushion production to wheelchair users. Thisstudy also contributes to the investigation of ComputerNumerical Control (CNC machining of flexible polyurethanefoams.MethodThe proposed route to obtain the customised seat beganwith acquiring the user’s contour in adequate posturethrough plaster cast. To collect the surface geometry, thecast was three-dimensionally scanned and manipulated inCAD/CAM software. CNC milling parameters such as tools,spindle speeds and feed rates to machine flexiblepolyurethane foams were tested. These parameters wereanalysed regarding the surface quality. The best parameterswere then tested in a customised seat. The possibledimensional changes generated during foam cutting wereanalysed through 3D scanning. Also, the customised seatpressure and temperature distribution was tested.ResultsThe best parameters found for foams with a density of50kg/cm3 were high spindle speeds (24000 rpm and feedrates between 2400–4000mm/min. Those parameters didnot generate significant deformities in the machinedcushions. The custom contoured cushion satisfactorilyincreased the contact area between wheelchair and user, asit distributed pressure and heat evenly.ConclusionThrough this study it was possible to define routes for thedevelopment and manufacturing of customised seats usingdirect CNC milling in flexible polyurethane foams. It alsoshowed that custom contoured cushions efficientlydistribute pressure and temperature, which is believed tominimise tissue lesions such as pressure

  14. Antimicrobial polyurethane coatings based on ionic liquid quaternary ammonium compounds

    NARCIS (Netherlands)

    Yagci, M.B.; Bolca, S.; Heuts, J.P.A.; Ming, W.; With, de G.

    2011-01-01

    The antimicrobial effect of ionic liquids (ILs) as comonomers in polyurethane surface coatings was investigated. Ionic liquid-containing coatings were prepared from a hydroxyl end-capped liquid oligoester and a triisocyanate crosslinker. Three different commercially available hydroxyl end-capped

  15. Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Juho; Song, Kwangsun; Kim, Namyun; Lee, Jongho, E-mail: jong@gist.ac.kr [School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of); Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of); Hwang, Jeongwoo [Photonic Bio Research Center, Korea Photonics Technology Institute (KOPTI), 9 Cheomdanventure-ro 108beon-gil, Gwangju 61007 (Korea, Republic of); Shin, Jae Cheol [Department of Physics, Yeungnam University, Gyeongsan, Gyeongbuk 38541 (Korea, Republic of)

    2016-06-20

    Wearable flexible electronics often require sustainable power sources that are also mechanically flexible to survive the extreme bending that accompanies their general use. In general, thinner microelectronic devices are under less strain when bent. This paper describes strategies to realize ultra-thin GaAs photovoltaics through the interlayer adhesiveless transfer-printing of vertical-type devices onto metal surfaces. The vertical-type GaAs photovoltaic devices recycle reflected photons by means of bottom electrodes. Systematic studies with four different types of solar microcells indicate that the vertical-type solar microcells, at only a quarter of the thickness of similarly designed lateral-type cells, generate a level of electric power similar to that of thicker cells. The experimental results along with the theoretical analysis conducted here show that the ultra-thin vertical-type solar microcells are durable under extreme bending and thus suitable for use in the manufacturing of wearable flexible electronics.

  16. 40 CFR 721.8095 - Silylated polyurethane.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Silylated polyurethane. 721.8095... Substances § 721.8095 Silylated polyurethane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a silylated polyurethane (PMN P-95-1356) is...

  17. 40 CFR 721.8090 - Polyurethane polymer.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyurethane polymer. 721.8090 Section... Substances § 721.8090 Polyurethane polymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (P-94-47) is subject...

  18. Polyurethane-Coated Breast Implants Revisited: A 30-Year Follow-Up

    Directory of Open Access Journals (Sweden)

    Nikki Castel

    2015-03-01

    Full Text Available BackgroundPolyurethane coating of breast implants has been shown to reduce capsular contracture in short-term follow-up studies. This 30-year study is the longest examination of the use of polyurethane-coated implants and their correlation with capsular contracture.MethodsThis study evaluates the senior surgeon's (F.D.P. experience with the use of polyurethane-coated implants in aesthetic breast augmentation in 382 patients over 30 years. Follow-up evaluations were conducted for six months after surgery. After the six-month follow-up period, 76 patients returned for reoperation. The gross findings, histology, and associated capsular contracture were noted at the time of explantation.ResultsNo patient during the six-month follow-up period demonstrated capsular contracture. For those who underwent reoperation for capsular contracture, Baker II/III contractures were noted nine to 10 years after surgery and Baker IV contractures were noted 12 to 21 years after surgery. None of the explanted implants had macroscopic evidence of polyurethane, which was only found during the first five years after surgery. The microscopic presence of polyurethane was noted in all capsules up to 30 years after the original operation.ConclusionsAn inverse correlation was found between the amount of polyurethane coating on the implant and the occurrence of capsular contracture. Increasingly severe capsular contracture was associated with a decreased amount of polyurethane coating on the surface of the implants. No contracture occurred in patients whose implants showed incomplete biodegradation of polyurethane, as indicated by the visible presence of polyurethane coating. We recommend research to find a non-toxic, non-biodegradable synthetic material as an alternative to polyurethane.

  19. Geometric nonlinear effects on the planar dynamics of a pivoted flexible beam encountering a point-surface impact

    International Nuclear Information System (INIS)

    Li Qing; Wang Tianshu; Ma Xingrui

    2009-01-01

    Flexible-body modeling with geometric nonlinearities remains a hot topic of research by applications in multibody system dynamics undergoing large overall motions. However, the geometric nonlinear effects on the impact dynamics of flexible multibody systems have attracted significantly less attention. In this paper, a point-surface impact problem between a rigid ball and a pivoted flexible beam is investigated. The Hertzian contact law is used to describe the impact process, and the dynamic equations are formulated in the floating frame of reference using the assumed mode method. The two important geometric nonlinear effects of the flexible beam are taken into account, i.e., the longitudinal foreshortening effect due to the transverse deformation, and the stress stiffness effect due to the axial force. The simulation results show that good consistency can be obtained with the nonlinear finite element program ABAQUS/Explicit if proper geometric nonlinearities are included in the floating frame formulation. Specifically, only the foreshortening effect should be considered in a pure transverse impact for efficiency, while the stress stiffness effect should be further considered in an oblique case with much more computational effort. It also implies that the geometric nonlinear effects should be considered properly in the impact dynamic analysis of more general flexible multibody systems

  20. Biomaterial based novel polyurethane adhesives for wood to wood and metal to metal bonding

    Directory of Open Access Journals (Sweden)

    Mitesh Ramanlal Patel

    2009-01-01

    Full Text Available Polyurethane adhesives made from synthetic chemicals are non-biodegradable, costly and difficult to find raw materials from local market. To avoid solid pollution problem, cost effectiveness and easy availability of raw materials, biomaterials based polyurethane adhesives are used in current industrial interest. Direct use of castor oil in polyurethane adhesive gives limited hardness. Modification on active sites of castor oil to utilize double bond of unsaturated fatty acid and carboxyl group yields new modified or activated polyols, which can be utilized for polyurethane adhesive formulation. In view of this, we have synthesized polyurethane adhesives from polyester polyols, castor oil based polyols and epoxy based polyols with Isocyanate adducts based on castor oil and trimethylolpropane. To study the effects of polyurethane adhesive strength (i.e. lap shear strength on wood-to-wood and metal-to-metal bonding through various types of polyols, cross-linking density, isocyanate adducts and also to compare adhesive strength between wood to wood and metal to metal surface. These polyols and polyurethanes were characterized through GPC, NMR and IR-spectroscopy, gel and surface drying time. Thermal stability of PU adhesives was determined under the effect of cross-linking density (NCO/OH ratio. The NCO/OH ratio (1.5 was optimized for adhesives as the higher NCO/OH ratio (2.0 increasing cross-linking density and decreases adhesion. Lower NCO/OH ratio (1.0 provideslow cross-linking density and low strength of adhesives.

  1. A flexible hydrological warning system in Denmark for real-time surface water and groundwater simulations

    Science.gov (United States)

    He, Xin; Stisen, Simon; Wiese, Marianne B.; Jørgen Henriksen, Hans

    2015-04-01

    In Denmark, increasing focus on extreme weather events has created considerable demand for short term forecasts and early warnings in relation to groundwater and surface water flooding. The Geological Survey of Denmark and Greenland (GEUS) has setup, calibrated and applied a nationwide water resources model, the DK-Model, primarily for simulating groundwater and surface water flows and groundwater levels during the past 20 years. So far, the DK-model has only been used in offline historical and future scenario simulations. Therefore, challenges arise in operating such a model for online forecasts and early warnings, which requires access to continuously updated observed climate input data and forecast data of precipitation, temperature and global radiation for the next 48 hours or longer. GEUS has a close collaboration with the Danish Meteorological Institute in order to test and enable this data input for the DK model. Due to the comprehensive physical descriptions of the DK-Model, the simulation results can potentially be any component of the hydrological cycle within the models domain. Therefore, it is important to identify which results need to be updated and saved in the real-time mode, since it is not computationally economical to save every result considering the heavy load of data. GEUS have worked closely with the end-users and interest groups such as water planners and emergency managers from the municipalities, water supply and waste water companies, consulting companies and farmer organizations, in order to understand their possible needs for real time simulation and monitoring of the nationwide water cycle. This participatory process has been supported by a web based questionnaire survey, and a workshop that connected the model developers and the users. For qualifying the stakeholder engagement, GEUS has selected a representative catchment area (Skjern River) for testing and demonstrating a prototype of the web based hydrological warning system at the

  2. Layout designs of surface barrier coatings for boosting the capability of oxygen/vapor obstruction utilized in flexible electronics

    Science.gov (United States)

    Lee, Chang-Chun; Huang, Pei-Chen; He, Jing-Yan

    2018-04-01

    Organic light-emitting diode-based flexible and rollable displays have become a promising candidate for next-generation flexible electronics. For this reason, the design of surface multi-layered barriers should be optimized to enhance the long-term mechanical reliability of a flexible encapsulation that prevents the penetration of oxygen and vapor. In this study, finite element-based stress simulation was proposed to estimate the mechanical reliability of gas/vapor barrier design with low-k/silicon nitride (low-k/SiNx) stacking architecture. Consequently, stress-induced failure of critical thin films within the flexible display under various bending conditions must be considered. The feasibility of one pair SiO2/SiNx barrier design, which overcomes the complex lamination process, and the critical bending radius, which is decreased to 1.22 mm, were also examined. In addition, the influence of distance between neutral axes to the concerned layer surface dominated the induced-stress magnitude rather than the stress compliant mechanism provided from stacked low-k films.

  3. Electrospun polyurethane membranes for Tissue Engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Laís P., E-mail: lagabriel@gmail.com [National Institute of Biofabrication, Campinas (Brazil); Department of Chemical Engineering, University of Campinas, Campinas (Brazil); Rodrigues, Ana Amélia [National Institute of Biofabrication, Campinas (Brazil); Department of Medical Sciences, University of Campinas, Campinas (Brazil); Macedo, Milton; Jardini, André L.; Maciel Filho, Rubens [National Institute of Biofabrication, Campinas (Brazil); Department of Chemical Engineering, University of Campinas, Campinas (Brazil)

    2017-03-01

    Tissue Engineering proposes, among other things, tissue regeneration using scaffolds integrated with biological molecules, growth factors or cells for such regeneration. In this research, polyurethane membranes were prepared using the electrospinning technique in order to obtain membranes to be applied in Tissue Engineering, such as epithelial, drug delivery or cardiac applications. The influence of fibers on the structure and morphology of the membranes was studied using scanning electron microscopy (SEM), the structure was evaluated by Fourier transform infrared spectroscopy (FT-IR), and the thermal stability was analyzed by thermogravimetry analysis (TGA). In vitro cells attachment and proliferation was investigated by SEM, and in vitro cell viability was studied by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays and Live/Dead® assays. It was found that the membranes present an homogeneous morphology, high porosity, high surface area/volume ratio, it was also observed a random fiber network. The thermal analysis showed that the membrane degradation started at 254 °C. In vitro evaluation of fibroblasts cells showed that fibroblasts spread over the membrane surface after 24, 48 and 72 h of culture. This study supports the investigation of electrospun polyurethane membranes as biocompatible scaffolds for Tissue Engineering applications and provides some guidelines for improved biomaterials with desired properties.

  4. Hyaluronan Immobilized Polyurethane as a Blood Contacting Material

    Directory of Open Access Journals (Sweden)

    Feirong Gong

    2010-01-01

    Full Text Available Hyaluronan (hyaluronic acid, HA was immobilized onto the surface of amino-functionalized polyurethane films with the goal of obtaining a novel kind of biomaterial which had the potential in blood-contacting applications. The amino-functionalized polyurethane was prepared by synthesized acidic polyurethane whose pendant carboxyl groups were treated with an excess amount of 1,3-diaminopropane in the presence of N,N-carbonyldiimidazole (CDI. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR, Raman spectroscopy (RS, scanning electron microscopy (SEM, and water contact angle measurement were used to confirm the surface changes at each step of treatment, both in morphologies and chemical compositions. APTT and PT results showed that HA immobilization could prolong the blood coagulation time, thus HA-immobilized polyurethane (PU-HA exhibited improved blood compatibility. Cytotoxicity analysis showed that the PU-HA films synthesized in this study were cytocompatible and could support human vein endothelial cells (HUVECs adhesion and proliferation.

  5. Polyurethane Foams with Pyrimidine Rings

    Directory of Open Access Journals (Sweden)

    Kania Ewelina

    2014-09-01

    Full Text Available Oligoetherols based on pyrimidine ring were obtained upon reaction of barbituric acid with glycidol and alkylene carbonates. These oligoetherols were then used to obtain polyurethane foams in the reaction of oligoetherols with isocyanates and water. The protocol of foam synthesis was optimized by the choice of proper kind of oligoetherol and synthetic composition. The thermal resistance was studied by dynamic and static methods with concomitant monitoring of compressive strength. The polyurethane foams have similar physical properties as the classic ones except their enhanced thermal resistance. They stand long-time heating even at 200°C. Moreover thermal exposition of foams results generally in increase of their compressive strength.

  6. Polyurethane - positioning aids in radiotherapy

    International Nuclear Information System (INIS)

    Alzen, G.; Boeck, E.G.; Thelen, M.; Kutzner, J.

    1985-01-01

    A simple and cheap method is described for the manufacturing of individual positioning aids made of foamed polyurethane. Some examples are given to demonstrate the applicability of these positioning aids for the irradiation of different body regions. The reproducibility of the radiation field in the head and neck area was investigated with and without positioning aid. It was proved that the field is adjusted more exactly when positioning aids are applied. The dosimetric investigations performed showed a negligible influence of foamed polyurethane on the radiation quality. So the positioning aids could be left within the radiation field when drawing the field borders. (orig.) [de

  7. Bioactive polyurethane implants with hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Rozhnova, R.; Kebuladze, I.; Galatenko, N. [NAS Ukraine, Kiev (Ukraine). Dept. of Polymers of Medical Appointment

    2001-07-01

    Biologically active polyurethane compositions for plastic of bone defects that contain bioceramic - hydroxyapatite (HAP) and immunomodulator - levamisole (LEV) were designed. The influence of the biologically active fillers in structure polyurethane compositions on their physical and chemical properties in condition in vivo by method of Equilibrium Swelling, method of IR-spectroscopy, roentgen-structural analysis was studied. The introduce in structure of the biodegraded polymeric matrix of HAP is established to promote accumulation of the inorganic component of bone tissue in vivo which is being by basis of the bone formation in regenerating tissue. (orig.)

  8. Acyclic N-halamine-immobilized polyurethane: Preparation and antimicrobial and biofilm-controlling functions

    Science.gov (United States)

    Luo, Jie; Porteous, Nuala; Lin, Jiajin; Sun, Yuyu

    2015-01-01

    Hydroxyl groups were introduced onto polyurethane surfaces through 1,6-hexamethylene diisocyanate activation, followed by diethanolamine hydroxylation. Polymethacrylamide was covalently attached to the hydroxylated polyurethane through surface grafting polymerization of methacrylamide using cerium (IV) ammonium nitrate as an initiator. After bleach treatment, the amide groups of the covalently bound polymethacrylamide chains were transformed into N-halamines. The new N-halamine-immobilized polyurethane provided a total sacrifice of 107–108 colony forming units per milliliter of Staphylococcus aureus (Gram-positive bacteria), Escherichia coli (Gram-negative bacteria), and Candida albicans (fungi) within 10 min and successfully prevented bacterial and fungal biofilm formation. The antimicrobial and biofilm-controlling effects were both durable and rechargeable, pointing to great potentials of the new acyclic N-halamine-immobilized polyurethane for a broad range of related applications. PMID:26089593

  9. Presence of Biofilms on Polyurethane-Coated Breast Implants: Preliminary Results.

    Science.gov (United States)

    Rieger, Ulrich M; Djedovic, Gabriel; Pattiss, Alexander; Raschke, Gregor F; Frei, Reno; Pierer, Gerhard; Trampuz, Andrej

    2016-01-01

    Polyurethane-coated breast implants seem to be associated with lower medium- and long-term capsular contracture rates in comparison to textured or smooth implant surfaces. Although the etiology of capsular contracture is uncertain, bacterial biofilms have been suggested to trigger chronic peri-implant inflammation, eventually leading to capsular contracture. It is unknown whether polyurethane-coated implants are less prone to biofilm colonization than other implant surfaces. We extracted data from patient records included in a prospective cohort between 2008 and 2011. All patients who underwent removal of polyurethane-coated implants were included in this current study and screened for presence of biofilms by sonication. In addition, implant- and patient-related data were analyzed. Of the ten included polyurethane-coated breast implants, six had been inserted for reconstructive purposes and four for aesthetic reasons. The median implant indwelling time was 28.3 mo. Overall, sonication cultures were positive in 50% of implants. Propionibacterium acnes and coagulase-negative staphylococci were the predominant pathogens isolated from biofilm cultures. Like other implant surfaces, polyurethane-coated implants are prone to biofilm colonization. Further investigations are needed to determine why capsular contracture rates seem to be lower in polyurethane implants than in other implant surfaces. Notably, in this study, 40% of the implants were explanted from breasts with severe capsular contracture.

  10. Smooth-surface silver nanowire electrode with high conductivity and transparency on functional layer coated flexible film

    International Nuclear Information System (INIS)

    Lee, So Hee; Lim, Sooman; Kim, Haekyoung

    2015-01-01

    Transparent conductive electrode (TCE) with silver nanowires has been widely studied as an alternative of indium tin oxide for flexible electronic or optical devices such as organic light-emitting diodes, and solar cells. However, it has an issue of surface roughness due to nanowire's intrinsic properties. Here, to achieve a smooth electrode with high conductivity and transmittance on polyethylene terephthalate (PET) substrates, a functional layer of poly(N-vinylpyrrolidone) (PVP) is utilized with a mechanical transfer process. The silver nanowire electrode on PVP-coated PET with low surface roughness of 9 nm exhibits the low sheet resistance of 18 Ω □ −1 and high transmittance of 87.6%. It is produced by transferring the silver nanowire electrode spin-coated on the glass to PVP-coated PET using a pressure of 10 MPa for 10 min. Silver nanowire electrode on PVP-coated PET demonstrates the stable sheet resistance of 18 Ω □ −1 after the mechanical taping test due to strong adhesion between PVP functional layer and silver nanowires. Smooth TCE with silver nanowires could be proposed as a transparent electrode for flexible electronic or optical devices, which consist of thin electrical active layers on TCE. - Highlights: • Silver nanowire (Ag NWs) transparent electrodes were fabricated on flexible film. • Flexible film was coated with poly N-vinylpyrrolidone (PVP). • PVP layer plays roles as an adhesive layer and matrix in electrode. • Ag NWs electrode exhibited with low surface roughness of 9 nm. • Ag NWs electrode has a low resistance (18 Ω ☐ −1 ) and high transmittance (87.6%)

  11. Smooth-surface silver nanowire electrode with high conductivity and transparency on functional layer coated flexible film

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Hee; Lim, Sooman; Kim, Haekyoung, E-mail: hkkim@ynu.ac.kr

    2015-08-31

    Transparent conductive electrode (TCE) with silver nanowires has been widely studied as an alternative of indium tin oxide for flexible electronic or optical devices such as organic light-emitting diodes, and solar cells. However, it has an issue of surface roughness due to nanowire's intrinsic properties. Here, to achieve a smooth electrode with high conductivity and transmittance on polyethylene terephthalate (PET) substrates, a functional layer of poly(N-vinylpyrrolidone) (PVP) is utilized with a mechanical transfer process. The silver nanowire electrode on PVP-coated PET with low surface roughness of 9 nm exhibits the low sheet resistance of 18 Ω □{sup −1} and high transmittance of 87.6%. It is produced by transferring the silver nanowire electrode spin-coated on the glass to PVP-coated PET using a pressure of 10 MPa for 10 min. Silver nanowire electrode on PVP-coated PET demonstrates the stable sheet resistance of 18 Ω □{sup −1} after the mechanical taping test due to strong adhesion between PVP functional layer and silver nanowires. Smooth TCE with silver nanowires could be proposed as a transparent electrode for flexible electronic or optical devices, which consist of thin electrical active layers on TCE. - Highlights: • Silver nanowire (Ag NWs) transparent electrodes were fabricated on flexible film. • Flexible film was coated with poly N-vinylpyrrolidone (PVP). • PVP layer plays roles as an adhesive layer and matrix in electrode. • Ag NWs electrode exhibited with low surface roughness of 9 nm. • Ag NWs electrode has a low resistance (18 Ω ☐{sup −1}) and high transmittance (87.6%)

  12. Additive Manufacturing of Polyurethane Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kunc, Vlastimil [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lindahl, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Minneci, Robert P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pyzik, Alek [Dow Chemical Company, Saginaw, MI (United States); Gorin, Craig [Dow Chemical Company, Midland, MI (United States); Allen, Sharon [Dow Chemical Company, Midland, MI (United States); Wilson, Keith [Dow Chemical Company, Midland, MI (United States); Howard, Kevin [Dow Chemical Company, Midland, MI (United States)

    2017-08-10

    ORNL worked with The DOW Chemical Company to validate the feasibility of 3D printing DOW’s polyurethane (PU) materials using ORNL’s equipment and know-how. This led to the development of the first directly-3D-printable PU material.

  13. Facile Synthesis of Flexible Methylsilsesquioxane Aerogels with Surface Modifications for Sound- Absorbance, Fast Dye Adsorption and Oil/Water Separation

    Directory of Open Access Journals (Sweden)

    Xingzhong Guo

    2018-04-01

    Full Text Available New flexible methylsilsesquioxane (MSQ aerogels have been facilely prepared by a sol–gel process with methyltrimethoxysilane (MTMS and dimethyldimethoxysilane (DMDMS as co-precursors, followed by surface modification and ambient pressure drying. The microstructure, mechanical properties and hydrophobicity of these MSQ aerogels after surface modifications of hexamethyldisiloxane (HMDSO and/or hexamethyldisilazane (HMDS were investigated in detail, and the applications of surface-modified MSQ aerogels in sound-absorbance, fast dye adsorption and oil/water separation were evaluated, respectively. The MSQ aerogels surface-modified by HMDS possess flexibility, elasticity and superhydrophobicity, and demonstrate good performance in the mentioned applications. The resultant MSQ aerogel used in sound-absorbance has high frequency (about 6 kHz acoustic absorptivity of up to 80%, benefiting from its macroporous structure and porosity of 94%, and it also possesses intermediate frequency acoustic absorptivity (about 1 kHz up to 80% owing to its elasticity. This MSQ aerogel can selectively separate oil from oil/water mixtures with high efficiency due to its superhydrophobicity and superlipophilicity, resulting from a lot of methyl groups, density as low as 0.12 cm3·g−1 and a water contact angle as high as 157°. This MSQ aerogel can be assembled to be a monolithic column applied for fast dye adsorption, and shows selective adsorption for anionic dyes and removal efficiency of methyl orange of up to 95%.

  14. Carbon Quantum Dot Surface-Engineered VO2 Interwoven Nanowires: A Flexible Cathode Material for Lithium and Sodium Ion Batteries.

    Science.gov (United States)

    Balogun, Muhammad-Sadeeq; Luo, Yang; Lyu, Feiyi; Wang, Fuxin; Yang, Hao; Li, Haibo; Liang, Chaolun; Huang, Miao; Huang, Yongchao; Tong, Yexiang

    2016-04-20

    The use of electrode materials in their powdery form requires binders and conductive additives for the fabrication of the cells, which leads to unsatisfactory energy storage performance. Recently, a new strategy to design flexible, binder-, and additive-free three-dimensional electrodes with nanoscale surface engineering has been exploited in boosting the storage performance of electrode materials. In this paper, we design a new type of free-standing carbon quantum dot coated VO2 interwoven nanowires through a simple fabrication process and demonstrate its potential to be used as cathode material for lithium and sodium ion batteries. The versatile carbon quantum dots that are vastly flexible for surface engineering serve the function of protecting the nanowire surface and play an important role in the diffusion of electrons. Also, the three-dimensional carbon cloth coated with VO2 interwoven nanowires assisted in the diffusion of ions through the inner and the outer surface. With this unique architecture, the carbon quantum dot nanosurface engineered VO2 electrode exhibited capacities of 420 and 328 mAh g(-1) at current density rate of 0.3 C for lithium and sodium storage, respectively. This work serves as a milestone for the potential replacement of lithium ion batteries and next generation postbatteries.

  15. Unidirectional fibers and polyurethane elastomer matrix based composites synthesis and properties. Ph.D. Thesis

    Science.gov (United States)

    Chakar, A.

    1984-01-01

    A study of the properties and manufacturing techniques for long-fiber reinforced elastomeric composites for flexible and damping structural materials is presented. Attention is given to the usage of polyurethane in the matrix to obtain plastic elastomeric matrices and vitreous transition temperatures which vary from -80 C to 10 C, as well as assure good fiber adhesion. Various polyurethane formulations synthesized from diisocyanate prepolymers are examined in terms of mechanical and thermal properties. The principal reinforcing fiber selected is a unidirectional glass cloth.

  16. Thermal behaviour and corrosion resistance of nano-ZnO/polyurethane film

    Science.gov (United States)

    Virgawati, E.; Soegijono, B.

    2018-03-01

    Hybrid materials Nano-ZnO/polyurethane film was prepared with different zinc oxide (ZnO) content in polyurethane as a matrix. The film was deposited on low carbon steel plate using high volume low pressure (HVLP) method. To observe thermal behaviour of the film, the sample was investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Fourier transform infrared spectroscopy (FTIR) was used to see whether any chemical reaction of ZnO in polyurethane occured. TGA and FTIR results showed that the decomposition temperature shifted to a higher point and the chemical reaction of zinc oxide in polyurethane occurred. The surface morphology changed and the corrosion resistance increased with an increase of ZnO content

  17. Characterization of polyurethane based on polyol synthesized from glycerol and hexamethylene diisocyanate

    International Nuclear Information System (INIS)

    Carvalho, Sabrina M.; Weber, Vanessa; Silva, Tailu N.; Barreto, Pedro L.M.

    2009-01-01

    A new polyol based on glycerol was synthesized and used in the production of polyurethane by reaction with hexamethylene diisocyanate. The polyol was characterized by nuclear magnetic resonance spectroscopy (NMR) and Fourier transform-infrared spectroscopy (FTIR). The polyurethane produced was characterized by FTIR, thermogravimetry (TG), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The polyol was shown to be reactive with hexamethylene diisocyanate, as the FTIR spectrum showed no free isocyanate groups and identified the presence of group -C=O of urethane groups. Analysis by DSC showed that the sample of polyurethane has a glass transition temperature around -8.53 deg C and SEM micrographs showed fracture and surface continuous and not broken. The thermogravimetric analysis showed that the polyurethane produced has a high thermal stability with a temperature of maximum degradation around 430 deg C. (author)

  18. Sustained Release Drug Delivery Applications of Polyurethanes

    Directory of Open Access Journals (Sweden)

    Michael B. Lowinger

    2018-05-01

    Full Text Available Since their introduction over 50 years ago, polyurethanes have been applied to nearly every industry. This review describes applications of polyurethanes to the development of modified release drug delivery. Although drug delivery research leveraging polyurethanes has been ongoing for decades, there has been renewed and substantial interest in the field in recent years. The chemistry of polyurethanes and the mechanisms of drug release from sustained release dosage forms are briefly reviewed. Studies to assess the impact of intrinsic drug properties on release from polyurethane-based formulations are considered. The impact of hydrophilic water swelling polyurethanes on drug diffusivity and release rate is discussed. The role of pore formers in modulating drug release rate is examined. Finally, the value of assessing mechanical properties of the dosage form and approaches taken in the literature are described.

  19. High molecular weight polyurethanes and a polyurethane urea based on 1,4-butanediisocyanate

    NARCIS (Netherlands)

    Spaans, CJ; de Groot, JH; Dekens, FG; Pennings, AJ

    New biomedical polyurethanes and a polyurethane urea based on epsilon-caprolactone and 1,4-butanediisocyanate have been developed. On degradation, only non-toxic products are produced. The polyurethane urea with poly(epsilon-caprolactone) soft segments and butanediisocyanate/butanediamine hard

  20. PLATELET ADHESION TO POLYURETHANE UREA UNDER PULSATILE FLOW CONDITIONS

    Science.gov (United States)

    Navitsky, Michael A.; Taylor, Joshua O.; Smith, Alexander B.; Slattery, Margaret J.; Deutsch, Steven; Siedlecki, Christopher A.; Manning, Keefe B.

    2014-01-01

    Platelet adhesion to a polyurethane urea surface is a precursor to thrombus formation within blood-contacting cardiovascular devices, and platelets have been found to adhere strongly to polyurethane surfaces below a shear rate of approximately 500 s−1. The aim of the current work is to determine platelet adhesion properties to the polyurethane urea surface as a function of time varying shear exposure. A rotating disk system is used to study the influence of steady and pulsatile flow conditions (e.g. cardiac inflow and sawtooth waveforms) for platelet adhesion to the biomaterial surface. All experiments retain the same root mean square angular rotation velocity (29.63 rad/s) and waveform period. The disk is rotated in platelet rich bovine plasma for two hours with adhesion quantified by confocal microscopy measurements of immunofluorescently labeled bovine platelets. Platelet adhesion under pulsating flow is found to exponentially decay with increasing shear rate. Adhesion levels are found to depend upon peak platelet flux and shear rate regardless of rotational waveform. In combination with flow measurements, these results may be useful for predicting regions susceptible to thrombus formation within ventricular assist devices. PMID:24721222

  1. Sorption of heteropoly acids by polyurethane foam

    International Nuclear Information System (INIS)

    Dmitreinko, S.G.; Goncharova, L.V.; Runov, V.K.; Zakharov, V.N.; Aslanova, L.A.

    1997-01-01

    Sorption of oxidized and reduced forms of molybdosilicic, molybdophosphoric and molybdovanadophosphoric acids by polyurethane foam based on ethers and esters is studied. On the basis of sorption dependence on solution pH, polyurethane foam type and spectral characteristics of sorbates the suggestion has been made that in the polyurethane foam phase there are two main types of sorbent-sorbate interaction: electrostatic (ion-ion) and with hydrogen bond formation: and it is impossible to determine the contribution of every interaction

  2. Adhesion aspects of polyurethane foam sandwich panels.

    OpenAIRE

    Ng, Simon L.

    2016-01-01

    Sandwich panels, polyurethane foam sandwiched between two sheets of steel, form the walls and roofs in the construction of buildings. ArcelorMittal is a manufacturer of the steel as well as these finished panels. For this project they combined with a supplier of the polyurethane foams, Huntsman Polyurethanes, to joint-fund a research project investigating the fundamental mechanisms of adhesion, as well as the causes of failures in the product which manifests primarily in two different ways...

  3. Structure and Properties of Polyurethanes. Part 1,

    Science.gov (United States)

    1979-03-23

    since the solidification of varnish coatings on basis it is polyurethane usually it occurs under conditions for contact wita moisture of air. Page...containing fluorine is polyurethane. In works (44, 84-86] is given the information about synthesis 11 DOC = 79011105 PAGE and special feature/peculiarities...of the phase transformations of the series/number of the fluorine -bedrlng aliphatic ones it is polyurethane. Page 87. In particular, were investigated

  4. Estimation of efficiency of hydrotransport pipelines polyurethane coating application in comparison with steel pipelines

    Science.gov (United States)

    Aleksandrov, V. I.; Vasilyeva, M. A.; Pomeranets, I. B.

    2017-10-01

    The paper presents analytical calculations of specific pressure loss in hydraulic transport of the Kachkanarsky GOK iron ore processing tailing slurry. The calculations are based on the results of the experimental studies on specific pressure loss dependence upon hydraulic roughness of pipelines internal surface lined with polyurethane coating. The experiments proved that hydraulic roughness of polyurethane coating is by the factor of four smaller than that of steel pipelines, resulting in a decrease of hydraulic resistance coefficients entered into calculating formula of specific pressure loss - the Darcy-Weisbach formula. Relative and equivalent roughness coefficients are calculated for pipelines with polyurethane coating and without it. Comparative calculations show that hydrotransport pipelines polyurethane coating application is conductive to a specific energy consumption decrease in hydraulic transport of the Kachkanarsky GOC iron ore processing tailings slurry by the factor of 1.5. The experiments were performed on a laboratory hydraulic test rig with a view to estimate the character and rate of physical roughness change in pipe samples with polyurethane coating. The experiments showed that during the following 484 hours of operation, roughness changed in all pipe samples inappreciably. As a result of processing of the experimental data by the mathematical statistics methods, an empirical formula was obtained for the calculation of operating roughness of polyurethane coating surface, depending on the pipeline operating duration with iron ore processing tailings slurry.

  5. Optically active polyurethane@indium tin oxide nanocomposite: Preparation, characterization and study of infrared emissivity

    International Nuclear Information System (INIS)

    Yang, Yong; Zhou, Yuming; Ge, Jianhua; Yang, Xiaoming

    2012-01-01

    Highlights: ► Silane coupling agent of KH550 was used to connect the ITO and polyurethanes. ► Infrared emissivity values of the hybrids were compared and analyzed. ► Interfacial synergistic action and orderly secondary structure were the key factors. -- Abstract: Optically active polyurethane@indium tin oxide and racemic polyurethane@indium tin oxide nanocomposites (LPU@ITO and RPU@ITO) were prepared by grafting the organics onto the surfaces of modified ITO nanoparticles. LPU@ITO and RPU@ITO composites based on the chiral and racemic tyrosine were characterized by FT-IR, UV–vis spectroscopy, X-ray diffraction (XRD), SEM, TEM, and thermogravimetric analysis (TGA), and the infrared emissivity values (8–14 μm) were investigated in addition. The results indicated that the polyurethanes had been successfully grafted onto the surfaces of ITO without destroying the crystalline structure. Both composites possessed the lower infrared emissivity values than the bare ITO nanoparticles, which indicated that the interfacial interaction had great effect on the infrared emissivity. Furthermore, LPU@ITO based on the optically active polyurethane had the virtue of regular secondary structure and more interfacial synergistic actions between organics and inorganics, thus it exhibited lower infrared emissivity value than RPU@ITO based on the racemic polyurethane.

  6. Attachment of inorganic moieties onto aliphatic polyurethanes

    Directory of Open Access Journals (Sweden)

    Eliane Ayres

    2007-06-01

    Full Text Available Polyurethanes have been used in a series of applications due basically to their versatility in terms of controlling the behavior by altering basically the type of reagents used. However, for more specific and advanced applications, such as in membranes, biomaterials and sensors, well-organized and defined chemical functionalities are necessary. In this work, inorganic functionalities were incorporated into aliphatic polyurethanes (PU having different macromolecular architectures. Polyurethanes were synthesized using a polyether diol and dicyclohexylmethane 4,4' diisocyanate (H12-MDI. Polyurethanes having carboxylic acid groups were also produced by introducing 2,2- bis (hydroxymethyl propionic acid in the polymerization process. Inorganic functionalities were inserted into polyurethanes by reacting isocyanate end capped chains with aminopropyltriethoxysilane followed by tetraethoxysilane. PU having carboxylic acid groups yielded transparent samples after the incorporation of inorganic entities, as an evidence of smaller and better dispersed inorganic entities in the polymer network. FTIR and swelling measurements showed that polyurethanes having carboxylic acid groups had inorganic domains less packed, condensed and cross-linked when compared to polyurethanes with no carboxylic acid groups. Results also suggested that the progressive incorporation of inorganic moieties in both types of polyurethanes occurred in regions previously activated with inorganic functionalities, instead of by the creation of new domains. The temperatures of thermal decomposition and glass transition were also shifted to higher temperatures when inorganic functionalities were incorporated into polyurethanes.

  7. Polyurethane Coatings Reinforced by Halloysite Nanotubes

    Directory of Open Access Journals (Sweden)

    Diethelm Johannsmann

    2013-01-01

    Full Text Available The pencil hardness of a two-component polyurethane coating was improved by adding halloysite nanotubes to the recipe at a weight fraction of less than 10%. The pencil hardness was around F for the unfilled coating and increased to around 2H upon filling. It was important to silanize the surface of the filler in order to achieve good coupling to the matrix. Sonicating the sample during drying also improved the hardness. Scanning electron micrographs suggest that the nanotubes are always well immersed into the bulk of the film. With a thickness between 10 and 20 µm, the optical clarity was good enough to clearly read letters through the film. The films can be used in applications where transparency is required.

  8. Biodegradation of polyurethane derived from castor oil

    Directory of Open Access Journals (Sweden)

    José M. Cangemi

    2008-09-01

    Full Text Available The aim of this research was to study the biodegradation of a polymer derived from castor oil, which is a renewable, natural material that is a practical alternative for the replacement of traditional polyurethane foams. Due to its molecular structure, which contains polyester segments derived from vegetable oil, the polymeric surface is susceptible to microorganism attack. This study tested the biological degrading agent that was in contact with the microorganisms resulting from microbiological grease degrading agents, when foam was inoculated. Solid-media agar-plate tests were conducted for their potential to evaluate the biodegradation of polymeric particles by specific strains of microorganisms during 216 hours. The growth rate was defined. This technique provides a way of distinguishing the degradation abilities of microorganisms from the degradability of materials.

  9. Engineering Performance of Polyurethane Bonded Aggregates

    Directory of Open Access Journals (Sweden)

    Haimin WU

    2017-08-01

    Full Text Available In this paper the engineering performance of polyurethane (PUR bonded aggregate were studied. The engineering performance, including compressive and flexural mechanical properties, void ratio, and coefficient of permeability were determined through laboratory tests. Moreover, the effects of two different curing conditions on the compressive strength properties of a PUR bonded aggregate were also evaluated. The compressive strengths of PUR bonded aggregates were found to be lower than that of conventional porous concrete, which is a commonly used cushion material. However, experimental results indicated a higher void ratio and coefficient of permeability, lower elasticity modulus, better toughness, and stronger adaptability to flexural deformation compared to porous concrete. Consequently, PUR bonded aggregate is a better solution than porous concrete when used as the cushion material of a geomembrane surface barrier for a high rock-fill dam.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.15798

  10. Exploiting the flexibility and the polarization of ferroelectric perovskite surfaces to achieve efficient photochemistry and enantiospecificity

    Energy Technology Data Exchange (ETDEWEB)

    Rappe, Andrew [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2017-01-06

    This research project explored the catalytic properties of complex surfaces of functional materials. The PI used first-principles density functional theory (DFT) calculations to explore a tightly integrated set of properties. The physical properties of complex functional materials that influence surface chemistry were explored, including bulk and surface electric dipoles, and surface conductivity. The energetic, compositional, electronic, and chemical properties of the surfaces of these materials were explored in detail, and connections between material properties and chemical reactivity were established. This project led to 28 publications, including Nat. Comm., JACS, 3 PRL, 7 PRB, 2 ACS Nano, 2 Nano Lett., 4 JPCL, 2 JCP, Chem. Mater., ACS Appl. Mater. Interfaces, Phys. Rev. Appl., and a U.S. Patent on surface catalysts. The key accomplishments in this project involved work in six coordinated areas: pioneering ways to control bulk dipoles in order to dynamically affect catalysis, exploring novel ways of bringing charge to the surface for redox catalysis, nonstoichiometric surfaces offering new sites for heterogeneous catalysis, illustrating how surface catalysis responds to applied pressure, catalytic growth of carbon-based materials, and new computational methods allowing more accurate exploration of molecule-surface interactions

  11. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    OpenAIRE

    Jiříček, T.; Komárek, M.; Lederer, T.

    2017-01-01

    Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest ...

  12. Polyurethane adhesives in flat roofs

    OpenAIRE

    Bogárová Markéta; Stodůlka Jindřich; Šuhajda Karel

    2017-01-01

    It is necessary to stabilize individual layers of flat roofs, mainly because of wind suction. Apart from anchoring and surcharge, these layers can be secured by bonding. At present gluing is an indispensable and widely used stabilization method. On our market we can found many types of adhesives, most widely used are based on polyurethane. This paper focuses on problematic about stabilization thermal insulation from expanded polystyrene to vapor barrier from bitumen. One of the main issues is...

  13. Analysis the complex interaction among flexible nanoparticles and materials surface in the mechanical polishing process

    Energy Technology Data Exchange (ETDEWEB)

    Han Xuesong, E-mail: hanxuesongphd@yahoo.com.cn [School of Mechanical Engineering, Tianjin University, 300072 (China); Gan, Yong X. [Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, OH 43606 (United States)

    2011-02-01

    Mechanical polishing (MP), being the important technique of realizing the surface planarization, has already been widely applied in the area of microelectronic manufacturing and computer manufacturing technology. The surface planarization in the MP is mainly realized by mechanical process which depended on the microdynamic behavior of nanoparticle. The complex multibody interaction among nanoparticles and materials surface is different from interaction in the macroscopic multibody system which makes the traditional classical materials machining theory cannot accurately uncover the mystery of the surface generation in the MP. Large-scale classical molecular dynamic (MD) simulation of interaction among nanoparticles and solid surface has been carried out to investigate the physical essence of surface planarization. The particles with small impact angle can generate more uniform global planarization surface but the materials removal rate is lower. The shear interaction between particle and substrate may induce large friction torque and lead to the rotation of particle. The translation plus rotation makes the nanoparticle behaved like micro-milling tool. The results show that the nanoparticles may aggregrate together and form larger cluster thus deteriorate surface the quality. This MD simulation results illuminate that the f inal planarized surface can only be acquired by synergic behavior of all particles using various means such as cutting, impacting, scratching, indentation and so on.

  14. Polyurethane adhesives in flat roofs

    Directory of Open Access Journals (Sweden)

    Bogárová Markéta

    2017-01-01

    Full Text Available It is necessary to stabilize individual layers of flat roofs, mainly because of wind suction. Apart from anchoring and surcharge, these layers can be secured by bonding. At present gluing is an indispensable and widely used stabilization method. On our market we can found many types of adhesives, most widely used are based on polyurethane. This paper focuses on problematic about stabilization thermal insulation from expanded polystyrene to vapor barrier from bitumen. One of the main issues is to calculate the exact amount of adhesive, which is required to guarantee the resistance against wind suction. In this problematic we can not find help neither in technical data sheets provided by the manufactures. Some of these data sheets contain at least information about amount of adhesive depending on location in roof plane and building height, but they do not specify the strength of such connection. It was therefore resorted to select several representatives polyurethane adhesives and their subsequent testing on specimens simulating the flat roof segment. The paper described the test methodology and results for two types of polyurethane adhesives.

  15. Fabrication of superhydrophobic polyurethane/organoclay nano-structured composites from cyclomethicone-in-water emulsions

    International Nuclear Information System (INIS)

    Bayer, I.S.; Steele, A.; Martorana, P.J.; Loth, E.

    2010-01-01

    Nano-structured polyurethane/organoclay composite films were fabricated by dispersing moisture-curable polyurethanes and fatty amine/amino-silane surface modified montmorillonite clay (organoclay) in cyclomethicone-in-water emulsions. Cyclomethicone Pickering emulsions were made by emulsifying decamethylcyclopentasiloxane (D 5 ), dodecamethylcyclohexasiloxane (D 6 ) and aminofunctional siloxane polymers with water using montmorillonite particles as emulsion stabilizers. Polyurethane and organoclay dispersed emulsions were spray coated on aluminum surfaces. Upon thermosetting, water repellent self-cleaning coatings were obtained with measured static water contact angles exceeding 155 o and low contact angle hysteresis ( o ). Electron microscopy images of the coating surfaces revealed formation of self-similar hierarchical micro- and nano-scale surface structures. The surface morphology and the coating adhesion strength to aluminum substrates were found to be sensitive to the relative amounts of dispersed polyurethane and organoclay in the emulsions. The degree of superhydrophobicity was analyzed using static water contact angles as well as contact angle hysteresis measurements. Due to biocompatibility of cyclomethicones and polyurethane, developed coatings can be considered for specific bio-medical applications.

  16. Fabrication of superhydrophobic polyurethane/organoclay nano-structured composites from cyclomethicone-in-water emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, I.S., E-mail: ibayer1@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Steele, A.; Martorana, P.J. [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Loth, E. [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, IL 61801 (United States); Department of Mechanical and Aerospace Engineering, University of Virginia, VA 22904 (United States)

    2010-11-15

    Nano-structured polyurethane/organoclay composite films were fabricated by dispersing moisture-curable polyurethanes and fatty amine/amino-silane surface modified montmorillonite clay (organoclay) in cyclomethicone-in-water emulsions. Cyclomethicone Pickering emulsions were made by emulsifying decamethylcyclopentasiloxane (D{sub 5}), dodecamethylcyclohexasiloxane (D{sub 6}) and aminofunctional siloxane polymers with water using montmorillonite particles as emulsion stabilizers. Polyurethane and organoclay dispersed emulsions were spray coated on aluminum surfaces. Upon thermosetting, water repellent self-cleaning coatings were obtained with measured static water contact angles exceeding 155{sup o} and low contact angle hysteresis (<8{sup o}). Electron microscopy images of the coating surfaces revealed formation of self-similar hierarchical micro- and nano-scale surface structures. The surface morphology and the coating adhesion strength to aluminum substrates were found to be sensitive to the relative amounts of dispersed polyurethane and organoclay in the emulsions. The degree of superhydrophobicity was analyzed using static water contact angles as well as contact angle hysteresis measurements. Due to biocompatibility of cyclomethicones and polyurethane, developed coatings can be considered for specific bio-medical applications.

  17. Hard and transparent hybrid polyurethane coatings using in situ incorporation of calcium carbonate nanoparticles

    International Nuclear Information System (INIS)

    Yao Lu; Yang Jie; Sun Jing; Cai Lifang; He Linghao; Huang Hui; Song Rui; Hao Yongmei

    2011-01-01

    Highlights: → In situ mineralization via gas diffusion was adopted for a good dispersion of calcium carbonate nanoparticles in the polymeric PU matrix. → Hybrid films with high dispersion, transparency, robust and thermal stability can be obtained by controlling the CaCO 3 loading. → The hybrid films display a significant improvement in its water resistance, surface hardness, scratch resistance and flexibility, with the introduction of CaCO 3 , and all coatings exhibited excellent chemical resistance and adhesion. - Abstract: The combination of hardness, scratch resistance, and flexibility is a highly desired feature in many coating applications. The aim of this study is to achieve this goal through the in situ introduction of an unmodified calcium carbonate (CaCO 3 ) into a water-soluble polyurethane (PU) matrix. Smooth and (semi-) transparent films were prepared from both the neat PU and the CaCO 3 -filled composites. As evidenced by the measurements from scanning electron microscopy (SEM), optical microscopy, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA), hybrid films with high dispersion, transparency, robustness and thermal stability could be obtained by controlling the CaCO 3 loading. The storage modulus could increase from 441 MPa of neat PU matrix to 1034 MPa of hybrid film containing 2% (w/w) CaCO 3 . In addition, the same hybrid films displayed a significant improvement in its water resistance. In this case, the water-uptake ratio decreased from 41.54% of PU to 2.21% of hybrid film containing 2% (w/w) CaCO 3 . Moreover, with the introduction of CaCO 3 , conventional coating characterization methods demonstrated an increase in the surface hardness, scratch resistance and flexibility, and all coatings exhibited excellent chemical resistance and adhesion.

  18. Nano-Aramid Fiber Reinforced Polyurethane Foam

    Science.gov (United States)

    Semmes, Edmund B.; Frances, Arnold

    2008-01-01

    Closed cell polyurethane and, particularly, polyisocyanurate foams are a large family of flexible and rigid products the result of a reactive two part process wherein a urethane based polyol is combined with a foaming or "blowing" agent to create a cellular solid at room temperature. The ratio of reactive components, the constituency of the base materials, temperature, humidity, molding, pouring, spraying and many other processing techniques vary greatly. However, there is no known process for incorporating reinforcing fibers small enough to be integrally dispersed within the cell walls resulting in superior final products. The key differentiating aspect from the current state of art resides in the many processing technologies to be fully developed from the novel concept of milled nano pulp aramid fibers and their enabling entanglement capability fully enclosed within the cell walls of these closed cell urethane foams. The authors present the results of research and development of reinforced foam processing, equipment development, strength characteristics and the evolution of its many applications.

  19. Preparation and characterization of Jatropha oil-based Polyurethane as non-aqueous solid polymer electrolyte for electrochemical devices

    International Nuclear Information System (INIS)

    Mustapa, Siti Rosnah; Aung, Min Min; Ahmad, Azizan; Mansor, Ahmad; TianKhoon, Lee

    2016-01-01

    Jatropha-oil based polyurethane is one of the initiative for replacing conventional petroleum based polyurethane. The vegetable oil-based polyurethane is more cost-effective and synthesize from renewable resources. Polyurethane was synthesized through prepolymerization method between jatropha oil-based polyol and diphenylmethane 4, 4’diisocyanate, (MDI) in inert condition. Then, lithium perchloride ion (LiClO 4 ) was added to the polyurethane system to form electrolyte film via solution casting technique. The polymer electrolytes were prepared by varying the amount of LiClO 4 ion 10 wt.% to 30 wt. %. The highest conductivity is achieved at 25 wt.% of LiClO 4 salt content, which is 1.29 × 10 −4 S/cm at room temperature 30 °C. The FTIR results showed the shifting of carbonyl group (C=O) (1750 cm −1 – 1730 cm −1 ), ether and ester group (C-O-C) (1300 cm −1 –1000 cm −1 ) and amine functional groups (N-H) (1650 cm −1 –1500 cm −1 ) in polyurethane electrolytes from the blank polyurethane shows that oxygen and nitrogen atom acts as electron donor in the electrolytes system. It also confirmed that the intermolecular reaction had occurred in the electrolytes system. While, the XRD analysis showed the semi-crystalline properties of polyurethane have been reduced to amorphous phase upon the increasing addition of lithium ion. SEM results revealed the morphology analysis of the polyurethane electrolytes. There is homogenous and smooth surface in polyurethane and the dissociation of salt was observed after the addition of salt indicates there was interaction between salt and the polymer host.

  20. Helical polyurethane-attapulgite nanocomposite: Preparation, characterization and study of optical activity

    International Nuclear Information System (INIS)

    Wang Zhiqiang; Zhou Yuming; Sun Yanqing; Fan Kai; Guo Xingxing; Jiang Xiaolei

    2009-01-01

    Helical polyurethane-attapulgite (BM-ATT) based on R-1,1'-binaphthyl-2',2-diol (R-BINOL) composite was prepared after the surface modification of attapulgite (ATT). BM-ATT was characterized by Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HTEM) and vibrational circular dichroism (VCD) spectroscopy. FT-IR and XRD analyses indicate that the helical polyurethane has been successfully grafted onto the surfaces of the modified ATT without destroying the original crystalline structure of ATT. BM-ATT exhibits the rod-like structure by SEM, TEM, and HTEM photographs. BM-ATT displays obvious Cotton effect for some absorbance in VCD spectrum, and its optical activity results from the singlehanded conformation of helical polyurethane. - Graphical Abstract: Helical polyurethane-attapulgite (BM-ATT) based on R-1,1'-binaphthyl-2',2-diol (R-BINOL) nanocomposite was prepared after surface modification of attapulgite (ATT). This rod-like composite is coated by the optically active polyurethane shell on the surfaces.

  1. Formulation, Preparation, and Characterization of Polyurethane Foams

    Science.gov (United States)

    Pinto, Moises L.

    2010-01-01

    Preparation of laboratory-scale polyurethane foams is described with formulations that are easy to implement in experiments for undergraduate students. Particular attention is given to formulation aspects that are based on the main chemical reactions occurring in polyurethane production. This allows students to develop alternative formulations to…

  2. Polyurethane doped with low-concentration erbium

    NARCIS (Netherlands)

    Ciobanu, C.; Stoica, E.; Cascaval, C.N.; Rosu, D.; Rosu, L.; State, M.; Emandi, A.; Nemes, I.; Petrescu, F.

    2007-01-01

    ABSTRACT: Polyurethane (PU) with lactate structures inits conformation can be used as a biological and biodegradablepolymer. Polyurethane lactate (PUL) was dopedwith small quantities of an erbium (Er3þ) complex, whichhindered the N¼N group. 2,20-Dihydroxyazobenzene wasused as a ligand for the Er3þ

  3. Investigation of using steel slag in hot mix asphalt for the surface course of flexible pavements

    Science.gov (United States)

    Nguyen, Hien Q.; Lu, Dai X.; Le, Son D.

    2018-04-01

    The rapid development of heavy industry in Vietnam leads to the establishments of steel industry. Steel slag, a by-product of steelwork industry, under Vietnamese’s law, was considered as a deleterious solid waste which needed to be processed and landfilled. However, this has changed recently, and steel slag is now seen as a normal or non-deleterious solid waste, and has been studied for reuse in the construction industry. In this study, steel slag was used, as a replacement for mineral aggregate, in hot mix asphalt. Two hot mix asphalt mixtures with an equivalent nominal aggregate size of 12.5 (C12.5) and 19 mm (C19) were produced using steel slag. In addition, one conventional hot mix asphalt mixture of C19 was produced using mineral aggregate for comparison purpose. Investigation in laboratory condition and trial sections was carried out on Marshall tests, surface roughness, skid resistance, and modulus of the pavement before and after applying a new surface course of hot mix asphalt. The study showed that all steel slag asphalt mixtures passed the Marshall stability and flow test requirements. The skid resistance of steel slag hot mix asphalt mixtures for the surface course satisfied the Vietnamese specification for asphalt. Moreover, the pavement sections with the surface course of steel slag hot mix asphalt showed a considerable higher modulus than that of the conventional one. Only the roughness of the surface course paved with C19 did not pass the requirement of the specification.

  4. Numerical modelling of flexible pavement incorporating cross-anisotropic material properties. Part II: Surface rectangular loading

    OpenAIRE

    Maina, J W; Kawana, F; Matsui, K

    2017-01-01

    In order to better understand the impact of increased loading on roads, studies on tyre-road interaction have gained prominence in recent years. Tyres form an essential interface between vehicles and road pavement surfaces. These are the only parts of the vehicle that are in contact with the road and transmit the vehicle loading to the road surface. The use of the Cartesian coordinate system is convenient in dealing with a uniform/non-uniform tyre load acting over a rectangular area, but few ...

  5. Paper based Flexible and Conformal SERS Substrate for Rapid Trace Detection on Real-world Surfaces

    Science.gov (United States)

    Singamaneni, Srikanth; Lee, Chang; Tian, Limei

    2011-03-01

    One of the important but often overlooked considerations in the design of surface enhanced Raman scattering (SERS) substrates for trace detection is the efficiency of sample collection. Conventional designs based on rigid substrates such as silicon, alumina, and glass resist conformal contact with the surface under investigation, making the sample collection inefficient. We demonstrate a novel SERS substrate based on common filter paper adsorbed with gold nanorods, which allows conformal contact with real-world surfaces, thus dramatically enhancing the sample collection efficiency compared to conventional rigid substrates. We demonstrate the detection of trace amounts of analyte (140 pg spread over 4 cm2) by simply swabbing the surface under investigation with the novel SERS substrate. The hierarchical fibrous structure of paper serves as a 3D vasculature for easy uptake and transport of the analytes to the electromagnetic hot spots in the paper. Simple yet highly efficient and cost effective SERS substrate demonstrated here brings SERS based trace detection closer to real-world applications. We acknowledge the financial support from Center for Materials Innovation at Washington University.

  6. Flexible Faraday Cage with a Twist: Surface Charge on a Mobius Strip

    Science.gov (United States)

    Stewart, Sean

    2007-01-01

    Once an intriguing topological novelty known only to mathematicians, the Mobius strip has become a source of fascination and inspiration to the layperson and artist alike. Principal among its features are the two strange properties that the Mobius strip is a surface with only one side and one edge. A Mobius strip is readily formed by taking a long…

  7. Flexible Ag-C60 nano-biosensors based on surface plasmon coupled emission for clinical and forensic applications.

    Science.gov (United States)

    Mulpur, Pradyumna; Yadavilli, Sairam; Mulpur, Praharsha; Kondiparthi, Neeharika; Sengupta, Bishwambhar; Rao, Apparao M; Podila, Ramakrishna; Kamisetti, Venkataramaniah

    2015-10-14

    The relatively low sensitivity of fluorescence detection schemes, which are mainly limited by the isotropic nature of fluorophore emission, can be overcome by utilizing surface plasmon coupled emission (SPCE). In this study, we demonstrate directional emission from fluorophores on flexible Ag-C60 SPCE sensor platforms for point-of-care sensing, in healthcare and forensic sensing scenarios, with at least 10 times higher sensitivity than traditional fluorescence sensing schemes. Adopting the highly sensitive Ag-C60 SPCE platform based on glass and novel low-cost flexible substrates, we report the unambiguous detection of acid-fast Mycobacterium tuberculosis (Mtb) bacteria at densities as low as 20 Mtb mm(-2); from non-acid-fast bacteria (e.g., E. coli and S. aureus), and the specific on-site detection of acid-fast sperm cells in human semen samples. In combination with the directional emission and high-sensitivity of SPCE platforms, we also demonstrate the utility of smartphones that can replace expensive and cumbersome detectors to enable rapid hand-held detection of analytes in resource-limited settings; a much needed critical advance to biosensors, for developing countries.

  8. Synthesis of Polydimethylsiloxane-Modified Polyurethane and the Structure and Properties of Its Antifouling Coatings

    Directory of Open Access Journals (Sweden)

    Zhan-Ping Zhang

    2018-04-01

    Full Text Available Polydimethylsiloxane (PDMS could be used to improve the antifouling properties of the fouling release coatings based on polyurethane (PU. A series of polydimethylsiloxane-modified polyurethane coatings were synthesized with various PDMS contents, using the solvent-free method. The effects of PDMS content and seawater immersion on the chain structure and surface morphology were investigated by confocal laser scanning microscopy (CLSM, atomic force microscopy (AFM, Fourier transform infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, thermogravimetric analysis (TGA and X-ray diffraction (XRD. Based on the measurements of contact angles of deionized water and diiodomethane, surface free energies of the coatings were estimated according to the Owens two-liquid method. The PDMS-modified polyurethane exhibited lower surface free energy and a lower glass transition temperature than polyurethane. The presence of PDMS increased the degree of microphase separation, and enhanced the water resistance of the coatings. The optimum amount of PDMS reduced the elastic modulus and increased the ductility of the coating. The presence of PDMS benefited the removal of weakly attached organisms. Panel tests in the Yellow Sea demonstrated the antifouling activity of the PDMS-modified polyurethane.

  9. Flexible Faraday Cage with a Twist: Surface Charge on a Möbius Strip

    Science.gov (United States)

    Stewart, Seán

    2007-05-01

    Once an intriguing topological novelty known only to mathematicians, the Möbius strip has become a source of fascination and inspiration to the layperson and artist alike. Principal among its features are the two strange properties that the Möbius strip is a surface with only one side and one edge. A Möbius strip is readily formed by taking a long rectangular strip of paper and giving one of its ends a half twist before joining it to its other end (see Fig. 1). Given its simplicity, I hoped to profit from its appealing yet counterintuitive nature by designing a simple demonstration experiment that would reveal the intrinsic physical difference between one- and two-sided surfaces.

  10. Surface analysis of the selective excimer laser patterning of a thin PEDOT:PSS film on flexible polymer films

    Science.gov (United States)

    Schaubroeck, David; De Smet, Jelle; Willems, Wouter; Cools, Pieter; De Geyter, Nathalie; Morent, Rino; De Smet, Herbert; Van Steenbeerge, Geert

    2016-07-01

    Fast patterning of highly conductive polymers like PEDOT:PSS (poly (3,4-ethylene dioxythiophene): polystyrene sulfonate) with lasers can contribute to the development of industrial production of liquid crystal displays on polymer foils. In this article, the selective UV laser patterning of a PEDOT:PSS film on flexible polymer films is investigated. Based on their optical properties, three polymer films are investigated: polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) and cellulose triacetate (TAC). Ablation parameters for a 110 nm PEDOT:PSS film on these polymer films are optimized. A detailed study of the crater depth, topography and surface composition are provided using optical profilometry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The electrical insulation of the lines is measured and correlated to the crater analyses for different laser settings. Finally, potential ablation parameters for each of the polymer films are derived.

  11. Fabrication and assessment of a thin flexible surface coating made of pristine graphene for lightning strike protection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B. [Department of Mechanical Engineering, Wichita State University, 1845 Fairmount St., Wichita, KS 67260-0133 (United States); Soltani, S.A. [Department of Aerospace Engineering, Wichita State University, 1845 Fairmount St., Wichita, KS 67260-0133 (United States); Le, L.N. [Department of Mechanical Engineering, Wichita State University, 1845 Fairmount St., Wichita, KS 67260-0133 (United States); Asmatulu, R., E-mail: ramazan.asmatulu@wichita.edu [Department of Mechanical Engineering, Wichita State University, 1845 Fairmount St., Wichita, KS 67260-0133 (United States)

    2017-02-15

    A thin flexible coating made of pristine graphene was fabricated and applied on the surface of a commercial carbon fiber epoxy prepreg laminate to protect it against the lightning strike. To assess the coating’s effectiveness, the coated laminate was subjected to the simulated lightning strike as well as the electromagnetic interference shielding effectiveness (EMI SE) testing. It was observed that the damaged area and volume in the coated laminate were reduced by 94% and 96%, respectively, as compared to the laminate without the coating. Moreover, the coated laminate had an average EMI SE of 51 dB over 100–2000 MHz range, 55 dB over 8–12 GHz range, and 60 dB over 12–18 GHz range marking 22%, 44%, and 49% improvement in EMI SE for each frequency range, respectively. The results indicate a great potential for the developed coating to protect the commercially available prepreg composites against the lightning strike.

  12. Fabrication and assessment of a thin flexible surface coating made of pristine graphene for lightning strike protection

    International Nuclear Information System (INIS)

    Zhang, B.; Soltani, S.A.; Le, L.N.; Asmatulu, R.

    2017-01-01

    A thin flexible coating made of pristine graphene was fabricated and applied on the surface of a commercial carbon fiber epoxy prepreg laminate to protect it against the lightning strike. To assess the coating’s effectiveness, the coated laminate was subjected to the simulated lightning strike as well as the electromagnetic interference shielding effectiveness (EMI SE) testing. It was observed that the damaged area and volume in the coated laminate were reduced by 94% and 96%, respectively, as compared to the laminate without the coating. Moreover, the coated laminate had an average EMI SE of 51 dB over 100–2000 MHz range, 55 dB over 8–12 GHz range, and 60 dB over 12–18 GHz range marking 22%, 44%, and 49% improvement in EMI SE for each frequency range, respectively. The results indicate a great potential for the developed coating to protect the commercially available prepreg composites against the lightning strike.

  13. Low dielectric and low surface free energy flexible linear aliphatic alkoxy core bridged bisphenol cyanate ester based POSS nanocomposites

    Directory of Open Access Journals (Sweden)

    Muthukaruppan eAlagar

    2013-10-01

    Full Text Available The aim of the present work is to develop a new type of flexible linear aliphatic alkoxy core bridged bisphenol cyanate ester (AECE based POSS nanocomposites for low k applications. The POSS-AECE nanocomposites were developed by incorporating varying weight percentages (0, 5 and 10 wt % of octakis (dimethylsiloxypropylglycidylether silsesquioxane (OG-POSS into cyanate esters. Data from thermal and dielectric studies imply that the POSS reinforced nanocomposite exhibits higher thermal stability and low dielectric value of k=2.4 (10 wt% POSS-AECE4 compared than those of neat AECE. From the contact angle measurement, it is inferred that, the increase in the percentage incorporation of POSS in to AECE, the values of water contact angle was enhanced. Further, the value of surface free energy was lower when compared to that of neat AECE. The molecular level dispersion of POSS into AECE was ascertained from SEM and TEM analyses.

  14. Intrinsically radiopaque polyurethanes with chain extender 4,4'-isopropylidenebis [2-(2,6-diiodophenoxy)ethanol] for biomedical applications.

    Science.gov (United States)

    Dawlee, S; Jayabalan, M

    2015-05-01

    Radiopaque polyurethanes are used for medical applications as it allows post-operative assessment of the biomaterial devices using X-ray. Inherently, radiopaque polyurethanes based on polytetramethylene glycol (PTMG), polypropylene glycol, 4,4'-methylenebis(phenyl isocyanate), and a new iodinated chain extender 4,4'-isopropylidenebis[2-(2,6-diiodophenoxy)ethanol] with flexible spacers were synthesized and characterized. The iodinated polyurethanes were clear, optically transparent, and had high molecular weights. The polyurethanes also possessed excellent radiopacity and high thermal stability. The biocompatibility of the most promising iodinated polyurethane was evaluated both in vitro (cytotoxicity evaluation by direct contact and MTT assay, using L929 mouse fibroblast cells) and in vivo (toxicology studies in rabbits and subcutaneous implantation in rats). The material was nontoxic and well tolerated by the animals. Thus, these radiopaque and transparent polyurethanes are expected to have potential for various biomedical applications. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  15. High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing

    Science.gov (United States)

    Wang, Yuhong; Wang, Mingli; Shen, Lin; Sun, Xin; Shi, Guochao; Ma, Wanli; Yan, Xiaoya

    2018-04-01

    Natural dragonfly wing (DW), as a template, was deposited on noble metal sliver (Ag) nanoislands by magnetron sputtering to fabricate a flexible, low-cost, large-scale and environment-friendly surface-enhanced Raman scattering (SERS) substrate (Ag/DW substrate). Generally, materials with regular surface nanostructures are chosen for the templates, the selection of our new material with irregular surface nanostructures for substrates provides a new idea for the preparation of high-performance SERS-active substrates and many biomimetic materials. The optimum sputtering time of metal Ag was also investigated at which the prepared SERS-active substrates revealed remarkable SERS activities to 4-aminothiophenol (4-ATP) and crystal violet (CV). Even more surprisingly, the Ag/DW substrate with such an irregular template had reached the enhancement factor (EF) of ∼1.05 × 105 and the detection limit of 10-10 M to 4-ATP. The 3D finite-different time-domain (3D-FDTD) simulation illustrated that the "hot spots" between neighbouring Ag nanoislands at the top of pillars played a most important role in generating electromagnetic (EM) enhancement and strengthening Raman signals.

  16. Polyurethane-acrylate-based hydrophobic film: Facile fabrication, characterization, and application

    Science.gov (United States)

    Park, Jongsung; Nguyen, Bui Quoc Huy; Kim, Ji-Kwan; Shanmugasundaram, Arunkumar; Lee, Dong-Weon

    2018-06-01

    Polyurethane-acrylate (PUA) is a versatile UV-curable polymer with a short curing time at room temperature, whose surface structure can be flexibly modified by applying various micropatterns. In this paper, we propose a facile and cost-effective fabrication method for the continuous production of an optically transparent PUA-based superhydrophobic thin film. Poly(dimethylsiloxane) (PDMS) was employed as a soft mold for the fabrication of PUA films through the roll-to-roll technique. In addition, nanosilica was spray-coated onto the PUA surface to further improve the hydrophobicity. The fabricated PUA thin film showed the highest static water contact angle (WCA) of ∼140°. The high durability of the PUA film was also demonstrated through mechanical impacting tests. Furthermore, only ∼2% of voltage loss was observed in the solar panel covered with the PUA-based superhydrophobic film. These obtained results indicate the feasibility of applying the film as a protective layer in applications requiring a high transparency and a self-cleaning effect.

  17. Synthesis of waterborne polyurethane containing alkoxysilane side groups and the properties of the hybrid coating films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qi; Guo, Longhai [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Qiu, Teng, E-mail: qiuteng@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Xiao, Weidong; Du, Dianxing [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Li, Xiaoyu, E-mail: lixy@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China)

    2016-07-30

    Highlights: • A diol with side-chain trimethoxysilane (DEA-Si) was synthesized using 3-(methacryloxypropyl)trimethoxysilane (MAPTS) and diethanolamine (DEA). • The crosslinking structure could in situ formed within the WPU matrix through sol-gel process. • The Si tends to shift to the polymer-air interface due to the flexible long alkyl-ester side chain. • The incorporation of DEA-Si enhanced mechanical and surface hydrophobic properties of WPU films. - Abstract: A series of waterborne polyurethane (WPU) containing alkoxysilane side groups were synthesized by using the dihydroxy functionalized alkoxysilane. The diol with trimethoxysilane groups at the side chains was synthesized via Michael addition between 3-(methacryloxypropyl)trimethoxysilane (MAPTS) and diethanolamine (DEA). The silane diol was applied as the chain extender for the NCO-endcapped prepolymer of isophorone diisocyanate, polycarbonate diol, 2,2-bis(hydroxymethyl) butyric acid and 1,4-butanediol. The products with the silane content varied from 1.2 to 16.5 wt% were dispersed in water after neutralization. The effect of the silane diol on the particle size and morphology of the WPU dispersion was studied by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. X-ray photoelectron spectroscopy (XPS) characterization was carried out on the coating film of the WPU, revealing that the long flexible side chain is favorable for the silane components to emigrate toward the film surface and crosslink during the film formation process. As a result, both the surface contact angle to water and water adsorption of the WPU coating films increased with the silane content. Furthermore, the mechanical properties including the modulus and tensile strength of the films were also improved by the incorporation of silane diol.

  18. Low temperature atmospheric microplasma jet array for uniform treatment of polymer surface for flexible electronics

    Science.gov (United States)

    Wang, Tao; Wang, Xiaolin; Yang, Bin; Chen, Xiang; Yang, Chunsheng; Liu, Jingquan

    2017-07-01

    In this paper, the uniformity of polymer film etching by an atmospheric pressure He/O2 microplasma jet array (μPJA) is first investigated with different applied voltage. Plasma characteristics of μPJA were recorded by optical discharge images. Morphologies and chemical compositions of polymer film etched by μPJA were analyzed by optical microscopy, scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS). By increasing the applied voltage from 8.5 kV to 16.4 kV, the non-uniformity of the luminous intensity of the plasma jets increases. It is interesting that the plasma treated regions are actually composed of an etched region and modification region, with distinct morphologies and chemical compositions. The diameters of the etched parylene-C film show the increase of non-uniformity with higher applied voltage. SEM results show that the non-uniformity of surface morphologies of both the modification regions and etched regions increases with the increase of applied voltage. EDS and XPS results also present the significant effect of higher applied voltage on the non-uniformity of surface chemical compositions of both modification and etched regions. The Coulomb interaction of the streamer heads and the hydrodynamic interaction between the plasma jets and the surrounding air are considered to be responsible for this phenomenon. The results shown in this work can help improve the processing quality of polymer film etched by an atmospheric pressure microplasma jet array and two applications are demonstrated to illustrate the uniform downstream surface treatment.

  19. Neutron gauging to detect voids in polyurethane

    International Nuclear Information System (INIS)

    Tsang, F.Y.; Alger, D.M.; Brugger, R.M.

    1978-01-01

    Thermal-neutron radiography and fast-neutron gauging measurements were made to evaluate the feasibility of detecting voids in a polyurethane block placed between steel plates. This sandwich of polyurethane and steel simulates the walls of a canister being designed to hold explosive devices. The polyurethane would act as a shock absorber in the canister. A large fabrication cost saving would result by casting the polyurethane, but a nondestructive testing (NDT) method is needed to determine the uniformity of the polyurethane fill. The radiography measurements used a beam of thermal neutrons, while the gauging used filtered beams of 24 keV and fission spectrum neutrons. For the 83-mm-thick polyurethane and 130-mm-thick steel matrix, the thermal-neutron radiography was able to detect only those voids equal to about one-half the polyurethane thickness. The gauging detected voids in the path of the neutron beam of a few millimetres thickness in seconds to minutes. The gauging is feasible as an NDT method for the canister application

  20. Chemical and Enzymatic Hydrolysis of Polyurethane/Polylactide Blends

    Directory of Open Access Journals (Sweden)

    Joanna Brzeska

    2015-01-01

    Full Text Available Polyether-esterurethanes containing synthetic poly[(R,S-3-hydroxybutyrate] (R,S-PHB and polyoxytetramethylenediol in soft segments and polyesterurethanes with poly(ε-caprolactone and poly[(R,S-3-hydroxybutyrate] were blended with poly([D,L]-lactide (PLA. The products were tested in terms of their oil and water absorption. Oil sorption tests of polyether-esterurethane revealed their higher response in comparison to polyesterurethanes. Blending of polyether-esterurethanes with PLA caused the increase of oil sorption. The highest water sorption was observed for blends of polyether-esterurethane, obtained with 10% of R,S-PHB in soft segments. The samples mass of polyurethanes and their blends were almost not changed after incubation in phosphate buffer and trypsin and lipase solutions. Nevertheless the molecular weight of polymers was significantly reduced after degradation. It was especially visible in case of incubation of samples in phosphate buffer what suggested the chemical hydrolysis of polymer chains. The changes of surface of polyurethanes and their blends, after incubation in both enzymatic solutions, indicated on enzymatic degradation, which had been started despite the lack of mass lost. Polyurethanes and their blends, contained more R,S-PHB in soft segments, were degraded faster.

  1. A novel and simple method of printing flexible conductive circuits on PET fabrics

    International Nuclear Information System (INIS)

    Wang, Zehong; Wang, Wei; Jiang, Zhikang; Yu, Dan

    2017-01-01

    Highlights: • A simple preparation of nano-silver conductive ink was proposed. • Conductive pattern was printed on PET fabrics without heat sintering. • The surface resistivity of printed pattern is low to 0.197 Ω cm. - Abstract: Flexible conductive circuits on PET fabrics were fabricated by a simple approach. Firstly, well dispersed nano-silver colloids with average size of 87 nm were synthesized with poly (vinyl pyrrolidone). Then, by adding polyurethane and thickening agent into these colloids, Ag NP-based ink was produced and printed on PET fabrics by screen printing. Conductive patterns were achieved through the swelling process of polyurethane and the decrease of contact resistance between nano-silver particles when immersed in dichloromethane (DCM) and diallyldimethylammonium chloride (DMDAAC) mixed solution. After it was dried at 40 °C,the surface resistivity was about 0.197 Ω cm with width 1.9 mm, and thickness 20 μm. Moreover, the effects of different DCM contents on the conductivity and the film forming ability have been investigated. We believe these foundings will provide some important analysis for printing flexible conductive circuits on textiles.

  2. A novel and simple method of printing flexible conductive circuits on PET fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zehong; Wang, Wei [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Key Laboratory of Textile Science & Technology, Ministry of Education (China); Jiang, Zhikang [Saintyear Holding Group Co., Ltd. (China); Yu, Dan, E-mail: vchtian@163.com [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Key Laboratory of Textile Science & Technology, Ministry of Education (China); Saintyear Holding Group Co., Ltd. (China)

    2017-02-28

    Highlights: • A simple preparation of nano-silver conductive ink was proposed. • Conductive pattern was printed on PET fabrics without heat sintering. • The surface resistivity of printed pattern is low to 0.197 Ω cm. - Abstract: Flexible conductive circuits on PET fabrics were fabricated by a simple approach. Firstly, well dispersed nano-silver colloids with average size of 87 nm were synthesized with poly (vinyl pyrrolidone). Then, by adding polyurethane and thickening agent into these colloids, Ag NP-based ink was produced and printed on PET fabrics by screen printing. Conductive patterns were achieved through the swelling process of polyurethane and the decrease of contact resistance between nano-silver particles when immersed in dichloromethane (DCM) and diallyldimethylammonium chloride (DMDAAC) mixed solution. After it was dried at 40 °C,the surface resistivity was about 0.197 Ω cm with width 1.9 mm, and thickness 20 μm. Moreover, the effects of different DCM contents on the conductivity and the film forming ability have been investigated. We believe these foundings will provide some important analysis for printing flexible conductive circuits on textiles.

  3. Flexible, wireless, inductively coupled surface coil resonator for EPR tooth dosimetry

    International Nuclear Information System (INIS)

    Schreiber, Wilson; Petryakov, Sergey V.; Kmiec, Maciej M.; Feldman, Matthew A.; Wood, Victoria A.; Boyle, Holly K.; Flood, Ann Barry; Williams, Benjamin B.; Swartz, Harold M.; Meaney, Paul M.

    2016-01-01

    Managing radiation injuries following a catastrophic event where large numbers of people may have been exposed to life-threatening doses of ionizing radiation relies on the availability of biodosimetry to assess whether individuals need to be triaged for care. Electron Paramagnetic Resonance (EPR) tooth dosimetry is a viable method to accurately estimate the amount of ionizing radiation to which an individual has been exposed. In the intended measurement conditions and scenario, it is essential that the measurement process be fast, straightforward and provides meaningful and accurate dose estimations for individuals in the expected measurement conditions. The sensing component of a conventional L-band EPR spectrometer used for tooth dosimetry typically consists of a surface coil resonator that is rigidly, physically attached to the coupler. This design can result in cumbersome operation, limitations in teeth geometries that may be measured and hinder the overall utility of the dosimeter. A novel surface coil resonator has been developed for the currently existing L-band (1.15 GHz) EPR tooth dosimeter for the intended use as a point of care device by minimally trained operators. This resonator development provides further utility to the dosimeter, and increases the usability of the dosimeter by non-expert operators in the intended use scenario. (authors)

  4. Adsorption of flexible polymer chains on a surface: Effects of different solvent conditions

    Science.gov (United States)

    Martins, P. H. L.; Plascak, J. A.; Bachmann, M.

    2018-05-01

    Polymer chains undergoing a continuous adsorption-desorption transition are studied through extensive computer simulations. A three-dimensional self-avoiding walk lattice model of a polymer chain grafted onto a surface has been treated for different solvent conditions. We have used an advanced contact-density chain-growth algorithm, in which the density of contacts can be directly obtained. From this quantity, the order parameter and its fourth-order Binder cumulant are computed, as well as the corresponding critical exponents and the adsorption-desorption transition temperature. As the number of configurations with a given number of surface contacts and monomer-monomer contacts is independent of the temperature and solvent conditions, it can be easily applied to get results for different solvent parameter values without the need of any extra simulations. In analogy to continuous magnetic phase transitions, finite-size-scaling methods have been employed. Quite good results for the critical properties and phase diagram of very long single polymer chains have been obtained by properly taking into account the effects of corrections to scaling. The study covers all solvent effects, going from the limit of super-self-avoiding walks, characterized by effective monomer-monomer repulsion, to poor solvent conditions that enable the formation of compact polymer structures.

  5. Dipodal Silane-modified Nano Fe3O4/Polyurethane Magnetic Nanocomposites: Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    Mir Mohammad Alavi Nikje

    2016-01-01

    Full Text Available Magnetic nanocomposites were prepared by incorporation of pure Fe3O4 and surface-modified Fe3O4 nanoparticles (dipodal silane-modified Fe3O4 into a polyurethane elastomer matrix by in situ polymerization method. In preparation of these magnetic nanocomposites, polycaprolactone (PCL was used as a polyester polyol. Because of dipole-dipole interactions between nanoparticles and a large surface area to volume ratio, the magnetic iron oxide nanoparticles tended to agglomerate. Furthermore, the most important challenge was to coat the surface of magnetic Fe3O4 nanoparticles in order to prepare well dispersed and stabilized Fe3O4 magnetic nanoparticles. It was observed that surface modification of Fe3O4 nanoparticles enhanced the dispersion of the nanoparticles in polyurethane matrices and allowed magnetic nanocomposites to be prepared with better properties. Surface modification of Fe3O4 was performed by dipodal silane synthesized based on 3-aminopropyltriethoxysilane (APTS and γ-glycidoxypropyl trimethoxysilane (GPTS. Dipodal silane-coated magnetic nanoparticles (DScMNPs were synthesized and incorporated into the polyurethane elastomer matrix as reinforcing agents. The formation of dipodal silane was investigated by Fourier transform infrared spectroscopy (FTIR, proton nuclear magnetic resonance spectroscopy (1H NMR and transmission electron microscopy (TEM. Characterization and study on the magnetic polyurethane elastomer nanocomposites were performed by FTIR, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, vibrating sample magnetometry (VSM and dynamic mechanical thermal analysis (DMTA. The VSM results showed that the synthesized polyurethane elastomer nanocomposites had a superparamagnetic behavior. The TGA results showed that the thermal stability of dipodal silane-modified Fe3O4/PU nanocomposite was higher than that of Fe3O4/PU nanocomposite. This could be attributed to better dispersion and compatibility of dipodal silane

  6. Preparation of polyurethane microcapsule using 1,3 propanediol as the polyol component

    International Nuclear Information System (INIS)

    Ahmad Randy; Dewi Sondari; Evi Triwulandari; Murni Handayani

    2010-01-01

    Self-healing property is the ability of a material to heal damages automatically and autonomously. Its application would be ranged from paint coating, anti corrosion coating, space shuttle material, construction (concrete) and automotive. Extrinsic self healing requires self healing agent pre embedded or incorporated into polymer matrix that would be released and close the damage in the polymer system, where the polymer itself is not healable. Healing agents are encapsulated or embedded into the material prior application. Example of monomer encapsulated to give self healing property is isophorone diisocyanate (IPDI) encapsulated in polyurethane shell. In this study, we studied the possibility of 1,3 propanediol, that can be derived from palm oil as polyol monomer for polyurethane microcapsule shell containing IPDI or stannous octoate as a self healing agent. Microcapsule in this study was prepared by interfacial polymerization technique to form IPDI monomer in polyurethane shell. FT-IR analysis show that polyurethane prepolymer produced still have unreacted isocyanate group necessary for interfacial polymerization of polyurethane. Morphological analyses of the microcapsule products show that the products have spherical shapes with smooth surface and some with wrinkled surface. The particle sizes were ranged from 40.29 to 526.80 μm. (author)

  7. The mechanics and biocompatibility characteristics of carbon nanotubes-polyurethane composite membranes:a preliminary study

    International Nuclear Information System (INIS)

    Dong Sheng; Yuan Zheng; Wu Shengwei; Li Wenxin

    2011-01-01

    Objective: To discuss the mechanics and biocompatibility characteristics of carbon nanotubes-polyurethane composite membranes. Methods: The mechanics property of carbon nanotubes-polyurethane composite membranes with different carbon nanotubes contents were tested by universal material testing machine. The surface of the membranes was observed by electron microscope when the stent was bent 90 degree. And its cytotoxicity was tested by cultivating study with 7721 cell. The metallic stent that was covered with carbon nanotubes-polyurethane composite membrane by using dip-coating method was inserted in rabbit esophagus in order to evaluate its biocompatibility in vivo. Results: Composite membranes tensile strength (MPa) and elongation at break (%) were 4.62/900, 6.05/730, 8.26/704 and 5.7/450 when the carbon nanotubes contents were 0%, 0.1%, 0.3% and 0.5%, respectively. If the stent was bent at 90 degree, its surface was still smooth without any fractures when it was scanned by electron microscope.Composite membranes had critical cytotoxicity when its carbon nanotubes content was up to 0.5% and 1.0%. No fissure nor degradation of composite membranes occurred at 30 days after composite membrane covered metallic stent was inserted in rabbit esophagus. Conclusion: When moderate carbon nanotubes are added into polyurethane composite membrane, the mechanics and biocompatibility characteristics of the polyurethane composite membrane can be much improved. (authors)

  8. Low-cost and large-scale flexible SERS-cotton fabric as a wipe substrate for surface trace analysis

    Science.gov (United States)

    Chen, Yanmin; Ge, Fengyan; Guang, Shanyi; Cai, Zaisheng

    2018-04-01

    The large-scale surface enhanced Raman scattering (SERS) cotton fabrics were fabricated based on traditional woven ones using a dyeing-like method of vat dyes, where silver nanoparticles (Ag NPs) were in-situ synthesized by 'dipping-reducing-drying' process. By controlling the concentration of AgNO3 solution, the optimal SERS cotton fabric was obtained, which had a homogeneous close packing of Ag NPs. The SERS cotton fabric was employed to detect p-Aminothiophenol (PATP). It was found that the new fabric possessed excellent reproducibility (about 20%), long-term stability (about 57 days) and high SERS sensitivity with a detected concentration as low as 10-12 M. Furthermore, owing to the excellent mechanical flexibility and good absorption ability, the SERS cotton fabric was employed to detect carbaryl on the surface of an apple by simply swabbing, which showed great potential in fast trace analysis. More importantly, this study may realize large-scale production with low cost by a traditional cotton fabric.

  9. New Fabrication Method of Three-Electrode System on Cylindrical Capillary Surface as a Flexible Implantable Microneedle

    Science.gov (United States)

    Yang, Zhuoqing; Zhang, Yi; Itoh, Toshihiro; Maeda, Ryutaro

    2013-04-01

    In this present paper, a three-electrode system has been fabricated and integrated on the cylindrical polymer capillary surface by micromachining technology, which could be used as a flexible and implantable microneedle for glucose sensor application in future. A UV lithography system is successfully developed for high resolution alignment on cylindrical substrates. The multilayer alignment exposure for cylindrical polymer capillary substrate is for the first time realized utilizing the lithography system. The ±1 μm alignment precision has been realized on the 330 μm-outer diameter polymer capillary surface, on which the three-electrode structure consisting of two platinum electrodes and one Ag/AgCl reference electrode has been fabricated. The fabricated whole device as microneedle for glucose sensor application has been also characterized in 1 mol/L KCl and 0.02 mol/L K3Fe(CN)6 mix solution. The measured cyclic voltammetry curve shows that the prepared three-electrode system has a good redox property.

  10. Preparation of novel magnetic polyurethane foam nanocomposites by using core-shell nanoparticles

    OpenAIRE

    Nikje,Mir Mohammad Alavi; Moghaddam,Sahebeh Tamaddoni; Noruzian,Maede

    2016-01-01

    Abstract Iron oxide magnetic nanoparticles (NP's) converted to the core- shell structres by reacting with by n-(2-aminoethyl)-3-aminopropyl trimethoxysilane (AEAP) incorporated in polyurethane flexible (PUF) foam formulations. Fourier transform spectra, thermal gravimetric analysis, scanning electron images, thermo-mechanical analysis and magnetic properties of the prepared nanocomposites were studied. Obtained data shown that by the increasing of the amine modified magnetic iron oxide NP's u...

  11. Porous coordination polymer with flexibility imparted by coordinatively changeable lithium ions on the pore surface.

    Science.gov (United States)

    Xie, Lin-Hua; Lin, Jian-Bin; Liu, Xiao-Min; Wang, Yu; Zhang, Wei-Xiong; Zhang, Jie-Peng; Chen, Xiao-Ming

    2010-02-01

    Solvothermal reactions of equimolar zinc acetate, lithium acetate, and 1,3,5-benzenetricarboxylic acid (H(3)btc) in different mixed solvents yielded isostructural three-dimensional frameworks [LiZn(btc)(cG)].lG [cG and lG denote coordinated and lattice guests, respectively; cG = (nmp)(0.5)(H(2)O)(0.5), lG = (EtOH)(0.5) (1a); cG = H(2)O, lG = EtOH (1b); nmp = N-methyl-2-pyrrolidone] with one-dimensional channels occupied by guest molecules and solvent-coordinated, extrusive Li(+) ions. Thermogravimetry analyses and powder X-ray diffraction measurements revealed that both 1a and 1b can lose all lattice and coordinated guests to form a desolvated phase [LiZn(btc)] (MCF-27, 1) and almost retains the original framework structure. Gas adsorption measurements on 1 confirmed its permanent porosity but suggested a structural transformation from 1a/1b to 1. It is noteworthy that only 1a can undergo a single-crystal to single-crystal (SCSC) transformation into 1 upon desolvation. The crystal structure of 1 revealed that the Li(+) ions were retracted into the channel walls via complementary coordination to the carboxylate oxygen atoms in the framework rather than being exposed on the pore surface. Single-crystal X-ray diffraction analyses were also performed for N(2)- and CO(2)-loaded samples of 1, revealing that the framework remained unchanged when the gases were adsorbed. Although the gas molecules could not be modeled, the residue electrons inside the channels demonstrated that the retracted Li(+) ions still behave as the primary interacting site for CO(2) molecules. Nevertheless, solvent molecules such as H(2)O can readily compete with the framework oxygen atom to retrieve the extrusive Li(+) ions, accompanying the reverse structural transformation, i.e., from 1 to 1a/1b.

  12. Auxetic Polyurethane Foam (Fabrication, Properties and Applications)

    International Nuclear Information System (INIS)

    Yousif, H.I.Y.

    2012-01-01

    Modern technology requires new materials of special properties. For the last two decades there has been a great interest in a class of materials known as auxetic materials. An auxetic material is a material that has a negative Poisson's ratio which means that this material expands laterally when they subjected to a tensile force unlike most of the other traditional materials. This material has superior properties over the traditional material such as high shear modulus and high impact resistance, which makes this material a good candidate for many engineering applications. In the present research work, auxetic flexible polyurethane polymeric foams having different densities were fabricated from conventional flexible polyurethane polymeric foam at different compression ratios. The microstructure of conventional and processed foams was examined by optical microscope to compare between the two structures. The microstructure of processed foam was compared with the one presented in the literature and it has shown the auxetic structure configuration. This is the first time to produce auxetic foam in Egypt. Conventional and auxetic foam samples having cylindrical and square cross-sections were produced from foams having different densities (25 kg/m 3 and 30 kg/m 3 ). The compression ratios used to produce the auxetic samples are (5.56, 6.94 and 9.26). Four mechanical tests were carried out to get the mechanical properties for both conventional and auxetic foams. Two quasi-static mechanical tests t ension and compression a nd two dynamic mechanical tests H ysteresis and resilience w ere carried out to compare between the conventional and auxetic foams. The quasi-static tensile test was carried out at speed was adjusted to be position control rate of 0.2 mm/s. The compression and hysteresis tests were carried out at strain control rate of 0.3 S -1 . The data recorded from the machine were stress and strain. The modulus of elasticity and Poisson's ratio of the test

  13. UV-curable polyurethane coatings derived from cellulose

    International Nuclear Information System (INIS)

    Patel, M. M.; Patel, K. I.; Patel, H. B.; Parmar, J. S.

    2009-01-01

    At the present time coating industry is devoting much research in the direction of low volatile organic compounds to make eco-friendly coating material. In this study, such materials are developed from cellulose derived from bagasse, a sugar industry waste. Cellulose is converted to cellulose glyco glycoside by acid hydrolysis of cellulose under heterogeneous condition. Cellulose glyco glycoside is treated with polyethylene glycol having different molecular weights to give glyco glycosides which in turn are reacted with various diisocyanates to obtain polyurethane having free NCO groups. These materials are then reacted with hydroxyethylmethacrylate to give polyurethane acrylates. The acrylates are characterized for specific gravity, viscosity, colour and molecular weight as well as by fourier transform infrared spectroscopy. The UV-curable coating composition was prepared by blending PU-acrylate, reactive diluents and photoinitiator. Coating compositions were cured under UV-light and characterized for adhesion, flexibility, impact resistance, solvent resistance and for dynamic mechanical analysis as well as by thermal gravimetric analysis for thermal stability. The cured films give thickness of 23-24 microns and cure time required is less than 1.5-2.0 min. There is no liberation of any volatiles during curing and films have good adhesion to mild steel substrate. The cured coatings give excellent dynamic, mechanical and chemical properties. The scratch resistance was found to be satisfactory. The application was made in unpigmented form but it is found that various pigments can be used to give coloured UV-curable coatings.

  14. POLYURETHANE COMPOSITES AS DRUG CARRIERS:: RELEASE PATTERNS

    Directory of Open Access Journals (Sweden)

    M. V. Grigoreva

    2013-10-01

    Full Text Available Biodegradable polyurethanes attract interest of those developing composite materials for biomedical applications. One of their features is their ability to serve as carriers, or matrixes, for medicines and other bioactive compounds to produce a therapeutic effect in body through targeted and/or prolonged delivery of these compounds in the process of their controlled release from matrix. The review presents polyurethane composites as matrices for a number of drugs. The relation between structure of the composites and their degradability both in vitro and in vivo and the dependence of drug release kinetics on physicochemical properties of polyurethane matrix are highlighted. The release of drugs (cefazolin, naltrexone and piroxicam from the composites based on cross-linked polyurethanes (synthesized from laprols, Mw between 1,500 and 2,000 Da and toluylene diisocyanate demonstrated more or less the same pattern (about 10 days in vitro and three to five days in vivo. In contrast, the composites with dioxydine based on a linear polyurethanes (synthesized from oligotetramethilene glycol, Mw 1,000 Da, diphenylmethane-4,4’-diisocyanate and 1,4-butanediol retained their antimicrobial activity at least 30 days. They also showed a significantly higher breaking strength as compared to that of the composites based on cross-linked polyurethanes.

  15. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process

    Energy Technology Data Exchange (ETDEWEB)

    Rashti, Ali [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Yahyaei, Hossein [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Firoozi, Saman [Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ramezani, Sara [Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rahiminejad, Ali [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Karimi, Roya [Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Farzaneh, Khadijeh [Tehran Heart Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mohseni, Mohsen [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ghanbari, Hossein, E-mail: hghanbari@tums.ac.ir [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Tehran Heart Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-12-01

    Due to high biocompatibility, polyurethane has found many applications, particularly in development of biomedical devices. A new nanocomposite based on thermoset polyurethane and silica nanoparticles was synthesized using sol-gel method. Sol-gel process was fulfilled in two acidic and basic conditions by using tetraethylorthosilicate (TEOS) and trimethoxyisocyanatesilane as precursors. The hybrid films characterized for mechanical and surface properties using tensile strength, contact angle, ATR-FTIR and scanning electron microscopy. Biocompatibility and cytotoxicity of the hybrids were assessed using standard MTT, LDH and TUNEL assays. The results revealed that incorporation of silica nanoparticles was significantly improved tensile strength and mechanical properties of the hybrids. Based on the contact angle results, silica nanoparticles increased hydrophilicity of the hybrids. Biocompatibility by using human lung epithelial cell line (MRC-5) demonstrated that the hybrids were significantly less cytotoxic compared to pristine polymer as tested by MTT and LDH assays. TUNEL assay revealed no signs of apoptosis in all tested samples. The results of this study demonstrated that incorporation of silica nanoparticles into polyurethane lead to the enhancement of biocompatibility, indicating that these hybrids could potentially be used in biomedical field in particular as a new coating for medical implants. - Highlights: • Nanocomposites based on polyurethane and nanosilica prepared by sol-gel method fabricated • Addition of inorganic phase improved mechanical properties. • Nanosilica prepared by sol-gel method increased hydrophilicity. • By adding nanosilica to polyurethane biocompatibility increased significantly.

  16. Au-pattern fabrication on a cellulose film using a polyurethane acrylate mold

    International Nuclear Information System (INIS)

    Han, Kwangjoon; Kang, Kwang-Sun; Kim, Jaehwan

    2009-01-01

    This paper deals with a gold micro-patterning process on a cellulose film using a polyurethane acrylate (PUA) mold. Recently, cellulose electro-active paper (EAPap) has been found to be a smart material that can be used for biodegradable sensors, actuators and MEMS devices. However, the hydrophilic and flexible characteristics of cellulose EAPap are major drawbacks for applying a conventional lithography process to fabricate MEMS devices. To overcome these drawbacks, an unconventional lithography process, the so-called micro-transfer printing technique based on a PUA mold, was employed. A master pattern for the PUA mold was fabricated using the conventional photolithography process with an SU-8 photoresist, and the replica of the master pattern was fabricated using PUA. Gold was deposited onto the PUA mold, and a mercaptopropyltrimethoxysilane (MPTMS) self-assembly monolayer was made on the gold surface to securely transfer the gold layer onto the cellulose film. The effect of MPTMS was investigated. Further investigation of the factors to optimize the repeated stamping process will lead to a practical, reusable mold

  17. Polyurethane Organosilicate Nanocomposites as Blood Compatible Coatings

    Directory of Open Access Journals (Sweden)

    Johnson H. Y. Chung

    2012-02-01

    Full Text Available Polymer clay nanocomposites (NCs show remarkable potential in the field of drug delivery due to their enhanced barrier properties. It is hypothesised that well dispersed clay particles within the polymer matrix create a tortuous pathway for diffusing therapeutic molecules, thereby resulting in more sustained release of the drug. As coatings for medical devices, these materials can simultaneously modulate drug release and improve the mechanical performance of an existing polymer system without introducing additional materials with new chemistries that can lead to regulatory concerns. In this study, polyurethane organosilicate nanocomposites (PUNCs coated onto stainless steel wires were evaluated for their feasibility as blood compatible coatings and as drug delivery systems. Heparin was selected as the model drug to examine the impact of silicate loading and modifier chain length in modulating release. Findings revealed that better dispersion was achieved from samples with lower clay loadings and longer alkyl chains. The blood compatibility of PUNCs as assessed by thrombin generation assays showed that the addition of silicate particles did not significantly decrease the thrombin generation lag time (TGT, p = 0.659 or the peak thrombin (p = 0.999 of polyurethane (PU. PUNC coatings fabricated in this research were not cytotoxic as examined by the cell growth inhibition assay and were uniformly intact, but had slightly higher growth inhibition compared to PU possibly due to the presence of organic modifiers (OM. The addition of heparin into PUNCs prolonged the TGT, indicating that heparin was still active after the coating process. Cumulative heparin release profiles showed that the majority of heparin released was from loosely attached residues on the surface of coils. The addition of heparin further prolonged the TGT as compared to coatings without added heparin, but a slight decrease in heparin activity was observed in the NCs

  18. Mission-Enabling Photovoltaic Flexible Blanket Solar Array with SNC/SJ Surface Mount Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) in collaboration with Sierra Nevada Corporation (SNC) has developed a modular multi-junction photovoltaic flexible blanket...

  19. Characterization of polyurethane/organophilic montmorillonite nanocomposites by low field NMR

    International Nuclear Information System (INIS)

    Silva, Marcos Anacleto da; Tavares, Maria I.B.; Nascimento, Suelen A.M.; Rodrigues, Elton J. da R

    2012-01-01

    Polyurethanes are important and versatile materials, mainly due to some of their properties, such as high resistance to abrasion and tearing, excellent absorption of mechanical shocks and good flexibility and elasticity. However, they have some drawbacks as well, such as low thermal stability and barrier properties. To overcome these disadvantages, various studies have been conducted involving organophilic polyurethane/montmorillonite nanocomposites. The investigation of the structure of polyurethane/clay nanocomposites has mainly been done by X-ray diffraction (XRD) and transmission electron microscopy (TEM). In this work, PU/clay nanocomposite films obtained by solution intercalation were studied. The nanocomposites were characterized by XRD and low-field nuclear magnetic resonance (LF-NMR). The LF-NMR measurements, with determination of the spin-lattice relaxation time of the hydrogen nucleus, supplied important information about the molecular dynamics of these nanocomposites. The X-ray diffraction measurements validated the results found by NMR. The thermal stability of the material was also determined by thermogravimetric analysis (TGA) under an inert atmosphere. A slight improvement in this stability was observed in the nanocomposite in comparison with polyurethane (author)

  20. Development of Styrene-Grafted Polyurethane by Radiation-Based Techniques

    Directory of Open Access Journals (Sweden)

    Jin-Oh Jeong

    2016-06-01

    Full Text Available Polyurethane (PU is the fifth most common polymer in the general consumer market, following Polypropylene (PP, Polyethylene (PE, Polyvinyl chloride (PVC, and Polystyrene (PS, and the most common polymer for thermosetting resins. In particular, polyurethane has excellent hardness and heat resistance, is a widely used material for electronic products and automotive parts, and can be used to create products of various physical properties, including rigid and flexible foams, films, and fibers. However, the use of polar polymer polyurethane as an impact modifier of non-polar polymers is limited due to poor combustion resistance and impact resistance. In this study, we used gamma irradiation at 25 and 50 kGy to introduce the styrene of hydrophobic monomer on the polyurethane as an impact modifier of the non-polar polymer. To verify grafted styrene, we confirmed the phenyl group of styrene at 690 cm−1 by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR and at 6.4–6.8 ppm by 1H-Nuclear Magnetic Resonance (1H-NMR. Scanning Electron Microscope (SEM, X-ray Photoelectron Spectroscopy (XPS, Thermogravimetric Analysis (TGA and contact angle analysis were also used to confirm styrene introduction. This study has confirmed the possibility of applying high-functional composite through radiation-based techniques.

  1. Physicochemical and Biological Investigation of Different Structures of Carbon Coatings Deposited onto Polyurethane

    Directory of Open Access Journals (Sweden)

    Witold Kaczorowski

    2016-01-01

    Full Text Available The aim of this study was to examine the thrombogenic properties of polyurethane that was surface modified with carbon coatings. Physicochemical properties of manufactured coatings were investigated using transmission electron microscopy (TEM, atomic force microscopy (AFM, X-ray Photoelectron Spectroscopy (XPS, Raman spectroscopy and contact angle measurement methods. Samples were examined by the Impact-R method evaluating the level of platelets activation and adhesion of particular blood cell elements. The analysis of antimicrobial resistance against E. coli colonization and viability of endothelial cells showed that polyurethane modified with use of carbon layers constituted an interesting solution for biomedical application.

  2. Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil.

    Science.gov (United States)

    Arévalo, Fabian; Uscategui, Yomaira L; Diaz, Luis; Cobo, Martha; Valero, Manuel F

    2016-11-01

    In the present study, polyurethane materials were obtained from castor oil, polycaprolactone and isophorone diisocyanate by incorporating different concentrations of chitosan (0.5, 1.0 and 2.0% w/w) as an additive to improve the mechanical properties and the biological activity of polyurethanes. The polyurethanes were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, stress/strain fracture tests and swelling analysis, and the hydrophilic character of the surface was determined by contact angle trials. The objectives of the study were to evaluate the effect of the incorporation of chitosan on the changes of the physico-chemical and mechanical properties and the in vitro biological activity of the polyurethanes. It was found that the incorporation of chitosan enhances the ultimate tensile strength of the polyurethanes and does not affect the strain at fracture in polyurethanes with 5% w/w of polycaprolactone and concentrations of chitosan ranging from 0 to 2% w/w. In addition, PCL5-Q-PU formulations and their degradation products did not affect cell viability of L929 mouse fibroblast and 3T3, respectively. Polyurethane formulations showed antibacterial activities against Staphylococcus aureus and Escherichia coli bacteria. The results of this study have highlighted the potential biomedical application of this polyurethanes related to soft and cardiovascular tissues. © The Author(s) 2016.

  3. Preparation of Self Hardening-modelling Polyurethane for Wood Repairing and Cracks Injection

    International Nuclear Information System (INIS)

    Meligi, G.A.; Elnahas, H.H.; Ammar, A.H.

    2014-01-01

    Self hardening composite as a modelling clay was prepared from polyurethane, two parts (A) and (B) where (A) contains polyol (polyether), vinyl acetate versatic ester copolymer (VAcVe) and magnesium silicate or wood powder and (B) contains toluene diisocyanate (TDI) as a hardening agent. The two parts mixed thoroughly giving soft putty like feel, open working time 1-2 h and cures hard overnight (24 h full cure). Factors affecting working time and full cure were evaluated. Also, measurements of surface hardness, compressive strength, scanning electron microscopy (SEM), water absorption and effect of ionizing radiation were studied. The suggestion for using the prepared polyurethane composite as clay dries as hard as a rock in the field of wood repair and cracks injection for building walls were recommended. Keywords: Polyurethane, modelling clay, radiation, wood repair and cracks injection.

  4. Surface analysis of the selective excimer laser patterning of a thin PEDOT:PSS film on flexible polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Schaubroeck, David, E-mail: David.Schaubroeck@elis.ugent.be [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 15, B-9052 Ghent (Belgium); De Smet, Jelle; Willems, Wouter [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 15, B-9052 Ghent (Belgium); Cools, Pieter; De Geyter, Nathalie; Morent, Rino [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); De Smet, Herbert; Van Steenbeerge, Geert [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 15, B-9052 Ghent (Belgium)

    2016-07-15

    Highlights: • Laser patterning of thin film PEDOT:PSS on polymer foils is characterized in great detail. • PEDOT:PSS does not need to be fully removed to create electrically insulating patterns. • The underlying polymer foil influences the ablation behavior. - Abstract: Fast patterning of highly conductive polymers like PEDOT:PSS (poly (3,4-ethylene dioxythiophene): polystyrene sulfonate) with lasers can contribute to the development of industrial production of liquid crystal displays on polymer foils. In this article, the selective UV laser patterning of a PEDOT:PSS film on flexible polymer films is investigated. Based on their optical properties, three polymer films are investigated: polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) and cellulose triacetate (TAC). Ablation parameters for a 110 nm PEDOT:PSS film on these polymer films are optimized. A detailed study of the crater depth, topography and surface composition are provided using optical profilometry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The electrical insulation of the lines is measured and correlated to the crater analyses for different laser settings. Finally, potential ablation parameters for each of the polymer films are derived.

  5. The crystal structure of the Dachshund domain of human SnoN reveals flexibility in the putative protein interaction surface.

    Directory of Open Access Journals (Sweden)

    Tomas Nyman

    2010-09-01

    Full Text Available The human SnoN is an oncoprotein that interacts with several transcription-regulatory proteins such as the histone-deacetylase, N-CoR containing co-repressor complex and Smad proteins. This study presents the crystal structure of the Dachshund homology domain of human SnoN. The structure reveals a groove composed of conserved residues with characteristic properties of a protein-interaction surface. A comparison of the 12 monomers in the asymmetric unit reveals the presence of two major conformations: an open conformation with a well accessible groove and a tight conformation with a less accessible groove. The variability in the backbone between the open and the tight conformations matches the differences seen in previously determined structures of individual Dachshund homology domains, suggesting a general plasticity within this fold family. The flexibility observed in the putative protein binding groove may enable SnoN to recognize multiple interaction partners.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

  6. BLISTERING AND DEGRADATION OF POLYURETHANE COATINGS UNDER DIFFERENT ACCELERATED WEATHERING TESTS. (R828081E01)

    Science.gov (United States)

    An epoxy primer with a high gloss polyurethane topcoat coating system was exposed either only in a QUV chamber or exposed in a QUV chamber and a Prohesion chamber, alternatively, in this study. AFM studies found that micro blisters formed on the coating surface after both expo...

  7. Preparation of polyurethane/montmorillonite nanocomposites by solution: characterization using low-field NMR and study of thermal stability

    International Nuclear Information System (INIS)

    Silva, Marcos Anacleto da; Tavares, Maria Ines B.

    2009-01-01

    Polyurethanes (PU) are important and versatile class of polymer materials, especially because of their desirable properties, such as high abrasion resistance, tear strength, excellent shock absorption, flexibility and elasticity. However, there also exist some disadvantages, for example, low thermal stability and barrier properties. To overcome the disadvantages, research on novel polyurethane/clay nanocomposites has been carried out. The investigation of the structure of polyurethane/clay nanocomposites has been mostly done by X-ray diffraction (XRD) and transmission electron microscopy (TEM). In this work, PU/clay films were prepared by solution, and the obtained nanocomposites were characterized by XRD and low-field nuclear magnetic resonance (NMR). Low field NMR measurements were able to provide important information on molecular dynamics of the polymeric nanocomposites PU/OMMT. In addition, they also confirmed the results obtained by XRD. The thermal stability was determined by thermogravimetric analysis (TGA). (author)

  8. Self-Cleaning Photocatalytic Polyurethane Coatings Containing Modified C60 Fullerene Additives

    Directory of Open Access Journals (Sweden)

    Jeffrey G. Lundin

    2014-08-01

    Full Text Available Surfaces are often coated with paint for improved aesthetics and protection; however, additional functionalities that impart continuous self-decontaminating and self-cleaning properties would be extremely advantageous. In this report, photochemical additives based on C60 fullerene were incorporated into polyurethane coatings to investigate their coating compatibility and ability to impart chemical decontaminating capability to the coating surface. C60 exhibits unique photophysical properties, including the capability to generate singlet oxygen upon exposure to visible light; however, C60 fullerene exhibits poor solubility in solvents commonly employed in coating applications. A modified C60 containing a hydrophilic moiety was synthesized to improve polyurethane compatibility and facilitate segregation to the polymer–air interface. Bulk properties of the polyurethane films were analyzed to investigate additive–coating compatibility. Coatings containing photoactive additives were subjected to self-decontamination challenges against representative chemical contaminants and the effects of additive loading concentration, light exposure, and time on chemical decontamination are reported. Covalent attachment of an ethylene glycol tail to C60 improved its solubility and dispersion in a hydrophobic polyurethane matrix. Decomposition products resulting from oxidation were observed in addition to a direct correlation between additive loading concentration and decomposition of surface-residing contaminants. The degradation pathways deduced from contaminant challenge byproduct analyses are detailed.

  9. Synthesis and characterization of gold nanotube/nanowire-polyurethane composite based on castor oil and polyethylene glycol.

    Science.gov (United States)

    Ganji, Yasaman; Kasra, Mehran; Salahshour Kordestani, Soheila; Bagheri Hariri, Mohiedin

    2014-09-01

    Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil-polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane-GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell attachment of polyurethane. Higher crosslink density and better cell attachment and proliferation were observed in polyurethane containing 50 ppm GNT/NW. The results revealed that GNT/NW formed hydrogen bonding with the polyurethane matrix and improved the thermomechanical properties of nanocomposites. Compared with pure PU, better cellular attachment on polyurethane-GNT/NW composites was observed resulting from the improved surface properties of composites. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane acrylate...

  11. 40 CFR 721.9959 - Polyurethane polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyurethane polymer (generic). 721... Substances § 721.9959 Polyurethane polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (PMN P-01...

  12. A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices

    Science.gov (United States)

    Fang, Yunnan; Hester, Jimmy G. D.; Su, Wenjing; Chow, Justin H.; Sitaraman, Suresh K.; Tentzeris, Manos M.

    2016-12-01

    A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius.

  13. Corrosion Prevention of Aluminum Nanoparticles by a Polyurethane Coating.

    Science.gov (United States)

    Nishimura, Toshiyasu; Raman, Vedarajan

    2014-06-19

    In order to prevent corrosion, aluminum nanoparticles were coated with a polyurethane polymer. The coverage of the polyurethane polymer was controlled from 0 to 100%, which changed the corrosion rate of the nanoparticles quantitatively. The surface of the polymer coating was investigated by Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM), and the corrosion resistance of the nanoparticles was estimated by a wet/dry corrosion test on a Pt plate with a NaCl solution. From a TEM with EDAX analysis, the 10 mass% polymer coated Al particles in the synthesis were almost 100% covered on the surface by a polymer film of 10 nm thick. On the other hand, the 3 mass% polymer coated Al was almost 40% covered by a film. In the AFM, the potential around the Al particles had a relatively low value with the polymer coating, which indicated that the conductivity of the Al was isolated from the Pt plate by the polymer. Both the corrosion and H₂ evolution reaction rates were quantitatively reduced by the mass% of polymer coating. In the case of the 10 mass% coated sample, there was no corrosion of Al nanoparticles. This fact suggested that the electrochemical reaction was suppressed by the polymer coating. Moreover, the reaction rate of Al nanoparticles was suppressed in proportion to the coverage percentage of the coating. Thus, to conclude, it was found that the corrosion rate of Al nanoparticles could be quantitatively suppressed by the coverage percentage of the polymer coating.

  14. Polyurethane Production from Waste Bale Fibers

    Directory of Open Access Journals (Sweden)

    İbrahim BİLİCİ

    2017-12-01

    Full Text Available Nowadays, the methods of eliminating the pollution from wastes of the materials produced as much as the production methods are important. This requires efficiently use of sources economical and ecologically. Polyester based polymers, which is one of the most important consumed plastic materials in the world, have lots of number of recycling methods. Basically it is called chemical and physical recycling. Chemical recycle methods include glycolysis, aminolysis, methanolysis, hydrolysis and etc.. In this study aromatic polyester polyols produced from bale fiber wastes via glycolysis method. Zinc Acetate used as a catalysts and diethylene glycol used for the glycolysis reaction and moiety of glycol investigated as an experimental parameter. Polyurethane material produced via obtained polyol and TDI (Toluene di Isocyanate reaction. Obtained polyurethane material investigated via FTIR and TGA and compared with the commercial polyurethane. As a result, it has been decided that glycolysis is usable and applicable method for the waste bale fibers.

  15. Nitric Oxide-Releasing Silica Nanoparticle-Doped Polyurethane Electrospun Fibers

    Science.gov (United States)

    Koh, Ahyeon; Carpenter, Alexis W.; Slomberg, Danielle L.; Schoenfisch, Mark H.

    2013-01-01

    Electrospun polyurethane fibers doped with nitric oxide (NO)-releasing silica particles are presented as novel macromolecular scaffolds with prolonged NO-release and high porosity. Fiber diameter (119–614 nm) and mechanical strength (1.7–34.5 MPa of modulus) were varied by altering polyurethane type and concentration, as well as the NO-releasing particle composition, size, and concentration. The resulting NO-releasing electrospun nanofibers exhibited ~83% porosity with flexible plastic or elastomeric behavior. The use of N-diazeniumdiolate- or S-nitrosothiol-modified particles yielded scaffolds exhibiting a wide range of NO release totals and durations (7.5 nmol mg−1–0.12 μmol mg−1 and 7 h to 2 weeks, respectively). The application of NO-releasing porous materials as coating for subcutaneous implants may improve tissue biocompatibility by mitigating the foreign body response and promoting cell integration. PMID:23915047

  16. 3D printed flexible capacitive force sensor with a simple micro-controller based readout

    NARCIS (Netherlands)

    Schouten, Martijn G.; Sanders, Remco; Krijnen, Gijs

    2017-01-01

    This paper describes the development of a proof of principle of a flexible force sensor and the corresponding readout circuit. The flexible force sensor consists of a parallel plate capacitor that is 3D printed using regular and conductive thermoplastic poly-urethane (TPU). The capacitance change

  17. Polyurethane coating with thin polymer films produced by plasma polymerization of diglyme

    International Nuclear Information System (INIS)

    Ribeiro, M A; Ramos, A S; Manfredini, M I; Alves, H A; Ramos, E C T; Honda, R Y; Kostov, K G; Lucena, E F; Mota, R P; Algatti, M A; Kayama, M E

    2009-01-01

    Aqueous-based polyurethane dispersions have been widely utilized as lubricants in textile, shoes, automotive, biomaterial and many other industries because they are less aggressive to surrounding environment. In this work thin films with different thickness were deposited on biocompatible polyurethane by plasma polymerization process using diethylene glycol dimethyl ether (Diglyme) as monomer. Molecular structure of the films was analyzed by Fourier Transform Infrared spectroscopy. The spectra exhibited absorption bands of O-H (3500-3200cm -1 ), C-H (3000-2900cm -1 ), C=O (1730-1650cm -1 ), C-O and C-O-C bonds at 1200-1600cm -1 . The samples wettability was evaluated by measurements of contact angle using different liquids such as water, glycerol, poly-ethane and CMC. The polyurethane surface showed hydrophilic behavior after diglyme plasma-deposition with contact angle dropping from 85 deg. to 22 deg. Scanning Electron Microscopy revealed that diglyme films covered uniformly the polyurethane surfaces ensuring to it a biocompatible characteristic.

  18. Polyurethane coating with thin polymer films produced by plasma polymerization of diglyme

    Science.gov (United States)

    Ribeiro, M. A.; Ramos, A. S.; Manfredini, M. I.; Alves, H. A.; Y Honda, R.; Kostov, K. G.; Lucena, E. F.; Ramos, E. C. T.; Mota, R. P.; Algatti, M. A.; Kayama, M. E.

    2009-05-01

    Aqueous-based polyurethane dispersions have been widely utilized as lubricants in textile, shoes, automotive, biomaterial and many other industries because they are less aggressive to surrounding environment. In this work thin films with different thickness were deposited on biocompatible polyurethane by plasma polymerization process using diethylene glycol dimethyl ether (Diglyme) as monomer. Molecular structure of the films was analyzed by Fourier Transform Infrared spectroscopy. The spectra exhibited absorption bands of O-H (3500-3200cm-1), C-H (3000-2900cm-1), C=O (1730-1650cm-1), C-O and C-O-C bonds at 1200-1600cm-1. The samples wettability was evaluated by measurements of contact angle using different liquids such as water, glycerol, poly-ethane and CMC. The polyurethane surface showed hydrophilic behavior after diglyme plasma-deposition with contact angle dropping from 85° to 22°. Scanning Electron Microscopy revealed that diglyme films covered uniformly the polyurethane surfaces ensuring to it a biocompatible characteristic.

  19. Polyurethane coating with thin polymer films produced by plasma polymerization of diglyme

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, M A; Ramos, A S; Manfredini, M I; Alves, H A; Ramos, E C T [UNIVAP, Sao Jose dos Campos, SP (Brazil); Honda, R Y; Kostov, K G; Lucena, E F; Mota, R P; Algatti, M A; Kayama, M E, E-mail: rmota@feg.unesp.b [FEG-DFQ-UNESP, Av. Ariberto Pereira da Cunha 333, 12516-410 - Guaratingueta, SP (Brazil)

    2009-05-01

    Aqueous-based polyurethane dispersions have been widely utilized as lubricants in textile, shoes, automotive, biomaterial and many other industries because they are less aggressive to surrounding environment. In this work thin films with different thickness were deposited on biocompatible polyurethane by plasma polymerization process using diethylene glycol dimethyl ether (Diglyme) as monomer. Molecular structure of the films was analyzed by Fourier Transform Infrared spectroscopy. The spectra exhibited absorption bands of O-H (3500-3200cm{sup -1}), C-H (3000-2900cm{sup -1}), C=O (1730-1650cm{sup -1}), C-O and C-O-C bonds at 1200-1600cm{sup -1}. The samples wettability was evaluated by measurements of contact angle using different liquids such as water, glycerol, poly-ethane and CMC. The polyurethane surface showed hydrophilic behavior after diglyme plasma-deposition with contact angle dropping from 85 deg. to 22 deg. Scanning Electron Microscopy revealed that diglyme films covered uniformly the polyurethane surfaces ensuring to it a biocompatible characteristic.

  20. Systematic review of the effectiveness of polyurethane-coated compared with textured silicone implants in breast surgery.

    Science.gov (United States)

    Duxbury, Paula J; Harvey, James R

    2016-04-01

    Silicone gel implants are used worldwide for breast augmentation and breast reconstruction. Textured silicone implants are the most commonly placed implant, but polyurethane-coated implants are increasingly being used in an attempt to ameliorate the long-term complications associated with implant insertion. This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Electronic searches of MEDLINE, EMBASE, the Cochrane Library and www.ClinicalTrials.gov were undertaken in March 2014 using keywords. Following data extraction, 18 studies were included in the review, including four core studies of textured silicone implants and five studies reporting outcomes for polyurethane-coated silicone implants. There are no clear data reporting revision rates in patients treated with polyurethane implants. In the primary reconstructive setting, capsular contracture rates with silicone implants are 10-15% at 6 years, whilst studies of polyurethane implants report rates of 1.8-3.4%. In the primary augmentation setting, core studies show a capsular contracture rate of 2-15% at 6 years compared with 0.4-1% in polyurethane-coated implants; however, the polyurethane studies are limited by their design and poor follow-up. The use of polyurethane implants should be considered a safe alternative to textured silicone implants. It is likely that an implant surface does influence short- and long-term outcomes; however, the extent of any benefit cannot be determined from the available evidence base. Future implant studies should target the short- and long-term benefits of implant surfacing by procedure with defined outcome measures; a head-to-head comparison would help clarify outcomes. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  1. Dipodal Silane-modified Nano Fe3O4/Polyurethane Magnetic Nanocomposites: Preparation and Characterization

    OpenAIRE

    Mir Mohammad Alavi Nikje; Maryam Vakili; Reihaneh Farajollah; Raheleh Akbar; Moslem Haghshenas

    2016-01-01

    Magnetic nanocomposites were prepared by incorporation of pure Fe3O4 and surface-modified Fe3O4 nanoparticles (dipodal silane-modified Fe3O4) into a polyurethane elastomer matrix by in situ polymerization method. In preparation of these magnetic nanocomposites, polycaprolactone (PCL) was used as a polyester polyol. Because of dipole-dipole interactions between nanoparticles and a large surface area to volume ratio, the magnetic iron oxide nanoparticles tended to agglomerate. Furthermore, the ...

  2. Flexible Bronchoscopy.

    Science.gov (United States)

    Miller, Russell J; Casal, Roberto F; Lazarus, Donald R; Ost, David E; Eapen, George A

    2018-03-01

    Flexible bronchoscopy has changed the course of pulmonary medicine. As technology advances, the role of the flexible bronchoscope for both diagnostic and therapeutic indications is continually expanding. This article reviews the historical development of the flexible bronchoscopy, fundamental uses of the flexible bronchoscope as a tool to examine the central airways and obtain diagnostic tissue, and the indications, complications, and contraindications to flexible bronchoscopy. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Comparison of environmentally friendly, selective polyurethane catalysts

    Czech Academy of Sciences Publication Activity Database

    Strachota, Adam; Strachotová, Beata; Špírková, Milena

    2008-01-01

    Roč. 23, č. 6 (2008), s. 566-570 ISSN 1042-6914 R&D Projects: GA MPO FT-TA3/034 Institutional research plan: CEZ:AV0Z40500505 Keywords : amine catalyst * foam * gelation * kinetics * polyurethane Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.706, year: 2008

  4. The reactive extrusion of thermoplastic polyurethane

    NARCIS (Netherlands)

    Verhoeven, Vincent Wilhelmus Andreas

    2006-01-01

    The objective of this thesis was to increase the understanding of the reactive extrusion of thermoplastic polyurethane. Overall, several issues were identified: • Using a relative simple extrusion model, the reactive extrusion process can be described. This model can be used to further investigate

  5. Inkjet printing of polyurethane colloidal suspensions

    NARCIS (Netherlands)

    Berg, van den A.M.J.; Smith, P.J.; Perelaer, J.; Schrof, W.; Koltzenburg, S.; Schubert, U.S.

    2007-01-01

    An aqueous 40 wt% dispersion of polyurethane has been successfully printed at room temperature using a piezoelectric inkjet printer. Simple layered structures, as well as dots, were made and subsequently analyzed using white-light interferometry. A single layer was found to have a structure height

  6. Preparation of eugenol-based polyurethane

    Science.gov (United States)

    Li, Yupeng; Luo, Fang; Cheng, Chuanjie

    2018-03-01

    The regenerative eugenol was used as the starting material to prepare diol species by two steps, with a total yield of 28%. Furthermore, the prepared diol reacts with 1,6-hexadiisocyanate(HDI) to afford the corresponding polyurethane (PU). The structure of intermediates and PU are characterized by 1H-NMR or IR.

  7. Self-stratifying antimicrobial polyurethane coatings

    NARCIS (Netherlands)

    Yagci, M.B.; Bolca, S.; Heuts, J.P.A.; Ming, W.; With, de G.

    2011-01-01

    In this work antimicrobial polyurethane coatings were prepared aiming at self-stratification. A hydroxyl end-capped liquid oligoester consisting of three equimolar diacids and an excess of 1,4-butanediol has been synthesized by a condensation reaction. A set of quaternary ammonium compounds (QACs)

  8. Time-dependent crashworthiness of polyurethane foam

    Science.gov (United States)

    Basit, Munshi Mahbubul; Cheon, Seong Sik

    2018-05-01

    Time-dependent stress-strain relationship as well as crashworthiness of polyurethane foam was investigated under constant impact energy with different velocities, considering inertia and strain-rate effects simultaneously during the impact testing. Even though the impact energies were same, the percentage in increase in densification strain due to higher impact velocities was found, which yielded the wider plateau region, i.e. growth in crashworthiness. This phenomenon is analyzed by the microstructure of polyurethane foam obtained from scanning electron microscopy. The equations, coupled with the Sherwood-Frost model and the impulse-momentum theory, were employed to build the constitutive equation of the polyurethane foam and calculate energy absorption capacity of the foam. The nominal stress-strain curves obtained from the constitutive equation were compared with results from impact tests and were found to be in good agreement. This study is dedicated to guiding designer use polyurethane foam in crashworthiness structures such as an automotive bumper system by providing crashworthiness data, determining the crush mode, and addressing a mathematical model of the crashworthiness.

  9. Vascularization and tissue infiltration of a biodegradable polyurethane matrix

    Science.gov (United States)

    Ganta, Sudhakar R.; Piesco, Nicholas P.; Long, Ping; Gassner, Robert; Motta, Luis F.; Papworth, Glenn D.; Stolz, Donna B.; Watkins, Simon C.; Agarwal, Sudha

    2016-01-01

    Urethanes are frequently used in biomedical applications because of their excellent biocompatibility. However, their use has been limited to bioresistant polyurethanes. The aim of this study was to develop a nontoxic biodegradable polyurethane and to test its potential for tissue compatibility. A matrix was synthesized with pentane diisocyanate (PDI) as a hard segment and sucrose as a hydroxyl group donor to obtain a microtextured spongy urethane matrix. The matrix was biodegradable in an aqueous solution at 37°C in vitro as well as in vivo. The polymer was mechanically stable at body temperatures and exhibited a glass transition temperature (Tg) of 67°C. The porosity of the polymer network was between 10 and 2000 µm, with the majority of pores between 100 and 300 µm in diameter. This porosity was found to be adequate to support the adherence and proliferation of bone-marrow stromal cells (BMSC) and chondrocytes in vitro. The degradation products of the polymer were nontoxic to cells in vitro. Subdermal implants of the PDI–sucrose matrix did not exhibit toxicity in vivo and did not induce an acute inflammatory response in the host. However, some foreign-body giant cells did accumulate around the polymer and in its pores, suggesting its degradation is facilitated by hydrolysis as well as by giant cells. More important, subdermal implants of the polymer allowed marked infiltration of vascular and connective tissue, suggesting the free flow of fluids and nutrients in the implants. Because of the flexibility of the mechanical strength that can be obtained in urethanes and because of the ease with which a porous microtexture can be achieved, this matrix may be useful in many tissue-engineering applications. PMID:12522810

  10. A low-cost, high-efficiency and high-flexibility surface modification technology for a black bisphenol A polycarbonate board

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Suhuan; Liu, Jianguo, E-mail: Liujg@mail.hust.edu.cn; Lv, Ming; Zeng, Xiaoyan

    2014-09-30

    Highlights: • A low-cost, high-efficiency, high-flexibility surface modification technology was achieved. • Different laser modification parameters resulted in different surface microstructures. • These special microstructures played a deciding role in the surface properties. • After the modification, the surface energy was found to have a significant increase. • The technology would be advantageous to fabricate high-quality micro devices and systems. - Abstract: In this paper, a low-cost, high-efficiency and high-flexibility surface modification technology for polymer materials was achieved at high laser scanning speeds (600–1000 mm s{sup −1}) and using an all-solid state, Q-switched, high-average power, and nanosecond pulse ultraviolet (355 nm wavelength) laser. During the surface modification of a very important engineering plastic, i.e., black bisphenol A polycarbonate (BAPC) board, it was found that different laser parameters (e.g., laser fluence and pulse frequency) were able to result in different surface microstructures (e.g., many tiny protuberances or a porous microstructure with periodical V-type grooves). After the modification, although the total relative content of the oxygen-containing groups (e.g., C-O and COO{sup −}) on the BAPC surface increased, however, the special microstructures played a deciding role in the surface properties (e.g., contact angle and surface energy) of the BAPC. The change trend of the water contact angle on the BAPC surface was with an obvious increase, that of the diiodomethane contact angle was with a most decrease, and that of the ethylene glycol contact angle was between the above two. It showed that the wetting properties of the three liquids on the modified BAPC surface were different. Basing on the measurements of the contact angles of the three liquids, and according to the Young equation and the Lifshitz van der Waals and Lewis acid–base theory, the BAPC surface energy after the modification was

  11. A low-cost, high-efficiency and high-flexibility surface modification technology for a black bisphenol A polycarbonate board

    International Nuclear Information System (INIS)

    Wang, Suhuan; Liu, Jianguo; Lv, Ming; Zeng, Xiaoyan

    2014-01-01

    Highlights: • A low-cost, high-efficiency, high-flexibility surface modification technology was achieved. • Different laser modification parameters resulted in different surface microstructures. • These special microstructures played a deciding role in the surface properties. • After the modification, the surface energy was found to have a significant increase. • The technology would be advantageous to fabricate high-quality micro devices and systems. - Abstract: In this paper, a low-cost, high-efficiency and high-flexibility surface modification technology for polymer materials was achieved at high laser scanning speeds (600–1000 mm s −1 ) and using an all-solid state, Q-switched, high-average power, and nanosecond pulse ultraviolet (355 nm wavelength) laser. During the surface modification of a very important engineering plastic, i.e., black bisphenol A polycarbonate (BAPC) board, it was found that different laser parameters (e.g., laser fluence and pulse frequency) were able to result in different surface microstructures (e.g., many tiny protuberances or a porous microstructure with periodical V-type grooves). After the modification, although the total relative content of the oxygen-containing groups (e.g., C-O and COO − ) on the BAPC surface increased, however, the special microstructures played a deciding role in the surface properties (e.g., contact angle and surface energy) of the BAPC. The change trend of the water contact angle on the BAPC surface was with an obvious increase, that of the diiodomethane contact angle was with a most decrease, and that of the ethylene glycol contact angle was between the above two. It showed that the wetting properties of the three liquids on the modified BAPC surface were different. Basing on the measurements of the contact angles of the three liquids, and according to the Young equation and the Lifshitz van der Waals and Lewis acid–base theory, the BAPC surface energy after the modification was calculated

  12. Synthesis and Physicochemical Behaviour of Polyurethane-Multiwalled Carbon Nanotubes Nanocomposites Based on Renewable Castor Oil Polyols

    Directory of Open Access Journals (Sweden)

    Alaa Ali

    2014-01-01

    Full Text Available Polyurethanes (PUs are high performance materials, with vast industrial and engineering applications. In this research, effects of Multiwalled Carbon Nanotubes (MWCNTs on physicochemical properties of Castor Oil based Polyurethanes (COPUs were studied. MWCNTs were added in different weight percentages (0% to 1% wt in a castor oil based polyurethane (COPUs-MWCNTs nanocomposites. The composition, structure, and morphology of polyurethanes were characterized by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, scanning electron microscopy (SEM, field emission scanning electron microscopy (FESEM, and element detection by energy dispersive spectroscopy (EDX analysis, respectively. Thermal stability was studied by thermogravimetric analysis (TGA. Barrier properties and surface area studies were investigated by nitrogen permeability machine and BET technique. Mechanical properties were calculated by tensile universal testing machine. Results showed well dispersed MWCNTs in polyurethane matrix at different weight percentages. The best results were obtained with 0.3 wt% of MWCNTs in the composite. Surface area studies revealed presence of very few pores which is in a good agreement with barrier permeability, reduced up to ~68% in 1 wt% and ~70% in 0.5 wt% of MWCNTs in polymer matrix, with respect to pure COPUs samples.

  13. Thermal, crystallinity and morphological studies of the filled RBD palm kernel oil polyurethane foam

    International Nuclear Information System (INIS)

    Khairiah Badri; Sahrim Ahmad; Sarani Zakaria

    2000-01-01

    The synthesis of RBD palm kernel oil (PKO) polyurethane polyol and the polyurethane foam has well been documented. However, less study has been put in discovering the thermal properties and crystallinity of the foam. It is also an initiative to investigate the effect of oil palm empty fruit bunch (EFB) and sorbitol as fillers in the polyurethane (PU) foam to these properties. Thermogravimetric (TGA) investigation of the PKO PU foam was performed to study their decompositions. The semi-crystalline nature of EFB-filled PU was confirmed by x-ray diffratogram and DSC thermogram of glass transition temperature, T g . The x-ray diffraction (XRD) study of the unfilled PU showed a broad amorphous halo, indicative of absence of crystallinity in the polymer, which has been explained as due to strong hydrogen bonding in the hard phase. Overall crystallinity decreases with an increase in the polyester content in agreement with the XRD results. The crystallinity however, increases with the inclusion of EFB in the polyurethane system. This study was followed by the observation of the surface morphologies of the PKO PU foam with and without fillers. The scanning electron micrographs verified the finding on the improved k-factor values. (Author)

  14. Polyurethane Ionophore-Based Thin Layer Membranes for Voltammetric Ion Activity Sensing.

    Science.gov (United States)

    Cuartero, Maria; Crespo, Gaston A; Bakker, Eric

    2016-06-07

    We report on a plasticized polyurethane ionophore-based thin film material (of hundreds of nanometer thickness) for simultaneous voltammetric multianalyte ion activity detection triggered by the oxidation/reduction of an underlying poly(3-octylthiophene) film. This material provides excellent mechanical, physical, and chemical robustness compared to other polymers. Polyurethane films did not exhibit leaching of lipophilic additives after rinsing with a direct water jet and exhibited resistance to detachment from the underlying electrode surface, resulting in a voltammetric current response with less than acrylate) ionophore-based membranes of the same thickness and composition exhibited a significant deterioration of the signal after identical treatment. While previously reported works emphasized fundamental advancement of multi-ion detection with multi-ionophore-based thin films, polyurethane thin membranes allow one to achieve real world measurements without sacrificing analytical performance. Indeed, polyurethane membranes are demonstrated to be useful for the simultaneous determination of potassium and lithium in undiluted human serum and blood with attractive precision.

  15. Biodegradable polyurethane nanocomposites containing dexamethasone for ocular route

    International Nuclear Information System (INIS)

    Rodrigues da Silva, Gisele; Silva-Cunha, Armando da; Behar-Cohen, Francine; Ayres, Eliane; Orefice, Rodrigo L.

    2011-01-01

    The treatment of posterior segment ocular diseases, such as uveitis, by using eye drops and oral drugs is usually not effective due to the body's natural barriers to drug penetration. In this study, ocular implants to treat uveitis were synthesized by incorporating dexamethasone acetate, an important type of corticoid used in the treatment of some uveitis, into a biodegradable polyurethane containi clay nanoparticles. Biodegradable polyurethane nanocomposites having poly(caprolactone) oligomers as soft segments were obtained by delaminating clay particles within a polyurethane aqueous dispersion. The drug was incorporated into the polymer by dispersing it in the waterborne polyurethane followed by a drying step. Nanoparticles derived from clay were demonstrated to be able to tailor the mechanical properties of polyurethanes to achieve values that can match the properties of ocular soft tissues. Infrared spectra (FTIR) showed that the presence of clay particles was able to change the microphase separation process typical of polyurethanes. X-ray diffraction and small angle x-ray scattering (SAXS) results were explored to show that the incorporation of both dexamethasone acetate and nanocomponents derived from clay led to a less defined two-phase polyurethane. The presence of clay nanoparticles increased the rate of drug release measured in vitro. Human retinal pigment epithelial cells (ARPE-19) were cultured in contact with polyurethanes and polyurethane nanocomposites, and the viability of them (evaluated by using MTT assay after 7 days) showed that no toxic components were released from polyurethanes containing no drugs during the test.

  16. Biodegradable polyurethane nanocomposites containing dexamethasone for ocular route

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues da Silva, Gisele [Federal University of Sao Joao Del Rei, School of Pharmacy, Divinopolis, Minas Gerais (Brazil); Silva-Cunha, Armando da [Federal University of Minas Gerais, School of Pharmacy, Belo Horizonte, Minas Gerais (Brazil); Behar-Cohen, Francine [INSERM, Physiopathology of ocular diseases: Therapeutic innovations, Institut des Cordeliers, Paris (France); Laboratoire d' Innovations Therapeutiques, Fondation Rothschild, Paris (France); Universite Rene Descartes, Hotel Dieu University Hospital, Paris (France); Ayres, Eliane [Federal University of Minas Gerais, Department of Metallurgical and Materials Engineering, Belo Horizonte, Minas Gerais (Brazil); Orefice, Rodrigo L., E-mail: rorefice@demet.ufmg.br [Federal University of Minas Gerais, Department of Metallurgical and Materials Engineering, Belo Horizonte, Minas Gerais (Brazil)

    2011-03-12

    The treatment of posterior segment ocular diseases, such as uveitis, by using eye drops and oral drugs is usually not effective due to the body's natural barriers to drug penetration. In this study, ocular implants to treat uveitis were synthesized by incorporating dexamethasone acetate, an important type of corticoid used in the treatment of some uveitis, into a biodegradable polyurethane containi clay nanoparticles. Biodegradable polyurethane nanocomposites having poly(caprolactone) oligomers as soft segments were obtained by delaminating clay particles within a polyurethane aqueous dispersion. The drug was incorporated into the polymer by dispersing it in the waterborne polyurethane followed by a drying step. Nanoparticles derived from clay were demonstrated to be able to tailor the mechanical properties of polyurethanes to achieve values that can match the properties of ocular soft tissues. Infrared spectra (FTIR) showed that the presence of clay particles was able to change the microphase separation process typical of polyurethanes. X-ray diffraction and small angle x-ray scattering (SAXS) results were explored to show that the incorporation of both dexamethasone acetate and nanocomponents derived from clay led to a less defined two-phase polyurethane. The presence of clay nanoparticles increased the rate of drug release measured in vitro. Human retinal pigment epithelial cells (ARPE-19) were cultured in contact with polyurethanes and polyurethane nanocomposites, and the viability of them (evaluated by using MTT assay after 7 days) showed that no toxic components were released from polyurethanes containing no drugs during the test.

  17. Influence of semisynthetic modification of the scaffold of a contact domain of HbS on polymerization: role of flexible surface topology in polymerization inhibition.

    Science.gov (United States)

    Sonati, Srinivasulu; Bhutoria, Savita; Prabhakaran, Muthuchidambaran; Acharya, Seetharama A

    2018-02-01

    A new variant of HbS, HbS-Einstein with a deletion of segment α 23-26 in the B-helix, has been assembled by semisynthetic approach. B-helix of the α chain of cis αβ-dimer of HbS plays dominant role in the quinary interactions of deoxy HbS dimer. This B-helix is the primary scaffold that provides the orientation for the side chains of contact residues of this intermolecular contact domain. The design of HbS-Einstein has been undertaken to map the influence of perturbation of molecular surface topology and the flexibility of surface residues in the polymerization. The internal deletion exerts a strong inhibitory influence on Val-6 (β)-dependent polymerization, comparable to single contact site mutations and not for complete neutralization of Val-6(β)-dependent polymerization. The scaffold modification in cis-dimer is inhibitory, and is without any effect when present on the trans dimer. The flexibility changes in the surface topology in the region of scaffold modification apparently counteracts the intrinsic polymerization potential of the molecule. The inhibition is close to that of Le Lamentin mutation [His-20 (α) → Gln] wherein a mutation engineered without much change in flexibility of the contact domain. Interestingly, the chimeric HbS with swine-human chimeric α chain with multiple non-conservative mutations completely inhibits the Val-6(β)-dependent polymerization. The deformabilities of surface topology of chimeric HbS are comparable to HbS in spite of the multiple contact site mutations in the α-chain. We conclude that the design of antisickling Hbs for gene therapy of sickle cell disease should involve multiple mutations of intermolecular contact sites.

  18. Determination of position and shape of flexible mri surface coils using the Microsoft Kinect for attenuation correction in PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Frohwein, Lynn; He, Mirco; Buther, Florian; Safers, Klaus [European Institute for Molecular Imaging, University of Muenster (Germany)

    2015-05-18

    Due to the varying position and shape of flexible MRI RF surface coils, the creation of attenuation maps for these coils is a challenging task. Nevertheless, coil material (metal, plastic, rubber) attenuates the PET signal to a considerable amount. Thus, including a coil μ-map into the human μ-map is essential. In this work, we present a method to determine the position and shape of flexible coils with the help of the Microsoft Kinect depth camera. Phantom PET/MRI (Siemens Biograph mMR) and CT scans (Siemens Biograph mCT) were performed with and without the flexible 32-channel coil equipped with 15 markers visible in CT and Kinect. Prior to the PET/MRI acquisition, Kinect data is acquired of the phantom with the coil on top. The manually extracted marker positions from CT and Kinect are used to non-rigidly transform the template CT according to the Kinect marker positions describing the shape of the coil during PET/MRI acquisition. An appropriate μ-map can then be calculated from the transformed CT dataset. Subsequently, the μ-map is placed in relation to the patient table according to the Kinect-derived marker positions. First results show that the coil shape can be determined with the help of the Kinect camera. The transformation of the template CT dataset according to Kinect marker positions during PET/MRI leads to appropriate results. Furthermore, the position of the coil can also be determined for an accurate placement of the μ-map in relation to the patient table. The determination of position and shape of flexible surface coils using the Kinect camera can be a way to include the CT-based coil μ-map in PET/MRI acquisitions without the need for additional MRI scans. Accuracy and practicability of the method have to be tested in further experiments.

  19. Determination of position and shape of flexible mri surface coils using the Microsoft Kinect for attenuation correction in PET/MRI

    International Nuclear Information System (INIS)

    Frohwein, Lynn; He, Mirco; Buther, Florian; Safers, Klaus

    2015-01-01

    Due to the varying position and shape of flexible MRI RF surface coils, the creation of attenuation maps for these coils is a challenging task. Nevertheless, coil material (metal, plastic, rubber) attenuates the PET signal to a considerable amount. Thus, including a coil μ-map into the human μ-map is essential. In this work, we present a method to determine the position and shape of flexible coils with the help of the Microsoft Kinect depth camera. Phantom PET/MRI (Siemens Biograph mMR) and CT scans (Siemens Biograph mCT) were performed with and without the flexible 32-channel coil equipped with 15 markers visible in CT and Kinect. Prior to the PET/MRI acquisition, Kinect data is acquired of the phantom with the coil on top. The manually extracted marker positions from CT and Kinect are used to non-rigidly transform the template CT according to the Kinect marker positions describing the shape of the coil during PET/MRI acquisition. An appropriate μ-map can then be calculated from the transformed CT dataset. Subsequently, the μ-map is placed in relation to the patient table according to the Kinect-derived marker positions. First results show that the coil shape can be determined with the help of the Kinect camera. The transformation of the template CT dataset according to Kinect marker positions during PET/MRI leads to appropriate results. Furthermore, the position of the coil can also be determined for an accurate placement of the μ-map in relation to the patient table. The determination of position and shape of flexible surface coils using the Kinect camera can be a way to include the CT-based coil μ-map in PET/MRI acquisitions without the need for additional MRI scans. Accuracy and practicability of the method have to be tested in further experiments.

  20. Organic field-effect transistors with surface modification by using a PVK buffer layer on flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hyung, Gun Woo; Lee, Dong Hyung; Koo, Ja Ryong; Kim, Young Kwan [Hongik University, Seoul (Korea, Republic of); Park, Jae Hoon [Electronics and Telecommunications Research Institute, Daejeon (Korea, Republic of)

    2012-11-15

    We have fabricated pentacene thin-film transistors (TFTs) with a gate dielectric such as crosslinked poly(vinyl alcohol) (c-PVA), with poly(9-vinylcarbazole) (PVK) buffer layer on a polyethersulfone (PES) flexible substrate, and with substrate heating at a temperature below 120 .deg. C, and we demonstrated the possibility of using an organic gate dielectric layer as a potential pentacene TFT with a PVK buffer layer for low-voltage operation on a plastic substrate. We report the excellent electrical properties of organic TFTs with a PVK buffer layer. The PVK buffer layer improves the performance of the devices and reduces the operating voltage of the devices. Our pentacene TFTs can be fabricated with mobilities > 2.54 cm{sup 2}/Vs and on/off current ratios > 7.5E5 and with flexible organic dielectrics and substrates.

  1. Flexible Carbon Aerogels

    Directory of Open Access Journals (Sweden)

    Marina Schwan

    2016-09-01

    Full Text Available Carbon aerogels are highly porous materials with a large inner surface area. Due to their high electrical conductivity they are excellent electrode materials in supercapacitors. Their brittleness, however, imposes certain limitations in terms of applicability. In that context, novel carbon aerogels with varying degree of flexibility have been developed. These highly porous, light aerogels are characterized by a high surface area and possess pore structures in the micrometer range, allowing for a reversible deformation of the aerogel network. A high ratio of pore size to particle size was found to be crucial for high flexibility. For dynamic microstructural analysis, compression tests were performed in-situ within a scanning electron microscope allowing us to directly visualize the microstructural flexibility of an aerogel. The flexible carbon aerogels were found to withstand between 15% and 30% of uniaxial compression in a reversible fashion. These findings might stimulate further research and new application fields directed towards flexible supercapacitors and batteries.

  2. Polyurethane as a base for a family of tissue equivalent materials

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1980-01-01

    Recent experience gained in the selection of tissue equivalent materials for the construction of whole body counting phantoms has shown that commercially available polyurethane can be used as a base for a variety of tissue equivalent materials. Tissues simulated include lung, adipose, muscle, cartilage and rib bone. When selecting tissue equivalent materials it is important to understand what tissue properties must be simulated. Materials that simply simulate the linear attenuation of low energy photons for example, are not very likely to simulate neutron interaction properties accurately. With this in mind, we have developed more than one simulation composition for a given tissue, depending on the purpose to which the simulant is to be applied. Simple simulation of linear attenuation can be achieved by addition of carefully measured amounts of higher Z material, such as calcium carbonate to the polyurethane. However, the simulation necessary for medical scanning purposes, or for use in mixed radiation fields requires more complex formulations to yield proper material density, hydrogen and nitrogen content, electron density, and effective atomic number. Though polyurethane has limitations for simulation of tissues that differ markedly from its inherent composition (such as compacted bone), it is safe and easily used in modestly equipped laboratories. The simulants are durable and generally flexible. They can also be easily cast in irregular shapes to simulate specific organ geometries. (author)

  3. Synthesis and properties of ionic polyurethane dispersions: influence of polyol molecular weight

    International Nuclear Information System (INIS)

    Valipour Ebrahimi, M.; Barikani, M.; Mohammad Seyed Mohaghegh, S.

    2006-01-01

    A series of water dispersible polyurethanes containing carboxylate anion as the hydrophilic pendant group were prepared from toluene diisocyanate (TDI), 1,4- butanediol (1,4-BDO), dimethylol propionic acid and different molecular weight of polytetramethylene glycol . IR Spectroscopy was used to check the end of polymerization reaction and characterization of polymer. The effect of polytetramethylene glycol molecular weight was studied on the particle size distribution, contact angle, and mechanical and thermal properties of the emulsion-cast films. Average particle size of prepared polyurethane emulsions decreases with increasing the polytetramethylene glycol molecular weight. Tensile strength and hardness decrease and elongation-at-break and contact angle increase with increase of the polytetramethylene glycol molecular weight. Thermal property and thermal stability are also effected by variation of polytetramethylene glycol molecular weight. The thermal stability increases with increasing polytetramethylene glycol molecular weight. Glass transition temperature (T g ) moved toward the lower temperatures by increasing molecular weight of the polyol. Decrease in T g and tensile properties are interpreted in terms of the decrease in hard segments and the increase in chain flexibility and phase separation in high molecular weight polytetramethylene glycol based polyurethane

  4. A new method in the management of skin neoplasm using a flexible radioactive patch

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Doo; Park, Sang Gun; Lee, Min Geol [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Gwi Eon; Chung, Yae Lee [Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Eun Hee [Korea Cancer Center Hospital, Seoul (Korea, Republic of); Park, Kyung Bae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    We have developed a flexible radioactive polyurethane patch incorporating {beta}-emitting radionuclide (166Ho) to treat malignant skin lesions. We covered the tumor surface (n=133) with the radioactive patch for 33.58 {+-} 5.33 minutes. Radiation dose delivered was 35 Gy for Bowen's disease (n=78), Kaposi sarcoma (n=25), actinic keratosis (n=5), and 50 Gy for BCC (n=17) and squamous carcinoma (n=8). Complete response was observed in 91.7% after the first therapeutic trial, 96.2% after 2nd and 97.7% after 4th trial with excellent cosmetic outcome for 31.15{+-}13.88 months of follow-up. Radioactive patch therapy is effective for superficial skin cancers that are impractical for surgery.

  5. A new method in the management of skin neoplasm using a flexible radioactive patch

    International Nuclear Information System (INIS)

    Lee, Jong Doo; Park, Sang Gun; Lee, Min Geol; Kim, Gwi Eon; Chung, Yae Lee; Kim, Eun Hee; Park, Kyung Bae

    2005-01-01

    We have developed a flexible radioactive polyurethane patch incorporating β-emitting radionuclide (166Ho) to treat malignant skin lesions. We covered the tumor surface (n=133) with the radioactive patch for 33.58 ± 5.33 minutes. Radiation dose delivered was 35 Gy for Bowen's disease (n=78), Kaposi sarcoma (n=25), actinic keratosis (n=5), and 50 Gy for BCC (n=17) and squamous carcinoma (n=8). Complete response was observed in 91.7% after the first therapeutic trial, 96.2% after 2nd and 97.7% after 4th trial with excellent cosmetic outcome for 31.15±13.88 months of follow-up. Radioactive patch therapy is effective for superficial skin cancers that are impractical for surgery

  6. Development of a smart, anti-water polyurethane polymer hair coating for style setting.

    Science.gov (United States)

    Liu, Y; Liu, Y J; Hu, J; Ji, F L; Lv, J; Chen, S J; Zhu, Y

    2016-06-01

    The goal of this work was to develop a novel polyurethane polymer coating for the surface of the hair that could be used for style setting via the shape memory effect (SME). The features of the films are in accordance with conventional hair styling methods used in the laboratory. In this study, a new polyurethane polymer was synthesized; the morphology and mechanical behaviour of the coated hair were systematically investigated using a scanning electron microscope (SEM) and an Instron 5566 (with a temperature oven). The SME of the hair was tested using a 35-g weight and over five washing and drying cycles. The experimental result shows that the polyurethane polymer has effects on the mechanical behaviour of the hair. It indicates that the fixed shape (at 22°C) and recover rate (at 60°C) of different casted thickness films are similar. And the stress of the film becomes larger with increasing film thickness. Furthermore, the shape memory ability could be endowed with the hair styling using this polymer; the hair fibre could recover to the 65% of its original shape after five cycle deformation by 35 g mass under the heat-treated condition; it could recover its original setting styling even after 5th water washing and drying. The SEM results indicated that the microsurface of the hair is coated with the polymer membrane; it contributes to the shape memory ability of the coated hair to keep and recover to the original setting styling. The styling hair can return to the original hair because the polyurethane polymer can be washed out by water with suitable strength and shampoo totally which does not leave any flake. The polyurethane polymer-based hair setting agent has been developed successfully, and it could be coated evenly on the human hair with good hand feeling and SMEs. The SME is highly related to the quantity of polyurethane polymer solution, and the effect could be improved by increasing the solution quantity. The maximum deformation of the coated hair could

  7. On flexibility

    OpenAIRE

    Weiss, Christoph R.; Briglauer, Wolfgang

    2000-01-01

    By building on theoretical work by Mills and Schumann (1985) and Ungern-Sternberg (1990) this paper provides evidence on the determinants of two dimensions of flexibility, the flexibility in adjusting aggregate output over time (tactical flexibility) as well as the ability to switch quickly between products (operational flexibility). Econometric analysis of a sample of 40.000 farms in Upper-Austria for the period 1980 to 1990 suggests that larger full-time farms operated by younger, better ed...

  8. Managing burn wounds with SMARTPORE Technology polyurethane foam: two case reports.

    Science.gov (United States)

    Imran, Farrah-Hani; Karim, Rahamah; Maat, Noor Hidayah

    2016-05-12

    Successful wound healing depends on various factors, including exudate control, prevention of microbial contaminants, and moisture balance. We report two cases of managing burn wounds with SMARTPORE Technology polyurethane foam dressing. In Case 1, a 2-year-old Asian girl presented with a delayed (11 days) wound on her right leg. She sustained a thermal injury from a hot iron that was left idle on the floor. Clinical inspection revealed an infected wound with overlying eschar that traversed her knee joint. As her parents refused surgical debridement under general anesthesia, hydrotherapy and wound dressing using SMARTPORE Technology Polyurethane foam were used. Despite the delay in presentation of this linear thermal pediatric burn injury that crossed the knee joint, the patient's response to treatment and its outcome were highly encouraging. She was cooperative and tolerated each dressing change without the need of supplemental analgesia. Her wound was healed by 24 days post-admission. In Case 2, a 25-year-old Asian man presented with a mixed thickness thermal flame burn on his left leg. On examination, the injury was a mix of deep and superficial partial thickness burn, comprising approximately 3% of his total body surface area. SMARTPORE Technology polyurethane foam was used on his wound; his response to the treatment was very encouraging as the dressing facilitated physiotherapy and mobility. The patient rated the pain during dressing change as 2 on a scale of 10 and his pain score remained the same in every subsequent change. His wound showed evidence of epithelialization by day 7 post-burn. There were no adverse events reported. Managing burn wounds with SMARTPORE Technology polyurethane foam resulted in reduced pain during dressing changes and the successful healing of partial and mixed thickness wounds. The use of SMARTPORE Technology polyurethane foam dressings showed encouraging results and requires further research as a desirable management option in

  9. Effect of the average soft-segment length on the morphology and properties of segmented polyurethane nanocomposites

    International Nuclear Information System (INIS)

    Finnigan, Bradley; Halley, Peter; Jack, Kevin; McDowell, Alasdair; Truss, Rowan; Casey, Phil; Knott, Robert; Martin, Darren

    2006-01-01

    Two organically modified layered silicates (with small and large diameters) were incorporated into three segmented polyurethanes with various degrees of microphase separation. Microphase separation increased with the molecular weight of the poly(hexamethylene oxide) soft segment. The molecular weight of the soft segment did not influence the amount of polyurethane intercalating the interlayer spacing. Small-angle neutron scattering and differential scanning calorimetry data indicated that the layered silicates did not affect the microphase morphology of any host polymer, regardless of the particle diameter. The stiffness enhancement on filler addition increased as the microphase separation of the polyurethane decreased, presumably because a greater number of urethane linkages were available to interact with the filler. For comparison, the small nanofiller was introduced into a polyurethane with a poly(tetramethylene oxide) soft segment, and a significant increase in the tensile strength and a sharper upturn in the stress-strain curve resulted. No such improvement occurred in the host polymers with poly(hexamethylene oxide) soft segments. It is proposed that the nanocomposite containing the more hydrophilic and mobile poly(tetramethylene oxide) soft segment is capable of greater secondary bonding between the polyurethane chains and the organosilicate surface, resulting in improved stress transfer to the filler and reduced molecular slippage.

  10. Effect of Reinforced Hybrid Palm Shells on Mechanical Properties of Polyurethane-Jute Woven/ Vinyl Ester Sandwich Board

    International Nuclear Information System (INIS)

    Cheng, T.S.; Nurul Ain Nanyan; Lan, D.N.U.; Leng, T.P.

    2014-01-01

    A natural fiber sandwich was constructed from palm shells/polyurethane core and jute woven/vinyl ester face sheets by the in-situ sandwich process (core and panel prepared simultaneously). The polyurethane sandwich core was reinforced by hybrid shell systems of dried palm shell (DPS) and palm kernel shell (PKS) (50P-50D, 25P-75D), and single shell system of PKS (100P) as well as 20 phr empty fruit bunch (EFB) based on hundred part of polyurethane. The sandwich face sheets are prepared by using two jute woven layers and impregnated by vinyl ester. Interlocking between DPS and polyurethane matrix was formed, which hence enhanced the mechanical properties. The interfacial adhesion between DPS, PKS, and EFB with the polyurethane binder played the important role to achieve high mechanical properties. It was found that hybrid shells exhibited high reinforcement for sandwich's performance resulting better compression (50P-50D) and flexural (25P-75D) properties. The single shell 100P showed only improvement on flexural modulus.The fracture surface morphology of sandwich under mechanical test was performed by using optical microscopy. (author)

  11. Degradation mechanism of polyurethane foam induced by electron beam irradiation

    International Nuclear Information System (INIS)

    Huang Wei; Fu Yibei; Bian Zhishang; He Meiying

    2002-01-01

    The degradation mechanism of irradiated polyurethane foam has been studied in detail. The changes of chemical structure and micro-phase separation have been determined by DTG. The gas products from irradiated samples are analyzed quantitatively and qualitatively by GC. The degradation mechanism of irradiated polyurethane foam has been deduced according to the experimental results. It provides some basis of the application on the polyurethane in the radiation field

  12. Rigid Polyurethane Foam Reinforced Coconut Coir Fiber Properties

    OpenAIRE

    Mohd Azham Azmi

    2012-01-01

    This research work studied the properties of composite foam panels. Coconut coir fibers were used as reinforcement in polyurethane (PU) foam in order to increase the properties of foam. This composite foam panels were fabricated by using polyurethane molded method. The polyurethane foam panels reinforced from 5 to 20wt% coconut coir were produced to investigate the physical and mechanical test via density test and three point bending test respectively. It was found that the density test resul...

  13. Polyurethane Membranes Modified with Isopropyl Myristate as a Potential Candidate for Encapsulating Electronic Implants: A Study of Biocompatibility and Water Permeability

    Directory of Open Access Journals (Sweden)

    Deepen Paul

    2010-07-01

    Full Text Available Medical polyurethanes have shown good bio-stability and mechanical properties and have been used as coating for implantable medical devices. However, despite their excellent properties, they are relatively permeable to liquid water and water vapour which is a drawback for electronic implant encapsulation. In this study polyether polyurethanes with different soft segment molecular weights were modified by incorporating isopropyl myristate (IPM, as a hydrophobic modifying agent, and the effect of IPM on water resistant and biocompatibility of membranes were investigated. IPM changed the surface properties of the polyurethane film and reduced its surface energy. Polyurethane films were found to be stable with IPM concentrations of 1–5 wt% based upon their chemistry; however it leached out in BSA at higher concentrations. Though, low concentrations of IPM reduced both liquid water and water vapour permeability; at higher IPM content liquid permeability did not improved significantly. In general, the polyurethane materials showed much lower water permeability compared with currently used silicone packaging material for electronic implants. In addition, cytotoxicity assessment of IPM containing polyurethanes showed no evidence of cytotoxcity up to 5 wt% IPM.

  14. Structure, properties and application of a novel low-glossed waterborne polyurethane

    International Nuclear Information System (INIS)

    Li, Jianjun; Zheng, Wen; Zeng, Wenbo; Zhang, Dongqiao; Peng, Xiaohong

    2014-01-01

    Waterborne polyurethane (WPU) with low gloss was prepared successfully and used as surface modifier to adjust the gloss of leather. The structure and morphology of the WPU films were characterized by Fourier transform infrared spectrometer (FTIR), Atomic force microscope (AFM) and Scanning electron microscope (SEM). Then the factors affecting the gloss, light transmittance and water absorption of WPU films including varieties and amount of chain extenders, n NCO /n OH molar ratio and 2-[(2-aminoethyl)amino]ethyl sulfonic acid sodium content.etc were studied. Results showed that the WPU film possessed a broad particle size distribution combined with a relatively large particle size. This kind of novel WPU would be widely used in polyvinyl chloride, polyurethane synthetic leather surface.

  15. Polarization holographic recording in Disperse Red1 doped polyurethane polymer film

    Energy Technology Data Exchange (ETDEWEB)

    Aleksejeva, J; Gerbreders, A; Gertners, U; Reinfelde, M; Teteris, J, E-mail: aleksejeva.jelena@gmail.com [Institute of Solid State Physics, University of Latvia, Kengaraga street 8, Riga (Latvia)

    2011-06-23

    In this report holographic recording of polarisation and surface relief gratings in Disperse Red 1 (DR1) doped polyurethane polymer films was studied. In this material DR1 is chemically bounded to polyurethane polymer main chain. Polarization holographic recording was performed by two orthogonal circularly polarized 532 nm laser beams. Photoinduced birefringence is a precondition for polarization holograms recording, therefore a detailed study of a photoinduced birefringence and changes of optical properties was performed. The lasers with wavelengths of 375nm, 448nm, 532 nm and 632.8 nm were used as pumping beam for sample excitation. The photoinduced birefringence {Delta}n was measured at 532 nm and 632.8 nm wavelengths. The photoinduced birefringence dependence on the pumping beam wavelength and intensity was investigated. Surface relief grating (SRG) formation was observed during polarization holographic recording process. A profile of SRG was studied by AFM. A relationship between SRG formation and photoinduced birefringence has been discussed.

  16. Characterization and properties of sepiolite/polyurethane nanocomposites

    International Nuclear Information System (INIS)

    Chen Hongxiang; Zheng Maosheng; Sun Hongying; Jia Qingming

    2007-01-01

    In situ polymerization method is employed to prepare sepiolite/polyurethane nanocomposite. The morphology and the dispersion of sepiolite in polyurethane have been characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope and Fourier transform infrared spectroscopy. The results show the sepiolite is dispersed homogeneously in the polyurethane matrix at a nanometer scale. The tensile test shows that the tensile strength and elongation at break for the nanocomposites increase with the addition of sepiolite as compared to those of the pure polyurethane. The TGA analysis reveals that the addition of nanofillers results in the higher thermal stability

  17. Palm oil based polyols for acrylated polyurethane production

    International Nuclear Information System (INIS)

    Rida Tajau; Mohd Hilmi Mahmood; Mek Zah Salleh; Khairul Zaman Mohd Dahlan; Rosley Che Ismail

    2006-01-01

    Palm oil becomes important renewable resources for the production of polyols for the polyurethane manufacturing industry. The main raw materials used for the production of acrylated polyurethane are polyols, isocyanates and hydroxyl terminated acrylate compounds. In these studies, polyurethane based natural polymer (palm oil), i.e., POBUA (Palm Oil Based Urethane Acrylate) were prepared from three different types of palm oil based polyols i.e., epoxidised palm oil (EPOP), palm oil oleic acid and refined, bleached and deodorized (RBD) palm olein based polyols. The performances of these three acrylated polyurethanes when used for coatings and adhesives were determined and compared with each other. (Author)

  18. Actuators based on polyurethanes with different types of polyol

    Science.gov (United States)

    Lim, Hyun-Ok; Bark, Geong-Mi; Jo, Nam-Ju

    2007-07-01

    This study dealt with the electrostrictive responses of polyurethane (PU) actuators with different microphase separation structure, which was a promising candidate for a material used in polymer actuators. In order to construct PUs with different higher-order structure, we synthesized PUs with different diols; poly(neopentyl glycol adipate) (PNAD), poly(tetramethylene glycol) (PTMG), and poly(dimethyl siloxnae) (PDMS). Synthesized PU was characterized by FT-IR spectroscopy and GPC. Thermal analysis and mechanical properties of PU films were carried out with DSC and UTM, respectively. And PU actuator was formed in a monomorph type which made by carbon black electrodes on the both surfaces of PU film by spin coating method. Actuation behavior was mainly influenced on microphase separation structure and mechanical property of PU. In result, PU actuator with PNAD, polyester urethane, had the largest field-induced displacement.

  19. Microporous polyurethane-acrylamide film cured by electron beam irradiation

    International Nuclear Information System (INIS)

    Ando, Masayuki; Goto, Takakazu; Tsuchiya, Mitsuru; Uryu, Toshiyuki

    1988-01-01

    The morphology and aggregation structure of electron beam (EB)-cured microporous polyurethane-acrylamide film was investigated. The urethane-acrylamide prepolymer was synthesized by the reaction of poly(butylene adipate)diol, diphenylmethane diisocyanate, and N-(hydroxymethyl)acrylamide. It was found from scanning electron microscopy that the urethane-acrylamide film, which was prepared by using a methyl ethyl ketone and dimethylformamide (3:1 v/v) mixture as casting solvent, had a microporous structure with pore size of several micrometers, and that the morphology was fixed by EB irradiation. The pore volume of the EB-cured microporous film was determined to be about 460 mm 3 g -1 by mercury porosimetry. The micropores were not destroyed even after immersing in solvent, possibly because the cured film had high crystallinity and dense crosslinking. Moreover, it was found by X-ray photelectron spectroscopy that terminal portions of urethane-acrylamide were localized at the film surface. (author)

  20. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2017-01-01

    Full Text Available Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest flux was achieved with the thinnest membranes and the best energy efficiency was achieved with the thickest membranes. All membranes had salt retention above 99%. Nanotechnology offers the potential to find modern solutions for desalination of waste waters, by introducing new materials with revolutionary properties, but new membranes must be developed according to the target application.

  1. Crosslinked polyurethanes based on hyperbranched polymers

    Directory of Open Access Journals (Sweden)

    Vuković Jasna

    2008-01-01

    Full Text Available In this paper, two samples of polyurethane (PU crosslinked with hydroxy -functonal hyperbranched aliphatic polyester of the second pseudo generation were investigated. For the synthesis of these crosslinked PUs two different macrodiols were used: poly(tetramethyleneoxide (PTMO for PUPTMO and ethylene oxide-poly(dimethylsiloxane-ethylene oxide (PDMS-EO for PUPDMS-EO sample. Synthesized samples behave as elastomers and have yellow color. Obtained results show that swelling degree of the sample PUPDMS-EO in N-methyl-2-pyrrolidinon (NMP determined at room temperature is higher than for the sample PUPTMO. It has been also observed that thermal properties of these polyurethane networks can be changed by incorporation of siloxane sequences in their structure.

  2. Enhancement of antibacterial properties of polyurethanes by chitosan and heparin immobilization

    International Nuclear Information System (INIS)

    Kara, Filiz; Aksoy, E. Ayse; Yuksekdag, Zehranur; Aksoy, Serpil; Hasirci, Nesrin

    2015-01-01

    Graphical abstract: - Highlights: • Polyurethane elastomer was synthesized in medical purity. • Chitosan (CH) and heparin (Hep) were immobilized on polyurethane films. • Modification with CH and Hep increased hydrophilicity and surface free energy. • Immobilized films had high antibacterial activity against four bacteria. • Bacterial adhesion significantly decreased on the modified surfaces. - Abstract: Being antibacterial is a required property for the materials used in medical devices and instruments. Polyurethanes (PUs) are one class of polymers widely used in the production of devices that especially come in contact with blood (e.g. heart valves, blood vessels, vascular grafts and catheters). In this study, hexamethylene diisocyanate based polyurethanes (PUh) were synthesized and antibacterial and anti-adhesive properties were added by immobilizing chitosan (CH) and heparin (Hep) on the samples of PUh via a stepwise process. Chemistry and topography of the modified film samples (PUh-CH and PUh-CH-Hep) were examined by Fourier Transform Infrared Spectrophotometry-Attenuated Total Reflectance (FTIR-ATR), Electron Spectroscopy for Chemical Analysis (ESCA) and Atomic Force Microscopy (AFM), and surface free energy (SFE) values after each step were determined by goniometer. PUh-CH and PUh-CH-Hep samples were found to be antibacterial against Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis) (both Gram positive) and Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) (both Gram negative) bacteria, and bacterial adhesion results showed a significant decrease in the number of viable bacteria on both modified samples where PUh-CH-Hep was the most effective. The findings of this study show that polymeric surfaces can be effectively modified and converted to be antibacterial by chitosan and heparin immobilization, and presence of both chemicals enhance efficacy against bacteria.

  3. Enhancement of antibacterial properties of polyurethanes by chitosan and heparin immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Kara, Filiz [Department of Chemistry, Faculty of Science, Gazi University, 06500 Ankara (Turkey); Aksoy, E. Ayse [Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, 06100 Ankara (Turkey); Yuksekdag, Zehranur [Biotechnology Laboratory, Department of Biology, Faculty of Science, Gazi University, 06500 Ankara (Turkey); Aksoy, Serpil [Department of Chemistry, Faculty of Science, Gazi University, 06500 Ankara (Turkey); Hasirci, Nesrin, E-mail: nhasirci@metu.edu.tr [BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, 06800 Ankara (Turkey); Department of Chemistry, Faculty of Arts and Sciences, Middle East Technical University, 06800 Ankara (Turkey)

    2015-12-01

    Graphical abstract: - Highlights: • Polyurethane elastomer was synthesized in medical purity. • Chitosan (CH) and heparin (Hep) were immobilized on polyurethane films. • Modification with CH and Hep increased hydrophilicity and surface free energy. • Immobilized films had high antibacterial activity against four bacteria. • Bacterial adhesion significantly decreased on the modified surfaces. - Abstract: Being antibacterial is a required property for the materials used in medical devices and instruments. Polyurethanes (PUs) are one class of polymers widely used in the production of devices that especially come in contact with blood (e.g. heart valves, blood vessels, vascular grafts and catheters). In this study, hexamethylene diisocyanate based polyurethanes (PUh) were synthesized and antibacterial and anti-adhesive properties were added by immobilizing chitosan (CH) and heparin (Hep) on the samples of PUh via a stepwise process. Chemistry and topography of the modified film samples (PUh-CH and PUh-CH-Hep) were examined by Fourier Transform Infrared Spectrophotometry-Attenuated Total Reflectance (FTIR-ATR), Electron Spectroscopy for Chemical Analysis (ESCA) and Atomic Force Microscopy (AFM), and surface free energy (SFE) values after each step were determined by goniometer. PUh-CH and PUh-CH-Hep samples were found to be antibacterial against Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis) (both Gram positive) and Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) (both Gram negative) bacteria, and bacterial adhesion results showed a significant decrease in the number of viable bacteria on both modified samples where PUh-CH-Hep was the most effective. The findings of this study show that polymeric surfaces can be effectively modified and converted to be antibacterial by chitosan and heparin immobilization, and presence of both chemicals enhance efficacy against bacteria.

  4. Composites prepared from the waterborne polyurethane cationomers-modified graphene. Part I. Synthesis, structure, and physicochemical properties

    Czech Academy of Sciences Publication Activity Database

    Król, P.; Król, B.; Pielichowska, K.; Špírková, Milena

    2015-01-01

    Roč. 293, č. 2 (2015), s. 421-431 ISSN 0303-402X R&D Projects: GA ČR(CZ) GA13-06700S Institutional support: RVO:61389013 Keywords : polyurethane films * surface structure * AFM microscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.890, year: 2015

  5. Novel metallomesogenic polyurethanes: Synthesis, characterization and properties

    International Nuclear Information System (INIS)

    Senthilkumar, Natarajan; Narasimhaswamy, Tanneru; Kim, Il-Jin

    2012-01-01

    A series of tetradentate Schiff base metallomesogenic diols were synthesized from two simple dihydroxy benzenes. The metallomesogenic diol was constructed from three ring containing mesogen linked through ester and azomethine with terminal hydroxy group. This upon complexation with copper(II) formed metallomesogenic diol with varying terminal chain length. A series of metallomesogenic polyurethanes were synthesized using these metallomesogenic diols as chain extenders for the prepolymers based on polytetramethylene glycol (PTMG) of varying molecular weight (M n = 650, 2000) and 2,4-toluene diisocyanate (TDI), or 4,4′-methylene bis(phenyl isocyanate) (MDI). The molar ratio of metallomesogenic diol and PTMG were varied in the polyurethane to find their role in liquid crystalline and mechanical properties. Extensive characterization of all metallomesogenic compounds and intermediates were carried out by FT-IR, 1 H and 13 C NMR, EPR, VSM, Mass (EI and FAB) and UV–visible spectroscopy. Hot stage polarizing microscope and differential scanning calorimetry were used to ensure the phase characteristics such as nature of phase, melting and clearing temperatures and phase range. The appearance of enantiotropic smectic A phases indicated high molecular polarizability of the core due to the metal ion. - Highlights: ► Design and synthesis of metallomesogenic diols. ► Metallomesogenic polyurethanes were prepared using these diols as chain extenders. ► Liquid crystalline and mechanical properties were studied. ► A square pyramidal structure for the copper(II) complexes have been proposed. ► Polyurethanes exhibited enantiotropic smectic A phases.

  6. Biodegradability of polyurethane/polysaccharide blends

    International Nuclear Information System (INIS)

    Mothe, Cheila G.; Leite, Selma G.

    2001-01-01

    Biodegradable polymers for use in environmental waste-management has been the subject of much discussion over the last few years. Polyurethane mixtures with polysaccharide (80/20 and 90/10 w/w ) have been prepared and films obtained. These films were inoculated, according to ASTM G22-76 rule and analysed by thermogravimetry and scanning electronic microscopy (SEM). The results are discussed in terms of thermal degradation and biodegradability. (author)

  7. Epoxy polyurethane nanocomposites filled with fullerite

    International Nuclear Information System (INIS)

    Rozhnova, R.A.; Galatenko, N.A.; Lukashevich, S.A.; Shirokov, O.D.; Levenets', Je.G.

    2015-01-01

    New nanocomposite materials based on epoxy polyurethane (EPU) containing nanoscale fullerite in its composition are produced. The influence of small impurities of fullerite on physical and mechanical properties of the nanocomposites is established. The effect of a nanofiller and its concentration on the structure and properties of the composite and the ability to biodegradation in vitro is studied. The developed nanocomposites exhibit the biodegradability, and the presence of nanofillers in the EPU facilitates the course of the process

  8. Transparent, flexible surface enhanced Raman scattering substrates based on Ag-coated structured PET (polyethylene terephthalate) for in-situ detection

    International Nuclear Information System (INIS)

    Zuo, Zewen; Zhu, Kai; Gu, Chuan; Wen, Yibing; Cui, Guanglei; Qu, Jun

    2016-01-01

    Highlights: • Transparent, flexible SERS substrates were prepared using techniques compatible with well-established silicon device technologies. • The SERS substrates exhibit high sensitivity and good reproducibility. • The high performance is related with the quasi-three-dimensional structure of the PET. • In-situ detection of analyte on irregular objects was achieved by this SERS substrate. - Abstract: Transparent, flexible surface-enhanced Raman scattering (SERS) substrates were fabricated by metalization of structured polyethylene terephthalate (PET) sheets. The resultant Ag-coated structured PET SERS substrates were revealed to be highly sensitive with good reproducibility and stability, an enhancement factor of 3 × 10 6 was acquired, which can be attributed mainly to the presence of plentiful multiple-type hot spots within the quasi-three-dimensional surface of the structured PET obtained by oxygen plasma etching. In addition, detections of model molecules on fruit skin were also carried out, demonstrating the great potential of the Ag-coated structured PET in in-situ detection of analyte on irregular objects. Importantly, the technique used for the preparation of such substrate is completely compatible with well-established silicon device technologies, and large-area fabrication with low cost can be readily realized.

  9. Transparent, flexible surface enhanced Raman scattering substrates based on Ag-coated structured PET (polyethylene terephthalate) for in-situ detection

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Zewen, E-mail: zuozewen@mail.ahnu.edu.cn; Zhu, Kai; Gu, Chuan; Wen, Yibing; Cui, Guanglei; Qu, Jun

    2016-08-30

    Highlights: • Transparent, flexible SERS substrates were prepared using techniques compatible with well-established silicon device technologies. • The SERS substrates exhibit high sensitivity and good reproducibility. • The high performance is related with the quasi-three-dimensional structure of the PET. • In-situ detection of analyte on irregular objects was achieved by this SERS substrate. - Abstract: Transparent, flexible surface-enhanced Raman scattering (SERS) substrates were fabricated by metalization of structured polyethylene terephthalate (PET) sheets. The resultant Ag-coated structured PET SERS substrates were revealed to be highly sensitive with good reproducibility and stability, an enhancement factor of 3 × 10{sup 6} was acquired, which can be attributed mainly to the presence of plentiful multiple-type hot spots within the quasi-three-dimensional surface of the structured PET obtained by oxygen plasma etching. In addition, detections of model molecules on fruit skin were also carried out, demonstrating the great potential of the Ag-coated structured PET in in-situ detection of analyte on irregular objects. Importantly, the technique used for the preparation of such substrate is completely compatible with well-established silicon device technologies, and large-area fabrication with low cost can be readily realized.

  10. Optical Interferometry with Flexible Coherent Fiber Bundle for Measuring Deposits or Contamination on Surfaces and Inside Tubes

    Data.gov (United States)

    National Aeronautics and Space Administration — A new measuring/cleaning method for closed surfaces (pipes) applicable to removing contaminants (oil films, fungus, rust) from NASA instruments and spacecraft is...

  11. The influence of polyol type on cell geometry and the thermal stability of polyurethane foams

    Directory of Open Access Journals (Sweden)

    Prendžov Slobodan J.

    2006-01-01

    Full Text Available The aim of this study was to examine the influence of substituting defined amounts of polyol Voranol 3322 by polyol Voranol CP 1055 on the cell geometry and thermal stability of the synthesized flexible polyurethane foams. The influence of the amount of antipyrene on the cell geometry and their thermal stability was also investigated. The following components were used in the synthesis of the polyurethanes: a mixture of two polyols (Voranol 3322 with the hydroxyl number 47 mg KOH/g, mean molecular mass 3400 and Voranol CP 1055 with the hydroxyl number 156 mg KOH/g, mean molecular mass 1000, toluene discarnate as the isocyanate component, a combination of an organic-metallic compound and a tertiary amine as catalysts, surfactant and water as the coreactant. The thermal stability was determined by thermogravimetric analysis (in a nitrogen atmosphere. The cell geometry was analyzed by optical microscopy. Examination of the cell geometry revealed different cell shapes. The form factor as an indicator of cell deviation from spherical shape increased (more round forms were observed with increasing amount of Voranol CP 1055. The TG examination showed that specimens with 6 and 8 g of Voranol 3322 substituted by Voranol CP 1055 completely degraded at 350 °C, while foams with 10 and 12 g of Voranol 3322 substituted by Voranol CP 1055 displayed lower mass loss at higher temperatures and had residual masses of 46 % and 43 % at 600°C respectively. The addition of antipyrene in an amount of 1% (based on the amount of polyol contributed to improved thermal stability, no visible color change of the specimen tested at 210°C for 40 minutes, and to rounder cell forms. Considering the obtained results it can be concluded that an increase in the amount of Voranol CP 1055 yielded more spherically shaped cells and better thermal stability of the synthesized flexible polyurethane foams. The addition of antipyrene improves the thermal stability and the cell geometry.

  12. Study of ageing of polyurethanes applied to the offshore industry; Estudo do envelhecimento de poliuretanos aplicados na industria de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Fabio G.; Sheldrake, Terry; Clevelario, Judimar; Pires, Fabio [Wellstream International, Rio de Janeiro, RJ (Brazil). Dept. de Tecnologia], email: fabio.aquino@wellstream.com; Coutinho, Fernanda M.B. [Universidade do Estado do Rio de Janeiro (IQ/UERJ), RJ (Brazil). Inst. de Quimica

    2010-07-01

    Brazil is worldwide renowned as a leader in oil and gas extraction in deep and ultra deep water. In the production chain, a great part of the oil and gas produced is conveyed through flexible pipelines that connect the production wells to the platforms. When the pipes are laid on the seabed in a static service condition, the flexible pipes are called flow lines and when raised from the seabed to the platform in a dynamic service condition, they are called risers. The pipes designed for dynamic applications are equipped with bend stiffeners, components with conical form and in general based on polyurethanes, which have the function of providing a transition between the structure of the pipes, of smooth stiffness, and the platform, extremely rigid. This work discussed the changes on the mechanical properties of polyurethanes due to hydrolysis under accelerated ageing. The specimens were exposed at 50, 60 and 70 deg C. The mass variation was also evaluated considering that these materials are designed for a service life exceeding twenty years. The polyurethanes presented significant degradation at 70 deg C, which can reduce its application time in the field owing to mechanical failures when subjected to high temperature. (author)

  13. The MDI-Mediated Lateral Crosslinking of Polyurethane Copolymer and the Impact on Tensile Properties and Shape Memory Effect

    International Nuclear Information System (INIS)

    Chung, Yong Chan; Chung, Hyang Mi; Choi, Jae Won; Chun, Byoung Chul

    2012-01-01

    The maximum stress and strain at break remained high and stable after MDI-mediated crosslinking. Similarly, shape recovery and shape retention tests also showed excellent and reproducible results. The MDI-mediated crosslinking was responsible for the interesting tensile and shape memory results. Therefore, it was demonstrated in this investigation that the allophanate type crosslinking, unlike previous misleading information, was possible under the mild reaction conditions. Polyurethane (PU) has long been investigated due to its excellent mechanical properties, shape memory effect, and biocompatibility, and was grafted with pendant functional groups to tailor the polymer characteristics without affecting their basic structure. Actually, polyethyleneglycol has been grafted to polyurethane to improve biocompatibility in biomedical applications, and low temperature flexibility could be improved by the pendant naphthol group grafted to PU. In the field of shape memory polyurethane, mechanical and shape memory properties could be improved by terminal crosslinking with glycerol, pentaerythritol, and dextrin. Alternatively, a flexible crosslinking method was devised to demonstrate both high mechanical strength and shape recovery

  14. Fluorinated Polyurethane Scaffolds for 19F Magnetic Resonance Imaging

    NARCIS (Netherlands)

    Lammers, Twan; Mertens, Marianne E.; Schuster, Philipp; Rahimi, Khosrow; Shi, Yang; Schulz, Volkmar; Kuehne, Alexander J.C.; Jockenhoevel, Stefan; Kiessling, Fabian

    2017-01-01

    Researchers used fluorinated polyurethane scaffolds for 19F magnetic resonance imaging. They generated a novel fluorinated polymer based on thermoplastic polyurethane (19F -TPU) which possesses distinct properties rendering it suitable for fluorine-based MRI. The 19F -TPU is synthesized from a

  15. Optimization of polyurethane foam cube in enhancing the ...

    African Journals Online (AJOL)

    Attachment of microalgae biomass to polyurethane foam material is believed could reduce the cost and time needed for harvesting process in making it reliable to be used in industry for biodiesel production. This paper aim to optimize the usage of polyurethane for higher attachment of microalgae biomass yield in term of it ...

  16. Coaxial electrospun polyurethane core-shell nanofibers for shape memory and antibacterial nanomaterials

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available A novel kind of shape memory polyurethane (SMPU nanofibers with core-shell nanostructure is fabricated using coaxial electrospinning. Transmission electron microscopy (TEM and scanning electron microscopy (SEM results show that nanofibers with core-shell structure or bead-on-string structure can be electrospun successfully from the core solution of polycaprolactone based SMPU (CLSMPU and shell solution of pyridine containing polyurethane (PySMPU. In addition to the excellent shape memory effect with good shape fixity, excellent antibacterial activity against both gramnegative bacteria and gram-positive bacteria are achieved in the CLSMPU-PySMPU core-shell nanofiber. Finally, it is proposed that the antibacterial mechanism should be resulted from the PySMPU shell materials containing amido group in γ position and the high surface area per unit mass of nanofibers. Thus, the CLSMPU-PySMPU core shell nanofibers can be used as both shape memory nanomaterials and antibacterial nanomaterials.

  17. Creep behaviour of polyurethanes applied in the offshore industry under dynamic service conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Fabio G.; Sheldrake, Terry; Clevelario, Judimar; Pires, Fabio S. [Wellstream International S/A - Rio de Janeiro, RJ (Brazil)], e-mail: fabio.aquino@wellstream.com; Souza, Miguel L. [Newtech Ltda, Sao Carlos, SP (Brazil)

    2011-07-01

    The oil industry commonly uses flexible pipes to convey oil and gas from wells to platforms that move constantly due to weather and tidal conditions. In this scenario, polymeric components are required to transitioning between the flexible material of the pipelines to the rigid material of the platform; polyurethanes are versatile polymers suitable for performing such services. As this material is subjected to constant loading during working conditions, and it its durability is to be maintained for several decades, it is important to determine the material's creep properties that relate to deformation caused by constant loading, which can represent an indirect measurement of the material's lifetime. In this study, creep behaviour data on the polyurethane samples was collected and an asymmetrical and nonlinear behaviour was observed. Additionally the material presented a creep fracture line with points only above 150% of deformation, considerably exceeding maximum values for its service conditions, which is limited to 10% of deformation considering the worst loading case for design premises of the final artifact. (author)

  18. Integrating anti-reflection and superhydrophobicity of moth-eye-like surface morphology on a large-area flexible substrate

    International Nuclear Information System (INIS)

    Liu, Chia-Hsing; Niu, Pei-Lun; Sung, Cheng-Kuo

    2014-01-01

    This paper proposes an ultraviolet nanoimprint lithography (UV-NIL) roll-to-roll (R2R) process with argon and oxygen (Ar–O 2 ) plasma ashing and coating of a dilute perfluorodecyltrichlorosilane (FDTS) layer to fabricate the large-area moth-eye-like surface morphology on a polyethylene terephthalate substrate. By using Maxwell-Garnett's effective medium theory, the optimal dimensions of the moth-eye-like surface morphology was designed and fabricated with UV-NIL R2R process to obtain maximum transmittance ratio. In addition, the base angle (θ = 30.1°) of the moth-eye-like surface morphology was modified with Ar–O 2 plasma ashing and coated with a dilute FDTS layer to possess both superhydrophobic and air-retention properties. This increases both the transmittance ratio of 4% and contact angle to 153°. (paper)

  19. Sub-surface laser nanostructuring in stratified metal/dielectric media: a versatile platform towards flexible, durable and large-scale plasmonic writing

    International Nuclear Information System (INIS)

    Siozios, A; Bellas, D V; Lidorikis, E; Patsalas, P; Kalfagiannis, N; Cranton, W M; Koutsogeorgis, D C; Bazioti, C; Dimitrakopulos, G P; Vourlias, G

    2015-01-01

    Laser nanostructuring of pure ultrathin metal layers or ceramic/metal composite thin films has emerged as a promising route for the fabrication of plasmonic patterns with applications in information storage, cryptography, and security tagging. However, the environmental sensitivity of pure Ag layers and the complexity of ceramic/metal composite film growth hinder the implementation of this technology to large-scale production, as well as its combination with flexible substrates. In the present work we investigate an alternative pathway, namely, starting from non-plasmonic multilayer metal/dielectric layers, whose growth is compatible with large scale production such as in-line sputtering and roll-to-roll deposition, which are then transformed into plasmonic templates by single-shot UV-laser annealing (LA). This entirely cold, large-scale process leads to a subsurface nanoconstruction involving plasmonic Ag nanoparticles (NPs) embedded in a hard and inert dielectric matrix on top of both rigid and flexible substrates. The subsurface encapsulation of Ag NPs provides durability and long-term stability, while the cold character of LA suits the use of sensitive flexible substrates. The morphology of the final composite film depends primarily on the nanocrystalline character of the dielectric host and its thermal conductivity. We demonstrate the emergence of a localized surface plasmon resonance, and its tunability depending on the applied fluence and environmental pressure. The results are well explained by theoretical photothermal modeling. Overall, our findings qualify the proposed process as an excellent candidate for versatile, large-scale optical encoding applications. (paper)

  20. Biodegradative Activities of Selected Environmental Fungi on a Polyester Polyurethane Varnish and Polyether Polyurethane Foams.

    Science.gov (United States)

    Álvarez-Barragán, Joyce; Domínguez-Malfavón, Lilianha; Vargas-Suárez, Martín; González-Hernández, Ricardo; Aguilar-Osorio, Guillermo; Loza-Tavera, Herminia

    2016-09-01

    Polyurethane (PU) is widely used in many aspects of modern life because of its versatility and resistance. However, PU waste disposal generates large problems, since it is slowly degraded, there are limited recycling processes, and its destruction may generate toxic compounds. In this work, we isolated fungal strains able to grow in mineral medium with a polyester PU (PS-PU; Impranil DLN) or a polyether PU (PE-PU; Poly Lack) varnish as the only carbon source. Of the eight best Impranil-degrading strains, the six best degraders belonged to the Cladosporium cladosporioides complex, including the species C. pseudocladosporioides, C. tenuissimum, C. asperulatum, and C. montecillanum, and the two others were identified as Aspergillus fumigatus and Penicillium chrysogenum The best Impranil degrader, C. pseudocladosporioides strain T1.PL.1, degraded up to 87% after 14 days of incubation. Fourier transform infrared (FTIR) spectroscopy analysis of Impranil degradation by this strain showed a loss of carbonyl groups (1,729 cm(-1)) and N-H bonds (1,540 and 1,261 cm(-1)), and gas chromatography-mass spectrometry (GC-MS) analysis showed a decrease in ester compounds and increase in alcohols and hexane diisocyanate, indicating the hydrolysis of ester and urethane bonds. Extracellular esterase and low urease, but not protease activities were detected at 7 and 14 days of culture in Impranil. The best eight Impranil-degrading fungi were also able to degrade solid foams of the highly recalcitrant PE-PU type to different extents, with the highest levels generating up to 65% of dry-weight losses not previously reported. Scanning electron microscopy (SEM) analysis of fungus-treated foams showed melted and thinner cell wall structures than the non-fungus-treated ones, demonstrating fungal biodegradative action on PE-PU. Polyurethane waste disposal has become a serious problem. In this work, fungal strains able to efficiently degrade different types of polyurethanes are reported, and

  1. Synthesis and characterization of novel fluoroalkyl-terminated hyperbranched polyurethane latex

    Science.gov (United States)

    Xu, Wei; Zhao, Weijia; Hao, Lifen; Wang, Sha; Pei, Mengmeng; Wang, Xuechuan

    2018-04-01

    Waterborne polyurethane (PU) emulsions are widely used in various fields and the demand for them is ever-increasing over the years. However, the hydrophilic chain extender inevitably bonded into the PU backbone can affect the water tolerance of PU. Thus, it is of great importance to improve PU water resistance effectively. Herein, novel fluoroalkyl-terminated hyperbranched polyurethane (HBPUF) latex was accordingly synthesized by graft reaction of perfluorohexyl ethyl alcohol and hyperbranched polyurethane (HBPU), which was previously obtained from interaction between hydroxyl-terminated hyperbranched polymer and PU prepolymer manufactured via the acetone process, as well as using neutralization, adding water, and high-speed stirring operations. We characterized the resultants and investigated its surface properties by IR, NMR, TEM, XRD, TGA, DSC, FE-SEM, AFM, XPS, and contact angle measurements, etc. IR and NMR tests confirmed that the fluorinated fragments had been grafted onto the tail end of HBPU. TEM, XRD, DSC, and FE-SEM results all accounted for the fact that there were multi-crystals in PU, HBPU and HBPUF. TGA results showed that thermal stabilities of the PU, HBPU, and HBPUF latex films were enhanced in turn. XPS and AFM analyses demonstrated that the fluorine-containing segments from the HBPUF terminals were prone to migrate and enrich on the film-air surface of the HBPUF latex film, which made water contact angle and water absorption of the HBPUF film be as 113.9° and 11.1%, respectively, compared to those of the PU film (77.8° and 136.2%). This research indicates that water resistance of the PU film can be efficiently enhanced by fluorinated polyurethane with novel fluoroalkyl-terminated hyperbranched structure.

  2. The influence of electron-beam irradiation on the chemical and the structural properties of medical-grade polyurethane

    Science.gov (United States)

    Shin, Sukyoung; Lee, Soonhyouk

    2015-07-01

    Thermo plastic polyurethane (TPU) provides excellent bio-compatibility, flexibility and good irradiation resistance; however, extremely high irradiation doses can alter the structure and the function of macromolecules, resulting in oxidation, chain scission and cross-linking. In this study, the effects of e-beam irradiation on the medical-grade thermo plastic polyurethane were studied. Changes in the chain length and their distribution, as well as changes in the molecular structure were studied. The GPC (gel permeation chromatography) results show that the oxidative decomposition is followed by a decrease in the molecular mass and an increase in polydispersity. This indicates a very inhomogeneous degradation, which is a consequence of the specific course and of the intensity of oxidative degradation. This was confirmed by means of mechanical property measurements. Overall, this study demonstrated that medical-grade TPU was affected by radiation exposure, particularly at high irradiation doses.

  3. Highly ductile multilayered films by layer-by-layer assembly of oppositely charged polyurethanes for biomedical applications.

    Science.gov (United States)

    Podsiadlo, Paul; Qin, Ming; Cuddihy, Meghan; Zhu, Jian; Critchley, Kevin; Kheng, Eugene; Kaushik, Amit K; Qi, Ying; Kim, Hyoung-Sug; Noh, Si-Tae; Arruda, Ellen M; Waas, Anthony M; Kotov, Nicholas A

    2009-12-15

    Multilayered thin films prepared with the layer-by-layer (LBL) assembly technique are typically "brittle" composites, while many applications such as flexible electronics or biomedical devices would greatly benefit from ductile, and tough nanostructured coatings. Here we present the preparation of highly ductile multilayered films via LBL assembly of oppositely charged polyurethanes. Free-standing films were found to be robust, strong, and tough with ultimate strains as high as 680% and toughness of approximately 30 MJ/m(3). These results are at least 2 orders of magnitude greater than most LBL materials presented until today. In addition to enhanced ductility, the films showed first-order biocompatibility with animal and human cells. Multilayered structures incorporating polyurethanes open up a new research avenue into the preparation of multifunctional nanostructured films with great potential in biomedical applications.

  4. Conflicting flexibility

    NARCIS (Netherlands)

    De Jong, P.; Schaap, A.

    2011-01-01

    New buildings are designed for first users. For a sustainable approach there are many advantages in designing in flexibility and adjustability in order to enable and facilitate the other sequential users. For the first investor this flexibility is translated into improved exit values due to

  5. Continuous Natural Fiber Reinforced Thermoplastic Composites by Fiber Surface Modification

    Directory of Open Access Journals (Sweden)

    Patcharat Wongsriraksa

    2013-01-01

    Full Text Available Continuous natural fiber reinforced thermoplastic materials are expected to replace inorganic fiber reinforced thermosetting materials. However, in the process of fabricating the composite, it is difficult to impregnate the thermoplastic resin into reinforcement fiber because of the high melt viscosity. Therefore, intermediate material, which allows high impregnation during molding, has been investigated for fabricating continuous fiber reinforced thermoplastic composite by aligning resin fiber alongside reinforcing fiber with braiding technique. This intermediate material has been called “microbraid yarn (MBY.” Moreover, it is well known that the interfacial properties between natural fiber and resin are low; therefore, surface treatment on continuous natural fiber was performed by using polyurethane (PU and flexible epoxy (FLEX to improve the interfacial properties. The effect of surface treatment on the mechanical properties of continuous natural fiber reinforced thermoplastic composites was examined. From these results, it was suggested that surface treatment by PU with low content could produce composites with better mechanical properties.

  6. Nasolacrimal Polyurethane Stent: Complications with CT Correlation

    International Nuclear Information System (INIS)

    Pinto, Isabel T.; Paul, Laura; Grande, Carlos

    1998-01-01

    Purpose: To evaluate initial results in patients with epiphora secondary to obstruction of the nasolacrimal duct treated by placement of a polyurethane stent, and to discuss the technical problems and complications arising during the procedure, with visualization of the anatomy of the drainage apparatus using computed tomography (CT). Methods: We inserted 20 polyurethane Song stents under fluoroscopic guidance after dacryocystography in 19 patients with grade 3-4 epiphora caused by idiopathic obstruction of the nasolacrimal duct. CT scans were obtained following stent placement in all patients. Results: We focus on the technical problems and complications that arose during these procedures. During negotiation of the guidewire past the obstruction at the level of the junction of the duct with the lacrimal sac, the guidewire created a false passage in a posterior suborbital direction in two cases and towards the posterior midline in another. In all cases the guidewire was withdrawn and reinserted through the proper anatomic route without further difficulty or complications. In two cases the stent was improperly positioned wholly or partially outside the nasolacrimal system (one medially, one posteriorly). In one case the stent was removed and reinserted; in the other it remains in place and functional. CT was performed in all these cases to ensure proper anatomic alignment and determine what had gone wrong. The epiphora was completely resolved in 13 cases and partially relieved in four; there were three cases of stent obstruction. Epistaxis of short duration (1 hr) occurred in seven patients and headache in one. Conclusions: Treatment of epiphora with polyurethane stents is a technique that is well tolerated by patients and achieves a high success rate, yet problems in placement may be encountered. Though no major consequences for patients are involved, cognizance of such difficulties is important to avoid incorrect positioning of stents

  7. Experimental study of heat transfer enhancement due to the surface vibrations in a flexible double pipe heat exchanger

    Science.gov (United States)

    Hosseinian, A.; Meghdadi Isfahani, A. H.

    2018-04-01

    In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.

  8. Thermal math model analysis of FRSI test article subjected to cold soak and entry environments. [Flexible Reuseable Surface Insulation in Space Shuttle Orbiter

    Science.gov (United States)

    Gallegos, J. J.

    1978-01-01

    A multi-objective test program was conducted at the NASA/JSC Radiant Heat Test Facility in which an aluminum skin/stringer test panel insulated with FRSI (Flexible Reusable Surface Insulation) was subjected to 24 simulated Space Shuttle Orbiter ascent/entry heating cycles with a cold soak in between in the 10th and 20th cycles. A two-dimensional thermal math model was developed and utilized to predict the thermal performance of the FRSI. Results are presented which indicate that the modeling techniques and property values have been proven adequate in predicting peak structure temperatures and entry thermal responses from both an ambient and cold soak condition of an FRSI covered aluminum structure.

  9. The Use of Flexible Ultrasound Transducers for the Detection of Laser-Induced Guided Waves on Curved Surfaces at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Tai Chieh Wu

    2017-06-01

    Full Text Available In this study, a flexible ultrasonic transducer (FUT was applied in a laser ultrasonic technique (LUT for non-destructive characterization of metallic pipes at high temperatures of up to 176 °C. Compared with normal ultrasound transducers, a FUT is a piezoelectric film made of a PZT/PZT sol-gel composite which has advantages due to its high sensitivity, curved surface adaptability and high temperature durability. By operating a pulsed laser in B-scan mode along with the integration of FUT and LUT, a multi-mode dispersion spectrum of a stainless steel pipe at high temperature can be measured. In addition, dynamic wave propagation behaviors are experimentally visualized with two dimensional scanning. The images directly interpret the reflections from the interior defects and also can locate their positions. This hybrid technique shows great potential for non-destructive evaluation of structures with complex geometry, especially in high temperature environments.

  10. Surface coating for blood-contacting devices

    Science.gov (United States)

    Nair, Ajit Kumar Balakrishnan

    The major problems always encountered with the blood-contacting surfaces are their compatibility, contact blood damage, and thrombogenicity. Titanium nitride (TiN) is a hard, inert, ceramic material that is widely used in the engineering industry. TiN has been proven to be a good biomaterial in its crystalline form, in orthopedic, and in tissue implant applications. This dissertation describes a method to coat amorphous TiN on the blood-contacting surfaces of certain medical devices using the room-temperature sputtering process and to characterize, to test, and to evaluate the coating for a reliable, durable, and compatible blood-contacting surface The blood-compatibility aspects were evaluated with standard, established protocols and procedures to prove the feasibility. An amorphous TiN coating is developed, characterized, tested, and blood compatibility evaluated by applying to the blood-contacting surfaces of stainless steel, catheters, and blood filters. The flexibility characteristics were proven by applying it to the diaphragms of the pulsatile pneumatic ventricular assist device. The results show that amorphous titanium nitride is flexible and adherent to polymeric substrates like polyurethane and polyester. Blood compatibility evaluation showed comparable results with catheters and superior behavior with stainless steel and polyester filters. It is concluded that amorphous titanium nitride can be considered to be applied to the surfaces of some of the medical devices in order to improve blood compatibility.

  11. Superficial physicochemical properties of polyurethane biomaterials as osteogenic regulators in human mesenchymal stem cells fates.

    Science.gov (United States)

    Shahrousvand, Mohsen; Sadeghi, Gity Mir Mohamad; Shahrousvand, Ehsan; Ghollasi, Marzieh; Salimi, Ali

    2017-08-01

    All of the cells' interactions are done through their surfaces. Evaluation of surface physicochemical scaffolds along with other factors is important and determines the fate of stem cells. In this work, biodegradable and biocompatible polyester/polyether based polyurethanes (PUs) were synthesized by polycaprolactone diol (PCL) and poly (tetra methylene ether) glycol (PTMEG) as the soft segment. To assess better the impact of surface parameters such as stiffness and roughness effects on osteogenic differentiation of the human mesenchymal stem cell (hMSC), the dimension effect of substrates was eliminated and two-dimensional membranes were produced by synthesized polyurethane. Surface and bulk properties of prepared 2D membranes such as surface chemistry, roughness, stiffness and tensile behavior were evaluated by Attenuated total reflectance Fourier transform infrared (ATR-FTIR), atomic force microscopy (AFM) and tensile behavior. The prepared 2D PU films had suitable hydrophilicity, biodegradability, water absorption, surface roughness and bulk strength. The hMSCs showed greater osteogenesis expression in PU substrates with more roughness and stiffness than others. The results demonstrated that surface parameters along with other differentiation cues have a synergistic effect on stem cells fates. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Recycling of PUR scrap from car seats-glycolysis of flexible PUR foam

    Czech Academy of Sciences Publication Activity Database

    Beneš, Hynek; Holler, Petr; Schmidt, Pavel; Horák, Zdeněk; Rösner, J.

    2005-01-01

    Roč. 99, - (2005), s. 29 ISSN 0009-2770. [International Conference on Polymeric Materials in Automotive , Slovak Rubber Conference /17./. 10.5.2005-12.5.2005, Bratislava] Institutional research plan: CEZ:AV0Z40500505 Keywords : chemical recycling * flexible polyurethane foam * glycolysis Subject RIV: CD - Macromolecular Chemistry

  13. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding

    International Nuclear Information System (INIS)

    Mi, Hao-Yang; Salick, Max R.; Jing, Xin; Jacques, Brianna R.; Crone, Wendy C.; Peng, Xiang-Fang; Turng, Lih-Sheng

    2013-01-01

    Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold's microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications. - Highlights: • Microcellular injection molding was used to fabricate tissue engineering scaffolds. • TPU/PLA tissue engineering scaffolds with tunable properties were fabricated. • Multiple test methods were used to characterize the scaffolds. • The biocompatibility of the scaffolds was confirmed by fibroblast cell culture. • Scaffolds produced have the potential to be used in multiple tissue applications

  14. Bio-based polyurethane prepared from Kraft lignin and modified castor oil

    Directory of Open Access Journals (Sweden)

    L. B. Tavares

    2016-11-01

    Full Text Available Current challenges highlight the need for polymer research using renewable natural sources as a substitute for petroleum-based polymers. The use of polyols obtained from renewable sources combined with the reuse of industrial residues such as lignin is an important agent in this process. Different compositions of polyurethane-type materials were prepared by combining technical Kraft lignin (TKL with castor oil (CO or modified castor oil (MCO1 and MCO2 to increase their reactivity towards diphenylmethane diisocyanate (MDI. The results indicate that lignin increases the glass transition temperature, the crosslinking density and improves the ultimate stress especially for those prepared from MCO2 and 30% lignin content from 8.2 MPa (lignin free to 23.5 MPa. Scanning electron microscopy (SEM micrographs of rupture surface after uniaxial tensile tests show ductile-to-brittle transition. The results show the possibility to develop polyurethane-type materials, varying technical grade Kraft lignin content, which cover a wide range of mechanical properties (from large elastic/low Young modulus to brittle/high Young modulus polyurethanes.

  15. Evaluation of castor oil-based polyurethane membranes in rat bone-marrow cell culture.

    Science.gov (United States)

    Cerejo, Sofia de Amorim; Rahal, Sheila Canevese; Lima Neto, João Ferreira de; Voorwald, Fabiana Azevedo; Alvarenga, Fernanda da Cruz Landim e

    2011-10-01

    To evaluate three methods to isolate rats MSCs and to analyze the potential of a castor oil polyurethane base membrane as a scaffold for MSCs. Four male Wistar rats, aged 20-30 days were used. Bone marrow aspirates from femur and tibia were harvested using DMEM high glucose and heparin. The cell culture was performed in three different ways: direct culture and two types of density gradients. After 15 days, was made the 1st passage and analyzed cell viability with markers Hoerscht 33342 and propidium iodide. The MSCs were characterized by surface markers with the aid of flow cytometry. After this, three types of castor oil polyurethane membranes associated with the MSCs were kept on the 6-well plate for 5 days and were analyzed by optical microscopy to confirm cell aggregation and growth. Separation procedures 1 and 2 allowed adequate isolation of MSCs and favored cell growth with the passage being carried out at 70% confluence after 15 days in culture. The cells could not be isolated using procedure 3. When the 3 castor oil polyurethane membrane types were compared it was possible to observe that the growth of MSCs was around 80% in membrane type 3, 20% in type 2, and 10% in type 1. Both Ficoll-Hypaque densities allow isolation of rat MSCs, and especially castor oil-based membrane type 3 may be used as a scaffold for MSCs.

  16. Castor Oil Based Polyurethanes: Synthesis and Characterization

    Science.gov (United States)

    Macalino, AD; Salen, VA; Reyes, LQ

    2017-09-01

    In this study, polyurethanes based on castor oil and 1,6-hexamethylene diisocyanate (HMDI) were synthesized with varying weight ratio of the castor oil and HMDI. The formation of urethane linkages was verified through the use of a fourier transform infrared spectroscopy (FTIR). The hydrophilicity of the films was evaluated through the use of a contact angle meter and it was found that the contact angle of all the films were below 90 degrees which confirms their hydrophilicity. The thermal stability of the PU films were studies through the use of a thermal gravimetric analyzer and found that all of the polyurethane films exhibited two weight loss events at elevated temperatures wherein the first weight loss event was observed to occur at 285°C to 384°C while the second weight loss event was observed at around 521°C to 551°C. The hardness, elastic modulus, and tensile elongation of the PU films were determined by using a universal testing machine (UTM) where it was found out that the hardness and the elastic modulus of the film is directly proportional with HMDI loading while the tensile elongation is inversely proportional to it. Lastly, it was known through the swelling studies of the PU films that it does not swell, this is due to the presence of unreacted triglycerides in the material, which prevents water from permeating to the films.

  17. Towards development of nanofibrous large strain flexible strain sensors with programmable shape memory properties

    Science.gov (United States)

    Khalili, N.; Asif, H.; Naguib, H. E.

    2018-05-01

    Electrospun polymeric fibers can be used as strain sensors due to their large surface to weight/volume ratio, high porosity and pore interconnectivity. Large strain flexible strain sensors are used in numerous applications including rehabilitation, health monitoring, and sports performance monitoring where large strain detection should be accommodated by the sensor. This has boosted the demand for a stretchable, flexible and highly sensitive sensor able to detect a wide range of mechanically induced deformations. Herein, a physically cross-linked polylactic acid (PLA) and thermoplastic polyurethane (TPU) blend is made into nanofiber networks via electrospinning. The PLA/TPU weight ratio is optimized to obtain a maximum attainable strain of 100% while maintaining its mechanical integrity. The TPU/PLA fibers also allowed for their thermally activated recovery due to shape memory properties of the substrate. This novel feature enhances the sensor’s performance as it is no longer limited by its plastic deformation. Using spray coating method, a homogeneous layer of single-walled carbon nanotube is deposited onto the as-spun fiber mat to induce electrical conductivity to the surface of the fibers. It is shown that stretching and bending the sensor result in a highly sensitive and linear response with a maximum gauge factor of 33.

  18. Mixed Field Modification of Thermally Cured Castor Oil Based Polyurethanes

    International Nuclear Information System (INIS)

    Mortley, A.

    2006-01-01

    Thermally cured polyurethanes were prepared from castor oil and hexamethylene diisocyanatee (HMDI). Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were subjected to a range of accumulated doses (0.0-3.0 MGy) produced by the mixed ionizing field of the SLOWPOKE-2 research reactor. The physico-mechanical properties of COPU, unirradiated and irradiated, were characterized by mechanical tests. Increased bond formation resulting from radiation-induced crosslinking was confirmed by favorable increases in mechanical properties and by solid-state 13 C -NMR and FTIR spectra

  19. Applicability of liquid radiopaque polyurethane for transcatheter embolization

    International Nuclear Information System (INIS)

    Novak, D.; Wieners, H.; Rueckner, R.

    1983-01-01

    Polyurethane Bayer was tested as an occlusive agent for experimental embolization in postmortem and postnephrectomy kidneys which served as a tumor model. Coaxial and balloon catheters were used for the embolization. To make polyurethane radiopaque, the material was labeled with different water-soluble, oily and solid contrast agents. Best results were achieved with oily contrast materials, e.g., Pantopaque. We found that polyurethane can easily be injected during a predetermined working time of 8-10 min. The embolization results in a complete, permanent, and homogeneous occlusion of the proximal arterial branches and small peripheral vessels. (orig.)

  20. Study of the morphology exhibited by linear segmented polyurethanes

    International Nuclear Information System (INIS)

    Pereira, I.M.; Orefice, R.L.

    2009-01-01

    Five series of segmented polyurethanes with different hard segment content were prepared by the prepolymer mixing method. The nano-morphology of the obtained polyurethanes and their microphase separation were investigated by infrared spectroscopy, modulated differential scanning calorimetry and small-angle X-ray scattering. Although highly hydrogen bonded hard segments were formed, high hard segment contents promoted phase mixture and decreased the chain mobility, decreasing the hard segment domain precipitation and the soft segments crystallization. The applied techniques were able to show that the hard-segment content and the hard-segment interactions were the two controlling factors for determining the structure of segmented polyurethanes. (author)

  1. Synthesis and characterization of gold nanotube/nanowire–polyurethane composite based on castor oil and polyethylene glycol

    International Nuclear Information System (INIS)

    Ganji, Yasaman; Kasra, Mehran; Salahshour Kordestani, Soheila; Bagheri Hariri, Mohiedin

    2014-01-01

    Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil–polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane–GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell attachment of polyurethane. Higher crosslink density and better cell attachment and proliferation were observed in polyurethane containing 50 ppm GNT/NW. The results revealed that GNT/NW formed hydrogen bonding with the polyurethane matrix and improved the thermomechanical properties of nanocomposites. Compared with pure PU, better cellular attachment on polyurethane–GNT/NW composites was observed resulting from the improved surface properties of composites. - Highlights: • Polyurethane–gold nanotubes/nanowires (GNT/NWs) composites were synthesized. • Tan δ, E′ and E″ were increased upon addition of 50 ppm of GNT/NW. • Better cell attachment was observed in composites containing 50 ppm of GNT/NW. • GNT/NWs can make a bridge between the pores of the porous polymeric scaffolds. • GNT/NWs increased the crosslink density of the polymeric matrix

  2. Synthesis and characterization of gold nanotube/nanowire–polyurethane composite based on castor oil and polyethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Ganji, Yasaman, E-mail: y.ganji@aut.ac.ir [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave., Tehran (Iran, Islamic Republic of); Kasra, Mehran, E-mail: mkasra@aut.ac.ir [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave., Tehran (Iran, Islamic Republic of); Salahshour Kordestani, Soheila, E-mail: s.kordestani@aut.ac.ir [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave., Tehran (Iran, Islamic Republic of); Bagheri Hariri, Mohiedin, E-mail: mohibagheri@gmail.com [Materials Science and Engineering Department, Sharif University of Technology, Azadi Ave., Tehran (Iran, Islamic Republic of)

    2014-09-01

    Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil–polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane–GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell attachment of polyurethane. Higher crosslink density and better cell attachment and proliferation were observed in polyurethane containing 50 ppm GNT/NW. The results revealed that GNT/NW formed hydrogen bonding with the polyurethane matrix and improved the thermomechanical properties of nanocomposites. Compared with pure PU, better cellular attachment on polyurethane–GNT/NW composites was observed resulting from the improved surface properties of composites. - Highlights: • Polyurethane–gold nanotubes/nanowires (GNT/NWs) composites were synthesized. • Tan δ, E′ and E″ were increased upon addition of 50 ppm of GNT/NW. • Better cell attachment was observed in composites containing 50 ppm of GNT/NW. • GNT/NWs can make a bridge between the pores of the porous polymeric scaffolds. • GNT/NWs increased the crosslink density of the polymeric matrix.

  3. Degradation of Polyester Polyurethane by Bacterial Polyester Hydrolases

    Directory of Open Access Journals (Sweden)

    Juliane Schmidt

    2017-02-01

    Full Text Available Polyurethanes (PU are widely used synthetic polymers. The growing amount of PU used industrially has resulted in a worldwide increase of plastic wastes. The related environmental pollution as well as the limited availability of the raw materials based on petrochemicals requires novel solutions for their efficient degradation and recycling. The degradation of the polyester PU Impranil DLN by the polyester hydrolases LC cutinase (LCC, TfCut2, Tcur1278 and Tcur0390 was analyzed using a turbidimetric assay. The highest hydrolysis rates were obtained with TfCut2 and Tcur0390. TfCut2 also showed a significantly higher substrate affinity for Impranil DLN than the other three enzymes, indicated by a higher adsorption constant K. Significant weight losses of the solid thermoplastic polyester PU (TPU Elastollan B85A-10 and C85A-10 were detected as a result of the enzymatic degradation by all four polyester hydrolases. Within a reaction time of 200 h at 70 °C, LCC caused weight losses of up to 4.9% and 4.1% of Elastollan B85A-10 and C85A-10, respectively. Gel permeation chromatography confirmed a preferential degradation of the larger polymer chains. Scanning electron microscopy revealed cracks at the surface of the TPU cubes as a result of enzymatic surface erosion. Analysis by Fourier transform infrared spectroscopy indicated that the observed weight losses were a result of the cleavage of ester bonds of the polyester TPU.

  4. Gamma-ray irradiation, autoclave and ethylene oxide sterilization to thermosetting polyurethane: sterilization to polyurethane

    International Nuclear Information System (INIS)

    Hirata, Noriko; Matsumoto, Ken-Ichi; Inishita, Takashi; Takenaka, Yoshinori; Suma, Yasunori; Shintani, Hideharu; National Inst. of Health Sciences, Tokyo

    1995-01-01

    Thermosetting polyurethane (PU) is widely used in a large variety of medical devices. 4,4'-methylenedianiline (MDA) was produced from PU by sterilization and it was studied for the relationship between urethane components or polymer characteristics and formation of MDA upon sterilization, using the commercially available dialyzers fabricated with different combination of isocyanate and polyol. We confirmed that the molecular-weight of polyol influenced the production of MDA upon sterilization. (author)

  5. Thermal insulating materials consisting of polyurethane rigid foam. Production - application - properties. 2. ed.; Waermedaemmstoffe aus Polyurethan-Hartschaum. Herstellung - Anwendung - Eigenschaften

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Edmund; Kleser, Joachim

    2008-02-15

    Using rigid polyurethane (PU) / polyisocyanurate (PIR) foam as a thermal insulation material enables a conservation of resources and energy conservation. Environmentally harmful emissions significantly are reduced. Under this aspect, the authors of the contribution report on the production, application, technical and physical properties of rigid polyurethane foams. Sustainable construction with rigid polyurethane foam, quality assurance and product certification are further topics of this paper.

  6. Ribosomal protein L5 has a highly twisted concave surface and flexible arms responsible for rRNA binding.

    Science.gov (United States)

    Nakashima, T; Yao, M; Kawamura, S; Iwasaki, K; Kimura, M; Tanaka, I

    2001-05-01

    Ribosomal protein L5 is a 5S rRNA binding protein in the large subunit and plays an essential role in the promotion of a particular conformation of 5S rRNA. The crystal structure of the ribosomal protein L5 from Bacillus stearothermophilus has been determined at 1.8 A resolution. The molecule consists of a five-stranded antiparallel beta-sheet and four alpha-helices, which fold in a way that is topologically similar to the ribonucleoprotein (RNP) domain. The molecular shape and electrostatic representation suggest that the concave surface and loop regions are involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurring in the beta-strands and loop regions. The mutations of Asn37 at the beta1-strand and Gln63 at the loop between helix 2 and beta3-strand as well as that of Phe77 at the tip of the loop structure between the beta2- and beta3-strands caused a significant reduction in 5S rRNA binding. In addition, the mutations of Thr90 on the beta3-strand and Ile141 and Asp144 at the loop between beta4- and beta5-strands moderately reduced the 5S rRNA-binding affinity. Comparison of these results with the more recently analyzed structure of the 50S subunit from Haloarcula marismortui suggests that there are significant differences in the structure at N- and C-terminal regions and probably in the 5S rRNA binding.

  7. The effects of unstable surface balance training on postural sway, stability, functional ability and flexibility in women.

    Science.gov (United States)

    Nepocatych, Svetlana; Ketcham, Caroline J; Vallabhajosula, Srikant; Balilionis, Gytis

    2018-01-01

    This study examined the effects of balance training routine, using both sides utilized balance trainer (BOSU) and aerobic step (STEP) on postural sway and functional ability in middle-aged women. Twenty-seven females participated in the study, age 40.6±12.0 years, body mass 72.0±14.0 kg, height 164.0±7.7 cm, BMI 26.5±4.5 kg/m2, and relative body fat 33.1±7.4%. Participants were divided into two groups and performed progressive exercise routine on either STEP or BOSU for three weeks. Pre- and post-test consisted of Postural Sway Test performed on the Biodex Balance System, Functional Ability Test, Sit and Reach Test and Plank. A significant time effect was observed for both groups for sway index(P=0.029) and center of pressure antero-posterior (AP) displacement (P=0.038) but not for sway area or medio-lateral (ML) displacement (P>0.05). In addition, BOSU group had significantly lower Sway Index(P=0.048) and ML range (P=0.035) scores when vision and surface was altered compared to STEP group. A significant time effect was observed in walking-up the stairs (P=0.020), sit and reach test (P=0.035), and plank (Ptraining have a potential to induce adaptive responses in neuromuscular system that enhances postural control, balance and functional ability of women. The training using BOSU may help improve static balance and functional ability in women.

  8. Stability of biodegradable waterborne polyurethane films in buffered saline solutions.

    Science.gov (United States)

    Lin, Ying Yi; Hung, Kun-Che; Hsu, Shan-Hui

    2015-09-21

    The stability of polyurethane (PU) is of critical importance for applications such as in coating industry or as biomaterials. To eliminate the environmental concerns on the synthesis of PU which involves the use of organic solvents, the aqueous-based or waterborne PU (WBPU) has been developed. WBPU, however, may be unstable in an electrolyte-rich environment. In this study, the authors reported the stability of biodegradable WBPU in the buffered saline solutions evaluated by atomic force microscopy (AFM). Various biodegradable WBPU films were prepared by spin coating on coverslip glass, with a thickness of ∼300 nm. The surface AFM images of poly(ε-caprolactone) (PCL) diol-based WBPU revealed nanoglobular structure. The same feature was observed when 20% molar of the PCL diol soft segment was replaced by polyethylene butylenes adipate diol. After hydration in buffered saline solutions for 24 h, the surface domains generally increased in sizes and became irregular in shape. On the other hand, when the soft segment was replaced by 20% poly(l-lactide) diol, a meshlike surface structure was demonstrated by AFM. When the latter WBPU was hydrated, the surface domains appeared to be disconnected. Results from the attenuated total reflectance infrared spectroscopy and x-ray photoelectron spectroscopy indicated that the surface chemistry of WBPU films was altered after hydration. These changes were probably associated with the neutralization of carboxylate by ions in the saline solutions, resulting in the rearrangements of soft and hard segments and causing instability of the WBPU.

  9. Removal of PCB from indoor air and surface materials by introduction of additional sorbing materials

    DEFF Research Database (Denmark)

    Gunnarsen, Lars Bo; Lyng, Nadja; Kolarik, Barbara

    2017-01-01

    Alleviation of indoor PCB contamination is extremely expensive because PCB from old primary sources has redistributed to most other surfaces over time. This study investigates the introduction of new removable sorbing materials as a method instantly lowering the concentration of PCB in indoor air...... and slowly decontaminating old surface materials. In three bedrooms of a contaminated apartment respectively new painted gypsum boards, sheets of flexible polyurethane foam and activated carbon fabric were introduced. The PCB concentrations in room air were monitored before the intervention and several times...... during the following 10 months. The PCB concentrations in the old surface materials as well as the new materials were also measured. An immediate reduction of PCB concentration in indoor air, a gradual increase of PCB in new material and as well a gradual reduction in old surface materials were...

  10. Mixed field radiation modification of polyurethanes based on castor oil

    International Nuclear Information System (INIS)

    Mortley, A.; Bonin, H.W.; Bui, V.T.

    2006-01-01

    Polyurethane is among the polymers and polymer-based composite materials being investigated at the Royal Military College of Canada for the fabrication of leak-tight containers for the long-term disposal of radioactive waste. Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were subjected to a range of doses (0.0 - 3.0 MGy) produced by the mixed ionizing radiation field of a SLOWPOKE-2 research nuclear reactor. The tensile mechanical properties of castor oil based polyurethanes (COPU), unirradiated and irradiated, were characterized by mechanical tensile tests. Increases in mechanical strength due to radiation-induced crosslinking and limitations of thermal curing were confirmed by tensile tests and changing 13 C-NMR and FTIR spectra. (author)

  11. Characterization of synthesized polyurethane/montmorillonite nanocomposites foams

    International Nuclear Information System (INIS)

    Ansari, Farahnaz; Njuguna, James; Sachse, Sophia; Kavosh, Masoud; Michalowski, S; Pielichowski, Krzysztof

    2014-01-01

    Nanophased hybrid composites based on polyurethane/montmorillonite (PU/MMT) have been fabricated. The nanocomposite which was formed by the addition of a polyol premix with 4,4'-diphenylmethane diisocyanate to obtain nanophased polyurethane foams which were then used for fabrication of nanocomposite panels has been shown to have raised strength, stiffness and thermal insulation properties. The nanophased polyurethane foam was characterized by means of scanning electron microscope (SEM), transmission electron microscope (TEM) measurements and X-ray diffraction (XRD). TEM and SEM analysis indicated that nanophased particles are dispersed homogeneously in the polyurethane matrix on the nanometer scale indicating that PU/MMT is an intercalated nanocomposite with a 2-3 nm nanolayer thickness

  12. Polyurethane foam for roadway stabilization NH route 129, Loudon, NH.

    Science.gov (United States)

    2016-12-12

    This report summarizes the evaluation of the performance of polyurethane foam as a method of roadway : stabilization for a rural roadway experiencing substantial frost heaving. : NHDOT is responsible for many roads which have evolved from gravel road...

  13. Mixed field radiation modification of polyurethanes based on castor oil

    Energy Technology Data Exchange (ETDEWEB)

    Mortley, A.; Bonin, H.W.; Bui, V.T. [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)]. E-mail: aba.mortley@rmc.ca

    2006-07-01

    Polyurethane is among the polymers and polymer-based composite materials being investigated at the Royal Military College of Canada for the fabrication of leak-tight containers for the long-term disposal of radioactive waste. Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were subjected to a range of doses (0.0 - 3.0 MGy) produced by the mixed ionizing radiation field of a SLOWPOKE-2 research nuclear reactor. The tensile mechanical properties of castor oil based polyurethanes (COPU), unirradiated and irradiated, were characterized by mechanical tensile tests. Increases in mechanical strength due to radiation-induced crosslinking and limitations of thermal curing were confirmed by tensile tests and changing {sup 13}C-NMR and FTIR spectra. (author)

  14. Nano-engineered polyurethane resin-modified concrete.

    Science.gov (United States)

    2014-04-01

    The goal of the proposed work is to investigate the application of nano-engineered polyurethane (NEPU) emulsions for latex modified : concrete (LMC). NEPU emulsions are non-toxic, environment friendly, durable over a wide temperature range, provide b...

  15. Soy-based UV resistant polyurethane pultruded composites.

    Science.gov (United States)

    2012-02-01

    Aliphatic polyurethane (PU) nanocomposites were synthesized using organically modified nanoclays. X-Ray diffraction results : confirmed good exfoliation of nanoclay particles in the PU resin system. With the addition of just 1% of nanoclay in the bas...

  16. Influence of polyols on properties of bio-based polyurethanes

    Indian Academy of Sciences (India)

    resources for the preparation of polyols required for the polyurethane industry. Among the vegetable oils, cardanol a meta-substituted phenol obtained (Kumar et al 2002) from ... High ortho-multinuclear cardanol–formaldehyde resin was.

  17. Experimental Investigation of Polyurethane Camouflage Coating Using Dynamic Mechanical Analysis

    National Research Council Canada - National Science Library

    Crawford, Dawn

    1999-01-01

    .... The current polyurethane solvent-based (SOL) formulation, used as a chemical-agent-resistant camouflage top coat on all military tactical vehicles, was investigated, along with newly developed water-reducible (WR...

  18. Fast-Responding Bio-Based Shape Memory Thermoplastic Polyurethanes.

    Science.gov (United States)

    Petrović, Zoran S; Milić, Jelena; Zhang, Fan; Ilavsky, Jan

    2017-07-14

    Novel fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol for the first time. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate of the soft segment gives these polyurethanes unique properties suitable for shape-memory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. These materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.

  19. Multifunctional composite material based on carbon-filled polyurethane

    International Nuclear Information System (INIS)

    Malinovskaya, T; Melentyev, S; Pavlov, S

    2015-01-01

    The research paper deals with the performance of composite resistive material heating coatings based on the polyurethane binder, filled with colloidal-graphite preparation C- 1, which can be used in structures of electric heaters. Frequency dependences of transmission and reflection coefficients, dielectric permeability of composite materials with the various content of carbon fillers (technical carbon, graphite) in polyurethane varnish in ranges of frequencies 26-40 GHz and 110-260 GHz are experimentally investigated. (paper)

  20. Degradation characteristics of waste polyurethane by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Seok; Ahn, Sung Jun; Gwon Hui Jeong; Jeong, Sung In; Nho, Young Chang; Lim, Youn Mook [Research Division for Industry and Environment, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2017-06-15

    Polyurethane (PU) is a very popular polymer that is used in a variety of applications due to its good mechanical, thermal, and chemical properties. However, waste PU recycling has received significant attention due to environmental issues. The aim of this work was to investigate the degradation characteristics of waste PU to recycle. Degradation of waste PU was carried out using a radiation techniques. Waste PUs were exposed to a gamma {sup 60}Co sources. To verify degradation, the irradiated PUs were characterized using FT-IR, gel permeation chromatography (GPC), and their thermal/mechanical properties are reported. When the radiation dose was 500 kGy, the molecular weight of the waste PU drastically decreased. Also, the mechanical properties of waste PU were approximately 4 times lower than those of non-irradiated PU. This study has confirmed the possibility of making fine particle of waste PU for recycling through radiation degradation techniques.

  1. Polyurethane elastomers from morphology to mechanical aspects

    CERN Document Server

    Prisacariu, Cristina

    2011-01-01

    A comprehensive account of the physical / mechanical behaviour of polyurethanes (PU´s) elastomers, films and blends of variable crystallinity. Aspects covered include the elasticity and inelasticity of amorphous to crystalline PUs, in relation to their sensitivity to chemical and physical structure. A study is made of how aspects of the constitutive responses of PUs vary with composition: the polyaddition procedure, the hard segment, soft segment and chain extender (diols and diamines) are varied systematically in a large number of systems of model and novel crosslinked andthermoplastic PUs. Results will be related to: microstructural changes, on the basis of evidence from x-ray scattering (SAXS and WAXS), and also dynamic mechanical analyses (DMA), differential scanning calorimetry (DSC) and IR dichroism. Inelastic effects will be investigated also by including quantitative correlations between the magnitude of the Mullins effect and the fractional energy dissipation by hysteresis under cyclic straining, g...

  2. Preparation and Characterization of Fluorinated Hydrophobic UV-Crosslinkable Thiol-Ene Polyurethane Coatings

    Directory of Open Access Journals (Sweden)

    Wenjing Xia

    2017-08-01

    Full Text Available The polyurethane prepolymer terminated with a double bond was synthesized using isophorone diisocyanate (IPDI, hydroxyl terminated polybutadiene (HTPB, 1,4-butanediol (BDO, and 2-hydroxyethyl acrylate (HEA. Then, a series of innovative UV-curable polyurethane coatings were prepared by blending ene-terminated polyurethane, fluoroacrylate monomer, and multifunctional thiol crosslinker upon UV exposure. The incorporation of fluoroacrylate monomer and multifunctional thiols into polyurethane coatings significantly enhanced the hydrophobic property, mechanical property, pencil hardness, and glossiness of the polyurethane coatings. This method of preparing UV crosslinkable, hydrophobic polyurethane coatings based on thiol-ene chemistry exhibited numerous advantages over other UV photocuring systems.

  3. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells☆

    Science.gov (United States)

    Nalluri, Sandeep M.; Krishnan, G. Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A.; Yang, Shuying; Sarkar, Debanjan

    2016-01-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell–matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell–cell and cell–matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell–matrix interaction, and cell–cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. PMID:26046282

  4. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells.

    Science.gov (United States)

    Nalluri, Sandeep M; Krishnan, G Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A; Yang, Shuying; Sarkar, Debanjan

    2015-09-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell-matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell-cell and cell-matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell-matrix interaction, and cell-cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Ultra Low Noise Poroelastic Road Surfaces

    Directory of Open Access Journals (Sweden)

    Jerzy A. Ejsmont

    2016-04-01

    Full Text Available Noise is one of the most important environmental problems related to road traffic. During the last decades, the noise emitted by the engines and powertrains of vehicles was greatly reduced and tires became a clearly dominant noise source. The article describes the concept of low noise poroelastic road surfaces that are composed of mineral and rubber aggregate bound by polyurethane resin. Those surfaces have a porous structure and are much more flexible than standard asphalt or cement concrete pavements due to high content of rubber aggregate and elastic binder. Measurements performed in several European countries indicate that such surfaces decrease tire/road noise between 7 dB and 12 dB with respect to reference surfaces such as dense asphalt concrete or stone matrix asphalt. Furthermore, poroelastic road surfaces ascertain the rolling resistance of car tires, which is comparable to classic pavements. One of the unforeseen properties of the poroelastic road surfaces is their ability to decrease the risks related to car fires with fuel spills. The article presents the road and laboratory results of noise, rolling resistance, and fire tests performed on a few types of poroelastic road surfaces.

  6. Characterization of polyurethane/organophilic montmorillonite nanocomposites by low field NMR; Caracterizacao de nanocompositos de poliuretano/montmorilonita organofilica por RMN de baixo campo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcos Anacleto da [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Laboratorio de Nanocompositos Polimericos; Tavares, Maria I.B.; Nascimento, Suelen A.M.; Rodrigues, Elton J. da R [Universidade Federal do Rio de Janeiro (NUCAT/PEQ/COPPE/UFRJ), RJ (Brazil). Laboratorio de Nanocompositos Polimericos

    2012-07-01

    Polyurethanes are important and versatile materials, mainly due to some of their properties, such as high resistance to abrasion and tearing, excellent absorption of mechanical shocks and good flexibility and elasticity. However, they have some drawbacks as well, such as low thermal stability and barrier properties. To overcome these disadvantages, various studies have been conducted involving organophilic polyurethane/montmorillonite nanocomposites. The investigation of the structure of polyurethane/clay nanocomposites has mainly been done by X-ray diffraction (XRD) and transmission electron microscopy (TEM). In this work, PU/clay nanocomposite films obtained by solution intercalation were studied. The nanocomposites were characterized by XRD and low-field nuclear magnetic resonance (LF-NMR). The LF-NMR measurements, with determination of the spin-lattice relaxation time of the hydrogen nucleus, supplied important information about the molecular dynamics of these nanocomposites. The X-ray diffraction measurements validated the results found by NMR. The thermal stability of the material was also determined by thermogravimetric analysis (TGA) under an inert atmosphere. A slight improvement in this stability was observed in the nanocomposite in comparison with polyurethane (author)

  7. Workplace flexibility.

    Science.gov (United States)

    Scordato, C; Harris, J

    1990-01-01

    Whether your organization is in a growth pattern or downsizing, you are probably facing change. To gain some insight into your options, here is an in-depth look at the problems and benefits of some flexible work arrangements from a just published study by Catalyst.

  8. Flexibility conflict?

    NARCIS (Netherlands)

    Delsen, L.W.M.; Bauer, F.; Groß, H.; Sieglen, G.

    2002-01-01

    The chapter deals with the presupposed conflict of interests between employers and employees resulting from a decoupling of operating hours and working times. It starts from the notion that both long operating hours and flexibility are relative concepts. As there is some discretion, the ultimate

  9. Preparation and Characteristics of Biodegradable Polyurethane/Clay Nanocomposite Films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Woo [Kyonggi University, Suwon (Korea, Republic of)

    2013-06-15

    Biodegradable polyurethane (PU)/clay nanocomposite films were prepared via extrusion compounding process followed by casting film process. Organically modified montmorillonite (denoted as C30B) with a large amount of hydroxyl groups on its surface was used for the formation of strong bonding with PU resin. From both XRD analysis and TEM observations, the intercalated and exfoliated structure, and dispersion state of silicate platelets in the compounded nanocomposite films were confirmed. In addition, the rheological and tensile properties, optical transparency, oxygen permeability of the prepared nanocomposites were investigated as a function of added nanoclay content, and moreover based on these results, the correlation between the morphology and the resulting properties of the nanocomposites could be presented. The inclusion of nanoclays at appropriate content resulted in remarkable improvement in the nanocomposite performance including tensile modulus, elongation, transparency, and oxygen barrier property, however at excess amount of nanoclays, reduction or very slight increase was observed due to poor dispersion. The biodegradability of the prepared nanocomposite film was evaluated by examining the deterioration in the barrier and tensile properties during degradation period under compost.

  10. Effect of Nanosilica Filled Polyurethane Composite Coating on Polypropylene Substrate

    Directory of Open Access Journals (Sweden)

    Yern Chee Ching

    2013-01-01

    Full Text Available Acrylic based polyurethane (PU coatings with various amounts of nanosilica contents were prepared using solution casting method. The nanosilica (SiO2 particles used are around 16 nm in diameter. The friction and wear test was conducted using the reciprocating wear testing machine. The tests were performed at rotary speed of 100 rpm and 200 rpm with load of 0.1 kg to 0.4 kg under 1 N interval. The effect of the PU/nano-SiO2 composite coating on friction and wear behavior of polypropylene substrate was investigated and compared. The worn surface of coating film layer after testing was investigated by using an optical microscope. The introduction of PU/nanosilica composite coating containing 3 wt% of nano-SiO2 content gives the lowest friction coefficient and wear rate to PP substrate. Both the friction and wear rate of PP substrate coated with >3 wt% of nano-SiO2 filled PU coating would increase with the increasing of applied load and sliding time.

  11. Flexible heat pipes with integrated bioinspired design

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2015-02-01

    Full Text Available In this work we report the facile fabrication and performance evaluation of flexible heat pipes that have integrated bioinspired wick structures and flexible polyurethane polymer connector design between the copper condenser and evaporator. Inside the heat pipe, a bioinspired superhydrophilic strong-base-oxidized copper mesh with multi-scale micro/nano-structures was used as the wicking material and deionized water was selected as working fluid. Thermal resistances of the fabricated flexible heat pipes charged with different filling ratios were measured under thermal power inputs ranging from 2 W to 12 W while the device was bent at different angles. The fabricated heat pipes with a 30% filling ratio demonstrated a low thermal resistance less than 0.01 K/W. Compared with the vertically oriented straight heat pipes, bending from 30° up to 120° has negligible influence on the heat-transfer performance. Furthermore, repeated heating tests indicated that the fabricated flexible heat pipes have consistent and reliable heat-transfer performance, thus would have important applications for advanced thermal management in three dimensional and flexible electronic devices.

  12. Polymer multilayers loaded with antifungal β-peptides kill planktonic Candida albicans and reduce formation of fungal biofilms on the surfaces of flexible catheter tubes.

    Science.gov (United States)

    Raman, Namrata; Lee, Myung-Ryul; Palecek, Sean P; Lynn, David M

    2014-10-10

    Candida albicans is the most common fungal pathogen responsible for hospital-acquired infections. Most C. albicans infections are associated with the implantation of medical devices that act as points of entry for the pathogen and as substrates for the growth of fungal biofilms that are notoriously difficult to eliminate by systemic administration of conventional antifungal agents. In this study, we report a fill-and-purge approach to the layer-by-layer fabrication of biocompatible, nanoscale 'polyelectrolyte multilayers' (PEMs) on the luminal surfaces of flexible catheters, and an investigation of this platform for the localized, intraluminal release of a cationic β-peptide-based antifungal agent. We demonstrate that polyethylene catheter tubes with luminal surfaces coated with multilayers ~700nm thick fabricated from poly-l-glutamic acid (PGA) and poly-l-lysine (PLL) can be loaded, post-fabrication, by infusion with β-peptide, and that this approach promotes extended intraluminal release of this agent (over ~4months) when incubated in physiological media. The β-peptide remained potent against intraluminal inoculation of the catheters with C. albicans and substantially reduced the formation of C. albicans biofilms on the inner surfaces of film-coated catheters. Finally, we report that these β-peptide-loaded coatings exhibit antifungal activity under conditions that simulate intermittent catheter use and microbial challenge for at least three weeks. We conclude that β-peptide-loaded PEMs offer a novel and promising approach to kill C. albicans and prevent fungal biofilm formation on surfaces, with the potential to substantially reduce the incidence of device-associated infections in indwelling catheters. β-Peptides comprise a promising new class of antifungal agents that could help address problems associated with the use of conventional antifungal agents. The versatility of the layer-by-layer approach used here thus suggests additional opportunities to

  13. Second harmonic generation and photochromic grating in polyurethane films containing diazo isoxazole chromophore

    Science.gov (United States)

    Marański, Krzysztof; Kucharski, Stanisław; Ortyl, Ewelina; Nunzi, Jean-Michel; Ahmadi-Kandjani, Sohrab; Dabos-Seignon, Sylvie; Chan, Siu-Wai; Barille, Regis

    2008-08-01

    The chromophoric intermediate: 2,2'-({4-[( E)-(5-methylisoxazol-3-yl)diazenyl]phenyl}-imino)diethanol was used in polyaddition reaction with di-isocyanate to obtain a new polyurethane polymeric material showing nonlinear optical and photochromic properties. The maximum absorption band of the polymer film was at 418 nm. The illumination of the film with crossed beams of the 488 nm Ar + laser yielded surface relief grating of regular structure. Measurement of the frequency doubling signal with 1064 nm laser indicated the polymer as interesting material for photooptical applications. The measured nonlinear optical coefficient, d33, reached 90.2 pm/V.

  14. Mechanical and morphological characterization of a bio-nanocomposite hydroxyapatite / polyurethane

    International Nuclear Information System (INIS)

    Andrade, Sabina da Memoria Cardoso de; Dias, Carmen Gilda Barroso Tavares; Zavaglia, Cecilia Amelia de Carvalho

    2011-01-01

    Nanocomposites based on biocompatible polymers and hydroxyapatite are wide acceptance as bone grafts, the composition, structure and similarity to natural bone and also due to the properties functional, such as surface and mechanical strength. This work there was the making of a bionanocomposite, using nanostructured hydroxyapatite interconnected by polyurethane, generated from the actions of poly(vinylalcohol) and toluene isocyanate HDT. The formation kinetics was monitored by the bionanocomposite spectroscopy and Fourier transform infrared FTIR. The material showed good properties both mechanical and morphology. (author)

  15. Silver nanocrystals by hyperbranched polyurethane-assisted photochemical reduction of Ag+

    International Nuclear Information System (INIS)

    Lu, H.W.; Liu, S.H.; Wang, X.L.; Qian, X.F.; Yin, J.; Zhu, Z.K.

    2003-01-01

    Silver nanoparticles in hyperbranched polyurethane (HP) matrix were prepared by means of UV irradiation at room temperature. HP was found to play a key role in the photochemical reduction of silver ions and the formation of nanosized particles. Transmission electron microscopic (TEM) analysis showed that silver nanoparticles were homogeneously dispersed in HP matrix. The absorption peaks due to the surface plasmon resonance of the obtained silver nanoparticles were observed at about 430 nm in the ultraviolet-visible (UV-Vis) absorption spectra. X-ray powder diffraction (XRD) was also used to characterize the obtained nanoparticles

  16. The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite

    International Nuclear Information System (INIS)

    Cai Dongyu; Yusoh, Kamal; Song Mo

    2009-01-01

    Significant reinforcement of polyurethane (PU) using graphite oxide nanoplatelets (GONPs) is reported. Morphologic study shows that, due to the formation of chemical bonding, there is a strong interaction between the GONPs and the hard segment of the PU, which allows effective load transfer. The GONPs can prevent the formation of crystalline hard segments due to their two-dimensional structure. With the incorporation of 4.4 wt% of GONPs, the Young's modulus and hardness of the PU are significantly increased by ∼900% and ∼327%, respectively. The resultant high resistance to scratching indicates promise for application of these composite materials in surface coating.

  17. Purification and Properties of a Polyester Polyurethane-Degrading Enzyme from Comamonas acidovorans TB-35

    OpenAIRE

    Akutsu, Yukie; Nakajima-Kambe, Toshiaki; Nomura, Nobuhiko; Nakahara, Tadaatsu

    1998-01-01

    A polyester polyurethane (PUR)-degrading enzyme, PUR esterase, derived from Comamonas acidovorans TB-35, a bacterium that utilizes polyester PUR as the sole carbon source, was purified until it showed a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This enzyme was bound to the cell surface and was extracted by addition of 0.2% N,N-bis(3-d-gluconamidopropyl)deoxycholamide (deoxy-BIGCHAP). The results of gel filtration and SDS-PAGE showed that the PUR este...

  18. Polyurethane/nano-hydroxyapatite composite films as osteogenic platforms.

    Science.gov (United States)

    Jackson, Bailey K; Bow, Austin J; Kannarpady, Ganesh; Biris, Alexandru S; Anderson, David E; Dhar, Madhu; Bourdo, Shawn E

    2018-05-02

    A wide variety of biomaterials are utilized in tissue engineering to promote cell proliferations in vitro or tissue growth in vivo. The combination of cells, extracellular matrices, and biocompatible materials may make it possible to grow functional living tissues ranging from bone to nerve cells. In bone regeneration, polymeric scaffolds can be enhanced by the addition of bioactive materials. To this end, this study designed several ratios of polyurethane (PU) and nano-hydroxyapatite (nHA) composites (PU-nHA ratios: 100/0, 90/10, 80/20, 70/30, 60/40 w/w). The physical and mechanical properties of these composites and their relative cellular compatibility in vitro were determined. The chemical composition and crystallinity of the composites were confirmed using X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analyses. Atomic force microscopy, nano-indentation, and contact angle measurements were used to evaluate surface properties. The results showed a significant increase in surface roughness and a decrease in contact angle when the nHA concentration increased above 20%, resulting in a significant increase in hydrophilicity. These surface property changes influenced cellular behavior when MC 3T3-E1 cells were seeded on the composites. All composites were cytocompatible. There was a linear increase in cell proliferation on the 80/20 and 70/30 composites only, whereas subjective evaluation demonstrated noticeable clusters or nodules of cells (considered hallmarks of osteogenic differentiation) in the absence of any osteogenic inducers only on the 90/10 and 80/20 composites. Cellular data suggests that the 80/20 composite was an optimal environment for cell adhesion, proliferation, and, potentially, osteogenic differentiation in vitro.

  19. Polyurethane-Based Ionogels Exhibiting Durable Thermoresponsive Optical Behavior Under High-Temperature Conditions.

    Science.gov (United States)

    Sato, Tomoya; England, Matt W; Wang, Liming; Urata, Chihiro; Kakiuchida, Hiroshi; Hozumi, Atsushi

    2018-01-01

    Polyurethane (PU)-based transparent and flexible ionogels, showing unusual thermo-responsive optical properties, were successfully prepared by mixing PU-precursor and a hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMIM-TFSI). Although the initial ionogels were transparent at room temperature, significant increases in opacity were observed with increasing temperature up to 120°C, because of macroscopic phase separation of the PU-matrix and hydrophobic EMIM-TFSI. In addition, the optical transition temperature could be arbitrarily controlled simply by varying the mixing ratio of EMIM-TFSI within the PU-matrix. As confirmed by UV-Vis spectra acquired at different temperatures, this thermo-responsive optical behavior was found to be reversible, repeatable and durable even after 30 cycles of a thermal-stress testing between 30 and 100°C.

  20. Radiation-resistance of polyurethane pipes for cooling liquid in BES III

    International Nuclear Information System (INIS)

    Li Xunfeng; Zheng Lifang; Ji Quan; Wu Ping; Wang Li

    2009-01-01

    Gamma ray radiation and neutron radiation are predominant in the working conditions of BES III, and the radiation-resistance aging of polyurethane pipes is very important in this condition, as the pipes of cooling liquid for beam pipe and SCQ (superconducting quadrupole) vacuum pipe in BESIII. Polyester polyurethane pipes and polyether polyurethane pipes were irradiated by gamma ray and neutron. The radiation doses were as much as ten years' doses in BES. Pressure test, FTIR and thermal analysis were used to study the radiation-resistance of these two kinds of polyurethane pipes. The results show that the radiation-resistance and thermal stability of polyester polyurethane pipes are prior to those of polyether polyurethane pipes, and the pressure resistance of polyester polyurethane pipes is almost maintained after the irradiation by gamma ray and neutron, but the polyether polyurethane pipes can be aged and ruptured after the irradiation by neutron. (authors)

  1. IDENTIFICATION OF CFC AND HCFC SUBSTITUTES FOR BLOWING POLYURETHANE FOAM INSULATION PRODUCTS

    Science.gov (United States)

    The report gives results of a cooperative effort to identiry chlorofluorocarbons and hydrochlorofluorocarbon substitutes for blowing polyurethane foam insulation products. The substantial ongoing effort is identifying third-generation blowing agets for polyurethane foams to repla...

  2. Flexible licensing

    Directory of Open Access Journals (Sweden)

    Martyn Jansen

    2012-07-01

    Full Text Available The case is presented for a more flexible approach to licensing online library resources. Today's distributed education environment creates pressure for UK higher and further education institutions (HEI/FEIs to form partnerships and to develop educational products and roll them out across the globe. Online library resources are a key component of distributed education and yet existing licensing agreements struggle to keep pace with the increasing range of users and purposes for which they are required. This article describes the process of developing a flexible approach to licensing and proposes a new model licence for online library resources which has the adaptability needed in this new global educational landscape. These ideas have been presented and discussed at various workshops across Eduserv's and JISC Collections' higher education and publisher communities, and further consultation is ongoing.

  3. Center for the Polyurethanes Industry summary of unpublished industrial hygiene studies related to the evaluation of emissions of spray polyurethane foam insulation.

    Science.gov (United States)

    Wood, Richard D

    2017-09-01

    Spray polyurethane foam (SPF) insulation is used as thermal insulation for residential and commercial buildings. It has many advantages over other forms insulation; however, concerns have been raised related to chemical emissions during and after application. The American Chemistry Council's (ACC's) Center for the Polyurethanes Industry (CPI) has gathered previously unpublished industrial hygiene air sampling studies submitted by member companies that were completed during an eight-year period from 2007-2014. These studies address emissions from medium density closed cell and low density open cell formulations. This article summarizes the results of personal and area air samples collected during application and post application of SPF to interior building surfaces in both laboratory and field environments. Chemicals of interest included: Volatile Organic Compounds (VOCs), methylene diphenyl diisocyanate (MDI), flame retardants, amine catalysts, blowing agents, and aldehydes. Overall, the results indicate that SPF applicators and workers in close proximity to the application are potentially exposed to MDI in excess of recommended and governmental occupational exposure limits and should use personal protective equipment (PPE) consisting of air supplied respirators and full-body protective clothing to reduce exposure. Catalyst emissions can be reduced by using reactive catalysts in SPF formulations, and mechanical ventilation is important in controlling emissions during and after application.

  4. Polyurethane elastomer as a matrix material for short carbon fiber reinforced thermoplastic composites

    Directory of Open Access Journals (Sweden)

    Ümit Tayfun

    2017-09-01

    Full Text Available Short carbon fibers (CF with different surface sized (epoxy (EP and polyurethane (PU were used as reinforcing agent in thermoplastic polyurethane (TPU based composites. Composites containing 5, 10, 15, and 20 weight % sized and desized CFs were prepared by using melt-mixing method. The surface characteristics of CFs were examined by energy dispersive X-ray spectroscopy (EDX and Fourier transform infrared spectroscopy (FTIR. Tensile testing, shore hardness test, dynamic mechanical analysis (DMA and melt flow index (MFI test were performed for determining final composite properties. The dispersion of CFs in TPU matrix was examined by scanning electron microscopy (SEM. Tensile strength, Youngs’ modulus and Shore hardness of TPU were enhanced by the addition of sized CFs. About two-fold improvement for tensile strength and ten-fold improvement for Youngs’ modulus were observed with the incorporation of 20 wt% EP-CF and PU-CF in TPU. The storage modulus of PU-CF containing composites was higher than those of TPU and other composites. No remarkable change was observed in MFI value of TPU after CF loadings. Processing conditions in this work was suitable for composite production. Sized CFs exhibited better dispersion with regard to desized CF due to the stronger adhesion of TPU matrix to fiber surface.

  5. Study on the Permeability Characteristics of Polyurethane Soil Stabilizer Reinforced Sand

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2017-01-01

    Full Text Available A polymer material of polyurethane soil stabilizer (PSS is used to reinforce the sand. To understand the permeability characteristics of PSS reinforced sand, a series of reinforcement layer form test, single-hole permeability test, and porous permeability test of sand reinforced with PSS have been performed. Reinforcement mechanism is discussed with scanning electron microscope images. The results indicated that the permeability resistance of sand reinforced with polyurethane soil stabilizer is improved through the formation of reinforcement layer on the sand surface. The thickness and complete degree of the reinforcement layer increase with the increasing of curing time and PSS concentration. The water flow rate decreases with the increasing of curing time or PSS concentration. The permeability coefficient decreases with the increasing of curing time and PSS concentration and increases with the increasing of depth in specimen. PSS fills up the voids of sand and adsorbs on the surface of sand particle to reduce or block the flowing channels of water to improve the permeability resistance of sand. The results can be applied as the reference for chemical reinforcement sandy soil engineering, especially for surface protection of embankment, slope, and landfill.

  6. SPECIFIC FEATURES OF OLIGOMERIC PRODUCT SOLIDIFICATION FROM POLYURETHANE WASTES AND THEIR PRACTICAL APPLICATION

    OpenAIRE

    V. Belyatsky; Yu. Kryvogus

    2012-01-01

    The paper considers a possibility to use secondary polyurethane obtained by  thermal depolymerization of wastes on the basis of cross-linked polyurethane (polyurethane adduct) and isocyanate. An effect of density dependence of the obtained polyurethane samples on nature and quantity of solvent has been revealed and it is significantly observed while using low-boiling solvents. The influence of adduct/solidification agent ratio on mechanical hardness of the obtained samples has been studied in...

  7. Preparation and Characterization of Fluorinated Hydrophobic UV-Crosslinkable Thiol-Ene Polyurethane Coatings

    OpenAIRE

    Wenjing Xia; Nianqing Zhu; Rongjie Hou; Wengui Zhong; Mingqing Chen

    2017-01-01

    The polyurethane prepolymer terminated with a double bond was synthesized using isophorone diisocyanate (IPDI), hydroxyl terminated polybutadiene (HTPB), 1,4-butanediol (BDO), and 2-hydroxyethyl acrylate (HEA). Then, a series of innovative UV-curable polyurethane coatings were prepared by blending ene-terminated polyurethane, fluoroacrylate monomer, and multifunctional thiol crosslinker upon UV exposure. The incorporation of fluoroacrylate monomer and multifunctional thiols into polyurethane ...

  8. Polyurethanes for potential use in transparent armour investigated using DSC and DMA

    NARCIS (Netherlands)

    Ekeren, P.J. van; Carton, E.P.

    2011-01-01

    A material combination that may be applied as transparent armour is glass-clad polyurethane. These are comprised of a relatively thin glass strike face and a relatively thick (transparent) polyurethane backing layer. Three transparent polyurethane samples were investigated using differential

  9. 40 CFR 721.8079 - Isophorone diisocyanate neopentyl glycol adipate polyurethane prepolymer.

    Science.gov (United States)

    2010-07-01

    ... glycol adipate polyurethane prepolymer. 721.8079 Section 721.8079 Protection of Environment ENVIRONMENTAL... adipate polyurethane prepolymer. (a) Chemical substance and significant new uses subject to reporting. (1... polyurethane prepolymer (PMN P-94-1743) is subject to reporting under this section for the significant new uses...

  10. Rheokinetics and effect of shear rate on the kinetics of linear polyurethane formation

    NARCIS (Netherlands)

    Navarchian, AH; Picchioni, F; Janssen, LPBM

    In this article, the rheokinetics of polyurethane formation and the influence of shear rate on its kinetics have been studied. Two different linear polyurethane systems with 0% and 100% hard segments are examined in a cone and plate rheometer. The isothermal increase of viscosity during polyurethane

  11. TOPEM DSC study of glass transition region of polyurethane cationomers

    International Nuclear Information System (INIS)

    Pielichowska, Kinga; Król, Piotr; Król, Bożena; Pagacz, Joanna

    2012-01-01

    Highlights: ► TOPEM DSC method was employed to investigate the glass transition (T g ) region of fluorinated polyurethane cationomers. ► Introduction of fluorine compounds significantly changes thermal behaviour of cationomers in the T g region of hard segments. ► Introduction of fluorine compound leads to changes of the slope in activation diagram of glass transition. - Abstract: In this paper TOPEM DSC method was employed to investigate the glass transition region of fluorinated polyurethane cationomers. Fluorinated polyurethane cationomers have been synthesised in the reaction of MDI with poly(ethylene glycol) (600) and butane1,4-diol or N-methyl- or N-butyldiethanolamine and 2,2,3,3-tetrafluoro-1,4-butanediol. Better rigidity was found for generally amorphous cationomer coats. It was found that introduction of fluorine compound changes thermal behaviour of polyurethane cationomers as well as leads to changes in the slope in activation diagram profiles of glass transition in comparison to polyuretahene cationomer without fluorine compound. Application of TOPEM DSC allows to obtain more information concerning frequency dependence of glass transition region and thermodynamical stability of polyurethane structures.

  12. Unified Creep Plasticity Damage (UCPD) Model for Rigid Polyurethane Foams.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hinnerichs, Terry D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lo, Chi S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model was developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.

  13. Biodegradation of Polyester Polyurethane by Endophytic Fungi▿

    Science.gov (United States)

    Russell, Jonathan R.; Huang, Jeffrey; Anand, Pria; Kucera, Kaury; Sandoval, Amanda G.; Dantzler, Kathleen W.; Hickman, DaShawn; Jee, Justin; Kimovec, Farrah M.; Koppstein, David; Marks, Daniel H.; Mittermiller, Paul A.; Núñez, Salvador Joel; Santiago, Marina; Townes, Maria A.; Vishnevetsky, Michael; Williams, Neely E.; Vargas, Mario Percy Núñez; Boulanger, Lori-Ann; Bascom-Slack, Carol; Strobel, Scott A.

    2011-01-01

    Bioremediation is an important approach to waste reduction that relies on biological processes to break down a variety of pollutants. This is made possible by the vast metabolic diversity of the microbial world. To explore this diversity for the breakdown of plastic, we screened several dozen endophytic fungi for their ability to degrade the synthetic polymer polyester polyurethane (PUR). Several organisms demonstrated the ability to efficiently degrade PUR in both solid and liquid suspensions. Particularly robust activity was observed among several isolates in the genus Pestalotiopsis, although it was not a universal feature of this genus. Two Pestalotiopsis microspora isolates were uniquely able to grow on PUR as the sole carbon source under both aerobic and anaerobic conditions. Molecular characterization of this activity suggests that a serine hydrolase is responsible for degradation of PUR. The broad distribution of activity observed and the unprecedented case of anaerobic growth using PUR as the sole carbon source suggest that endophytes are a promising source of biodiversity from which to screen for metabolic properties useful for bioremediation. PMID:21764951

  14. Melt electrospinning of biodegradable polyurethane scaffolds

    Science.gov (United States)

    Karchin, Ari; Simonovsky, Felix I.; Ratner, Buddy D.; Sanders, Joan E.

    2014-01-01

    Electrospinning from the melt, in contrast to from solution, is an attractive tissue engineering scaffold manufacturing process as it allows for the formation of small diameter fibers while eliminating potentially cytotoxic solvents. Despite this, there is a dearth of literature on scaffold formation via melt electrospinning. This is likely due to the technical challenges related to the need for a well-controlled high temperature setup and the difficulty in developing an appropriate polymer. In this paper, a biodegradable and thermally stable polyurethane (PU) is described specifically for use in melt electrospinning. Polymer formulations of aliphatic PUs based on (CH2)4-content diisocyanates, polycaprolactone (PCL), 1,4-butanediamine and 1,4-butanediol (BD) were evaluated for utility in the melt electrospinning process. The final polymer formulation, a catalyst-purified PU based on 1,4-butane diisocyanate, PCL and BD in a 4/1/3 molar ratio with a weight-average molecular weight of about 40 kDa, yielded a nontoxic polymer that could be readily electrospun from the melt. Scaffolds electrospun from this polymer contained point bonds between fibers and mechanical properties analogous to many in vivo soft tissues. PMID:21640853

  15. Isothermal recovery rates in shape memory polyurethanes

    International Nuclear Information System (INIS)

    Azra, Charly; Plummer, Christopher J G; Månson, Jan-Anders E

    2011-01-01

    This work compares the time dependence of isothermal shape recovery in thermoset and thermoplastic shape memory polyurethanes (SMPUs) with comparable glass transition temperatures. In each case, tensile tests have been used to quantify the influence of various thermo-mechanical programming parameters (deformation temperature, recovery temperature, and stress and storage times following the deformation step) on strain recovery under zero load (free recovery) and stress recovery under fixed strain (constrained recovery). It is shown that the duration of the recovery event may be tuned over several decades of time with an appropriate choice of programming parameters, but that there is a trade-off between the rate of shape recovery and the recoverable stress level. The results are discussed in terms of the thermal characteristics of the SMPUs in the corresponding temperature range as characterized by modulated differential scanning calorimetry and dynamic mechanical analysis, with the emphasis on the role of the effective width of the glass transition temperature and the stability of the network that gives rise to the shape memory effect. (fast track communication)

  16. Carboxylated Polyurethanes Containing Hyperbranched Polyester Soft Segments

    Directory of Open Access Journals (Sweden)

    Žigon, M.

    2006-09-01

    Full Text Available hyperbranched polyester soft segments (HB PU with functional carboxylic groups in order to enable the preparation of stable HB PU dispersions. Carboxylated hyperbranched polyurethanes were synthesized using a hyperbranched polyester based on 2,2-bis(methylolpropionic acid of the fourth pseudo-generation (Boltorn H40 and hexamethylene (HDI or isophorone diisocyanate (IPDI. The reactivity of hyperbranched polyester with HDI was lower than expected, possibly due to the presence of less reactive hydroxyl groups in the linear repeat units. A gel was formed at mole ratios rNCO/OH = 1:2 or 1:4. The synthesis of HB PU was performed with partly esterified hyperbranched polyester with lowered hydroxyl functionality. The carboxyl groups were incorporated in the HB PU backbone by reaction of residual hydroxyl groups with cis-1,2-cyclohexanedicarboxylic anhydride. HB PU aqueous dispersions were stable at least for two months, although their films were brittle. The tensile strength and Young's modulus of blends of linear and HB PU decreased with increasing content of HB PU whereas elongation at break remained nearly constant, which was explained in terms of looser chain packing due to more open tree-like hyperbranched structures.

  17. Shape memory of polyurethanes with silver nanoparticles

    International Nuclear Information System (INIS)

    Monteiro, Fernanda M.A.; Souza, Patterson P. de; Pereira, Iaci M.; Silva, Livio B.J. da; Orefice, Rodrigo L.

    2011-01-01

    Biodegradable polyurethane nano composites were synthesized in an aqueous environment and have their shape memory properties investigated. The matrix based in isopharane diisocyanate and poly(caprolactone diol) (Mn=1250, 2000 g.mol -1 ) was prepared by the prepolymer mixing process. The silver nanoparticles were produced by mixing AgNO 3 and tannic acid. The shape memory properties were measured using universal testing machine (DL3000, EMIC). The shape memory cycle consisted of the following steps: samples were deformed at room temperature; the mechanical constraints on the polymers were removed; samples were cooled down to 0 deg C and to retain the deformed shape; three processes were tested to recover the shape: (a) samples were heated up to 80 deg C in an oven, (b) immersed in pH 4.0 and (c) immersed in pH 7.0. To study the shape memory effect on the nanostructure, small angle X-ray scattering, wide angle X-ray scattering, infrared spectroscopy experiments were carried on. (author)

  18. Structural and surface properties of novel polyurethane films

    Czech Academy of Sciences Publication Activity Database

    Špírková, Milena; Strachota, Adam; Urbanová, Martina; Baldrian, Josef; Brus, Jiří; Šlouf, Miroslav; Kuta, A.; Hrdlička, Z.

    2009-01-01

    Roč. 24, č. 10 (2009), s. 1185-1189 ISSN 1042-6914 R&D Projects: GA MPO FT-TA3/034; GA AV ČR IAA400500505 Institutional research plan: CEZ:AV0Z40500505 Keywords : montmorillonite * nanoadditives * polybutadiene diol Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.968, year: 2009

  19. Comparison of Selected Properties of Shellac Varnish for Restoration and Polyurethane Varnish for Reconstruction of Historical Artefacts

    Directory of Open Access Journals (Sweden)

    Kristýna Šimůnková

    2018-03-01

    Full Text Available At present, many historical artefacts and furniture are only reconstructed and not restored. They are preserved in terms of material reparation, but their historical value decreases significantly. This work is focused on the comparison of the resistance of high-gloss polyurethane varnish with traditional shellac varnish. The varnishes were applied to oak wood and exposed to interior artificial accelerated ageing in Xenotest. Before and after ageing, cold liquid-resistance tests were performed on the tested specimens and gloss, colour, and adhesion were also evaluated. The structures of the surfaces were also analysed using a confocal laser scanning microscope. As expected, polyurethane varnish was much more durable than shellac varnish. Interestingly, shellac varnish was fairly resistant to water at the beginning, but this resistance was greatly reduced after artificial accelerated ageing. This illustrates the importance of sheltering the shellac treated artefacts in stable temperature-humidity conditions with the least possible effect of solar radiation.

  20. Preparation, characterization and infrared emissivity study of helical polyurethane-SiO2 core-shell composite

    International Nuclear Information System (INIS)

    Wang Zhiqiang; Zhou Yuming; Yao Qingzhao; Sun Yanqing

    2009-01-01

    Helical polyurethane-SiO 2 (HPU-SiO 2 ) core-shell composite was prepared after surface modification of SiO 2 nanoparticles. HPU-SiO 2 was characterized by Fourier-transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet (UV) spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results indicate that the helical polyurethane has been successfully grafted onto the surfaces of the modified SiO 2 . HPU-SiO 2 composite exhibits clearly core-shell structure. The ultraviolet absorption and crystallizability of HPU-SiO 2 are changed due to the shell of helical polyurethane, which possesses regular single-handed conformation and inter-chain hydrogen bonds. The infrared emissivity of HPU-SiO 2 was also investigated. The result indicates that the interfacial interactions between organic shell and inorganic core induce the infrared emissivity value being reduced from 0.781 for SiO 2 to 0.503 for HPU-SiO 2 .

  1. Histologic and immunohistochemical evaluation of biocompatibility of castor oil polyurethane polymer with calcium carbonate in equine bone tissue.

    Science.gov (United States)

    Nóbrega, Fernanda S; Selim, Mariana B; Arana-Chavez, Victor E; Correa, Luciana; Ferreira, Márcio P; Zoppa, André L V

    2017-10-01

    OBJECTIVE To evaluate the efficacy of castor oil polyurethane polymer with calcium carbonate for use in a unicortical ostectomy on the dorsal surface of the third metacarpal bone of horses. ANIMALS 6 adult horses. PROCEDURES A unicortical ostectomy was created on the dorsal surface of both third metacarpal bones of each horse. Castor bean (Ricinus communis) oil polyurethane polymer with calcium carbonate was implanted into the ostectomy on 1 limb, and the ostectomy of the contralateral limb was left unfilled and served as a control sample. Ostectomy sites were evaluated histologically 120 days later. Biopsy specimens were obtained from the interface of bone and polymer or the interface of bone and newly formed tissue; specimens were processed for histomorphometric evaluation by use of light microscopy, immunohistochemical analysis, histochemical analysis, and transmission electron microscopy. RESULTS Osteoconductive activity of the biomaterial was confirmed by the presence of osteoblasts in the biopsy specimens. Absence of a chronic inflammatory response or foreign body reaction indicated biocompatibility. Expression of osteoblast markers was detected in the newly formed tissue. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that castor oil polyurethane polymer with calcium carbonate could be an acceptable compound for use as a bone substitute in horses with fractures in which bone filling is necessary.

  2. Flexible Consumption

    DEFF Research Database (Denmark)

    Holm Jacobsen, Peter; Pallesen, Trine

    This report presents the first findings from our qualitative study of consumer behaviour vis-à-vis flexible consumption. The main of objective of this report is to present our first round of data from Bornholm, and to assist the design of products/services designed in WP6. In the report, we adopt...... the perspective of the consumer: what does living in a demand response setup look like to participants – and what kinds of behaviour and interest motivate – and emerge from – their participation in EcoGrid 2.0....

  3. Flexible Capitalism

    DEFF Research Database (Denmark)

    Approaching “work” as at heart a practice of exchange, this volume explores sociality in work environments marked by the kind of structural changes that have come to define contemporary “flexible” capitalism. It introduces anthropological exchange theory to a wider readership, and shows how...... the perspective offers new ways to enquire about the flexible capitalism’s social dimensions. The essays contribute to a trans-disciplinary scholarship on contemporary economic practice and change by documenting how, across diverse settings, “gift-like” socialities proliferate, and even sustain the intensified...

  4. Fabrication of robust and thermally stable superhydrophobic nanocomposite coatings based on thermoplastic polyurethane and silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seyfi, Javad [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Jafari, Seyed Hassan, E-mail: shjafari@ut.ac.ir [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden (Germany); Sadeghi, Gity Mir Mohamad [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zohuri, Gholamhossein [Polymer Group, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Simon, Frank [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden (Germany)

    2015-08-30

    Highlights: • Superhydrophobic coatings were prepared from an intrinsically hydrophilic polymer. • The superhydrophobicity remained intact at elevated temperatures. • Polyurethane plays a key role in improving the mechanical robustness of the coatings. • A complete surface coverage of nanosilica is necessary for superhydrophobicity. - Abstract: In this paper, superhydrophobic nanocomposite coatings based on thermoplastic polyurethane (TPU) and modified nanosilica were fabricated using a simple solution-based method. The main challenge was to impart superhydrophobicity to an intrinsically hydrophilic polymer substrate. The prepared nanocomposite coatings were characterized by means of scanning electron microscopy, confocal microscopy and X-ray photoelectron spectroscopy. Based on the obtained results, it was proved that in order to achieve superhydrophobicity, no TPU macromolecule should be present on the coating's top layer, thus a complete coverage of coating's top layer by nanosilica particles was necessary for achieving ultra water repellent coatings. Mechanical and thermal resistance of the coatings, which are the main challenges in commercializing superhydrophobic surfaces, were also studied by drop impact and thermal annealing tests, respectively. It was proved that using TPU as a sublayer results in improving mechanical resistance of the coatings as compared with the pure silica nanocoating. Moreover, the samples showed an excellent resistance against elevated temperatures (150 °C) and remained superhydrophobic; however, further increment of the annealing temperatures to 200 °C caused the TPU macromolecules to migrate onto the top layer of the coatings significantly reducing the water repellency, which was visually proved by SEM.

  5. Synthesis and characterization of waterborne polyurethane acrylate copolymers

    International Nuclear Information System (INIS)

    Sultan, Misbah; Bhatti, Haq Nawaz; Zuber, Mohammad; Barikani, Mehdi

    2013-01-01

    Polyurethane acrylate copolymers were synthesized by emulsion polymerization process. To reduce the environmental hazards, organic solvents were replaced by eco-friendly aqueous system. Concentration of polyurethane and acrylate monomer was varied to investigate the effect of chemical composition on performance properties of copolymers. FTIR spectroscopy was used as a key tool to record the chemical synthesis route. The synthesized copolymer emulsions were characterized by evaluating their particle size, viscosity, dry weight content, chemical and water resistance. Thermal decomposition was studied by thermogravimetric analysis. Scanning electron microscope was used to visualize the morphological structure of copolymers. The experimental results indicate better polyurethane acrylate compatibility till the ratio of 30/70. However, these copolymers exhibited synergistic effects between the two polymers and revealed a remarkable improvement in numerous coating properties

  6. Extraction behavior of uranium(VI) with polyurethane foam

    International Nuclear Information System (INIS)

    Tingchia Huang; Donghwang Chen; Muchang Shieh; Chingtsven Huang

    1992-01-01

    The extraction of uranium(VI) from aqueous solution with polyether-based polyurethane (PU) foam was studied. The effects of the kinds and concentrations of nitrate salts, uranium(VI) concentration, temperature, nitric acid concentration, pH, the content of poly(ethylene oxide) in the polyurethane foam, and the ratio of PU foam weight and solution volume on the extraction of uranium(VI) were investigated. The interferences of fluoride and carbonate ions on the extraction of uranium(VI) were also examined, and methods to overcome both interferences were suggested. It was found that no uranium was extracted in the absence of a nitrate salting-out agent, and the extraction behaviors of uranium(IV) with polyurethane foam could be explained in terms of an etherlike solvent extraction mechanism. In addition, the percentage extraction of a multiple stage was also estimated theoretically

  7. Thermal Properties of Anionic Polyurethane Composition for Leather Finishing

    Directory of Open Access Journals (Sweden)

    Olga KOVTUNENKO

    2016-09-01

    Full Text Available Thermal properties of anionic polyurethane composition mixed with collagen product and hydrophilic sodium form of montmorillonite for use in the finishing of leather were studied by thermogravimetric method. The thermal indices of processes of thermal and thermo-oxidative destruction depending on the polyurethane composition were determined. The influence of anionic polyurethane composition on thermal behavior of chromium tanned gelatin films that imitate the leather were studied. APU composition with natural compounds increases their thermal stability both in air and in nitrogen atmosphere due to the formation of additional bonds between active groups of APU, protein and chrome tanning agent as the result of chemical reactions between organic and inorganic parts with the new structure formation.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.10043

  8. Direct transfer of graphene films for polyurethane substrate

    Energy Technology Data Exchange (ETDEWEB)

    Vilani, C.; Romani, E.C.; Larrudé, D.G. [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ (Brazil); Barbosa, Gelza M. [Diretoria de Sistemas de Armas da Marinha, Marinha do Brasil, 20010-00 Rio de Janeiro, RJ (Brazil); Freire, F.L., E-mail: lazaro@vdg.fis.puc-rio.br [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ (Brazil); Centro Brasileiro de Pesquisas Físicas, 22290-180 Rio de Janeiro, RJ (Brazil)

    2015-11-30

    Highlights: • Graphene was prepared by CVD using copper foils as substrates. • Monolayer, bilayer and multilayer graphene were transferred to PU. • Samples were characterized by Raman and optical spectroscopies. • PU/monolayer graphene has transmittance around 80% in visible range. - Abstract: We have proposed the direct transfer of large-area graphene films grown by chemical vapor deposition to polymeric substrate by evaporating of solvents of polyurethane/tetrahydrofurane solution. The graphene films on polyurethane substrates were characterized by Raman spectroscopy, optical and atomic force microscopies and UV–vis spectroscopy measurements. The Raman spectra revealed that it is possible to transfer in a controlled manner monolayer, bilayer and multilayer graphene films over polyurethane substrate.

  9. Direct transfer of graphene films for polyurethane substrate

    International Nuclear Information System (INIS)

    Vilani, C.; Romani, E.C.; Larrudé, D.G.; Barbosa, Gelza M.; Freire, F.L.

    2015-01-01

    Highlights: • Graphene was prepared by CVD using copper foils as substrates. • Monolayer, bilayer and multilayer graphene were transferred to PU. • Samples were characterized by Raman and optical spectroscopies. • PU/monolayer graphene has transmittance around 80% in visible range. - Abstract: We have proposed the direct transfer of large-area graphene films grown by chemical vapor deposition to polymeric substrate by evaporating of solvents of polyurethane/tetrahydrofurane solution. The graphene films on polyurethane substrates were characterized by Raman spectroscopy, optical and atomic force microscopies and UV–vis spectroscopy measurements. The Raman spectra revealed that it is possible to transfer in a controlled manner monolayer, bilayer and multilayer graphene films over polyurethane substrate.

  10. Thermal stability of novel polyurethane adhesives investigated by TGA

    Directory of Open Access Journals (Sweden)

    Mariusz Mamiński

    2014-05-01

    Full Text Available The objective of the work was an assessment of thermal stability of novel polyurethane wood adhesives by means of TGA. Hyperbranched polyglycerols of various structures were used as polyol components cured with polymeric methylenediphenyldiisocyanate (PMDI or polymeric hexamethylenediisocyanate (PHDI. Resultant adhesives were thermally degraded in temperature range 20 - 500ºC. Performance of polyurethane based on fully aliphatic polyglycerol was inferior to those based on polyglycerols bearing aromatic moieties. The differences in 50%-weight loss temperature achieving 27 - 39°C as well as residual weights at 480 ºC indicate the contribution of aromatic units presence within the macromonomer structure to increased thermal stability of polyurethane upon thermal degradation. Furthermore, temperature of 50% weight loss revealed that thermal stability of the developed hyperbranched polyglycerol-based adhesives was comparable to that of the commercial PUR adhesive.

  11. Measurement of volatile evolution from polyurethane induced by accelerated ion beam irradiation

    International Nuclear Information System (INIS)

    Murphy, J.J.

    2003-01-01

    Irradiation of polymer samples using an accelerated beam of He 2+ ions passed through a 10μm thick window of havar foil has been performed. Such irradiation simulates the effects of large α radiation doses, on a vastly reduced time-scale. Analysis of volatiles evolved during irradiation is performed by a residual gas analyser (RGA), which is located close to the sample chamber. Presented in this paper are the results obtained during a radiation study on polyester/MDI based polyurethane materials. During high dose rate irradiation a number of high mass species were observed. A comparison between two similar polyurethanes formulated with slightly different polyesters indicated some differences. They were, however, too minor to link to specific degradation mechanisms. The dominant degradation products evident to the RGA at low dose rates were H 2 , CO and CO 2 . A series of polyurethane samples previously conditioned by γ irradiation at doses between 0 and 5MGy were irradiated in the ion beam. Identification of differences in trends in the rates of volatile evolution between these samples indicated the precise vacuum conditions at the time of irradiation had a major influence. There was also an indication that the surface of the sample had a small effect on rates of volatile evolution. Comparative plots of CO and CO 2 evolution for a series of 1MGy irradiations indicated variations in behaviour between samples with different γ doses. Evolution during the first 1MGy was inhibited for the unirradiated sample, the extent of inhibition diminished with increasing γ dose and was no longer evident in a sample with 1.5MGy γ dose. H 2 does not show an equivalent inhibition. Evidence for a low dose crosslinking reaction is put forward as a reason for the inhibition. Chemical reaction mechanisms are postulated and used to explain differences in the behaviour observed

  12. Flexible nanovectors

    International Nuclear Information System (INIS)

    Pugno, Nicola M

    2008-01-01

    In this paper we show that the control of adhesion in highly flexible (a property that could be crucial for smart drug delivery but which is still ignored in the literature) nanovectors can help in smartly targeting and delivering the drug. The existence of and the conditions for activating and controlling a super-adhesive state are addressed. Even if such a state has never been observed in nanovectors, our calculations, as well as observations in spiders and geckos, suggest its existence and feasible control. Control of the competition between the drag and the adhesive force is exploited to improve the targeting ability and a hierarchical model is applied to describe a real vasculature. The high flexibility of the nanovector is used to smartly deliver the drug only during adhesion by nanopumping or, as a limiting case, by the new concept of 'adhesion induced nanovector implosion'; a liquid drop analogy is utilized for the calculations. Fast (pumping) and slow (diffusion) drug deliveries can thus be separately controlled by controlling the size and shape of the nanovector. Multiple stage nanovectors are also briefly discussed, mimicking aerospace vector strategies.

  13. Flexible nanovectors

    Science.gov (United States)

    Pugno, Nicola M.

    2008-11-01

    In this paper we show that the control of adhesion in highly flexible (a property that could be crucial for smart drug delivery but which is still ignored in the literature) nanovectors can help in smartly targeting and delivering the drug. The existence of and the conditions for activating and controlling a super-adhesive state are addressed. Even if such a state has never been observed in nanovectors, our calculations, as well as observations in spiders and geckos, suggest its existence and feasible control. Control of the competition between the drag and the adhesive force is exploited to improve the targeting ability and a hierarchical model is applied to describe a real vasculature. The high flexibility of the nanovector is used to smartly deliver the drug only during adhesion by nanopumping or, as a limiting case, by the new concept of 'adhesion induced nanovector implosion'; a liquid drop analogy is utilized for the calculations. Fast (pumping) and slow (diffusion) drug deliveries can thus be separately controlled by controlling the size and shape of the nanovector. Multiple stage nanovectors are also briefly discussed, mimicking aerospace vector strategies.

  14. Fabrication and characterization of cellulose nanocrystal based transparent electroactive polyurethane

    Science.gov (United States)

    Ko, Hyun-U.; Kim, Hyun Chan; Kim, Jung Woong; Zhai, Lindong; Jayaramudu, Tippabattini; Kim, Jaehwan

    2017-08-01

    This paper reports cellulose nanocrystal (CNC) based transparent and electroactive polyurethane (CPPU), suitable for actively tunable optical lens. CNC is used for high dielectric filler to improve electromechanical behavior of CPPU. For high transparency and homogeneous distribution of CNC in polyurethane, CNC-poly[di(ethylene glycol) adipate] is used to play a role of polyol and isocyanate salt. The fabricated CPPU exhibits high transparency (>90%) and 10% of electromechanical strain under 3 V μm-1 electric field. Mechanical, dielectric properties as well as physical and chemical characteristics are investigated to prove the electromechanical behavior of CPPU.

  15. Intravascular stent graft with polyurethane and metallic stent: experimental study

    International Nuclear Information System (INIS)

    Do, Young Soo; Lee, Won Jae; Kim, Boo Kyung Han; Park, Jae Hyung; Lee, Hak Jong; Lee, Sang Hyun; Kim, Sung Hyun; Kim, Jong Won; Ha, Jongwon

    1997-01-01

    To evaluate the usefulness of a new model of the stent graft, and of tissue response related to placement of the stent graft. The stent graft was constructed from polyurethane (Pellethane) graft and Hanaro stent(12mm in diameter, 45mm in length, 10 bends). A stent grafts was inserted into the lower thoracic aorta in each of six adult mongrel dogs(body weight, 12-16kg). At one, two, four, and six months, follow-up studies of angiography and spiral CT angiography were preformed to evaluate wascular patency, vascular stenosis, and thrombus formation. Two dogs were sacrificed at 1month, 2months, and 6months after insertion of the stent graft and macroscopic, light microscopic, and scanning electron microscopic examinations of the aortic segment including the stent graft were performed to evaluate intimal hyperplasia, endothelial growth to the graft, and thrombus formation. During follow-up at one, two, four, and six months, angiography or spiral CT angiography showed 20-100% luminal stenosis or occlusion of the lower thoracic aorta by the thrombus and perigraft leaks in three dogs(50%), and collateral vessels caused by occlusion of the aorta in two (33.3%). On gross examination, there were thrombi of 1-5mm thickness at the graft portions in all dogs, and this thickness gradually increased. The mean thickness of intimal hyperplasia at the stent portion gradually increased from 120μm to 227μm and the mean thickness of intimal hyperplasia at the graft portion from 93μm to 914μm. This thickness was greater at the graft portion than at the stent portion. Scanning electron microscopy showed elliptical endothelial lining on the neointimal surfaces at each end of the graft. Thrombi caused stenosis or occlusion of the stent graft. In order for such a graft to be ideal, further study is needed

  16. The value of magnetic resonance imaging in target volume delineation of base of tongue tumours - A study using flexible surface coils

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Merina [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Schmidt, Maria [Cancer Research UK Clinical Magnetic Resonance Group, Royal Marsden NHS Foundation Trust, Surrey (United Kingdom); Sohaib, Aslam [Department of Radiology, Royal Marsden NHS Foundation Trust, London (United Kingdom); Kong, Christine; Burke, Kevin [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Richardson, Cheryl; Usher, Marianne [Cancer Research UK Clinical Magnetic Resonance Group, Royal Marsden NHS Foundation Trust, Surrey (United Kingdom); Brennan, Sinead [Department of Radiotherapy, St. James' s Hospital, Dublin (Ireland); Riddell, Angela [Department of Radiology, Royal Marsden NHS Foundation Trust, London (United Kingdom); Davies, Mark; Newbold, Kate [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Harrington, Kevin J; Nutting, Christopher M [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Institute of Cancer Research, London (United Kingdom)

    2010-02-15

    Introduction: Magnetic resonance imaging (MRI) provides superior diagnostic accuracy over computed tomography (CT) in oropharyngeal tumours. Precise delineation of the gross tumour volume (GTV) is mandatory in radiotherapy planning when a GTV boost is required. CT volume definition in this regard is poor. We studied the feasibility of using flexible surface (flex-L) coils to obtain MR images for MR-CT fusion to assess the benefit of MRI over CT alone in planning base of tongue tumours. Methods: Eight patients underwent CT and MRI radiotherapy planning scans with an immobilisation device. Distortion-corrected T1-weighted post-contrast MR scans were fused to contrast-enhanced planning CT scans. GTV, clinical target and planning target volumes (CTV, PTV) and organs at risk (OAR) were delineated on CT, then on MRI with blinding to the CT images. The volumetric and spatial differences between MRI and CT volumes for GTV, CTV, PTV and OAR were compared. MR image distortions due to field inhomogeneity and non-linear gradients were corrected and the need for such correction was evaluated. Results: The mean primary GTV was larger on MRI (22.2 vs. 9.5 cm{sup 3}, p = 0.05) than CT. The mean primary and nodal GTV (i.e. BOT and macroscopic nodes) was significantly larger on MRI (27.2 vs. 14.4 cm{sup 3}, p = 0.05). The volume overlap index (VOI) between MRI and CT for the primary was 0.34 suggesting that MRI depicts parts of the primary tumour not detected by CT. There was no significant difference in volume delineation between MR and CT for CTV, PTV, nodal CTV and nodal PTV. MRI volumes for brainstem and spinal cord were significantly smaller due to improved organ definition (p = 0.002). Susceptibility and gradient-related distortions were not found to be clinically significant. Conclusion: MRI improves the definition of tongue base tumours and neurological structures. The use of MRI is recommended for GTV dose-escalation techniques to provide precise depiction of GTV and

  17. The value of magnetic resonance imaging in target volume delineation of base of tongue tumours - A study using flexible surface coils

    International Nuclear Information System (INIS)

    Ahmed, Merina; Schmidt, Maria; Sohaib, Aslam; Kong, Christine; Burke, Kevin; Richardson, Cheryl; Usher, Marianne; Brennan, Sinead; Riddell, Angela; Davies, Mark; Newbold, Kate; Harrington, Kevin J.; Nutting, Christopher M.

    2010-01-01

    Introduction: Magnetic resonance imaging (MRI) provides superior diagnostic accuracy over computed tomography (CT) in oropharyngeal tumours. Precise delineation of the gross tumour volume (GTV) is mandatory in radiotherapy planning when a GTV boost is required. CT volume definition in this regard is poor. We studied the feasibility of using flexible surface (flex-L) coils to obtain MR images for MR-CT fusion to assess the benefit of MRI over CT alone in planning base of tongue tumours. Methods: Eight patients underwent CT and MRI radiotherapy planning scans with an immobilisation device. Distortion-corrected T1-weighted post-contrast MR scans were fused to contrast-enhanced planning CT scans. GTV, clinical target and planning target volumes (CTV, PTV) and organs at risk (OAR) were delineated on CT, then on MRI with blinding to the CT images. The volumetric and spatial differences between MRI and CT volumes for GTV, CTV, PTV and OAR were compared. MR image distortions due to field inhomogeneity and non-linear gradients were corrected and the need for such correction was evaluated. Results: The mean primary GTV was larger on MRI (22.2 vs. 9.5 cm 3 , p = 0.05) than CT. The mean primary and nodal GTV (i.e. BOT and macroscopic nodes) was significantly larger on MRI (27.2 vs. 14.4 cm 3 , p = 0.05). The volume overlap index (VOI) between MRI and CT for the primary was 0.34 suggesting that MRI depicts parts of the primary tumour not detected by CT. There was no significant difference in volume delineation between MR and CT for CTV, PTV, nodal CTV and nodal PTV. MRI volumes for brainstem and spinal cord were significantly smaller due to improved organ definition (p = 0.002). Susceptibility and gradient-related distortions were not found to be clinically significant. Conclusion: MRI improves the definition of tongue base tumours and neurological structures. The use of MRI is recommended for GTV dose-escalation techniques to provide precise depiction of GTV and improved

  18. Electroactive properties of flexible piezoelectric composites

    Directory of Open Access Journals (Sweden)

    Sakamoto Walter Katsumi

    2001-01-01

    Full Text Available A flexible piezoelectric composite with 0-3 connectivity, made from Lead Zirconate Titanate (PZT powder and vegetable-based polyurethane (PU, was doped with small amount of semiconductor powder. As a result a composite with 0-0-3 connectivity was obtained. The nature of absorption and steady state electrical conduction and the dielectric behaviour have been studied for this ceramic/polymer composite. The dielectric loss processes of the composite were observed to be dominated by those the polymer. Adding a semiconductor phase in the composite the electrical conductivity can be controlled and a continuous electric flux path could be created between the PZT grains. This composite may be poled at low voltage and in shorter time compared with composites without a conductive phase.

  19. Novel amphiphilic poly(dimethylsiloxane) based polyurethane networks tethered with carboxybetaine and their combined antibacterial and anti-adhesive property

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jingxian; Fu, Yuchen; Zhang, Qinghua, E-mail: qhzhang@zju.edu.cn; Zhan, Xiaoli; Chen, Fengqiu

    2017-08-01

    Highlights: • An amphiphilic poly(dimethylsiloxane) (PDMS) based polyurethane (PU) network tethered with carboxybetaine is prepared. • The surface distribution of PDMS and zwitterionic segments produces an obvious amphiphilic heterogeneous surface. • This designed PDMS-based amphiphilic PU network exhibits combined antibacterial and anti-adhesive properties. - Abstract: The traditional nonfouling materials are powerless against bacterial cells attachment, while the hydrophobic bactericidal surfaces always suffer from nonspecific protein adsorption and dead bacterial cells accumulation. Here, amphiphilic polyurethane (PU) networks modified with poly(dimethylsiloxane) (PDMS) and cationic carboxybetaine diol through simple crosslinking reaction were developed, which had an antibacterial efficiency of 97.7%. Thereafter, the hydrolysis of carboxybetaine ester into zwitterionic groups brought about anti-adhesive properties against bacteria and proteins. The surface chemical composition and wettability performance of the PU network surfaces were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle analysis. The surface distribution of PDMS and zwitterionic segments produced an obvious amphiphilic heterogeneous surface, which was demonstrated by atomic force microscopy (AFM). Enzyme-linked immunosorbent assays (ELISA) were used to test the nonspecific protein adsorption behaviors. With the advantages of the transition from excellent bactericidal performance to anti-adhesion and the combination of fouling resistance and fouling release property, the designed PDMS-based amphiphilic PU network shows great application potential in biomedical devices and marine facilities.

  20. Fire Behavior of Rigid Polyurethane Foam and Metal Faced Polyurethane Sandwich Panels and Its Fire Hazard Assessment

    Directory of Open Access Journals (Sweden)

    S. Bakhtiyari

    2009-12-01

    Full Text Available Reaction to fire of fire-retarded rigid PUR foams and two types of metal faced rigid polyurethane foam core sandwich panel was evaluated by using cone calorimeter test method. The tests were carried out in various radiative heat fluxes from 15 to 75 kW/m2. The radiation rate effect on reaction to fire parameters, including time to ignition (TTI, peak of heat release rate (PRHR, total heat release (THR, average heat release rate (Av.RHR and average heat of combustion (Av.EHC was investigated. The phenomenon of char forming, when the foam is exposed to heat, leads to the formation of a protective layer on the surface of foam and hence no direct relation exists between Av.RHR and average specific mass loss rate (Av.Spec.MLR of foam with increased radiation rate. In addition, the increased PRHR with foam density was also very smooth. The relation between TTI and heat flux was investigated for the foam and its corresponding correlation has been achieved with a specified density. Fire hazard assessment of foams and sandwitch panels was carried out by adopting Petrella and Richardson fire risk classification methods. The assessment results showed that rigid PUR foam and PUR sandwich panels may have a high contribution to bring the room to critical flashover condition, but the risk is intermediate from the viewpoint of fire endurance. The reasons of these risk levels are attributed to a very short TTI, relative high PRHR and an intermediate amount of THR. Decrease in foam density reduces heat release but it shows no significant effect on reducing flashover hazard.

  1. Indoor air pollution evaluation with emphasize on HDI and biological assessment of HDA in the polyurethane factories.

    Science.gov (United States)

    Mirmohammadi, Mirtaghi; Hakimi Ibrahim, M; Ahmad, Anees; Kadir, Mohd Omar Abdul; Mohammadyan, M; Mirashrafi, S B

    2010-06-01

    Today, many raw materials used in factories may have a dangerous effect on the physiological system of workers. One of them which is widely used in the polyurethane factories is diisocyanates. These compounds are widely used in surface coatings, polyurethane foams, adhesives, resins, elastomers, binders, and sealants. Exposure to diisocyanates causes irritation to the skin, mucous membranes, eyes, and respiratory tract. Hexamethylene diamine (HDA) is metabolite of hexamethylene diisocyanate (HDI). It is an excretory material by worker's urine who is exposed to HDI. Around 100 air samples were collected from five defined factories by midget impinger which contained dimethyl sulfoxide absorbent as a solvent and tryptamine as reagent. Samples were analyzed by high-performance liquid chromatography with EC\\UV detector using NIOSH 5522 method of sampling. Also, 50 urine samples collected from workers were also analyzed using William's biological analysis method. The concentration of HDI into all air samples were more than 88 microg/m(3), and they have shown high concentration of pollutant in the workplaces in comparison with NIOSH standard, and all of the workers' urine were contaminated by HDA. The correlation and regression test were used to obtain statistical model for HDI and HDA, which is useful for the prediction of diisocyanates pollution situation in the polyurethane factories.

  2. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S.

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  3. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  4. Biocompatible, Biodegradable, and Electroactive Polyurethane-Urea Elastomers with Tunable Hydrophilicity for Skeletal Muscle Tissue Engineering.

    Science.gov (United States)

    Chen, Jing; Dong, Ruonan; Ge, Juan; Guo, Baolin; Ma, Peter X

    2015-12-30

    It remains a challenge to develop electroactive and elastic biomaterials to mimic the elasticity of soft tissue and to regulate the cell behavior during tissue regeneration. We designed and synthesized a series of novel electroactive and biodegradable polyurethane-urea (PUU) copolymers with elastomeric property by combining the properties of polyurethanes and conducting polymers. The electroactive PUU copolymers were synthesized from amine capped aniline trimer (ACAT), dimethylol propionic acid (DMPA), polylactide, and hexamethylene diisocyanate. The electroactivity of the PUU copolymers were studied by UV-vis spectroscopy and cyclic voltammetry. Elasticity and Young's modulus were tailored by the polylactide segment length and ACAT content. Hydrophilicity of the copolymer films was tuned by changing DMPA content and doping of the copolymer. Cytotoxicity of the PUU copolymers was evaluated by mouse C2C12 myoblast cells. The myogenic differentiation of C2C12 myoblasts on copolymer films was also studied by analyzing the morphology of myotubes and relative gene expression during myogenic differentiation. The chemical structure, thermal properties, surface morphology, and processability of the PUU copolymers were characterized by NMR, FT-IR, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and solubility testing, respectively. Those biodegradable electroactive elastic PUU copolymers are promising materials for repair of soft tissues such as skeletal muscle, cardiac muscle, and nerve.

  5. Separation of cobalt from synthetic intermediate and decontamination radioactive wastes using polyurethane foam

    International Nuclear Information System (INIS)

    Rao, S.V.S.; Lal, K.B.; Narasimhan, S.V.; Ahmed, J.

    1997-01-01

    Studies have been carried out on the removal of radioactive cobalt ( 60 Co) from synthetic intermediate level waste (ILW) and decontamination waste using neat polyurethane (PU) foam as well as n-tributyl phosphate-polyurethane (TBP-PU) foam. The radioactive cobalt has been extracted on the PU foam as cobalt thiocyanate from the ILW. Maximum removal of cobalt has been observed when the concentration of thiocyanate in the solution is about 0.4 M. Cobalt can be separated from decontamination waste containing ethylenediaminetetraacetic acid (EDTA) and iron(II). The extent of extraction of cobalt is slow and the separation of iron and cobalt is better with the neat PU foam compared to the TBP-PU foam. The presence of iron in the decontamination waste facilitates the extraction of cobalt thiocyanate on the PU foam. Column studies have been carried out in order to extend these studies to the plant scale. The capacities of the PU foams for cobalt have been determined. The effect of density and the surface area of PU foam have been investigated. Fourier Transform Infrared (FT-IR) spectral studies have been conducted to find out the interaction between PU foam and cobalt thiocyanate species

  6. New polyurethane/docosane microcapsules as phase-change materials for thermal energy storage.

    Science.gov (United States)

    Felix De Castro, Paula; Shchukin, Dmitry G

    2015-07-27

    Polyurethane microcapsules were prepared by mini-emulsion interfacial polymerization for encapsulation of phase-change material (n-docosane) for energy storage. Three steps were followed with the aim to optimize synthesis conditions of the microcapsules. First, polyurethane microcapsules based on silicone oil core as an inert template with different silicone oil/poly(ethylene glycol)/4,4'-diphenylmethane diisocyanate wt % ratio were synthesized. The surface morphology of the capsules was analyzed by scanning electronic microscopy (SEM) and the chemical nature of the shell was monitored by Fourier transform infrared spectroscopy (FT-IR). Capsules with the silicone oil/poly(ethylene glycol)/4,4'-diphenylmethane diisocyanate 10/20/20 wt % ratio showed the best morphological features and shell stability with average particle size about 4 μm, and were selected for the microencapsulation of the n-docosane. In the second stage, half of the composition of silicone oil was replaced with n-docosane and, finally, the whole silicone oil content was replaced with docosane following the same synthetic procedure used for silicone oil containing capsules. Thermal and cycling stability of the capsules were investigated by thermal gravimetric analysis (TGA) and the phase-change behavior was evaluated by differential scanning calorimetry (DSC). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hemocompatibility of Inorganic Physical Vapor Deposition (PVD Coatings on Thermoplastic Polyurethane Polymers

    Directory of Open Access Journals (Sweden)

    Daniel Heim

    2012-04-01

    Full Text Available Biocompatibility improvements for blood contacting materials are of increasing interest for implanted devices and interventional tools. The current study focuses on inorganic (titanium, titanium nitride, titanium oxide as well as diamond-like carbon (DLC coating materials on polymer surfaces (thermoplastic polyurethane, deposited by magnetron sputtering und pulsed laser deposition at room temperature. DLC was used pure (a-C:H as well as doped with silicon, titanium, and nitrogen + titanium (a-C:H:Si, a-C:H:Ti, a-C:H:N:Ti. In-vitro testing of the hemocompatibility requires mandatory dynamic test conditions to simulate in-vivo conditions, e.g., realized by a cone-and-plate analyzer. In such tests, titanium- and nitrogen-doped DLC and titanium nitride were found to be optimally anti-thrombotic and better than state-of-the-art polyurethane polymers. This is mainly due to the low tendency to platelet microparticle formation, a high content of remaining platelets in the whole blood after testing and low concentration of platelet activation and aggregation markers. Comparing this result to shear-flow induced cell motility tests with e.g., Dictostelium discoideum cell model organism reveals similar tendencies for the investigated materials.

  8. Hemocompatibility of Inorganic Physical Vapor Deposition (PVD) Coatings on Thermoplastic Polyurethane Polymers.

    Science.gov (United States)

    Lackner, Juergen M; Waldhauser, Wolfgang; Hartmann, Paul; Bruckert, Franz; Weidenhaupt, Marianne; Major, Roman; Sanak, Marek; Wiesinger, Martin; Heim, Daniel

    2012-04-17

    Biocompatibility improvements for blood contacting materials are of increasing interest for implanted devices and interventional tools. The current study focuses on inorganic (titanium, titanium nitride, titanium oxide) as well as diamond-like carbon (DLC) coating materials on polymer surfaces (thermoplastic polyurethane), deposited by magnetron sputtering und pulsed laser deposition at room temperature. DLC was used pure (a-C:H) as well as doped with silicon, titanium, and nitrogen + titanium (a-C:H:Si, a-C:H:Ti, a-C:H:N:Ti). In-vitro testing of the hemocompatibility requires mandatory dynamic test conditions to simulate in-vivo conditions, e.g., realized by a cone-and-plate analyzer. In such tests, titanium- and nitrogen-doped DLC and titanium nitride were found to be optimally anti-thrombotic and better than state-of-the-art polyurethane polymers. This is mainly due to the low tendency to platelet microparticle formation, a high content of remaining platelets in the whole blood after testing and low concentration of platelet activation and aggregation markers. Comparing this result to shear-flow induced cell motility tests with e.g., Dictostelium discoideum cell model organism reveals similar tendencies for the investigated materials.

  9. Assessment of amniotic and polyurethane membrane dressings in the treatment of burns.

    Science.gov (United States)

    Adly, O A; Moghazy, A M; Abbas, A H; Ellabban, A M; Ali, O S; Mohamed, B A

    2010-08-01

    As allograft and xenografts are not available in Islamic countries, amniotic membrane seems to be an effective alternative in the management of deep burns. Its proven bioactivities and modest price suggest that it might be superior to synthetic dressings. Forty-six patients were enrolled in this randomized, controlled clinical trial conducted in the Burn Unit at Suez Canal University Hospital, Ismailia, Egypt. All age groups and both gender were included in the study. Only patients with less than 50% total body surface area burned were included, thus minimizing the dropouts in both groups. All were either second or third degree. These patients were randomly assigned either to group I: amniotic membrane (Biomembrane) dressing, or group II: polyurethane membrane (Tegaderm) dressing. Those in group I demonstrated a significantly lower rate of infection and required less frequent dressing changes than those in group II. They also sustained less electrolyte and albumin loss. The rate of healing in the amniotic membrane group was significantly faster than in the polyurethane group. Furthermore, pain was significantly less when Biomembrane was used. Based on these findings, we recommend the use of lyophilized gamma-irradiated amniotic membrane as an effective alternative for allograft and xenografts in Islamic countries and the Jewish population.

  10. Synthesis and characterization of bio-based polyurethane from ...

    Indian Academy of Sciences (India)

    Benzoylated tannin prepared by benzoylation of cashewnut husk tannin, was treated with hexame-thylenediisocyanate in the presence of 1,4-butanediol as an extender to prepare thermosetting polyurethane. The sample was characterized using FT–IR and 13C NMR spectra. Thermal, morphological, physico-chemical and ...

  11. WEATHERING DEGRADATION OF A POLYURETHANE COATING. (R828081E01)

    Science.gov (United States)

    The degradation of polyurethane topcoat over a chromate pigmented epoxy primer was examined by atomic force microscopy (AFM), scanning electronic microscopy (SEM), X-ray photo-electron spectroscopy (XPS) and Fourier transform infra-red spectroscopy (FTIR) after the coated pane...

  12. Thermoplastic shape-memory polyurethanes based on natural oils

    International Nuclear Information System (INIS)

    Saralegi, Ainara; Eceiza, Arantxa; Corcuera, Maria Angeles; Johan Foster, E; Weder, Christoph

    2014-01-01

    A new family of segmented thermoplastic polyurethanes with thermally activated shape-memory properties was synthesized and characterized. Polyols derived from castor oil with different molecular weights but similar chemical structures and a corn-sugar-based chain extender (propanediol) were used as starting materials in order to maximize the content of carbon from renewable resources in the new materials. The composition was systematically varied to establish a structure–property map and identify compositions with desirable shape-memory properties. The thermal characterization of the new polyurethanes revealed a microphase separated structure, where both the soft (by convention the high molecular weight diol) and the hard phases were highly crystalline. Cyclic thermo-mechanical tensile tests showed that these polymers are excellent candidates for use as thermally activated shape-memory polymers, in which the crystalline soft segments promote high shape fixity values (close to 100%) and the hard segment crystallites ensure high shape recovery values (80–100%, depending on the hard segment content). The high proportion of components from renewable resources used in the polyurethane formulation leads to the synthesis of bio-based polyurethanes with shape-memory properties. (paper)

  13. Development of a phenomenological constitutive model for polyurethane foams

    International Nuclear Information System (INIS)

    Neilsen, M.K.; Morgan, H.S.; Krieg, R.D.; Yoshimura, H.R.

    1989-01-01

    Rigid, closed-cell, polyurethane foam is used in impact limiters in nuclear waste transport containers. During a hypothetical nuclear waste transport accident, the foam is expected to absorb a significant amount of impact energy by undergoing large inelastic volume reductions. Consequently, the crushing of polyurethane foams must be well characterized and accurately modeled to properly analyze a transport container accident. At the request of Sandia National Laboratories, a series of uniaxial, hydrostatic and triaxial compression tests on polyurethane foams were performed by the New Mexico Engineering Research Institute (NMERI). The combination of hydrostatic and triaxial tests was chosen to provide sufficient data to characterize both the volumetric and deviatoric behaviors of the foams and the coupling between the two responses. Typical results from the NMERI tests are included in this paper. A complete description of these tests can be found in Neilsen et al., 1987. Constitutive models that have been used in the past to model foam did not capture some important foam behaviors observed in the NMERI tests. Therefore, a new constitutive model for rigid, closed-cell, polyurethane foams was developed and implemented in two finite element codes. Development of the new model is discussed in this paper. Also, results from analyses with the new model and other constitutive models are presented to demonstrate differences between the various models. 4 refs., 6 figs., 1 tab

  14. Cell–material interactions on biphasic polyurethane matrix

    Science.gov (United States)

    Dicesare, Patrick; Fox, Wade M.; Hill, Michael J.; Krishnan, G. Rajesh; Yang, Shuying; Sarkar, Debanjan

    2013-01-01

    Cell–matrix interaction is a key regulator for controlling stem cell fate in regenerative tissue engineering. These interactions are induced and controlled by the nanoscale features of extracellular matrix and are mimicked on synthetic matrices to control cell structure and functions. Recent studies have shown that nanostructured matrices can modulate stem cell behavior and exert specific role in tissue regeneration. In this study, we have demonstrated that nanostructured phase morphology of synthetic matrix can control adhesion, proliferation, organization and migration of human mesenchymal stem cells (MSCs). Nanostructured biodegradable polyurethanes (PU) with segmental composition exhibit biphasic morphology at nanoscale dimensions and can control cellular features of MSCs. Biodegradable PU with polyester soft segment and hard segment composed of aliphatic diisocyanates and dipeptide chain extender were designed to examine the effect polyurethane phase morphology. By altering the polyurethane composition, morphological architecture of PU was modulated and its effect was examined on MSC. Results show that MSCs can sense the nanoscale morphology of biphasic polyurethane matrix to exhibit distinct cellular features and, thus, signifies the relevance of matrix phase morphology. The role of nanostructured phases of a synthetic matrix in controlling cell–matrix interaction provides important insights for regulation of cell behavior on synthetic matrix and, therefore, is an important tool for engineering tissue regeneration. PMID:23255285

  15. Sorption of Triangular Silver Nanoplates on Polyurethane Foam

    Science.gov (United States)

    Furletov, A. A.; Apyari, V. V.; Garshev, A. V.; Volkov, P. A.; Tolmacheva, V. V.; Dmitrienko, S. G.

    2018-02-01

    The sorption of triangular silver nanoplates on polyurethane foam is investigated as a procedure for creating a nanocomposite sensing material for subsequent use in optical means of chemical analysis. Triangular silver nanoplates are synthesized and characterized, and a simple sorption technique for the formation of a composite material based on these nanoplates is proposed.

  16. Polyurethanes with bio-based and recycled components

    Czech Academy of Sciences Publication Activity Database

    Beneš, Hynek; Vlček, T.; Černá, R.; Hromádková, Jiřina; Walterová, Zuzana; Svitáková, Romana

    2012-01-01

    Roč. 114, č. 1 (2012), s. 71-83 ISSN 1438-7697 R&D Projects: GA MPO 2A-2TP1/135 Institutional research plan: CEZ:AV0Z40500505 Keywords : natural oil * polyol * polyurethane Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.266, year: 2012

  17. Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Salmiah Ibrahim

    2015-04-01

    Full Text Available Castor oil-based polyurethane as a renewable resource polymer has been synthesized for application as a host in polymer electrolyte for electrochemical devices. The polyurethane was added with LiI and NaI in different wt% to form a film of polymer electrolytes. The films were characterized by using attenuated total reflectance-Fourier transform infrared spectroscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, linear sweep voltammetry and transference number measurement. The highest conductivity of 1.42 × 10−6 S cm−1 was achieved with the addition of 30 wt% LiI and 4.28 × 10−7 S·cm−1 upon addition of 30 wt% NaI at room temperature. The temperature dependence conductivity plot indicated that both systems obeyed Arrhenius law. The activation energy for the PU-LiI and PU-NaI systems were 0.13 and 0.22 eV. Glass transition temperature of the synthesized polyurethane decreased from −15.8 °C to ~ −26 to −28 °C upon salts addition. These characterizations exhibited the castor oil-based polyurethane polymer electrolytes have potential to be used as alternative membrane for electrochemical devices.

  18. Polyurethanes elastomers with amide chain extenders of uniform length

    NARCIS (Netherlands)

    van der Schuur, J.M.; Noordover, B.A.J.; Noordover, Bart; Gaymans, R.J.

    2006-01-01

    Toluene diisocyanate based polyurethanes with amide extenders were synthesized poly(propylene oxide) with a number average molecular weight of 2000 and endcapped with toluene diisocyanate was used as the polyether segment. The chain extenders were based on poly(hexamethylene terephthalamide):

  19. Novel polycarbonate-based polyurethane elastomers: composition–property relationship

    Czech Academy of Sciences Publication Activity Database

    Špírková, Milena; Pavličevic, J.; Strachota, Adam; Poreba, Rafal; Bera, O.; Kaprálková, Ludmila; Baldrian, Josef; Šlouf, Miroslav; Lazić, N.; Budinski-Simendic, J.

    2011-01-01

    Roč. 47, č. 5 (2011), s. 959-972 ISSN 0014-3057 R&D Projects: GA ČR GAP108/10/0195 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyurethane elastomer * polycarbonate diol * montmorillonite Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.739, year: 2011

  20. Synthesis and characterization of castor oil based polyurethane ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. A series of interpenetrating polymer networks (IPNs) of castor oil based polyurethane/polyacrylo- nitrile (PU/PAN: 80/20, 60/40, 50/50, 40/60 and 20/80) were synthesized by condensation reaction of castor oil with methylene diisocyanate and acrylonitrile, employing benzoyl peroxide (BPO) and ethylene glycol ...

  1. Use of porous polyurethanes for meniscal reconstruction and meniscal prostheses

    NARCIS (Netherlands)

    deGroot, JH; deVrijer, R; Pennings, AJ; Veth, RPH; Jansen, HWB

    In the past, porous materials made of an aromatic polyurethane (PU) were successfully used for meniscal reconstruction in dogs. Since aromatic PUs yield very toxic fragments upon degradation, a linear PU was synthesized by curing a poly(epsilon-caprolactone) and 1,4-trans-cyclohexane diisocyanate I

  2. 78 FR 55641 - Polyurethane-Type Polymers; Tolerance Exemption

    Science.gov (United States)

    2013-09-11

    ...-Type Polymers; Tolerance Exemption AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule... polymers produced by the reaction of either 1,6-hexanediisocyanate; 2,4,4-trimethyl-1,6-hexanediisocyanate... (also known as polyurethane-type polymers), when used as an inert ingredient in a pesticide chemical...

  3. Utilization of natural oils for decomposition of polyurethanes

    Czech Academy of Sciences Publication Activity Database

    Beneš, Hynek; Černá, R.; Ďuračková, Andrea; Látalová, Petra

    2012-01-01

    Roč. 20, č. 1 (2012), s. 175-185 ISSN 1566-2543 R&D Projects: GA MPO 2A-2TP1/135 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyurethane * oleochemical polyol * chemical recycling Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.495, year: 2012

  4. Synthesis and characterization of castor oil-based polyurethane

    Indian Academy of Sciences (India)

    Polyurethane (PU) based on polyol, derived from castor oil has been synthesized and characterized for potential use as a base material for electrolytes. Transesterification process of castor oil formed a polyol with hydroxyl value of 190 mg KOH g–1 and molecular weight of 2786 g mol–1. The polyols together with 4 ...

  5. Characterization studies of lower and non-TDI polyurethane encapsulants

    International Nuclear Information System (INIS)

    Wilson, M.H.

    1993-09-01

    Polyurethane prepolymers containing toluene diisocyanate (TDI) are used within the Nuclear Weapons complex for many adhesive and encapsulation applications. As part of a program for minimizing hazards to workers and the environment, TDI will be eliminated. This report presents evaluation of alternative encapsulants

  6. Sanitary and hygienic assessment of polyurethane foam compositions

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V V; Putilina, O.N. (Donetskii NII Gigieny Truda i Professional' nykh Zabolevanii (USSR))

    1990-07-01

    Describes and presents the results of a long-term study performed by the Skochinski Institute and DonUGI into the suitability of various Soviet and foreign polyurethane foams as rock strengtheners in coal mines. Concludes that although further research is needed to clarify the effect of polyurethane absorbed by coal particles and on pneumoconioses, the industrial use of injectable polyisocyanite-based polyurethanes in amounts of up to 1 t/shift and with a minimum air exchange rate of 300 m{sup 3}/min is feasible as long as the safety laws are strictly observed. Those working with this material should be given a medical examination at least once a year. If the substance comes into contact with the skin or eyes, they should be washed with a 1-3% solution of sodium bicarbonate and then pure water; if it contaminates protective clothing this should be degassed in a 5-10% solution of ammonia for 24 hours and then washed. Due to the risk of toxic substances being released from the components of the polyurethane in the event of an endogenic fire, all workers should be equipped with their own personal breathing apparatus.

  7. Recycling Waste Polyurethane as a Carbon Resource in Ironmaking ...

    African Journals Online (AJOL)

    Globally, major avenues available for dealing with waste Poly-Urethane (PU) are disposal at landfill sites and incineration. However, PU contains high levels of carbon and hydrogen that can be recovered for use as reductant in metal extraction processes. In this work the use of post-consumer PU as reductant for the ...

  8. Investigation of the interfacial properties of polyurethane/carbon nanotube hybrid composites: A molecular dynamics study

    Science.gov (United States)

    Goclon, Jakub; Panczyk, Tomasz; Winkler, Krzysztof

    2018-03-01

    Considering the varied applications of hybrid polymer/carbon nanotube composites and the constant progress in the synthesis methods of such materials, we report a theoretical study of interfacial layer formation between pristine single-wall carbon nanotubes (SWCNTs) and polyurethane (PU) using molecular dynamic simulations. We vary the SWCNT diameter and the number of PU chains to examine various PU-SWCNT interaction patterns. Our simulations indicate the important role of intra-chain forces in PU. No regular polymeric structures could be identified on the carbon nanotube surface during the simulations. We find that increasing the SWCNT diameter results in stronger polymer binding. However, higher surface loadings of PU lead to stronger interpenetration by the polymeric segments; this effect is more apparent for SWCNTs with small diameters. Our core finding is that the attached PU binds most strongly to the carbon nanotubes with the largest diameters. Polymer dynamics reveal the loose distribution of PU chains in these systems.

  9. 3D printing of highly elastic strain sensors using polyurethane/multiwall carbon nanotube composites

    Science.gov (United States)

    Christ, Josef F.; Hohimer, Cameron J.; Aliheidari, Nahal; Ameli, Amir; Mo, Changki; Pötschke, Petra

    2017-04-01

    As the desire for wearable electronics increases and the soft robotics industry advances, the need for novel sensing materials has also increased. Recently, there have been many attempts at producing novel materials, which exhibit piezoresistive behavior. However, one of the major shortcomings in strain sensing technologies is in the fabrication of such sensors. While there is significant research and literature covering the various methods for developing piezoresistive materials, fabricating complex sensor platforms is still a manufacturing challenge. Here, we report a facile method to fabricate multidirectional embedded strain sensors using additive manufacturing technology. Pure thermoplastic polyurethane (TPU) and TPU/multiwall carbon nanotubes (MWCNT) nanocomposites were 3D printed in tandem using a low-cost multi-material FDM printer to fabricate uniaxial and biaxial strain sensors with conductive paths embedded within the insulative TPU platform. The sensors were then subjected to a series of cyclic strain loads. The results revealed excellent piezoresistive responses of the sensors with cyclic repeatability in both the axial and transverse directions and in response to strains as high as 50%. Further, while strain-softening did occur in the embedded printed strain sensors, it was predictable and similar to the results found in the literature for bulk polymer nanocomposites. This works demonstrates the possibility of manufacturing embedded and multidirectional flexible strain sensors using an inexpensive and versatile method, with potential applications in soft robotics and flexible electronics and health monitoring.

  10. Electrical conductivity and piezoresistive response of 3D printed thermoplastic polyurethane/multiwalled carbon nanotube composites

    Science.gov (United States)

    Hohimer, Cameron J.; Petrossian, Gayaneh; Ameli, Amir; Mo, Changki; Pötschke, Petra

    2018-03-01

    Additive manufacturing (AM) is an emerging field experiencing rapid growth. This paper presents a feasibility study of using fused-deposition modeling (FDM) techniques with smart materials to fabricate objects with sensing and actuating capabilities. The fabrication of objects with sensing typically requires the integration and assembly of multiple components. Incorporating sensing elements into a single FDM process has the potential to significantly simplify manufacturing. The integration of multiple materials, especially smart materials and those with multi-functional properties, into the FDM process is challenging and still requires further development. Previous works by the authors have demonstrated a good printability of thermoplastic polyurethane/multiwall carbon nanotubes (TPU/MWCNT) while maintaining conductivity and piezoresistive response. This research explores the effects of layer height, nozzle temperature, and bed temperature on the electrical conductivity and piezoresistive response of printed TPU/MWCNT nanocomposites. An impedance analyzer was used to determine the conductivity of printed samples under different printing conditions from 5Hz-13MHz. The samples were then tested under compression loads to measure the piezoresistive response. Results show the conductivity and piezoresistive response are only slightly affected by the print parameters and they can be largely considered independent of the print conditions within the examined ranges of print parameters. This behavior simplifies the printing process design for TPU/MWCNT complex structures. This work demonstrates the possibility of manufacturing embedded and multidirectional flexible strain sensors using an inexpensive and versatile method, with potential applications in soft robotics, flexible electronics, and health monitoring.

  11. The influence of hard segment content on mechanical and thermal properties of polycarbonate-based polyurethane materials

    Directory of Open Access Journals (Sweden)

    Budinski-Simendić Jaroslava

    2012-01-01

    Full Text Available Aliphatic segmented polyurethanes were prepared by one-step procedure in catalytic reaction between polycarbonate diol, hexamethylene-diisocyanate and 1,4-butandiol (as chain extender. The hard segment content TS was varied (17, 24, 30 and 42 wt. % by changing the ratio of starting compounds. The soft segment is made from flexible aliphatic polycarbonate diol, while hard segments consist of chain extender and diisocyanate component. In order to study the hydrogen bonding formation and phase separation, Fourier transform infrared spectroscopy (FT-IR was used. Wide angle X-ray scattering (WAXS was performed to determine a degree of crystallinity and to investigate the phase behavior of prepared elastomers. The effect of TS content on mechanical properties (tensile strength, elongation at break and hardness was tested. Thermal behavior of prepared novel polycarbonate-based polyurethanes was investigated using differential scanning callorimetry (DSC. It was determined that the elastomer which contains the highest amount of urethane groups in its structure (TS content of 42 wt. % exhibits the most pronounced phase separation and the highest degree of crystallinity. All prepared polyurethanes exhibit high elongation at break (over 700%. The glass transition temperature Tg of prepared samples was in the temperature region from −39 to −36°C, and it was found to be slightly influenced by the soft segment content. The enthalpy of chain segments relaxation in diffused region between hard and soft domains (detected in the temperature range from 35 to 55 °C was decreased with the increase of hard segment content. The multiple melting of hard segments (connected with the dissruption of physical crosslinks appeared above 100 °C. It was found that the melting enthalpy linearly increases with the increase of urethane group content. Sample with 42 wt. % of TS has the highest value of melting enthalpy (41.5 J/g.

  12. Novel route of synthesis for cellulose fiber-based hybrid polyurethane

    Science.gov (United States)

    Ikhwan, F. H.; Ilmiati, S.; Kurnia Adi, H.; Arumsari, R.; Chalid, M.

    2017-07-01

    Polyurethanes, obtained by the reaction of a diisocyanate compound with bifunctional or multifunctional reagent such as diols or polyols, have been studied intensively and well developed. The wide range modifier such as chemical structures and molecular weight to build polyurethanes led to designs of materials that may easily meet the functional product demand and to the extraordinary spreading of these materials in market. Properties of the obtained polymer are related to the chemical structure of polyurethane backbone. A number polyurethanes prepared from biomass-based monomers have been reported. Cellulose fiber, as a biomass material is containing abundant hydroxyl, promising material as chain extender for building hybrid polyurethanes. In previous researches, cellulose fiber was used as filler in synthesis of polyurethane composites. This paper reported a novel route of hybrid polyurethane synthesis, which a cellulose fiber was used as chain extender. The experiment performed by reacting 4,4’-Methylenebis (cyclohexyl isocyanate) (HMDI) and polyethylene glycol with variation of molecular weight to obtained pre-polyurethane, continued by adding micro fiber cellulose (MFC) with variation of type and composition in the mixture. The experiment was evaluated by NMR, FTIR, SEM and STA measurement. NMR and FTIR confirmed the reaction of the hybrid polyurethane. STA showed hybrid polyurethane has good thermal stability. SEM showed good distribution and dispersion of sorghum-based MFC.

  13. The Modification of Polyurethane Foams Using New Boroorganic Polyols (II) Polyurethane Foams from Boron-Modified Hydroxypropyl Urea Derivatives

    Science.gov (United States)

    2014-01-01

    The work focuses on research related to determination of application possibility of new, ecofriendly boroorganic polyols in rigid polyurethane foams production. Polyols were obtained from hydroxypropyl urea derivatives esterified with boric acid and propylene carbonate. The influence of esterification type on properties of polyols and next on polyurethane foams properties was determined. Nitrogen and boron impacts on the foams' properties were discussed, for instance, on their physical, mechanical, and electric properties. Boron presence causes improvement of dimensional stability and thermal stability of polyurethane foams. They can be applied even at temperature 150°C. Unfortunately, introducing boron in polyurethanes foams affects deterioration of their water absorption, which increases as compared to the foams that do not contain boron. However, presence of both boron and nitrogen determines the decrease of the foams combustibility. Main impact on the decrease combustibility of the obtained foams has nitrogen presence, but in case of proper boron and nitrogen ratio their synergic activity on the combustibility decrease can be easily seen. PMID:24587721

  14. Distributed flexibility in inertial swimmers

    Science.gov (United States)

    Floryan, Daniel; Rowley, Clarence W.; Smits, Alexander J.

    2017-11-01

    To achieve fast and efficient swimming, the flexibility of the propulsive surfaces is an important feature. To better understand the effects of distributed flexibility (either through inhomogeneous material properties, varying geometry, or both) we consider the coupled solid and fluid mechanics of the problem. Here, we develop a simplified model of a flexible swimmer, using Euler-Bernoulli theory to describe the solid, Theodorsen's theory to describe the fluid, and a Blasius boundary layer to incorporate viscous effects. Our primary aims are to understand how distributed flexibility affects the thrust production and efficiency of a swimmer with imposed motion at its leading edge. In particular, we examine the modal shapes of the swimmer to gain physical insight into the observed trends. Supported under ONR MURI Grant N00014-14-1-0533, Program Manager Robert Brizzolara.

  15. Effect of thermoplastic polyurethane (TPU) on the thermal and mechanical properties of polylactic acid (PLA)/curcumin blends

    Science.gov (United States)

    Sharifah, I. S. S.; Adnan, M. D. A.; Nor Khairusshima, M. K.; Shaffiar, N. M.; Buys, Y. F.

    2018-01-01

    Polylactic acid (PLA) is known to be brittle by nature and thus limits the flexibility of the polymer. A possible solution to enhance the flexibility of PLA is to add a flexible polymeric based material such as thermoplastic polyurethane (TPU). In this study, 30-50 wt% of TPU was added into PLA/curcumin blends to improve its flexibility. Thermal analysis using differential scanning calorimetry shows that further additions of TPU at the expense of PLA did not affect the glass transition temperature, crystallisation temperature and melting temperature of the blends. Fibers of PLA/curcumin/TPU were successfully drawn and Single Fiber Tensile Test (SFTT) showed vast improvement in elongation at break. The initial addition of 30 wt% of TPU to the brittle PLA/curcumin composition causes a significant increase in elongation at break by 39 times and further additions at 50 wt %, the elongation at break increases by 105 times. However, with the increase in elongation, a decrease in strength and Young’s modulus was observed.

  16. Decreased astroglial cell adhesion and proliferation on zinc oxide nanoparticle polyurethane composites

    Directory of Open Access Journals (Sweden)

    Justin T Seil

    2008-11-01

    Full Text Available Justin T Seil, Thomas J WebsterLaboratory for Nanomedicine Research, Division of Engineering, Brown University, Providence, RI, USAAbstract: Nanomaterials offer a number of properties that are of interest to the field of neural tissue engineering. Specifically, materials that exhibit nanoscale surface dimensions have been shown to promote neuron function while simultaneously minimizing the activity of cells such as astrocytes that inhibit central nervous system regeneration. Studies demonstrating enhanced neural tissue regeneration in electrical fields through the use of conductive materials have led to interest in piezoelectric materials (or those materials which generate a transient electrical potential when mechanically deformed such as zinc oxide (ZnO. It has been speculated that ZnO nanoparticles possess increased piezoelectric properties over ZnO micron particles. Due to this promise in neural applications, the objective of the present in vitro study was, for the first time, to assess the activity of astroglial cells on ZnO nanoparticle polymer composites. ZnO nanoparticles embedded in polyurethane were analyzed via scanning electron microscopy to evaluate nanoscale surface features of the composites. The surface chemistry was characterized via X-ray photoelectron spectroscopy. Astroglial cell response was evaluated based on cell adhesion and proliferation. Astrocyte adhesion was significantly reduced on ZnO nanoparticle/polyurethane (PU composites with a weight ratio of 50:50 (PU:ZnO wt.%, 75:25 (PU:ZnO wt.%, and 90:10 (PU:ZnO wt.% in comparison to pure PU. The successful production of ZnO nanoparticle composite scaffolds suitable for decreasing astroglial cell density demonstrates their potential as a nerve guidance channel material with greater efficiency than what may be available today.Keywords: zinc oxide, nanoparticles, astrocytes, neural tissue, nervous system, biomaterials

  17. Decreased astroglial cell adhesion and proliferation on zinc oxide nanoparticle polyurethane composites

    Science.gov (United States)

    Seil, Justin T; Webster, Thomas J

    2008-01-01

    Nanomaterials offer a number of properties that are of interest to the field of neural tissue engineering. Specifically, materials that exhibit nanoscale surface dimensions have been shown to promote neuron function while simultaneously minimizing the activity of cells such as astrocytes that inhibit central nervous system regeneration. Studies demonstrating enhanced neural tissue regeneration in electrical fields through the use of conductive materials have led to interest in piezoelectric materials (or those materials which generate a transient electrical potential when mechanically deformed) such as zinc oxide (ZnO). It has been speculated that ZnO nanoparticles possess increased piezoelectric properties over ZnO micron particles. Due to this promise in neural applications, the objective of the present in vitro study was, for the first time, to assess the activity of astroglial cells on ZnO nanoparticle polymer composites. ZnO nanoparticles embedded in polyurethane were analyzed via scanning electron microscopy to evaluate nanoscale surface features of the composites. The surface chemistry was characterized via X-ray photoelectron spectroscopy. Astroglial cell response was evaluated based on cell adhesion and proliferation. Astrocyte adhesion was significantly reduced on ZnO nanoparticle/polyurethane (PU) composites with a weight ratio of 50:50 (PU:ZnO) wt.%, 75:25 (PU:ZnO) wt.%, and 90:10 (PU:ZnO) wt.% in comparison to pure PU. The successful production of ZnO nanoparticle composite scaffolds suitable for decreasing astroglial cell density demonstrates their potential as a nerve guidance channel material with greater efficiency than what may be available today. PMID:19337420

  18. Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering.

    Science.gov (United States)

    Wu, Yaobin; Wang, Ling; Guo, Baolin; Shao, Yongpin; Ma, Peter X

    2016-05-01

    Myelination of Schwann cells (SCs) is critical for the success of peripheral nerve regeneration, and biomaterials that can promote SCs' neurotrophin secretion as scaffolds are beneficial for nerve repair. Here we present a biomaterials-approach, specifically, a highly tunable conductive biodegradable flexible polyurethane by polycondensation of poly(glycerol sebacate) and aniline pentamer, to significantly enhance SCs' myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. SCs are cultured on these conductive polymer films, and the biocompatibility of these films and their ability to enhance myelin gene expressions and sustained neurotrophin secretion are successfully demonstrated. The mechanism of SCs' neurotrophin secretion on conductive films is demonstrated by investigating the relationship between intracellular Ca(2+) level and SCs' myelination. Furthermore, the neurite growth and elongation of PC12 cells are induced by adding the neurotrophin medium suspension produced from SCs-laden conductive films. These data suggest that these conductive degradable polyurethanes that enhance SCs' myelin gene expressions and sustained neurotrophin secretion perform great potential for nerve regeneration applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. ENGINEERING DESIGN: EICOSANE MICROCAPSULES SYNTHESIS AND APPLICATION IN POLYURETHANE FOAMS AIMING TO DIMINISH WHEELCHAIR CUSHION EFFECT ON SKIN TEMPERATURE

    Directory of Open Access Journals (Sweden)

    ELISA M. BERETTA

    2016-12-01

    Full Text Available Thermal comfort of wheelchairs still requires improvements, since users remain on the chair for as long as 12 h a day. Increased sweating makes the skin more susceptible to colonization by fungi and bacteria, and may cause pressure ulcers. In this sense, the microencapsulation of Phase-Change Materials (PCMs may help to enhance wheelchair cushion comfort by regulating heat exchange. This study describes the production of PCM microcapsules and their application in flexible polyurethane foams after expansion, and assesses improvements in heat exchange. Microcapsules with eicosane core coated with melamine-formaldehyde were produced. Eicosane is a thermoregulation agent whose phase-change temperature is near that of the human body’s. Microcapsules were characterized by thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and Fourier transform infrared spectroscopy. Then, microcapsules were applied on polyurethane foams by vacuum filtration and high-pressure air gun. Samples were exposed to a heat source and analysed by infrared thermography. The results indicate that thermal load increased in samples treated with microcapsules, especially by pressure air gun, and show that it is possible to enhance thermal comfort in wheelchair seats. Thereby, this study contributes to enhance quality of life for wheelchair users, focusing on thermal comfort provided by cushion seats made from PU foam.

  20. Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source.

    Science.gov (United States)

    Nakajima-Kambe, T; Onuma, F; Kimpara, N; Nakahara, T

    1995-06-01

    Various soil samples were screened for the presence of microorganisms which have the ability to degrade polyurethane compounds. Two strains with good polyurethane degrading activity were isolated. The more active strain was tentatively identified as Comamonas acidovorans. This strain could utilize polyester-type polyurethanes but not the polyether-type polyurethanes as sole carbon and nitrogen sources. Adipic acid and diethylene glycol were probably the main degradation products when polyurethane was supplied as a sole carbon and nitrogen source. When ammonium nitrate was used as nitrogen source, only diethylene glycol was detected after growth on polyurethane.

  1. Comparison of anti-corrosion properties of polyurethane based composite coatings with low infrared emissivity

    International Nuclear Information System (INIS)

    Wang Yajun; Xu Guoyue; Yu Huijuan; Hu Chen; Yan Xiaoxing; Guo Tengchao; Li Jiufen

    2011-01-01

    Four polyurethane resins, pure polyurethane (PU), epoxy modified polyurethane (EPU), fluorinated polyurethane (FPU) and epoxy modified fluorinated polyurethane (EFPU), with similar polyurethane backbone structure but different grafting group were used as organic adhesive for preparing low infrared emissivity coatings with an extremely low emissivity near 0.10 at 8-14 μm, respectively. By using these four resins, the effect of different resin matrics on the corrosion protection of the low infrared emissivity coatings was investigated in detail by using neutral salt spray test, SEM and FTIR. It was found that the emissivity of the coatings with different resin matrics changes significantly in corrosion media. And the results indicated that the coating using EFPU as organic adhesive exhibited excellent corrosion resistance property which was mainly attributed to the presence of epoxy group and atomic fluorine in binder simultaneously.

  2. A Flexible Multifunctional Sensor Based on Carbon Nanotube/Polyurethane Composite

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Benlikaya, R.; Svoboda, P.; Petráš, D.

    2013-01-01

    Roč. 13, č. 10 (2013), s. 4045-4048 ISSN 1530-437X Grant - others:GA MŠk(CZ) ED2.1.00/03.0111; UTB Zlín(CZ) iga/ft/2012/022 Institutional research plan: CEZ:AV0Z20600510 Institutional support: RVO:67985874 Keywords : carbon nanotubes * chemical vapor sensing * deformation sensing * polymer composite Subject RIV: BK - Fluid Dynamics Impact factor: 1.852, year: 2013

  3. Experimental Study on the Influence of Thermal Feedback on the Burning Behavior of Flexible Polyurethane

    DEFF Research Database (Denmark)

    Poulsen, Annemarie; Bwalya, Alex; Jomaas, Grunde

    2013-01-01

    facility with a compartment measuring 2400 mm wide x 2800 mm deep x 2400 mm high. The room had a rectangular vent (opening under a calorimeter hood) measuring 740 mm wide x 1500 mm high that was located in one of the 2400 mm walls. In each of the two experiments, the room was lined with a material that had...

  4. Nerve regeneration using tubular scaffolds from biodegradable polyurethane.

    Science.gov (United States)

    Hausner, T; Schmidhammer, R; Zandieh, S; Hopf, R; Schultz, A; Gogolewski, S; Hertz, H; Redl, H

    2007-01-01

    In severe nerve lesion, nerve defects and in brachial plexus reconstruction, autologous nerve grafting is the golden standard. Although, nerve grafting technique is the best available approach a major disadvantages exists: there is a limited source of autologous nerve grafts. This study presents data on the use of tubular scaffolds with uniaxial pore orientation from experimental biodegradable polyurethanes coated with fibrin sealant to regenerate a 8 mm resected segment of rat sciatic nerve. Tubular scaffolds: prepared by extrusion of the polymer solution in DMF into water coagulation bath. The polymer used for the preparation of tubular scaffolds was a biodegradable polyurethane based on hexamethylene diisocyanate, poly(epsilon-caprolactone) and dianhydro-D-sorbitol. EXPERIMENTAL MODEL: Eighteen Sprague Dawley rats underwent mid-thigh sciatic nerve transection and were randomly assigned to two experimental groups with immediate repair: (1) tubular scaffold, (2) 180 degrees rotated sciatic nerve segment (control). Serial functional measurements (toe spread test, placing tests) were performed weekly from 3rd to 12th week after nerve repair. On week 12, electrophysiological assessment was performed. Sciatic nerve and scaffold/nerve grafts were harvested for histomorphometric analysis. Collagenic connective tissue, Schwann cells and axons were evaluated in the proximal nerve stump, the scaffold/nerve graft and the distal nerve stump. The implants have uniaxially-oriented pore structure with a pore size in the range of 2 micorm (the pore wall) and 75 x 700 microm (elongated pores in the implant lumen). The skin of the tubular implants was nonporous. Animals which underwent repair with tubular scaffolds of biodegradable polyurethanes coated with diluted fibrin sealant had no significant functional differences compared with the nerve graft group. Control group resulted in a trend-wise better electrophysiological recovery but did not show statistically significant

  5. The use of polyurethane as encapsulating method for polymer solar cells—An inter laboratory study on outdoor stability in 8 countries

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Makris, Theodoros; Lianos, Panagiotis

    2012-01-01

    A new encapsulation method for organic solar cells has been tested on flexible solar modules and cells embedded in polyurethane, sandwiched between a tempered glass plate and a polycarbonate plate. Panels, each containing 10 organic solar modules/cells, were fabricated and installed for outdoor...... exposure in eight different countries for 4½ months. In order to minimize potential deviations in procedures and equipment, one person was responsible for the fabrication, installation and initial and final IV-measurements of the panels using the same equipment for all measurements and calibrations...

  6. Flexible Electronics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Flexible Electronics Research Facility designs, synthesizes, tests, and fabricates materials and devices compatible with flexible substrates for Army information...

  7. Extraction of uranium from aqueous solution by phosphonic acid-imbedded polyurethane foam

    International Nuclear Information System (INIS)

    Katragadda, S.; Gesser, H.D.; Chow, A.

    1997-01-01

    Phenylphosphonic acid was imbedded into the matrix of the polyurethane foam during the fabrication process of the polymer. The extraction of uranium by phosphonic acid-imbedded polyurethane foam and blank polyurethane (i.e., foam without phosphonic acid functional groups) was investigated. Phosphonic acid-imbedded foam showed superior extractability of uranium from solutions with pH = 7.0 ± 1.5 over a wide range of temperatures. (author)

  8. Bio-Based Polyurethane Containing Isosorbide for Use in Composites and Coatings

    Science.gov (United States)

    2015-04-01

    ARL-TR-7259 ● APR 2015 US Army Research Laboratory Bio-Based Polyurethane Containing Isosorbide for Use in Composites and...copyright notation hereon. ARL-TR-7259 ● APR 2015 US Army Research Laboratory Bio-Based Polyurethane Containing Isosorbide for Use...4. TITLE AND SUBTITLE Bio-Based Polyurethane Containing Isosorbide for Use in Composites and Coatings 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  9. Use of Polyurethane Coating to Prevent Corrosion in Oil and Gas Pipelines Transfer

    OpenAIRE

    Amir Samimi

    2012-01-01

    Corrosion is one of the major problems in the oil and gas industry is one that automatically allocates huge sums annually. Polyurethane is a thermoses polymer with various applications. Using form this polymer has spread for military applications by Otto Bayer in 1930. In one general look polyurethane is product of Iso Syanate and ploy with each other, So that: Iso + ploy = polyurethane. Spend large cost for application and launching oil and gas transitions, has cleared the necessity protecti...

  10. Hemocompatibility studies on a degradable polar hydrophobic ionic polyurethane (D-PHI).

    Science.gov (United States)

    Brockman, Kathryne S; Kizhakkedathu, Jayachandran N; Santerre, J Paul

    2017-01-15

    Biomaterial blood compatibility is a complex process that involves four key pathways, including the coagulation cascade, the complement system, platelets, and leukocytes. While many studies have addressed the initial contact of blood with homopolymeric (e.g. Teflon) or simple copolymeric (e.g. Dacron) biomaterials, relatively less attention has been given to investigating blood coagulation with respect to complex copolymeric systems containing well defined and diverse function. The current study sought to assess the hemocompatibility of a complex polyurethane (PU) containing a unique combination of polar, hydrophobic, and ionic domains (D-PHI). This included a whole blood (WB) study, followed by tests on the intrinsic and extrinsic coagulation pathways, complement activation, platelet activation, and an assessment of the effect of leukocytes on platelet-biomaterial interactions. A small increase in blood clot formation was observed on D-PHI in WB; however, there was no significant increase in clotting via the intrinsic coagulation cascade. No significant increase in platelet adhesion and only a very slight increase in platelet activation were observed in comparison to albumin-coated substrates (negative control). D-PHI showed mild complement activation and increased initiation of the extrinsic pathway of coagulation, along with the observation that leukocytes were important in mediating platelet-biomaterial interactions. It is proposed that complement is responsible for activating coagulation by inciting leukocytes to generate tissue factor (TF), which causes extrinsic pathway activation. This low level of blood clotting on D-PHI's surface may be necessary for the beneficial wound healing of vascular constructs that has been previously reported for this material. Understanding the hemocompatibility of devices intended for blood-contacting applications is important for predicting device failure. Hemocompatibility is a complex parameter (affected by at least four

  11. Study on thermal properties of synthetic and bio-based polyurethane

    Directory of Open Access Journals (Sweden)

    Šercer Mladen

    2015-01-01

    Full Text Available Polymers that are created by the chemical polymerization of naturally occurring monomers are attracting considerable commercial interest in the last few years because of their non-toxicity, biodegradability and biocompatibility and use of feedstock that is renewable. The development of specialized lignin compounds, such as electrically conducting polymers, engineering plastics and polyurethane, is an area of highest interest and growth. The paper will present the comparison of the mechanical and thermal properties of conventional polyurethane and bio-based polyurethane, i.e. polyurethane based on polyols produced by liquefaction of waste wood biomass.

  12. Investigation of the pressure generated in the mould cavity during polyurethane integral skin foam moulding

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available An industrial scale measuring system was set up to investigate the pressure arising in the mould cavity during polyurethane integral skin foaming. The system is able to measure the pressure arising in the mould cavity and the pressure distribution using a piezoresistive pressure sensor. The pressure distribution was measured at 18 points along the mould surface at constant production parameters. Then six production parameters, which affect the pressure, were investigated in detail with the Taguchi method of experimental design. The results of the design were processed by ANOVA (analysis of variance. Three major influencing parameters were estimated by regression analysis. Finally an equation was developed to give a good estimation to the pressure arising in the mould cavity.

  13. Mechanical Properties of Carbon Nanotube/Polyurethane Nanocomposites via PPG Dispersion with MWCNTs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Won; Kim, Jong Seok [Chonbuk National University, Jeonju (Korea, Republic of)

    2015-12-15

    In order to improve the dispersity of nanofiller, polyurethane (PU) nanocomposites were manufactured via poly(propylene gylcol) (PPG) dispersion with MWCNTs prepared by using a ball mill shaker. MWCNTs could be functionalized by treating with the hydrogen peroxide (H{sub 2}O{sub 2}). Tensile strengths and elongations at break of PU/H{sub 2}O{sub 2} treated MWCNTs nanocomposites were enhanced compared to those of the PU/pristine MWCNTs nanocomposites. The good dispersion of MWCNTs shown in SEM images was obtained by the functionalization of MWCNTs surface. PU/carbon black (CB) composites showed no significant change in the tensile properties. The tensile properties of PU nanocomposites containing pristine MWCNTs or H{sub 2}O{sub 2} treated MWCNTs were enhanced with increasing dispersion time. As a result, it was certified that the enhanced dispersity of nanofiller brought the improvement of the tensile properties of the MWCNTs based PU nanocomposites.

  14. Improved thermal stability and wettability behavior of thermoplastic polyurethane / barium metaborate composites

    International Nuclear Information System (INIS)

    Baştürka, Emre; Madakbaş, Seyfullah; Kahraman, Memet Vezir

    2016-01-01

    In this paper, it was targeted to the enhance thermal stability and wettability behavior of thermoplastic polyurethane (TPU) by adding barium metaborate. TPU-Barium metaborate composites were prepared by adding various proportions of barium metaborate to TPU. The chemical structures of the composites were characterised by fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. All prepared composites have extremely high Tg and thermal stability as determined from DSC and TGA analysis. All composite materials have the Tg ranging from 15 to 35 °C. The surface morphologies of the composites were investigated by a scanning electron microscopy. Mechanical properties of the samples were characterized with stress-strain test. Hydrophobicity of the samples was determined by the contact angle measurements. The obtained results proved that thermal, hydrophobic and mechanical properties were improved. (author)

  15. Atomic force microscopy imaging of polyurethane nanoparticles onto different solid substrates

    International Nuclear Information System (INIS)

    Beddin Fritzen-Garcia, Mauricia; Giehl Zanetti-Ramos, Betina; Schweitzer de Oliveira, Cristian; Soldi, Valdir; Avelino Pasa, Andre; Creczynski-Pasa, Tania Beatriz

    2009-01-01

    Atomic force microscopy (AFM) is a technique suited for characterizing nanoparticles on solid surfaces because it offers the capability of 3D visualization and quantitative information about the topography of the samples. In the present work, contact-mode AFM has been applied to imaging polyurethane nanoparticles formulated from a natural triol and isophorone diisocyanate (IPDI) in the presence of poly(ethylene glycol) (PEG). The colloidal polymeric system was deposited on mica, hydrophilic and hydrophobic silicon solid substrates to evaluate the size and shape of the nanoparticles. Our data showed that the nanoparticles were better distributed on mica and hydrophilic silicon. From the analysis of line-scan profiles we obtained different values for the ratio between the diameter and the height of the nanoparticles, indicating that the shape of the particles depends on the interaction between the nanoparticles and the substrate

  16. Improved thermal stability and wettability behavior of thermoplastic polyurethane / barium metaborate composites

    Energy Technology Data Exchange (ETDEWEB)

    Baştürka, Emre; Madakbaş, Seyfullah; Kahraman, Memet Vezir, E-mail: smadakbas@marmara.edu.tr [Department of Chemistry, Marmara University, Istanbul (Turkey)

    2016-03-15

    In this paper, it was targeted to the enhance thermal stability and wettability behavior of thermoplastic polyurethane (TPU) by adding barium metaborate. TPU-Barium metaborate composites were prepared by adding various proportions of barium metaborate to TPU. The chemical structures of the composites were characterised by fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. All prepared composites have extremely high Tg and thermal stability as determined from DSC and TGA analysis. All composite materials have the Tg ranging from 15 to 35 °C. The surface morphologies of the composites were investigated by a scanning electron microscopy. Mechanical properties of the samples were characterized with stress-strain test. Hydrophobicity of the samples was determined by the contact angle measurements. The obtained results proved that thermal, hydrophobic and mechanical properties were improved. (author)

  17. Polyurethane/poly(vinyl alcohol hydrogel coating improves the cytocompatibility of neural electrodes

    Directory of Open Access Journals (Sweden)

    Mei Li

    2015-01-01

    Full Text Available Neural electrodes, the core component of neural prostheses, are usually encapsulated in polydimethylsiloxane (PDMS. However, PDMS can generate a tissue response after implantation. Based on the physicochemical properties and excellent biocompatibility of polyurethane (PU and poly(vinyl alcohol (PVA when used as coating materials, we synthesized PU/PVA hydrogel coatings and coated the surface of PDMS using plasma treatment, and the cytocompatibility to rat pheochromocytoma (PC12 cells was assessed. Protein adsorption tests indicated that the amount of protein adsorption onto the PDMS substrate was reduced by 92% after coating with the hydrogel. Moreover, the PC12 cells on the PU/PVA-coated PDMS showed higher cell density and longer and more numerous neurites than those on the uncoated PDMS. These results indicate that the PU/PVA hydrogel is cytocompatible and a promising coating material for neural electrodes to improve their biocompatibility.

  18. Development of bacterially resistant polyurethane for coating medical devices

    International Nuclear Information System (INIS)

    Roohpour, Nima; Moshaverinia, Alireza; Wasikiewicz, Jaroslaw M; Paul, Deepen; Vadgama, Pankaj; Wilks, Mark; Millar, Michael

    2012-01-01

    Polyurethanes have been widely used in medicine for coating and packaging implantable and other medical devices. Polyether-urethanes, in particular, have superior mechanical properties and are biocompatible, but in common with other medical materials they are susceptible to microbial film formation. In this study, polyether-urethane was end-capped with silver lactate and silver sulfadiazine functional groups to produce a bacterially resistant polymer without sacrificing the useful mechanical properties of the polyether-polyurethane. The silver ions were covalently incorporated into the polymer during chain extension of the prepolymer. The functionalized polymers were structurally characterized by light scattering, electron microscopy, NMR, FTIR and Raman spectroscopy. Mechanical properties, hydrophilicity, in vitro stability and antibacterial action of polymers were also investigated. Results indicate that both silver salts were successfully incorporated into the polymer structure without significant effect on mechanical properties, whilst conferring acceptable bacterial resistance.

  19. Gamma radiation effect on sisal / polyurethane composites without coupling agents

    Directory of Open Access Journals (Sweden)

    Marina Cardoso Vasco

    Full Text Available Abstract Natural fibers and polyurethane based composites may present chemical bonding between the components of the polymer and the lignin of the fiber. The incidence of radiation can cause degradation of the polymeric material and alter its mechanical properties. The objective of this study was to obtain and characterize cold pressed composites from polyurethane derived from castor oil and sisal fibers, without coupling agents, through thermogravimetric and mechanical tests, before and after the incidence of 25 kGy dose of gamma radiation. Woven composites that were not irradiated had maximum values of 4.40 GPa for flexural elastic modulus on three point flexural test and dispersed fiber composite that were not irradiated had maximum values of 2.25 GPa. These materials are adequate for use in non-structural applications in radiotherapy and radiodiagnostic rooms.

  20. Gamma radiation effect on sisal / polyurethane composites without coupling agents

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, Marina Cardoso; Claro Neto, Salvador; Nascimento, Eduardo Mauro; Azevedo, Elaine, E-mail: marina.mcv@gmail.com [University of Patras (Greece); Universidade de Sao Paulo (USP) Sao Carlos, SP (Brazil); Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2017-04-15

    Natural fibers and polyurethane based composites may present chemical bonding between the components of the polymer and the lignin of the fiber. The incidence of radiation can cause degradation of the polymeric material and alter its mechanical properties. The objective of this study was to obtain and characterize cold pressed composites from polyurethane derived from castor oil and sisal fibers, without coupling agents, through thermogravimetric and mechanical tests, before and after the incidence of 25 kGy dose of gamma radiation. Woven composites that were not irradiated had maximum values of 4.40 GPa for flexural elastic modulus on three point flexural test and dispersed fiber composite that were not irradiated had maximum values of 2.25 GPa. These materials are adequate for use in non-structural applications in radiotherapy and radiodiagnostic rooms. (author)

  1. Extraction kinetics of uranium (VI) with polyurethane foam

    International Nuclear Information System (INIS)

    Huang, Ting-Chia; Chen, Dong-Hwang; Huang, Shius-Dong; Huang, Ching-Tsven; Shieh, Mu-Chang.

    1993-01-01

    The extraction kinetics of uranium(VI) from aqueous nitrate solution with polyether-based polyurethane foam was investigated in a batch reactor with automatic squeezing. The extraction curves of uranium(VI) concentration in solution vs. extraction time exhibited a rather rapid exponential decay within the first few minutes, followed by a slower exponential decay during the remaining period. This phenomenon can be attributed to the presence of two-phase structure, hard segment domains and soft segment matrix in the polyurethane foam. A two-stage rate model expressed by a superposition of two exponential curves was proposed, according to which the experimental data were fitted by an optimization method. The extraction rate of uranium (VI) was also found to increase with increasing temperature, nitrate concentration, and hydration of the cation of nitrate salt. (author)

  2. The small angle neutron scattering study on the segmented polyurethane

    International Nuclear Information System (INIS)

    Sudirman; Gunawan; Prasetyo, S.M.; Karo Karo, A.; Lahagu, I.M.; Darwinto, Tri

    1999-01-01

    The distance between hard segment (HS) and soft segment (SS) of segmented polyurethane have been determined using the Small Angle Neutron Scattering (SANS) technique. The segmented Polyurethanes (SPU) are linear multiblock copolymers, which include elastomer thermoplastic. SPU consist of hard segment and soft segment, each has tendency to make a group with similar type to form a domain. The soft segments used were polypropylene glycol (PPG) and 4,4 diphenylmethane diisocyanate (MDI), while l,4 butanediol (BD) was used as hard segment. The characteristic of SPU depends on its phase structure which is affected by several factors, such as type of chemical formula and the composition of the HS and SS, solvent as well as the synthesizing process. The samples used in this study were SPU56 and SPU68. Based on the appearance of SANS profile, it was obtained that domain distances are 12.32 nm for the SPU56 and 19 nm for the SPU68. (author)

  3. A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles

    Directory of Open Access Journals (Sweden)

    Cheng K

    2017-03-01

    Full Text Available Kuo-Wei Cheng, Shan-hui Hsu Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan, Republic of China Abstract: Superparamagnetic iron oxide nanoparticles (SPIO NPs have a wide range of biomedical applications such as in magnetic resonance imaging, targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encapsulate SPIO NPs in amphiphilic biodegradable polymer. Anionic biodegradable polyurethane nanoparticles (PU NPs with ~35 nm size and different chemistry were prepared by waterborne processes. SPIO NPs were synthesized by chemical co-precipitation. SPIO NPs were then added to the aqueous dispersion of PU NPs, followed by application of high-frequency (~20 kHz ultrasonic vibration for 3 min. This method rendered SPIO-PU hybrid NPs (size ~110 nm suspended in water. SPIO-PU hybrid NPs contained ~50–60 wt% SPIO and retained the superparamagnetic property (evaluated by a magnetometer as well as high contrast in magnetic resonance imaging. SPIO-PU NPs also showed the ability to provide cell hyperthermic treatment. Using the same ultrasonic method, hydrophobic drug (Vitamin K3 [VK3] or (9-(methylaminomethylanthracene [MAMA] could also be encapsulated in PU NPs. The VK3-PU or MAMA-PU hybrid NPs had ~35 nm size and different release profiles for PUs with different chemistry. The encapsulation efficiency for VK3 and MAMA was high (~95% without burst release. The encapsulation mechanism may be attributed to the low glass transition temperature (Tg and good mechanical compliance of PU NPs. The new encapsulation method involving waterborne biodegradable PU NPs is simple, rapid, and effective to produce multimodular NP carriers. Keywords: superparamagnetic iron oxide, polyurethane, drug release, hybrid nanoparticles

  4. Preparation, Physicochemical Properties and Hemocompatibility of Biodegradable Chitooligosaccharide-Based Polyurethane

    Directory of Open Access Journals (Sweden)

    Weiwei Xu

    2018-05-01

    Full Text Available The purpose of this study was to develop a process to achieve biodegradable chitooligosaccharide-based polyurethane (CPU with improved hemocompatibility and mechanical properties. A series of CPUs with varying chitooligosaccharide (COS content were prepared according to the conventional two-step method. First, the prepolymer was synthesized from poly(ε-caprolactone (PCL and uniform-size diurethane diisocyanates (HBH. Then, the prepolymer was chain-extended by COS in N,N-dimethylformamide (DMF to obtain the weak-crosslinked CPU, and the corresponding films were obtained from the DMF solution by the solvent evaporation method. The uniform-size hard segments and slight crosslinking of CPU were beneficial for enhancing the mechanical properties, which were one of the essential requirements for long-term implant biomaterials. The chemical structure was characterized by FT-IR, and the influence of COS content in CPU on the physicochemical properties and hemocompatibility was extensively researched. The thermal stability studies indicated that the CPU films had lower initial decomposition temperature and higher maximum decomposition temperature than pure polyurethane (CPU-1.0 film. The ultimate stress, initial modulus, and surface hydrophilicity increased with the increment of COS content, while the strain at break and water absorption decreased, which was due to the increment of crosslinking density. The results of in vitro degradation signified that the degradation rate increased with the increasing content of COS in CPU, demonstrating that the degradation rate could be controlled by adjusting COS content. The surface hemocompatibility was examined by protein adsorption and platelet adhesion tests. It was found that the CPU films had improved resistance to protein adsorption and possessed good resistance to platelet adhesion. The slow degradation rate and good hemocompatibility of the CPUs showed great potential in blood-contacting devices. In

  5. Improved Lignin Polyurethane Properties with Lewis Acid Treatment

    OpenAIRE

    Chung, Hoyong; Washburn, Newell R.

    2012-01-01

    Chemical modification strategies to improve the mechanical properties of lignin-based polyurethanes are presented. We hypothesized that treatment of lignin with Lewis acids would increase the concentration of hydroxyl groups available to react with diisocyanate monomers. Under the conditions used, hydrogen bromide-catalyzed modification resulted in a 28% increase in hydroxyl group content. Associated increases in hydrophilicity of solvent-cast thin films were also recorded as evidenced by ...

  6. Preparation and characterization of polyurethane - Fe powder composites

    Czech Academy of Sciences Publication Activity Database

    Špírková, Milena; Bureš, R.; Fáberová, M.; Trchová, Miroslava; Strachota, Adam; Kaprálková, Ludmila

    2011-01-01

    Roč. 11, 3/4 (2011), s. 290-299 ISSN 1335-8987 R&D Projects: GA ČR GAP108/10/0195 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyurethanes * polybutadiene diol * Fe powder Subject RIV: CD - Macromolecular Chemistry http://www.imr.saske.sk/pmp/issue/3-4-2011/PMP_Vol11_No3-4_p_290-299.pdf

  7. The effects of using immobilizer made of the polyurethane foam

    International Nuclear Information System (INIS)

    Kim, Yong Hwan; Chung, Sang Hwa; Kim, Hwa Young; Lim, Shin Taek; Oh, Sae Dong

    1992-01-01

    The immogilzer for control the patient movement during the radiation beam on was made of the polyurethane foam. The time consumption is abut 8 minutes for completely making the immobilizer. In this experimental study, the effects of using the individual immobilizer have shown that the patients have had always a same position with comfortable and high reproducibilities. Furthermore, it has shown the time for patient setup was decreased by using the individual patient immobilizer.

  8. Polyester Polyols from Waste PET Bottles for Polyurethane Rigid Foams

    OpenAIRE

    Evtimova, Rozeta; Lozeva, Yordanka; Schmidt, Karl-Heinz; Wotzka, Michael; Wagner, Peter; Behrendt, Gerhard

    2003-01-01

    This paper describes a modified process to produce polyester polyols from PET wastes derived from the “bottle fraction residue” of the German Dual System (DSD) [11] employing a waste oligoester condensate of the polyesterification process with the addition of some glycols of longer chain and occasional modification with further dicarboxylic acids to produce polyester polyols of a broad range of properties which are further reacted to form polyurethane or polyisocyanurate rigid foams for insul...

  9. Modyfication of the Rigid Polyurethane-Polyisocyanurate Foams

    OpenAIRE

    Bogusław Czupryński; Joanna Liszkowska; Joanna Paciorek-Sadowska

    2014-01-01

    The effect of polyethylene glycol 1500 on physicomechanical properties of rigid polyurethane-polyisocyanurate (PUR-PIR) foams has been studied. It was found that application of polyethylene glycol 1500 for synthesis of foams in amount from 0% to 20% w/w had an effect on reduction of brittleness and softening point, while the greater the increase in compressive strength the higher its content in foam composition was. Wastes from production of these foams were ground and subjected to glycolysis...

  10. Study on polyurethane foamed concrete for use in structural applications

    Directory of Open Access Journals (Sweden)

    Iman Kattoof Harith

    2018-06-01

    Full Text Available Recently, foamed concrete is being widely used in civil construction and building, because of its high fluidity and settlement, low self-weight and low thermal conductivity. However, it has some major setbacks such as low strength and increased shrinkage at later ages. The strength gain of concrete depends upon several variables; one of these is the curing conditions. This work aims to study the potential production of foamed concrete as a sustainable structural material by varying the curing methods. For this purpose, sample cubes, cylinders and prisms were prepared to find the compressive strength, modulus of elasticity and drying shrinkage at different ages. Samples of the polyurethane foamed concrete cured under four different curing regimes (water, moisture, sealing by membrane-forming curing compound and air curing. At the end of the study, polyurethane foamed concrete used for this study has shown the potential for use in structural applications. Also, the results show that the samples cured by moisture have the highest compressive strength at all ages. Keywords: Polyurethane foamed concrete, Curing conditions, Fly ash, Compressive strength, Static modulus of elasticity drying shrinkage

  11. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Deka Harekrishna

    2009-01-01

    Full Text Available Abstract The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications.Mesua ferreaL. seed oil-based hyperbranched polyurethane (HBPU/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.

  12. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites.

    Science.gov (United States)

    Deka, Harekrishna; Karak, Niranjan

    2009-04-25

    The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications. Mesua ferrea L. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 degrees C of melting point, and 111 degrees C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96-99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.

  13. A multilayered polyurethane foam technique for skin graft immobilization.

    Science.gov (United States)

    Nakamura, Motoki; Ito, Erika; Kato, Hiroshi; Watanabe, Shoichi; Morita, Akimichi

    2012-02-01

    Several techniques are applicable for skin graft immobilization. Although the sponge dressing is a popular technique, pressure failure near the center of the graft is a weakness of the technique that can result in engraftment failure. To evaluate the efficacy of a new skin graft immobilization technique using multilayered polyurethane foam in vivo and in vitro. Twenty-six patients underwent a full-thickness skin graft. Multiple layers of a hydrocellular polyurethane foam dressing were used for skin graft immobilization. In addition, we created an in vitro skin graft model that allowed us to estimate immobilization pressure at the center and edges of skin grafts of various sizes. Overall mean graft survival was 88.9%. In the head and neck region (19 patients), mean graft survival was 93.6%. Based on the in vitro outcomes, this technique supplies effective pressure (skin graft. This multilayered polyurethane foam dressing is simple, safe, and effective for skin graft immobilization. © 2011 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  14. Green waste cooking oil-based rigid polyurethane foam

    Science.gov (United States)

    Enderus, N. F.; Tahir, S. M.

    2017-11-01

    Polyurethane is a versatile polymer traditionally prepared using petroleum-based raw material. Petroleum, however, is a non-renewable material and polyurethane produced was found to be non-biodegradable. In quest for a more environmentally friendly alternative, wastecooking oil, a highly abundant domestic waste with easily derivatized structure, is a viable candidate to replace petroleum. In this study,an investigation to determine physical and chemical properties of rigid polyurethane (PU) foam from waste cooking oil (WCO) was carried out. WCO was first adsorbed by using coconut husk activated carbon adsorbent prior to be used for polyol synthesis. The purified WCO was then used to synthesize polyol via transesterification reaction to yield alcohol groups in the WCO chains structure. Finally, the WCO-based polyol was used to prepare rigid PU foam. The optimum formulation for PU formation was found to be 90 polyol: 60 glycerol: 54 water: 40 diethanolamine: 23 diisocyanate. The rigid PU foam has density of 208.4 kg/m3 with maximum compressive strength and capability to receive load at 0.03 MPa and 0.09 kN, respectively. WCO-based PU can potentially be used to replace petroleum-based PU as house construction materials such as insulation panels.

  15. (Biodegradable Ionomeric Polyurethanes Based on Xanthan: Synthesis, Properties, and Structure

    Directory of Open Access Journals (Sweden)

    T. V. Travinskaya

    2017-01-01

    Full Text Available New (biodegradable environmentally friendly film-forming ionomeric polyurethanes (IPU based on renewable biotechnological polysaccharide xanthan (Xa have been obtained. The influence of the component composition on the colloidal-chemical and physic-mechanical properties of IPU/Xa and based films, as well as the change of their properties under the influence of environmental factors, have been studied. The results of IR-, PMS-, DMA-, and X-ray scattering study indicate that incorporation of Xa into the polyurethane chain initiates the formation of a new polymer structure different from the structure of the pure IPU (matrix: an amorphous polymer-polymer microdomain has occurred as a result of the chemical interaction of Xa and IPU. It predetermines the degradation of the IPU/Xa films as a whole, unlike the mixed polymer systems, and plays a key role in the improvement of material performance. The results of acid, alkaline hydrolysis, and incubation into the soil indicate the increase of the intensity of degradation processes occurring in the IPU/Xa in comparison with the pure IPU. It has been shown that the introduction of Xa not only imparts the biodegradability property to polyurethane, but also improves the mechanical properties.

  16. Impact damage reduction by structured surface geometry

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Fedorov, Vladimir; McGugan, Malcolm

    2018-01-01

    performance was observed for polyurethane-coated fibre composites with structured geometries at the back surfaces. Repeated impacts by rubber balls on the coated side caused damage and delamination of the coating. The laminates with structured back surfaces showed longer durability than those with a flat back...

  17. Balance and flexibility.

    Science.gov (United States)

    2003-12-01

    The 'work-life balance' and flexible working are currently key buzz terms in the NHS. Those looking for more information on these topics should visit Flexibility at www.flexibility.co.uk for a host of resources designed to support new ways of working, including information on flexible workers and flexible rostering, the legal balancing act for work-life balance and home working.

  18. Development of Flexible Pneumatic Cylinder with Built-in Flexible Linear Encoder and Flexible Bending Sensor

    Science.gov (United States)

    Akagi, Tetsuya; Dohta, Shujiro; Matsushita, Hisashi; Fukuhara, Akimasa

    The purpose of this study is to develop a lightweight and intelligent soft actuator which can be safely attached to the human body. A novel flexible pneumatic cylinder that can be used even if it is deformed by external force had been proposed. The cylinder can realize both pushing and pulling motions even if the cylinder bends. In this paper, a flexible pneumatic cylinder with a built-in flexible linear encoder is proposed and tested. The encoder can detect the cylinder displacement even if the cylinder bends. In the next step, to realize an intelligent flexible cylinder, it is essential to recognize the angle of deflection of the cylinder to estimate the direction of the external force. Therefore, a flexible bending sensor that can measure the directional angle by attaching it to the end of the cylinder is also proposed and tested. The tested bending sensor also consists of four inexpensive photo-reflectors set on the circumferential surface to the cylinder tube every 90 degrees from the center of the tube. By measuring the distance between the photo reflector and the surface of the tube at each point, the bending directional angle of the cylinder can be obtained. A low cost measuring system using a micro-computer incorporating a programmed Up/Down counter to measure the displacement of the cylinder is also developed. As a result, it was confirmed that the measuring accuracy of the bending directional angle was good, less than 0.7 degrees as a standard deviation.

  19. Small Angle Neutron Scattering Studies on Blends of Poly (Styrene-ran-Vinyl Phenol) with Liquid Crystalline Polyurethane

    Science.gov (United States)

    Mehta, Rujul

    2005-03-01

    Molecular composites, composed of uniformly dispersed rigid-rod liquid crystalline polymer (LCP) molecules in a flexible amorphous polymer matrix, have remained hitherto elusive due to a scarcity of miscible systems containing a LCP and an amorphous polymer. The production of such a blend, with an experimentally accessible miscibility window, has become possible by modifying the architecture of the flexible polymer, so as to induce favorable intermolecular hydrogen bonding. Specifically, liquid crystalline polyurethanes (LCPU) are found to be miscible with a copolymer of styrene and vinyl phenol; with optimum hydrogen bonding between the carbonyl groups of the urethane linkages and the hydroxyl groups present in the styrenic matrix. Availability of a truly miscible molecular composite presents a unique opportunity of studying the confirmation of polymer chains containing rigid-rods that are uniformly dispersed in a flexible coil matrix. A system consisting of the LCPU and the deuterated styrenic copolymer containing 20% vinyl phenol is examined by Small Angle Neutron Scattering at the National Center for Neutron Research at Gaithersburg and Technology, and the Institute of Solid State Research (IFF) at Jülich. Scattering curves for neat dPS-VPh did not fit the Debye-Bueche model; indicating complex structure. A two correlation length Debye-Bueche model was considered to accommodate for this nonlinear behavior. This model utilizes four fitting parameters, including two correlation lengths a1 and a2, corresponding to a Debye-Bueche model and Guinier model.

  20. Investigation of a Biocompatible Polyurethane-Based Isotropically Conductive Adhesive for UHF RFID Tag Antennas

    Science.gov (United States)

    Yang, Cheng; Yuen, Matthew M. F.; Gao, Bo; Ma, Yuhui; Wong, C. P.

    2011-01-01

    As a candidate dispersant for silver-based isotropically conductive adhesives (ICAs), polyurethane (PU) is an environmentally benign material that can withstand a high deformation rate and that exhibits excellent reliability. In this work we investigated methyl ethyl ketoxime (MEKO) blocked isophorone diisocyanate (IPDI) and MEKO blocked hexamethylene diisocyanate (HDI) as dispersant materials, and we characterize the electrical conductivity, mechanical properties, and reliability of these PU-based ICAs with silver-flake filler content ranging from 30 wt.% to 75 wt.%. Results of temperature-humidity testing (THT) at 85°C and 85% relative humidity (RH) and thermal cycling testing (TCT) at -40°C to 125°C show that these ICAs have excellent reliability. Our experimental results suggest that the MEKO blocked PU dispersants are suitable for preparing ultralow-cost, flexible, high-performance ICAs for printing antennas for ultrahigh-frequency radiofrequency identification (RFID) tags. These tags can potentially be used for identifying washable items and food packaging.